Sample records for network inference analysis

  1. Gene network inference and visualization tools for biologists: application to new human transcriptome datasets

    PubMed Central

    Hurley, Daniel; Araki, Hiromitsu; Tamada, Yoshinori; Dunmore, Ben; Sanders, Deborah; Humphreys, Sally; Affara, Muna; Imoto, Seiya; Yasuda, Kaori; Tomiyasu, Yuki; Tashiro, Kosuke; Savoie, Christopher; Cho, Vicky; Smith, Stephen; Kuhara, Satoru; Miyano, Satoru; Charnock-Jones, D. Stephen; Crampin, Edmund J.; Print, Cristin G.

    2012-01-01

    Gene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data. We welcome contact from researchers interested in using our inference and visualization tools to answer biological questions. PMID:22121215

  2. A prior-based integrative framework for functional transcriptional regulatory network inference

    PubMed Central

    Siahpirani, Alireza F.

    2017-01-01

    Abstract Transcriptional regulatory networks specify regulatory proteins controlling the context-specific expression levels of genes. Inference of genome-wide regulatory networks is central to understanding gene regulation, but remains an open challenge. Expression-based network inference is among the most popular methods to infer regulatory networks, however, networks inferred from such methods have low overlap with experimentally derived (e.g. ChIP-chip and transcription factor (TF) knockouts) networks. Currently we have a limited understanding of this discrepancy. To address this gap, we first develop a regulatory network inference algorithm, based on probabilistic graphical models, to integrate expression with auxiliary datasets supporting a regulatory edge. Second, we comprehensively analyze our and other state-of-the-art methods on different expression perturbation datasets. Networks inferred by integrating sequence-specific motifs with expression have substantially greater agreement with experimentally derived networks, while remaining more predictive of expression than motif-based networks. Our analysis suggests natural genetic variation as the most informative perturbation for network inference, and, identifies core TFs whose targets are predictable from expression. Multiple reasons make the identification of targets of other TFs difficult, including network architecture and insufficient variation of TF mRNA level. Finally, we demonstrate the utility of our inference algorithm to infer stress-specific regulatory networks and for regulator prioritization. PMID:27794550

  3. Co-Inheritance Analysis within the Domains of Life Substantially Improves Network Inference by Phylogenetic Profiling

    PubMed Central

    Shin, Junha; Lee, Insuk

    2015-01-01

    Phylogenetic profiling, a network inference method based on gene inheritance profiles, has been widely used to construct functional gene networks in microbes. However, its utility for network inference in higher eukaryotes has been limited. An improved algorithm with an in-depth understanding of pathway evolution may overcome this limitation. In this study, we investigated the effects of taxonomic structures on co-inheritance analysis using 2,144 reference species in four query species: Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens. We observed three clusters of reference species based on a principal component analysis of the phylogenetic profiles, which correspond to the three domains of life—Archaea, Bacteria, and Eukaryota—suggesting that pathways inherit primarily within specific domains or lower-ranked taxonomic groups during speciation. Hence, the co-inheritance pattern within a taxonomic group may be eroded by confounding inheritance patterns from irrelevant taxonomic groups. We demonstrated that co-inheritance analysis within domains substantially improved network inference not only in microbe species but also in the higher eukaryotes, including humans. Although we observed two sub-domain clusters of reference species within Eukaryota, co-inheritance analysis within these sub-domain taxonomic groups only marginally improved network inference. Therefore, we conclude that co-inheritance analysis within domains is the optimal approach to network inference with the given reference species. The construction of a series of human gene networks with increasing sample sizes of the reference species for each domain revealed that the size of the high-accuracy networks increased as additional reference species genomes were included, suggesting that within-domain co-inheritance analysis will continue to expand human gene networks as genomes of additional species are sequenced. Taken together, we propose that co-inheritance analysis within the domains of life will greatly potentiate the use of the expected onslaught of sequenced genomes in the study of molecular pathways in higher eukaryotes. PMID:26394049

  4. Social networks help to infer causality in the tumor microenvironment.

    PubMed

    Crespo, Isaac; Doucey, Marie-Agnès; Xenarios, Ioannis

    2016-03-15

    Networks have become a popular way to conceptualize a system of interacting elements, such as electronic circuits, social communication, metabolism or gene regulation. Network inference, analysis, and modeling techniques have been developed in different areas of science and technology, such as computer science, mathematics, physics, and biology, with an active interdisciplinary exchange of concepts and approaches. However, some concepts seem to belong to a specific field without a clear transferability to other domains. At the same time, it is increasingly recognized that within some biological systems--such as the tumor microenvironment--where different types of resident and infiltrating cells interact to carry out their functions, the complexity of the system demands a theoretical framework, such as statistical inference, graph analysis and dynamical models, in order to asses and study the information derived from high-throughput experimental technologies. In this article we propose to adopt and adapt the concepts of influence and investment from the world of social network analysis to biological problems, and in particular to apply this approach to infer causality in the tumor microenvironment. We showed that constructing a bidirectional network of influence between cell and cell communication molecules allowed us to determine the direction of inferred regulations at the expression level and correctly recapitulate cause-effect relationships described in literature. This work constitutes an example of a transfer of knowledge and concepts from the world of social network analysis to biomedical research, in particular to infer network causality in biological networks. This causality elucidation is essential to model the homeostatic response of biological systems to internal and external factors, such as environmental conditions, pathogens or treatments.

  5. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods.

    PubMed

    Schaffter, Thomas; Marbach, Daniel; Floreano, Dario

    2011-08-15

    Over the last decade, numerous methods have been developed for inference of regulatory networks from gene expression data. However, accurate and systematic evaluation of these methods is hampered by the difficulty of constructing adequate benchmarks and the lack of tools for a differentiated analysis of network predictions on such benchmarks. Here, we describe a novel and comprehensive method for in silico benchmark generation and performance profiling of network inference methods available to the community as an open-source software called GeneNetWeaver (GNW). In addition to the generation of detailed dynamical models of gene regulatory networks to be used as benchmarks, GNW provides a network motif analysis that reveals systematic prediction errors, thereby indicating potential ways of improving inference methods. The accuracy of network inference methods is evaluated using standard metrics such as precision-recall and receiver operating characteristic curves. We show how GNW can be used to assess the performance and identify the strengths and weaknesses of six inference methods. Furthermore, we used GNW to provide the international Dialogue for Reverse Engineering Assessments and Methods (DREAM) competition with three network inference challenges (DREAM3, DREAM4 and DREAM5). GNW is available at http://gnw.sourceforge.net along with its Java source code, user manual and supporting data. Supplementary data are available at Bioinformatics online. dario.floreano@epfl.ch.

