Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P.; Gerstein, Mark
2010-01-01
The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers’ continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems. PMID:20439753
Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P; Gerstein, Mark
2010-05-18
The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers' continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems.
A discrete mathematical model of the dynamic evolution of a transportation network
NASA Astrophysics Data System (ADS)
Malinetskii, G. G.; Stepantsov, M. E.
2009-09-01
A dynamic model of the evolution of a transportation network is proposed. The main feature of this model is that the evolution of the transportation network is not a process of centralized transportation optimization. Rather, its dynamic behavior is a result of the system self-organization that occurs in the course of the satisfaction of needs in goods transportation and the evolution of the infrastructure of the network nodes. Nonetheless, the possibility of soft control of the network evolution direction is taken into account.
Evolution of Linux operating system network
NASA Astrophysics Data System (ADS)
Xiao, Guanping; Zheng, Zheng; Wang, Haoqin
2017-01-01
Linux operating system (LOS) is a sophisticated man-made system and one of the most ubiquitous operating systems. However, there is little research on the structure and functionality evolution of LOS from the prospective of networks. In this paper, we investigate the evolution of the LOS network. 62 major releases of LOS ranging from versions 1.0 to 4.1 are modeled as directed networks in which functions are denoted by nodes and function calls are denoted by edges. It is found that the size of the LOS network grows almost linearly, while clustering coefficient monotonically decays. The degree distributions are almost the same: the out-degree follows an exponential distribution while both in-degree and undirected degree follow power-law distributions. We further explore the functionality evolution of the LOS network. It is observed that the evolution of functional modules is shown as a sequence of seven events (changes) succeeding each other, including continuing, growth, contraction, birth, splitting, death and merging events. By means of a statistical analysis of these events in the top 4 largest components (i.e., arch, drivers, fs and net), it is shown that continuing, growth and contraction events occupy more than 95% events. Our work exemplifies a better understanding and describing of the dynamics of LOS evolution.
NASA Astrophysics Data System (ADS)
Kotegawa, Tatsuya
Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high robustness is achievable only in exchange of lower passenger travel and fuel burn efficiency. However, increase in the network density can mitigate this trade-off.
On the role of sparseness in the evolution of modularity in gene regulatory networks
2018-01-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases. PMID:29775459
On the role of sparseness in the evolution of modularity in gene regulatory networks.
Espinosa-Soto, Carlos
2018-05-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.
Self-determined mechanisms in complex networks
NASA Astrophysics Data System (ADS)
Liu, Yang; Yuan, Jian; Shan, Xiuming; Ren, Yong; Ma, Zhengxin
2008-03-01
Self-organized networks are pervasive in communication systems such as the Internet, overlay networks, peer-to-peer networks, and cluster-based services. These networks evolve into complex topologies, under specific driving forces, i.e. user demands, technological innovations, design objectives and so on. Our study focuses on the driving forces behind individual evolutions of network components, and their stimulation and domination to the self-organized networks which are defined as self-determined mechanisms in this paper. Understanding forces underlying the evolution of networks should enable informed design decisions and help to avoid unwanted surprises, such as congestion collapse. A case study on the macroscopic evolution of the Internet topology of autonomous systems under a specific driving force is then presented. Using computer simulations, it is found that the power-law degree distribution can originate from a connection preference to larger numbers of users, and that the small-world property can be caused by rapid growth in the number of users. Our results provide a new feasible perspective to understand intrinsic fundamentals in the topological evolution of complex networks.
Evolution of the social network of scientific collaborations
NASA Astrophysics Data System (ADS)
Barabasi, Albert-Laszlo; Jeong, Hawoong; Neda, Zoltan; Ravasz, Erzsebet; Schubert, Andras; Vicsek, Tamas
2002-03-01
The co-authorship network of scientists represents a prototype of complex evolving networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically.
SCM: A method to improve network service layout efficiency with network evolution.
Zhao, Qi; Zhang, Chuanhao; Zhao, Zheng
2017-01-01
Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of "software defined network + network function virtualization" (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently.
The evolution to transparent optical networking
NASA Astrophysics Data System (ADS)
Wrage, Marc; Kirstaedter, Andreas; Rohde, Harald
2005-02-01
Optical data transmission has undergone a tremendous evolution. Starting with unrepeated point-to-point transmission in the 80s the inventions of wavelength division multiplexing (WDM) and erbium doped fiber amplifiers (EDFAs) have let to an explosion of system capacity as well as of system reach. After the steep downturn of recent years network operators have now regained the strength to upgrade their networks and to implement new services. This paper will review current and upcoming technologies in the long haul (LH) and ultra long haul (ULH) data transmission. It will further discuss the future evolution of transparent optical networks towards dynamically routed meshed optical networks with respect to operator"s technical operational and economical requirements. Upgradeability turns out as a key issue as it on the one hand side facilitates low front investments for network providers and on the other hand side enables organic and flexible network growth.
McPherson, Charmaine; Ploeg, Jenny; Edwards, Nancy; Ciliska, Donna; Sword, Wendy
2017-02-01
The purpose of this study was to examine key processes and supportive and inhibiting factors involved in the development, evolution, and sustainability of a child health network in rural Canada. This study contributes to a relatively new research agenda aimed at understanding inter-organizational and cross-sectoral health networks. These networks encourage collaboration focusing on complex issues impacting health - issues that individual agencies cannot effectively address alone. This paper presents an overview of the study findings. An explanatory qualitative case study approach examined the Network's 13-year lifespan. Data sources were documents and Network members, including regional and 71 provincial senior managers from 11 child and youth service sectors. Data were collected through 34 individual interviews and a review of 127 documents. Interview data were analyzed using framework analysis methods; Prior's approach guided document analysis. Three themes related to network development, evolution and sustainability were identified: (a) Network relationships as system triggers, (b) Network-mediated system responsiveness, and (c) Network practice as political. Study findings have important implications for network organizational development, collaborative practice, interprofessional education, public policy, and public system responsiveness research. Findings suggest it is important to explicitly focus on relationships and multi-level socio-political contexts, such as supportive policy environments, in understanding health networks. The dynamic interplay among the Network members; central supportive and inhibiting factors; and micro-, meso-, and macro-organizational contexts was identified.
Liu, Nan; Zhang, Hongzhe; Zhang, Shanshan
2014-12-01
Emerging infectious disease is one of the most minatory threats in modern society. A perfect medical building network system need to be established to protect and control emerging infectious disease. Although in China a preliminary medical building network is already set up with disease control center, the infectious disease hospital, infectious diseases department in general hospital and basic medical institutions, there are still many defects in this system, such as simple structural model, weak interoperability among subsystems, and poor capability of the medical building to adapt to outbreaks of infectious disease. Based on the characteristics of infectious diseases, the whole process of its prevention and control and the comprehensive influence factors, three-dimensional medical architecture network system is proposed as an inevitable trend. In this conception of medical architecture network structure, the evolutions are mentioned, such as from simple network system to multilayer space network system, from static network to dynamic network, and from mechanical network to sustainable network. Ultimately, a more adaptable and corresponsive medical building network system will be established and argued in this paper.
Complex quantum network geometries: Evolution and phase transitions
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Complex quantum network geometries: Evolution and phase transitions.
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Predicting the evolution of complex networks via similarity dynamics
NASA Astrophysics Data System (ADS)
Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping
2017-01-01
Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.
Evolution of regulatory networks towards adaptability and stability in a changing environment
NASA Astrophysics Data System (ADS)
Lee, Deok-Sun
2014-11-01
Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.
SCM: A method to improve network service layout efficiency with network evolution
Zhao, Qi; Zhang, Chuanhao
2017-01-01
Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of “software defined network + network function virtualization” (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently. PMID:29267299
Chen, Bor-Sen; Lin, Ying-Po
2011-01-01
In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563
Renn, Jürgen
2015-01-01
ABSTRACT This paper introduces a conceptual framework for the evolution of complex systems based on the integration of regulatory network and niche construction theories. It is designed to apply equally to cases of biological, social and cultural evolution. Within the conceptual framework we focus especially on the transformation of complex networks through the linked processes of externalization and internalization of causal factors between regulatory networks and their corresponding niches and argue that these are an important part of evolutionary explanations. This conceptual framework extends previous evolutionary models and focuses on several challenges, such as the path‐dependent nature of evolutionary change, the dynamics of evolutionary innovation and the expansion of inheritance systems. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 565–577, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:26097188
Underlying Principles of Natural Selection in Network Evolution: Systems Biology Approach
Chen, Bor-Sen; Wu, Wei-Sheng
2007-01-01
Systems biology is a rapidly expanding field that integrates diverse areas of science such as physics, engineering, computer science, mathematics, and biology toward the goal of elucidating the underlying principles of hierarchical metabolic and regulatory systems in the cell, and ultimately leading to predictive understanding of cellular response to perturbations. Because post-genomics research is taking place throughout the tree of life, comparative approaches offer a way for combining data from many organisms to shed light on the evolution and function of biological networks from the gene to the organismal level. Therefore, systems biology can build on decades of theoretical work in evolutionary biology, and at the same time evolutionary biology can use the systems biology approach to go in new uncharted directions. In this study, we present a review of how the post-genomics era is adopting comparative approaches and dynamic system methods to understand the underlying design principles of network evolution and to shape the nascent field of evolutionary systems biology. Finally, the application of evolutionary systems biology to robust biological network designs is also discussed from the synthetic biology perspective. PMID:19468310
Key technologies and concepts for beyond-3G networks
NASA Astrophysics Data System (ADS)
Pehkonen, Kari; Uskela, Sami; Kalliojarvi, Kari; Oksanen, Lauri; Rikkinen, Kari
2001-10-01
Standardization of 3rd Generation (3G) mobile communication systems has produced the first specification releases and the commercial deployment of the 3G systems has started. Whereas 1G and 2G focused on efficiently providing voice services, in 3G a lot of attention has been devoted to solutions that support both Circuit Switched (CS) and Packet Switched (PS) communication. That has called for very flexible air interface and network solutions. 3G will continue to evolve and there are already on-going standardization activities that will, for example, boost the peak data rates up to 5-10 Mbps and improve spectral efficiency by 2-4 times. In the future, 3G evolution will be going towards 10/100 Mbps peak data rates in wide/local are coverage, respectively. This will take place partly because of technical improvements of 3G radio interface solutions, but also due to network evolution which will allow the integration other radio access methods like radio LANs into the 3G system. In longer term the 3G network evolution will be going towards ALL-IP networks. As 3G evolution seems to be going towards 10 Mbps/100 Mbps peak data rates and ALL-IP networks any beyond 3G air interface or network solution should be clearly better in order to justify its technical and commercial feasibility. Given the long evolution time of 3G and integration of other radio access schemes with 3G radio we may not even see a new, complete beyond 3G system being developed. Maybe we will just witness the emergence of a new, more advanced radio access solution which will then be connected to the evolving 3G network. As 3G evolution will continue for several years to come the research targets for any beyond 3G solutions must be set very high. When it comes to air interface, we should aim at 100 Mbps peak data rates for wide area access with high mobility, and at 1 Gbps for local area access with low mobility. Regarding possible commercial launches of any beyond 3G systems or solutions they could then take place around year 2010 or even later.
Intelligent Resource Management for Local Area Networks: Approach and Evolution
NASA Technical Reports Server (NTRS)
Meike, Roger
1988-01-01
The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. AI is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of AI techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An AI network design advisor is being added to help in the design of an efficient network. The AI portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.
Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S
2015-10-30
Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Evolution of network architecture in a granular material under compression
NASA Astrophysics Data System (ADS)
Bassett, Danielle
As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. However, capturing and characterizing the dynamic nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. Here, we utilize multilayer networks as a framework for directly quantifying the evolution of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and inter-particle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the reconfiguration and evolution of this structure throughout the compression process. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be done by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than consideration of the local inter-particle forces alone. The results discussed throughout this study suggest that these novel network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup. National Science Foundation (BCS-1441502, PHY-1554488, and BCS-1631550).
Prediction in complex systems: The case of the international trade network
NASA Astrophysics Data System (ADS)
Vidmer, Alexandre; Zeng, An; Medo, Matúš; Zhang, Yi-Cheng
2015-10-01
Predicting the future evolution of complex systems is one of the main challenges in complexity science. Based on a current snapshot of a network, link prediction algorithms aim to predict its future evolution. We apply here link prediction algorithms to data on the international trade between countries. This data can be represented as a complex network where links connect countries with the products that they export. Link prediction techniques based on heat and mass diffusion processes are employed to obtain predictions for products exported in the future. These baseline predictions are improved using a recent metric of country fitness and product similarity. The overall best results are achieved with a newly developed metric of product similarity which takes advantage of causality in the network evolution.
Evolution of a modular software network
Fortuna, Miguel A.; Bonachela, Juan A.; Levin, Simon A.
2011-01-01
“Evolution behaves like a tinkerer” (François Jacob, Science, 1977). Software systems provide a singular opportunity to understand biological processes using concepts from network theory. The Debian GNU/Linux operating system allows us to explore the evolution of a complex network in a unique way. The modular design detected during its growth is based on the reuse of existing code in order to minimize costs during programming. The increase of modularity experienced by the system over time has not counterbalanced the increase in incompatibilities between software packages within modules. This negative effect is far from being a failure of design. A random process of package installation shows that the higher the modularity, the larger the fraction of packages working properly in a local computer. The decrease in the relative number of conflicts between packages from different modules avoids a failure in the functionality of one package spreading throughout the entire system. Some potential analogies with the evolutionary and ecological processes determining the structure of ecological networks of interacting species are discussed. PMID:22106260
Characterizing the evolution of climate networks
NASA Astrophysics Data System (ADS)
Tupikina, L.; Rehfeld, K.; Molkenthin, N.; Stolbova, V.; Marwan, N.; Kurths, J.
2014-06-01
Complex network theory has been successfully applied to understand the structural and functional topology of many dynamical systems from nature, society and technology. Many properties of these systems change over time, and, consequently, networks reconstructed from them will, too. However, although static and temporally changing networks have been studied extensively, methods to quantify their robustness as they evolve in time are lacking. In this paper we develop a theory to investigate how networks are changing within time based on the quantitative analysis of dissimilarities in the network structure. Our main result is the common component evolution function (CCEF) which characterizes network development over time. To test our approach we apply it to several model systems, Erdős-Rényi networks, analytically derived flow-based networks, and transient simulations from the START model for which we control the change of single parameters over time. Then we construct annual climate networks from NCEP/NCAR reanalysis data for the Asian monsoon domain for the time period of 1970-2011 CE and use the CCEF to characterize the temporal evolution in this region. While this real-world CCEF displays a high degree of network persistence over large time lags, there are distinct time periods when common links break down. This phasing of these events coincides with years of strong El Niño/Southern Oscillation phenomena, confirming previous studies. The proposed method can be applied for any type of evolving network where the link but not the node set is changing, and may be particularly useful to characterize nonstationary evolving systems using complex networks.
Evolution, learning, and cognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.C.
1988-01-01
The book comprises more than fifteen articles in the areas of neural networks and connectionist systems, classifier systems, adaptive network systems, genetic algorithm, cellular automata, artificial immune systems, evolutionary genetics, cognitive science, optical computing, combinatorial optimization, and cybernetics.
Yun, Anthony J; Lee, Patrick Y; Doux, John D
2006-01-01
A network constitutes an abstract description of the relationships among entities, respectively termed links and nodes. If a power law describes the probability distribution of the number of links per node, the network is said to be scale-free. Scale-free networks feature link clustering around certain hubs based on preferential attachments that emerge due either to merit or legacy. Biologic systems ranging from sub-atomic to ecosystems represent scale-free networks in which energy efficiency forms the basis of preferential attachments. This paradigm engenders a novel scale-free network theory of evolution based on energy efficiency. As environmental flux induces fitness dislocations and compels a new meritocracy, new merit-based hubs emerge, previously merit-based hubs become legacy hubs, and network recalibration occurs to achieve system optimization. To date, Darwinian evolution, characterized by innovation sampling, variation, and selection through filtered termination, has enabled biologic progress through optimization of energy efficiency. However, as humans remodel their environment, increasing the level of unanticipated fitness dislocations and inducing evolutionary stress, the tendency of networks to exhibit inertia and retain legacy hubs engender maladaptations. Many modern diseases may fundamentally derive from these evolutionary displacements. Death itself may constitute a programmed adaptation, terminating individuals who represent legacy hubs and recalibrating the network. As memes replace genes as the basis of innovation, death itself has become a legacy hub. Post-Darwinian evolution may favor indefinite persistence to optimize energy efficiency. We describe strategies to reprogram or decommission legacy hubs that participate in human disease and death.
NASA Astrophysics Data System (ADS)
Zhang, Lin; Lu, Jian; Zhou, Jialin; Zhu, Jinqing; Li, Yunxuan; Wan, Qian
2018-03-01
Didi Dache is the most popular taxi order mobile app in China, which provides online taxi-hailing service. The obtained big database from this app could be used to analyze the complexities’ day-to-day dynamic evolution of Didi taxi trip network (DTTN) from the level of complex network dynamics. First, this paper proposes the data cleaning and modeling methods for expressing Nanjing’s DTTN as a complex network. Second, the three consecutive weeks’ data are cleaned to establish 21 DTTNs based on the proposed big data processing technology. Then, multiple topology measures that characterize the complexities’ day-to-day dynamic evolution of these networks are provided. Third, these measures of 21 DTTNs are calculated and subsequently explained with actual implications. They are used as a training set for modeling the BP neural network which is designed for predicting DTTN complexities evolution. Finally, the reliability of the designed BP neural network is verified by comparing with the actual data and the results obtained from ARIMA method simultaneously. Because network complexities are the basis for modeling cascading failures and conducting link prediction in complex system, this proposed research framework not only provides a novel perspective for analyzing DTTN from the level of system aggregated behavior, but can also be used to improve the DTTN management level.
Language Networks as Complex Systems
ERIC Educational Resources Information Center
Lee, Max Kueiming; Ou, Sheue-Jen
2008-01-01
Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…
Dual Neural Network Model for the Evolution of Speech and Language.
Hage, Steffen R; Nieder, Andreas
2016-12-01
Explaining the evolution of speech and language poses one of the biggest challenges in biology. We propose a dual network model that posits a volitional articulatory motor network (VAMN) originating in the prefrontal cortex (PFC; including Broca's area) that cognitively controls vocal output of a phylogenetically conserved primary vocal motor network (PVMN) situated in subcortical structures. By comparing the connections between these two systems in human and nonhuman primate brains, we identify crucial biological preadaptations in monkeys for the emergence of a language system in humans. This model of language evolution explains the exclusiveness of non-verbal communication sounds (e.g., cries) in infants with an immature PFC, as well as the observed emergence of non-linguistic vocalizations in adults after frontal lobe pathologies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chang, Xiao; Wang, Zhuo; Hao, Pei; Li, Yuan-Yuan; Li, Yi-Xue
2010-06-01
The endosymbiotic theory proposed that mitochondrial genomes are derived from an alpha-proteobacterium-like endosymbiont, which was concluded from sequence analysis. We rebuilt the metabolic networks of mitochondria and 22 relative species, and studied the evolution of mitochondrial metabolism at the level of enzyme content and network topology. Our phylogenetic results based on network alignment and motif identification supported the endosymbiotic theory from the point of view of systems biology for the first time. It was found that the mitochondrial metabolic network were much more compact than the relative species, probably related to the higher efficiency of oxidative phosphorylation of the specialized organelle, and the network is highly clustered around the TCA cycle. Moreover, the mitochondrial metabolic network exhibited high functional specificity to the modules. This work provided insight to the understanding of mitochondria evolution, and the organization principle of mitochondrial metabolic network at the network level. Copyright 2010 Elsevier Inc. All rights reserved.
Firewall systems: the next generation
NASA Astrophysics Data System (ADS)
McGhie, Lynda L.
1996-01-01
To be competitive in today's globally connected marketplace, a company must ensure that their internal network security methodologies and supporting policies are current and reflect an overall understanding of today's technology and its resultant threats. Further, an integrated approach to information security should ensure that new ways of sharing information and doing business are accommodated; such as electronic commerce, high speed public broadband network services, and the federally sponsored National Information Infrastructure. There are many challenges, and success is determined by the establishment of a solid and firm baseline security architecture that accommodate today's external connectivity requirements, provides transitional solutions that integrate with evolving and dynamic technologies, and ultimately acknowledges both the strategic and tactical goals of an evolving network security architecture and firewall system. This paper explores the evolution of external network connectivity requirements, the associated challenges and the subsequent development and evolution of firewall security systems. It makes the assumption that a firewall is a set of integrated and interoperable components, coming together to form a `SYSTEM' and must be designed, implement and managed as such. A progressive firewall model will be utilized to illustrates the evolution of firewall systems from earlier models utilizing separate physical networks, to today's multi-component firewall systems enabling secure heterogeneous and multi-protocol interfaces.
ERIC Educational Resources Information Center
Dias, Martin A.
2012-01-01
The purpose of this dissertation is to examine information systems-enabled interorganizational collaborations called public safety networks--their proliferation, information systems architecture, and technology evolution. These networks face immense pressures from member organizations, external stakeholders, and environmental contingencies. This…
NASA Technical Reports Server (NTRS)
1986-01-01
This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.
NASA Astrophysics Data System (ADS)
1986-10-01
The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.
NASA Astrophysics Data System (ADS)
1986-10-01
This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.
NASA Technical Reports Server (NTRS)
1986-01-01
The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.
The Evolution of ICT Markets: An Agent-Based Model on Complex Networks
NASA Astrophysics Data System (ADS)
Zhao, Liangjie; Wu, Bangtao; Chen, Zhong; Li, Li
Information and communication technology (ICT) products exhibit positive network effects.The dynamic process of ICT markets evolution has two intrinsic characteristics: (1) customers are influenced by each others’ purchasing decision; (2) customers are intelligent agents with bounded rationality.Guided by complex systems theory, we construct an agent-based model and simulate on complex networks to examine how the evolution can arise from the interaction of customers, which occur when they make expectations about the future installed base of a product by the fraction of neighbors who are using the same product in his personal network.We demonstrate that network effects play an important role in the evolution of markets share, which make even an inferior product can dominate the whole market.We also find that the intensity of customers’ communication can influence whether the best initial strategy for firms is to improve product quality or expand their installed base.
NASA Astrophysics Data System (ADS)
Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng
2018-04-01
One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.
Multidimensional adaptive evolution of a feed-forward network and the illusion of compensation
Bullaughey, Kevin
2016-01-01
When multiple substitutions affect a trait in opposing ways, they are often assumed to be compensatory, not only with respect to the trait, but also with respect to fitness. This type of compensatory evolution has been suggested to underlie the evolution of protein structures and interactions, RNA secondary structures, and gene regulatory modules and networks. The possibility for compensatory evolution results from epistasis. Yet if epistasis is widespread, then it is also possible that the opposing substitutions are individually adaptive. I term this possibility an adaptive reversal. Although possible for arbitrary phenotype-fitness mappings, it has not yet been investigated whether such epistasis is prevalent in a biologically-realistic setting. I investigate a particular regulatory circuit, the type I coherent feed-forward loop, which is ubiquitous in natural systems and is accurately described by a simple mathematical model. I show that such reversals are common during adaptive evolution, can result solely from the topology of the fitness landscape, and can occur even when adaptation follows a modest environmental change and the network was well adapted to the original environment. The possibility of adaptive reversals warrants a systems perspective when interpreting substitution patterns in gene regulatory networks. PMID:23289561
Self-Organized Critical Behavior:. the Evolution of Frozen Spin Networks Model in Quantum Gravity
NASA Astrophysics Data System (ADS)
Chen, Jian-Zhen; Zhu, Jian-Yang
In quantum gravity, we study the evolution of a two-dimensional planar open frozen spin network, in which the color (i.e. the twice spin of an edge) labeling edge changes but the underlying graph remains fixed. The mainly considered evolution rule, the random edge model, is depending on choosing an edge randomly and changing the color of it by an even integer. Since the change of color generally violate the gauge invariance conditions imposed on the system, detailed propagation rule is needed and it can be defined in many ways. Here, we provided one new propagation rule, in which the involved even integer is not a constant one as in previous works, but changeable with certain probability. In random edge model, we do find the evolution of the system under the propagation rule exhibits power-law behavior, which is suggestive of the self-organized criticality (SOC), and it is the first time to verify the SOC behavior in such evolution model for the frozen spin network. Furthermore, the increase of the average color of the spin network in time can show the nature of inflation for the universe.
Modeling evolution of crosstalk in noisy signal transduction networks
NASA Astrophysics Data System (ADS)
Tareen, Ammar; Wingreen, Ned S.; Mukhopadhyay, Ranjan
2018-02-01
Signal transduction networks can form highly interconnected systems within cells due to crosstalk between constituent pathways. To better understand the evolutionary design principles underlying such networks, we study the evolution of crosstalk for two parallel signaling pathways that arise via gene duplication. We use a sequence-based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. We find that one fitness function leads to a high degree of crosstalk while the other leads to pathway specificity. Our results offer insights on the relationship between network architecture and information transmission for noisy biomolecular networks.
System crash as dynamics of complex networks.
Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim
2016-10-18
Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.
Functional evolution of new and expanded attention networks in humans
Patel, Gaurav H.; Yang, Danica; Jamerson, Emery C.; Snyder, Lawrence H.; Corbetta, Maurizio; Ferrera, Vincent P.
2015-01-01
Macaques are often used as a model system for invasive investigations of the neural substrates of cognition. However, 25 million years of evolution separate humans and macaques from their last common ancestor, and this has likely substantially impacted the function of the cortical networks underlying cognitive processes, such as attention. We examined the homology of frontoparietal networks underlying attention by comparing functional MRI data from macaques and humans performing the same visual search task. Although there are broad similarities, we found fundamental differences between the species. First, humans have more dorsal attention network areas than macaques, indicating that in the course of evolution the human attention system has expanded compared with macaques. Second, potentially homologous areas in the dorsal attention network have markedly different biases toward representing the contralateral hemifield, indicating that the underlying neural architecture of these areas may differ in the most basic of properties, such as receptive field distribution. Third, despite clear evidence of the temporoparietal junction node of the ventral attention network in humans as elicited by this visual search task, we did not find functional evidence of a temporoparietal junction in macaques. None of these differences were the result of differences in training, experimental power, or anatomical variability between the two species. The results of this study indicate that macaque data should be applied to human models of cognition cautiously, and demonstrate how evolution may shape cortical networks. PMID:26170314
Functional evolution of new and expanded attention networks in humans.
Patel, Gaurav H; Yang, Danica; Jamerson, Emery C; Snyder, Lawrence H; Corbetta, Maurizio; Ferrera, Vincent P
2015-07-28
Macaques are often used as a model system for invasive investigations of the neural substrates of cognition. However, 25 million years of evolution separate humans and macaques from their last common ancestor, and this has likely substantially impacted the function of the cortical networks underlying cognitive processes, such as attention. We examined the homology of frontoparietal networks underlying attention by comparing functional MRI data from macaques and humans performing the same visual search task. Although there are broad similarities, we found fundamental differences between the species. First, humans have more dorsal attention network areas than macaques, indicating that in the course of evolution the human attention system has expanded compared with macaques. Second, potentially homologous areas in the dorsal attention network have markedly different biases toward representing the contralateral hemifield, indicating that the underlying neural architecture of these areas may differ in the most basic of properties, such as receptive field distribution. Third, despite clear evidence of the temporoparietal junction node of the ventral attention network in humans as elicited by this visual search task, we did not find functional evidence of a temporoparietal junction in macaques. None of these differences were the result of differences in training, experimental power, or anatomical variability between the two species. The results of this study indicate that macaque data should be applied to human models of cognition cautiously, and demonstrate how evolution may shape cortical networks.
Evolution of the social network of scientific collaborations
NASA Astrophysics Data System (ADS)
Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.
2002-08-01
The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.
ERIC Educational Resources Information Center
De Patta, Joe
2003-01-01
Examines how to evaluate school security, begin making schools safe, secure schools without turning them into fortresses, and secure schools easily and affordably; the evolution of security systems into information technology systems; using schools' high-speed network lines; how one specific security system was developed; pros and cons of the…
ERIC Educational Resources Information Center
Takwale, Ram
1998-01-01
Discusses the evolution of the educational system in India, developments in new communication technologies, and plans by the open and distance education system to develop educational networks. Policies and programs adopted by the Distance Education Council are outlined. (AEF)
Kohsokabe, Takahiro; Kaneko, Kunihiko
2016-01-01
Search for possible relationships between phylogeny and ontogeny is important in evolutionary-developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell-to-cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi-stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical-systems theory, which lead to the evolution-development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.
Bioattractors: dynamical systems theory and the evolution of regulatory processes
Jaeger, Johannes; Monk, Nick
2014-01-01
In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype–phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait – such as attractors with associated basins and their bifurcations – define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. PMID:24882812
Jenkins, Dafyd J; Stekel, Dov J
2010-02-01
Gene regulation is one important mechanism in producing observed phenotypes and heterogeneity. Consequently, the study of gene regulatory network (GRN) architecture, function and evolution now forms a major part of modern biology. However, it is impossible to experimentally observe the evolution of GRNs on the timescales on which living species evolve. In silico evolution provides an approach to studying the long-term evolution of GRNs, but many models have either considered network architecture from non-adaptive evolution, or evolution to non-biological objectives. Here, we address a number of important modelling and biological questions about the evolution of GRNs to the realistic goal of biomass production. Can different commonly used simulation paradigms, in particular deterministic and stochastic Boolean networks, with and without basal gene expression, be used to compare adaptive with non-adaptive evolution of GRNs? Are these paradigms together with this goal sufficient to generate a range of solutions? Will the interaction between a biological goal and evolutionary dynamics produce trade-offs between growth and mutational robustness? We show that stochastic basal gene expression forces shrinkage of genomes due to energetic constraints and is a prerequisite for some solutions. In systems that are able to evolve rates of basal expression, two optima, one with and one without basal expression, are observed. Simulation paradigms without basal expression generate bloated networks with non-functional elements. Further, a range of functional solutions was observed under identical conditions only in stochastic networks. Moreover, there are trade-offs between efficiency and yield, indicating an inherent intertwining of fitness and evolutionary dynamics.
Constraints imposed by pollinator behaviour on the ecology and evolution of plant mating systems.
Devaux, C; Lepers, C; Porcher, E
2014-07-01
Most flowering plants rely on pollinators for their reproduction. Plant-pollinator interactions, although mutualistic, involve an inherent conflict of interest between both partners and may constrain plant mating systems at multiple levels: the immediate ecological plant selfing rates, their distribution in and contribution to pollination networks, and their evolution. Here, we review experimental evidence that pollinator behaviour influences plant selfing rates in pairs of interacting species, and that plants can modify pollinator behaviour through plastic and evolutionary changes in floral traits. We also examine how theoretical studies include pollinators, implicitly or explicitly, to investigate the role of their foraging behaviour in plant mating system evolution. In doing so, we call for more evolutionary models combining ecological and genetic factors, and additional experimental data, particularly to describe pollinator foraging behaviour. Finally, we show that recent developments in ecological network theory help clarify the impact of community-level interactions on plant selfing rates and their evolution and suggest new research avenues to expand the study of mating systems of animal-pollinated plant species to the level of the plant-pollinator networks. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Wilds, Roy; Kauffman, Stuart A.; Glass, Leon
2008-09-01
We study the evolution of complex dynamics in a model of a genetic regulatory network. The fitness is associated with the topological entropy in a class of piecewise linear equations, and the mutations are associated with changes in the logical structure of the network. We compare hill climbing evolution, in which only mutations that increase the fitness are allowed, with neutral evolution, in which mutations that leave the fitness unchanged are allowed. The simple structure of the fitness landscape enables us to estimate analytically the rates of hill climbing and neutral evolution. In this model, allowing neutral mutations accelerates the rate of evolutionary advancement for low mutation frequencies. These results are applicable to evolution in natural and technological systems.
Experimental evolution of protein–protein interaction networks
Kaçar, Betül; Gaucher, Eric A.
2013-01-01
The modern synthesis of evolutionary theory and genetics has enabled us to discover underlying molecular mechanisms of organismal evolution. We know that in order to maximize an organism's fitness in a particular environment, individual interactions among components of protein and nucleic acid networks need to be optimized by natural selection, or sometimes through random processes, as the organism responds to changes and/or challenges in the environment. Despite the significant role of molecular networks in determining an organism's adaptation to its environment, we still do not know how such inter- and intra-molecular interactions within networks change over time and contribute to an organism's evolvability while maintaining overall network functions. One way to address this challenge is to identify connections between molecular networks and their host organisms, to manipulate these connections, and then attempt to understand how such perturbations influence molecular dynamics of the network and thus influence evolutionary paths and organismal fitness. In the present review, we discuss how integrating evolutionary history with experimental systems that combine tools drawn from molecular evolution, synthetic biology and biochemistry allow us to identify the underlying mechanisms of organismal evolution, particularly from the perspective of protein interaction networks. PMID:23849056
Evolution of the VEGF-regulated vascular network from a neural guidance system.
Ponnambalam, Sreenivasan; Alberghina, Mario
2011-06-01
The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF-VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson's disease, Alzheimer's disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.
Emergent explosive synchronization in adaptive complex networks
NASA Astrophysics Data System (ADS)
Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.
2018-04-01
Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.
Emergent explosive synchronization in adaptive complex networks.
Avalos-Gaytán, Vanesa; Almendral, Juan A; Leyva, I; Battiston, F; Nicosia, V; Latora, V; Boccaletti, S
2018-04-01
Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.
OCTANET--an electronic library network: I. Design and development.
Johnson, M F; Pride, R B
1983-01-01
The design and development of the OCTANET system for networking among medical libraries in the midcontinental region is described. This system's features and configuration may be attributed, at least in part, to normal evolution of technology in library networking, remote access to computers, and development of machine-readable data bases. Current functions and services of the system are outlined and implications for future developments in computer-based networking are discussed. PMID:6860825
Effects of topology on network evolution
NASA Astrophysics Data System (ADS)
Oikonomou, Panos; Cluzel, Philippe
2006-08-01
The ubiquity of scale-free topology in nature raises the question of whether this particular network design confers an evolutionary advantage. A series of studies has identified key principles controlling the growth and the dynamics of scale-free networks. Here, we use neuron-based networks of boolean components as a framework for modelling a large class of dynamical behaviours in both natural and artificial systems. Applying a training algorithm, we characterize how networks with distinct topologies evolve towards a pre-established target function through a process of random mutations and selection. We find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. Whereas homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously. Remarkably, this latter property is robust to variations of the degree exponent. In contrast, homogeneous random networks require a specific tuning of their connectivity to optimize their ability to evolve. These results highlight an organizing principle that governs the evolution of complex networks and that can improve the design of engineered systems.
Tracking the Evolution of Infrastructure Systems and Mass Responses Using Publically Available Data
Guan, Xiangyang; Chen, Cynthia; Work, Dan
2016-01-01
Networks can evolve even on a short-term basis. This phenomenon is well understood by network scientists, but receive little attention in empirical literature involving real-world networks. On one hand, this is due to the deceitfully fixed topology of some networks such as many physical infrastructures, whose evolution is often deemed unlikely to occur in short term; on the other hand, the lack of data prohibits scientists from studying subjects such as social networks that seem likely to evolve on a short-term basis. We show that both networks—the infrastructure network and social network—are able to demonstrate evolutionary dynamics at the system level even in the short-term, characterized by shifting between different phases as predicted in network science. We develop a methodology of tracking the evolutionary dynamics of the two networks by incorporating flows and the microstructure of networks such as motifs. This approach is applied to the human interaction network and two transportation networks (subway and taxi) in the context of Hurricane Sandy, using publically available Twitter data and transportation data. Our result shows that significant changes in the system-level structure of networks can be detected on a continuous basis. This result provides a promising channel for real-time tracking in the future. PMID:27907061
Distributed Computing Environment for Mine Warfare Command
1993-06-01
based system to a decentralized network of personal computers over the past several years. This thesis analyzes the progress of the evolution as of May of...network of personal computers over the past several years. This thesis analyzes the progress of the evolution as of May of 1992. The building blocks of a...85 A. BACKGROUND ............. .................. 85 B. PAST ENVIRONMENT ........... ............... 86 C. PRESENT ENVIRONMENT
Random Evolution of Idiotypic Networks: Dynamics and Architecture
NASA Astrophysics Data System (ADS)
Brede, Markus; Behn, Ulrich
The paper deals with modelling a subsystem of the immune system, the so-called idiotypic network (INW). INWs, conceived by N.K. Jerne in 1974, are functional networks of interacting antibodies and B cells. In principle, Jernes' framework provides solutions to many issues in immunology, such as immunological memory, mechanisms for antigen recognition and self/non-self discrimination. Explaining the interconnection between the elementary components, local dynamics, network formation and architecture, and possible modes of global system function appears to be an ideal playground of statistical mechanics. We present a simple cellular automaton model, based on a graph representation of the system. From a simplified description of idiotypic interactions, rules for the random evolution of networks of occupied and empty sites on these graphs are derived. In certain biologically relevant parameter ranges the resultant dynamics leads to stationary states. A stationary state is found to correspond to a specific pattern of network organization. It turns out that even these very simple rules give rise to a multitude of different kinds of patterns. We characterize these networks by classifying `static' and `dynamic' network-patterns. A type of `dynamic' network is found to display many features of real INWs.
Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms
NASA Astrophysics Data System (ADS)
Wang, Jianrong; Wang, Jianping; Han, Dun
2017-01-01
In recent years, wireless communication plays an important role in our lives. Cooperative communication, is used by a mobile station with single antenna to share with each other forming a virtual MIMO antenna system, will become a development with a diversity gain for wireless communication in tendency future. In this paper, a fitness model of evolution network based on complex networks with mixed attachment mechanisms is devised in order to study an actual network-CCFN (cooperative communication fitness network). Firstly, the evolution of CCFN is given by four cases with different probabilities, and the rate equations of nodes degree are presented to analyze the evolution of CCFN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation with the examples of four fitness distributions such as power law, uniform fitness distribution, exponential fitness distribution and Rayleigh fitness distribution. Finally, the robustness of CCFN is studied by numerical simulation with four fitness distributions under random attack and intentional attack to analyze the effects of degree distribution, average path length and average degree. The results of this paper offers insights for building CCFN systems in order to program communication resources.
Concurrent evolution of feature extractors and modular artificial neural networks
NASA Astrophysics Data System (ADS)
Hannak, Victor; Savakis, Andreas; Yang, Shanchieh Jay; Anderson, Peter
2009-05-01
This paper presents a new approach for the design of feature-extracting recognition networks that do not require expert knowledge in the application domain. Feature-Extracting Recognition Networks (FERNs) are composed of interconnected functional nodes (feurons), which serve as feature extractors, and are followed by a subnetwork of traditional neural nodes (neurons) that act as classifiers. A concurrent evolutionary process (CEP) is used to search the space of feature extractors and neural networks in order to obtain an optimal recognition network that simultaneously performs feature extraction and recognition. By constraining the hill-climbing search functionality of the CEP on specific parts of the solution space, i.e., individually limiting the evolution of feature extractors and neural networks, it was demonstrated that concurrent evolution is a necessary component of the system. Application of this approach to a handwritten digit recognition task illustrates that the proposed methodology is capable of producing recognition networks that perform in-line with other methods without the need for expert knowledge in image processing.
Optimizing Nutrient Uptake in Biological Transport Networks
NASA Astrophysics Data System (ADS)
Ronellenfitsch, Henrik; Katifori, Eleni
2013-03-01
Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.
A dynamic network model for interbank market
NASA Astrophysics Data System (ADS)
Xu, Tao; He, Jianmin; Li, Shouwei
2016-12-01
In this paper, a dynamic network model based on agent behavior is introduced to explain the formation mechanism of interbank market network. We investigate the impact of credit lending preference on interbank market network topology, the evolution of interbank market network and stability of interbank market. Experimental results demonstrate that interbank market network is a small-world network and cumulative degree follows the power-law distribution. We find that the interbank network structure keeps dynamic stability in the network evolution process. With the increase of bank credit lending preference, network clustering coefficient increases and average shortest path length decreases monotonously, which improves the stability of the network structure. External shocks are main threats for the interbank market and the reduction of bank external investment yield rate and deposits fluctuations contribute to improve the resilience of the banking system.
NASA Technical Reports Server (NTRS)
1986-01-01
Over the past two decades, fiber optics has emerged as a highly practical and cost-efficient communications technology. Its competitiveness vis-a-vis other transmission media, especially satellite, has become a critical question. This report studies the likely evolution and application of fiber optic networks in the United States to the end of the century. The outlook for the technology of fiber systems is assessed and forecast, scenarios of the evolution of fiber optic network development are constructed, and costs to provide service are determined and examined parametrically as a function of network size and traffic carried. Volume 1 consists of the Executive Summary. Volume 2 focuses on fiber optic technology and long distance fiber optic networks. Volume 3 develops a traffic and financial model of a nationwide long distance transmission network. Among the study's most important conclusions are: revenue requirements per circuit for LATA-to-LATA fiber optic links are less than one cent per call minute; multiplex equipment, which is likely to be required in any competing system, is the largest contributor to circuit costs; the potential capacity of fiber optic cable is very large and as yet undefined; and fiber optic transmission combined with other network optimization schemes can lead to even lower costs than those identified in this study.
Bioattractors: dynamical systems theory and the evolution of regulatory processes.
Jaeger, Johannes; Monk, Nick
2014-06-01
In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype-phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait--such as attractors with associated basins and their bifurcations--define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Kohsokabe, Takahiro
2016-01-01
ABSTRACT Search for possible relationships between phylogeny and ontogeny is important in evolutionary‐developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell‐to‐cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi‐stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical‐systems theory, which lead to the evolution‐development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. J. Exp. Zool. (Mol. Dev. Evol.) 326B:61–84, 2016. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc. PMID:26678220
General Dynamics of Topology and Traffic on Weighted Technological Networks
NASA Astrophysics Data System (ADS)
Wang, Wen-Xu; Wang, Bing-Hong; Hu, Bo; Yan, Gang; Ou, Qing
2005-05-01
For most technical networks, the interplay of dynamics, traffic, and topology is assumed crucial to their evolution. In this Letter, we propose a traffic-driven evolution model of weighted technological networks. By introducing a general strength-coupling mechanism under which the traffic and topology mutually interact, the model gives power-law distributions of degree, weight, and strength, as confirmed in many real networks. Particularly, depending on a parameter W that controls the total weight growth of the system, the nontrivial clustering coefficient C, degree assortativity coefficient r, and degree-strength correlation are all consistent with empirical evidence.
NASA Astrophysics Data System (ADS)
The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.
Insights into the Ecology and Evolution of Polyploid Plants through Network Analysis.
Gallagher, Joseph P; Grover, Corrinne E; Hu, Guanjing; Wendel, Jonathan F
2016-06-01
Polyploidy is a widespread phenomenon throughout eukaryotes, with important ecological and evolutionary consequences. Although genes operate as components of complex pathways and networks, polyploid changes in genes and gene expression have typically been evaluated as either individual genes or as a part of broad-scale analyses. Network analysis has been fruitful in associating genomic and other 'omic'-based changes with phenotype for many systems. In polyploid species, network analysis has the potential not only to facilitate a better understanding of the complex 'omic' underpinnings of phenotypic and ecological traits common to polyploidy, but also to provide novel insight into the interaction among duplicated genes and genomes. This adds perspective to the global patterns of expression (and other 'omic') change that accompany polyploidy and to the patterns of recruitment and/or loss of genes following polyploidization. While network analysis in polyploid species faces challenges common to other analyses of duplicated genomes, present technologies combined with thoughtful experimental design provide a powerful system to explore polyploid evolution. Here, we demonstrate the utility and potential of network analysis to questions pertaining to polyploidy with an example involving evolution of the transgressively superior cotton fibres found in polyploid Gossypium hirsutum. By combining network analysis with prior knowledge, we provide further insights into the role of profilins in fibre domestication and exemplify the potential for network analysis in polyploid species. © 2016 John Wiley & Sons Ltd.