  6. State Space Model with hidden variables for reconstruction of gene regulatory networks.

    PubMed

    Wu, Xi; Li, Peng; Wang, Nan; Gong, Ping; Perkins, Edward J; Deng, Youping; Zhang, Chaoyang

    2011-01-01

    State Space Model (SSM) is a relatively new approach to inferring gene regulatory networks. It requires less computational time than Dynamic Bayesian Networks (DBN). There are two types of variables in the linear SSM, observed variables and hidden variables. SSM uses an iterative method, namely Expectation-Maximization, to infer regulatory relationships from microarray datasets. The hidden variables cannot be directly observed from experiments. How to determine the number of hidden variables has a significant impact on the accuracy of network inference. In this study, we used SSM to infer Gene regulatory networks (GRNs) from synthetic time series datasets, investigated Bayesian Information Criterion (BIC) and Principle Component Analysis (PCA) approaches to determining the number of hidden variables in SSM, and evaluated the performance of SSM in comparison with DBN. True GRNs and synthetic gene expression datasets were generated using GeneNetWeaver. Both DBN and linear SSM were used to infer GRNs from the synthetic datasets. The inferred networks were compared with the true networks. Our results show that inference precision varied with the number of hidden variables. For some regulatory networks, the inference precision of DBN was higher but SSM performed better in other cases. Although the overall performance of the two approaches is compatible, SSM is much faster and capable of inferring much larger networks than DBN. This study provides useful information in handling the hidden variables and improving the inference precision.

  7. Inference of neuronal network spike dynamics and topology from calcium imaging data

    PubMed Central

    Lütcke, Henry; Gerhard, Felipe; Zenke, Friedemann; Gerstner, Wulfram; Helmchen, Fritjof

    2013-01-01

    Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP) occurrence (“spike trains”) from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR) and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties. PMID:24399936

  8. Gene network analysis: from heart development to cardiac therapy.

    PubMed

    Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B

    2015-03-01

    Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.

  9. Inferring Network Controls from Topology Using the Chomp Database

    DTIC Science & Technology

    2015-12-03

    AFRL-AFOSR-VA-TR-2016-0033 INFERRING NETWORK CONTROLS FROM TOPOLOGY USING THE CHOMP DATABASE John Harer DUKE UNIVERSITY Final Report 12/03/2015...INFERRING NETWORK CONTROLS FROM TOPOLOGY USING THE CHOMP DATABASE 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-10-1-0436 5c. PROGRAM ELEMENT NUMBER 6...area of Topological Data Analysis (TDA) and it’s application to dynamical systems. The role of this work in the Complex Networks program is based on

  10. The Role of Probability-Based Inference in an Intelligent Tutoring System.

    ERIC Educational Resources Information Center

    Mislevy, Robert J.; Gitomer, Drew H.

    Probability-based inference in complex networks of interdependent variables is an active topic in statistical research, spurred by such diverse applications as forecasting, pedigree analysis, troubleshooting, and medical diagnosis. This paper concerns the role of Bayesian inference networks for updating student models in intelligent tutoring…

  11. Consistency of biological networks inferred from microarray and sequencing data.

    PubMed

    Vinciotti, Veronica; Wit, Ernst C; Jansen, Rick; de Geus, Eco J C N; Penninx, Brenda W J H; Boomsma, Dorret I; 't Hoen, Peter A C

    2016-06-24

    Sparse Gaussian graphical models are popular for inferring biological networks, such as gene regulatory networks. In this paper, we investigate the consistency of these models across different data platforms, such as microarray and next generation sequencing, on the basis of a rich dataset containing samples that are profiled under both techniques as well as a large set of independent samples. Our analysis shows that individual node variances can have a remarkable effect on the connectivity of the resulting network. Their inconsistency across platforms and the fact that the variability level of a node may not be linked to its regulatory role mean that, failing to scale the data prior to the network analysis, leads to networks that are not reproducible across different platforms and that may be misleading. Moreover, we show how the reproducibility of networks across different platforms is significantly higher if networks are summarised in terms of enrichment amongst functional groups of interest, such as pathways, rather than at the level of individual edges. Careful pre-processing of transcriptional data and summaries of networks beyond individual edges can improve the consistency of network inference across platforms. However, caution is needed at this stage in the (over)interpretation of gene regulatory networks inferred from biological data.

  12. Dynamic Network-Based Epistasis Analysis: Boolean Examples

    PubMed Central

    Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.

    2011-01-01

    In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and single-path assumption, but also by demonstrating the importance of considering temporal dynamics, and specifically introducing the usefulness of Boolean network models and also reviewing some key properties of network approaches. PMID:22645556

  13. Development of neural network techniques for finger-vein pattern classification

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen

    2010-02-01

    A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.

  14. Analysis and Design of Complex Network Environments

    DTIC Science & Technology

    2014-02-01

    entanglements among un- measured variables. This “potential entanglement ” type of network complexity is previously unaddressed in the literature, yet it...Appreciating the power of structural representations that allow for potential entanglement among unmeasured variables to simplify network inference problems...rely on the idea of subsystems and allows for potential entanglement among unmeasured states. As a result, inferring a system’s signal structure

  15. Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons

    PubMed Central

    Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang

    2011-01-01

    An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. PMID:22219717

  16. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineermore » regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.« less

  17. Network portal: a database for storage, analysis and visualization of biological networks

    PubMed Central

    Turkarslan, Serdar; Wurtmann, Elisabeth J.; Wu, Wei-Ju; Jiang, Ning; Bare, J. Christopher; Foley, Karen; Reiss, David J.; Novichkov, Pavel; Baliga, Nitin S.

    2014-01-01

    The ease of generating high-throughput data has enabled investigations into organismal complexity at the systems level through the inference of networks of interactions among the various cellular components (genes, RNAs, proteins and metabolites). The wider scientific community, however, currently has limited access to tools for network inference, visualization and analysis because these tasks often require advanced computational knowledge and expensive computing resources. We have designed the network portal (http://networks.systemsbiology.net) to serve as a modular database for the integration of user uploaded and public data, with inference algorithms and tools for the storage, visualization and analysis of biological networks. The portal is fully integrated into the Gaggle framework to seamlessly exchange data with desktop and web applications and to allow the user to create, save and modify workspaces, and it includes social networking capabilities for collaborative projects. While the current release of the database contains networks for 13 prokaryotic organisms from diverse phylogenetic clades (4678 co-regulated gene modules, 3466 regulators and 9291 cis-regulatory motifs), it will be rapidly populated with prokaryotic and eukaryotic organisms as relevant data become available in public repositories and through user input. The modular architecture, simple data formats and open API support community development of the portal. PMID:24271392

  18. Network inference from multimodal data: A review of approaches from infectious disease transmission.

    PubMed

    Ray, Bisakha; Ghedin, Elodie; Chunara, Rumi

    2016-12-01

    Networks inference problems are commonly found in multiple biomedical subfields such as genomics, metagenomics, neuroscience, and epidemiology. Networks are useful for representing a wide range of complex interactions ranging from those between molecular biomarkers, neurons, and microbial communities, to those found in human or animal populations. Recent technological advances have resulted in an increasing amount of healthcare data in multiple modalities, increasing the preponderance of network inference problems. Multi-domain data can now be used to improve the robustness and reliability of recovered networks from unimodal data. For infectious diseases in particular, there is a body of knowledge that has been focused on combining multiple pieces of linked information. Combining or analyzing disparate modalities in concert has demonstrated greater insight into disease transmission than could be obtained from any single modality in isolation. This has been particularly helpful in understanding incidence and transmission at early stages of infections that have pandemic potential. Novel pieces of linked information in the form of spatial, temporal, and other covariates including high-throughput sequence data, clinical visits, social network information, pharmaceutical prescriptions, and clinical symptoms (reported as free-text data) also encourage further investigation of these methods. The purpose of this review is to provide an in-depth analysis of multimodal infectious disease transmission network inference methods with a specific focus on Bayesian inference. We focus on analytical Bayesian inference-based methods as this enables recovering multiple parameters simultaneously, for example, not just the disease transmission network, but also parameters of epidemic dynamics. Our review studies their assumptions, key inference parameters and limitations, and ultimately provides insights about improving future network inference methods in multiple applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks.

    PubMed

    Deeter, Anthony; Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways.

  20. CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks.

    PubMed

    Gillani, Zeeshan; Akash, Muhammad Sajid Hamid; Rahaman, M D Matiur; Chen, Ming

    2014-11-30

    Predication of gene regularity network (GRN) from expression data is a challenging task. There are many methods that have been developed to address this challenge ranging from supervised to unsupervised methods. Most promising methods are based on support vector machine (SVM). There is a need for comprehensive analysis on prediction accuracy of supervised method SVM using different kernels on different biological experimental conditions and network size. We developed a tool (CompareSVM) based on SVM to compare different kernel methods for inference of GRN. Using CompareSVM, we investigated and evaluated different SVM kernel methods on simulated datasets of microarray of different sizes in detail. The results obtained from CompareSVM showed that accuracy of inference method depends upon the nature of experimental condition and size of the network. For network with nodes (<200) and average (over all sizes of networks), SVM Gaussian kernel outperform on knockout, knockdown, and multifactorial datasets compared to all the other inference methods. For network with large number of nodes (~500), choice of inference method depend upon nature of experimental condition. CompareSVM is available at http://bis.zju.edu.cn/CompareSVM/ .

  1. A New Modified Histogram Matching Normalization for Time Series Microarray Analysis.

    PubMed

    Astola, Laura; Molenaar, Jaap

    2014-07-01

    Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data.

  2. Functional networks inference from rule-based machine learning models.

    PubMed

    Lazzarini, Nicola; Widera, Paweł; Williamson, Stuart; Heer, Rakesh; Krasnogor, Natalio; Bacardit, Jaume

    2016-01-01

    Functional networks play an important role in the analysis of biological processes and systems. The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the similarity-based inference paradigm (e.g. gene co-expression) has been the most popular approach. It assumes a functional relationship between genes which are expressed at similar levels across different samples. An alternative to this paradigm is the inference of relationships from the structure of machine learning models. These models are able to capture complex relationships between variables, that often are different/complementary to the similarity-based methods. We propose a protocol to infer functional networks from machine learning models, called FuNeL. It assumes, that genes used together within a rule-based machine learning model to classify the samples, might also be functionally related at a biological level. The protocol is first tested on synthetic datasets and then evaluated on a test suite of 8 real-world datasets related to human cancer. The networks inferred from the real-world data are compared against gene co-expression networks of equal size, generated with 3 different methods. The comparison is performed from two different points of view. We analyse the enriched biological terms in the set of network nodes and the relationships between known disease-associated genes in a context of the network topology. The comparison confirms both the biological relevance and the complementary character of the knowledge captured by the FuNeL networks in relation to similarity-based methods and demonstrates its potential to identify known disease associations as core elements of the network. Finally, using a prostate cancer dataset as a case study, we confirm that the biological knowledge captured by our method is relevant to the disease and consistent with the specialised literature and with an independent dataset not used in the inference process. The implementation of our network inference protocol is available at: http://ico2s.org/software/funel.html.