Back to the biology in systems biology: what can we learn from biomolecular networks?
Huang, Sui
2004-02-01
Genome-scale molecular networks, including protein interaction and gene regulatory networks, have taken centre stage in the investigation of the burgeoning disciplines of systems biology and biocomplexity. What do networks tell us? Some see in networks simply the comprehensive, detailed description of all cellular pathways, others seek in networks simple, higher-order qualities that emerge from the collective action of the individual pathways. This paper discusses networks from an encompassing category of thinking that will hopefully help readers to bridge the gap between these polarised viewpoints. Systems biology so far has emphasised the characterisation of large pathway maps. Now one has to ask: where is the actual biology in 'systems biology'? As structures midway between genome and phenome, and by serving as an 'extended genotype' or an 'elementary phenotype', molecular networks open a new window to the study of evolution and gene function in complex living systems. For the study of evolution, features in network topology offer a novel starting point for addressing the old debate on the relative contributions of natural selection versus intrinsic constraints to a particular trait. To study the function of genes, it is necessary not only to see them in the context of gene networks, but also to reach beyond describing network topology and to embrace the global dynamics of networks that will reveal higher-order, collective behaviour of the interacting genes. This will pave the way to understanding how the complexity of genome-wide molecular networks collapses to produce a robust whole-cell behaviour that manifests as tightly-regulated switching between distinct cell fates - the basis for multicellular life.
Evolutionary Games in Multi-Agent Systems of Weighted Social Networks
NASA Astrophysics Data System (ADS)
Du, Wen-Bo; Cao, Xian-Bin; Zheng, Hao-Ran; Zhou, Hong; Hu, Mao-Bin
Much empirical evidence has shown realistic networks are weighted. Compared with those on unweighted networks, the dynamics on weighted network often exhibit distinctly different phenomena. In this paper, we investigate the evolutionary game dynamics (prisoner's dilemma game and snowdrift game) on a weighted social network consisted of rational agents and focus on the evolution of cooperation in the system. Simulation results show that the cooperation level is strongly affected by the weighted nature of the network. Moreover, the variation of time series has also been investigated. Our work may be helpful in understanding the cooperative behavior in the social systems.
Dual-phase evolution in complex adaptive systems
Paperin, Greg; Green, David G.; Sadedin, Suzanne
2011-01-01
Understanding the origins of complexity is a key challenge in many sciences. Although networks are known to underlie most systems, showing how they contribute to well-known phenomena remains an issue. Here, we show that recurrent phase transitions in network connectivity underlie emergent phenomena in many systems. We identify properties that are typical of systems in different connectivity phases, as well as characteristics commonly associated with the phase transitions. We synthesize these common features into a common framework, which we term dual-phase evolution (DPE). Using this framework, we review the literature from several disciplines to show that recurrent connectivity phase transitions underlie the complex properties of many biological, physical and human systems. We argue that the DPE framework helps to explain many complex phenomena, including perpetual novelty, modularity, scale-free networks and criticality. Our review concludes with a discussion of the way DPE relates to other frameworks, in particular, self-organized criticality and the adaptive cycle. PMID:21247947
Dual-phase evolution in complex adaptive systems.
Paperin, Greg; Green, David G; Sadedin, Suzanne
2011-05-06
Understanding the origins of complexity is a key challenge in many sciences. Although networks are known to underlie most systems, showing how they contribute to well-known phenomena remains an issue. Here, we show that recurrent phase transitions in network connectivity underlie emergent phenomena in many systems. We identify properties that are typical of systems in different connectivity phases, as well as characteristics commonly associated with the phase transitions. We synthesize these common features into a common framework, which we term dual-phase evolution (DPE). Using this framework, we review the literature from several disciplines to show that recurrent connectivity phase transitions underlie the complex properties of many biological, physical and human systems. We argue that the DPE framework helps to explain many complex phenomena, including perpetual novelty, modularity, scale-free networks and criticality. Our review concludes with a discussion of the way DPE relates to other frameworks, in particular, self-organized criticality and the adaptive cycle.
Evolution of eumetazoan nervous systems: insights from cnidarians.
Kelava, Iva; Rentzsch, Fabian; Technau, Ulrich
2015-12-19
Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system-in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution. © 2015 The Authors.
Netgram: Visualizing Communities in Evolving Networks
Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.
2015-01-01
Real-world complex networks are dynamic in nature and change over time. The change is usually observed in the interactions within the network over time. Complex networks exhibit community like structures. A key feature of the dynamics of complex networks is the evolution of communities over time. Several methods have been proposed to detect and track the evolution of these groups over time. However, there is no generic tool which visualizes all the aspects of group evolution in dynamic networks including birth, death, splitting, merging, expansion, shrinkage and continuation of groups. In this paper, we propose Netgram: a tool for visualizing evolution of communities in time-evolving graphs. Netgram maintains evolution of communities over 2 consecutive time-stamps in tables which are used to create a query database using the sql outer-join operation. It uses a line-based visualization technique which adheres to certain design principles and aesthetic guidelines. Netgram uses a greedy solution to order the initial community information provided by the evolutionary clustering technique such that we have fewer line cross-overs in the visualization. This makes it easier to track the progress of individual communities in time evolving graphs. Netgram is a generic toolkit which can be used with any evolutionary community detection algorithm as illustrated in our experiments. We use Netgram for visualization of topic evolution in the NIPS conference over a period of 11 years and observe the emergence and merging of several disciplines in the field of information processing systems. PMID:26356538
Thermodynamic characterization of networks using graph polynomials
NASA Astrophysics Data System (ADS)
Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.
2015-09-01
In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.
Mobile Computing and Ubiquitous Networking: Concepts, Technologies and Challenges.
ERIC Educational Resources Information Center
Pierre, Samuel
2001-01-01
Analyzes concepts, technologies and challenges related to mobile computing and networking. Defines basic concepts of cellular systems. Describes the evolution of wireless technologies that constitute the foundations of mobile computing and ubiquitous networking. Presents characterization and issues of mobile computing. Analyzes economical and…
NASA Astrophysics Data System (ADS)
Rings, Thorsten; Lehnertz, Klaus
2016-09-01
We investigate the relative merit of phase-based methods for inferring directional couplings in complex networks of weakly interacting dynamical systems from multivariate time-series data. We compare the evolution map approach and its partialized extension to each other with respect to their ability to correctly infer the network topology in the presence of indirect directional couplings for various simulated experimental situations using coupled model systems. In addition, we investigate whether the partialized approach allows for additional or complementary indications of directional interactions in evolving epileptic brain networks using intracranial electroencephalographic recordings from an epilepsy patient. For such networks, both direct and indirect directional couplings can be expected, given the brain's connection structure and effects that may arise from limitations inherent to the recording technique. Our findings indicate that particularly in larger networks (number of nodes ≫10 ), the partialized approach does not provide information about directional couplings extending the information gained with the evolution map approach.
A model for the emergence of cooperation, interdependence, and structure in evolving networks.
Jain, S; Krishna, S
2001-01-16
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.
Recommendation in evolving online networks
NASA Astrophysics Data System (ADS)
Hu, Xiao; Zeng, An; Shang, Ming-Sheng
2016-02-01
Recommender system is an effective tool to find the most relevant information for online users. By analyzing the historical selection records of users, recommender system predicts the most likely future links in the user-item network and accordingly constructs a personalized recommendation list for each user. So far, the recommendation process is mostly investigated in static user-item networks. In this paper, we propose a model which allows us to examine the performance of the state-of-the-art recommendation algorithms in evolving networks. We find that the recommendation accuracy in general decreases with time if the evolution of the online network fully depends on the recommendation. Interestingly, some randomness in users' choice can significantly improve the long-term accuracy of the recommendation algorithm. When a hybrid recommendation algorithm is applied, we find that the optimal parameter gradually shifts towards the diversity-favoring recommendation algorithm, indicating that recommendation diversity is essential to keep a high long-term recommendation accuracy. Finally, we confirm our conclusions by studying the recommendation on networks with the real evolution data.
A model for the emergence of cooperation, interdependence, and structure in evolving networks
NASA Astrophysics Data System (ADS)
Jain, Sanjay; Krishna, Sandeep
2001-01-01
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.
Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L.
2014-01-01
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs, their localized patterning into remarkably different cell types aggregated into variably sized parts of the central nervous system begin to emerge. Insights at the cellular and molecular level begin to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early and not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system. PMID:25416504
Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L
2015-01-01
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.
Opinion formation in time-varying social networks: The case of the naming game
NASA Astrophysics Data System (ADS)
Maity, Suman Kalyan; Manoj, T. Venkat; Mukherjee, Animesh
2012-09-01
We study the dynamics of the naming game as an opinion formation model on time-varying social networks. This agent-based model captures the essential features of the agreement dynamics by means of a memory-based negotiation process. Our study focuses on the impact of time-varying properties of the social network of the agents on the naming game dynamics. In particular, we perform a computational exploration of this model using simulations on top of real networks. We investigate the outcomes of the dynamics on two different types of time-varying data: (1) the networks vary on a day-to-day basis and (2) the networks vary within very short intervals of time (20 sec). In the first case, we find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the naming game in these networks maintains clusters of coexisting opinions indefinitely leading to metastability. In the second case, we investigate the evolution of the naming game in perfect synchronization with the time evolution of the underlying social network shedding new light on the traditional emergent properties of the game that differ largely from what has been reported in the existing literature.
Structural Behavioral Study on the General Aviation Network Based on Complex Network
NASA Astrophysics Data System (ADS)
Zhang, Liang; Lu, Na
2017-12-01
The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.
Avena-Koenigsberger, Andrea; Goñi, Joaquín; Solé, Ricard; Sporns, Olaf
2015-01-01
The structure of complex networks has attracted much attention in recent years. It has been noted that many real-world examples of networked systems share a set of common architectural features. This raises important questions about their origin, for example whether such network attributes reflect common design principles or constraints imposed by selectional forces that have shaped the evolution of network topology. Is it possible to place the many patterns and forms of complex networks into a common space that reveals their relations, and what are the main rules and driving forces that determine which positions in such a space are occupied by systems that have actually evolved? We suggest that these questions can be addressed by combining concepts from two currently relatively unconnected fields. One is theoretical morphology, which has conceptualized the relations between morphological traits defined by mathematical models of biological form. The second is network science, which provides numerous quantitative tools to measure and classify different patterns of local and global network architecture across disparate types of systems. Here, we explore a new theoretical concept that lies at the intersection between both fields, the ‘network morphospace’. Defined by axes that represent specific network traits, each point within such a space represents a location occupied by networks that share a set of common ‘morphological’ characteristics related to aspects of their connectivity. Mapping a network morphospace reveals the extent to which the space is filled by existing networks, thus allowing a distinction between actual and impossible designs and highlighting the generative potential of rules and constraints that pervade the evolution of complex systems. PMID:25540237
Astakhov, Vadim
2009-01-01
Interest in simulation of large-scale metabolic networks, species development, and genesis of various diseases requires new simulation techniques to accommodate the high complexity of realistic biological networks. Information geometry and topological formalisms are proposed to analyze information processes. We analyze the complexity of large-scale biological networks as well as transition of the system functionality due to modification in the system architecture, system environment, and system components. The dynamic core model is developed. The term dynamic core is used to define a set of causally related network functions. Delocalization of dynamic core model provides a mathematical formalism to analyze migration of specific functions in biosystems which undergo structure transition induced by the environment. The term delocalization is used to describe these processes of migration. We constructed a holographic model with self-poetic dynamic cores which preserves functional properties under those transitions. Topological constraints such as Ricci flow and Pfaff dimension were found for statistical manifolds which represent biological networks. These constraints can provide insight on processes of degeneration and recovery which take place in large-scale networks. We would like to suggest that therapies which are able to effectively implement estimated constraints, will successfully adjust biological systems and recover altered functionality. Also, we mathematically formulate the hypothesis that there is a direct consistency between biological and chemical evolution. Any set of causal relations within a biological network has its dual reimplementation in the chemistry of the system environment.
Specification of Computer Systems by Objectives.
ERIC Educational Resources Information Center
Eltoft, Douglas
1989-01-01
Discusses the evolution of mainframe and personal computers, and presents a case study of a network developed at the University of Iowa called the Iowa Computer-Aided Engineering Network (ICAEN) that combines Macintosh personal computers with Apollo workstations. Functional objectives are stressed as the best measure of system performance. (LRW)
The spatiotemporal system dynamics of acquired resistance in an engineered microecology.
Datla, Udaya Sree; Mather, William H; Chen, Sheng; Shoultz, Isaac W; Täuber, Uwe C; Jones, Caroline N; Butzin, Nicholas C
2017-11-22
Great strides have been made in the understanding of complex networks; however, our understanding of natural microecologies is limited. Modelling of complex natural ecological systems has allowed for new findings, but these models typically ignore the constant evolution of species. Due to the complexity of natural systems, unanticipated interactions may lead to erroneous conclusions concerning the role of specific molecular components. To address this, we use a synthetic system to understand the spatiotemporal dynamics of growth and to study acquired resistance in vivo. Our system differs from earlier synthetic systems in that it focuses on the evolution of a microecology from a killer-prey relationship to coexistence using two different non-motile Escherichia coli strains. Using empirical data, we developed the first ecological model emphasising the concept of the constant evolution of species, where the survival of the prey species is dependent on location (distance from the killer) or the evolution of resistance. Our simple model, when expanded to complex microecological association studies under varied spatial and nutrient backgrounds may help to understand the complex relationships between multiple species in intricate natural ecological networks. This type of microecological study has become increasingly important, especially with the emergence of antibiotic-resistant pathogens.
VANLO - Interactive visual exploration of aligned biological networks
Brasch, Steffen; Linsen, Lars; Fuellen, Georg
2009-01-01
Background Protein-protein interaction (PPI) is fundamental to many biological processes. In the course of evolution, biological networks such as protein-protein interaction networks have developed. Biological networks of different species can be aligned by finding instances (e.g. proteins) with the same common ancestor in the evolutionary process, so-called orthologs. For a better understanding of the evolution of biological networks, such aligned networks have to be explored. Visualization can play a key role in making the various relationships transparent. Results We present a novel visualization system for aligned biological networks in 3D space that naturally embeds existing 2D layouts. In addition to displaying the intra-network connectivities, we also provide insight into how the individual networks relate to each other by placing aligned entities on top of each other in separate layers. We optimize the layout of the entire alignment graph in a global fashion that takes into account inter- as well as intra-network relationships. The layout algorithm includes a step of merging aligned networks into one graph, laying out the graph with respect to application-specific requirements, splitting the merged graph again into individual networks, and displaying the network alignment in layers. In addition to representing the data in a static way, we also provide different interaction techniques to explore the data with respect to application-specific tasks. Conclusion Our system provides an intuitive global understanding of aligned PPI networks and it allows the investigation of key biological questions. We evaluate our system by applying it to real-world examples documenting how our system can be used to investigate the data with respect to these key questions. Our tool VANLO (Visualization of Aligned Networks with Layout Optimization) can be accessed at . PMID:19821976
Barrett, Louise; Henzi, S. Peter; Lusseau, David
2012-01-01
Understanding human cognitive evolution, and that of the other primates, means taking sociality very seriously. For humans, this requires the recognition of the sociocultural and historical means by which human minds and selves are constructed, and how this gives rise to the reflexivity and ability to respond to novelty that characterize our species. For other, non-linguistic, primates we can answer some interesting questions by viewing social life as a feedback process, drawing on cybernetics and systems approaches and using social network neo-theory to test these ideas. Specifically, we show how social networks can be formalized as multi-dimensional objects, and use entropy measures to assess how networks respond to perturbation. We use simulations and natural ‘knock-outs’ in a free-ranging baboon troop to demonstrate that changes in interactions after social perturbations lead to a more certain social network, in which the outcomes of interactions are easier for members to predict. This new formalization of social networks provides a framework within which to predict network dynamics and evolution, helps us highlight how human and non-human social networks differ and has implications for theories of cognitive evolution. PMID:22734054
Teaching Network Security in a Virtual Learning Environment
ERIC Educational Resources Information Center
Bergstrom, Laura; Grahn, Kaj J.; Karlstrom, Krister; Pulkkis, Goran; Astrom, Peik
2004-01-01
This article presents a virtual course with the topic network security. The course has been produced by Arcada Polytechnic as a part of the production team Computer Networks, Telecommunication and Telecommunication Systems in the Finnish Virtual Polytechnic. The article begins with an introduction to the evolution of the information security…
The Rise of China in the International Trade Network: A Community Core Detection Approach
Zhu, Zhen; Cerina, Federica; Chessa, Alessandro; Caldarelli, Guido; Riccaboni, Massimo
2014-01-01
Theory of complex networks proved successful in the description of a variety of complex systems ranging from biology to computer science and to economics and finance. Here we use network models to describe the evolution of a particular economic system, namely the International Trade Network (ITN). Previous studies often assume that globalization and regionalization in international trade are contradictory to each other. We re-examine the relationship between globalization and regionalization by viewing the international trade system as an interdependent complex network. We use the modularity optimization method to detect communities and community cores in the ITN during the years 1995–2011. We find rich dynamics over time both inter- and intra-communities. In particular, the Asia-Oceania community disappeared and reemerged over time along with a switch in leadership from Japan to China. We provide a multilevel description of the evolution of the network where the global dynamics (i.e., communities disappear or reemerge) and the regional dynamics (i.e., community core changes between community members) are related. Moreover, simulation results show that the global dynamics can be generated by a simple dynamic-edge-weight mechanism. PMID:25136895
Learning and innovative elements of strategy adoption rules expand cooperative network topologies.
Wang, Shijun; Szalay, Máté S; Zhang, Changshui; Csermely, Peter
2008-04-09
Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular, small-word, scale-free and modular network models in repeated, multi-agent Prisoner's Dilemma and Hawk-Dove games. Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play a prominent role in the evolution of self-organizing, complex systems.
The rise of China in the International Trade Network: a community core detection approach.
Zhu, Zhen; Cerina, Federica; Chessa, Alessandro; Caldarelli, Guido; Riccaboni, Massimo
2014-01-01
Theory of complex networks proved successful in the description of a variety of complex systems ranging from biology to computer science and to economics and finance. Here we use network models to describe the evolution of a particular economic system, namely the International Trade Network (ITN). Previous studies often assume that globalization and regionalization in international trade are contradictory to each other. We re-examine the relationship between globalization and regionalization by viewing the international trade system as an interdependent complex network. We use the modularity optimization method to detect communities and community cores in the ITN during the years 1995-2011. We find rich dynamics over time both inter- and intra-communities. In particular, the Asia-Oceania community disappeared and reemerged over time along with a switch in leadership from Japan to China. We provide a multilevel description of the evolution of the network where the global dynamics (i.e., communities disappear or reemerge) and the regional dynamics (i.e., community core changes between community members) are related. Moreover, simulation results show that the global dynamics can be generated by a simple dynamic-edge-weight mechanism.
Best, Allan; Berland, Alex; Greenhalgh, Trisha; Bourgeault, Ivy L; Saul, Jessie E; Barker, Brittany
2018-03-19
Purpose The purpose of this paper is to present a case study of the World Health Organization's Global Healthcare Workforce Alliance (GHWA). Based on a commissioned evaluation of GHWA, it applies network theory and key concepts from systems thinking to explore network emergence, effectiveness, and evolution to over a ten-year period. The research was designed to provide high-level strategic guidance for further evolution of global governance in human resources for health (HRH). Design/methodology/approach Methods included a review of published literature on HRH governance and current practice in the field and an in-depth case study whose main data sources were relevant GHWA background documents and key informant interviews with GHWA leaders, staff, and stakeholders. Sampling was purposive and at a senior level, focusing on board members, executive directors, funders, and academics. Data were analyzed thematically with reference to systems theory and Shiffman's theory of network development. Findings Five key lessons emerged: effective management and leadership are critical; networks need to balance "tight" and "loose" approaches to their structure and processes; an active communication strategy is key to create and maintain support; the goals, priorities, and membership must be carefully focused; and the network needs to support shared measurement of progress on agreed-upon goals. Shiffman's middle-range network theory is a useful tool when guided by the principles of complex systems that illuminate dynamic situations and shifting interests as global alliances evolve. Research limitations/implications This study was implemented at the end of the ten-year funding cycle. A more continuous evaluation throughout the term would have provided richer understanding of issues. Experience and perspectives at the country level were not assessed. Practical implications Design and management of large, complex networks requires ongoing attention to key issues like leadership, and flexible structures and processes to accommodate the dynamic reality of these networks. Originality/value This case study builds on growing interest in the role of networks to foster large-scale change. The particular value rests on the longitudinal perspective on the evolution of a large, complex global network, and the use of theory to guide understanding.
Lidar network observation of dust layer evolution over the Gobi Desert in MAY 2013
NASA Astrophysics Data System (ADS)
Kawai, Kei; Kai, Kenji; Jin, Yoshitaka; Sugimoto, Nobuo; Batdorj, Dashdondog
2018-04-01
A lidar network captured the evolution of a dust layer in the Gobi Desert on 22-23 May 2013. The lidar network consists of a ceilometer and two AD-Net lidars in Mongolia. The dust layer was generated by a strong wind due to a cold front and elevated over the surface of the cold front by an updraft of the warm air in the cold-front system. It was evolving from the atmospheric boundary layer to the free troposphere while moving 600 km through the desert with the cold front.
Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution
Mannakee, Brian K.; Gutenkunst, Ryan N.
2016-01-01
The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein’s rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces. PMID:27380265
Mission Networks: An Evolution in Information Sharing
2012-03-20
Publication 6-0 Joint Communications System states that the Global Information Grid ( GIG ) composed of the Defense Information Systems Network (DISN...of the GIG while the other branches of the United States Government (USG) such as the Department of State (DoS) utilize the ’.gov’ sub-network of...the GIG . The result is that unless the DOD has a ’need to know’ it will never have access to the DOS information that resides on the ’.gov’ sub-network
Holme, Petter; Huss, Mikael; Lee, Sang Hoon
2011-05-06
The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve the same molecular species). For the Earth's atmospheric network and the human metabolic network, we look into more detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather there are several concurrent factors. By examining quantities relating to the modular-functional organization of the metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction system than does natural selection.
Controllability of symmetric spin networks
NASA Astrophysics Data System (ADS)
Albertini, Francesca; D'Alessandro, Domenico
2018-05-01
We consider a network of n spin 1/2 systems which are pairwise interacting via Ising interaction and are controlled by the same electro-magnetic control field. Such a system presents symmetries since the Hamiltonian is unchanged if we permute two spins. This prevents full (operator) controllability, in that not every unitary evolution can be obtained. We prove however that controllability is verified if we restrict ourselves to unitary evolutions which preserve the above permutation invariance. For low dimensional cases, n = 2 and n = 3, we provide an analysis of the Lie group of available evolutions and give explicit control laws to transfer between two arbitrary permutation invariant states. This class of states includes highly entangled states such as Greenberger-Horne-Zeilinger (GHZ) states and W states, which are of interest in quantum information.
Hybrid discrete-time neural networks.
Cao, Hongjun; Ibarz, Borja
2010-11-13
Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.
Networking and the Role of the Academic Systems Librarian: An Evolutionary Perspective.
ERIC Educational Resources Information Center
Lavagnino, Merri Beth
1997-01-01
This paper examines the role of academic systems librarians, focusing on the effect of networking technologies. Outlines stages in the evolution of the field derived from the literature and surveys, discusses new administrative and professional tasks and trends resulting from technological change, and speculates about the future of academic…
Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment.
Yao, Yao; Storme, Veronique; Marchal, Kathleen; Van de Peer, Yves
2016-01-01
We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population.
Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment
Yao, Yao; Storme, Veronique; Marchal, Kathleen
2016-01-01
We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population. PMID:28028477
The data distribution satellite system
NASA Technical Reports Server (NTRS)
Bruno, Ronald C.; Weinberg, Aaron
1991-01-01
The Data Distributed Satellite (DDS) will be capable of providing the space research community with inexpensive and easy access to space payloads and space data. Furthermore, the DDS is shown to be a natural outgrowth of advances and evolution in both NASA's Space Network and commercial satellite communications. The roadmap and timescale for this evolution is described along with key demonstrations, proof-of-concept models, and required technology development that will support the projected system evolution toward the DDS.
Cooperation prevails when individuals adjust their social ties.
Santos, Francisco C; Pacheco, Jorge M; Lenaerts, Tom
2006-10-20
Conventional evolutionary game theory predicts that natural selection favours the selfish and strong even though cooperative interactions thrive at all levels of organization in living systems. Recent investigations demonstrated that a limiting factor for the evolution of cooperative interactions is the way in which they are organized, cooperators becoming evolutionarily competitive whenever individuals are constrained to interact with few others along the edges of networks with low average connectivity. Despite this insight, the conundrum of cooperation remains since recent empirical data shows that real networks exhibit typically high average connectivity and associated single-to-broad-scale heterogeneity. Here, a computational model is constructed in which individuals are able to self-organize both their strategy and their social ties throughout evolution, based exclusively on their self-interest. We show that the entangled evolution of individual strategy and network structure constitutes a key mechanism for the sustainability of cooperation in social networks. For a given average connectivity of the population, there is a critical value for the ratio W between the time scales associated with the evolution of strategy and of structure above which cooperators wipe out defectors. Moreover, the emerging social networks exhibit an overall heterogeneity that accounts very well for the diversity of patterns recently found in acquired data on social networks. Finally, heterogeneity is found to become maximal when W reaches its critical value. These results show that simple topological dynamics reflecting the individual capacity for self-organization of social ties can produce realistic networks of high average connectivity with associated single-to-broad-scale heterogeneity. On the other hand, they show that cooperation cannot evolve as a result of "social viscosity" alone in heterogeneous networks with high average connectivity, requiring the additional mechanism of topological co-evolution to ensure the survival of cooperative behaviour.
Smart pitch control strategy for wind generation system using doubly fed induction generator
NASA Astrophysics Data System (ADS)
Raza, Syed Ahmed
A smart pitch control strategy for a variable speed doubly fed wind generation system is presented in this thesis. A complete dynamic model of DFIG system is developed. The model consists of the generator, wind turbine, aerodynamic and the converter system. The strategy proposed includes the use of adaptive neural network to generate optimized controller gains for pitch control. This involves the generation of controller parameters of pitch controller making use of differential evolution intelligent technique. Training of the back propagation neural network has been carried out for the development of an adaptive neural network. This tunes the weights of the network according to the system states in a variable wind speed environment. Four cases have been taken to test the pitch controller which includes step and sinusoidal changes in wind speeds. The step change is composed of both step up and step down changes in wind speeds. The last case makes use of scaled wind data collected from the wind turbine installed at King Fahd University beach front. Simulation studies show that the differential evolution based adaptive neural network is capable of generating the appropriate control to deliver the maximum possible aerodynamic power available from wind to the generator in an efficient manner by minimizing the transients.
Ibarra-Arellano, Miguel A.; Campos-González, Adrián I.; Treviño-Quintanilla, Luis G.; Tauch, Andreas; Freyre-González, Julio A.
2016-01-01
The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy (Across-bacteria systems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them. Database URL: http://abasy.ccg.unam.mx PMID:27242034
Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees
Llorens, Carlos; Muñoz-Pomer, Alfonso; Bernad, Lucia; Botella, Hector; Moya, Andrés
2009-01-01
Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network-represented combinations, are power-law distributed. This evidences an inflationary mode of evolution where the system diversity; 1) expands continuously alternating vertical and gradual processes of phylogenetic divergence with episodes of modular, saltatory and reticulate evolution; 2) is governed by the intrinsic capability of distinct LTR retroelement host-communities to self-organize their phenotypes according to emergent laws characteristic of complex systems. Reviewers This article was reviewed by Eugene V. Koonin, Eric Bapteste, and Enmanuelle Lerat (nominated by King Jordan) PMID:19883502
Evolving network simulation study. From regular lattice to scale free network
NASA Astrophysics Data System (ADS)
Makowiec, D.
2005-12-01
The Watts-Strogatz algorithm of transferring the square lattice to a small world network is modified by introducing preferential rewiring constrained by connectivity demand. The evolution of the network is two-step: sequential preferential rewiring of edges controlled by p and updating the information about changes done. The evolving system self-organizes into stationary states. The topological transition in the graph structure is noticed with respect to p. Leafy phase a graph formed by multiple connected vertices (graph skeleton) with plenty of leaves attached to each skeleton vertex emerges when p is small enough to pretend asynchronous evolution. Tangling phase where edges of a graph circulate frequently among low degree vertices occurs when p is large. There exist conditions at which the resulting stationary network ensemble provides networks which degree distribution exhibit power-law decay in large interval of degrees.
Egri-Nagy, Attila; Nehaniv, Chrystopher L
2008-01-01
Beyond complexity measures, sometimes it is worthwhile in addition to investigate how complexity changes structurally, especially in artificial systems where we have complete knowledge about the evolutionary process. Hierarchical decomposition is a useful way of assessing structural complexity changes of organisms modeled as automata, and we show how recently developed computational tools can be used for this purpose, by computing holonomy decompositions and holonomy complexity. To gain insight into the evolution of complexity, we investigate the smoothness of the landscape structure of complexity under minimal transitions. As a proof of concept, we illustrate how the hierarchical complexity analysis reveals symmetries and irreversible structure in biological networks by applying the methods to the lac operon mechanism in the genetic regulatory network of Escherichia coli.
AST: Activity-Security-Trust driven modeling of time varying networks.
Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen
2016-02-18
Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents' interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.
2015-08-21
building (right) hosting the electronic unit, USB power sully and the wireless network . Figure 48. Ionosonde Field Site at Maseno, Kenya Figure 49... wireless 3G network . Continuous access to the system requires regular purchasing of data bundles. Web data repository Boston College has also...support of ionospheric instruments that have been deployed around the world in support of the SCINDA and LISN Networks . 15. SUBJECT TERMS Total
ICPP: Approach for Understanding Complexity of Plasma
NASA Astrophysics Data System (ADS)
Sato, Tetsuya
2000-10-01
In this talk I wish to present an IT system that could promote Science of Complexity. In order to deal with a seemingly `complex' phenomenon, which means `beyond analytical manipulation', computer simulation is a viable powerful tool. However, complexity implies a concept beyond the horizon of reductionism. Therefore, rather than simply solving a complex phenomenon for a given boundary condition, one must establish an intelligent way of attacking mutual evolution of a system and its environment. NIFS-TCSC has been developing a prototype system that consists of supercomputers, virtual reality devices and high-speed network system. Let us explain this by picking up a global atmospheric circulation group, global oceanic circulation group and local weather prediction group. Local weather prediction group predicts the local change of the weather such as the creation of cloud and rain in the near future under the global conditions obtained by the global atmospheric and ocean groups. The global groups run simulations by modifying the local heat source/sink evaluated by the local weather prediction and then obtain the global conditions in the next time step. By repeating such a feedback performance one can predict the mutual evolution of the local system and its environment. Mutual information exchanges among multiple groups are carried out instantaneously by the networked common virtual reality space in which 3-D global and local images of the atmospheric and oceanic circulation and the cloud and rain maps are arbitrarily manipulated by any of the groups and commonly viewed. The present networking system has a great advantage that any simulation groups can freely and arbitrarily change their alignment, so that mutual evolution of any stratum system can become tractable by utilizing this network system.
NASA Astrophysics Data System (ADS)
Huang, Ailing; Zang, Guangzhi; He, Zhengbing; Guan, Wei
2017-05-01
Urban public transit system is a typical mixed complex network with dynamic flow, and its evolution should be a process coupling topological structure with flow dynamics, which has received little attention. This paper presents the R-space to make a comparative empirical analysis on Beijing’s flow-weighted transit route network (TRN) and we found that both the Beijing’s TRNs in the year of 2011 and 2015 exhibit the scale-free properties. As such, we propose an evolution model driven by flow to simulate the development of TRNs with consideration of the passengers’ dynamical behaviors triggered by topological change. The model simulates that the evolution of TRN is an iterative process. At each time step, a certain number of new routes are generated driven by travel demands, which leads to dynamical evolution of new routes’ flow and triggers perturbation in nearby routes that will further impact the next round of opening new routes. We present the theoretical analysis based on the mean-field theory, as well as the numerical simulation for this model. The results obtained agree well with our empirical analysis results, which indicate that our model can simulate the TRN evolution with scale-free properties for distributions of node’s strength and degree. The purpose of this paper is to illustrate the global evolutional mechanism of transit network that will be used to exploit planning and design strategies for real TRNs.
Graph distance for complex networks
NASA Astrophysics Data System (ADS)
Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki
2016-10-01
Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.
NASA Astrophysics Data System (ADS)
Wattawa, Scott
1995-11-01
Offering interactive services and data in a hybrid fiber/coax cable system requires the coordination of a host of operations and business support systems. New service offerings and network growth and evolution create never-ending changes in the network infrastructure. Agent-based enterprise models provide a flexible mechanism for systems integration of service and support systems. Agent models also provide a mechanism to decouple interactive services from network architecture. By using the Java programming language, agents may be made safe, portable, and intelligent. This paper investigates the application of the Object Management Group's Common Object Request Brokering Architecture to the integration of a multiple services metropolitan area network.
Technology Review of Multi-Agent Systems and Tools
2005-06-01
over a network, including the Internet. A web services architecture is the logical evolution of object-oriented analysis and design coupled with...the logical evolution of components geared towards the architecture, design, implementation, and deployment of e-business solutions. As in object...querying. The Web Services architecture describes the principles behind the next generation of e- business architectures, presenting a logical evolution
Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation.
Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro
2016-10-24
The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals' social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks.
Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation
NASA Astrophysics Data System (ADS)
Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro
2016-10-01
The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals’ social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks.
Enzyme Sequestration as a Tuning Point in Controlling Response Dynamics of Signalling Networks
Ollivier, Julien F.; Soyer, Orkun S.
2016-01-01
Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications. PMID:27163612
NASA Technical Reports Server (NTRS)
Mog, Robert A.
1999-01-01
Unique and innovative graph theory, neural network, organizational modeling, and genetic algorithms are applied to the design and evolution of programmatic and organizational architectures. Graph theory representations of programs and organizations increase modeling capabilities and flexibility, while illuminating preferable programmatic/organizational design features. Treating programs and organizations as neural networks results in better system synthesis, and more robust data modeling. Organizational modeling using covariance structures enhances the determination of organizational risk factors. Genetic algorithms improve programmatic evolution characteristics, while shedding light on rulebase requirements for achieving specified technological readiness levels, given budget and schedule resources. This program of research improves the robustness and verifiability of systems synthesis tools, including the Complex Organizational Metric for Programmatic Risk Environments (COMPRE).
NASA Astrophysics Data System (ADS)
Russell, Scott; Walker, David M.; Tordesillas, Antoinette
2016-03-01
A framework for the multiscale characterization of the coupled evolution of the solid grain fabric and its associated pore space in dense granular media is developed. In this framework, a pseudo-dual graph transformation of the grain contact network produces a graph of pores which can be readily interpreted as a pore space network. Survivability, a new metric succinctly summarizing the connectivity of the solid grain and pore space networks, measures material robustness. The size distribution and the connectivity of pores can be characterized quantitatively through various network properties. Assortativity characterizes the pore space with respect to the parity of the number of particles enclosing the pore. Multiscale clusters of odd parity versus even parity contact cycles alternate spatially along the shear band: these represent, respectively, local jamming and unjamming regions that continually switch positions in time throughout the failure regime. Optimal paths, established using network shortest paths in favor of large pores, provide clues on preferential paths for interstitial matter transport. In systems with higher rolling resistance at contacts, less tortuous shortest paths thread through larger pores in shear bands. Notably the structural patterns uncovered in the pore space suggest that more robust models of interstitial pore flow through deforming granular systems require a proper consideration of the evolution of in situ shear band and fracture patterns - not just globally, but also inside these localized failure zones.
A case study of evolutionary computation of biochemical adaptation
NASA Astrophysics Data System (ADS)
François, Paul; Siggia, Eric D.
2008-06-01
Simulations of evolution have a long history, but their relation to biology is questioned because of the perceived contingency of evolution. Here we provide an example of a biological process, adaptation, where simulations are argued to approach closer to biology. Adaptation is a common feature of sensory systems, and a plausible component of other biochemical networks because it rescales upstream signals to facilitate downstream processing. We create random gene networks numerically, by linking genes with interactions that model transcription, phosphorylation and protein-protein association. We define a fitness function for adaptation in terms of two functional metrics, and show that any reasonable combination of them will yield the same adaptive networks after repeated rounds of mutation and selection. Convergence to these networks is driven by positive selection and thus fast. There is always a path in parameter space of continuously improving fitness that leads to perfect adaptation, implying that the actual mutation rates we use in the simulation do not bias the results. Our results imply a kinetic view of evolution, i.e., it favors gene networks that can be learned quickly from the random examples supplied by mutation. This formulation allows for deductive predictions of the networks realized in nature.
Di Paola, Vieri; Marijuán, Pedro C; Lahoz-Beltra, Rafael
2004-01-01
Adaptive behavior in unicellular organisms (i.e., bacteria) depends on highly organized networks of proteins governing purposefully the myriad of molecular processes occurring within the cellular system. For instance, bacteria are able to explore the environment within which they develop by utilizing the motility of their flagellar system as well as a sophisticated biochemical navigation system that samples the environmental conditions surrounding the cell, searching for nutrients or moving away from toxic substances or dangerous physical conditions. In this paper we discuss how proteins of the intervening signal transduction network could be modeled as artificial neurons, simulating the dynamical aspects of the bacterial taxis. The model is based on the assumption that, in some important aspects, proteins can be considered as processing elements or McCulloch-Pitts artificial neurons that transfer and process information from the bacterium's membrane surface to the flagellar motor. This simulation of bacterial taxis has been carried out on a hardware realization of a McCulloch-Pitts artificial neuron using an operational amplifier. Based on the behavior of the operational amplifier we produce a model of the interaction between CheY and FliM, elements of the prokaryotic two component system controlling chemotaxis, as well as a simulation of learning and evolution processes in bacterial taxis. On the one side, our simulation results indicate that, computationally, these protein 'switches' are similar to McCulloch-Pitts artificial neurons, suggesting a bridge between evolution and learning in dynamical systems at cellular and molecular levels and the evolutive hardware approach. On the other side, important protein 'tactilizing' properties are not tapped by the model, and this suggests further complexity steps to explore in the approach to biological molecular computing.
2011-09-01
service -oriented systems • Software -as-a- Service ( SaaS ) • social network infrastructures • Internet marketing • mobile computing • context awareness...Maintenance and Evolution of Service -Oriented Systems (MESOA 2010), organized by members of the Carnegie Mellon Software Engineering Institute’s...CMU/SEI-2011-SR-008 | 1 1 Workshop Introduction The Software Engineering Institute (SEI) started developing a service -oriented architecture
Pereira, José A
2014-08-01
Theoretical models designed to test the metabolism-first hypothesis for prebiotic evolution have yield strong indications about the hypothesis validity but could sometimes use a more extensive identification between model objects and real objects towards a more meaningful interpretation of results. In an attempt to go in that direction, the string-based model SSE ("steady state evolution") was developed, where abstract molecules (strings) and catalytic interaction rules are based on some of the most important features of carbon compounds in biological chemistry. The system is open with a random inflow and outflow of strings but also with a permanent string food source. Although specific catalysis is a key aspect of the model, used to define reaction rules, the focus is on energetics rather than kinetics. Standard energy change tables were constructed and used with standard formation reactions to track energy flows through the interpretation of equilibrium constant values. Detection of metabolic networks on the reaction system was done with elementary flux mode (EFM) analysis. The combination of these model design and analysis options enabled obtaining metabolic and catalytic networks showing several central features of biological metabolism, some more clearly than in previous models: metabolic networks with stepwise synthesis, energy coupling, catalysts regulation, SN2 coupling, redox coupling, intermediate cycling, coupled inverse pathways (metabolic cycling), autocatalytic cycles and catalytic cascades. The results strongly suggest that the main biological metabolism features, including the genotype-phenotype interpretation, are caused by the principles of catalytic systems and are prior to modern genetic systems principles. It also gives further theoretical support to the thesis that the basic features of biologic metabolism are a consequence of the time evolution of a random catalyst search working on an open system with a permanent food source. The importance of the food source characteristics and evolutionary possibilities are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.
Jékely, Gáspár
2014-09-02
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
Origin and Evolution of the Self-Organizing Cytoskeleton in the Network of Eukaryotic Organelles
Jékely, Gáspár
2014-01-01
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing “active gel,” the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. PMID:25183829
How a College System Joined a TV Network
ERIC Educational Resources Information Center
McAuliffe, Daniel G.
1978-01-01
Describes the evolution of a state-wide "TV College" system in Connecticut, including centralized administrative development, course selection and evaluation, scheduling, promotion and advertising, fee structures, and budgeting processes. (RT)
Individual heterogeneity generating explosive system network dynamics.
Manrique, Pedro D; Johnson, Neil F
2018-03-01
Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.
Individual heterogeneity generating explosive system network dynamics
NASA Astrophysics Data System (ADS)
Manrique, Pedro D.; Johnson, Neil F.
2018-03-01
Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.
Neural networks and logical reasoning systems: a translation table.
Martins, J; Mendes, R V
2001-04-01
A correspondence is established between the basic elements of logic reasoning systems (knowledge bases, rules, inference and queries) and the structure and dynamical evolution laws of neural networks. The correspondence is pictured as a translation dictionary which might allow to go back and forth between symbolic and network formulations, a desirable step in learning-oriented systems and multicomputer networks. In the framework of Horn clause logics, it is found that atomic propositions with n arguments correspond to nodes with nth order synapses, rules to synaptic intensity constraints, forward chaining to synaptic dynamics and queries either to simple node activation or to a query tensor dynamics.
Xia, Cheng-Yi; Meng, Xiao-Kun; Wang, Zhen
2015-01-01
In the research realm of game theory, interdependent networks have extended the content of spatial reciprocity, which needs the suitable coupling between networks. However, thus far, the vast majority of existing works just assume that the coupling strength between networks is symmetric. This hypothesis, to some extent, seems inconsistent with the ubiquitous observation of heterogeneity. Here, we study how the heterogeneous coupling strength, which characterizes the interdependency of utility between corresponding players of both networks, affects the evolution of cooperation in the prisoner’s dilemma game with two types of coupling schemes (symmetric and asymmetric ones). Compared with the traditional case, we show that heterogeneous coupling greatly promotes the collective cooperation. The symmetric scheme seems much better than the asymmetric case. Moreover, the role of varying amplitude of coupling strength is also studied on these two interdependent ways. Current findings are helpful for us to understand the evolution of cooperation within many real-world systems, in particular for the interconnected and interrelated systems. PMID:26102082
Xia, Cheng-Yi; Meng, Xiao-Kun; Wang, Zhen
2015-01-01
In the research realm of game theory, interdependent networks have extended the content of spatial reciprocity, which needs the suitable coupling between networks. However, thus far, the vast majority of existing works just assume that the coupling strength between networks is symmetric. This hypothesis, to some extent, seems inconsistent with the ubiquitous observation of heterogeneity. Here, we study how the heterogeneous coupling strength, which characterizes the interdependency of utility between corresponding players of both networks, affects the evolution of cooperation in the prisoner's dilemma game with two types of coupling schemes (symmetric and asymmetric ones). Compared with the traditional case, we show that heterogeneous coupling greatly promotes the collective cooperation. The symmetric scheme seems much better than the asymmetric case. Moreover, the role of varying amplitude of coupling strength is also studied on these two interdependent ways. Current findings are helpful for us to understand the evolution of cooperation within many real-world systems, in particular for the interconnected and interrelated systems.
AST: Activity-Security-Trust driven modeling of time varying networks
Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen
2016-01-01
Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717
The evolution of phenotypic correlations and ‘developmental memory’
Watson, Richard A.; Wagner, Günter P.; Pavlicev, Mihaela; Weinreich, Daniel M.; Mills, Rob
2014-01-01
Development introduces structured correlations among traits that may constrain or bias the distribution of phenotypes produced. Moreover, when suitable heritable variation exists, natural selection may alter such constraints and correlations, affecting the phenotypic variation available to subsequent selection. However, exactly how the distribution of phenotypes produced by complex developmental systems can be shaped by past selective environments is poorly understood. Here we investigate the evolution of a network of recurrent non-linear ontogenetic interactions, such as a gene regulation network, in various selective scenarios. We find that evolved networks of this type can exhibit several phenomena that are familiar in cognitive learning systems. These include formation of a distributed associative memory that can ‘store’ and ‘recall’ multiple phenotypes that have been selected in the past, recreate complete adult phenotypic patterns accurately from partial or corrupted embryonic phenotypes, and ‘generalise’ (by exploiting evolved developmental modules) to produce new combinations of phenotypic features. We show that these surprising behaviours follow from an equivalence between the action of natural selection on phenotypic correlations and associative learning, well-understood in the context of neural networks. This helps to explain how development facilitates the evolution of high-fitness phenotypes and how this ability changes over evolutionary time. PMID:24351058
NASA Technical Reports Server (NTRS)
Phillips, Roger J.
1992-01-01
The Final Technical Report on tectonic evolution of Mars is presented. Two papers and an abstract are included. Topics addressed include: scientific rationale and requirements for a global seismic network on Mars, permanent uplift in magmatic systems with application to the Tharsis Region of Mars, and the geophysical signal of the Martian global dichotomy.
Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens.
Kaiser, Marcus; Varier, Sreedevi
2011-01-01
Neural networks show a progressive increase in complexity during the time course of evolution. From diffuse nerve nets in Cnidaria to modular, hierarchical systems in macaque and humans, there is a gradual shift from simple processes involving a limited amount of tasks and modalities to complex functional and behavioral processing integrating different kinds of information from highly specialized tissue. However, studies in a range of species suggest that fundamental similarities, in spatial and topological features as well as in developmental mechanisms for network formation, are retained across evolution. 'Small-world' topology and highly connected regions (hubs) are prevalent across the evolutionary scale, ensuring efficient processing and resilience to internal (e.g. lesions) and external (e.g. environment) changes. Furthermore, in most species, even the establishment of hubs, long-range connections linking distant components, and a modular organization, relies on similar mechanisms. In conclusion, evolutionary divergence leads to greater complexity while following essential developmental constraints.
The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection
Chen, Bor-Sen; Ho, Shih-Ju
2014-01-01
In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to an n-tuple evolutionary game of stochastic biological networks with m players (competitive populations) and k environmental dynamics. PMID:24558296
Towards a Framework for Evolvable Network Design
NASA Astrophysics Data System (ADS)
Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed
The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.
Designing Composite Resins in the 21st Century: Ending the End Group Fallacy
2015-09-30
unlimited. Network Automata • In correspondence with cellular automata , a system of differential equations describes the evolution of structures...LLNL). 11Distribution A: Approved for public release; distribution is unlimited. “State of the Art” Network Automata Example • Cure kinetics
NASA Astrophysics Data System (ADS)
Koskinen, Johan; Lomi, Alessandro
2013-05-01
We study the evolution of the network of foreign direct investment (FDI) in the international electricity industry during the period 1994-2003. We assume that the ties in the network of investment relations between countries are created and deleted in continuous time, according to a conditional Gibbs distribution. This assumption allows us to take simultaneously into account the aggregate predictions of the well-established gravity model of international trade as well as local dependencies between network ties connecting the countries in our sample. According to the modified version of the gravity model that we specify, the probability of observing an investment tie between two countries depends on the mass of the economies involved, their physical distance, and the tendency of the network to self-organize into local configurations of network ties. While the limiting distribution of the data generating process is an exponential random graph model, we do not assume the system to be in equilibrium. We find evidence of the effects of the standard gravity model of international trade on evolution of the global FDI network. However, we also provide evidence of significant dyadic and extra-dyadic dependencies between investment ties that are typically ignored in available research. We show that local dependencies between national electricity industries are sufficient for explaining global properties of the network of foreign direct investments. We also show, however, that network dependencies vary significantly over time giving rise to a time-heterogeneous localized process of network evolution.
NASA Astrophysics Data System (ADS)
Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke
2017-05-01
Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.
NASA Astrophysics Data System (ADS)
Abed-Elmdoust, Armaghan; Miri, Mohammad-Ali; Singh, Arvind
2016-11-01
We investigate the impact of changing nonuniform spatial and temporal precipitation patterns on the evolution of river networks. To achieve this, we develop a two-dimensional optimal channel network (OCN) model with a controllable rainfall distribution to simulate the evolution of river networks, governed by the principle of minimum energy expenditure, inside a prescribed boundary. We show that under nonuniform precipitation conditions, river networks reorganize significantly toward new patterns with different geomorphic and hydrologic signatures. This reorganization is mainly observed in the form of migration of channels of different orders, widening or elongation of basins as well as formation and extinction of channels and basins. In particular, when the precipitation gradient is locally increased, the higher-order channels, including the mainstream river, migrate toward regions with higher precipitation intensity. Through pertinent examples, the reorganization of the drainage network is quantified via stream parameters such as Horton-Strahler and Tokunaga measures, order-based channel total length and river long profiles obtained via simulation of three-dimensional basin topography, while the hydrologic response of the evolved network is investigated using metrics such as hydrograph and power spectral density of simulated streamflows at the outlet of the network. In addition, using OCNs, we investigate the effect of orographic precipitation patterns on multicatchment landscapes composed of several interacting basins. Our results show that network-inspired methods can be utilized as insightful and versatile models for directly exploring the effects of climate change on the evolution of river drainage systems.
Punctuated equilibrium in the large-scale evolution of programming languages†
Valverde, Sergi; Solé, Ricard V.
2015-01-01
The analogies and differences between biological and cultural evolution have been explored by evolutionary biologists, historians, engineers and linguists alike. Two well-known domains of cultural change are language and technology. Both share some traits relating the evolution of species, but technological change is very difficult to study. A major challenge in our way towards a scientific theory of technological evolution is how to properly define evolutionary trees or clades and how to weight the role played by horizontal transfer of information. Here, we study the large-scale historical development of programming languages, which have deeply marked social and technological advances in the last half century. We analyse their historical connections using network theory and reconstructed phylogenetic networks. Using both data analysis and network modelling, it is shown that their evolution is highly uneven, marked by innovation events where new languages are created out of improved combinations of different structural components belonging to previous languages. These radiation events occur in a bursty pattern and are tied to novel technological and social niches. The method can be extrapolated to other systems and consistently captures the major classes of languages and the widespread horizontal design exchanges, revealing a punctuated evolutionary path. PMID:25994298
Communication in neuronal networks.
Laughlin, Simon B; Sejnowski, Terrence J
2003-09-26
Brains perform with remarkable efficiency, are capable of prodigious computation, and are marvels of communication. We are beginning to understand some of the geometric, biophysical, and energy constraints that have governed the evolution of cortical networks. To operate efficiently within these constraints, nature has optimized the structure and function of cortical networks with design principles similar to those used in electronic networks. The brain also exploits the adaptability of biological systems to reconfigure in response to changing needs.
Ibarra-Arellano, Miguel A; Campos-González, Adrián I; Treviño-Quintanilla, Luis G; Tauch, Andreas; Freyre-González, Julio A
2016-01-01
The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy ( A: cross- BA: cteria SY: stems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them.Database URL: http://abasy.ccg.unam.mx. © The Author(s) 2016. Published by Oxford University Press.
Discovering urban mobility patterns with PageRank based traffic modeling and prediction
NASA Astrophysics Data System (ADS)
Wang, Minjie; Yang, Su; Sun, Yi; Gao, Jun
2017-11-01
Urban transportation system can be viewed as complex network with time-varying traffic flows as links to connect adjacent regions as networked nodes. By computing urban traffic evolution on such temporal complex network with PageRank, it is found that for most regions, there exists a linear relation between the traffic congestion measure at present time and the PageRank value of the last time. Since the PageRank measure of a region does result from the mutual interactions of the whole network, it implies that the traffic state of a local region does not evolve independently but is affected by the evolution of the whole network. As a result, the PageRank values can act as signatures in predicting upcoming traffic congestions. We observe the aforementioned laws experimentally based on the trajectory data of 12000 taxies in Beijing city for one month.
Cooperation in memory-based prisoner's dilemma game on interdependent networks
NASA Astrophysics Data System (ADS)
Luo, Chao; Zhang, Xiaolin; Liu, Hong; Shao, Rui
2016-05-01
Memory or so-called experience normally plays the important role to guide the human behaviors in real world, that is essential for rational decisions made by individuals. Hence, when the evolutionary behaviors of players with bounded rationality are investigated, it is reasonable to make an assumption that players in system are with limited memory. Besides, in order to unravel the intricate variability of complex systems in real world and make a highly integrative understanding of their dynamics, in recent years, interdependent networks as a comprehensive network structure have obtained more attention in this community. In this article, the evolution of cooperation in memory-based prisoner's dilemma game (PDG) on interdependent networks composed by two coupled square lattices is studied. Herein, all or part of players are endowed with finite memory ability, and we focus on the mutual influence of memory effect and interdependent network reciprocity on cooperation of spatial PDG. We show that the density of cooperation can be significantly promoted within an optimal region of memory length and interdependent strength. Furthermore, distinguished by whether having memory ability/external links or not, each kind of players on networks would have distinct evolutionary behaviors. Our work could be helpful to understand the emergence and maintenance of cooperation under the evolution of memory-based players on interdependent networks.
ERIC Educational Resources Information Center
Roderer, Nancy K.
1993-01-01
Describes five programs that have been significant to the evolution of biomedical communications in health sciences libraries over the last twenty years: the National Network of Libraries of Medicine (NNLM); Integrated Advanced Information Management Systems (IAIMS); National Research and Education Network (NREN); Unified Medical Language System…
Evolution of the Digital Society Reveals Balance between Viral and Mass Media Influence
NASA Astrophysics Data System (ADS)
Kleineberg, Kaj-Kolja; Boguñá, Marián
2014-07-01
Online social networks (OSNs) enable researchers to study the social universe at a previously unattainable scale. The worldwide impact and the necessity to sustain the rapid growth of OSNs emphasize the importance of unraveling the laws governing their evolution. Empirical results show that, unlike many real-world growing networked systems, OSNs follow an intricate path that includes a dynamical percolation transition. In light of these results, we present a quantitative two-parameter model that reproduces the entire topological evolution of a quasi-isolated OSN with unprecedented precision from the birth of the network. This allows us to precisely gauge the fundamental macroscopic and microscopic mechanisms involved. Our findings suggest that the coupling between the real preexisting underlying social structure, a viral spreading mechanism, and mass media influence govern the evolution of OSNs. The empirical validation of our model, on a macroscopic scale, reveals that virality is 4-5 times stronger than mass media influence and, on a microscopic scale, individuals have a higher subscription probability if invited by weaker social contacts, in agreement with the "strength of weak ties" paradigm.
Randomly biased investments and the evolution of public goods on interdependent networks
NASA Astrophysics Data System (ADS)
Chen, Wei; Wu, Te; Li, Zhiwu; Wang, Long
2017-08-01
Deciding how to allocate resources between interdependent systems is significant to optimize efficiency. We study the effects of heterogeneous contribution, induced by such interdependency, on the evolution of cooperation, through implementing the public goods games on two-layer networks. The corresponding players on different layers try to share a fixed amount of resources as the initial investment properly. The symmetry breaking of investments between players located on different layers is able to either prevent investments from, or extract them out of the deadlock. Results show that a moderate investment heterogeneity is best favorable for the evolution of cooperation, and random allocation of investment bias suppresses the cooperators at a wide range of the investment bias and the enhancement effect. Further studies on time evolution with different initial strategy configurations show that the non-interdependent cooperators along the interface of interdependent cooperators also are an indispensable factor in facilitating cooperative behavior. Our main results are qualitatively unchanged even diversifying investment bias that is subject to uniform distribution. Our study may shed light on the understanding of the origin of cooperative behavior on interdependent networks.
Interaction of chimera states in a multilayered network of nonlocally coupled oscillators
NASA Astrophysics Data System (ADS)
Goremyko, M. V.; Maksimenko, V. A.; Makarov, V. V.; Ghosh, D.; Bera, B.; Dana, S. K.; Hramov, A. E.
2017-08-01
The processes of formation and evolution of chimera states in the model of a multilayered network of nonlinear elements with complex coupling topology are studied. A two-layered network of nonlocally intralayer-coupled Kuramoto-Sakaguchi phase oscillators is taken as the object of investigation. Different modes implemented in this system upon variation of the degree of interlayer interaction are demonstrated.
Mission Services Evolution Center Message Bus
NASA Technical Reports Server (NTRS)
Mayorga, Arturo; Bristow, John O.; Butschky, Mike
2011-01-01
The Goddard Mission Services Evolution Center (GMSEC) Message Bus is a robust, lightweight, fault-tolerant middleware implementation that supports all messaging capabilities of the GMSEC API. This architecture is a distributed software system that routes messages based on message subject names and knowledge of the locations in the network of the interested software components.
Network news: innovations in 21st century systems biology.
Arkin, Adam P; Schaffer, David V
2011-03-18
A decade ago, seminal perspectives and papers set a strong vision for the field of systems biology, and a number of these themes have flourished. Here, we describe key technologies and insights that have elucidated the evolution, architecture, and function of cellular networks, ultimately leading to the first predictive genome-scale regulatory and metabolic models of organisms. Can systems approaches bridge the gap between correlative analysis and mechanistic insights? Copyright © 2011 Elsevier Inc. All rights reserved.
Multi Agent Systems with Symbiotic Learning and Evolution using GNP
NASA Astrophysics Data System (ADS)
Eguchi, Toru; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi
Recently, various attempts relevant to Multi Agent Systems (MAS) which is one of the most promising systems based on Distributed Artificial Intelligence have been studied to control large and complicated systems efficiently. In these trends of MAS, Multi Agent Systems with Symbiotic Learning and Evolution named Masbiole has been proposed. In Masbiole, symbiotic phenomena among creatures are considered in the process of learning and evolution of MAS. So we can expect more flexible and sophisticated solutions than conventional MAS. In this paper, we apply Masbiole to Iterative Prisoner’s Dilemma Games (IPD Games) using Genetic Network Programming (GNP) which is a newly developed evolutionary computation method for constituting agents. Some characteristics of Masbiole using GNP in IPD Games are clarified.
Generic patterns in the evolution of urban water networks: Evidence from a large Asian city
NASA Astrophysics Data System (ADS)
Krueger, Elisabeth; Klinkhamer, Christopher; Urich, Christian; Zhan, Xianyuan; Rao, P. Suresh C.
2017-03-01
We examine high-resolution urban infrastructure data using every pipe for the water distribution network (WDN) and sanitary sewer network (SSN) in a large Asian city (≈4 million residents) to explore the structure as well as the spatial and temporal evolution of these infrastructure networks. Network data were spatially disaggregated into multiple subnets to examine intracity topological differences for functional zones of the WDN and SSN, and time-stamped SSN data were examined to understand network evolution over several decades as the city expanded. Graphs were generated using a dual-mapping technique (Hierarchical Intersection Continuity Negotiation), which emphasizes the functional attributes of these networks. Network graphs for WDNs and SSNs are characterized by several network topological metrics, and a double Pareto (power-law) model approximates the node-degree distributions of both water infrastructure networks (WDN and SSN), across spatial and hierarchical scales relevant to urban settings, and throughout their temporal evolution over several decades. These results indicate that generic mechanisms govern the networks' evolution, similar to those of scale-free networks found in nature. Deviations from the general topological patterns are indicative of (1) incomplete establishment of network hierarchies and functional network evolution, (2) capacity for growth (expansion) or densification (e.g., in-fill), and (3) likely network vulnerabilities. We discuss the implications of our findings for the (re-)design of urban infrastructure networks to enhance their resilience to external and internal threats.
Signalling chains with probe and adjust learning
NASA Astrophysics Data System (ADS)
Gosti, Giorgio
2018-04-01
Many models explain the evolution of signalling in repeated stage games on social networks, differently in this study each signalling game evolves a communication strategy to transmit information across the network. Specifically, I formalise signalling chain games as a generalisation of Lewis' signalling games, where a number of players are placed on a chain network and play a signalling game in which they have to propagate information across the network. I show that probe and adjust learning allows the system to develop communication conventions, but it may temporarily perturb the system out of conventions. Through simulations, I evaluate how long the system takes to evolve a signalling convention and the amount of time it stays in it. This discussion presents a mechanism in which simple players can evolve signalling across a social network without necessarily understanding the entire system.
Evolution of Cooperation in Social Dilemmas on Complex Networks
Iyer, Swami; Killingback, Timothy
2016-01-01
Cooperation in social dilemmas is essential for the functioning of systems at multiple levels of complexity, from the simplest biological organisms to the most sophisticated human societies. Cooperation, although widespread, is fundamentally challenging to explain evolutionarily, since natural selection typically favors selfish behavior which is not socially optimal. Here we study the evolution of cooperation in three exemplars of key social dilemmas, representing the prisoner’s dilemma, hawk-dove and coordination classes of games, in structured populations defined by complex networks. Using individual-based simulations of the games on model and empirical networks, we give a detailed comparative study of the effects of the structural properties of a network, such as its average degree, variance in degree distribution, clustering coefficient, and assortativity coefficient, on the promotion of cooperative behavior in all three classes of games. PMID:26928428
Molnets: An Artificial Chemistry Based on Neural Networks
NASA Technical Reports Server (NTRS)
Colombano, Silvano; Luk, Johnny; Segovia-Juarez, Jose L.; Lohn, Jason; Clancy, Daniel (Technical Monitor)
2002-01-01
The fundamental problem in the evolution of matter is to understand how structure-function relationships are formed and increase in complexity from the molecular level all the way to a genetic system. We have created a system where structure-function relationships arise naturally and without the need of ad hoc function assignments to given structures. The idea was inspired by neural networks, where the structure of the net embodies specific computational properties. In this system networks interact with other networks to create connections between the inputs of one net and the outputs of another. The newly created net then recomputes its own synaptic weights, based on anti-hebbian rules. As a result some connections may be cut, and multiple nets can emerge as products of a 'reaction'. The idea is to study emergent reaction behaviors, based on simple rules that constitute a pseudophysics of the system. These simple rules are parameterized to produce behaviors that emulate chemical reactions. We find that these simple rules show a gradual increase in the size and complexity of molecules. We have been building a virtual artificial chemistry laboratory for discovering interesting reactions and for testing further ideas on the evolution of primitive molecules. Some of these ideas include the potential effect of membranes and selective diffusion according to molecular size.
The homeostatic astroglia emerges from evolutionary specialization of neural cells
Verkhratsky, Alexei; Nedergaard, Maiken
2016-01-01
Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic plasticity, learning and memory. In neuropathology, astrocytes may undergo reactive remodelling or degeneration; to a large extent, astroglial reactions define progression of the pathology and neurological outcome. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377722
Prediction of missing links and reconstruction of complex networks
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Jun; Zeng, An
2016-04-01
Predicting missing links in complex networks is of great significance from both theoretical and practical point of view, which not only helps us understand the evolution of real systems but also relates to many applications in social, biological and online systems. In this paper, we study the features of different simple link prediction methods, revealing that they may lead to the distortion of networks’ structural and dynamical properties. Moreover, we find that high prediction accuracy is not definitely corresponding to a high performance in preserving the network properties when using link prediction methods to reconstruct networks. Our work highlights the importance of considering the feedback effect of the link prediction methods on network properties when designing the algorithms.
Dynamic Creative Interaction Networks and Team Creativity Evolution: A Longitudinal Study
ERIC Educational Resources Information Center
Jiang, Hui; Zhang, Qing-Pu; Zhou, Yang
2018-01-01
To assess the dynamical effects of creative interaction networks on team creativity evolution, this paper elaborates a theoretical framework that links the key elements of creative interaction networks, including node, edge and network structure, to creativity in teams. The process of team creativity evolution is divided into four phases,…
Evolution of the Max and Mlx networks in animals.
McFerrin, Lisa G; Atchley, William R
2011-01-01
Transcription factors (TFs) are essential for the regulation of gene expression and often form emergent complexes to perform vital roles in cellular processes. In this paper, we focus on the parallel Max and Mlx networks of TFs because of their critical involvement in cell cycle regulation, proliferation, growth, metabolism, and apoptosis. A basic-helix-loop-helix-zipper (bHLHZ) domain mediates the competitive protein dimerization and DNA binding among Max and Mlx network members to form a complex system of cell regulation. To understand the importance of these network interactions, we identified the bHLHZ domain of Max and Mlx network proteins across the animal kingdom and carried out several multivariate statistical analyses. The presence and conservation of Max and Mlx network proteins in animal lineages stemming from the divergence of Metazoa indicate that these networks have ancient and essential functions. Phylogenetic analysis of the bHLHZ domain identified clear relationships among protein families with distinct points of radiation and divergence. Multivariate discriminant analysis further isolated specific amino acid changes within the bHLHZ domain that classify proteins, families, and network configurations. These analyses on Max and Mlx network members provide a model for characterizing the evolution of TFs involved in essential networks.
Ren, Li-Hong; Ding, Yong-Sheng; Shen, Yi-Zhen; Zhang, Xiang-Feng
2008-10-01
Recently, a collective effort from multiple research areas has been made to understand biological systems at the system level. This research requires the ability to simulate particular biological systems as cells, organs, organisms, and communities. In this paper, a novel bio-network simulation platform is proposed for system biology studies by combining agent approaches. We consider a biological system as a set of active computational components interacting with each other and with an external environment. Then, we propose a bio-network platform for simulating the behaviors of biological systems and modelling them in terms of bio-entities and society-entities. As a demonstration, we discuss how a protein-protein interaction (PPI) network can be seen as a society of autonomous interactive components. From interactions among small PPI networks, a large PPI network can emerge that has a remarkable ability to accomplish a complex function or task. We also simulate the evolution of the PPI networks by using the bio-operators of the bio-entities. Based on the proposed approach, various simulators with different functions can be embedded in the simulation platform, and further research can be done from design to development, including complexity validation of the biological system.
A simple model for the evolution of a non-Abelian cosmic string network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cella, G.; Pieroni, M., E-mail: giancarlo.cella@pi.infn.it, E-mail: mauro.pieroni@apc.univ-paris7.fr
2016-06-01
In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argumentmore » to justify the lack of scaling for the residual cases.« less
Network evolution model for supply chain with manufactures as the core.
Fang, Haiyang; Jiang, Dali; Yang, Tinghong; Fang, Ling; Yang, Jian; Li, Wu; Zhao, Jing
2018-01-01
Building evolution model of supply chain networks could be helpful to understand its development law. However, specific characteristics and attributes of real supply chains are often neglected in existing evolution models. This work proposes a new evolution model of supply chain with manufactures as the core, based on external market demand and internal competition-cooperation. The evolution model assumes the external market environment is relatively stable, considers several factors, including specific topology of supply chain, external market demand, ecological growth and flow conservation. The simulation results suggest that the networks evolved by our model have similar structures as real supply chains. Meanwhile, the influences of external market demand and internal competition-cooperation to network evolution are analyzed. Additionally, 38 benchmark data sets are applied to validate the rationality of our evolution model, in which, nine manufacturing supply chains match the features of the networks constructed by our model.
Network evolution model for supply chain with manufactures as the core
Jiang, Dali; Fang, Ling; Yang, Jian; Li, Wu; Zhao, Jing
2018-01-01
Building evolution model of supply chain networks could be helpful to understand its development law. However, specific characteristics and attributes of real supply chains are often neglected in existing evolution models. This work proposes a new evolution model of supply chain with manufactures as the core, based on external market demand and internal competition-cooperation. The evolution model assumes the external market environment is relatively stable, considers several factors, including specific topology of supply chain, external market demand, ecological growth and flow conservation. The simulation results suggest that the networks evolved by our model have similar structures as real supply chains. Meanwhile, the influences of external market demand and internal competition-cooperation to network evolution are analyzed. Additionally, 38 benchmark data sets are applied to validate the rationality of our evolution model, in which, nine manufacturing supply chains match the features of the networks constructed by our model. PMID:29370201
Large-scale transportation network congestion evolution prediction using deep learning theory.
Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai
2015-01-01
Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.
Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory
Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai
2015-01-01
Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation. PMID:25780910
ERIC Educational Resources Information Center
Carlin, Anna; Manson, Daniel P.; Zhu, Jake
2010-01-01
With the projected higher demand for Network Systems Analysts and increasing computer crime, network security specialists are an organization's first line of defense. The principle function of this paper is to provide the evolution of Collegiate Cyber Defense Competitions (CCDC), event planning required, soliciting sponsors, recruiting personnel…
Advancing Nucleosynthesis in Core-Collapse Supernovae Models Using 2D CHIMERA Simulations
NASA Astrophysics Data System (ADS)
Harris, J. A.; Hix, W. R.; Chertkow, M. A.; Bruenn, S. W.; Lentz, E. J.; Messer, O. B.; Mezzacappa, A.; Blondin, J. M.; Marronetti, P.; Yakunin, K.
2014-01-01
The deaths of massive stars as core-collapse supernovae (CCSN) serve as a crucial link in understanding galactic chemical evolution since the birth of the universe via the Big Bang. We investigate CCSN in polar axisymmetric simulations using the multidimensional radiation hydrodynamics code CHIMERA. Computational costs have traditionally constrained the evolution of the nuclear composition in CCSN models to, at best, a 14-species α-network. However, the limited capacity of the α-network to accurately evolve detailed composition, the neutronization and the nuclear energy generation rate has fettered the ability of prior CCSN simulations to accurately reproduce the chemical abundances and energy distributions as known from observations. These deficits can be partially ameliorated by "post-processing" with a more realistic network. Lagrangian tracer particles placed throughout the star record the temporal evolution of the initial simulation and enable the extension of the nuclear network evolution by incorporating larger systems in post-processing nucleosynthesis calculations. We present post-processing results of the four ab initio axisymmetric CCSN 2D models of Bruenn et al. (2013) evolved with the smaller α-network, and initiated from stellar metallicity, non-rotating progenitors of mass 12, 15, 20, and 25 M⊙ from Woosley & Heger (2007). As a test of the limitations of post-processing, we provide preliminary results from an ongoing simulation of the 15 M⊙ model evolved with a realistic 150 species nuclear reaction network in situ. With more accurate energy generation rates and an improved determination of the thermodynamic trajectories of the tracer particles, we can better unravel the complicated multidimensional "mass-cut" in CCSN simulations and probe for less energetically significant nuclear processes like the νp-process and the r-process, which require still larger networks.
Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.
Morrison, Erin S; Badyaev, Alexander V
2018-05-01
Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Time evolution of coherent structures in networks of Hindmarch Rose neurons
NASA Astrophysics Data System (ADS)
Mainieri, M. S.; Erichsen, R.; Brunnet, L. G.
2005-08-01
In the regime of partial synchronization, networks of diffusively coupled Hindmarch-Rose neurons show coherent structures developing in a region of the phase space which is wider than in the correspondent single neuron. Such structures are kept, without important changes, during several bursting periods. In this work, we study the time evolution of these structures and their dynamical stability under damage. This system may model the behavior of ensembles of neurons coupled through a bidirectional gap junction or, in a broader sense, it could also account for the molecular cascades present in the formation of flash and short time memory.
Networks for image acquisition, processing and display
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.
1990-01-01
The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.
Modification Propagation in Complex Networks
NASA Astrophysics Data System (ADS)
Mouronte, Mary Luz; Vargas, María Luisa; Moyano, Luis Gregorio; Algarra, Francisco Javier García; Del Pozo, Luis Salvador
To keep up with rapidly changing conditions, business systems and their associated networks are growing increasingly intricate as never before. By doing this, network management and operation costs not only rise, but are difficult even to measure. This fact must be regarded as a major constraint to system optimization initiatives, as well as a setback to derived economic benefits. In this work we introduce a simple model in order to estimate the relative cost associated to modification propagation in complex architectures. Our model can be used to anticipate costs caused by network evolution, as well as for planning and evaluating future architecture development while providing benefit optimization.
Prebiological evolution and the metabolic origins of life.
Pratt, Andrew J
2011-01-01
The chemoton model of cells posits three subsystems: metabolism, compartmentalization, and information. A specific model for the prebiological evolution of a reproducing system with rudimentary versions of these three interdependent subsystems is presented. This is based on the initial emergence and reproduction of autocatalytic networks in hydrothermal microcompartments containing iron sulfide. The driving force for life was catalysis of the dissipation of the intrinsic redox gradient of the planet. The codependence of life on iron and phosphate provides chemical constraints on the ordering of prebiological evolution. The initial protometabolism was based on positive feedback loops associated with in situ carbon fixation in which the initial protometabolites modified the catalytic capacity and mobility of metal-based catalysts, especially iron-sulfur centers. A number of selection mechanisms, including catalytic efficiency and specificity, hydrolytic stability, and selective solubilization, are proposed as key determinants for autocatalytic reproduction exploited in protometabolic evolution. This evolutionary process led from autocatalytic networks within preexisting compartments to discrete, reproducing, mobile vesicular protocells with the capacity to use soluble sugar phosphates and hence the opportunity to develop nucleic acids. Fidelity of information transfer in the reproduction of these increasingly complex autocatalytic networks is a key selection pressure in prebiological evolution that eventually leads to the selection of nucleic acids as a digital information subsystem and hence the emergence of fully functional chemotons capable of Darwinian evolution.
Artificial evolution: a new path for artificial intelligence?
Husbands, P; Harvey, I; Cliff, D; Miller, G
1997-06-01
Recently there have been a number of proposals for the use of artificial evolution as a radically new approach to the development of control systems for autonomous robots. This paper explains the artificial evolution approach, using work at Sussex to illustrate it. The paper revolves around a case study on the concurrent evolution of control networks and visual sensor morphologies for a mobile robot. Wider intellectual issues surrounding the work are discussed, as is the use of more abstract evolutionary simulations as a new potentially useful tool in theoretical biology.
Punctuated equilibrium in the large-scale evolution of programming languages.
Valverde, Sergi; Solé, Ricard V
2015-06-06
The analogies and differences between biological and cultural evolution have been explored by evolutionary biologists, historians, engineers and linguists alike. Two well-known domains of cultural change are language and technology. Both share some traits relating the evolution of species, but technological change is very difficult to study. A major challenge in our way towards a scientific theory of technological evolution is how to properly define evolutionary trees or clades and how to weight the role played by horizontal transfer of information. Here, we study the large-scale historical development of programming languages, which have deeply marked social and technological advances in the last half century. We analyse their historical connections using network theory and reconstructed phylogenetic networks. Using both data analysis and network modelling, it is shown that their evolution is highly uneven, marked by innovation events where new languages are created out of improved combinations of different structural components belonging to previous languages. These radiation events occur in a bursty pattern and are tied to novel technological and social niches. The method can be extrapolated to other systems and consistently captures the major classes of languages and the widespread horizontal design exchanges, revealing a punctuated evolutionary path. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Research on social communication network evolution based on topology potential distribution
NASA Astrophysics Data System (ADS)
Zhao, Dongjie; Jiang, Jian; Li, Deyi; Zhang, Haisu; Chen, Guisheng
2011-12-01
Aiming at the problem of social communication network evolution, first, topology potential is introduced to measure the local influence among nodes in networks. Second, from the perspective of topology potential distribution the method of network evolution description based on topology potential distribution is presented, which takes the artificial intelligence with uncertainty as basic theory and local influence among nodes as essentiality. Then, a social communication network is constructed by enron email dataset, the method presented is used to analyze the characteristic of the social communication network evolution and some useful conclusions are got, implying that the method is effective, which shows that topology potential distribution can effectively describe the characteristic of sociology and detect the local changes in social communication network.
Mrabet, Yassine; Semmar, Nabil
2010-05-01
Complexity of metabolic systems can be undertaken at different scales (metabolites, metabolic pathways, metabolic network map, biological population) and under different aspects (structural, functional, evolutive). To analyse such a complexity, metabolic systems need to be decomposed into different components according to different concepts. Four concepts are presented here consisting in considering metabolic systems as sets of metabolites, chemical reactions, metabolic pathways or successive processes. From a metabolomic dataset, such decompositions are performed using different mathematical methods including correlation, stiochiometric, ordination, classification, combinatorial and kinetic analyses. Correlation analysis detects and quantifies affinities/oppositions between metabolites. Stoichiometric analysis aims to identify the organisation of a metabolic network into different metabolic pathways on the hand, and to quantify/optimize the metabolic flux distribution through the different chemical reactions of the system. Ordination and classification analyses help to identify different metabolic trends and their associated metabolites in order to highlight chemical polymorphism representing different variability poles of the metabolic system. Then, metabolic processes/correlations responsible for such a polymorphism can be extracted in silico by combining metabolic profiles representative of different metabolic trends according to a weighting bootstrap approach. Finally evolution of metabolic processes in time can be analysed by different kinetic/dynamic modelling approaches.
Information-theoretic metamodel of organizational evolution
NASA Astrophysics Data System (ADS)
Sepulveda, Alfredo
2011-12-01
Social organizations are abstractly modeled by holarchies---self-similar connected networks---and intelligent complex adaptive multiagent systems---large networks of autonomous reasoning agents interacting via scaled processes. However, little is known of how information shapes evolution in such organizations, a gap that can lead to misleading analytics. The research problem addressed in this study was the ineffective manner in which classical model-predict-control methods used in business analytics attempt to define organization evolution. The purpose of the study was to construct an effective metamodel for organization evolution based on a proposed complex adaptive structure---the info-holarchy. Theoretical foundations of this study were holarchies, complex adaptive systems, evolutionary theory, and quantum mechanics, among other recently developed physical and information theories. Research questions addressed how information evolution patterns gleamed from the study's inductive metamodel more aptly explained volatility in organization. In this study, a hybrid grounded theory based on abstract inductive extensions of information theories was utilized as the research methodology. An overarching heuristic metamodel was framed from the theoretical analysis of the properties of these extension theories and applied to business, neural, and computational entities. This metamodel resulted in the synthesis of a metaphor for, and generalization of organization evolution, serving as the recommended and appropriate analytical tool to view business dynamics for future applications. This study may manifest positive social change through a fundamental understanding of complexity in business from general information theories, resulting in more effective management.
Dynamic Evolution Model Based on Social Network Services
NASA Astrophysics Data System (ADS)
Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen
2013-11-01
Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.
Structuring evolution: biochemical networks and metabolic diversification in birds.
Morrison, Erin S; Badyaev, Alexander V
2016-08-25
Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.
Evolution of opinions on social networks in the presence of competing committed groups.
Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K; Korniss, Gyorgy
2012-01-01
Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions A and B, and constituting fractions pA and pB of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space (pA,pB) consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.
Evolution of Opinions on Social Networks in the Presence of Competing Committed Groups
Xie, Jierui; Emenheiser, Jeffrey; Kirby, Matthew; Sreenivasan, Sameet; Szymanski, Boleslaw K.; Korniss, Gyorgy
2012-01-01
Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions and , and constituting fractions and of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point. PMID:22448238
Petri net modeling of high-order genetic systems using grammatical evolution.
Moore, Jason H; Hahn, Lance W
2003-11-01
Understanding how DNA sequence variations impact human health through a hierarchy of biochemical and physiological systems is expected to improve the diagnosis, prevention, and treatment of common, complex human diseases. We have previously developed a hierarchical dynamic systems approach based on Petri nets for generating biochemical network models that are consistent with genetic models of disease susceptibility. This modeling approach uses an evolutionary computation approach called grammatical evolution as a search strategy for optimal Petri net models. We have previously demonstrated that this approach routinely identifies biochemical network models that are consistent with a variety of genetic models in which disease susceptibility is determined by nonlinear interactions between two DNA sequence variations. In the present study, we evaluate whether the Petri net approach is capable of identifying biochemical networks that are consistent with disease susceptibility due to higher order nonlinear interactions between three DNA sequence variations. The results indicate that our model-building approach is capable of routinely identifying good, but not perfect, Petri net models. Ideas for improving the algorithm for this high-dimensional problem are presented.
Community evolution mining and analysis in social network
NASA Astrophysics Data System (ADS)
Liu, Hongtao; Tian, Yuan; Liu, Xueyan; Jian, Jie
2017-03-01
With the development of digital and network technology, various social platforms emerge. These social platforms have greatly facilitated access to information, attracting more and more users. They use these social platforms every day to work, study and communicate, so every moment social platforms are generating massive amounts of data. These data can often be modeled as complex networks, making large-scale social network analysis possible. In this paper, the existing evolution classification model of community has been improved based on community evolution relationship over time in dynamic social network, and the Evolution-Tree structure is proposed which can show the whole life cycle of the community more clearly. The comparative test result shows that the improved model can excavate the evolution relationship of the community well.
Cross-Disciplinary Network Comparison: Matchmaking Between Hairballs
Yan, Koon-Kiu; Wang, Daifeng; Sethi, Anurag; Muir, Paul; Kitchen, Robert; Cheng, Chao; Gerstein, Mark
2016-01-01
Biological systems are complex. In particular, the interactions between molecular components often form dense networks that, more often than not, are criticized for being inscrutable ‘hairballs’. We argue that one way of untangling these hairballs is through cross-disciplinary network comparison—leveraging advances in other disciplines to obtain new biological insights. In some cases, such comparisons enable the direct transfer of mathematical formalism between disciplines, precisely describing the abstract associations between entities and allowing us to apply a variety of sophisticated formalisms to biology. In cases where the detailed structure of the network does not permit the transfer of complete formalisms between disciplines, comparison of mechanistic interactions in systems for which we have significant day-to-day experience can provide analogies for interpreting relatively more abstruse biological networks. Here, we illustrate how these comparisons benefit the field with a few specific examples related to network growth, organizational hierarchies, and the evolution of adaptive systems. PMID:27047991
Kang, Joonsoo; Malhotra, Nidhi
2015-01-01
Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177
NASA Astrophysics Data System (ADS)
Kasatkina, T. I.; Dushkin, A. V.; Pavlov, V. A.; Shatovkin, R. R.
2018-03-01
In the development of information, systems and programming to predict the series of dynamics, neural network methods have recently been applied. They are more flexible, in comparison with existing analogues and are capable of taking into account the nonlinearities of the series. In this paper, we propose a modified algorithm for predicting the series of dynamics, which includes a method for training neural networks, an approach to describing and presenting input data, based on the prediction by the multilayer perceptron method. To construct a neural network, the values of a series of dynamics at the extremum points and time values corresponding to them, formed based on the sliding window method, are used as input data. The proposed algorithm can act as an independent approach to predicting the series of dynamics, and be one of the parts of the forecasting system. The efficiency of predicting the evolution of the dynamics series for a short-term one-step and long-term multi-step forecast by the classical multilayer perceptron method and a modified algorithm using synthetic and real data is compared. The result of this modification was the minimization of the magnitude of the iterative error that arises from the previously predicted inputs to the inputs to the neural network, as well as the increase in the accuracy of the iterative prediction of the neural network.
Some Physical Principles Governing Spatial and Temporal Organization in Living Systems
NASA Astrophysics Data System (ADS)
Ali, Md Zulfikar
Spatial and temporal organization in living organisms are crucial for a variety of biological functions and arise from the interplay of large number of interacting molecules. One of the central questions in systems biology is to understand how such an intricate organization emerges from the molecular biochemistry of the cell. In this dissertation we explore two projects. The first project relates to pattern formation in a cell membrane as an example of spatial organization, and the second project relates to the evolution of oscillatory networks as a simple example of temporal organization. For the first project, we introduce a model for pattern formation in a two-component lipid bilayer and study the interplay between membrane composition and membrane geometry, demonstrating the existence of a rich phase diagram. Pattern formation is governed by the interplay between phase separation driven by lipid-lipid interactions and tendency of lipid domains with high intrinsic curvature to deform the membrane away from its preferred position. Depending on membrane parameters, we find the formation of compact lipid micro-clusters or of striped domains. We calculate the stripe width analytically and find good agreement with stripe widths obtained from the simulations. For the second project, we introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm and apply it to study the following problems. Using the model, we study robustness and designabilty of a 2-component network that generate oscillations. We completely enumerate the sequence space and the phenotypic space, and discuss the relationship between designabilty, robustness and evolvability. We further apply the model to studies of neutral drift in networks that yield oscillatory dynamics, e.g. starting with a relatively simple network and allowing it to evolve by adding nodes and connections while requiring that oscillatory dynamics be preserved. Our studies demonstrate both the importance of employing a sequence-based evolutionary scheme and the relative rapidity (in evolutionary time) for the redistribution of function over new nodes via neutral drift. In addition we discovered another much slower timescale for network evolution, reflecting hidden order in sequence space that we interpret in terms of sparsely connected domains. Finally, we use the model to study the evolution of an oscillator from a non-oscillatory network under the influence of external periodic forcing as a model for evolution of circadian rhythm in living systems. We use a greedy algorithm based on optimizing biologically motivated fitness functions and find that the algorithm successfully produces oscillators. However, the distribution of free-period of evolved oscillators depends on the choice of fitness functions and the nature of forcing.
Software/hardware distributed processing network supporting the Ada environment
NASA Astrophysics Data System (ADS)
Wood, Richard J.; Pryk, Zen
1993-09-01
A high-performance, fault-tolerant, distributed network has been developed, tested, and demonstrated. The network is based on the MIPS Computer Systems, Inc. R3000 Risc for processing, VHSIC ASICs for high speed, reliable, inter-node communications and compatible commercial memory and I/O boards. The network is an evolution of the Advanced Onboard Signal Processor (AOSP) architecture. It supports Ada application software with an Ada- implemented operating system. A six-node implementation (capable of expansion up to 256 nodes) of the RISC multiprocessor architecture provides 120 MIPS of scalar throughput, 96 Mbytes of RAM and 24 Mbytes of non-volatile memory. The network provides for all ground processing applications, has merit for space-qualified RISC-based network, and interfaces to advanced Computer Aided Software Engineering (CASE) tools for application software development.
A last updating evolution model for online social networks
NASA Astrophysics Data System (ADS)
Bu, Zhan; Xia, Zhengyou; Wang, Jiandong; Zhang, Chengcui
2013-05-01
As information technology has advanced, people are turning to electronic media more frequently for communication, and social relationships are increasingly found on online channels. However, there is very limited knowledge about the actual evolution of the online social networks. In this paper, we propose and study a novel evolution network model with the new concept of “last updating time”, which exists in many real-life online social networks. The last updating evolution network model can maintain the robustness of scale-free networks and can improve the network reliance against intentional attacks. What is more, we also found that it has the “small-world effect”, which is the inherent property of most social networks. Simulation experiment based on this model show that the results and the real-life data are consistent, which means that our model is valid.