  3. A New Modified Histogram Matching Normalization for Time Series Microarray Analysis

    PubMed Central

    Astola, Laura; Molenaar, Jaap

    2014-01-01

    Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data. PMID:27600344

  4. Reasoning and Knowledge Acquisition Framework for 5G Network Analytics

    PubMed Central

    2017-01-01

    Autonomic self-management is a key challenge for next-generation networks. This paper proposes an automated analysis framework to infer knowledge in 5G networks with the aim to understand the network status and to predict potential situations that might disrupt the network operability. The framework is based on the Endsley situational awareness model, and integrates automated capabilities for metrics discovery, pattern recognition, prediction techniques and rule-based reasoning to infer anomalous situations in the current operational context. Those situations should then be mitigated, either proactive or reactively, by a more complex decision-making process. The framework is driven by a use case methodology, where the network administrator is able to customize the knowledge inference rules and operational parameters. The proposal has also been instantiated to prove its adaptability to a real use case. To this end, a reference network traffic dataset was used to identify suspicious patterns and to predict the behavior of the monitored data volume. The preliminary results suggest a good level of accuracy on the inference of anomalous traffic volumes based on a simple configuration. PMID:29065473

  5. Reasoning and Knowledge Acquisition Framework for 5G Network Analytics.

    PubMed

    Sotelo Monge, Marco Antonio; Maestre Vidal, Jorge; García Villalba, Luis Javier

    2017-10-21

    Autonomic self-management is a key challenge for next-generation networks. This paper proposes an automated analysis framework to infer knowledge in 5G networks with the aim to understand the network status and to predict potential situations that might disrupt the network operability. The framework is based on the Endsley situational awareness model, and integrates automated capabilities for metrics discovery, pattern recognition, prediction techniques and rule-based reasoning to infer anomalous situations in the current operational context. Those situations should then be mitigated, either proactive or reactively, by a more complex decision-making process. The framework is driven by a use case methodology, where the network administrator is able to customize the knowledge inference rules and operational parameters. The proposal has also been instantiated to prove its adaptability to a real use case. To this end, a reference network traffic dataset was used to identify suspicious patterns and to predict the behavior of the monitored data volume. The preliminary results suggest a good level of accuracy on the inference of anomalous traffic volumes based on a simple configuration.

  6. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks

    PubMed Central

    Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways. PMID:29049295

  7. GRN2SBML: automated encoding and annotation of inferred gene regulatory networks complying with SBML.

    PubMed

    Vlaic, Sebastian; Hoffmann, Bianca; Kupfer, Peter; Weber, Michael; Dräger, Andreas

    2013-09-01

    GRN2SBML automatically encodes gene regulatory networks derived from several inference tools in systems biology markup language. Providing a graphical user interface, the networks can be annotated via the simple object access protocol (SOAP)-based application programming interface of BioMart Central Portal and minimum information required in the annotation of models registry. Additionally, we provide an R-package, which processes the output of supported inference algorithms and automatically passes all required parameters to GRN2SBML. Therefore, GRN2SBML closes a gap in the processing pipeline between the inference of gene regulatory networks and their subsequent analysis, visualization and storage. GRN2SBML is freely available under the GNU Public License version 3 and can be downloaded from http://www.hki-jena.de/index.php/0/2/490. General information on GRN2SBML, examples and tutorials are available at the tool's web page.

  8. Understanding the Dynamics of MOOC Discussion Forums with Simulation Investigation for Empirical Network Analysis (SIENA)

    ERIC Educational Resources Information Center

    Zhang, Jingjing; Skryabin, Maxim; Song, Xiongwei

    2016-01-01

    This study attempts to make inferences about the mechanisms that drive network change over time. It adopts simulation investigation for empirical network analysis to examine the patterns and evolution of relationships formed in the context of a massive open online course (MOOC) discussion forum. Four network effects--"homophily,"…

  9. Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks

    PubMed Central

    2018-01-01

    Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their Google matrices, using parallels with quantum scattering theory, developed for nuclear and mesoscopic physics and quantum chaos. We introduce analytical “reduced Google matrix” method for the analysis of biological network structure. The method allows inferring hidden causal relations between the members of a signaling pathway or a functionally related group of genes. We investigate how the structure of hidden causal relations can be reprogrammed as a result of changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach rigorously characterizes complex systemic changes in the wiring of large causal biological networks in a computationally efficient way. PMID:29370181

  10. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.

    PubMed

    Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas

    2016-09-19

    Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.

  11. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  12. Differential C3NET reveals disease networks of direct physical interactions

    PubMed Central

    2011-01-01

    Background Genes might have different gene interactions in different cell conditions, which might be mapped into different networks. Differential analysis of gene networks allows spotting condition-specific interactions that, for instance, form disease networks if the conditions are a disease, such as cancer, and normal. This could potentially allow developing better and subtly targeted drugs to cure cancer. Differential network analysis with direct physical gene interactions needs to be explored in this endeavour. Results C3NET is a recently introduced information theory based gene network inference algorithm that infers direct physical gene interactions from expression data, which was shown to give consistently higher inference performances over various networks than its competitors. In this paper, we present, DC3net, an approach to employ C3NET in inferring disease networks. We apply DC3net on a synthetic and real prostate cancer datasets, which show promising results. With loose cutoffs, we predicted 18583 interactions from tumor and normal samples in total. Although there are no reference interactions databases for the specific conditions of our samples in the literature, we found verifications for 54 of our predicted direct physical interactions from only four of the biological interaction databases. As an example, we predicted that RAD50 with TRF2 have prostate cancer specific interaction that turned out to be having validation from the literature. It is known that RAD50 complex associates with TRF2 in the S phase of cell cycle, which suggests that this predicted interaction may promote telomere maintenance in tumor cells in order to allow tumor cells to divide indefinitely. Our enrichment analysis suggests that the identified tumor specific gene interactions may be potentially important in driving the growth in prostate cancer. Additionally, we found that the highest connected subnetwork of our predicted tumor specific network is enriched for all proliferation genes, which further suggests that the genes in this network may serve in the process of oncogenesis. Conclusions Our approach reveals disease specific interactions. It may help to make experimental follow-up studies more cost and time efficient by prioritizing disease relevant parts of the global gene network. PMID:21777411

  13. Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to Infer Protein-Disease Associations.

    PubMed

    Suratanee, Apichat; Plaimas, Kitiporn

    2017-01-01

    The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k -nearest neighbor (R k NN) search. The R k NN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the R k NN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases.

  14. MicroRNA-Target Network Inference and Local Network Enrichment Analysis Identify Two microRNA Clusters with Distinct Functions in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Sass, Steffen; Pitea, Adriana; Unger, Kristian; Hess, Julia; Mueller, Nikola S.; Theis, Fabian J.