NASA Astrophysics Data System (ADS)
Szejka, Agnes; Drossel, Barbara
2010-02-01
We study the evolution of Boolean networks as model systems for gene regulation. Inspired by biological networks, we select simultaneously for robust attractors and for the ability to respond to external inputs by changing the attractor. Mutations change the connections between the nodes and the update functions. In order to investigate the influence of the type of update functions, we perform our simulations with canalizing as well as with threshold functions. We compare the properties of the fitness landscapes that result for different versions of the selection criterion and the update functions. We find that for all studied cases the fitness landscape has a plateau with maximum fitness resulting in the fact that structurally very different networks are able to fulfill the same task and are connected by neutral paths in network (“genotype”) space. We find furthermore a connection between the attractor length and the mutational robustness, and an extremely long memory of the initial evolutionary stage.
Systemic risk and heterogeneous leverage in banking networks
NASA Astrophysics Data System (ADS)
Kuzubaş, Tolga Umut; Saltoğlu, Burak; Sever, Can
2016-11-01
This study probes systemic risk implications of leverage heterogeneity in banking networks. We show that the presence of heterogeneous leverages drastically changes the systemic effects of defaults and the nature of the contagion in interbank markets. Using financial leverage data from the US banking system, through simulations, we analyze the systemic significance of different types of borrowers, the evolution of the network, the consequences of interbank market size and the impact of market segmentation. Our study is related to the recent Basel III regulations on systemic risk and the treatment of the Global Systemically Important Banks (GSIBs). We also assess the extent to which the recent capital surcharges on GSIBs may curb financial fragility. We show the effectiveness of surcharge policy for the most-levered banks vis-a-vis uniform capital injection.
An experimental investigation of the force network ensemble
NASA Astrophysics Data System (ADS)
Kollmer, Jonathan E.; Daniels, Karen E.
2017-06-01
We present an experiment in which a horizontal quasi-2D granular system with a fixed neighbor network is cyclically compressed and decompressed over 1000 cycles. We remove basal friction by floating the particles on a thin air cushion, so that particles only interact in-plane. As expected for a granular system, the applied load is not distributed uniformly, but is instead concentrated in force chains which form a network throughout the system. To visualize the structure of these networks, we use particles made from photoelastic material. The experimental setup and a new data-processing pipeline allow us to map out the evolution subject to the cyclic compressions. We characterize several statistical properties of the packing, including the probability density function of the contact force, and compare them with theoretical and numerical predictions from the force network ensemble theory.
NASA Astrophysics Data System (ADS)
Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele
2016-05-01
Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constraints on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.
NASA Astrophysics Data System (ADS)
Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele
2016-04-01
Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constrains on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.
Li, Xiaofang; Xu, Lizhong; Wang, Huibin; Song, Jie; Yang, Simon X.
2010-01-01
The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks. PMID:22219670
Opinion diversity and community formation in adaptive networks
NASA Astrophysics Data System (ADS)
Yu, Y.; Xiao, G.; Li, G.; Tay, W. P.; Teoh, H. F.
2017-10-01
It is interesting and of significant importance to investigate how network structures co-evolve with opinions. In this article, we show that, a simple model integrating consensus formation, link rewiring, and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities are connected by a non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at the steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity.
NASA Astrophysics Data System (ADS)
Kaminski, Thomas; Rayner, Peter Julian
2017-10-01
Various observational data streams have been shown to provide valuable constraints on the state and evolution of the global carbon cycle. These observations have the potential to reduce uncertainties in past, current, and predicted natural and anthropogenic surface fluxes. In particular such observations provide independent information for verification of actions as requested by the Paris Agreement. It is, however, difficult to decide which variables to sample, and how, where, and when to sample them, in order to achieve an optimal use of the observational capabilities. Quantitative network design (QND) assesses the impact of a given set of existing or hypothetical observations in a modelling framework. QND has been used to optimise in situ networks and assess the benefit to be expected from planned space missions. This paper describes recent progress and highlights aspects that are not yet sufficiently addressed. It demonstrates the advantage of an integrated QND system that can simultaneously evaluate a multitude of observational data streams and assess their complementarity and redundancy.
Towards a SIM-Less Existence: The Evolution of Smart Learning Networks
ERIC Educational Resources Information Center
Al-Khouri, Ali M.
2015-01-01
This article proposes that the widespread availability of wireless networks creates a case in which there is no real need for SIM cards. Recent technological developments offer the capability to outperform SIM cards and provide more innovative dimensions to current systems of mobility. In this context of changing realities in the domain of…
Cannistraci, Carlo Vittorio; Alanis-Lobato, Gregorio; Ravasi, Timothy
2013-01-01
Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial. PMID:23563395
Cannistraci, Carlo Vittorio; Alanis-Lobato, Gregorio; Ravasi, Timothy
2013-01-01
Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial.
Non-Lipschitzian dynamics for neural net modelling
NASA Technical Reports Server (NTRS)
Zak, Michail
1989-01-01
Failure of the Lipschitz condition in unstable equilibrium points of dynamical systems leads to a multiple-choice response to an initial deterministic input. The evolution of such systems is characterized by a special type of unpredictability measured by unbounded Liapunov exponents. Possible relation of these systems to future neural networks is discussed.
Beyond business process redesign: redefining Baxter's business network.
Short, J E; Venkatraman, N
1992-01-01
Business process redesign has focused almost exclusively on improving the firm's internal operations. Although internal efficiency and effectiveness are important objectives, the authors argue that business network redesign--reconceptualizing the role of the firm and its key business processes in the larger business network--is of greater strategic importance. To support their argument, they analyze the evolution of Baxter's ASAP system, one of the most publicized but inadequately understood strategic information systems of the 1980s. They conclude by examining whether ASAP's early successes have positioned the firm well for the changing hospital supplies marketplace of the 1990s.
Using Network Dynamical Influence to Drive Consensus
NASA Astrophysics Data System (ADS)
Punzo, Giuliano; Young, George F.; MacDonald, Malcolm; Leonard, Naomi E.
2016-05-01
Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the “steering” refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks.
ERIC Educational Resources Information Center
Clement, John; Abrahams, Janice
1994-01-01
Describes the growth and evolution of educational networking including the growth in the number of users; networking tools such as Gopher; Internet information resources; problems; evaluations of network use in education; the evolution of educational communities on the Internet; integrating networks into the process of educational change; and the…
Evolution of a residue laboratory network and the management tools for monitoring its performance.
Lins, E S; Conceição, E S; Mauricio, A De Q
2012-01-01
Since 2005 the National Residue & Contaminants Control Plan (NRCCP) in Brazil has been considerably enhanced, increasing the number of samples, substances and species monitored, and also the analytical detection capability. The Brazilian laboratory network was forced to improve its quality standards in order to comply with the NRCP's own evolution. Many aspects such as the limits of quantification (LOQs), the quality management systems within the laboratories and appropriate method validation are in continuous improvement, generating new scenarios and demands. Thus, efficient management mechanisms for monitoring network performance and its adherence to the established goals and guidelines are required. Performance indicators associated to computerised information systems arise as a powerful tool to monitor the laboratories' activity, making use of different parameters to describe this activity on a day-to-day basis. One of these parameters is related to turnaround times, and this factor is highly affected by the way each laboratory organises its management system, as well as the regulatory requirements. In this paper a global view is presented of the turnaround times related to the type of analysis, laboratory, number of samples per year, type of matrix, country region and period of the year, all these data being collected from a computerised system called SISRES. This information gives a solid background to management measures aiming at the improvement of the service offered by the laboratory network.
NASA Astrophysics Data System (ADS)
Thovex, Christophe; Trichet, Francky
The objective of our work is to extend static and dynamic models of Social Networks Analysis (SNA), by taking conceptual aspects of enterprises and institutions social graph into account. The originality of our multidisciplinary work is to introduce abstract notions of electro-physic to define new measures in SNA, for new decision-making functions dedicated to Human Resource Management (HRM). This paper introduces a multidimensional system and new measures: (1) a tension measure for social network analysis, (2) an electrodynamic, predictive and semantic system for recommendations on social graphs evolutions and (3) a reactance measure used to evaluate the individual stress at work of the members of a social network.
An Agent-Based Dynamic Model for Analysis of Distributed Space Exploration Architectures
NASA Astrophysics Data System (ADS)
Sindiy, Oleg V.; DeLaurentis, Daniel A.; Stein, William B.
2009-07-01
A range of complex challenges, but also potentially unique rewards, underlie the development of exploration architectures that use a distributed, dynamic network of resources across the solar system. From a methodological perspective, the prime challenge is to systematically model the evolution (and quantify comparative performance) of such architectures, under uncertainty, to effectively direct further study of specialized trajectories, spacecraft technologies, concept of operations, and resource allocation. A process model for System-of-Systems Engineering is used to define time-varying performance measures for comparative architecture analysis and identification of distinguishing patterns among interoperating systems. Agent-based modeling serves as the means to create a discrete-time simulation that generates dynamics for the study of architecture evolution. A Solar System Mobility Network proof-of-concept problem is introduced representing a set of longer-term, distributed exploration architectures. Options within this set revolve around deployment of human and robotic exploration and infrastructure assets, their organization, interoperability, and evolution, i.e., a system-of-systems. Agent-based simulations quantify relative payoffs for a fully distributed architecture (which can be significant over the long term), the latency period before they are manifest, and the up-front investment (which can be substantial compared to alternatives). Verification and sensitivity results provide further insight on development paths and indicate that the framework and simulation modeling approach may be useful in architectural design of other space exploration mass, energy, and information exchange settings.
The adaptive safety analysis and monitoring system
NASA Astrophysics Data System (ADS)
Tu, Haiying; Allanach, Jeffrey; Singh, Satnam; Pattipati, Krishna R.; Willett, Peter
2004-09-01
The Adaptive Safety Analysis and Monitoring (ASAM) system is a hybrid model-based software tool for assisting intelligence analysts to identify terrorist threats, to predict possible evolution of the terrorist activities, and to suggest strategies for countering terrorism. The ASAM system provides a distributed processing structure for gathering, sharing, understanding, and using information to assess and predict terrorist network states. In combination with counter-terrorist network models, it can also suggest feasible actions to inhibit potential terrorist threats. In this paper, we will introduce the architecture of the ASAM system, and discuss the hybrid modeling approach embedded in it, viz., Hidden Markov Models (HMMs) to detect and provide soft evidence on the states of terrorist network nodes based on partial and imperfect observations, and Bayesian networks (BNs) to integrate soft evidence from multiple HMMs. The functionality of the ASAM system is illustrated by way of application to the Indian Airlines Hijacking, as modeled from open sources.
Properties of four real world collaboration--competition networks
NASA Astrophysics Data System (ADS)
Fu, Chun-Hua; Xu, Xiu-Lian; He, Da-Ren
2009-03-01
Our research group has empirically investigated 9 real world collaboration networks and 25 real world cooperation-competition networks. Among the 34 real world systems, all the 9 real world collaboration networks and 6 real world cooperation-competition networks show the unimodal act-size distribution and the shifted power law distribution of degree and act-degree. We have proposed a collaboration network evolution model for an explanation of the rules [1]. The other 14 real world cooperation-competition networks show that the act-size distributions are not unimodal; instead, they take qualitatively the same shifted power law forms as the degree and act-degree distributions. The properties of four systems (the main land movie film network, Beijing restaurant network, 2004 Olympic network, and Tao-Bao notebook computer sale network) are reported in detail as examples. Via a numerical simulation, we show that the new rule can still be explained by the above-mentioned model. [1] H. Chang, B. B. Su, et al. Phsica A, 2007, 383: 687-702.
NASA Astrophysics Data System (ADS)
Wu, H.; Zhou, L.; Xu, T.; Fang, W. L.; He, W. G.; Liu, H. M.
2017-11-01
In order to improve the situation of voltage violation caused by the grid-connection of photovoltaic (PV) system in a distribution network, a bi-level programming model is proposed for battery energy storage system (BESS) deployment. The objective function of inner level programming is to minimize voltage violation, with the power of PV and BESS as the variables. The objective function of outer level programming is to minimize the comprehensive function originated from inner layer programming and all the BESS operating parameters, with the capacity and rated power of BESS as the variables. The differential evolution (DE) algorithm is applied to solve the model. Based on distribution network operation scenarios with photovoltaic generation under multiple alternative output modes, the simulation results of IEEE 33-bus system prove that the deployment strategy of BESS proposed in this paper is well adapted to voltage violation regulation invariable distribution network operation scenarios. It contributes to regulating voltage violation in distribution network, as well as to improve the utilization of PV systems.
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
From embodied mind to embodied robotics: humanities and system theoretical aspects.
Mainzer, Klaus
2009-01-01
After an introduction (1) the article analyzes the evolution of the embodied mind (2), the innovation of embodied robotics (3), and finally discusses conclusions of embodied robotics for human responsibility (4). Considering the evolution of the embodied mind (2), we start with an introduction of complex systems and nonlinear dynamics (2.1), apply this approach to neural self-organization (2.2), distinguish degrees of complexity of the brain (2.3), explain the emergence of cognitive states by complex systems dynamics (2.4), and discuss criteria for modeling the brain as complex nonlinear system (2.5). The innovation of embodied robotics (3) is a challenge of future technology. We start with the distinction of symbolic and embodied AI (3.1) and explain embodied robots as dynamical systems (3.2). Self-organization needs self-control of technical systems (3.3). Cellular neural networks (CNN) are an example of self-organizing technical systems offering new avenues for neurobionics (3.4). In general, technical neural networks support different kinds of learning robots (3.5). Finally, embodied robotics aim at the development of cognitive and conscious robots (3.6).
Wang, Yanjun; Zheng, Jianzhong; Zhang, Ailian; Zhou, Wei; Dong, Haiyuan
2018-03-01
The aim of this study was to reveal research hotspots in the field of regional health information networks (RHINs) and use visualization techniques to explore their evolution over time and differences between countries. We conducted a literature review for a 50-year period and compared the prevalence of certain index terms during the periods 1963-1993 and 1994-2014 and in six countries. We applied keyword frequency analysis, keyword co-occurrence analysis, multidimensional scaling analysis, and network visualization technology. The total number of keywords was found to increase with time. From 1994 to 2014, the research priorities shifted from hospital planning to community health planning. The number of keywords reflecting information-based research increased. The density of the knowledge network increased significantly, and partial keywords condensed into knowledge groups. All six countries focus on keywords including Information Systems; Telemedicine; Information Service; Medical Records Systems, Computerized; Internet; etc.; however, the level of development and some research priorities are different. RHIN research has generally increased in popularity over the past 50 years. The research hotspots are evolving and are at different levels of development in different countries. Knowledge network mapping and perceptual maps provide useful information for scholars, managers, and policy-makers.
Beyond the online catalog: developing an academic information system in the sciences.
Crawford, S; Halbrook, B; Kelly, E; Stucki, L
1987-01-01
The online public access catalog consists essentially of a machine-readable database with network capabilities. Like other computer-based information systems, it may be continuously enhanced by the addition of new capabilities and databases. It may also become a gateway to other information networks. This paper reports the evolution of the Bibliographic Access and Control System (BACS) of Washington University in end-user searching, current awareness services, information management, and administrative functions. Ongoing research and development and the future of the online catalog are also discussed. PMID:3315052
Beyond the online catalog: developing an academic information system in the sciences.
Crawford, S; Halbrook, B; Kelly, E; Stucki, L
1987-07-01
The online public access catalog consists essentially of a machine-readable database with network capabilities. Like other computer-based information systems, it may be continuously enhanced by the addition of new capabilities and databases. It may also become a gateway to other information networks. This paper reports the evolution of the Bibliographic Access and Control System (BACS) of Washington University in end-user searching, current awareness services, information management, and administrative functions. Ongoing research and development and the future of the online catalog are also discussed.
Asymptotic theory of time varying networks with burstiness and heterogeneous activation patterns
NASA Astrophysics Data System (ADS)
Burioni, Raffaella; Ubaldi, Enrico; Vezzani, Alessandro
2017-05-01
The recent availability of large-scale, time-resolved and high quality digital datasets has allowed for a deeper understanding of the structure and properties of many real-world networks. The empirical evidence of a temporal dimension prompted the switch of paradigm from a static representation of networks to a time varying one. In this work we briefly review the framework of time-varying-networks in real world social systems, especially focusing on the activity-driven paradigm. We develop a framework that allows for the encoding of three generative mechanisms that seem to play a central role in the social networks’ evolution: the individual’s propensity to engage in social interactions, its strategy in allocate these interactions among its alters and the burstiness of interactions amongst social actors. The functional forms and probability distributions encoding these mechanisms are typically data driven. A natural question arises if different classes of strategies and burstiness distributions, with different local scale behavior and analogous asymptotics can lead to the same long time and large scale structure of the evolving networks. We consider the problem in its full generality, by investigating and solving the system dynamics in the asymptotic limit, for general classes of ties allocation mechanisms and waiting time probability distributions. We show that the asymptotic network evolution is driven by a few characteristics of these functional forms, that can be extracted from direct measurements on large datasets.
Multifractal to monofractal evolution of the London street network.
Murcio, Roberto; Masucci, A Paolo; Arcaute, Elsa; Batty, Michael
2015-12-01
We perform a multifractal analysis of the evolution of London's street network from 1786 to 2010. First, we show that a single fractal dimension, commonly associated with the morphological description of cities, does not suffice to capture the dynamics of the system. Instead, for a proper characterization of such a dynamics, the multifractal spectrum needs to be considered. Our analysis reveals that London evolves from an inhomogeneous fractal structure, which can be described in terms of a multifractal, to a homogeneous one, which converges to monofractality. We argue that London's multifractal to monofractal evolution might be a special outcome of the constraint imposed on its growth by a green belt. Through a series of simulations, we show that multifractal objects, constructed through diffusion limited aggregation, evolve toward monofractality if their growth is constrained by a nonpermeable boundary.
Access to Corporate Information Systems: Datafiles, Classified Documents, and Information Resources.
ERIC Educational Resources Information Center
Baumgartner, Kurt O.; And Others
1988-01-01
Three articles discuss aspects of corporate information systems: (1) "Packet Switching Networks: Worldwide Access to Corporate Datafiles" (Kurt O. Baumgartner); "Classified Documents in the Corporate Library" (Patricia M. Shores); and "From Library to Information Center: Case Studies in the Evolution of Corporate…
Specialized impulse conduction pathway in the alligator heart
Crossley, Dane A; Conner, Justin; Mohan, Rajiv A; van Duijvenboden, Karel; Postma, Alex V; Gloschat, Christopher R; Elsey, Ruth M; Sedmera, David; Efimov, Igor R
2018-01-01
Mammals and birds have a specialized cardiac atrioventricular conduction system enabling rapid activation of both ventricles. This system may have evolved together with high heart rates to support their endothermic state (warm-bloodedness) and is seemingly lacking in ectothermic vertebrates from which first mammals then birds independently evolved. Here, we studied the conduction system in crocodiles (Alligator mississippiensis), the only ectothermic vertebrates with a full ventricular septum. We identified homologues of mammalian conduction system markers (Tbx3-Tbx5, Scn5a, Gja5, Nppa-Nppb) and show the presence of a functional atrioventricular bundle. The ventricular Purkinje network, however, was absent and slow ventricular conduction relied on trabecular myocardium, as it does in other ectothermic vertebrates. We propose the evolution of the atrioventricular bundle followed full ventricular septum formation prior to the development of high heart rates and endothermy. In contrast, the evolution of the ventricular Purkinje network is strongly associated with high heart rates and endothermy. PMID:29565246
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Carli A.; Aciego, Sarah M.; Sims, Kenneth W. W.
The residence time of subglacial meltwater impacts aquifer recharge, nutrient production, and chemical signals that reflect underlying bedrock/substrate, but is inaccessible to direct observation. We report the seasonal evolution of subglacial meltwater chemistry from the 2011 melt season at the terminus of the Athabasca Glacier, Canada. We also measured major and trace analytes and U-series isotopes for twenty-nine bulk meltwater samples collected over the duration of the melt season. This dataset, which is the longest time-series record of ( 234U/ 238U) isotopes in a glacial meltwater system, provides insight into the hydrologic evolution of the subglacial system during active melting.more » Meltwater samples, measured from the outflow, were analyzed for ( 238U), ( 222Rn) and ( 234U/ 238U)activity, conductivity, alkalinity, pH and major cations. Subglacial meltwater varied in [238U] and (222Rn) from 23 to 832 ppt and 9 to 171 pCi/L, respectively. Activity ratios of ( 234U/ 238U) ranged from 1.003 to 1.040, with the highest ( 238U), ( 222Rn) and ( 234U/ 238U)activity values occurring in early May when delayed-flow basal meltwater composed a significant portion of the bulk melt. Furthemore, from the chemical evolution of the meltwater, we posit that the relative subglacial water residence times decrease over the course of the melt season. This decrease in qualitative residence time during active melt is consistent with prior field studies and model-predicted channel switching from a delayed, distributed network to a fast, channelized network flow. As such, our study provides support for linking U-series isotopes to storage lengths of meltwater beneath glacial systems as subglacial hydrologic networks evolve with increased melting and channel network efficiency.« less
Arendt, Carli A.; Aciego, Sarah M.; Sims, Kenneth W. W.; ...
2017-07-31
The residence time of subglacial meltwater impacts aquifer recharge, nutrient production, and chemical signals that reflect underlying bedrock/substrate, but is inaccessible to direct observation. We report the seasonal evolution of subglacial meltwater chemistry from the 2011 melt season at the terminus of the Athabasca Glacier, Canada. We also measured major and trace analytes and U-series isotopes for twenty-nine bulk meltwater samples collected over the duration of the melt season. This dataset, which is the longest time-series record of ( 234U/ 238U) isotopes in a glacial meltwater system, provides insight into the hydrologic evolution of the subglacial system during active melting.more » Meltwater samples, measured from the outflow, were analyzed for ( 238U), ( 222Rn) and ( 234U/ 238U)activity, conductivity, alkalinity, pH and major cations. Subglacial meltwater varied in [238U] and (222Rn) from 23 to 832 ppt and 9 to 171 pCi/L, respectively. Activity ratios of ( 234U/ 238U) ranged from 1.003 to 1.040, with the highest ( 238U), ( 222Rn) and ( 234U/ 238U)activity values occurring in early May when delayed-flow basal meltwater composed a significant portion of the bulk melt. Furthemore, from the chemical evolution of the meltwater, we posit that the relative subglacial water residence times decrease over the course of the melt season. This decrease in qualitative residence time during active melt is consistent with prior field studies and model-predicted channel switching from a delayed, distributed network to a fast, channelized network flow. As such, our study provides support for linking U-series isotopes to storage lengths of meltwater beneath glacial systems as subglacial hydrologic networks evolve with increased melting and channel network efficiency.« less
Abu-Laban, Riyad B; Drebit, Sharla; Lindstrom, Ronald R; Archibald, Chantel; Eggers, Kim; Ho, Kendall; Khazei, Afshin; Lund, Adam; MacKinnon, Carolyn; Markham, Ray; Marsden, Julian; Martin, Ed; Christenson, Jim
2018-01-04
As generalists, emergency practitioners face challenges in providing state-of-the-art care owing to the broad spectrum of practice and the rapid rate of new knowledge generation. Networks have become increasingly prevalent in health care, and it was in this backdrop, and the resulting opportunity to advance evidence-informed emergency care in the Canadian province of British Columbia (BC), that a new "Emergency Medicine Network" (EM Network) was launched in 2017. The EM Network consists of four programs, each led by a physician with expertise and a track record in the domain: (1) Clinical Resources; (2) Innovation; (3) Continuing Professional Development; and (4) Real-time Support. This paper provides an overview of the EM Network, including its background, purpose, programs, anticipated evolution, and impact on the BC health care system.
Opinion evolution in different social acquaintance networks.
Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei
2017-11-01
Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion p h and variation proportion p v are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve p v +2p h =2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This finding is of great significance for predicting opinion evolution under different acquaintance networks and formulating reasonable policies based on cultural characteristics to guide public opinion.
Opinion evolution in different social acquaintance networks
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei
2017-11-01
Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion ph and variation proportion pv are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve pv+2 ph=2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This finding is of great significance for predicting opinion evolution under different acquaintance networks and formulating reasonable policies based on cultural characteristics to guide public opinion.
Irregular Collective Behavior of Heterogeneous Neural Networks
NASA Astrophysics Data System (ADS)
Luccioli, Stefano; Politi, Antonio
2010-10-01
We investigate a network of integrate-and-fire neurons characterized by a distribution of spiking frequencies. Upon increasing the coupling strength, the model exhibits a transition from an asynchronous regime to a nontrivial collective behavior. Numerical simulations of large systems indicate that, at variance with the Kuramoto model, (i) the macroscopic dynamics stays irregular and (ii) the microscopic (single-neuron) evolution is linearly stable.
Gu, Hao; Goodale, Eben; Chen, Jin
2015-03-18
The study of mutualistic plant and animal networks is an emerging field of ecological research. We reviewed progress in this field over the past 30 years. While earlier studies mostly focused on network structure, stability, and biodiversity maintenance, recent studies have investigated the conservation implications of mutualistic networks, specifically the influence of invasive species and how networks respond to habitat loss. Current research has also focused on evolutionary questions including phylogenetic signal in networks, impact of networks on the coevolution of interacting partners, and network influences on the evolution of interacting species. We outline some directions for future research, particularly the evolution of specialization in mutualistic networks, and provide concrete recommendations for environmental managers.
Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario
2018-03-01
Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.
Successful strategies for competing networks
NASA Astrophysics Data System (ADS)
Aguirre, J.; Papo, D.; Buldú, J. M.
2013-04-01
Competitive interactions represent one of the driving forces behind evolution and natural selection in biological and sociological systems. For example, animals in an ecosystem may vie for food or mates; in a market economy, firms may compete over the same group of customers; sensory stimuli may compete for limited neural resources to enter the focus of attention. Here, we derive rules based on the spectral properties of the network governing the competitive interactions between groups of agents organized in networks. In the scenario studied here the winner of the competition, and the time needed to prevail, essentially depend on the way a given network connects to its competitors and on its internal structure. Our results allow assessment of the extent to which real networks optimize the outcome of their interaction, but also provide strategies through which competing networks can improve on their situation. The proposed approach is applicable to a wide range of systems that can be modelled as networks.
Grierson, Claire S.
2018-01-01
Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli. Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution. PMID:29670941
Optical Fiber Networks for Remote Fiber Optic Sensors
Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel
2012-01-01
This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011
The evolution of the ISOLDE control system
NASA Astrophysics Data System (ADS)
Jonsson, O. C.; Catherall, R.; Deloose, I.; Drumm, P.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Isolde Collaboration
The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows ™ through a Novell NetWare4 ™ local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.
The evolution of the ISOLDE control system
NASA Astrophysics Data System (ADS)
Jonsson, O. C.; Catherall, R.; Deloose, I.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Drumm, P.
1996-04-01
The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows® through a Novell NetWare4® local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.
NASA Astrophysics Data System (ADS)
Cheng, Xiao; Feng, Lei; Zhou, Fanqin; Wei, Lei; Yu, Peng; Li, Wenjing
2018-02-01
With the rapid development of the smart grid, the data aggregation point (AP) in the neighborhood area network (NAN) is becoming increasingly important for forwarding the information between the home area network and wide area network. Due to limited budget, it is unable to use one-single access technology to meet the ongoing requirements on AP coverage. This paper first introduces the wired and wireless hybrid access network with the integration of long-term evolution (LTE) and passive optical network (PON) system for NAN, which allows a good trade-off among cost, flexibility, and reliability. Then, based on the already existing wireless LTE network, an AP association optimization model is proposed to make the PON serve as many APs as possible, considering both the economic efficiency and network reliability. Moreover, since the features of the constraints and variables of this NP-hard problem, a hybrid intelligent optimization algorithm is proposed, which is achieved by the mixture of the genetic, ant colony and dynamic greedy algorithm. By comparing with other published methods, simulation results verify the performance of the proposed method in improving the AP coverage and the performance of the proposed algorithm in terms of convergence.
Disruption of River Networks in Nature and Models
NASA Astrophysics Data System (ADS)
Perron, J. T.; Black, B. A.; Stokes, M.; McCoy, S. W.; Goldberg, S. L.
2017-12-01
Many natural systems display especially informative behavior as they respond to perturbations. Landscapes are no exception. For example, longitudinal elevation profiles of rivers responding to changes in uplift rate can reveal differences among erosional mechanisms that are obscured while the profiles are in equilibrium. The responses of erosional river networks to perturbations, including disruption of their network structure by diversion, truncation, resurfacing, or river capture, may be equally revealing. In this presentation, we draw attention to features of disrupted erosional river networks that a general model of landscape evolution should be able to reproduce, including the consequences of different styles of planetary tectonics and the response to heterogeneous bedrock structure and deformation. A comparison of global drainage directions with long-wavelength topography on Earth, Mars, and Saturn's moon Titan reveals the extent to which persistent and relatively rapid crustal deformation has disrupted river networks on Earth. Motivated by this example and others, we ask whether current models of river network evolution adequately capture the disruption of river networks by tectonic, lithologic, or climatic perturbations. In some cases the answer appears to be no, and we suggest some processes that models may be missing.
Directed Evolution as a Powerful Synthetic Biology Tool
Cobb, Ryan E.; Sun, Ning; Zhao, Huimin
2012-01-01
At the heart of synthetic biology lies the goal of rationally engineering a complete biological system to achieve a specific objective, such as bioremediation and synthesis of a valuable drug, chemical, or biofuel molecule. However, the inherent complexity of natural biological systems has heretofore precluded generalized application of this approach. Directed evolution, a process which mimics Darwinian selection on a laboratory scale, has allowed significant strides to be made in the field of synthetic biology by allowing rapid identification of desired properties from large libraries of variants. Improvement in biocatalyst activity and stability, engineering of biosynthetic pathways, tuning of functional regulatory systems and logic circuits, and development of desired complex phenotypes in industrial host organisms have all been achieved by way of directed evolution. Here, we review recent contributions of directed evolution to synthetic biology at the protein, pathway, network, and whole cell levels. PMID:22465795
Dan Goldin Presentation: Pathway to the Future
NASA Technical Reports Server (NTRS)
1999-01-01
In the "Path to the Future" presentation held at NASA's Langley Center on March 31, 1999, NASA's Administrator Daniel S. Goldin outlined the future direction and strategies of NASA in relation to the general space exploration enterprise. NASA's Vision, Future System Characteristics, Evolutions of Engineering, and Revolutionary Changes are the four main topics of the presentation. In part one, the Administrator talks in detail about NASA's vision in relation to the NASA Strategic Activities that are Space Science, Earth Science, Human Exploration, and Aeronautics & Space Transportation. Topics discussed in this section include: space science for the 21st century, flying in mars atmosphere (mars plane), exploring new worlds, interplanetary internets, earth observation and measurements, distributed information-system-in-the-sky, science enabling understanding and application, space station, microgravity, science and exploration strategies, human mars mission, advance space transportation program, general aviation revitalization, and reusable launch vehicles. In part two, he briefly talks about the future system characteristics. He discusses major system characteristics like resiliencey, self-sufficiency, high distribution, ultra-efficiency, and autonomy and the necessity to overcome any distance, time, and extreme environment barriers. Part three of Mr. Goldin's talk deals with engineering evolution, mainly evolution in the Computer Aided Design (CAD)/Computer Aided Engineering (CAE) systems. These systems include computer aided drafting, computerized solid models, virtual product development (VPD) systems, networked VPD systems, and knowledge enriched networked VPD systems. In part four, the last part, the Administrator talks about the need for revolutionary changes in communication and networking areas of a system. According to the administrator, the four major areas that need cultural changes in the creativity process are human-centered computing, an infrastructure for distributed collaboration, rapid synthesis and simulation tools, and life-cycle integration and validation. Mr. Goldin concludes his presentation with the following maxim "Collaborate, Integrate, Innovate or Stagnate and Evaporate." He also answers some questions after the presentation.
Are genetically robust regulatory networks dynamically different from random ones?
NASA Astrophysics Data System (ADS)
Sevim, Volkan; Rikvold, Per Arne
We study a genetic regulatory network model developed to demonstrate that genetic robustness can evolve through stabilizing selection for optimal phenotypes. We report preliminary results on whether such selection could result in a reorganization of the state space of the system. For the chosen parameters, the evolution moves the system slightly toward the more ordered part of the phase diagram. We also find that strong memory effects cause the Derrida annealed approximation to give erroneous predictions about the model's phase diagram.
1990-09-01
between basin shapes and hydrologic responses is fundamental for the purpose of hydrologic predictions , especially in ungaged basins. Another goal is...47] studied this model and showed analitically how very small differences in the c field generated completely different leaf vein network structures... predictability impossible. Complexity is by no means a requirement in order for a system to exhibit SIC. A system as simple as the logistic equation x,,,,=ax,,(l
GSFC network operations with Tracking and Data Relay Satellites
NASA Astrophysics Data System (ADS)
Spearing, R.; Perreten, D. E.
The Tracking and Data Relay Satellite System (TDRSS) Network (TN) has been developed to provide services to all NASA User spacecraft in near-earth orbits. Three inter-relating entities will provide these services. The TN has been transformed from a network continuously changing to meet User specific requirements to a network which is flexible to meet future needs without significant changes in operational concepts. Attention is given to the evolution of the TN network, the TN capabilities-space segment, forward link services, tracking services, return link services, the three basic capabilities, single access services, multiple access services, simulation services, the White Sands Ground Terminal, the NASA communications network, and the network control center.
GSFC network operations with Tracking and Data Relay Satellites
NASA Technical Reports Server (NTRS)
Spearing, R.; Perreten, D. E.
1984-01-01
The Tracking and Data Relay Satellite System (TDRSS) Network (TN) has been developed to provide services to all NASA User spacecraft in near-earth orbits. Three inter-relating entities will provide these services. The TN has been transformed from a network continuously changing to meet User specific requirements to a network which is flexible to meet future needs without significant changes in operational concepts. Attention is given to the evolution of the TN network, the TN capabilities-space segment, forward link services, tracking services, return link services, the three basic capabilities, single access services, multiple access services, simulation services, the White Sands Ground Terminal, the NASA communications network, and the network control center.
ERIC Educational Resources Information Center
Hathaway, Walter E.
Efficient and convenient comprehensive information systems, long kept from coming into being by a variety of obstacles, are now made possible by the concept of distributive processing and the technology of micro- and mini-computer networks. Such systems can individualize instruction, group students efficiently, cut administrative costs, streamline…
Structure and Evolution of the Foreign Exchange Networks
NASA Astrophysics Data System (ADS)
Kwapień, J.; Gworek, S.; Drożdż, S.
2009-01-01
We investigate topology and temporal evolution of the foreign currency exchange market viewed from a weighted network perspective. Based on exchange rates for a set of 46 currencies (including precious metals), we construct different representations of the FX network depending on a choice of the base currency. Our results show that the network structure is not stable in time, but there are main clusters of currencies, which persist for a long period of time despite the fact that their size and content are variable. We find a long-term trend in the network's evolution which affects the USD and EUR nodes. In all the network representations, the USD node gradually loses its centrality, while, on contrary, the EUR node has become slightly more central than it used to be in its early years. Despite this directional trend, the overall evolution of the network is noisy.
How to Compress Sequential Memory Patterns into Periodic Oscillations: General Reduction Rules
Zhang, Kechen
2017-01-01
A neural network with symmetric reciprocal connections always admits a Lyapunov function, whose minima correspond to the memory states stored in the network. Networks with suitable asymmetric connections can store and retrieve a sequence of memory patterns, but the dynamics of these networks cannot be characterized as readily as that of the symmetric networks due to the lack of established general methods. Here, a reduction method is developed for a class of asymmetric attractor networks that store sequences of activity patterns as associative memories, as in a Hopfield network. The method projects the original activity pattern of the network to a low-dimensional space such that sequential memory retrievals in the original network correspond to periodic oscillations in the reduced system. The reduced system is self-contained and provides quantitative information about the stability and speed of sequential memory retrievals in the original network. The time evolution of the overlaps between the network state and the stored memory patterns can also be determined from extended reduced systems. The reduction procedure can be summarized by a few reduction rules, which are applied to several network models, including coupled networks and networks with time-delayed connections, and the analytical solutions of the reduced systems are confirmed by numerical simulations of the original networks. Finally, a local learning rule that provides an approximation to the connection weights involving the pseudoinverse is also presented. PMID:24877729
Meyer-Bäse, Anke; Roberts, Rodney G.; Illan, Ignacio A.; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja
2017-01-01
Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts. PMID:29051730
Meyer-Bäse, Anke; Roberts, Rodney G; Illan, Ignacio A; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja
2017-01-01
Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts.
Ricard, Jacques
2010-01-01
The present article discusses the possibility that catalysed chemical networks can evolve. Even simple enzyme-catalysed chemical reactions can display this property. The example studied is that of a two-substrate proteinoid, or enzyme, reaction displaying random binding of its substrates A and B. The fundamental property of such a system is to display either emergence or integration depending on the respective values of the probabilities that the enzyme has bound one of its substrate regardless it has bound the other substrate, or, specifically, after it has bound the other substrate. There is emergence of information if p(A)>p(AB) and p(B)>p(BA). Conversely, if p(A)
Wang, Chi-Hsu; Chen, Chun-Yao; Hung, Kun-Neng
2015-06-01
In this paper, a new adaptive self-organizing map (SOM) with recurrent neural network (RNN) controller is proposed for task assignment and path evolution of missile defense system (MDS). We address the problem of N agents (defending missiles) and D targets (incoming missiles) in MDS. A new RNN controller is designed to force an agent (or defending missile) toward a target (or incoming missile), and a monitoring controller is also designed to reduce the error between RNN controller and ideal controller. A new SOM with RNN controller is then designed to dispatch agents to their corresponding targets by minimizing total damaging cost. This is actually an important application of the multiagent system. The SOM with RNN controller is the main controller. After task assignment, the weighting factors of our new SOM with RNN controller are activated to dispatch the agents toward their corresponding targets. Using the Lyapunov constraints, the weighting factors for the proposed SOM with RNN controller are updated to guarantee the stability of the path evolution (or planning) system. Excellent simulations are obtained using this new approach for MDS, which show that our RNN has the lowest average miss distance among the several techniques.
Reliable file sharing in distributed operating system using web RTC
NASA Astrophysics Data System (ADS)
Dukiya, Rajesh
2017-12-01
Since, the evolution of distributed operating system, distributed file system is come out to be important part in operating system. P2P is a reliable way in Distributed Operating System for file sharing. It was introduced in 1999, later it became a high research interest topic. Peer to Peer network is a type of network, where peers share network workload and other load related tasks. A P2P network can be a period of time connection, where a bunch of computers connected by a USB (Universal Serial Bus) port to transfer or enable disk sharing i.e. file sharing. Currently P2P requires special network that should be designed in P2P way. Nowadays, there is a big influence of browsers in our life. In this project we are going to study of file sharing mechanism in distributed operating system in web browsers, where we will try to find performance bottlenecks which our research will going to be an improvement in file sharing by performance and scalability in distributed file systems. Additionally, we will discuss the scope of Web Torrent file sharing and free-riding in peer to peer networks.
NASA Technical Reports Server (NTRS)
Liang, Shoudan
2000-01-01
Our research effort has produced nine publications in peer-reviewed journals listed at the end of this report. The work reported here are in the following areas: (1) genetic network modeling; (2) autocatalytic model of pre-biotic evolution; (3) theoretical and computational studies of strongly correlated electron systems; (4) reducing thermal oscillations in atomic force microscope; (5) transcription termination mechanism in prokaryotic cells; and (6) the low glutamine usage in thennophiles obtained by studying completely sequenced genomes. We discuss the main accomplishments of these publications.
NASA Astrophysics Data System (ADS)
Li, Ming-Xia; Palchykov, Vasyl; Jiang, Zhi-Qiang; Kaski, Kimmo; Kertész, János; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.
2014-08-01
Big data open up unprecedented opportunities for investigating complex systems, including society. In particular, communication data serve as major sources for computational social sciences, but they have to be cleaned and filtered as they may contain spurious information due to recording errors as well as interactions, like commercial and marketing activities, not directly related to the social network. The network constructed from communication data can only be considered as a proxy for the network of social relationships. Here we apply a systematic method, based on multiple-hypothesis testing, to statistically validate the links and then construct the corresponding Bonferroni network, generalized to the directed case. We study two large datasets of mobile phone records, one from Europe and the other from China. For both datasets we compare the raw data networks with the corresponding Bonferroni networks and point out significant differences in the structures and in the basic network measures. We show evidence that the Bonferroni network provides a better proxy for the network of social interactions than the original one. Using the filtered networks, we investigated the statistics and temporal evolution of small directed 3-motifs and concluded that closed communication triads have a formation time scale, which is quite fast and typically intraday. We also find that open communication triads preferentially evolve into other open triads with a higher fraction of reciprocated calls. These stylized facts were observed for both datasets.
NASA Astrophysics Data System (ADS)
Tian, Lin-Lin; Li, Ming-Chu; Wang, Zhen
2016-11-01
With the growing interest in social Peer-to-Peer (P2P) applications, relationships of individuals are further exploited to improve the performances of reputation systems. It is an on-going challenge to investigate how spatial reciprocity aids indirect reciprocity in sustaining cooperation in practical P2P environments. This paper describes the construction of an extended prisoner's dilemma game on square lattice networks with three strategies, i.e., defection, unconditional cooperation, and reciprocal cooperation. Reciprocators discriminate partners according to their reputations based on image scoring, where mistakes in judgment of reputations may occur. The independent structures of interaction and learning neighborhood are discussed, with respect to the situation in which learning environments differ from interaction networks. The simulation results have indicated that the incentive mechanism enhances cooperation better in structured peers than among a well-mixed population. Given the realistic condition of inaccurate reputation scores, defection is still successfully held down when the players interact and learn within the unified neighborhoods. Extensive simulations have further confirmed the positive impact of spatial structure on cooperation with different sizes of lattice neighborhoods. And similar conclusions can also be drawn on regular random networks and scale-free networks. Moreover, for the separated structures of the neighborhoods, the interaction network has a critical effect on the evolution dynamics of cooperation and learning environments only have weaker impacts on the process. Our findings further provide some insights concerning the evolution of collective behaviors in social systems.
A generalized theory of preferential linking
NASA Astrophysics Data System (ADS)
Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan
2014-12-01
There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, K; Curran, B
I. Information Security Background (Speaker = Kevin McDonald) Evolution of Medical Devices Living and Working in a Hostile Environment Attack Motivations Attack Vectors Simple Safety Strategies Medical Device Security in the News Medical Devices and Vendors Summary II. Keeping Radiation Oncology IT Systems Secure (Speaker = Bruce Curran) Hardware Security Double-lock Requirements “Foreign” computer systems Portable Device Encryption Patient Data Storage System Requirements Network Configuration Isolating Critical Devices Isolating Clinical Networks Remote Access Considerations Software Applications / Configuration Passwords / Screen Savers Restricted Services / access Software Configuration Restriction Use of DNS to restrict accesse. Patches / Upgrades Awareness Intrusionmore » Prevention Intrusion Detection Threat Risk Analysis Conclusion Learning Objectives: Understanding how Hospital IT Requirements affect Radiation Oncology IT Systems. Illustrating sample practices for hardware, network, and software security. Discussing implementation of good IT security practices in radiation oncology. Understand overall risk and threats scenario in a networked environment.« less
Macroscopic description of complex adaptive networks coevolving with dynamic node states
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
Macroscopic description of complex adaptive networks coevolving with dynamic node states.
Wiedermann, Marc; Donges, Jonathan F; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
A coevolving model based on preferential triadic closure for social media networks
Li, Menghui; Zou, Hailin; Guan, Shuguang; Gong, Xiaofeng; Li, Kun; Di, Zengru; Lai, Choy-Heng
2013-01-01
The dynamical origin of complex networks, i.e., the underlying principles governing network evolution, is a crucial issue in network study. In this paper, by carrying out analysis to the temporal data of Flickr and Epinions–two typical social media networks, we found that the dynamical pattern in neighborhood, especially the formation of triadic links, plays a dominant role in the evolution of networks. We thus proposed a coevolving dynamical model for such networks, in which the evolution is only driven by the local dynamics–the preferential triadic closure. Numerical experiments verified that the model can reproduce global properties which are qualitatively consistent with the empirical observations. PMID:23979061
NASA Astrophysics Data System (ADS)
Hipsey, Matthew R.; Hamilton, David P.; Hanson, Paul C.; Carey, Cayelan C.; Coletti, Janaine Z.; Read, Jordan S.; Ibelings, Bas W.; Valesini, Fiona J.; Brookes, Justin D.
2015-09-01
Maintaining the health of aquatic systems is an essential component of sustainable catchment management, however, degradation of water quality and aquatic habitat continues to challenge scientists and policy-makers. To support management and restoration efforts aquatic system models are required that are able to capture the often complex trajectories that these systems display in response to multiple stressors. This paper explores the abilities and limitations of current model approaches in meeting this challenge, and outlines a strategy based on integration of flexible model libraries and data from observation networks, within a learning framework, as a means to improve the accuracy and scope of model predictions. The framework is comprised of a data assimilation component that utilizes diverse data streams from sensor networks, and a second component whereby model structural evolution can occur once the model is assessed against theoretically relevant metrics of system function. Given the scale and transdisciplinary nature of the prediction challenge, network science initiatives are identified as a means to develop and integrate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to model assessment that can guide model adaptation. We outline how such a framework can help us explore the theory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry, and, in doing so, also advance the role of prediction in aquatic ecosystem management.
Evolution of cosmic string networks
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Turok, Neil
1989-01-01
A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.
The structure and resilience of financial market networks
NASA Astrophysics Data System (ADS)
Kauê Dal'Maso Peron, Thomas; da Fontoura Costa, Luciano; Rodrigues, Francisco A.
2012-03-01
Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience.
Evolution of Associative Learning in Chemical Networks
McGregor, Simon; Vasas, Vera; Husbands, Phil; Fernando, Chrisantha
2012-01-01
Organisms that can learn about their environment and modify their behaviour appropriately during their lifetime are more likely to survive and reproduce than organisms that do not. While associative learning – the ability to detect correlated features of the environment – has been studied extensively in nervous systems, where the underlying mechanisms are reasonably well understood, mechanisms within single cells that could allow associative learning have received little attention. Here, using in silico evolution of chemical networks, we show that there exists a diversity of remarkably simple and plausible chemical solutions to the associative learning problem, the simplest of which uses only one core chemical reaction. We then asked to what extent a linear combination of chemical concentrations in the network could approximate the ideal Bayesian posterior of an environment given the stimulus history so far? This Bayesian analysis revealed the ‘memory traces’ of the chemical network. The implication of this paper is that there is little reason to believe that a lack of suitable phenotypic variation would prevent associative learning from evolving in cell signalling, metabolic, gene regulatory, or a mixture of these networks in cells. PMID:23133353
Structure and evolution of a European Parliament via a network and correlation analysis
NASA Astrophysics Data System (ADS)
Puccio, Elena; Pajala, Antti; Piilo, Jyrki; Tumminello, Michele
2016-11-01
We present a study of the network of relationships among elected members of the Finnish parliament, based on a quantitative analysis of initiative co-signatures, and its evolution over 16 years. To understand the structure of the parliament, we constructed a statistically validated network of members, based on the similarity between the patterns of initiatives they signed. We looked for communities within the network and characterized them in terms of members' attributes, such as electoral district and party. To gain insight on the nested structure of communities, we constructed a hierarchical tree of members from the correlation matrix. Afterwards, we studied parliament dynamics yearly, with a focus on correlations within and between parties, by also distinguishing between government and opposition. Finally, we investigated the role played by specific individuals, at a local level. In particular, whether they act as proponents who gather consensus, or as signers. Our results provide a quantitative background to current theories in political science. From a methodological point of view, our network approach has proven able to highlight both local and global features of a complex social system.
Complex networks with scale-free nature and hierarchical modularity
NASA Astrophysics Data System (ADS)
Shekatkar, Snehal M.; Ambika, G.
2015-09-01
Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.
A report on IPv6 deployment activities and issues at Sandia National Laboratories:FY2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolendino, Lawrence F.; Eldridge, John M.; Hu, Tan Chang
2007-06-01
Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. As the emerging Internet network protocol, SNL needs to prepare for its eventual deployment in international, national, customer, and local networks. Additionally, the United States Office of Management and Budget has mandated that IPv6 deployment in governmentmore » network backbones occurs by 2008. This paper explores the readiness of the Sandia National Laboratories network backbone to support IPv6, the issues that must be addressed before a deployment begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution, the Communication & Network Systems, and Network System Design & Implementation Departments.« less
Wang, Edwin; Zaman, Naif; Mcgee, Shauna; Milanese, Jean-Sébastien; Masoudi-Nejad, Ali; O'Connor-McCourt, Maureen
2015-02-01
Tumor genome sequencing leads to documenting thousands of DNA mutations and other genomic alterations. At present, these data cannot be analyzed adequately to aid in the understanding of tumorigenesis and its evolution. Moreover, we have little insight into how to use these data to predict clinical phenotypes and tumor progression to better design patient treatment. To meet these challenges, we discuss a cancer hallmark network framework for modeling genome sequencing data to predict cancer clonal evolution and associated clinical phenotypes. The framework includes: (1) cancer hallmarks that can be represented by a few molecular/signaling networks. 'Network operational signatures' which represent gene regulatory logics/strengths enable to quantify state transitions and measures of hallmark traits. Thus, sets of genomic alterations which are associated with network operational signatures could be linked to the state/measure of hallmark traits. The network operational signature transforms genotypic data (i.e., genomic alterations) to regulatory phenotypic profiles (i.e., regulatory logics/strengths), to cellular phenotypic profiles (i.e., hallmark traits) which lead to clinical phenotypic profiles (i.e., a collection of hallmark traits). Furthermore, the framework considers regulatory logics of the hallmark networks under tumor evolutionary dynamics and therefore also includes: (2) a self-promoting positive feedback loop that is dominated by a genomic instability network and a cell survival/proliferation network is the main driver of tumor clonal evolution. Surrounding tumor stroma and its host immune systems shape the evolutionary paths; (3) cell motility initiating metastasis is a byproduct of the above self-promoting loop activity during tumorigenesis; (4) an emerging hallmark network which triggers genome duplication dominates a feed-forward loop which in turn could act as a rate-limiting step for tumor formation; (5) mutations and other genomic alterations have specific patterns and tissue-specificity, which are driven by aging and other cancer-inducing agents. This framework represents the logics of complex cancer biology as a myriad of phenotypic complexities governed by a limited set of underlying organizing principles. It therefore adds to our understanding of tumor evolution and tumorigenesis, and moreover, potential usefulness of predicting tumors' evolutionary paths and clinical phenotypes. Strategies of using this framework in conjunction with genome sequencing data in an attempt to predict personalized drug targets, drug resistance, and metastasis for cancer patients, as well as cancer risks for healthy individuals are discussed. Accurate prediction of cancer clonal evolution and clinical phenotypes will have substantial impact on timely diagnosis, personalized treatment and personalized prevention of cancer. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Evolving neural networks through augmenting topologies.
Stanley, Kenneth O; Miikkulainen, Risto
2002-01-01
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.
SBEToolbox: A Matlab Toolbox for Biological Network Analysis
Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J.
2013-01-01
We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases. PMID:24027418
SBEToolbox: A Matlab Toolbox for Biological Network Analysis.
Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J
2013-01-01
We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases.
Two-population dynamics in a growing network model
NASA Astrophysics Data System (ADS)
Ivanova, Kristinka; Iordanov, Ivan
2012-02-01
We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.
Hartaningsih, Nining; Wibawa, Hendra; Pudjiatmoko; Rasa, Fadjar Sumping Tjatur; Irianingsih, Sri Handayani; Dharmawan, Rama; Azhar, Muhammad; Siregar, Elly Sawitri; McGrane, James; Wong, Frank; Selleck, Paul; Allen, John; Broz, Ivano; Torchetti, Mia Kim; Dauphin, Gwenaelle; Claes, Filip; Sastraningrat, Wiryadi; Durr, Peter A
2015-06-01
Since 2006, Indonesia has used vaccination as the principal means of control of H5N1-HPAI. During this time, the virus has undergone gradual antigenic drift, which has necessitated changes in seed strains for vaccine production and associated modifications to diagnostic antigens. In order to improve the system of monitoring such viral evolution, the Government of Indonesia, with the assistance of FAO/OFFLU, has developed an innovative network whereby H5N1 isolates are antigenically and genetically characterised. This molecular surveillance network ("Influenza Virus Monitoring" or "IVM") is based on the regional network of veterinary diagnostic laboratories, and is supported by a web-based data management system ("IVM Online"). The example of the Indonesian IVM network has relevance for other countries seeking to establish laboratory networks for the molecular surveillance of avian influenza and other pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.
Evolution of a designless nanoparticle network into reconfigurable Boolean logic
NASA Astrophysics Data System (ADS)
Bose, S. K.; Lawrence, C. P.; Liu, Z.; Makarenko, K. S.; van Damme, R. M. J.; Broersma, H. J.; van der Wiel, W. G.
2015-12-01
Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.
Steiner, Christopher F.
2012-01-01
The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934
Topological Principles of Control in Dynamical Networks
NASA Astrophysics Data System (ADS)
Kim, Jason; Pasqualetti, Fabio; Bassett, Danielle
Networked biological systems, such as the brain, feature complex patterns of interactions. To predict and correct the dynamic behavior of such systems, it is imperative to understand how the underlying topological structure affects and limits the function of the system. Here, we use network control theory to extract topological features that favor or prevent network controllability, and to understand the network-wide effect of external stimuli on large-scale brain systems. Specifically, we treat each brain region as a dynamic entity with real-valued state, and model the time evolution of all interconnected regions using linear, time-invariant dynamics. We propose a simplified feed-forward scheme where the effect of upstream regions (drivers) on the connected downstream regions (non-drivers) is characterized in closed-form. Leveraging this characterization of the simplified model, we derive topological features that predict the controllability properties of non-simplified networks. We show analytically and numerically that these predictors are accurate across a large range of parameters. Among other contributions, our analysis shows that heterogeneity in the network weights facilitate controllability, and allows us to implement targeted interventions that profoundly improve controllability. By assuming an underlying dynamical mechanism, we are able to understand the complex topology of networked biological systems in a functionally meaningful way.
Active influence in dynamical models of structural balance in social networks
NASA Astrophysics Data System (ADS)
Summers, Tyler H.; Shames, Iman
2013-07-01
We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.
Earth Regimes Network Evolution Study (ERNESt): Introducing the Space Mobile Network
NASA Technical Reports Server (NTRS)
Menrad, Bob
2016-01-01
Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).
Boldogköi, Zsolt
2004-09-01
Population genetics, the mathematical theory of modern evolutionary biology, defines evolution as the alteration of the frequency of distinct gene variants (alleles) differing in fitness over the time. The major problem with this view is that in gene and protein sequences we can find little evidence concerning the molecular basis of phenotypic variance, especially those that would confer adaptive benefit to the bearers. Some novel data, however, suggest that a large amount of genetic variation exists in the regulatory region of genes within populations. In addition, comparison of homologous DNA sequences of various species shows that evolution appears to depend more strongly on gene expression than on the genes themselves. Furthermore, it has been demonstrated in several systems that genes form functional networks, whose products exhibit interrelated expression profiles. Finally, it has been found that regulatory circuits of development behave as evolutionary units. These data demonstrate that our view of evolution calls for a new synthesis. In this article I propose a novel concept, termed the selfish gene network hypothesis, which is based on an overall consideration of the above findings. The major statements of this hypothesis are as follows. (1) Instead of individual genes, gene networks (GNs) are responsible for the determination of traits and behaviors. (2) The primary source of microevolution is the intraspecific polymorphism in GNs and not the allelic variation in either the coding or the regulatory sequences of individual genes. (3) GN polymorphism is generated by the variation in the regulatory regions of the component genes and not by the variance in their coding sequences. (4) Evolution proceeds through continuous restructuring of the composition of GNs rather than fixing of specific alleles or GN variants.
Abu-Laban, Riyad B; Lindstrom, Ronald R; Archibald, Chantel; Eggers, Kim; Ho, Kendall; Khazei, Afshin; Lund, Adam; MacKinnon, Carolyn; Markham, Ray; Marsden, Julian; Martin, Ed; Christenson, Jim
2018-01-01
As generalists, emergency practitioners face challenges in providing state-of-the-art care owing to the broad spectrum of practice and the rapid rate of new knowledge generation. Networks have become increasingly prevalent in health care, and it was in this backdrop, and the resulting opportunity to advance evidence-informed emergency care in the Canadian province of British Columbia (BC), that a new “Emergency Medicine Network” (EM Network) was launched in 2017. The EM Network consists of four programs, each led by a physician with expertise and a track record in the domain: (1) Clinical Resources; (2) Innovation; (3) Continuing Professional Development; and (4) Real-time Support. This paper provides an overview of the EM Network, including its background, purpose, programs, anticipated evolution, and impact on the BC health care system. PMID:29531875
Spectral properties of the temporal evolution of brain network structure.
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Bootstrapping on Undirected Binary Networks Via Statistical Mechanics
NASA Astrophysics Data System (ADS)
Fushing, Hsieh; Chen, Chen; Liu, Shan-Yu; Koehl, Patrice
2014-09-01
We propose a new method inspired from statistical mechanics for extracting geometric information from undirected binary networks and generating random networks that conform to this geometry. In this method an undirected binary network is perceived as a thermodynamic system with a collection of permuted adjacency matrices as its states. The task of extracting information from the network is then reformulated as a discrete combinatorial optimization problem of searching for its ground state. To solve this problem, we apply multiple ensembles of temperature regulated Markov chains to establish an ultrametric geometry on the network. This geometry is equipped with a tree hierarchy that captures the multiscale community structure of the network. We translate this geometry into a Parisi adjacency matrix, which has a relative low energy level and is in the vicinity of the ground state. The Parisi adjacency matrix is then further optimized by making block permutations subject to the ultrametric geometry. The optimal matrix corresponds to the macrostate of the original network. An ensemble of random networks is then generated such that each of these networks conforms to this macrostate; the corresponding algorithm also provides an estimate of the size of this ensemble. By repeating this procedure at different scales of the ultrametric geometry of the network, it is possible to compute its evolution entropy, i.e. to estimate the evolution of its complexity as we move from a coarse to a fine description of its geometric structure. We demonstrate the performance of this method on simulated as well as real data networks.
Spectral properties of the temporal evolution of brain network structure
NASA Astrophysics Data System (ADS)
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
An efficient hybrid approach for multiobjective optimization of water distribution systems
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2014-05-01
An efficient hybrid approach for the design of water distribution systems (WDSs) with multiple objectives is described in this paper. The objectives are the minimization of the network cost and maximization of the network resilience. A self-adaptive multiobjective differential evolution (SAMODE) algorithm has been developed, in which control parameters are automatically adapted by means of evolution instead of the presetting of fine-tuned parameter values. In the proposed method, a graph algorithm is first used to decompose a looped WDS into a shortest-distance tree (T) or forest, and chords (Ω). The original two-objective optimization problem is then approximated by a series of single-objective optimization problems of the T to be solved by nonlinear programming (NLP), thereby providing an approximate Pareto optimal front for the original whole network. Finally, the solutions at the approximate front are used to seed the SAMODE algorithm to find an improved front for the original entire network. The proposed approach is compared with two other conventional full-search optimization methods (the SAMODE algorithm and the NSGA-II) that seed the initial population with purely random solutions based on three case studies: a benchmark network and two real-world networks with multiple demand loading cases. Results show that (i) the proposed NLP-SAMODE method consistently generates better-quality Pareto fronts than the full-search methods with significantly improved efficiency; and (ii) the proposed SAMODE algorithm (no parameter tuning) exhibits better performance than the NSGA-II with calibrated parameter values in efficiently offering optimal fronts.
Wagner, Andreas
2014-07-07
Networks of evolving genotypes can be constructed from the worldwide time-resolved genotyping of pathogens like influenza viruses. Such genotype networks are graphs where neighbouring vertices (viral strains) differ in a single nucleotide or amino acid. A rich trove of network analysis methods can help understand the evolutionary dynamics reflected in the structure of these networks. Here, I analyse a genotype network comprising hundreds of influenza A (H3N2) haemagglutinin genes. The network is rife with cycles that reflect non-random parallel or convergent (homoplastic) evolution. These cycles also show patterns of sequence change characteristic for strong and local evolutionary constraints, positive selection and mutation-limited evolution. Such cycles would not be visible on a phylogenetic tree, illustrating that genotype network analysis can complement phylogenetic analyses. The network also shows a distinct modular or community structure that reflects temporal more than spatial proximity of viral strains, where lowly connected bridge strains connect different modules. These and other organizational patterns illustrate that genotype networks can help us study evolution in action at an unprecedented level of resolution. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
On building a memory evolutive system for application to learning and cognition modeling.
de Lima do Rego Monteiro, Julio; Kogler, Joao Eduardo; Ribeiro, Joao Henrique Ranhel; Netto, Marcio Lobo
2010-01-01
We address here aspects of the implementation of a memory evolutive system (MES), based on the model proposed by A. Ehresmann and J. Vanbremeersch (2007), by means of a simulated network of spiking neurons with time dependent plasticity. We point out the advantages and challenges of applying category theory for the representation of cognition, by using the MES architecture. Then we discuss the issues concerning the minimum requirements that an artificial neural network (ANN) should fulfill in order that it would be capable of expressing the categories and mappings between them, underlying the MES. We conclude that a pulsed ANN based on Izhikevich's formal neuron with STDP (spike time-dependent plasticity) has sufficient dynamical properties to achieve these requirements, provided it can cope with the topological requirements. Finally, we present some perspectives of future research concerning the proposed ANN topology.
Social interaction in synthetic and natural microbial communities.
Xavier, Joao B
2011-04-12
Social interaction among cells is essential for multicellular complexity. But how do molecular networks within individual cells confer the ability to interact? And how do those same networks evolve from the evolutionary conflict between individual- and population-level interests? Recent studies have dissected social interaction at the molecular level by analyzing both synthetic and natural microbial populations. These studies shed new light on the role of population structure for the evolution of cooperative interactions and revealed novel molecular mechanisms that stabilize cooperation among cells. New understanding of populations is changing our view of microbial processes, such as pathogenesis and antibiotic resistance, and suggests new ways to fight infection by exploiting social interaction. The study of social interaction is also challenging established paradigms in cancer evolution and immune system dynamics. Finding similar patterns in such diverse systems suggests that the same 'social interaction motifs' may be general to many cell populations.
Wotton, Karl R; Jiménez-Guri, Eva; Crombach, Anton; Janssens, Hilde; Alcaine-Colet, Anna; Lemke, Steffen; Schmidt-Ott, Urs; Jaeger, Johannes
2015-01-01
The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring ‘quantitative system drift’. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution. DOI: http://dx.doi.org/10.7554/eLife.04785.001 PMID:25560971
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-02-22
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
NASA Astrophysics Data System (ADS)
Goto, Hayato
2016-02-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Modeling Day-to-day Flow Dynamics on Degradable Transport Network
Gao, Bo; Zhang, Ronghui; Lou, Xiaoming
2016-01-01
Stochastic link capacity degradations are common phenomena in transport network which can cause travel time variations and further can affect travelers’ daily route choice behaviors. This paper formulates a deterministic dynamic model, to capture the day-to-day (DTD) flow evolution process in the presence of degraded link capacity degradations. The aggregated network flow dynamics are driven by travelers’ study of uncertain travel time and their choice of risky routes. This paper applies the exponential-smoothing filter to describe travelers’ study of travel time variations, and meanwhile formulates risk attitude parameter updating equation to reflect travelers’ endogenous risk attitude evolution schema. In addition, this paper conducts theoretical analyses to investigate several significant mathematical characteristics implied in the proposed DTD model, including fixed point existence, uniqueness, stability and irreversibility. Numerical experiments are used to demonstrate the effectiveness of the DTD model and verify some important dynamic system properties. PMID:27959903
Using hybridization networks to retrace the evolution of Indo-European languages.
Willems, Matthieu; Lord, Etienne; Laforest, Louise; Labelle, Gilbert; Lapointe, François-Joseph; Di Sciullo, Anna Maria; Makarenkov, Vladimir
2016-09-06
Curious parallels between the processes of species and language evolution have been observed by many researchers. Retracing the evolution of Indo-European (IE) languages remains one of the most intriguing intellectual challenges in historical linguistics. Most of the IE language studies use the traditional phylogenetic tree model to represent the evolution of natural languages, thus not taking into account reticulate evolutionary events, such as language hybridization and word borrowing which can be associated with species hybridization and horizontal gene transfer, respectively. More recently, implicit evolutionary networks, such as split graphs and minimal lateral networks, have been used to account for reticulate evolution in linguistics. Striking parallels existing between the evolution of species and natural languages allowed us to apply three computational biology methods for reconstruction of phylogenetic networks to model the evolution of IE languages. We show how the transfer of methods between the two disciplines can be achieved, making necessary methodological adaptations. Considering basic vocabulary data from the well-known Dyen's lexical database, which contains word forms in 84 IE languages for the meanings of a 200-meaning Swadesh list, we adapt a recently developed computational biology algorithm for building explicit hybridization networks to study the evolution of IE languages and compare our findings to the results provided by the split graph and galled network methods. We conclude that explicit phylogenetic networks can be successfully used to identify donors and recipients of lexical material as well as the degree of influence of each donor language on the corresponding recipient languages. We show that our algorithm is well suited to detect reticulate relationships among languages, and present some historical and linguistic justification for the results obtained. Our findings could be further refined if relevant syntactic, phonological and morphological data could be analyzed along with the available lexical data.
Evolutionary transitions in controls reconcile adaptation with continuity of evolution.
Badyaev, Alexander V
2018-05-19
Evolution proceeds by accumulating functional solutions, necessarily forming an uninterrupted lineage from past solutions of ancestors to the current design of extant forms. At the population level, this process requires an organismal architecture in which the maintenance of local adaptation does not preclude the ability to innovate in the same traits and their continuous evolution. Representing complex traits as networks enables us to visualize a fundamental principle that resolves tension between adaptation and continuous evolution: phenotypic states encompassing adaptations traverse the continuous multi-layered landscape of past physical, developmental and functional associations among traits. The key concept that captures such traversing is network controllability - the ability to move a network from one state into another while maintaining its functionality (reflecting evolvability) and to efficiently propagate information or products through the network within a phenotypic state (maintaining its robustness). Here I suggest that transitions in network controllability - specifically in the topology of controls - help to explain how robustness and evolvability are balanced during evolution. I will focus on evolutionary transitions in degeneracy of metabolic networks - a ubiquitous property of phenotypic robustness where distinct pathways achieve the same end product - to suggest that associated changes in network controls is a common rule underlying phenomena as distinct as phenotypic plasticity, organismal accommodation of novelties, genetic assimilation, and macroevolutionary diversification. Capitalizing on well understood principles by which network structure translates into function of control nodes, I show that accumulating redundancy in one type of network controls inevitably leads to the emergence of another type of controls, forming evolutionary cycles of network controllability that, ultimately, reconcile local adaptation with continuity of evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Exploring the evolution of node neighborhoods in Dynamic Networks
NASA Astrophysics Data System (ADS)
Orman, Günce Keziban; Labatut, Vincent; Naskali, Ahmet Teoman
2017-09-01
Dynamic Networks are a popular way of modeling and studying the behavior of evolving systems. However, their analysis constitutes a relatively recent subfield of Network Science, and the number of available tools is consequently much smaller than for static networks. In this work, we propose a method specifically designed to take advantage of the longitudinal nature of dynamic networks. It characterizes each individual node by studying the evolution of its direct neighborhood, based on the assumption that the way this neighborhood changes reflects the role and position of the node in the whole network. For this purpose, we define the concept of neighborhood event, which corresponds to the various transformations such groups of nodes can undergo, and describe an algorithm for detecting such events. We demonstrate the interest of our method on three real-world networks: DBLP, LastFM and Enron. We apply frequent pattern mining to extract meaningful information from temporal sequences of neighborhood events. This results in the identification of behavioral trends emerging in the whole network, as well as the individual characterization of specific nodes. We also perform a cluster analysis, which reveals that, in all three networks, one can distinguish two types of nodes exhibiting different behaviors: a very small group of active nodes, whose neighborhood undergo diverse and frequent events, and a very large group of stable nodes.
Scaling in Transportation Networks
Louf, Rémi; Roth, Camille; Barthelemy, Marc
2014-01-01
Subway systems span most large cities, and railway networks most countries in the world. These networks are fundamental in the development of countries and their cities, and it is therefore crucial to understand their formation and evolution. However, if the topological properties of these networks are fairly well understood, how they relate to population and socio-economical properties remains an open question. We propose here a general coarse-grained approach, based on a cost-benefit analysis that accounts for the scaling properties of the main quantities characterizing these systems (the number of stations, the total length, and the ridership) with the substrate's population, area and wealth. More precisely, we show that the length, number of stations and ridership of subways and rail networks can be estimated knowing the area, population and wealth of the underlying region. These predictions are in good agreement with data gathered for about subway systems and more than railway networks in the world. We also show that train networks and subway systems can be described within the same framework, but with a fundamental difference: while the interstation distance seems to be constant and determined by the typical walking distance for subways, the interstation distance for railways scales with the number of stations. PMID:25029528
Networked Thermodynamic Boundary Layer Profiling with AERIs during the PECAN Field Campaign
NASA Astrophysics Data System (ADS)
Gero, P. J.; Turner, D. D.; Hackel, D.; Phillips, C.; Smith, N.; Wagner, T.
2015-12-01
The Plains Elevated Convection at Night (PECAN) campaign was a large-scale field experiment in the Great Plains region of the U.S. that was conducted in June-July 2015. Nocturnal storms provide the majority of the precipitation in the Great Plains, yet the initiation and evolution of nocturnal convection is not understood to the same level as daytime surface-based convection, and thus provides significant challenges for operational weather forecasters. PECAN's objectives were to study elevated nocturnal convection initiation and the lifecycle of nocturnal convection. Specific research areas that were studied were the evolution of mesoscale convective systems, the structure and evolution of nocturnal low-level jets, atmospheric bores, and elevated convection initiation. A broad range of fixed and mobile observing systems were deployed by several agencies and organizations in a domain centered around Kansas. The Atmospheric Emitted Radiance Interferometer (AERI) is a ground-based instrument that measures downwelling infrared radiance from the atmosphere. AERI observations can be used to obtain vertical profiles of tropospheric temperature and water vapor in the lowest 3 km of the troposphere, as well as measurements of the concentration of various trace gases and microphysical and optical properties of clouds and aerosols. A network of eight AERIs was deployed in the domain during PECAN, with six at fixed sites and two in mobile facilities. One of the goals of the campaign was a demonstration of the use of real-time high-temporal-resolution boundary layer profiles from the network of AERIs for characterizing the mesoscale environment and its evolution during the weather events sampled during PECAN. If successful, a future network could be implemented across CONUS and thermodynamic profiles in the boundary layer data assimilated to help improve numerical weather prediction. We present an overview of the AERI deployments, a summary of the technique used to retrieve thermodynamic profiles from the AERI's observed radiances, and results from the AERI retrievals in different atmospheric conditions.
Social dilemmas in an online social network: The structure and evolution of cooperation
NASA Astrophysics Data System (ADS)
Fu, Feng; Chen, Xiaojie; Liu, Lianghuan; Wang, Long
2007-11-01
We investigate two paradigms for studying the evolution of cooperation—Prisoner's Dilemma and Snowdrift game in an online friendship network, obtained from a social networking site. By structural analysis, it is revealed that the empirical social network has small-world and scale-free properties. Besides, it exhibits assortative mixing pattern. Then, we study the evolutionary version of the two types of games on it. It is found that cooperation is substantially promoted with small values of game matrix parameters in both games. Whereas the competent cooperators induced by the underlying network of contacts will be dramatically inhibited with increasing values of the game parameters. Further, we explore the role of assortativity in evolution of cooperation by random edge rewiring. We find that increasing amount of assortativity will to a certain extent diminish the cooperation level. We also show that connected large hubs are capable of maintaining cooperation. The evolution of cooperation on empirical networks is influenced by various network effects in a combined manner, compared with that on model networks. Our results can help understand the cooperative behaviors in human groups and society.
Host-parasite oscillation dynamics and evolution in a compartmentalized RNA replication system.
Bansho, Yohsuke; Furubayashi, Taro; Ichihashi, Norikazu; Yomo, Tetsuya
2016-04-12
To date, various cellular functions have been reconstituted in vitro such as self-replication systems using DNA, RNA, and proteins. The next important challenges include the reconstitution of the interactive networks of self-replicating species and investigating how such interactions generate complex ecological behaviors observed in nature. Here, we synthesized a simple replication system composed of two self-replicating host and parasitic RNA species. We found that the parasitic RNA eradicates the host RNA under bulk conditions; however, when the system is compartmentalized, a continuous oscillation pattern in the population dynamics of the two RNAs emerges. The oscillation pattern changed as replication proceeded mainly owing to the evolution of the host RNA. These results demonstrate that a cell-like compartment plays an important role in host-parasite ecological dynamics and suggest that the origin of the host-parasite coevolution might date back to the very early stages of the evolution of life.
Electronic Nose For Measuring Wine Evolution In Wine Cellars
NASA Astrophysics Data System (ADS)
Lozano, J.; Santos, J. P.; Horrillo, M. C.; Cabellos, J. M.; Arroyo, T.
2009-05-01
An electronic nose installed in a wine cellar for measuring the wine evolution is presented in this paper. The system extract the aroma directly from the tanks where wine is stored and carry the volatile compounds to the sensors cell. A tin oxide multisensor, prepared with RF sputtering onto an alumina substrate and doped with chromium and indium, is used. The whole system is fully automated and controlled by computer and can be supervised by internet. Linear techniques like principal component analysis (PCA) and nonlinear ones like probabilistic neural networks (PNN) are used for pattern recognition. Results show that system can detect the evolution of two different wines along 9 months stored in tanks. This system could be trained to detect off-odours of wine and warn the wine expert to correct it as soon as possible, improving the final quality of wine.
Fan, Denggui; Wang, Qingyun; Su, Jianzhong; Xi, Hongguang
2017-12-01
It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.
Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent
2015-08-01
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.
Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses
Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent
2015-01-01
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure. PMID:26291697
Future of DAQ Frameworks and Approaches, and Their Evolution towards the Internet of Things
NASA Astrophysics Data System (ADS)
Neufeld, Niko
2015-12-01
Nowadays, a DAQ system is a complex network of processors, sensors and many other active devices. Historically, providing a framework for DAQ has been a very important role of host institutes of experiments. Reviewing evolution of such DAQ frameworks is a very interesting subject of the conference. “Internet of Things” is a recent buzz word but a DAQ framework could be a good example of IoT.
Gene networks and the evolution of plant morphology.
Das Gupta, Mainak; Tsiantis, Miltos
2018-06-06
Elaboration of morphology depends on the precise orchestration of gene expression by key regulatory genes. The hierarchy and relationship among the participating genes is commonly known as gene regulatory network (GRN). Therefore, the evolution of morphology ultimately occurs by the rewiring of gene network structures or by the co-option of gene networks to novel domains. The availability of high-resolution expression data combined with powerful statistical tools have opened up new avenues to formulate and test hypotheses on how diverse gene networks influence trait development and diversity. Here we summarize recent studies based on both big-data and genetics approaches to understand the evolution of plant form and physiology. We also discuss recent genome-wide investigations on how studying open-chromatin regions may help study the evolution of gene expression patterns. Copyright © 2018. Published by Elsevier Ltd.
Bayesian Inference of Natural Rankings in Incomplete Competition Networks
Park, Juyong; Yook, Soon-Hyung
2014-01-01
Competition between a complex system's constituents and a corresponding reward mechanism based on it have profound influence on the functioning, stability, and evolution of the system. But determining the dominance hierarchy or ranking among the constituent parts from the strongest to the weakest – essential in determining reward and penalty – is frequently an ambiguous task due to the incomplete (partially filled) nature of competition networks. Here we introduce the “Natural Ranking,” an unambiguous ranking method applicable to a round robin tournament, and formulate an analytical model based on the Bayesian formula for inferring the expected mean and error of the natural ranking of nodes from an incomplete network. We investigate its potential and uses in resolving important issues of ranking by applying it to real-world competition networks. PMID:25163528
Holve, Erin; Segal, Courtney
2014-11-01
The 11 big health data networks participating in the AcademyHealth Electronic Data Methods Forum represent cutting-edge efforts to harness the power of big health data for research and quality improvement. This paper is a comparative case study based on site visits conducted with a subset of these large infrastructure grants funded through the Recovery Act, in which four key issues emerge that can inform the evolution of learning health systems, including the importance of acknowledging the challenges of scaling specialized expertise needed to manage and run CER networks; the delicate balance between privacy protections and the utility of distributed networks; emerging community engagement strategies; and the complexities of developing a robust business model for multi-use networks.
Bayesian Inference of Natural Rankings in Incomplete Competition Networks
NASA Astrophysics Data System (ADS)
Park, Juyong; Yook, Soon-Hyung
2014-08-01
Competition between a complex system's constituents and a corresponding reward mechanism based on it have profound influence on the functioning, stability, and evolution of the system. But determining the dominance hierarchy or ranking among the constituent parts from the strongest to the weakest - essential in determining reward and penalty - is frequently an ambiguous task due to the incomplete (partially filled) nature of competition networks. Here we introduce the ``Natural Ranking,'' an unambiguous ranking method applicable to a round robin tournament, and formulate an analytical model based on the Bayesian formula for inferring the expected mean and error of the natural ranking of nodes from an incomplete network. We investigate its potential and uses in resolving important issues of ranking by applying it to real-world competition networks.
A report on FY06 IPv6 deployment activities and issues at Sandia National Laboratories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolendino, Lawrence F.; Eldridge, John M.; Hu, Tan Chang
2006-06-01
Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. IPv6 deployment in government network backbones has been mandated to occur by 2008. This paper explores the readiness of the Sandia National Laboratories' network backbone to support IPv6, the issues that must be addressed before a deploymentmore » begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint, work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution and Network System Design & Implementation Departments.« less
Expanding the informational chemistries of life: peptide/RNA networks
NASA Astrophysics Data System (ADS)
Taran, Olga; Chen, Chenrui; Omosun, Tolulope O.; Hsieh, Ming-Chien; Rha, Allisandra; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.
2017-11-01
The RNA world hypothesis simplifies the complex biopolymer networks underlining the informational and metabolic needs of living systems to a single biopolymer scaffold. This simplification requires abiotic reaction cascades for the construction of RNA, and this chemistry remains the subject of active research. Here, we explore a complementary approach involving the design of dynamic peptide networks capable of amplifying encoded chemical information and setting the stage for mutualistic associations with RNA. Peptide conformational networks are known to be capable of evolution in disease states and of co-opting metal ions, aromatic heterocycles and lipids to extend their emergent behaviours. The coexistence and association of dynamic peptide and RNA networks appear to have driven the emergence of higher-order informational systems in biology that are not available to either scaffold independently, and such mutualistic interdependence poses critical questions regarding the search for life across our Solar System and beyond. This article is part of the themed issue 'Reconceptualizing the origins of life'.
The Robustness of a Signaling Complex to Domain Rearrangements Facilitates Network Evolution
Sato, Paloma M.; Yoganathan, Kogulan; Jung, Jae H.; Peisajovich, Sergio G.
2014-01-01
The rearrangement of protein domains is known to have key roles in the evolution of signaling networks and, consequently, is a major tool used to synthetically rewire networks. However, natural mutational events leading to the creation of proteins with novel domain combinations, such as in frame fusions followed by domain loss, retrotranspositions, or translocations, to name a few, often simultaneously replace pre-existing genes. Thus, while proteins with new domain combinations may establish novel network connections, it is not clear how the concomitant deletions are tolerated. We investigated the mechanisms that enable signaling networks to tolerate domain rearrangement-mediated gene replacements. Using as a model system the yeast mitogen activated protein kinase (MAPK)-mediated mating pathway, we analyzed 92 domain-rearrangement events affecting 11 genes. Our results indicate that, while domain rearrangement events that result in the loss of catalytic activities within the signaling complex are not tolerated, domain rearrangements can drastically alter protein interactions without impairing function. This suggests that signaling complexes can maintain function even when some components are recruited to alternative sites within the complex. Furthermore, we also found that the ability of the complex to tolerate changes in interaction partners does not depend on long disordered linkers that often connect domains. Taken together, our results suggest that some signaling complexes are dynamic ensembles with loose spatial constraints that could be easily re-shaped by evolution and, therefore, are ideal targets for cellular engineering. PMID:25490747
Network evolution induced by the dynamical rules of two populations
NASA Astrophysics Data System (ADS)
Platini, Thierry; Zia, R. K. P.
2010-10-01
We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t < t1 = κb) the total number of links presents a linear evolution, where the two populations are indistinguishable and where θ0 = 1. Interestingly, in the intermediate time regime (defined for t_1\\lt t\\lt t_2\\propto \\kappa_a and for which θ0 = 5), the system reaches a transient stationary state, where the number of contacts among introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.
In silico evolution of biochemical networks
NASA Astrophysics Data System (ADS)
Francois, Paul
2010-03-01
We use computational evolution to select models of genetic networks that can be built from a predefined set of parts to achieve a certain behavior. Selection is made with the help of a fitness defining biological functions in a quantitative way. This fitness has to be specific to a process, but general enough to find processes common to many species. Computational evolution favors models that can be built by incremental improvements in fitness rather than via multiple neutral steps or transitions through less fit intermediates. With the help of these simulations, we propose a kinetic view of evolution, where networks are rapidly selected along a fitness gradient. This mathematics recapitulates Darwin's original insight that small changes in fitness can rapidly lead to the evolution of complex structures such as the eye, and explain the phenomenon of convergent/parallel evolution of similar structures in independent lineages. We will illustrate these ideas with networks implicated in embryonic development and patterning of vertebrates and primitive insects.
Genomes, Proteomes and the Central Dogma
Franklin, Sarah; Vondriska, Thomas M.
2011-01-01
Systems biology, with its associated technologies of proteomics, genomics and metabolomics, is driving the evolution of our understanding of cardiovascular physiology. Rather than studying individual molecules or even single reactions, a systems approach allows integration of orthogonal datasets from distinct tiers of biological data, including gene, RNA, protein, metabolite and other component networks. Together these networks give rise to emergent properties of cellular function and it is their reprogramming that causes disease. We present five observations regarding how systems biology is guiding a revisiting of the central dogma: (i) de-emphasizing the unidirectional flow of information from genes to proteins; (ii) revealing the role of modules of molecules as opposed to individual proteins acting in isolation; (iii) enabling discovery of novel emergent properties; (iv) demonstrating the importance of networks in biology; and (v) adding new dimensionality to the study of biological systems. PMID:22010165
Percolation in insect nest networks: Evidence for optimal wiring
NASA Astrophysics Data System (ADS)
Valverde, Sergi; Corominas-Murtra, Bernat; Perna, Andrea; Kuntz, Pascale; Theraulaz, Guy; Solé, Ricard V.
2009-06-01
Optimization has been shown to be a driving force for the evolution of some biological structures, such as neural maps in the brain or transport networks. Here we show that insect networks also display characteristic traits of optimality. By using a graph representation of the chamber organization of termite nests and a disordered lattice model, it is found that these spatial nests are close to a percolation threshold. This suggests that termites build efficient systems of galleries spanning most of the nest volume at low cost. The evolutionary consequences are outlined.
Rank-dependent deactivation in network evolution.
Xu, Xin-Jian; Zhou, Ming-Chen
2009-12-01
A rank-dependent deactivation mechanism is introduced to network evolution. The growth dynamics of the network is based on a finite memory of individuals, which is implemented by deactivating one site at each time step. The model shows striking features of a wide range of real-world networks: power-law degree distribution, high clustering coefficient, and disassortative degree correlation.
The many faces of graph dynamics
NASA Astrophysics Data System (ADS)
Pignolet, Yvonne Anne; Roy, Matthieu; Schmid, Stefan; Tredan, Gilles
2017-06-01
The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a ‘one fits it all’ model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent
2015-04-01
Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system. The lengthscale of the migration and the nature of invading fluids during these connections is different in every studied example, and can be related to the tectonic nature of the fold, along with the burial depth at the time of deformation. Thus, to decipher fluid-fracture relationships provides insights to better reconstruct the mechanisms of deformation at reservoir-scale.
Randomizing growing networks with a time-respecting null model
NASA Astrophysics Data System (ADS)
Ren, Zhuo-Ming; Mariani, Manuel Sebastian; Zhang, Yi-Cheng; Medo, Matúš
2018-05-01
Complex networks are often used to represent systems that are not static but grow with time: People make new friendships, new papers are published and refer to the existing ones, and so forth. To assess the statistical significance of measurements made on such networks, we propose a randomization methodology—a time-respecting null model—that preserves both the network's degree sequence and the time evolution of individual nodes' degree values. By preserving the temporal linking patterns of the analyzed system, the proposed model is able to factor out the effect of the system's temporal patterns on its structure. We apply the model to the citation network of Physical Review scholarly papers and the citation network of US movies. The model reveals that the two data sets are strikingly different with respect to their degree-degree correlations, and we discuss the important implications of this finding on the information provided by paradigmatic node centrality metrics such as indegree and Google's PageRank. The randomization methodology proposed here can be used to assess the significance of any structural property in growing networks, which could bring new insights into the problems where null models play a critical role, such as the detection of communities and network motifs.
Theory of Turing Patterns on Time Varying Networks.
Petit, Julien; Lauwens, Ben; Fanelli, Duccio; Carletti, Timoteo
2017-10-06
The process of pattern formation for a multispecies model anchored on a time varying network is studied. A nonhomogeneous perturbation superposed to an homogeneous stable fixed point can be amplified following the Turing mechanism of instability, solely instigated by the network dynamics. By properly tuning the frequency of the imposed network evolution, one can make the examined system behave as its averaged counterpart, over a finite time window. This is the key observation to derive a closed analytical prediction for the onset of the instability in the time dependent framework. Continuously and piecewise constant periodic time varying networks are analyzed, setting the framework for the proposed approach. The extension to nonperiodic settings is also discussed.