    2015-01-01

    MicroRNAs represent ~22 nt long endogenous small RNA molecules that have been experimentally shown to regulate gene expression post-transcriptionally. One main interest in miRNA research is the investigation of their functional roles, which can typically be accomplished by identification of mi-/mRNA interactions and functional annotation of target gene sets. We here present a novel method “miRlastic”, which infers miRNA-target interactions using transcriptomic data as well as prior knowledge and performs functional annotation of target genes by exploiting the local structure of the inferred network. For the network inference, we applied linear regression modeling with elastic net regularization on matched microRNA and messenger RNA expression profiling data to perform feature selection on prior knowledge from sequence-based target prediction resources. The novelty of miRlastic inference originates in predicting data-driven intra-transcriptome regulatory relationships through feature selection. With synthetic data, we showed that miRlastic outperformed commonly used methods and was suitable even for low sample sizes. To gain insight into the functional role of miRNAs and to determine joint functional properties of miRNA clusters, we introduced a local enrichment analysis procedure. The principle of this procedure lies in identifying regions of high functional similarity by evaluating the shortest paths between genes in the network. We can finally assign functional roles to the miRNAs by taking their regulatory relationships into account. We thoroughly evaluated miRlastic on a cohort of head and neck cancer (HNSCC) patients provided by The Cancer Genome Atlas. We inferred an mi-/mRNA regulatory network for human papilloma virus (HPV)-associated miRNAs in HNSCC. The resulting network best enriched for experimentally validated miRNA-target interaction, when compared to common methods. Finally, the local enrichment step identified two functional clusters of miRNAs that were predicted to mediate HPV-associated dysregulation in HNSCC. Our novel approach was able to characterize distinct pathway regulations from matched miRNA and mRNA data. An R package of miRlastic was made available through: http://icb.helmholtz-muenchen.de/mirlastic. PMID:26694379

  15. MicroRNA-Target Network Inference and Local Network Enrichment Analysis Identify Two microRNA Clusters with Distinct Functions in Head and Neck Squamous Cell Carcinoma.

    PubMed

    Sass, Steffen; Pitea, Adriana; Unger, Kristian; Hess, Julia; Mueller, Nikola S; Theis, Fabian J

    2015-12-18

    MicroRNAs represent ~22 nt long endogenous small RNA molecules that have been experimentally shown to regulate gene expression post-transcriptionally. One main interest in miRNA research is the investigation of their functional roles, which can typically be accomplished by identification of mi-/mRNA interactions and functional annotation of target gene sets. We here present a novel method "miRlastic", which infers miRNA-target interactions using transcriptomic data as well as prior knowledge and performs functional annotation of target genes by exploiting the local structure of the inferred network. For the network inference, we applied linear regression modeling with elastic net regularization on matched microRNA and messenger RNA expression profiling data to perform feature selection on prior knowledge from sequence-based target prediction resources. The novelty of miRlastic inference originates in predicting data-driven intra-transcriptome regulatory relationships through feature selection. With synthetic data, we showed that miRlastic outperformed commonly used methods and was suitable even for low sample sizes. To gain insight into the functional role of miRNAs and to determine joint functional properties of miRNA clusters, we introduced a local enrichment analysis procedure. The principle of this procedure lies in identifying regions of high functional similarity by evaluating the shortest paths between genes in the network. We can finally assign functional roles to the miRNAs by taking their regulatory relationships into account. We thoroughly evaluated miRlastic on a cohort of head and neck cancer (HNSCC) patients provided by The Cancer Genome Atlas. We inferred an mi-/mRNA regulatory network for human papilloma virus (HPV)-associated miRNAs in HNSCC. The resulting network best enriched for experimentally validated miRNA-target interaction, when compared to common methods. Finally, the local enrichment step identified two functional clusters of miRNAs that were predicted to mediate HPV-associated dysregulation in HNSCC. Our novel approach was able to characterize distinct pathway regulations from matched miRNA and mRNA data. An R package of miRlastic was made available through: http://icb.helmholtz-muenchen.de/mirlastic.

  16. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon.

    PubMed

    Koda, Satoru; Onda, Yoshihiko; Matsui, Hidetoshi; Takahagi, Kotaro; Yamaguchi-Uehara, Yukiko; Shimizu, Minami; Inoue, Komaki; Yoshida, Takuhiro; Sakurai, Tetsuya; Honda, Hiroshi; Eguchi, Shinto; Nishii, Ryuei; Mochida, Keiichi

    2017-01-01

    We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon . To reveal the diurnal changes in the transcriptome in B. distachyon , we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon . On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon , aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.

  17. Dynamics on networks: the role of local dynamics and global networks on the emergence of hypersynchronous neural activity.

    PubMed

    Schmidt, Helmut; Petkov, George; Richardson, Mark P; Terry, John R

    2014-11-01

    Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit, which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly decreased for the epilepsy cohort for functional networks inferred from both theta (3-6 Hz) and low-alpha (6-9 Hz) bands. We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the ability of our method to identify individuals with epilepsy, observing up to 80% predictive power through use of receiver operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately enable a more appropriate mechanistic stratification of people with epilepsy leading to improved diagnostics and therapeutics.

  18. Emissions of methane in Europe inferred by total column measurements

    NASA Astrophysics Data System (ADS)

    Wunch, D.; Deutscher, N. M.; Hase, F.; Notholt, J.; Sussmann, R.; Toon, G. C.; Warneke, T.

    2017-12-01

    Atmospheric total column measurements have been used to infer emissions of methane in urban centres around the world. These measurements have been shown to be useful for verifying city-scale bottom-up inventories, and they can provide both timely and sub-annual emission information. We will present our analysis of atmospheric total column measurements of methane and carbon monoxide to infer annual and seasonal regional emissions of methane within Europe using five long-running atmospheric observatories. These observatories are part of the Total Carbon Column Observing Network, part of a global network that has been carefully designed to measure these gases on a consistent scale. Our inferred emissions will then be used to evaluate gridded emissions inventories in the region.