Robust dynamics in minimal hybrid models of genetic networks
Perkins, Theodore J.; Wilds, Roy; Glass, Leon
2010-01-01
Many gene-regulatory networks necessarily display robust dynamics that are insensitive to noise and stable under evolution. We propose that a class of hybrid systems can be used to relate the structure of these networks to their dynamics and provide insight into the origin of robustness. In these systems, the genes are represented by logical functions, and the controlling transcription factor protein molecules are real variables, which are produced and destroyed. As the transcription factor concentrations cross thresholds, they control the production of other transcription factors. We discuss mathematical analysis of these systems and show how the concepts of robustness and minimality can be used to generate putative logical organizations based on observed symbolic sequences. We apply the methods to control of the cell cycle in yeast. PMID:20921006
Robust dynamics in minimal hybrid models of genetic networks.
Perkins, Theodore J; Wilds, Roy; Glass, Leon
2010-11-13
Many gene-regulatory networks necessarily display robust dynamics that are insensitive to noise and stable under evolution. We propose that a class of hybrid systems can be used to relate the structure of these networks to their dynamics and provide insight into the origin of robustness. In these systems, the genes are represented by logical functions, and the controlling transcription factor protein molecules are real variables, which are produced and destroyed. As the transcription factor concentrations cross thresholds, they control the production of other transcription factors. We discuss mathematical analysis of these systems and show how the concepts of robustness and minimality can be used to generate putative logical organizations based on observed symbolic sequences. We apply the methods to control of the cell cycle in yeast.
The evolution of dorsal-ventral patterning mechanisms in insects.
Lynch, Jeremy A; Roth, Siegfried
2011-01-15
The gene regulatory network (GRN) underpinning dorsal-ventral (DV) patterning of the Drosophila embryo is among the most thoroughly understood GRNs, making it an ideal system for comparative studies seeking to understand the evolution of development. With the emergence of widely applicable techniques for testing gene function, species with sequenced genomes, and multiple tractable species with diverse developmental modes, a phylogenetically broad and molecularly deep understanding of the evolution of DV axis formation in insects is feasible. Here, we review recent progress made in this field, compare our emerging molecular understanding to classical embryological experiments, and suggest future directions of inquiry.
Integrated multimedia information system on interactive CATV network
NASA Astrophysics Data System (ADS)
Lee, Meng-Huang; Chang, Shin-Hung
1998-10-01
In the current CATV system architectures, they provide one- way delivery of a common menu of entertainment to all the homes through the cable network. Through the technologies evolution, the interactive services (or two-way services) can be provided in the cable TV systems. They can supply customers with individualized programming and support real- time two-way communications. With a view to the service type changed from the one-way delivery systems to the two-way interactive systems, `on demand services' is a distinct feature of multimedia systems. In this paper, we present our work of building up an integrated multimedia system on interactive CATV network in Shih Chien University. Besides providing the traditional analog TV programming from the cable operator, we filter some channels to reserve them as our campus information channels. In addition to the analog broadcasting channel, the system also provides the interactive digital multimedia services, e.g. Video-On- Demand (VOD), Virtual Reality, BBS, World-Wide-Web, and Internet Radio Station. These two kinds of services are integrated in a CATV network by the separation of frequency allocation for the analog broadcasting service and the digital interactive services. Our ongoing work is to port our previous work of building up a VOD system conformed to DAVIC standard (for inter-operability concern) on Ethernet network into the current system.
Two classes of bipartite networks: nested biological and social systems.
Burgos, Enrique; Ceva, Horacio; Hernández, Laura; Perazzo, R P J; Devoto, Mariano; Medan, Diego
2008-10-01
Bipartite graphs have received some attention in the study of social networks and of biological mutualistic systems. A generalization of a previous model is presented, that evolves the topology of the graph in order to optimally account for a given contact preference rule between the two guilds of the network. As a result, social and biological graphs are classified as belonging to two clearly different classes. Projected graphs, linking the agents of only one guild, are obtained from the original bipartite graph. The corresponding evolution of its statistical properties is also studied. An example of a biological mutualistic network is analyzed in detail, and it is found that the model provides a very good fitting of all the main statistical features. The model also provides a proper qualitative description of the same features observed in social webs, suggesting the possible reasons underlying the difference in the organization of these two kinds of bipartite networks.
Lung evolution as a cipher for physiology
Torday, J. S.; Rehan, V. K.
2009-01-01
In the postgenomic era, we need an algorithm to readily translate genes into physiologic principles. The failure to advance biomedicine is due to the false hope raised in the wake of the Human Genome Project (HGP) by the promise of systems biology as a ready means of reconstructing physiology from genes. like the atom in physics, the cell, not the gene, is the smallest completely functional unit of biology. Trying to reassemble gene regulatory networks without accounting for this fundamental feature of evolution will result in a genomic atlas, but not an algorithm for functional genomics. For example, the evolution of the lung can be “deconvoluted” by applying cell-cell communication mechanisms to all aspects of lung biology development, homeostasis, and regeneration/repair. Gene regulatory networks common to these processes predict ontogeny, phylogeny, and the disease-related consequences of failed signaling. This algorithm elucidates characteristics of vertebrate physiology as a cascade of emergent and contingent cellular adaptational responses. By reducing complex physiological traits to gene regulatory networks and arranging them hierarchically in a self-organizing map, like the periodic table of elements in physics, the first principles of physiology will emerge. PMID:19366785
Tools and Models for Integrating Multiple Cellular Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerstein, Mark
2015-11-06
In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novelmore » algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed CRIT for correlation analysis in systems biology [5]. For Aim 3, we have further investigated the scaling relationship that the number of Transcription Factors (TFs) in a genome is proportional to the square of the total number of genes. We have extended the analysis from transcription factors to various classes of functional categories, and from individual categories to joint distribution [6]. By introducing a new analytical framework, we have generalized the original toolbox model to take into account of metabolic network with arbitrary network topology [7].« less
Recurrent rewiring and emergence of RNA regulatory networks.
Wilinski, Daniel; Buter, Natascha; Klocko, Andrew D; Lapointe, Christopher P; Selker, Eric U; Gasch, Audrey P; Wickens, Marvin
2017-04-04
Alterations in regulatory networks contribute to evolutionary change. Transcriptional networks are reconfigured by changes in the binding specificity of transcription factors and their cognate sites. The evolution of RNA-protein regulatory networks is far less understood. The PUF (Pumilio and FBF) family of RNA regulatory proteins controls the translation, stability, and movements of hundreds of mRNAs in a single species. We probe the evolution of PUF-RNA networks by direct identification of the mRNAs bound to PUF proteins in budding and filamentous fungi and by computational analyses of orthologous RNAs from 62 fungal species. Our findings reveal that PUF proteins gain and lose mRNAs with related and emergent biological functions during evolution. We demonstrate at least two independent rewiring events for PUF3 orthologs, independent but convergent evolution of PUF4/5 binding specificity and the rewiring of the PUF4/5 regulons in different fungal lineages. These findings demonstrate plasticity in RNA regulatory networks and suggest ways in which their rewiring occurs.
Kim, Inhae; Lee, Heetak; Han, Seong Kyu; Kim, Sanguk
2014-10-01
The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for the reduction in module boundaries that originate from increased connections between different modules in complex PPI networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping the architecture and modularity of biological networks over the course of evolution.
Evolving dynamics of trading behavior based on coordination game in complex networks
NASA Astrophysics Data System (ADS)
Bian, Yue-tang; Xu, Lu; Li, Jin-sheng
2016-05-01
This work concerns the modeling of evolvement of trading behavior in stock markets. Based on the assumption of the investors' limited rationality, the evolution mechanism of trading behavior is modeled according to the investment strategy of coordination game in network, that investors are prone to imitate their neighbors' activity through comprehensive analysis on the risk dominance degree of certain investment behavior, the network topology of their relationship and its heterogeneity. We investigate by mean-field analysis and extensive simulations the evolution of investors' trading behavior in various typical networks under different risk dominance degree of investment behavior. Our results indicate that the evolution of investors' behavior is affected by the network structure of stock market and the effect of risk dominance degree of investment behavior; the stability of equilibrium states of investors' behavior dynamics is directly related with the risk dominance degree of some behavior; connectivity and heterogeneity of the network plays an important role in the evolution of the investment behavior in stock market.
Dynamic Evolution of Financial Network and its Relation to Economic Crises
NASA Astrophysics Data System (ADS)
Gao, Ya-Chun; Wei, Zong-Wen; Wang, Bing-Hong
2013-02-01
The static topology properties of financial networks have been widely investigated since the work done by Mantegna, yet their dynamic evolution with time is little considered. In this paper, we comprehensively study the dynamic evolution of financial network by a sliding window technique. The vertices and edges of financial network are represented by the stocks from S&P500 components and correlations between pairs of daily returns of price fluctuation, respectively. Furthermore, the duration of stock price fluctuation, spanning from January 4, 1985 to September 14, 2009, makes us to carefully observe the relation between the dynamic topological properties and big financial crashes. The empirical results suggest that the financial network has the robust small-world property when the time evolves, and the topological structure drastically changes when the big financial crashes occur. This correspondence between the dynamic evolution of financial network and big financial crashes may provide a novel view to understand the origin of economic crisis.
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
Monnard, Pierre-Alain
2016-01-01
Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as the prime candidate for such a primal system. Even though this proposition has gained currency, its investigations have highlighted several challenges with respect to bulk aqueous media: (1) the synthesis of RNA monomers is difficult; (2) efficient pathways for monomer polymerization into functional RNAs and their subsequent, sequence-specific replication remain elusive; and (3) the evolution of the RNA function towards cellular metabolism in isolation is questionable in view of the chemical mixtures expected on the early Earth. This review will address the question of the possible roles of heterogeneous media and catalysis as drivers for the emergence of RNA-based polymer networks. We will show that this approach to non-enzymatic polymerizations of RNA from monomers and RNA evolution cannot only solve some issues encountered during reactions in bulk aqueous solutions, but may also explain the co-emergence of the various polymers indispensable for life in complex mixtures and their organization into primitive networks. PMID:27827919
Networking Omic Data to Envisage Systems Biological Regulation.
Kalapanulak, Saowalak; Saithong, Treenut; Thammarongtham, Chinae
To understand how biological processes work, it is necessary to explore the systematic regulation governing the behaviour of the processes. Not only driving the normal behavior of organisms, the systematic regulation evidently underlies the temporal responses to surrounding environments (dynamics) and long-term phenotypic adaptation (evolution). The systematic regulation is, in effect, formulated from the regulatory components which collaboratively work together as a network. In the drive to decipher such a code of lives, a spectrum of technologies has continuously been developed in the post-genomic era. With current advances, high-throughput sequencing technologies are tremendously powerful for facilitating genomics and systems biology studies in the attempt to understand system regulation inside the cells. The ability to explore relevant regulatory components which infer transcriptional and signaling regulation, driving core cellular processes, is thus enhanced. This chapter reviews high-throughput sequencing technologies, including second and third generation sequencing technologies, which support the investigation of genomics and transcriptomics data. Utilization of this high-throughput data to form the virtual network of systems regulation is explained, particularly transcriptional regulatory networks. Analysis of the resulting regulatory networks could lead to an understanding of cellular systems regulation at the mechanistic and dynamics levels. The great contribution of the biological networking approach to envisage systems regulation is finally demonstrated by a broad range of examples.
φ-evo: A program to evolve phenotypic models of biological networks.
Henry, Adrien; Hemery, Mathieu; François, Paul
2018-06-01
Molecular networks are at the core of most cellular decisions, but are often difficult to comprehend. Reverse engineering of network architecture from their functions has proved fruitful to classify and predict the structure and function of molecular networks, suggesting new experimental tests and biological predictions. We present φ-evo, an open-source program to evolve in silico phenotypic networks performing a given biological function. We include implementations for evolution of biochemical adaptation, adaptive sorting for immune recognition, metazoan development (somitogenesis, hox patterning), as well as Pareto evolution. We detail the program architecture based on C, Python 3, and a Jupyter interface for project configuration and network analysis. We illustrate the predictive power of φ-evo by first recovering the asymmetrical structure of the lac operon regulation from an objective function with symmetrical constraints. Second, we use the problem of hox-like embryonic patterning to show how a single effective fitness can emerge from multi-objective (Pareto) evolution. φ-evo provides an efficient approach and user-friendly interface for the phenotypic prediction of networks and the numerical study of evolution itself.
Bashor, Caleb J; Horwitz, Andrew A; Peisajovich, Sergio G; Lim, Wendell A
2010-01-01
The living cell is an incredibly complex entity, and the goal of predictively and quantitatively understanding its function is one of the next great challenges in biology. Much of what we know about the cell concerns its constituent parts, but to a great extent we have yet to decode how these parts are organized to yield complex physiological function. Classically, we have learned about the organization of cellular networks by disrupting them through genetic or chemical means. The emerging discipline of synthetic biology offers an additional, powerful approach to study systems. By rearranging the parts that comprise existing networks, we can gain valuable insight into the hierarchical logic of the networks and identify the modular building blocks that evolution uses to generate innovative function. In addition, by building minimal toy networks, one can systematically explore the relationship between network structure and function. Here, we outline recent work that uses synthetic biology approaches to investigate the organization and function of cellular networks, and describe a vision for a synthetic biology toolkit that could be used to interrogate the design principles of diverse systems.
Analyzing complex networks evolution through Information Theory quantifiers
NASA Astrophysics Data System (ADS)
Carpi, Laura C.; Rosso, Osvaldo A.; Saco, Patricia M.; Ravetti, Martín Gómez
2011-01-01
A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Niño/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.
An Analysis on a Negotiation Model Based on Multiagent Systems with Symbiotic Learning and Evolution
NASA Astrophysics Data System (ADS)
Hossain, Md. Tofazzal
This study explores an evolutionary analysis on a negotiation model based on Masbiole (Multiagent Systems with Symbiotic Learning and Evolution) which has been proposed as a new methodology of Multiagent Systems (MAS) based on symbiosis in the ecosystem. In Masbiole, agents evolve in consideration of not only their own benefits and losses, but also the benefits and losses of opponent agents. To aid effective application of Masbiole, we develop a competitive negotiation model where rigorous and advanced intelligent decision-making mechanisms are required for agents to achieve solutions. A Negotiation Protocol is devised aiming at developing a set of rules for agents' behavior during evolution. Simulations use a newly developed evolutionary computing technique, called Genetic Network Programming (GNP) which has the directed graph-type gene structure that can develop and design the required intelligent mechanisms for agents. In a typical scenario, competitive negotiation solutions are reached by concessions that are usually predetermined in the conventional MAS. In this model, however, not only concession is determined automatically by symbiotic evolution (making the system intelligent, automated, and efficient) but the solution also achieves Pareto optimal automatically.
Epidemic spreading on evolving signed networks
NASA Astrophysics Data System (ADS)
Saeedian, M.; Azimi-Tafreshi, N.; Jafari, G. R.; Kertesz, J.
2017-02-01
Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences people's willingness to contact others: A "friendly" contact may be turned to "unfriendly" to avoid infection. We study the susceptible-infected disease-spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heider's theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte Carlo simulations on complete networks to test the energy landscape, where we find local minima corresponding to the so-called jammed states. We study the effect of the ratio of initial friendly to unfriendly connections on the propagation of disease. The steady state can be balanced or a jammed state such that a coexistence occurs between susceptible and infected nodes in the system.
A Wireless Sensor Network approach for distributed in-line chemical analysis of water.
Capella, J V; Bonastre, A; Ors, R; Peris, M
2010-03-15
In this work we propose the implementation of a distributed system based on a Wireless Sensor Network for the control of a chemical analysis system for fresh water. This implementation is presented by describing the nodes that form the distributed system, the communication system by wireless networks, control strategies, and so on. Nitrate, ammonium, and chloride are measured in-line using appropriate ion selective electrodes (ISEs), the results obtained being compared with those provided by the corresponding reference methods. Recovery analyses with ISEs and standard methods, study of interferences, and evaluation of major sensor features have also been carried out. The communication among the nodes that form the distributed system is implemented by means of the utilization of proprietary wireless networks, and secondary data transmission services (GSM or GPRS) provided by a mobile telephone operator. The information is processed, integrated and stored in a control center. These data can be retrieved--through the Internet--so as to know the real-time system status and its evolution. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Alvarez-Ponce, David; Feyertag, Felix; Chakraborty, Sandip
2017-06-01
The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein-protein interaction data set and the human signal transduction network-a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Contact force structure and force chains in 3D sheared granular systems
NASA Astrophysics Data System (ADS)
Mair, Karen; Jettestuen, Espen; Abe, Steffen
2010-05-01
Faults often exhibit accumulations of granular debris, ground up to create a layer of rock flour or fault gouge separating the rigid fault walls. Numerical simulations and laboratory experiments of sheared granular materials, suggest that applied loads are preferentially transmitted across such systems by transient force networks that carry enhanced forces. The characterisation of such features is important since their nature and persistence almost certainly influence the macroscopic mechanical stability of these systems and potentially that of natural faults. 3D numerical simulations of granular shear are a valuable investigation tool since they allow us to track individual particle motions, contact forces and their evolution during applied shear, that are difficult to view directly in laboratory experiments or natural fault zones. In characterising contact force distributions, it is important to use global structure measures that allow meaningful comparisons of granular systems having e.g. different grain size distributions, as may be expected at different stages of a fault's evolution. We therefore use a series of simple measures to characterise the structure, such as distributions and correlations of contact forces that can be mapped onto a force network percolation problem as recently proposed by Ostojic and coworkers for 2D granular systems. This allows the use of measures from percolation theory to both define and characterise the force networks. We demonstrate the application of this method to 3D simulations of a sheared granular material. Importantly, we then compare our measure of the contact force structure with macroscopic frictional behaviour measured at the boundaries of our model to determine the influence of the force networks on macroscopic mechanical stability.
Multiple effect of social influence on cooperation in interdependent network games.
Jiang, Luo-Luo; Li, Wen-Jing; Wang, Zhen
2015-10-01
The social influence exists widely in the human society, where individual decision-making process (from congressional election to electronic commerce) may be affected by the attitude and behavior of others belonging to different social networks. Here, we couple the snowdrift (SD) game and the prisoner's dilemma (PD) game on two interdependent networks, where strategies in both games are associated by social influence to mimick the majority rule. More accurately, individuals' strategies updating refers to social learning (based on payoff difference) and above-mentioned social influence (related with environment of interdependent group), which is controlled by social influence strength s. Setting s = 0 decouples the networks and returns the traditional network game; while its increase involves the interactions between networks. By means of numerous Monte Carlo simulations, we find that such a mechanism brings multiple influence to the evolution of cooperation. Small s leads to unequal cooperation level in both games, because social learning is still the main updating rule for most players. Though intermediate and large s guarantees the synchronized evolution of strategy pairs, cooperation finally dies out and reaches a completely dominance in both cases. Interestingly, these observations are attributed to the expansion of cooperation clusters. Our work may provide a new understanding to the emergence of cooperation in intercorrelated social systems.
Multiple effect of social influence on cooperation in interdependent network games
NASA Astrophysics Data System (ADS)
Jiang, Luo-Luo; Li, Wen-Jing; Wang, Zhen
2015-10-01
The social influence exists widely in the human society, where individual decision-making process (from congressional election to electronic commerce) may be affected by the attitude and behavior of others belonging to different social networks. Here, we couple the snowdrift (SD) game and the prisoner’s dilemma (PD) game on two interdependent networks, where strategies in both games are associated by social influence to mimick the majority rule. More accurately, individuals’ strategies updating refers to social learning (based on payoff difference) and above-mentioned social influence (related with environment of interdependent group), which is controlled by social influence strength s. Setting s = 0 decouples the networks and returns the traditional network game; while its increase involves the interactions between networks. By means of numerous Monte Carlo simulations, we find that such a mechanism brings multiple influence to the evolution of cooperation. Small s leads to unequal cooperation level in both games, because social learning is still the main updating rule for most players. Though intermediate and large s guarantees the synchronized evolution of strategy pairs, cooperation finally dies out and reaches a completely dominance in both cases. Interestingly, these observations are attributed to the expansion of cooperation clusters. Our work may provide a new understanding to the emergence of cooperation in intercorrelated social systems.
A Universal Definition of Life: Autonomy and Open-Ended Evolution
NASA Astrophysics Data System (ADS)
Ruiz-Mirazo, Kepa; Peretó, Juli; Moreno, Alvaro
2004-06-01
Life is a complex phenomenon that not only requires individual self-producing and self-sustaining systems but also a historical-collective organization of those individual systems, which brings about characteristic evolutionary dynamics. On these lines, we propose to define universally living beings as autonomous systems with open-ended evolution capacities, and we claim that all such systems must have a semi-permeable active boundary (membrane), an energy transduction apparatus (set of energy currencies) and, at least, two types of functionally interdependent macromolecular components (catalysts and records). The latter is required to articulate a `phenotype-genotype' decoupling that leads to a scenario where the global network of autonomous systems allows for an open-ended increase in the complexity of the individual agents. Thus, the basic-individual organization of biological systems depends critically on being instructed by patterns (informational records) whose generation and reliable transmission cannot be explained but take into account the complete historical network of relationships among those systems. We conclude that a proper definition of life should consider both levels, individual and collective: living systems cannot be fully constituted without being part of the evolutionary process of a whole ecosystem. Finally, we also discuss a few practical implications of the definition for different programs of research.
Evolutionary games on multilayer networks: a colloquium
NASA Astrophysics Data System (ADS)
Wang, Zhen; Wang, Lin; Szolnoki, Attila; Perc, Matjaž
2015-05-01
Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.
Duality between Time Series and Networks
Campanharo, Andriana S. L. O.; Sirer, M. Irmak; Malmgren, R. Dean; Ramos, Fernando M.; Amaral, Luís A. Nunes.
2011-01-01
Studying the interaction between a system's components and the temporal evolution of the system are two common ways to uncover and characterize its internal workings. Recently, several maps from a time series to a network have been proposed with the intent of using network metrics to characterize time series. Although these maps demonstrate that different time series result in networks with distinct topological properties, it remains unclear how these topological properties relate to the original time series. Here, we propose a map from a time series to a network with an approximate inverse operation, making it possible to use network statistics to characterize time series and time series statistics to characterize networks. As a proof of concept, we generate an ensemble of time series ranging from periodic to random and confirm that application of the proposed map retains much of the information encoded in the original time series (or networks) after application of the map (or its inverse). Our results suggest that network analysis can be used to distinguish different dynamic regimes in time series and, perhaps more importantly, time series analysis can provide a powerful set of tools that augment the traditional network analysis toolkit to quantify networks in new and useful ways. PMID:21858093
Evolution of the Intelligent Telecommunications Network.
ERIC Educational Resources Information Center
Mayo, John S.
1982-01-01
Discusses the evolution of the nationwide telecommunications network, including key technologies (transistors, communications satellites, and lasers), putting these technologies together, current and future services, and challenges for the future. (JN)
Space evolution model and empirical analysis of an urban public transport network
NASA Astrophysics Data System (ADS)
Sui, Yi; Shao, Feng-jing; Sun, Ren-cheng; Li, Shu-jing
2012-07-01
This study explores the space evolution of an urban public transport network, using empirical evidence and a simulation model validated on that data. Public transport patterns primarily depend on traffic spatial-distribution, demands of passengers and expected utility of investors. Evolution is an iterative process of satisfying the needs of passengers and investors based on a given traffic spatial-distribution. The temporal change of urban public transport network is evaluated both using topological measures and spatial ones. The simulation model is validated using empirical data from nine big cities in China. Statistical analyses on topological and spatial attributes suggest that an evolution network with traffic demands characterized by power-law numerical values which distribute in a mode of concentric circles tallies well with these nine cities.
The evolving cobweb of relations among partially rational investors
DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco
2017-01-01
To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents’ behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors. PMID:28196144
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2011-08-01
This paper proposes a novel optimization approach for the least cost design of looped water distribution systems (WDSs). Three distinct steps are involved in the proposed optimization approach. In the first step, the shortest-distance tree within the looped network is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear programming (NLP) solver is employed to optimize the pipe diameters for the shortest-distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). Finally, in the third step, the original looped water network is optimized using a differential evolution (DE) algorithm seeded with diameters in the proximity of the continuous pipe sizes obtained in step two. As such, the proposed optimization approach combines the traditional deterministic optimization technique of NLP with the emerging evolutionary algorithm DE via the proposed network decomposition. The proposed methodology has been tested on four looped WDSs with the number of decision variables ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal solutions with significantly less computational effort than other optimization techniques.
The evolving cobweb of relations among partially rational investors.
DeLellis, Pietro; DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco
2017-01-01
To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents' behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors.
Evolution of public opinions in closed societies influenced by broadcast media
NASA Astrophysics Data System (ADS)
Fan, Kangqi; Pedrycz, Witold
2017-04-01
Studies on opinion evolution in a closed society can help people design strategies to emancipate from the control of public opinions and prevent the diffusion of extremism. In this work, the social judgment based opinion (SJBO) dynamics model is extended to explore the collective debates in a closed system that consists of a social network and a broadcast network. The broadcast network is a group of channels through which the so-called broadcast media or mainstream media transmit the same opinion to social agents. Numerical experiments show that the broadcast media can assimilate most of the agents when contrarians are absent. Including agents' diverse attitudes toward the broadcast media, although downsizes the supporters of broadcast media, fails to make contrarians outnumber the supporters. The dominance of broadcast media in a closed system can be overturned by introducing a small number of inflexible contrarians. Influenced by the competition between contrarians and broadcast media, few centrists survive the collective debates. The scale of supporters is maximized when agents neither have their own initial opinions nor have access to the contrarians, whereas the development of contrarians can be boosted when agents start with non-zero opinions and the repulsion to broadcast media is taken into consideration.
Computer network access to scientific information systems for minority universities
NASA Astrophysics Data System (ADS)
Thomas, Valerie L.; Wakim, Nagi T.
1993-08-01
The evolution of computer networking technology has lead to the establishment of a massive networking infrastructure which interconnects various types of computing resources at many government, academic, and corporate institutions. A large segment of this infrastructure has been developed to facilitate information exchange and resource sharing within the scientific community. The National Aeronautics and Space Administration (NASA) supports both the development and the application of computer networks which provide its community with access to many valuable multi-disciplinary scientific information systems and on-line databases. Recognizing the need to extend the benefits of this advanced networking technology to the under-represented community, the National Space Science Data Center (NSSDC) in the Space Data and Computing Division at the Goddard Space Flight Center has developed the Minority University-Space Interdisciplinary Network (MU-SPIN) Program: a major networking and education initiative for Historically Black Colleges and Universities (HBCUs) and Minority Universities (MUs). In this paper, we will briefly explain the various components of the MU-SPIN Program while highlighting how, by providing access to scientific information systems and on-line data, it promotes a higher level of collaboration among faculty and students and NASA scientists.
Medical reliable network using concatenated channel codes through GSM network.
Ahmed, Emtithal; Kohno, Ryuji
2013-01-01
Although the 4(th) generation (4G) of global mobile communication network, i.e. Long Term Evolution (LTE) coexisting with the 3(rd) generation (3G) has successfully started; the 2(nd) generation (2G), i.e. Global System for Mobile communication (GSM) still playing an important role in many developing countries. Without any other reliable network infrastructure, GSM can be applied for tele-monitoring applications, where high mobility and low cost are necessary. A core objective of this paper is to introduce the design of a more reliable and dependable Medical Network Channel Code system (MNCC) through GSM Network. MNCC design based on simple concatenated channel code, which is cascade of an inner code (GSM) and an extra outer code (Convolution Code) in order to protect medical data more robust against channel errors than other data using the existing GSM network. In this paper, the MNCC system will provide Bit Error Rate (BER) equivalent to the BER for medical tele monitoring of physiological signals, which is 10(-5) or less. The performance of the MNCC has been proven and investigated using computer simulations under different channels condition such as, Additive White Gaussian Noise (AWGN), Rayleigh noise and burst noise. Generally the MNCC system has been providing better performance as compared to GSM.
Hybrid modeling and empirical analysis of automobile supply chain network
NASA Astrophysics Data System (ADS)
Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying
2017-05-01
Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.
Bifurcation Phenomena of Opinion Dynamics in Complex Networks
NASA Astrophysics Data System (ADS)
Guo, Long; Cai, Xu
In this paper, we study the opinion dynamics of Improved Deffuant model (IDM), where the convergence parameter μ is a function of the opposite’s degree K according to the celebrity effect, in small-world network (SWN) and scale-free network (SFN). Generically, the system undergoes a phase transition from the plurality state to the polarization state and to the consensus state as the confidence parameter ɛ increasing. Furthermore, the evolution of the steady opinion s * as a function of ɛ, and the relation between the minority steady opinion s_{*}^{min} and the individual connectivity k also have been analyzed. Our present work shows the crucial role of the confidence parameter and the complex system topology in the opinion dynamics of IDM.
Emergence, evolution and scaling of online social networks.
Wang, Le-Zhi; Huang, Zi-Gang; Rong, Zhi-Hai; Wang, Xiao-Fan; Lai, Ying-Cheng
2014-01-01
Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.
NASA Technical Reports Server (NTRS)
Goodwin, P. S.; Traxler, M. R.; Meeks, W. G.; Flanagan, F. M.
1976-01-01
The overall evolution of the Helios Project is summarized from its conception through to the completion of the Helios-1 mission phase 2. Beginning with the project objectives and concluding with the Helios-1 spacecraft entering its first superior conjunction (end of mission phase 2), descriptions of the project, the mission and its phases, international management and interfaces, and Deep Space Network-spacecraft engineering development in telemetry, tracking, and command systems to ensure compatibility between the U.S. Deep Space Network and the German-built spacecraft are included.
Topological dynamics of vortex-line networks in hexagonal manganites
NASA Astrophysics Data System (ADS)
Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing
2018-01-01
The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.
Maximisation Principles in Foodwebs and Daisyworlds
NASA Astrophysics Data System (ADS)
Ackland, G. J.; Gallagher, I. D.
2005-12-01
Using computer simulation we investigate whether the steady-state time averaged state of a self-organising system with many internal degrees of freedom can be described by optimising a single quantity. Our open systems follow evolutionary dynamics hence the conservation laws and energy-based state probabilities which underpin Hamiltonian dynamics do not apply. We find that these dynamics observe a novel optimality principle, that the system self-organises to a state which maximises the sustainable amount of replicating objects. We have studied a number of mathematical models of evolving replicating systems: daisyworlds[1], logistic map and generalized Lotka Volterra foodwebs[2]. Each is characterised by being (1) "open" - resources flow into and out of the system. (2) "self-regulating" - the inflow/outflow of resources is not fixed externally. (3) "evolving" - the increase in population at the next timestep depends on the population at the current timestep. These properties violate the assumptions made in deriving optimality principles such as free energy minimisation, maximum/mimimum entropy production etc., so it is unsurprising that they are not observed. The absence of a Hamiltonian for ecosystems is particularly problematic for coupled models of life and the environment - moreover there is ambiguity in defining an entropy for an ecosystem. By considering large and small species within the 2D daisyworld model we show that the appropriate measure comes from the interaction with the rest of the system, not the information theoretic entropy of the daisy field. We introduce evolution within the classic Lotka-Volterra model for interaction between species in an ecosystem. Generalisation to many species is straightforward, but the resulting network is usually unstable. By restricting the number of links between species it is possible to form a stable network by evolution - allowing some species to go extinct. This method can be used to generate arbitrarily large network, from which a treelike structure of trophic levels emerges, but typically the number of connection is much smaller than in real ecosystems. Here, we show that applying evolution to the strength of the links, rather than simply their existence, stabilises the entire network and generates a power-law distribution of link strengths. The network dynamics are chaotic, but as a whole tend towards maximising the use of resources. If the dynamics are linearised to remove the chaos, the scale-free link strengths also disappear. [1] Maximisation Principles and Daisyworld G.J. Ackland J.Theo.Bio. 227, 121, (2004) [2] Stabilization of large generalized Lotka-Volterra foodwebs by evolutionary feedback G.J. Ackland and I.D. Gallagher Phys Rev Lett 93 158701 2004
NASA Astrophysics Data System (ADS)
Giordan, Daniele; Manconi, Andrea; Allasia, Paolo
2015-04-01
In the last decades, technological evolution has strongly increased the number of instruments that can be used to monitor landslide phenomena. Robotized Total Stations, GB-InSAR, and GPS are only few examples of the systems that can be used for the control of the topographic changes due to the landslide activity. These monitoring systems are often merged in a complex network, aimed at controlling the most important physical parameters influencing the evolution of landslide activity. The technological level reached by these systems allows us to use them for early warning purposes. Critical thresholds are identified and, when overcome, emergency actions are associated to protect population living in areas potentially involved by landslide failure. The use of these early warning systems can be very useful for the decision makers, which have to manage emergency conditions due to a landslide acceleration likely precursor of a collapse. At this stage, every instrument has a proper management system and the dataset obtained is often not compatible with the results of the others systems. The level of complexity increases with the number of monitoring systems and often could generate a paradox: the source of data are so numerous and difficult to interpret that a full understanding of the phenomenon could be hampered. Nowadays, a correct divulgation of the recent evolution of a landslide potentially dangerous for the population is very important. The Geohazard Monitoring Group of CNR IRPI developed a communication strategy to divulgate the monitoring network results based on both, a dedicated web page (for the publication in near real time of last updates), and periodical bulletins (for a deeper analysis of the available dataset). To manage the near real time application we developed a system called ADVICE (ADVanced dIsplaCement monitoring system for Early warning) that collects all the available data of a monitoring network and creates user-friendly representations of the recent landslide evolution. The system is also able to manage early warnings based on pre-defined thresholds (usually related to the analysis of displacement and/or velocity) sending emails and SMS. Starting from the same dataset, the representations are different if the information has to be delivered to the population or the technicians involved in the landslide emergency. Our communication strategy considers three different levels of representations of the acquired dataset to be able to communicate the results to the different stakeholders potentially involved in the emergency. This communication scheme has been achieved over time, thank to the experience acquired during the management of monitoring networks relevant to different case studies, such as: Mt. de La Saxe Landslide (Aosta Valley, NW Italy), Ripoli landslide (Emilia Romagna region, central Italy), Montaguto landslide (Campania region, south Italy). Here we present how the correct and user-friendly communication of the monitoring results has been an important added value to support decision makers and population during emergency scenarios.
Surveillance and reconnaissance ground system architecture
NASA Astrophysics Data System (ADS)
Devambez, Francois
2001-12-01
Modern conflicts induces various modes of deployment, due to the type of conflict, the type of mission, and phase of conflict. It is then impossible to define fixed architecture systems for surveillance ground segments. Thales has developed a structure for a ground segment based on the operational functions required, and on the definition of modules and networks. Theses modules are software and hardware modules, including communications and networks. This ground segment is called MGS (Modular Ground Segment), and is intended for use in airborne reconnaissance systems, surveillance systems, and U.A.V. systems. Main parameters for the definition of a modular ground image exploitation system are : Compliance with various operational configurations, Easy adaptation to the evolution of theses configurations, Interoperability with NATO and multinational forces, Security, Multi-sensors, multi-platforms capabilities, Technical modularity, Evolutivity Reduction of life cycle cost The general performances of the MGS are presented : type of sensors, acquisition process, exploitation of images, report generation, data base management, dissemination, interface with C4I. The MGS is then described as a set of hardware and software modules, and their organization to build numerous operational configurations. Architectures are from minimal configuration intended for a mono-sensor image exploitation system, to a full image intelligence center, for a multilevel exploitation of multi-sensor.
Properties of on-line social systems
NASA Astrophysics Data System (ADS)
Grabowski, A.; Kruszewska, N.; Kosiński, R. A.
2008-11-01
We study properties of five different social systems: (i) internet society of friends consisting of over 106 people, (ii) social network consisting of 3 × 104 individuals, who interact in a large virtual world of Massive Multiplayer Online Role Playing Games (MMORPGs), (iii) over 106 users of music community website, (iv) over 5 × 106 users of gamers community server and (v) over 0.25 × 106 users of books admirer website. Individuals included in large social network form an Internet community and organize themselves in groups of different sizes. The destiny of those systems, as well as the method of creating of new connections, are different, however we found that the properties of these networks are very similar. We have found that the network components size distribution follow the power-law scaling form. In all five systems we have found interesting scaling laws concerning human dynamics. Our research has shown how long people are interested in a single task, how much time they devote to it and how fast they are making friends. It is surprising that the time evolution of an individual connectivity is very similar in each system.
Model of community emergence in weighted social networks
NASA Astrophysics Data System (ADS)
Kumpula, J. M.; Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K.
2009-04-01
Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes.
Markstrom, Steven L.
2012-01-01
A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature.
Network-based recommendation algorithms: A review
NASA Astrophysics Data System (ADS)
Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš
2016-06-01
Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.
Topology and evolution of technology innovation networks
NASA Astrophysics Data System (ADS)
Valverde, Sergi; Solé, Ricard V.; Bedau, Mark A.; Packard, Norman
2007-11-01
The web of relations linking technological innovation can be fairly described in terms of patent citations. The resulting patent citation network provides a picture of the large-scale organization of innovations and its time evolution. Here we study the patterns of change of patents registered by the U.S. Patent and Trademark Office. We show that the scaling behavior exhibited by this network is consistent with a preferential attachment mechanism together with a Weibull-shaped aging term. Such an attachment kernel is shared by scientific citation networks, thus indicating a universal type of mechanism linking ideas and designs and their evolution. The implications for evolutionary theory of innovation are discussed.
Evolution of the Lunar Network
NASA Technical Reports Server (NTRS)
Gal-Edd, Jonathan; Fatig, Curtis C.; Miller, Ron
2008-01-01
The National Aeronautics and Space Administration (NASA) is planning to upgrade its network Infrastructure to support missions for the 21st century. The first step is to increase the data rate provided to science missions to at least the 100 megabits per second (Mbps) range. This is under way, using Ka-band 26 Gigahertz (GHz), erecting an 18-meter antenna for the Lunar Reconnaissance Orbiter (LRO), and the planned upgrade of the Deep Space Network (DSN) 34-meter network to support the James Webb Space Telescope (JWST). The next step is the support of manned missions to the Moon and beyond. Establishing an outpost with several activities such as rovers, colonization, and observatories, is better achieved by using a network configuration rather than the current method of point-to-point communication. Another challenge associated with the Moon is communication coverage with the Earth. The Moon's South Pole, targeted for human habitat and exploration, is obscured from Earth view for half of the 28-day lunar cycle and requires the use of lunar relay satellites to provide coverage when there is no direct view of the Earth. The future NASA and Constellation network architecture is described in the Space Communications Architecture Working Group (SCAWG) Report. The Space Communications and Navigation (SCAN) Constellation Integration Project (SCIP) is responsible for coordinating Constellation requirements and has assigned the responsibility for implementing these requirements to the existing NASA communication providers: DSN, Space Network (SN), Ground Network (GN) and the NASA Integrated Services Network (NISN). The SCAWG Report provides a future architecture but does not provide implementation details. The architecture calls for a Netcentric system, using hundreds of 12-meter antennas, a ground antenna array, and a relay network around the Moon. The report did not use cost as a variable in determining the feasibility of this approach. As part of the SCIP Mission Concept Review and the second iteration of the Lunar Architecture Team (LAT), the focus is on cost, as well as communication coverage using operational scenarios. This approach maximizes use of existing assets and adds capability in small increments. This paper addresses architecture decisions such as the Radio Frequency (RF) signal and network (Netcentric) decisions that need to be made and the difficulty of implementing them into the existing Space Network and DSN. It discusses the evolution of the lunar system and describes its components: Tracking and Data Relay Satellite System (TDRSS), Earth-based ground stations, Lunar Relay, and surface systems.
Toric Networks, Geometric R-Matrices and Generalized Discrete Toda Lattices
NASA Astrophysics Data System (ADS)
Inoue, Rei; Lam, Thomas; Pylyavskyy, Pavlo
2016-11-01
We use the combinatorics of toric networks and the double affine geometric R-matrix to define a three-parameter family of generalizations of the discrete Toda lattice. We construct the integrals of motion and a spectral map for this system. The family of commuting time evolutions arising from the action of the R-matrix is explicitly linearized on the Jacobian of the spectral curve. The solution to the initial value problem is constructed using Riemann theta functions.
1988-08-01
Interconnection (OSI) in years. It is felt even more urgent in the past few years, with the rapid evolution of communication technologies and the...services and protocols above the transport layer are usually implemented as user- callable utilities on the host computers, it is desirable to offer them...Networks, Prentice-hall, New Jersey, 1987 [ BOND 87] Bond , John, "Parallel-Processing Concepts Finally Come together in Real Systems", Computer Design
Discovering Network Structure Beyond Communities
NASA Astrophysics Data System (ADS)
Nishikawa, Takashi; Motter, Adilson E.
2011-11-01
To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.
A model for evolution of overlapping community networks
NASA Astrophysics Data System (ADS)
Karan, Rituraj; Biswal, Bibhu
2017-05-01
A model is proposed for the evolution of network topology in social networks with overlapping community structure. Starting from an initial community structure that is defined in terms of group affiliations, the model postulates that the subsequent growth and loss of connections is similar to the Hebbian learning and unlearning in the brain and is governed by two dominant factors: the strength and frequency of interaction between the members, and the degree of overlap between different communities. The temporal evolution from an initial community structure to the current network topology can be described based on these two parameters. It is possible to quantify the growth occurred so far and predict the final stationary state to which the network is likely to evolve. Applications in epidemiology or the spread of email virus in a computer network as well as finding specific target nodes to control it are envisaged. While facing the challenge of collecting and analyzing large-scale time-resolved data on social groups and communities one faces the most basic questions: how do communities evolve in time? This work aims to address this issue by developing a mathematical model for the evolution of community networks and studying it through computer simulation.
Optimality and self-organization in river deltas
NASA Astrophysics Data System (ADS)
Tejedor, A.; Longjas, A.; Edmonds, D. A.; Zaliapin, I. V.; Georgiou, T. T.; Rinaldo, A.; Foufoula-Georgiou, E.
2017-12-01
Deltas are nourished by channel networks, whose connectivity constrains, if not drives, the evolution, functionality and resilience of these systems. Understanding the coevolution of deltaic channels and their flux organization is crucial for guiding maintenance strategies of these highly stressed systems from a range of anthropogenic activities. However, in contrast to tributary channel networks, to date, no theory has been proposed to explain how deltas self-organize to distribute water and sediment to the delta top and the shoreline. Here, we hypothesize the existence of an optimality principle underlying the self-organized partition of fluxes in delta channel networks. Specifically, we hypothesize that deltas distribute water and sediment fluxes on a given delta topology such as to maximize the diversity of flux delivery to the shoreline. By introducing the concept of nonlocal Entropy Rate (nER) and analyzing ten field deltas in diverse environments, we present evidence that supports our hypothesis, suggesting that delta networks achieve dynamically accessible maxima of their nER. Furthermore, by analyzing six simulated deltas using the Delf3D model and following their topologic and flux re-organization before and after major avulsions, we further study the evolution of nER and confirm our hypothesis. We discuss how optimal flux distributions in terms of nER, when interpreted in terms of resilience, are configurations that reflect an increased ability to withstand perturbations.
Earth Regime Network Evolution Study (ERNESt)
NASA Technical Reports Server (NTRS)
Menrad, Bob
2016-01-01
Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
Goto, Hayato
2016-01-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997
Evolving autonomous learning in cognitive networks.
Sheneman, Leigh; Hintze, Arend
2017-12-01
There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.
Smart Grid Communications System Blueprint
NASA Astrophysics Data System (ADS)
Clark, Adrian; Pavlovski, Chris
2010-10-01
Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.
NASA Astrophysics Data System (ADS)
Carvalho, D.; Gavillet, Ph.; Delgado, V.; Albert, J. N.; Bellas, N.; Javello, J.; Miere, Y.; Ruffinoni, D.; Smith, G.