  19. Inferring Plasmodium vivax Transmission Networks from Tempo-Spatial Surveillance Data

    PubMed Central

    Shi, Benyun; Liu, Jiming; Zhou, Xiao-Nong; Yang, Guo-Jing

    2014-01-01

    Background The transmission networks of Plasmodium vivax characterize how the parasite transmits from one location to another, which are informative and insightful for public health policy makers to accurately predict the patterns of its geographical spread. However, such networks are not apparent from surveillance data because P. vivax transmission can be affected by many factors, such as the biological characteristics of mosquitoes and the mobility of human beings. Here, we pay special attention to the problem of how to infer the underlying transmission networks of P. vivax based on available tempo-spatial patterns of reported cases. Methodology We first define a spatial transmission model, which involves representing both the heterogeneous transmission potential of P. vivax at individual locations and the mobility of infected populations among different locations. Based on the proposed transmission model, we further introduce a recurrent neural network model to infer the transmission networks from surveillance data. Specifically, in this model, we take into account multiple real-world factors, including the length of P. vivax incubation period, the impact of malaria control at different locations, and the total number of imported cases. Principal Findings We implement our proposed models by focusing on the P. vivax transmission among 62 towns in Yunnan province, People's Republic China, which have been experiencing high malaria transmission in the past years. By conducting scenario analysis with respect to different numbers of imported cases, we can (i) infer the underlying P. vivax transmission networks, (ii) estimate the number of imported cases for each individual town, and (iii) quantify the roles of individual towns in the geographical spread of P. vivax. Conclusion The demonstrated models have presented a general means for inferring the underlying transmission networks from surveillance data. The inferred networks will offer new insights into how to improve the predictability of P. vivax transmission. PMID:24516684

  20. Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.

    PubMed

    Pecevski, Dejan; Maass, Wolfgang

    2016-01-01

    Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.

  1. Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123

    PubMed Central

    Pecevski, Dejan

    2016-01-01

    Abstract Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p* that generates the examples it receives. This holds even if p* contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference. PMID:27419214

  2. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data.

    PubMed

    Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger

    2017-01-01

    Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.

  3. Inference on network statistics by restricting to the network space: applications to sexual history data.

    PubMed

    Goyal, Ravi; De Gruttola, Victor

    2018-01-30

    Analysis of sexual history data intended to describe sexual networks presents many challenges arising from the fact that most surveys collect information on only a very small fraction of the population of interest. In addition, partners are rarely identified and responses are subject to reporting biases. Typically, each network statistic of interest, such as mean number of sexual partners for men or women, is estimated independently of other network statistics. There is, however, a complex relationship among networks statistics; and knowledge of these relationships can aid in addressing concerns mentioned earlier. We develop a novel method that constrains a posterior predictive distribution of a collection of network statistics in order to leverage the relationships among network statistics in making inference about network properties of interest. The method ensures that inference on network properties is compatible with an actual network. Through extensive simulation studies, we also demonstrate that use of this method can improve estimates in settings where there is uncertainty that arises both from sampling and from systematic reporting bias compared with currently available approaches to estimation. To illustrate the method, we apply it to estimate network statistics using data from the Chicago Health and Social Life Survey. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Network inference using informative priors.

    PubMed

    Mukherjee, Sach; Speed, Terence P

    2008-09-23

    Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of "network inference" is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling.

  5. Generative models for discovering sparse distributed representations.

    PubMed Central

    Hinton, G E; Ghahramani, Z

    1997-01-01

    We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor analysis and can be implemented in a neural network. The model uses bottom-up, top-down and lateral connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been performed the connection strengths can be updated using a very simple learning rule that only requires locally available information. We demonstrate that the network learns to extract sparse, distributed, hierarchical representations. PMID:9304685

  6. Active learning of cortical connectivity from two-photon imaging data.

    PubMed

    Bertrán, Martín A; Martínez, Natalia L; Wang, Ye; Dunson, David; Sapiro, Guillermo; Ringach, Dario

    2018-01-01

    Understanding how groups of neurons interact within a network is a fundamental question in system neuroscience. Instead of passively observing the ongoing activity of a network, we can typically perturb its activity, either by external sensory stimulation or directly via techniques such as two-photon optogenetics. A natural question is how to use such perturbations to identify the connectivity of the network efficiently. Here we introduce a method to infer sparse connectivity graphs from in-vivo, two-photon imaging of population activity in response to external stimuli. A novel aspect of the work is the introduction of a recommended distribution, incrementally learned from the data, to optimally refine the inferred network. Unlike existing system identification techniques, this "active learning" method automatically focuses its attention on key undiscovered areas of the network, instead of targeting global uncertainty indicators like parameter variance. We show how active learning leads to faster inference while, at the same time, provides confidence intervals for the network parameters. We present simulations on artificial small-world networks to validate the methods and apply the method to real data. Analysis of frequency of motifs recovered show that cortical networks are consistent with a small-world topology model.

  7. Active learning of cortical connectivity from two-photon imaging data

    PubMed Central

    Wang, Ye; Dunson, David; Sapiro, Guillermo; Ringach, Dario

    2018-01-01

    Understanding how groups of neurons interact within a network is a fundamental question in system neuroscience. Instead of passively observing the ongoing activity of a network, we can typically perturb its activity, either by external sensory stimulation or directly via techniques such as two-photon optogenetics. A natural question is how to use such perturbations to identify the connectivity of the network efficiently. Here we introduce a method to infer sparse connectivity graphs from in-vivo, two-photon imaging of population activity in response to external stimuli. A novel aspect of the work is the introduction of a recommended distribution, incrementally learned from the data, to optimally refine the inferred network. Unlike existing system identification techniques, this “active learning” method automatically focuses its attention on key undiscovered areas of the network, instead of targeting global uncertainty indicators like parameter variance. We show how active learning leads to faster inference while, at the same time, provides confidence intervals for the network parameters. We present simulations on artificial small-world networks to validate the methods and apply the method to real data. Analysis of frequency of motifs recovered show that cortical networks are consistent with a small-world topology model. PMID:29718955

  8. Cytoprophet: a Cytoscape plug-in for protein and domain interaction networks inference.

    PubMed

    Morcos, Faruck; Lamanna, Charles; Sikora, Marcin; Izaguirre, Jesús

    2008-10-01

    Cytoprophet is a software tool that allows prediction and visualization of protein and domain interaction networks. It is implemented as a plug-in of Cytoscape, an open source software framework for analysis and visualization of molecular networks. Cytoprophet implements three algorithms that predict new potential physical interactions using the domain composition of proteins and experimental assays. The algorithms for protein and domain interaction inference include maximum likelihood estimation (MLE) using expectation maximization (EM); the set cover approach maximum specificity set cover (MSSC) and the sum-product algorithm (SPA). After accepting an input set of proteins with Uniprot ID/Accession numbers and a selected prediction algorithm, Cytoprophet draws a network of potential interactions with probability scores and GO distances as edge attributes. A network of domain interactions between the domains of the initial protein list can also be generated. Cytoprophet was designed to take advantage of the visual capabilities of Cytoscape and be simple to use. An example of inference in a signaling network of myxobacterium Myxococcus xanthus is presented and available at Cytoprophet's website. http://cytoprophet.cse.nd.edu.