Large Scientific Equipments are controlled by Computer Systems whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, the sophistication of its treatment and, on the other hand by the fast evolution of the computer and network market. Some people call them genetically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this framework the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is proposed to integrate the various functions of DCCS monitoring into one general purpose Multi-layer System.
From the grid to the smart grid, topologically
NASA Astrophysics Data System (ADS)
Pagani, Giuliano Andrea; Aiello, Marco
2016-05-01
In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.
Interworking evolution of mobile satellite and terrestrial networks
NASA Technical Reports Server (NTRS)
Matyas, R.; Kelleher, P.; Moller, P.; Jones, T.
1993-01-01
There is considerable interest among mobile satellite service providers in interworking with terrestrial networks to provide a universal global network. With such interworking, subscribers may be provided a common set of services such as those planned for the Public Switched Telephone Network (PSTN), the Integrated Services Digital Network (ISDN), and future Intelligent Networks (IN's). This paper first reviews issues in satellite interworking. Next the status and interworking plans of terrestrial mobile communications service providers are examined with early examples of mobile satellite interworking including a discussion of the anticipated evolution towards full interworking between mobile satellite and both fixed and mobile terrestrial networks.
Sharma, Abhay
2015-11-01
New discoveries are increasingly demanding integration of epigenetics, molecular biology, genomic networks and physiology with evolution. This article provides a proof of concept for evolutionary transgenerational systems biology, proposed recently in the context of epigenetic inheritance in mammals. Gene set enrichment analysis of available genome-level mammalian data presented here seem consistent with the concept that: (1) heritable information about environmental effects in somatic cells is communicated to the germline by circulating microRNAs (miRNAs) or other RNAs released in physiological fluids; (2) epigenetic factors including miRNA-like small RNAs, DNA methylation and histone modifications are propagated across generations via gene networks; and (3) inherited epigenetic variations in the form of methylated cytosines are fixed in the population as thymines over the evolutionary time course. The analysis supports integration of physiology and epigenetics with inheritance and evolution. This may catalyze efforts to develop a unified theory of biology. © 2015. Published by The Company of Biologists Ltd.
Brownian model of transcriptome evolution and phylogenetic network visualization between tissues.
Gu, Xun; Ruan, Hang; Su, Zhixi; Zou, Yangyun
2017-09-01
While phylogenetic analysis of transcriptomes of the same tissue is usually congruent with the species tree, the controversy emerges when multiple tissues are included, that is, whether species from the same tissue are clustered together, or different tissues from the same species are clustered together. Recent studies have suggested that phylogenetic network approach may shed some lights on our understanding of multi-tissue transcriptome evolution; yet the underlying evolutionary mechanism remains unclear. In this paper we develop a Brownian-based model of transcriptome evolution under the phylogenetic network that can statistically distinguish between the patterns of species-clustering and tissue-clustering. Our model can be used as a null hypothesis (neutral transcriptome evolution) for testing any correlation in tissue evolution, can be applied to cancer transcriptome evolution to study whether two tumors of an individual appeared independently or via metastasis, and can be useful to detect convergent evolution at the transcriptional level. Copyright © 2017. Published by Elsevier Inc.
Hidden long evolutionary memory in a model biochemical network
NASA Astrophysics Data System (ADS)
Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan
2018-04-01
We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.
NASA Astrophysics Data System (ADS)
Barthélemy, Marc
2011-02-01
Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.
The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury.
Roy, Arnab; Bernier, Rachel A; Wang, Jianli; Benson, Monica; French, Jerry J; Good, David C; Hillary, Frank G
2017-01-01
A somewhat perplexing finding in the systems neuroscience has been the observation that physical injury to neural systems may result in enhanced functional connectivity (i.e., hyperconnectivity) relative to the typical network response. The consequences of local or global enhancement of functional connectivity remain uncertain and this is particularly true for the overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months following moderate and severe TBI. As anticipated, individuals with TBI showed increased network strength and cost early after injury, but by one-year post injury hyperconnectivity was more circumscribed to frontal DMN and temporal-parietal attentional control regions. Cost in these subregions was a significant predictor of cognitive performance. Cost-efficiency analysis in the Power 264 data parcellation suggested that at 6 months post injury the network requires higher cost connections to achieve high efficiency as compared to the network 12 months post injury. These results demonstrate that networks self-organize to re-establish connectivity while balancing cost-efficiency trade-offs.
The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury
Roy, Arnab; Bernier, Rachel A.; Wang, Jianli; Benson, Monica; French, Jerry J.; Good, David C.; Hillary, Frank G.
2017-01-01
A somewhat perplexing finding in the systems neuroscience has been the observation that physical injury to neural systems may result in enhanced functional connectivity (i.e., hyperconnectivity) relative to the typical network response. The consequences of local or global enhancement of functional connectivity remain uncertain and this is particularly true for the overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months following moderate and severe TBI. As anticipated, individuals with TBI showed increased network strength and cost early after injury, but by one-year post injury hyperconnectivity was more circumscribed to frontal DMN and temporal-parietal attentional control regions. Cost in these subregions was a significant predictor of cognitive performance. Cost-efficiency analysis in the Power 264 data parcellation suggested that at 6 months post injury the network requires higher cost connections to achieve high efficiency as compared to the network 12 months post injury. These results demonstrate that networks self-organize to re-establish connectivity while balancing cost-efficiency trade-offs. PMID:28422992
Securing the Global Airspace System Via Identity-Based Security
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2015-01-01
Current telecommunications systems have very good security architectures that include authentication and authorization as well as accounting. These three features enable an edge system to obtain access into a radio communication network, request specific Quality-of-Service (QoS) requirements and ensure proper billing for service. Furthermore, the links are secure. Widely used telecommunication technologies are Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) This paper provides a system-level view of network-centric operations for the global airspace system and the problems and issues with deploying new technologies into the system. The paper then focuses on applying the basic security architectures of commercial telecommunication systems and deployment of federated Authentication, Authorization and Accounting systems to provide a scalable, evolvable reliable and maintainable solution to enable a globally deployable identity-based secure airspace system.
Random walks on activity-driven networks with attractiveness
NASA Astrophysics Data System (ADS)
Alessandretti, Laura; Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola
2017-05-01
Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterized by these two features. We study how these properties affect random-walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first-passage time of the process, and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems, such as heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.
Genetic Regulatory Networks in Embryogenesis and Evolution
NASA Technical Reports Server (NTRS)
1998-01-01
The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.
Geomorphic analyses from space imagery
NASA Technical Reports Server (NTRS)
Morisawa, M.
1985-01-01
One of the most obvious applications of space imagery to geomorphological analyses is in the study of drainage patterns and channel networks. LANDSAT, high altitude photography and other types of remote sensing imagery are excellent for depicting stream networks on a regional scale because of their broad coverage in a single image. They offer a valuable tool for comparing and analyzing drainage patterns and channel networks all over the world. Three aspects considered in this geomorphological study are: (1) the origin, evolution and rates of development of drainage systems; (2) the topological studies of network and channel arrangements; and (3) the adjustment of streams to tectonic events and geologic structure (i.e., the mode and rate of adjustment).
Social influence in small-world networks
NASA Astrophysics Data System (ADS)
Sun, Kai; Mao, Xiao-Ming; Ouyang, Qi
2002-12-01
We report on our numerical studies of the Axelrod model for social influence in small-world networks. Our simulation results show that the topology of the network has a crucial effect on the evolution of cultures. As the randomness of the network increases, the system undergoes a transition from a highly fragmented phase to a uniform phase. We also find that the power-law distribution at the transition point, reported by Castellano et al, is not a critical phenomenon; it exists not only at the onset of transition but also for almost any control parameters. All these power-law distributions are stable against perturbations. A mean-field theory is developed to explain these phenomena.
Resiliently evolving supply-demand networks
NASA Astrophysics Data System (ADS)
Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.
2014-01-01
The ability to design a transport network such that commodities are brought from suppliers to consumers in a steady, optimal, and stable way is of great importance for distribution systems nowadays. In this work, by using the circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand network should have to operate stably under perturbations, i.e., without overloading. The perturbations we consider are the evolution of the connecting topology, the decentralization of hub sources or sinks, and the intermittence of supplier and consumer characteristics. We analyze these conditions and the impact of our results, both on the current United Kingdom power-grid structure and on numerically generated evolving archetypal network topologies.
Value Creation Through Integrated Networks and Convergence
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Martini, Paul; Taft, Jeffrey D.
2015-04-01
Customer adoption of distributed energy resources and public policies are driving changes in the uses of the distribution system. A system originally designed and built for one-way energy flows from central generating facilities to end-use customers is now experiencing injections of energy from customers anywhere on the grid and frequent reversals in the direction of energy flow. In response, regulators and utilities are re-thinking the design and operations of the grid to create more open and transactive electric networks. This evolution has the opportunity to unlock significant value for customers and utilities. Alternatively, failure to seize this potential may insteadmore » lead to an erosion of value if customers seek to defect and disconnect from the system. This paper will discuss how current grid modernization investments may be leveraged to create open networks that increase value through the interaction of intelligent devices on the grid and prosumerization of customers. Moreover, even greater value can be realized through the synergistic effects of convergence of multiple networks. This paper will highlight examples of the emerging nexus of non-electric networks with electricity.« less
Onboard connectivity network for command-and-control aircraft
NASA Astrophysics Data System (ADS)
Artz, Timothy J.
1993-02-01
Command and control (C2) aircraft are host to an array of communications, information processing, and electronic control systems. The previous method of interconnecting this equipment involves point-to-point wiring harnesses between devices. A fiber optic broadband bus can be used to improve this situation by consolidating equipment connections on a shared medium. This network, known as the Onboard Connectivity Network (OCN), is being prototypes for application on the U.S. Government's Special Air Mission aircraft. Significant weight reduction and simplified future systems integration are the primary benefits of the OCN. The OCN design integrates voice, data, control, and video communications on a 3GHZ single mode fiber backbone. Communications within the aircraft use 500 MHz coaxial cable subnetworks connected to the backbone. The entire network is a dual redundant system for enhanced reliability. Node topologies are based on VMEbus to encourage use of commercial products and facilitate future evolution of the backbone topology. Network encryption technologies are being developed for OCN communications security. Automated workstations will be implemented to control and switch communications assets and to provide a technical control, test, and monitoring function.
Filamentary structures that self-organize due to adhesion
NASA Astrophysics Data System (ADS)
Sengab, A.; Picu, R. C.
2018-03-01
We study the self-organization of random collections of elastic filaments that interact adhesively. The evolution from an initial fully random quasi-two-dimensional state is controlled by filament elasticity, adhesion and interfilament friction, and excluded volume. Three outcomes are possible: the system may remain locked in the initial state, may organize into isolated fiber bundles, or may form a stable, connected network of bundles. The range of system parameters leading to each of these states is identified. The network of bundles is subisostatic and is stabilized by prestressed triangular features forming at bundle-to-bundle nodes, similar to the situation in foams. Interfiber friction promotes locking and expands the parametric range of nonevolving systems.
Interconnecting astronomical networks: evolving from single networks to meta-networks
NASA Astrophysics Data System (ADS)
White, R. R.; Allan, A.; Evans, S.; Vestrand, W. T.; Wren, J.; Wozniak, P.
2006-06-01
Over the past four years we have seen continued advancement in network technology and how those technologies are beginning to enable astronomical science. Even though some sociological aspects are hindering full cooperation between most observatories and telescopes outside of their academic or institutional connections, an unprecedented step during the summer of 2005 was taken towards creating a world-wide interconnection of astronomical assets. The Telescope Alert Operations Network System (TALONS), a centralized server/client bi-directional network developed and operated by Los Alamos National Laboratory, integrated one of its network nodes with a node from the eScience Telescopes for Astronomical Research (eSTAR), a peer-to-peer agent based network developed and operated by The University of Exeter. Each network can act independently, providing support for their direct clients, and by interconnection provide local clients with access to; outside telescope systems, software tools unavailable locally, and the ability to utilize assets far more efficiently, thereby enabling science on a world-wide scale. In this paper we will look at the evolution of these independent networks into the worlds first heterogeneous telescope network and where this may take astronomy in the future. We will also examine those key elements necessary to providing universal communication between diverse astronomical networks.
Information system evolution at the French National Network of Seismic Survey (BCSF-RENASS)
NASA Astrophysics Data System (ADS)
Engels, F.; Grunberg, M.
2013-12-01
The aging information system of the French National Network of Seismic Survey (BCSF-RENASS), located in Strasbourg (EOST), needed to be updated to satisfy new practices from Computer science world. The latter means to evolve our system at different levels : development method, datamining solutions, system administration. The new system had to provide more agility for incoming projects. The main difficulty was to maintain old system and the new one in parallel the time to validate new solutions with a restricted team. Solutions adopted here are coming from standards used by the seismological community and inspired by the state of the art of devops community. The new system is easier to maintain and take advantage of large community to find support. This poster introduces the new system and choosen solutions like Puppet, Fabric, MongoDB and FDSN Webservices.
Nature-Inspired Cognitive Evolution to Play MS. Pac-Man
NASA Astrophysics Data System (ADS)
Tan, Tse Guan; Teo, Jason; Anthony, Patricia
Recent developments in nature-inspired computation have heightened the need for research into the three main areas of scientific, engineering and industrial applications. Some approaches have reported that it is able to solve dynamic problems and very useful for improving the performance of various complex systems. So far however, there has been little discussion about the effectiveness of the application of these models to computer and video games in particular. The focus of this research is to explore the hybridization of nature-inspired computation methods for optimization of neural network-based cognition in video games, in this case the combination of a neural network with an evolutionary algorithm. In essence, a neural network is an attempt to mimic the extremely complex human brain system, which is building an artificial brain that is able to self-learn intelligently. On the other hand, an evolutionary algorithm is to simulate the biological evolutionary processes that evolve potential solutions in order to solve the problems or tasks by applying the genetic operators such as crossover, mutation and selection into the solutions. This paper investigates the abilities of Evolution Strategies (ES) to evolve feed-forward artificial neural network's internal parameters (i.e. weight and bias values) for automatically generating Ms. Pac-man controllers. The main objective of this game is to clear a maze of dots while avoiding the ghosts and to achieve the highest possible score. The experimental results show that an ES-based system can be successfully applied to automatically generate artificial intelligence for a complex, dynamic and highly stochastic video game environment.
Kwak, Doyeon
2017-01-01
It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks. PMID:28542367
Kwak, Doyeon; Kim, Wonjoon
2017-01-01
It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks.
Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo
2015-01-01
Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389
A Multi-Temporal Context-Aware System for Competences Management
ERIC Educational Resources Information Center
Rosa, João H.; Barbosa, Jorge L.; Kich, Marcos; Brito, Lucas
2015-01-01
The evolution of computing technology and wireless networks has contributed to the miniaturization of mobile devices and their increase in power, providing services anywhere and anytime. In this scenario, applications have considered the user's contexts to make decisions (Context Awareness). Context-aware applications have enabled new…
Community Evolution in International Migration Top1 Networks.
Peres, Mihaela; Xu, Helian; Wu, Gang
2016-01-01
Focusing on each country's topmost destination/origin migration relation with other countries, this study builds top1 destination networks and top1 origin networks in order to understand their skeletal construction and community dynamics. Each top1 network covers approximately 50% of the complete migrant network stock for each decade between 1960 and 2000. We investigate the community structure by implementing the Girvan-Newman algorithm and compare the number of components and communities to illustrate their differences. We find that (i) both top1 networks (origin and destination) exhibited communities with a clear structure and a surprising evolution, although 80% edges persist between each decade; (ii) top1 destination networks focused on developed countries exhibiting shorter paths and preferring more advance countries, while top1 origin networks focused both on developed as well as more substantial developing nations that presented a longer path and more stable groups; (iii) only few countries have a decisive influence on community evolution of both top1 networks. USA took the leading position as a destination country in top1 destination networks, while China and India were the main Asian emigration countries in top1 origin networks; European countries and the Russian Federation played an important role in both.
Community Evolution in International Migration Top1 Networks
Xu, Helian
2016-01-01
Focusing on each country’s topmost destination/origin migration relation with other countries, this study builds top1 destination networks and top1 origin networks in order to understand their skeletal construction and community dynamics. Each top1 network covers approximately 50% of the complete migrant network stock for each decade between 1960 and 2000. We investigate the community structure by implementing the Girvan-Newman algorithm and compare the number of components and communities to illustrate their differences. We find that (i) both top1 networks (origin and destination) exhibited communities with a clear structure and a surprising evolution, although 80% edges persist between each decade; (ii) top1 destination networks focused on developed countries exhibiting shorter paths and preferring more advance countries, while top1 origin networks focused both on developed as well as more substantial developing nations that presented a longer path and more stable groups; (iii) only few countries have a decisive influence on community evolution of both top1 networks. USA took the leading position as a destination country in top1 destination networks, while China and India were the main Asian emigration countries in top1 origin networks; European countries and the Russian Federation played an important role in both. PMID:26859406
Petunia, Your Next Supermodel?
Vandenbussche, Michiel; Chambrier, Pierre; Rodrigues Bento, Suzanne; Morel, Patrice
2016-01-01
Plant biology in general, and plant evo–devo in particular would strongly benefit from a broader range of available model systems. In recent years, technological advances have facilitated the analysis and comparison of individual gene functions in multiple species, representing now a fairly wide taxonomic range of the plant kingdom. Because genes are embedded in gene networks, studying evolution of gene function ultimately should be put in the context of studying the evolution of entire gene networks, since changes in the function of a single gene will normally go together with further changes in its network environment. For this reason, plant comparative biology/evo–devo will require the availability of a defined set of ‘super’ models occupying key taxonomic positions, in which performing gene functional analysis and testing genetic interactions ideally is as straightforward as, e.g., in Arabidopsis. Here we review why petunia has the potential to become one of these future supermodels, as a representative of the Asterid clade. We will first detail its intrinsic qualities as a model system. Next, we highlight how the revolution in sequencing technologies will now finally allows exploitation of the petunia system to its full potential, despite that petunia has already a long history as a model in plant molecular biology and genetics. We conclude with a series of arguments in favor of a more diversified multi-model approach in plant biology, and we point out where the petunia model system may further play a role, based on its biological features and molecular toolkit. PMID:26870078
Transition Characteristic Analysis of Traffic Evolution Process for Urban Traffic Network
Chen, Hong; Li, Yang
2014-01-01
The characterization of the dynamics of traffic states remains fundamental to seeking for the solutions of diverse traffic problems. To gain more insights into traffic dynamics in the temporal domain, this paper explored temporal characteristics and distinct regularity in the traffic evolution process of urban traffic network. We defined traffic state pattern through clustering multidimensional traffic time series using self-organizing maps and construct a pattern transition network model that is appropriate for representing and analyzing the evolution progress. The methodology is illustrated by an application to data flow rate of multiple road sections from Network of Shenzhen's Nanshan District, China. Analysis and numerical results demonstrated that the methodology permits extracting many useful traffic transition characteristics including stability, preference, activity, and attractiveness. In addition, more information about the relationships between these characteristics was extracted, which should be helpful in understanding the complex behavior of the temporal evolution features of traffic patterns. PMID:24982969
Maximal aggregation of polynomial dynamical systems
Cardelli, Luca; Tschaikowski, Max
2017-01-01
Ordinary differential equations (ODEs) with polynomial derivatives are a fundamental tool for understanding the dynamics of systems across many branches of science, but our ability to gain mechanistic insight and effectively conduct numerical evaluations is critically hindered when dealing with large models. Here we propose an aggregation technique that rests on two notions of equivalence relating ODE variables whenever they have the same solution (backward criterion) or if a self-consistent system can be written for describing the evolution of sums of variables in the same equivalence class (forward criterion). A key feature of our proposal is to encode a polynomial ODE system into a finitary structure akin to a formal chemical reaction network. This enables the development of a discrete algorithm to efficiently compute the largest equivalence, building on approaches rooted in computer science to minimize basic models of computation through iterative partition refinements. The physical interpretability of the aggregation is shown on polynomial ODE systems for biochemical reaction networks, gene regulatory networks, and evolutionary game theory. PMID:28878023
Multisensor Network System for Wildfire Detection Using Infrared Image Processing
Bosch, I.; Serrano, A.; Vergara, L.
2013-01-01
This paper presents the next step in the evolution of multi-sensor wireless network systems in the early automatic detection of forest fires. This network allows remote monitoring of each of the locations as well as communication between each of the sensors and with the control stations. The result is an increased coverage area, with quicker and safer responses. To determine the presence of a forest wildfire, the system employs decision fusion in thermal imaging, which can exploit various expected characteristics of a real fire, including short-term persistence and long-term increases over time. Results from testing in the laboratory and in a real environment are presented to authenticate and verify the accuracy of the operation of the proposed system. The system performance is gauged by the number of alarms and the time to the first alarm (corresponding to a real fire), for different probability of false alarm (PFA). The necessity of including decision fusion is thereby demonstrated. PMID:23843734
Multisensor network system for wildfire detection using infrared image processing.
Bosch, I; Serrano, A; Vergara, L
2013-01-01
This paper presents the next step in the evolution of multi-sensor wireless network systems in the early automatic detection of forest fires. This network allows remote monitoring of each of the locations as well as communication between each of the sensors and with the control stations. The result is an increased coverage area, with quicker and safer responses. To determine the presence of a forest wildfire, the system employs decision fusion in thermal imaging, which can exploit various expected characteristics of a real fire, including short-term persistence and long-term increases over time. Results from testing in the laboratory and in a real environment are presented to authenticate and verify the accuracy of the operation of the proposed system. The system performance is gauged by the number of alarms and the time to the first alarm (corresponding to a real fire), for different probability of false alarm (PFA). The necessity of including decision fusion is thereby demonstrated.
Dynamic spectrum management: an impact on EW systems
NASA Astrophysics Data System (ADS)
Gajewski, P.; Łopatka, J.; Suchanski, M.
2017-04-01
Rapid evolution of wireless systems caused an enormous growth of data streams transmitted through the networks and, as a consequence, an accompanying demand concerning spectrum resources (SR). An avoidance of advisable disturbances is one of the main demands in military communications. To solve the interference problems, dynamic spectrum management (DSM) techniques can be used. Two main techniques are possible: centralized Coordinated Dynamic Spectrum Access (CDSA) and distributed Opportunistic Spectrum Access (OSA). CDSA enables the wireless networks planning automation, and systems dynamic reaction to random changes of Radio Environment (RE). For OSA, cognitive radio (CR) is the most promising technology that enables avoidance of interference with the other spectrum users due to CR's transmission parameters adaptation to the current radio situation, according to predefined Radio Policies rules. If DSM techniques are used, the inherent changes in EW systems are also needed. On one hand, new techniques of jamming should be elaborated, on the other hand, the rules and protocols of cooperation between communication network and EW systems should be developed.
Interdependency enriches the spatial reciprocity in prisoner's dilemma game on weighted networks
NASA Astrophysics Data System (ADS)
Meng, Xiaokun; Sun, Shiwen; Li, Xiaoxuan; Wang, Li; Xia, Chengyi; Sun, Junqing
2016-01-01
To model the evolution of cooperation under the realistic scenarios, we propose an interdependent network-based game model which simultaneously considers the difference of individual roles in the spatial prisoner's dilemma game. In our model, the system is composed of two lattices on which an agent designated as a cooperator or defector will be allocated, meanwhile each agent will be endowed as a specific weight taking from three typical distributions on one lattice (i.e., weighted lattice), and set to be 1.0 on the other one (i.e., un-weighted or standard lattice). In addition, the interdependency will be built through the utility coupling between point-to-point partners. Extensive simulations indicate that the cooperation will be continuously elevated for the weighted lattice as the utility coupling strength (α) increases; while the cooperation will take on a nontrivial evolution on the standard lattice as α varies, and will be still greatly promoted when compared to the case of α = 0. At the same time, the full T - K phase diagrams are also explored to illustrate the evolutionary behaviors, and it is powerfully shown that the interdependency drives the defectors to survive within the narrower range, but individual weighting of utility will further broaden the coexistence space of cooperators and defectors, which renders the nontrivial evolution of cooperation in our model. Altogether, the current consequences about the evolution of cooperation will be helpful for us to provide the insights into the prevalent cooperation phenomenon within many real-world systems.
The prisoner’s dilemma on co-evolving networks under perfect rationality
NASA Astrophysics Data System (ADS)
Biely, Christoly; Dragosits, Klaus; Thurner, Stefan
2007-04-01
We consider the prisoner’s dilemma being played repeatedly on a dynamic network, where agents may choose their actions as well as their co-players. This leads to co-evolution of network structure and strategy patterns of the players. Individual decisions are made fully rationally and are based on local information only. They are made such that links to defecting agents are resolved and that cooperating agents build up new links. The exact form of the updating scheme is motivated by profit maximization and not by imitation. If players update their decisions in a synchronized way the system exhibits oscillatory dynamics: Periods of growing cooperation (and total linkage) alternate with periods of increasing defection. The cyclical behavior is reduced and the system stabilizes at significant total cooperation levels when players are less synchronized. In this regime we find emergent network structures resembling ‘complex’ and hierarchical topology. The exponent of the power-law degree distribution ( γ∼8.6) perfectly matches empirical results for human communication networks.
Connecting the Edge: Mobile Ad-Hoc Networks (MANETs) for Network Centric Warfare
2007-04-01
Cebrowski and Mr. John Garstka are generally credited with introducing the concept and origins of NCW.8 They described the military’s evolution from...www.sdrforum.org/pages/aboutTheForum/faqs.asp Adams, James. The Next World War. New York, NY: Simon & Schuster, 1998. Alberts, David S., John J. Garstka, and...Joint Tactical Radio System – Reloaded.” CHIPS, July-September 2006: 6-9. Arquilla, John , and David Ronfeldt. In Athena’s Camp. Santa Monica, CA
Characteristics of pattern formation and evolution in approximations of Physarum transport networks.
Jones, Jeff
2010-01-01
Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.
Structure and evolution of online social relationships: Heterogeneity in unrestricted discussions.
Goh, K-I; Eom, Y-H; Jeong, H; Kahng, B; Kim, D
2006-06-01
With the advancement in the information age, people are using electronic media more frequently for communications, and social relationships are also increasingly resorting to online channels. While extensive studies on traditional social networks have been carried out, little has been done on online social networks. Here we analyze the structure and evolution of online social relationships by examining the temporal records of a bulletin board system (BBS) in a university. The BBS dataset comprises of 1908 boards, in which a total of 7446 students participate. An edge is assigned to each dialogue between two students, and it is defined as the appearance of the name of a student in the from- and to-field in each message. This yields a weighted network between the communicating students with an unambiguous group association of individuals. In contrast to a typical community network, where intracommunities (intercommunities) are strongly (weakly) tied, the BBS network contains hub members who participate in many boards simultaneously but are strongly tied, that is, they have a large degree and betweenness centrality and provide communication channels between communities. On the other hand, intracommunities are rather homogeneously and weakly connected. Such a structure, which has never been empirically characterized in the past, might provide a new perspective on the social opinion formation in this digital era.
NASA Astrophysics Data System (ADS)
Doursat, René
Exploding growth growth in computational systems forces us to gradually replace rigid design and control with decentralization and autonomy. Information technologies will progress, instead, by"meta-designing" mechanisms of system self-assembly, self-regulation and evolution. Nature offers a great variety of efficient complex systems, in which numerous small elements form large-scale, adaptive patterns. The new engineering challenge is to recreate this self-organization and let it freely generate innovative designs under guidance. This article presents an original model of artificial system growth inspired by embryogenesis. A virtual organism is a lattice of cells that proliferate, migrate and self-pattern into differentiated domains. Each cell's fate is controlled by an internal gene regulatory network network. Embryomorphic engineering emphasizes hyperdistributed architectures, and their development as a prerequisite of evolutionary design.
Research on Information Sharing Mechanism of Network Organization Based on Evolutionary Game
NASA Astrophysics Data System (ADS)
Wang, Lin; Liu, Gaozhi
2018-02-01
This article first elaborates the concept and effect of network organization, and the ability to share information is analyzed, secondly introduces the evolutionary game theory, network organization for information sharing all kinds of limitations, establishes the evolutionary game model, analyzes the dynamic evolution of network organization of information sharing, through reasoning and evolution. The network information sharing by the initial state and two sides of the game payoff matrix of excess profits and information is the information sharing of cost and risk sharing are the influence of network organization node information sharing decision.
Linking Individual and Collective Behavior in Adaptive Social Networks
NASA Astrophysics Data System (ADS)
Pinheiro, Flávio L.; Santos, Francisco C.; Pacheco, Jorge M.
2016-03-01
Adaptive social structures are known to promote the evolution of cooperation. However, up to now the characterization of the collective, population-wide dynamics resulting from the self-organization of individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a (reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced by individuals into a collective dynamics that resembles that associated with an N -person coordination game, whose characterization depends sensitively on the relative time scales between the entangled behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus establishing a direct link between network adaptation and the evolution of cooperation. The framework developed here is general and may be readily applied to other dynamical processes occurring on adaptive networks, notably, the spreading of contagious diseases or the diffusion of innovations.
Evolving phenotypic networks in silico.
François, Paul
2014-11-01
Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.
Evolution of SH2 domains and phosphotyrosine signalling networks
Liu, Bernard A.; Nash, Piers D.
2012-01-01
Src homology 2 (SH2) domains mediate selective protein–protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks. PMID:22889907
Sovereign public debt crisis in Europe. A network analysis
NASA Astrophysics Data System (ADS)
Matesanz, David; Ortega, Guillermo J.
2015-10-01
In this paper we analyse the evolving network structure of the quarterly public debt-to-GDP ratio from 2000 to 2014. By applying tools and concepts coming from complex systems we study the effects of the global financial crisis over public debt network connections and communities. Two main results arise from this analysis: firstly, countries public debts tend to synchronize their evolution, increasing global connectivity in the network and dramatically decreasing the number of communities. Secondly, a disruption in previous structure is observed at the time of the shock, emerging a more centralized and less diversify network topological organization which might be more prone to suffer contagion effects. This last fact is evidenced by an increasing tendency in countries of similar level of public debt to be connected between them, which we have quantified by the network assortativity.
NASA Astrophysics Data System (ADS)
Amancio, Diego Raphael
2014-12-01
Concepts and methods of complex networks have been applied to probe the properties of a myriad of real systems [1]. The finding that written texts modeled as graphs share several properties of other completely different real systems has inspired the study of language as a complex system [2]. Actually, language can be represented as a complex network in its several levels of complexity. As a consequence, morphological, syntactical and semantical properties have been employed in the construction of linguistic networks [3]. Even the character level has been useful to unfold particular patterns [4,5]. In the review by Cong and Liu [6], the authors emphasize the need to use the topological information of complex networks modeling the various spheres of the language to better understand its origins, evolution and organization. In addition, the authors cite the use of networks in applications aiming at holistic typology and stylistic variations. In this context, I will discuss some possible directions that could be followed in future research directed towards the understanding of language via topological characterization of complex linguistic networks. In addition, I will comment the use of network models for language processing applications. Additional prospects for future practical research lines will also be discussed in this comment.
Evolution of individual versus social learning on social networks
Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo
2015-01-01
A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of ‘cultural models’ exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. PMID:25631568
Evolution of individual versus social learning on social networks.
Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo
2015-03-06
A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of 'cultural models' exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Role of transcriptional regulation in the evolution of plant phenotype: A dynamic systems approach.
Rodríguez-Mega, Emiliano; Piñeyro-Nelson, Alma; Gutierrez, Crisanto; García-Ponce, Berenice; Sánchez, María De La Paz; Zluhan-Martínez, Estephania; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana
2015-03-02
A growing body of evidence suggests that alterations in transcriptional regulation of genes involved in modulating development are an important part of phenotypic evolution, and this can be documented among species and within populations. While the effects of differential transcriptional regulation in organismal development have been preferentially studied in animal systems, this phenomenon has also been addressed in plants. In this review, we summarize evidence for cis-regulatory mutations, trans-regulatory changes and epigenetic modifications as molecular events underlying important phenotypic alterations, and thus shaping the evolution of plant development. We postulate that a mechanistic understanding of why such molecular alterations have a key role in development, morphology and evolution will have to rely on dynamic models of complex regulatory networks that consider the concerted action of genetic and nongenetic components, and that also incorporate the restrictions underlying the genotype to phenotype mapping process. Developmental Dynamics, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Emergence of system roles in normative neurodevelopment
Gu, Shi; Satterthwaite, Theodore D.; Medaglia, John D.; Yang, Muzhi; Gur, Raquel E.; Gur, Ruben C.; Bassett, Danielle S.
2015-01-01
Adult human cognition is supported by systems of brain regions, or modules, that are functionally coherent at rest and collectively activated by distinct task requirements. However, an understanding of how the formation of these modules supports evolving cognitive capabilities has not been delineated. Here, we quantify the formation of network modules in a sample of 780 youth (aged 8–22 y) who were studied as part of the Philadelphia Neurodevelopmental Cohort. We demonstrate that the brain’s functional network organization changes in youth through a process of modular evolution that is governed by the specific cognitive roles of each system, as defined by the balance of within- vs. between-module connectivity. Moreover, individual variability in these roles is correlated with cognitive performance. Collectively, these results suggest that dynamic maturation of network modules in youth may be a critical driver for the development of cognition. PMID:26483477
Network Analysis: Applications for the Developing Brain
Chu-Shore, Catherine J.; Kramer, Mark A.; Bianchi, Matt T.; Caviness, Verne S.; Cash, Sydney S.
2011-01-01
Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The application of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain networks. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in disease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is already substantial evidence that the application of network models and analysis to understanding normal and abnormal human neural development holds tremendous promise for future discovery. PMID:21303762
NASA Astrophysics Data System (ADS)
Nebot, Àngela; Mugica, Francisco
2012-10-01
Fuzzy inductive reasoning (FIR) is a modelling and simulation methodology derived from the General Systems Problem Solver. It compares favourably with other soft computing methodologies, such as neural networks, genetic or neuro-fuzzy systems, and with hard computing methodologies, such as AR, ARIMA, or NARMAX, when it is used to predict future behaviour of different kinds of systems. This paper contains an overview of the FIR methodology, its historical background, and its evolution.
A history of the autonomic nervous system: part I: from Galen to Bichat.
Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane
2016-12-01
The development of our current understanding of the autonomic nervous system has a rich history with many international contributors. Although our thoughts of an autonomic nervous system arose with the Greeks, the evolution and final understanding of this neural network would not be fully realized until centuries later. Therefore, our current knowledge of this system is based on hundreds of years of hypotheses and testing and was contributed to by many historic figures.
NASA Astrophysics Data System (ADS)
Glick, Aaron; Carr, Lincoln; Calarco, Tommaso; Montangero, Simone
2014-03-01
In order to investigate the emergence of complexity in quantum systems, we present a quantum game of life, inspired by Conway's classic game of life. Through Matrix Product State (MPS) calculations, we simulate the evolution of quantum systems, dictated by a Hamiltonian that defines the rules of our quantum game. We analyze the system through a number of measures which elicit the emergence of complexity in terms of spatial organization, system dynamics, and non-local mutual information within the network. Funded by NSF
The Evolution of Networked Computing in the Teaching of Japanese as a Foreign Language.
ERIC Educational Resources Information Center
Harrison, Richard
1998-01-01
Reviews the evolution of Internet-based projects in Japanese computer-assisted language learning and suggests future directions in which the field may develop, based on emerging network technology and learning theory. (Author/VWL)
NASA Astrophysics Data System (ADS)
Noirel, Josselin; Simonson, Thomas
2008-11-01
Following Kimura's neutral theory of molecular evolution [M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983) (reprinted in 1986)], it has become common to assume that the vast majority of viable mutations of a gene confer little or no functional advantage. Yet, in silico models of protein evolution have shown that mutational robustness of sequences could be selected for, even in the context of neutral evolution. The evolution of a biological population can be seen as a diffusion on the network of viable sequences. This network is called a "neutral network." Depending on the mutation rate μ and the population size N, the biological population can evolve purely randomly (μN ≪1) or it can evolve in such a way as to select for sequences of higher mutational robustness (μN ≫1). The stringency of the selection depends not only on the product μN but also on the exact topology of the neutral network, the special arrangement of which was named "superfunnel." Even though the relation between mutation rate, population size, and selection was thoroughly investigated, a study of the salient topological features of the superfunnel that could affect the strength of the selection was wanting. This question is addressed in this study. We use two different models of proteins: on lattice and off lattice. We compare neutral networks computed using these models to random networks. From this, we identify two important factors of the topology that determine the stringency of the selection for mutationally robust sequences. First, the presence of highly connected nodes ("hubs") in the network increases the selection for mutationally robust sequences. Second, the stringency of the selection increases when the correlation between a sequence's mutational robustness and its neighbors' increases. The latter finding relates a global characteristic of the neutral network to a local one, which is attainable through experiments or molecular modeling.
Noirel, Josselin; Simonson, Thomas
2008-11-14
Following Kimura's neutral theory of molecular evolution [M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983) (reprinted in 1986)], it has become common to assume that the vast majority of viable mutations of a gene confer little or no functional advantage. Yet, in silico models of protein evolution have shown that mutational robustness of sequences could be selected for, even in the context of neutral evolution. The evolution of a biological population can be seen as a diffusion on the network of viable sequences. This network is called a "neutral network." Depending on the mutation rate mu and the population size N, the biological population can evolve purely randomly (muN<1) or it can evolve in such a way as to select for sequences of higher mutational robustness (muN>1). The stringency of the selection depends not only on the product muN but also on the exact topology of the neutral network, the special arrangement of which was named "superfunnel." Even though the relation between mutation rate, population size, and selection was thoroughly investigated, a study of the salient topological features of the superfunnel that could affect the strength of the selection was wanting. This question is addressed in this study. We use two different models of proteins: on lattice and off lattice. We compare neutral networks computed using these models to random networks. From this, we identify two important factors of the topology that determine the stringency of the selection for mutationally robust sequences. First, the presence of highly connected nodes ("hubs") in the network increases the selection for mutationally robust sequences. Second, the stringency of the selection increases when the correlation between a sequence's mutational robustness and its neighbors' increases. The latter finding relates a global characteristic of the neutral network to a local one, which is attainable through experiments or molecular modeling.
Applying Model Based Systems Engineering to NASA's Space Communications Networks
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert
2013-01-01
System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its results and impact. We will highlight the insights gained by applying the Model Based System Engineering and provide recommendations for its applications and improvements.
García-Pedrajas, Nicolás; Ortiz-Boyer, Domingo; Hervás-Martínez, César
2006-05-01
In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary computation. One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem occurs due to the fact that the same network can be represented in a genetic coding by many different codifications. Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network. This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks obtained are much smaller than those obtained with classical crossover operator.
Metabolic networks evolve towards states of maximum entropy production.
Unrean, Pornkamol; Srienc, Friedrich
2011-11-01
A metabolic network can be described by a set of elementary modes or pathways representing discrete metabolic states that support cell function. We have recently shown that in the most likely metabolic state the usage probability of individual elementary modes is distributed according to the Boltzmann distribution law while complying with the principle of maximum entropy production. To demonstrate that a metabolic network evolves towards such state we have carried out adaptive evolution experiments with Thermoanaerobacterium saccharolyticum operating with a reduced metabolic functionality based on a reduced set of elementary modes. In such reduced metabolic network metabolic fluxes can be conveniently computed from the measured metabolite secretion pattern. Over a time span of 300 generations the specific growth rate of the strain continuously increased together with a continuous increase in the rate of entropy production. We show that the rate of entropy production asymptotically approaches the maximum entropy production rate predicted from the state when the usage probability of individual elementary modes is distributed according to the Boltzmann distribution. Therefore, the outcome of evolution of a complex biological system can be predicted in highly quantitative terms using basic statistical mechanical principles. Copyright © 2011 Elsevier Inc. All rights reserved.
Carbon nanotube network evolution during deformation of PVDF-MWNT nanocomposites
NASA Astrophysics Data System (ADS)
Rizvi, Reza; Naguib, Hani E.
2013-04-01
The emergence of novel electronic systems and their requirements have necessitated the evolution of new material classes. The traditional electronic semiconductors and components are shifting from silicon based substrates to polymers and other organic compounds. Sensor components are no exceptions, where compliant polymeric materials offer the possibility of flexible electronics. This paper examines the fabrication and characterization of piezoresistive nanocomposites for pressure sensing applications. The matrix material employed was Polyvinylidene Fluoride (PVDF). The PVDF phase was reinforced with conductive particles, in order to form a conductive filler network throughout the nanocomposite. Multiwall carbon nanotubes (MWNT) were selected as conductive particles to form the networks. The composites were prepared by melt mixing the PVDF and conductive particles in compositions ranging from 0.25 to 10 wt% conductive particle in PVDF. The dielectric permittivity and electrical conductivity of the composites was characterized and the electrical percolation behavior of PVDF nanocomposites fitted to the statistical percolation model. Scanning electron was employed to understand the morphology of the filler networks in the PVDF nanocomposites. Quasi-static piezoresistance of the nanocomposites was characterized using a custom-built force-resistance measurement setup under compressive loading conditions.
Neural network approach to prediction of temperatures around groundwater heat pump systems
NASA Astrophysics Data System (ADS)
Lo Russo, Stefano; Taddia, Glenda; Gnavi, Loretta; Verda, Vittorio
2014-01-01
A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. This is particularly important to avoid interference with previously existing groundwater uses (wells) and underground structures. Temperature anomalies are detected through numerical methods. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple installations. The neural network is trained using the results from a CFD model (FEFLOW) applied to the installation at Politecnico di Torino (Italy) under several operating conditions. The final results appeared to be reliable and the temperature anomalies around the injection well appeared to be well predicted.
NASA Astrophysics Data System (ADS)
Sahoo, Ramendra; Jain, Vikrant
2017-04-01
Morphology of the landscape and derived features are regarded to be an important tool for inferring about tectonic activity in an area, since surface exposures of these subsurface processes may not be available or may get eroded away over time. This has led to an extensive research in application of the non-planar morphological attributes like river long profile and hypsometry for tectonic studies, whereas drainage network as a proxy for tectonic activity has not been explored greatly. Though, significant work has been done on drainage network pattern which started in a qualitative manner and over the years, has evolved to incorporate more quantitative aspects, like studying the evolution of a network under the influence of external and internal controls. Random Topology (RT) model is one of these concepts, which elucidates the connection between evolution of a drainage network pattern and the entropy of the drainage system and it states that in absence of any geological controls, a natural population of channel networks will be topologically random. We have used the entropy maximization principle to provide a theoretical structure for the RT model. Furthermore, analysis was carried out on the drainage network structures around Jwalamukhi thrust in the Kangra reentrant in western Himalayas, India, to investigate the tectonic activity in the region. Around one thousand networks were extracted from the foot-wall (fw) and hanging-wall (hw) region of the thrust sheet and later categorized based on their magnitudes. We have adopted the goodness of fit test for comparing the network patterns in fw and hw drainage with those derived using the RT model. The null hypothesis for the test was, the drainage networks in the fw are statistically more similar than those on the hw, to the network patterns derived using the RT model for any given magnitude. The test results are favorable to our null hypothesis for networks with smaller magnitudes (< 9), whereas for larger magnitudes, both hw and fw networks were found to be statistically not similar to the model network patterns. Calculation of pattern frequency for each magnitude and subsequent hypothesis testing were carried out using Matlab (v R2015a). Our results will help to define drainage network pattern as one of the geomorphic proxy to identify tectonically active area. This study also serve as a supplementary proof of the neo-tectonic control on the morphology of landscape and its derivatives around the Jwalamukhi thrust. Additionally, it will help to verify the theory of probabilistic evolution of drainage networks.
NASA Astrophysics Data System (ADS)
Yu, Shuiyuan; Xu, Chunshan
2014-12-01
Language is generally considered a defining feature of human beings, a key medium for interpersonal communication, a fundamental tool for human thinking and an important vehicle for culture transmission. For the anthropoids to evolve into human being, the emergence of linguistic system is a vital step. Then, how can language serve functions so complicated and so important? To answer this question, it is necessary to probe into a central topic in linguistics: the structure of language, which has been inevitably involved in various fields of linguistic research-the functions of languages, the evolution of languages, the typology of languages, etc.
Impact of Future Cable Television Technology. Final Summary Report.
ERIC Educational Resources Information Center
Rensselaer Polytechnic Inst., Troy, NY. Telecommunications Research Center.
Technological alternatives in the evolution of present cable television systems into broadband communication networks (BCN) were assessed. Cost estimates were made for alternatives, and the impact of alternatives on BCN development was investigated. An historical study of cable television technology was made which related it to other…
Experimental observations of root growth in a controlled photoelastic granular material
NASA Astrophysics Data System (ADS)
Barés, Jonathan; Mora, Serge; Delenne, Jean-Yves; Fourcaud, Thierry
2017-06-01
We present a novel root observation apparatus capable of measuring the mechanical evolution of both the root network and the surrounding granular medium. The apparatus consists of 11 parallel growth frames, two of them being shearable, where the roots grow inside a photo-elastic or glass granular medium sandwiched between two pieces of glass. An automated system waters the plant and image each frame periodically in white light and between crossed polarisers. This makes it possible to follow (i) the root tips and (ii) the grain displacements as well as (iii) their inner pressure. We show how a root networks evolve in a granular medium and how it can mechanically stabilize it. This constitutes a model experiment to move forward in the understanding of the complex interaction between root growth and surrounding soil mechanical evolution.
Evolution properties of the community members for dynamic networks
NASA Astrophysics Data System (ADS)
Yang, Kai; Guo, Qiang; Li, Sheng-Nan; Han, Jing-Ti; Liu, Jian-Guo
2017-03-01
The collective behaviors of community members for dynamic social networks are significant for understanding evolution features of communities. In this Letter, we empirically investigate the evolution properties of the new community members for dynamic networks. Firstly, we separate data sets into different slices, and analyze the statistical properties of new members as well as communities they joined in for these data sets. Then we introduce a parameter φ to describe community evolution between different slices and investigate the dynamic community properties of the new community members. The empirical analyses for the Facebook, APS, Enron and Wiki data sets indicate that both the number of new members and joint communities increase, the ratio declines rapidly and then becomes stable over time, and most of the new members will join in the small size communities that is s ≤ 10. Furthermore, the proportion of new members in existed communities decreases firstly and then becomes stable and relatively small for these data sets. Our work may be helpful for deeply understanding the evolution properties of community members for social networks.
Francis, Andrew; Moulton, Vincent
2018-06-07
Phylogenetic networks are an extension of phylogenetic trees which are used to represent evolutionary histories in which reticulation events (such as recombination and hybridization) have occurred. A central question for such networks is that of identifiability, which essentially asks under what circumstances can we reliably identify the phylogenetic network that gave rise to the observed data? Recently, identifiability results have appeared for networks relative to a model of sequence evolution that generalizes the standard Markov models used for phylogenetic trees. However, these results are quite limited in terms of the complexity of the networks that are considered. In this paper, by introducing an alternative probabilistic model for evolution along a network that is based on some ground-breaking work by Thatte for pedigrees, we are able to obtain an identifiability result for a much larger class of phylogenetic networks (essentially the class of so-called tree-child networks). To prove our main theorem, we derive some new results for identifying tree-child networks combinatorially, and then adapt some techniques developed by Thatte for pedigrees to show that our combinatorial results imply identifiability in the probabilistic setting. We hope that the introduction of our new model for networks could lead to new approaches to reliably construct phylogenetic networks. Copyright © 2018 Elsevier Ltd. All rights reserved.
COVERING THE SEAMS IN U.S. NATIONAL SECURITY BY APPLYING NETWORK AND TEAM ATTRIBUTES
2017-04-06
Today, one such weakness is the seams that exist in the system . Organizational criteria like geography , functions, and responsibilities often create...establishment by the National Security Act of 1947, the modern U.S. national security system has evolved as a result of legislation, presidential preference...and because of changes in the U.S. and international security environments. With each evolution, the system has found ways to function in dealing
Wright, Cameron H G; Barrett, Steven F; Pack, Daniel J
2005-01-01
We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica. The computational algorithms are a mix of traditional image processing, subspace techniques, and multilayer neural networks.
NASA Astrophysics Data System (ADS)
An, Pengli; Li, Huajiao; Zhou, Jinsheng; Chen, Fan
2017-10-01
Complex network theory is a widely used tool in the empirical research of financial markets. Two-mode and multi-mode networks are new trends and represent new directions in that they can more accurately simulate relationships between entities. In this paper, we use data for Chinese listed companies holding non-listed financial companies over a ten-year period to construct two networks: a two-mode primitive network in which listed companies and non-listed financial companies are considered actors and events, respectively, and a one-mode network that is constructed based on the decreasing-mode method in which listed companies are considered nodes. We analyze the evolution of the listed company co-holding network from several perspectives, including that of the whole network, of information control ability, of implicit relationships, of community division and of small-world characteristics. The results of the analysis indicate that (1) China's developing stock market affects the share-holding condition of listed companies holding non-listed financial companies; (2) the information control ability of co-holding networks is focused on a few listed companies and the implicit relationship of investment preference between listed companies is determined by the co-holding behavior; (3) the community division of the co-holding network is increasingly obvious, as determined by the investment preferences among listed companies; and (4) the small-world characteristics of the co-holding network are increasingly obvious, resulting in reduced communication costs. In this paper, we conduct an evolution analysis and develop an understanding of the factors that influence the listed companies co-holding network. This study will help illuminate research on evolution analysis.
Face Patch Resting State Networks Link Face Processing to Social Cognition
Schwiedrzik, Caspar M.; Zarco, Wilbert; Everling, Stefan; Freiwald, Winrich A.
2015-01-01
Faces transmit a wealth of social information. How this information is exchanged between face-processing centers and brain areas supporting social cognition remains largely unclear. Here we identify these routes using resting state functional magnetic resonance imaging in macaque monkeys. We find that face areas functionally connect to specific regions within frontal, temporal, and parietal cortices, as well as subcortical structures supporting emotive, mnemonic, and cognitive functions. This establishes the existence of an extended face-recognition system in the macaque. Furthermore, the face patch resting state networks and the default mode network in monkeys show a pattern of overlap akin to that between the social brain and the default mode network in humans: this overlap specifically includes the posterior superior temporal sulcus, medial parietal, and dorsomedial prefrontal cortex, areas supporting high-level social cognition in humans. Together, these results reveal the embedding of face areas into larger brain networks and suggest that the resting state networks of the face patch system offer a new, easily accessible venue into the functional organization of the social brain and into the evolution of possibly uniquely human social skills. PMID:26348613
Jaeger, Johannes; Crombach, Anton
2012-01-01
We propose an approach to evolutionary systems biology which is based on reverse engineering of gene regulatory networks and in silico evolutionary simulations. We infer regulatory parameters for gene networks by fitting computational models to quantitative expression data. This allows us to characterize the regulatory structure and dynamical repertoire of evolving gene regulatory networks with a reasonable amount of experimental and computational effort. We use the resulting network models to identify those regulatory interactions that are conserved, and those that have diverged between different species. Moreover, we use the models obtained by data fitting as starting points for simulations of evolutionary transitions between species. These simulations enable us to investigate whether such transitions are random, or whether they show stereotypical series of regulatory changes which depend on the structure and dynamical repertoire of an evolving network. Finally, we present a case study-the gap gene network in dipterans (flies, midges, and mosquitoes)-to illustrate the practical application of the proposed methodology, and to highlight the kind of biological insights that can be gained by this approach.
Tonelli, Paul; Mouret, Jean-Baptiste
2013-01-01
A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099
Coevolutionary dynamics of opinion propagation and social balance: The key role of small-worldness
NASA Astrophysics Data System (ADS)
Chen, Yan; Chen, Lixue; Sun, Xian; Zhang, Kai; Zhang, Jie; Li, Ping
2014-03-01
The propagation of various opinions in social networks, which influences human inter-relationships and even social structure, and hence is a most important part of social life. We have incorporated social balance into opinion propagation in social networks are influenced by social balance. The edges in networks can represent both friendly or hostile relations, and change with the opinions of individual nodes. We introduce a model to characterize the coevolutionary dynamics of these two dynamical processes on Watts-Strogatz (WS) small-world network. We employ two distinct evolution rules (i) opinion renewal; and (ii) relation adjustment. By changing the rewiring probability, and thus the small-worldness of the WS network, we found that the time for the system to reach balanced states depends critically on both the average path length and clustering coefficient of the network, which is different than other networked process like epidemic spreading. In particular, the system equilibrates most quickly when the underlying network demonstrates strong small-worldness, i.e., small average path lengths and large clustering coefficient. We also find that opinion clusters emerge in the process of the network approaching the global equilibrium, and a measure of global contrariety is proposed to quantify the balanced state of a social network.
Godoy-Lorite, Antonia; Guimerà, Roger; Sales-Pardo, Marta
2016-01-01
In social networks, individuals constantly drop ties and replace them by new ones in a highly unpredictable fashion. This highly dynamical nature of social ties has important implications for processes such as the spread of information or of epidemics. Several studies have demonstrated the influence of a number of factors on the intricate microscopic process of tie replacement, but the macroscopic long-term effects of such changes remain largely unexplored. Here we investigate whether, despite the inherent randomness at the microscopic level, there are macroscopic statistical regularities in the long-term evolution of social networks. In particular, we analyze the email network of a large organization with over 1,000 individuals throughout four consecutive years. We find that, although the evolution of individual ties is highly unpredictable, the macro-evolution of social communication networks follows well-defined statistical patterns, characterized by exponentially decaying log-variations of the weight of social ties and of individuals' social strength. At the same time, we find that individuals have social signatures and communication strategies that are remarkably stable over the scale of several years.
Asynchronous updates can promote the evolution of cooperation on multiplex networks
NASA Astrophysics Data System (ADS)
Allen, James M.; Hoyle, Rebecca B.
2017-04-01
We study the importance to the frequency of cooperation of the choice of updating strategies in a game played asynchronously or synchronously across layers in a multiplex network. Updating asynchronously in the public goods game leads to higher frequencies of cooperation compared to synchronous updates. How large this effect is depends on the sensitivity of the game dynamics to changes in the number of cooperators surrounding a player, with the largest effect observed when players payoffs are small. The discovery of this effect enhances understanding of cooperation on multiplex networks, and demonstrates a new way to maintain cooperation in these systems.
Applications of flow-networks to opinion-dynamics
NASA Astrophysics Data System (ADS)
Tupikina, Liubov; Kurths, Jürgen
2015-04-01
Networks were successfully applied to describe complex systems, such as brain, climate, processes in society. Recently a socio-physical problem of opinion-dynamics was studied using network techniques. We present the toy-model of opinion-formation based on the physical model of advection-diffusion. We consider spreading of the opinion on the fixed subject, assuming that opinion on society is binary: if person has opinion then the state of the node in the society-network equals 1, if the person doesn't have opinion state of the node equals 0. Opinion can be spread from one person to another if they know each other, or in the network-terminology, if the nodes are connected. We include into the system governed by advection-diffusion equation the external field to model such effects as for instance influence from media. The assumptions for our model can be formulated as the following: 1.the node-states are influenced by the network structure in such a way, that opinion can be spread only between adjacent nodes (the advective term of the opinion-dynamics), 2.the network evolution can have two scenarios: -network topology is not changing with time; -additional links can appear or disappear each time-step with fixed probability which requires adaptive networks properties. Considering these assumptions for our system we obtain the system of equations describing our model-dynamics which corresponds well to other socio-physics models, for instance, the model of the social cohesion and the famous voter-model. We investigate the behavior of the suggested model studying "waiting time" of the system, time to get to the stable state, stability of the model regimes for different values of model parameters and network topology.
Networks of lexical borrowing and lateral gene transfer in language and genome evolution
List, Johann-Mattis; Nelson-Sathi, Shijulal; Geisler, Hans; Martin, William
2014-01-01
Like biological species, languages change over time. As noted by Darwin, there are many parallels between language evolution and biological evolution. Insights into these parallels have also undergone change in the past 150 years. Just like genes, words change over time, and language evolution can be likened to genome evolution accordingly, but what kind of evolution? There are fundamental differences between eukaryotic and prokaryotic evolution. In the former, natural variation entails the gradual accumulation of minor mutations in alleles. In the latter, lateral gene transfer is an integral mechanism of natural variation. The study of language evolution using biological methods has attracted much interest of late, most approaches focusing on language tree construction. These approaches may underestimate the important role that borrowing plays in language evolution. Network approaches that were originally designed to study lateral gene transfer may provide more realistic insights into the complexities of language evolution. PMID:24375688
Synergy from reproductive division of labor and genetic complexity drive the evolution of sex.
Jaffe, Klaus
2018-04-16
Computer experiments that mirror the evolutionary dynamics of sexual and asexual organisms as they occur in nature were used to test features proposed to explain the evolution of sexual recombination. Results show that this evolution is better described as a network of interactions between possible sexual forms, including diploidy, thelytoky, facultative sex, assortation, bisexuality, and division of labor between the sexes, rather than a simple transition from parthenogenesis to sexual recombination. Diploidy was shown to be fundamental for the evolution of sex; bisexual reproduction emerged only among anisogamic diploids with a synergistic division of reproductive labor; and facultative sex was more likely to evolve among haploids practicing assortative mating. Looking at the evolution of sex as a complex system through individual-based simulations explains better the diversity of sexual strategies known to exist in nature, compared to classical analytical models.
Microstructural properties and evolution of nanoclusters in liquid Si during a rapid cooling process
NASA Astrophysics Data System (ADS)
Gao, T.; Hu, X.; Li, Y.; Tian, Z.; Xie, Q.; Chen, Q.; Liang, Y.; Luo, X.; Ren, L.; Luo, J.
2017-11-01
The formation of amorphous structures in Si during the rapid quenching process was studied based on molecular dynamics simulation by using the Stillinger-Weber potential. The evolution characteristics of nanoclusters during the solidification were analyzed by several structural analysis methods. The amorphous Si has been formed with many tetrahedral clusters and few nanoclusters. During the solidification, tetrahedral polyhedrons affect the local structures by their different positions and connection modes. The main kinds of polyhedrons randomly linked with one another to form an amorphous network structures in the system. The structural evolution of crystal nanocluster demonstrates that the nanocluster has difficulty to growth because of the high cooling rate of 1012 K/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradonjic, Milan; Hagberg, Aric; Hengartner, Nick
We analyze component evolution in general random intersection graphs (RIGs) and give conditions on existence and uniqueness of the giant component. Our techniques generalize the existing methods for analysis on component evolution in RIGs. That is, we analyze survival and extinction properties of a dependent, inhomogeneous Galton-Watson branching process on general RIGs. Our analysis relies on bounding the branching processes and inherits the fundamental concepts from the study on component evolution in Erdos-Renyi graphs. The main challenge becomes from the underlying structure of RIGs, when the number of offsprings follows a binomial distribution with a different number of nodes andmore » different rate at each step during the evolution. RIGs can be interpreted as a model for large randomly formed non-metric data sets. Besides the mathematical analysis on component evolution, which we provide in this work, we perceive RIGs as an important random structure which has already found applications in social networks, epidemic networks, blog readership, or wireless sensor networks.« less
Deep Space Network information system architecture study
NASA Technical Reports Server (NTRS)
Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.
1992-01-01
The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental disturbances, is also proposed, together with a simulation example. PMID:23515190
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental disturbances, is also proposed, together with a simulation example.
Fernandez-Valverde, Selene L; Aguilera, Felipe; Ramos-Díaz, René Alexander
2018-06-18
The advent of high-throughput sequencing technologies has revolutionized the way we understand the transformation of genetic information into morphological traits. Elucidating the network of interactions between genes that govern cell differentiation through development is one of the core challenges in genome research. These networks are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between developmental control genes, cis-regulatory modules and differentiation genes, which generate spatially and temporally refined patterns of gene expression. Over the last 20 years, great advances have been made in determining these gene interactions mainly in classical model systems, including human, mouse, sea urchin, fruit fly, and worm. This has brought about a radical transformation in the fields of developmental biology and evolutionary biology, allowing the generation of high-resolution gene regulatory maps to analyse cell differentiation during animal development. Such maps have enabled the identification of gene regulatory circuits and have led to the development of network inference methods that can recapitulate the differentiation of specific cell-types or developmental stages. In contrast, dGRN research in non-classical model systems has been limited to the identification of developmental control genes via the candidate gene approach and the characterization of their spatiotemporal expression patterns, as well as to the discovery of cis-regulatory modules via patterns of sequence conservation and/or predicted transcription-factor binding sites. However, thanks to the continuous advances in high-throughput sequencing technologies, this scenario is rapidly changing. Here, we give a historical overview on the architecture and elucidation of the dGRNs. Subsequently, we summarize the approaches available to unravel these regulatory networks, highlighting the vast range of possibilities of integrating multiple technical advances and theoretical approaches to expand our understanding on the global of gene regulation during animal development in non-classical model systems. Such new knowledge will not only lead to greater insights into the evolution of molecular mechanisms underlying cell identity and animal body plans, but also into the evolution of morphological key innovations in animals.
NASA Astrophysics Data System (ADS)
Davis, G. A.; Battistuz, B.; Foley, S.; Vernon, F. L.; Eakins, J. A.
2009-12-01
Since April 2004 the Earthscope USArray Transportable Array (TA) network has grown to over 400 broadband seismic stations that stream multi-channel data in near real-time to the Array Network Facility in San Diego. In total, over 1.7 terabytes per year of 24-bit, 40 samples-per-second seismic and state of health data is recorded from the stations. The ANF provides analysts access to real-time and archived data, as well as state-of-health data, metadata, and interactive tools for station engineers and the public via a website. Additional processing and recovery of missing data from on-site recorders (balers) at the stations is performed before the final data is transmitted to the IRIS Data Management Center (DMC). Assembly of the final data set requires additional storage and processing capabilities to combine the real-time data with baler data. The infrastructure supporting these diverse computational and storage needs currently consists of twelve virtualized Sun Solaris Zones executing on nine physical server systems. The servers are protected against failure by redundant power, storage, and networking connections. Storage needs are provided by a hybrid iSCSI and Fiber Channel Storage Area Network (SAN) with access to over 40 terabytes of RAID 5 and 6 storage. Processing tasks are assigned to systems based on parallelization and floating-point calculation needs. On-site buffering at the data-loggers provide protection in case of short-term network or hardware problems, while backup acquisition systems at the San Diego Supercomputer Center and the DMC protect against catastrophic failure of the primary site. Configuration management and monitoring of these systems is accomplished with open-source (Cfengine, Nagios, Solaris Community Software) and commercial tools (Intermapper). In the evolution from a single server to multiple virtualized server instances, Sun Cluster software was evaluated and found to be unstable in our environment. Shared filesystem architectures using PxFS and QFS were found to be incompatible with our software architecture, so sharing of data between systems is accomplished via traditional NFS. Linux was found to be limited in terms of deployment flexibility and consistency between versions. Despite the experimentation with various technologies, our current virtualized architecture is stable to the point of an average daily real time data return rate of 92.34% over the entire lifetime of the project to date.
Nature vs Nurture: Effects of Learning on Evolution
NASA Astrophysics Data System (ADS)
Nagrani, Nagina
In the field of Evolutionary Robotics, the design, development and application of artificial neural networks as controllers have derived their inspiration from biology. Biologists and artificial intelligence researchers are trying to understand the effects of neural network learning during the lifetime of the individuals on evolution of these individuals by qualitative and quantitative analyses. The conclusion of these analyses can help develop optimized artificial neural networks to perform any given task. The purpose of this thesis is to study the effects of learning on evolution. This has been done by applying Temporal Difference Reinforcement Learning methods to the evolution of Artificial Neural Tissue controller. The controller has been assigned the task to collect resources in a designated area in a simulated environment. The performance of the individuals is measured by the amount of resources collected. A comparison has been made between the results obtained by incorporating learning in evolution and evolution alone. The effects of learning parameters: learning rate, training period, discount rate, and policy on evolution have also been studied. It was observed that learning delays the performance of the evolving individuals over the generations. However, the non zero learning rate throughout the evolution process signifies natural selection preferring individuals possessing plasticity.
Efficient embedding of complex networks to hyperbolic space via their Laplacian
Alanis-Lobato, Gregorio; Mier, Pablo; Andrade-Navarro, Miguel A.
2016-01-01
The different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction. PMID:27445157
Efficient embedding of complex networks to hyperbolic space via their Laplacian
NASA Astrophysics Data System (ADS)
Alanis-Lobato, Gregorio; Mier, Pablo; Andrade-Navarro, Miguel A.
2016-07-01
The different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction.
Why do Reservoir Computing Networks Predict Chaotic Systems so Well?
NASA Astrophysics Data System (ADS)
Lu, Zhixin; Pathak, Jaideep; Girvan, Michelle; Hunt, Brian; Ott, Edward
Recently a new type of artificial neural network, which is called a reservoir computing network (RCN), has been employed to predict the evolution of chaotic dynamical systems from measured data and without a priori knowledge of the governing equations of the system. The quality of these predictions has been found to be spectacularly good. Here, we present a dynamical-system-based theory for how RCN works. Basically a RCN is thought of as consisting of three parts, a randomly chosen input layer, a randomly chosen recurrent network (the reservoir), and an output layer. The advantage of the RCN framework is that training is done only on the linear output layer, making it computationally feasible for the reservoir dimensionality to be large. In this presentation, we address the underlying dynamical mechanisms of RCN function by employing the concepts of generalized synchronization and conditional Lyapunov exponents. Using this framework, we propose conditions on reservoir dynamics necessary for good prediction performance. By looking at the RCN from this dynamical systems point of view, we gain a deeper understanding of its surprising computational power, as well as insights on how to design a RCN. Supported by Army Research Office Grant Number W911NF1210101.
Physical impairment aware transparent optical networks
NASA Astrophysics Data System (ADS)
Antona, Jean-Christophe; Morea, Annalisa; Zami, Thierry; Leplingard, Florence
2009-11-01
As illustrated by optical fiber and optical amplification, optical telecommunications have appeared for the last ten years as one of the most promising candidates to increase the transmission capacities. More recently, the concept of optical transparency has been investigated and introduced: it consists of the optical routing of Wavelength Division Multiplexed (WDM) channels without systematic optoelectronic processing at nodes, as long as propagation impairments remain acceptable [1]. This allows achieving less power-consuming, more scalable and flexible networks, and today partial optical transparency has become a reality in deployed systems. However, because of the evolution of traffic features, optical networks are facing new challenges such as demand for higher transmitted capacity, further upgradeability, and more automation. Making all these evolutions compliant on the same current network infrastructure with a minimum of upgrades is one of the main issues for equipment vendors and operators. Hence, an automatic and efficient management of the network needs a control plan aware of the expected Quality of Transmission (QoT) of the connections to set-up with respect to numerous parameters such as: the services demanded by the customers in terms of protection/restoration; the modulation rate and format of the connection under test and also of its adjacent WDM channels; the engineering rules of the network elements traversed with an accurate knowledge of the associated physical impairments. Whatever the method and/or the technology used to collect this information, the issue about its accuracy is one of the main concerns of the network system vendors, because an inaccurate knowledge could yield a sub-optimal dimensioning and so additional costs when installing the network in the field. Previous studies [1], [2] illustrated the impact of this knowledge accuracy on the ability to predict the connection feasibility. After describing usual methods to build performance estimators, this paper reports on this impact but at the global network level, quantifying the importance to account for these uncertainties from the early network planning step; it also proposes an improvement of the accuracy of the Quality of Transmission (QoT) estimator to reduce the raise of planned resources due to these uncertainties.
Evolvable social agents for bacterial systems modeling.
Paton, Ray; Gregory, Richard; Vlachos, Costas; Saunders, Jon; Wu, Henry
2004-09-01
We present two approaches to the individual-based modeling (IbM) of bacterial ecologies and evolution using computational tools. The IbM approach is introduced, and its important complementary role to biosystems modeling is discussed. A fine-grained model of bacterial evolution is then presented that is based on networks of interactivity between computational objects representing genes and proteins. This is followed by a coarser grained agent-based model, which is designed to explore the evolvability of adaptive behavioral strategies in artificial bacteria represented by learning classifier systems. The structure and implementation of the two proposed individual-based bacterial models are discussed, and some results from simulation experiments are presented, illustrating their adaptive properties.
Evolution of canalizing Boolean networks
NASA Astrophysics Data System (ADS)
Szejka, A.; Drossel, B.
2007-04-01
Boolean networks with canalizing functions are used to model gene regulatory networks. In order to learn how such networks may behave under evolutionary forces, we simulate the evolution of a single Boolean network by means of an adaptive walk, which allows us to explore the fitness landscape. Mutations change the connections and the functions of the nodes. Our fitness criterion is the robustness of the dynamical attractors against small perturbations. We find that with this fitness criterion the global maximum is always reached and that there is a huge neutral space of 100% fitness. Furthermore, in spite of having such a high degree of robustness, the evolved networks still share many features with “chaotic” networks.
Parallel and orthogonal stimulus in ultradiluted neural networks
NASA Astrophysics Data System (ADS)
Sobral, G. A., Jr.; Vieira, V. M.; Lyra, M. L.; da Silva, C. R.
2006-10-01
Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0 .
Immediate causality network of stock markets
NASA Astrophysics Data System (ADS)
Zhou, Li; Qiu, Lu; Gu, Changgui; Yang, Huijie
2018-02-01
Extensive works show that a network of stocks within a single stock market stores rich information on evolutionary behaviors of the system, such as collapses and/or crises. But a financial event covers usually several markets or even the global financial system. This mismatch of scale leads to lack of concise information to coordinate the event. In this work by using the transfer entropy we reconstruct the influential network between ten typical stock markets distributed in the world. Interesting findings include, before a financial crisis the connection strength reaches a maximum, which can act as an early warning signal of financial crises. The markets in America are monodirectionally and strongly influenced by that in Europe and act as the center. Some strongly linked pairs have also close correlations. The findings are helpful in understanding the evolution and modelling the dynamical process of the global financial system. This method can be extended straightly to find early warning signals for physiological and ecological systems, etc.
Protein-Protein Interaction Network and Gene Ontology
NASA Astrophysics Data System (ADS)
Choi, Yunkyu; Kim, Seok; Yi, Gwan-Su; Park, Jinah
Evolution of computer technologies makes it possible to access a large amount and various kinds of biological data via internet such as DNA sequences, proteomics data and information discovered about them. It is expected that the combination of various data could help researchers find further knowledge about them. Roles of a visualization system are to invoke human abilities to integrate information and to recognize certain patterns in the data. Thus, when the various kinds of data are examined and analyzed manually, an effective visualization system is an essential part. One instance of these integrated visualizations can be combination of protein-protein interaction (PPI) data and Gene Ontology (GO) which could help enhance the analysis of PPI network. We introduce a simple but comprehensive visualization system that integrates GO and PPI data where GO and PPI graphs are visualized side-by-side and supports quick reference functions between them. Furthermore, the proposed system provides several interactive visualization methods for efficiently analyzing the PPI network and GO directedacyclic- graph such as context-based browsing and common ancestors finding.
TRF2 and the evolution of the bilateria
Duttke, Sascha H.C.; Doolittle, Russell F.; Wang, Yuan-Liang
2014-01-01
The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as “system factors” that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria. PMID:25274724
Borland, Ron; Coghill, Ken
2010-01-01
Complex, transnational issues like the tobacco epidemic are major challenges that defy analysis and management by conventional methods, as are other public health issues, such as those associated with global food distribution and climate change. We examined the evolution of indoor smoke-free regulations, a tobacco control policy innovation, and identified the key attributes of those jurisdictions that successfully pursued this innovation and those that to date have not. In doing so, we employed the actor-network theory, a comprehensive framework for the analysis of fundamental system change. Through our analysis, we identified approaches to help overcome some systemic barriers to the solution of the tobacco problem and comment on other complex transnational problems. PMID:20466949
Young, David; Borland, Ron; Coghill, Ken
2010-07-01
Complex, transnational issues like the tobacco epidemic are major challenges that defy analysis and management by conventional methods, as are other public health issues, such as those associated with global food distribution and climate change. We examined the evolution of indoor smoke-free regulations, a tobacco control policy innovation, and identified the key attributes of those jurisdictions that successfully pursued this innovation and those that to date have not. In doing so, we employed the actor-network theory, a comprehensive framework for the analysis of fundamental system change. Through our analysis, we identified approaches to help overcome some systemic barriers to the solution of the tobacco problem and comment on other complex transnational problems.
Distributed-current-feed and distributed-energy-store railguns
NASA Astrophysics Data System (ADS)
Holland, L. D.
1984-03-01
In connection with advances in railgun technology evolution toward the development of systems for specific applications, investigations are being conducted regarding a wide variety of power supply and railgun systems. The present study is concerned with the development of the distributed railguns and the introduction of a new type of railgun system specifically designed for applications requiring long accelerators. It is found that the distributed railguns offer a solution to the limits on performance of the breech-fed railguns as the length of the rails becomes large. Attention is given to the pulse-forming network and breech-fed railgun, the breech-fed railgun with parallel pulse-forming network, a distributed-energy-store railgun, a distributed-current-feed (DCF) railgun, and a DCF railgun launcher.
Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson.
Warren, Ben H; Simberloff, Daniel; Ricklefs, Robert E; Aguilée, Robin; Condamine, Fabien L; Gravel, Dominique; Morlon, Hélène; Mouquet, Nicolas; Rosindell, James; Casquet, Juliane; Conti, Elena; Cornuault, Josselin; Fernández-Palacios, José María; Hengl, Tomislav; Norder, Sietze J; Rijsdijk, Kenneth F; Sanmartín, Isabel; Strasberg, Dominique; Triantis, Kostas A; Valente, Luis M; Whittaker, Robert J; Gillespie, Rosemary G; Emerson, Brent C; Thébaud, Christophe
2015-02-01
The study of islands as model systems has played an important role in the development of evolutionary and ecological theory. The 50th anniversary of MacArthur and Wilson's (December 1963) article, 'An equilibrium theory of insular zoogeography', was a recent milestone for this theme. Since 1963, island systems have provided new insights into the formation of ecological communities. Here, building on such developments, we highlight prospects for research on islands to improve our understanding of the ecology and evolution of communities in general. Throughout, we emphasise how attributes of islands combine to provide unusual research opportunities, the implications of which stretch far beyond islands. Molecular tools and increasing data acquisition now permit re-assessment of some fundamental issues that interested MacArthur and Wilson. These include the formation of ecological networks, species abundance distributions, and the contribution of evolution to community assembly. We also extend our prospects to other fields of ecology and evolution - understanding ecosystem functioning, speciation and diversification - frequently employing assets of oceanic islands in inferring the geographic area within which evolution has occurred, and potential barriers to gene flow. Although island-based theory is continually being enriched, incorporating non-equilibrium dynamics is identified as a major challenge for the future. © 2014 John Wiley & Sons Ltd/CNRS.
Implementing wireless sensor networks for architectural heritage conservation
NASA Astrophysics Data System (ADS)
Martínez-Garrido, M. I.; Aparicio, S.; Fort, R.; Izquierdo, M. A. G.; Anaya, J. J.
2012-04-01
Preventive conservation in architectural heritage is one of the most important aims for the development and implementation of new techniques to assess decay, lending to reduce damage before it has occurred and reducing costs in the long term. For that purpose, it is necessary to know all aspects influencing in decay evolution depending on the material under study and its internal and external conditions. Wireless sensor networks are an emerging technology and a minimally invasive technique. The use of these networks facilitates data acquisition and monitoring of a large number of variables that could provoke material damages, such as presence of harmful compounds like salts, dampness, etc. The current project presents different wireless sensors networks (WSN) and sensors used to fulfill the requirements for a complete analysis of main decay agents in a Renaissance church of the 16th century in Madrid (Spain). Current typologies and wireless technologies are studied establishing the most suitable system and the convenience of each one. Firstly, it is very important to consider that microclimate is in close correlation with material deterioration. Therefore a temperature(T) and relative humidity (RH)/moisture network has been developed, using ZigBee wireless communications protocols, and monitoring different points along the church surface. These points are recording RH/T differences depending on the height and the sensor location (inside the material or on the surface). On the other hand, T/RH button sensors have been used, minimizing aesthetical interferences, and concluding which is the most advisable way for monitoring these specific parameters. Due to the fact that microclimate is a complex phenomenon, it is necessary to examine spatial distribution and time evolution at the same time. This work shows both studies since the development expects a long term monitoring. A different wireless network has been deployed to study the effects of pollution caused by other active systems such as a forced-air heating system, the parishioners presence or feasts and other ventilation conditions. Finally weather conditions are registered through a weather station. Outside and inside conditions are compared to incorporate data to the network for a later decay modeling.
Automated video surveillance: teaching an old dog new tricks
NASA Astrophysics Data System (ADS)
McLeod, Alastair
1993-12-01
The automated video surveillance market is booming with new players, new systems, new hardware and software, and an extended range of applications. This paper reviews available technology, and describes the features required for a good automated surveillance system. Both hardware and software are discussed. An overview of typical applications is also given. A shift towards PC-based hybrid systems, use of parallel processing, neural networks, and exploitation of modern telecomms are introduced, highlighting the evolution modern video surveillance systems.
Self-organized magnetic particles to tune the mechanical behavior of a granular system
NASA Astrophysics Data System (ADS)
Cox, Meredith; Wang, Dong; Barés, Jonathan; Behringer, Robert P.
2016-09-01
Above a certain density a granular material jams. This property can be controlled by either tuning a global property, such as the packing fraction or by applying shear strain, or at the micro-scale by tuning grain shape, inter-particle friction or externally controlled organization. Here, we introduce a novel way to change a local granular property by adding a weak anisotropic magnetic interaction between particles. We measure the evolution of the pressure, P, and coordination number, Z, for a packing of 2D photo-elastic disks, subject to uniaxial compression. A fraction R m of the particles have embedded cuboidal magnets. The strength of the magnetic interactions between particles is too weak to have a strong direct effect on P or Z when the system is jammed. However, the magnetic interactions play an important role in the evolution of latent force networks when systems containing a large enough fraction of the particles with magnets are driven through unjammed to jammed states. In this case, a statistically stable network of magnetic chains self-organizes before jamming and overlaps with force chains once jamming occurs, strengthening the granular medium. This property opens a novel way to control mechanical properties of granular materials.
Crosstalk and the evolvability of intracellular communication.
Rowland, Michael A; Greenbaum, Joseph M; Deeds, Eric J
2017-07-10
Metazoan signalling networks are complex, with extensive crosstalk between pathways. It is unclear what pressures drove the evolution of this architecture. We explore the hypothesis that crosstalk allows different cell types, each expressing a specific subset of signalling proteins, to activate different outputs when faced with the same inputs, responding differently to the same environment. We find that the pressure to generate diversity leads to the evolution of networks with extensive crosstalk. Using available data, we find that human tissues exhibit higher levels of diversity between cell types than networks with random expression patterns or networks with no crosstalk. We also find that crosstalk and differential expression can influence drug activity: no protein has the same impact on two tissues when inhibited. In addition to providing a possible explanation for the evolution of crosstalk, our work indicates that consideration of cellular context will likely be crucial for targeting signalling networks.
Digital and analog chemical evolution.
Goodwin, Jay T; Mehta, Anil K; Lynn, David G
2012-12-18
Living matter is the most elaborate, elegant, and complex hierarchical material known and is consequently the natural target for an ever-expanding scientific and technological effort to unlock and deconvolute its marvelous forms and functions. Our current understanding suggests that biological materials are derived from a bottom-up process, a spontaneous emergence of molecular networks in the course of chemical evolution. Polymer cooperation, so beautifully manifested in the ribosome, appeared in these dynamic networks, and the special physicochemical properties of the nucleic and amino acid polymers made possible the critical threshold for the emergence of extant cellular life. These properties include the precise and geometrically discrete hydrogen bonding patterns that dominate the complementary interactions of nucleic acid base-pairing that guide replication and ensure replication fidelity. In contrast, complex and highly context-dependent sets of intra- and intermolecular interactions guide protein folding. These diverse interactions allow the more analog environmental chemical potential fluctuations to dictate conformational template-directed propagation. When these two different strategies converged in the remarkable synergistic ribonucleoprotein that is the ribosome, this resulting molecular digital-to-analog converter achieved the capacity for both persistent information storage and adaptive responses to an ever-changing environment. The ancestral chemical networks that preceded the Central Dogma of Earth's biology must reflect the dynamic chemical evolutionary landscapes that allowed for selection, propagation, and diversification and ultimately the demarcation and specialization of function that modern biopolymers manifest. Not only should modern biopolymers contain molecular fossils of this earlier age, but it should be possible to use this information to reinvent these dynamic functional networks. In this Account, we review the first dynamic network created by modification of a nucleic acid backbone and show how it has exploited the digital-like base pairing for reversible polymer construction and information transfer. We further review how these lessons have been extended to the complex folding landscapes of templated peptide assembly. These insights have allowed for the construction of molecular hybrids of each biopolymer class and made possible the reimagining of chemical evolution. Such elaboration of biopolymer chimeras has already led to applications in therapeutics and diagnostics, to the construction of novel nanostructured materials, and toward orthogonal biochemical pathways that expand the evolution of existing biochemical systems. The ability to look beyond the primordial emergence of the ribosome may allow us to better define the origins of chemical evolution, to extend its horizons beyond the biology of today and ask whether evolution is an inherent property of matter unbounded by physical limitations imposed by our planet's diverse environments.
The dynamic evolution of social ties and user-generated content: a case study on a Douban group
NASA Astrophysics Data System (ADS)
Shan, Siqing; Ren, Jie; Li, Cangyan
2017-11-01
As platforms based on user-generated content (UGC), social media platforms emphasise the social ties between users and user participation, which promote the communication and propagation of ideas and help to build and maintain relationships. However, many researchers have studied only predefined social networks, such as academic social networks. We believe that there are certain characteristics associated with the network's UGC worth evaluating. We conducted research in communities in which content attracts discussion and new members and examined the evolution patterns of social and content networks in a topic-oriented Douban group. Datasets of user and content information in communities of interest were collected through web crawler software. Networks based on social and content ties were constructed and analysed. We chose scale, density, centrality, average path length and cluster coefficient as measures for exploring the evolution and correlation of both types of networks. These findings are valuable for social media marketing and helpful in directing and controlling public opinion.
Ranking Causal Anomalies via Temporal and Dynamical Analysis on Vanishing Correlations.
Cheng, Wei; Zhang, Kai; Chen, Haifeng; Jiang, Guofei; Chen, Zhengzhang; Wang, Wei
2016-08-01
Modern world has witnessed a dramatic increase in our ability to collect, transmit and distribute real-time monitoring and surveillance data from large-scale information systems and cyber-physical systems. Detecting system anomalies thus attracts significant amount of interest in many fields such as security, fault management, and industrial optimization. Recently, invariant network has shown to be a powerful way in characterizing complex system behaviours. In the invariant network, a node represents a system component and an edge indicates a stable, significant interaction between two components. Structures and evolutions of the invariance network, in particular the vanishing correlations, can shed important light on locating causal anomalies and performing diagnosis. However, existing approaches to detect causal anomalies with the invariant network often use the percentage of vanishing correlations to rank possible casual components, which have several limitations: 1) fault propagation in the network is ignored; 2) the root casual anomalies may not always be the nodes with a high-percentage of vanishing correlations; 3) temporal patterns of vanishing correlations are not exploited for robust detection. To address these limitations, in this paper we propose a network diffusion based framework to identify significant causal anomalies and rank them. Our approach can effectively model fault propagation over the entire invariant network, and can perform joint inference on both the structural, and the time-evolving broken invariance patterns. As a result, it can locate high-confidence anomalies that are truly responsible for the vanishing correlations, and can compensate for unstructured measurement noise in the system. Extensive experiments on synthetic datasets, bank information system datasets, and coal plant cyber-physical system datasets demonstrate the effectiveness of our approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almansouri, Hani; Foster, Benjamin; Kisner, Roger A
2016-01-01
This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, andmore » provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.« less
Regulation, Competition and Network Evolution in Aviation
NASA Technical Reports Server (NTRS)
Gillen, David; Morrison, William
2003-01-01
Our focus is the evolution of business strategies and network structure decisions in the commercial passenger aviation industry. The paper reviews the growth of hub-and-spoke networks as the dominant business model following deregulation in the latter part of the 20 century, followed by the emergence of value-based airlines as a global phenomenon at the end of the century. The paper highlights the link between airline business strategies and network structures, and examines the resulting competition between divergent network structure business models. In this context we discuss issues of market structure stability and the role played by competition policy.
Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.
Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich
2004-03-01
By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix-loop-helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks emerging through single-gene duplications, the dominant importance of molecular modularity in the bottom-up construction of complex biological entities, and the convergent evolution of networks.
Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
Smith, Robert W; van Sluijs, Bob; Fleck, Christian
2017-12-02
Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.
Evolution of semilocal string networks. II. Velocity estimators
NASA Astrophysics Data System (ADS)
Lopez-Eiguren, A.; Urrestilla, J.; Achúcarro, A.; Avgoustidis, A.; Martins, C. J. A. P.
2017-07-01
We continue a comprehensive numerical study of semilocal string networks and their cosmological evolution. These can be thought of as hybrid networks comprised of (nontopological) string segments, whose core structure is similar to that of Abelian Higgs vortices, and whose ends have long-range interactions and behavior similar to that of global monopoles. Our study provides further evidence of a linear scaling regime, already reported in previous studies, for the typical length scale and velocity of the network. We introduce a new algorithm to identify the position of the segment cores. This allows us to determine the length and velocity of each individual segment and follow their evolution in time. We study the statistical distribution of segment lengths and velocities for radiation- and matter-dominated evolution in the regime where the strings are stable. Our segment detection algorithm gives higher length values than previous studies based on indirect detection methods. The statistical distribution shows no evidence of (anti)correlation between the speed and the length of the segments.
Programming temporal shapeshifting
NASA Astrophysics Data System (ADS)
Hu, Xiaobo; Zhou, Jing; Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Li, Qiaoxi; Zhushma, Aleksandr P.; Dobrynin, Andrey V.; Sheiko, Sergei S.
2016-09-01
Shapeshifting enables a wide range of engineering and biomedical applications, but until now transformations have required external triggers. This prerequisite limits viability in closed or inert systems and puts forward the challenge of developing materials with intrinsically encoded shape evolution. Herein we demonstrate programmable shape-memory materials that perform a sequence of encoded actuations under constant environment conditions without using an external trigger. We employ dual network hydrogels: in the first network, covalent crosslinks are introduced for elastic energy storage, and in the second one, temporary hydrogen-bonds regulate the energy release rate. Through strain-induced and time-dependent reorganization of the reversible hydrogen-bonds, this dual network allows for encoding both the rate and pathway of shape transformations on timescales from seconds to hours. This generic mechanism for programming trigger-free shapeshifting opens new ways to design autonomous actuators, drug-release systems and active implants.