  9. A novel gene network inference algorithm using predictive minimum description length approach.

    PubMed

    Chaitankar, Vijender; Ghosh, Preetam; Perkins, Edward J; Gong, Ping; Deng, Youping; Zhang, Chaoyang

    2010-05-28

    Reverse engineering of gene regulatory networks using information theory models has received much attention due to its simplicity, low computational cost, and capability of inferring large networks. One of the major problems with information theory models is to determine the threshold which defines the regulatory relationships between genes. The minimum description length (MDL) principle has been implemented to overcome this problem. The description length of the MDL principle is the sum of model length and data encoding length. A user-specified fine tuning parameter is used as control mechanism between model and data encoding, but it is difficult to find the optimal parameter. In this work, we proposed a new inference algorithm which incorporated mutual information (MI), conditional mutual information (CMI) and predictive minimum description length (PMDL) principle to infer gene regulatory networks from DNA microarray data. In this algorithm, the information theoretic quantities MI and CMI determine the regulatory relationships between genes and the PMDL principle method attempts to determine the best MI threshold without the need of a user-specified fine tuning parameter. The performance of the proposed algorithm was evaluated using both synthetic time series data sets and a biological time series data set for the yeast Saccharomyces cerevisiae. The benchmark quantities precision and recall were used as performance measures. The results show that the proposed algorithm produced less false edges and significantly improved the precision, as compared to the existing algorithm. For further analysis the performance of the algorithms was observed over different sizes of data. We have proposed a new algorithm that implements the PMDL principle for inferring gene regulatory networks from time series DNA microarray data that eliminates the need of a fine tuning parameter. The evaluation results obtained from both synthetic and actual biological data sets show that the PMDL principle is effective in determining the MI threshold and the developed algorithm improves precision of gene regulatory network inference. Based on the sensitivity analysis of all tested cases, an optimal CMI threshold value has been identified. Finally it was observed that the performance of the algorithms saturates at a certain threshold of data size.

  10. EGRINs (Environmental Gene Regulatory Influence Networks) in Rice That Function in the Response to Water Deficit, High Temperature, and Agricultural Environments[OPEN

    PubMed Central

    Hafemeister, Christoph; Nicotra, Adrienne B.; Jagadish, S.V. Krishna; Bonneau, Richard; Purugganan, Michael

    2016-01-01

    Environmental gene regulatory influence networks (EGRINs) coordinate the timing and rate of gene expression in response to environmental signals. EGRINs encompass many layers of regulation, which culminate in changes in accumulated transcript levels. Here, we inferred EGRINs for the response of five tropical Asian rice (Oryza sativa) cultivars to high temperatures, water deficit, and agricultural field conditions by systematically integrating time-series transcriptome data, patterns of nucleosome-free chromatin, and the occurrence of known cis-regulatory elements. First, we identified 5447 putative target genes for 445 transcription factors (TFs) by connecting TFs with genes harboring known cis-regulatory motifs in nucleosome-free regions proximal to their transcriptional start sites. We then used network component analysis to estimate the regulatory activity for each TF based on the expression of its putative target genes. Finally, we inferred an EGRIN using the estimated transcription factor activity (TFA) as the regulator. The EGRINs include regulatory interactions between 4052 target genes regulated by 113 TFs. We resolved distinct regulatory roles for members of the heat shock factor family, including a putative regulatory connection between abiotic stress and the circadian clock. TFA estimation using network component analysis is an effective way of incorporating multiple genome-scale measurements into network inference. PMID:27655842

  11. On the inherent competition between valid and spurious inductive inferences in Boolean data

    NASA Astrophysics Data System (ADS)

    Andrecut, M.

    Inductive inference is the process of extracting general rules from specific observations. This problem also arises in the analysis of biological networks, such as genetic regulatory networks, where the interactions are complex and the observations are incomplete. A typical task in these problems is to extract general interaction rules as combinations of Boolean covariates, that explain a measured response variable. The inductive inference process can be considered as an incompletely specified Boolean function synthesis problem. This incompleteness of the problem will also generate spurious inferences, which are a serious threat to valid inductive inference rules. Using random Boolean data as a null model, here we attempt to measure the competition between valid and spurious inductive inference rules from a given data set. We formulate two greedy search algorithms, which synthesize a given Boolean response variable in a sparse disjunct normal form, and respectively a sparse generalized algebraic normal form of the variables from the observation data, and we evaluate numerically their performance.

  12. Paleoclimate networks: a concept meeting central challenges in the reconstruction of paleoclimate dynamics

    NASA Astrophysics Data System (ADS)

    Rehfeld, Kira; Goswami, Bedartha; Marwan, Norbert; Breitenbach, Sebastian; Kurths, Jürgen

    2013-04-01

    Statistical analysis of dependencies amongst paleoclimate data helps to infer on the climatic processes they reflect. Three key challenges have to be addressed, however: the datasets are heterogeneous in time (i) and space (ii), and furthermore time itself is a variable that needs to be reconstructed, which (iii) introduces additional uncertainties. To address these issues in a flexible way we developed the paleoclimate network framework, inspired by the increasing application of complex networks in climate research. Nodes in the paleoclimate network represent a paleoclimate archive, and an associated time series. Links between these nodes are assigned, if these time series are significantly similar. Therefore, the base of the paleoclimate network is formed by linear and nonlinear estimators for Pearson correlation, mutual information and event synchronization, which quantify similarity from irregularly sampled time series. Age uncertainties are propagated into the final network analysis using time series ensembles which reflect the uncertainty. We discuss how spatial heterogeneity influences the results obtained from network measures, and demonstrate the power of the approach by inferring teleconnection variability of the Asian summer monsoon for the past 1000 years.

  13. Network inference using informative priors

    PubMed Central

    Mukherjee, Sach; Speed, Terence P.

    2008-01-01

    Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of “network inference” is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling. PMID:18799736

  14. Uncovering Influence through Social Network Analysis: The Role of Schools in Education for Sustainable Development

    ERIC Educational Resources Information Center

    Kolleck, Nina

    2016-01-01

    This paper examines the implementation of Education for Sustainable Development (ESD) in Germany and explores the possibilities of Social Network Analysis (SNA) for uncovering influential actors in educational policy innovation processes. From the theoretical perspective, an actor's influence is inferred from its relative position within…

  15. A Machine Learning Approach to Predict Gene Regulatory Networks in Seed Development in Arabidopsis

    PubMed Central

    Ni, Ying; Aghamirzaie, Delasa; Elmarakeby, Haitham; Collakova, Eva; Li, Song; Grene, Ruth; Heath, Lenwood S.

    2016-01-01

    Gene regulatory networks (GRNs) provide a representation of relationships between regulators and their target genes. Several methods for GRN inference, both unsupervised and supervised, have been developed to date. Because regulatory relationships consistently reprogram in diverse tissues or under different conditions, GRNs inferred without specific biological contexts are of limited applicability. In this report, a machine learning approach is presented to predict GRNs specific to developing Arabidopsis thaliana embryos. We developed the Beacon GRN inference tool to predict GRNs occurring during seed development in Arabidopsis based on a support vector machine (SVM) model. We developed both global and local inference models and compared their performance, demonstrating that local models are generally superior for our application. Using both the expression levels of the genes expressed in developing embryos and prior known regulatory relationships, GRNs were predicted for specific embryonic developmental stages. The targets that are strongly positively correlated with their regulators are mostly expressed at the beginning of seed development. Potential direct targets were identified based on a match between the promoter regions of these inferred targets and the cis elements recognized by specific regulators. Our analysis also provides evidence for previously unknown inhibitory effects of three positive regulators of gene expression. The Beacon GRN inference tool provides a valuable model system for context-specific GRN inference and is freely available at https://github.com/BeaconProjectAtVirginiaTech/beacon_network_inference.git. PMID:28066488

  16. An algebra-based method for inferring gene regulatory networks.

    PubMed

    Vera-Licona, Paola; Jarrah, Abdul; Garcia-Puente, Luis David; McGee, John; Laubenbacher, Reinhard

    2014-03-26

    The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network. Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html.

  17. Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering

    NASA Technical Reports Server (NTRS)

    Dhaeseleer, Patrik; Liang, Shoudan; Somogyi, Roland

    2000-01-01

    Advances in molecular biological, analytical, and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-duster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e., who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting, and bioengineering.

  18. F-MAP: A Bayesian approach to infer the gene regulatory network using external hints

    PubMed Central

    Shahdoust, Maryam; Mahjub, Hossein; Sadeghi, Mehdi

    2017-01-01

    The Common topological features of related species gene regulatory networks suggest reconstruction of the network of one species by using the further information from gene expressions profile of related species. We present an algorithm to reconstruct the gene regulatory network named; F-MAP, which applies the knowledge about gene interactions from related species. Our algorithm sets a Bayesian framework to estimate the precision matrix of one species microarray gene expressions dataset to infer the Gaussian Graphical model of the network. The conjugate Wishart prior is used and the information from related species is applied to estimate the hyperparameters of the prior distribution by using the factor analysis. Applying the proposed algorithm on six related species of drosophila shows that the precision of reconstructed networks is improved considerably compared to the precision of networks constructed by other Bayesian approaches. PMID:28938012

  19. Model based inference from microvascular measurements: Combining experimental measurements and model predictions using a Bayesian probabilistic approach

    PubMed Central

    Rasmussen, Peter M.; Smith, Amy F.; Sakadžić, Sava; Boas, David A.; Pries, Axel R.; Secomb, Timothy W.; Østergaard, Leif

    2017-01-01

    Objective In vivo imaging of the microcirculation and network-oriented modeling have emerged as powerful means of studying microvascular function and understanding its physiological significance. Network-oriented modeling may provide the means of summarizing vast amounts of data produced by high-throughput imaging techniques in terms of key, physiological indices. To estimate such indices with sufficient certainty, however, network-oriented analysis must be robust to the inevitable presence of uncertainty due to measurement errors as well as model errors. Methods We propose the Bayesian probabilistic data analysis framework as a means of integrating experimental measurements and network model simulations into a combined and statistically coherent analysis. The framework naturally handles noisy measurements and provides posterior distributions of model parameters as well as physiological indices associated with uncertainty. Results We applied the analysis framework to experimental data from three rat mesentery networks and one mouse brain cortex network. We inferred distributions for more than five hundred unknown pressure and hematocrit boundary conditions. Model predictions were consistent with previous analyses, and remained robust when measurements were omitted from model calibration. Conclusion Our Bayesian probabilistic approach may be suitable for optimizing data acquisition and for analyzing and reporting large datasets acquired as part of microvascular imaging studies. PMID:27987383

  20. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits.

    PubMed

    Pan, Yu; Bradley, Glyn; Pyke, Kevin; Ball, Graham; Lu, Chungui; Fray, Rupert; Marshall, Alexandra; Jayasuta, Subhalai; Baxter, Charles; van Wijk, Rik; Boyden, Laurie; Cade, Rebecca; Chapman, Natalie H; Fraser, Paul D; Hodgman, Charlie; Seymour, Graham B

    2013-03-01

    Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening.

  1. Gene regulatory network inference using fused LASSO on multiple data sets

    PubMed Central

    Omranian, Nooshin; Eloundou-Mbebi, Jeanne M. O.; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2016-01-01

    Devising computational methods to accurately reconstruct gene regulatory networks given gene expression data is key to systems biology applications. Here we propose a method for reconstructing gene regulatory networks by simultaneous consideration of data sets from different perturbation experiments and corresponding controls. The method imposes three biologically meaningful constraints: (1) expression levels of each gene should be explained by the expression levels of a small number of transcription factor coding genes, (2) networks inferred from different data sets should be similar with respect to the type and number of regulatory interactions, and (3) relationships between genes which exhibit similar differential behavior over the considered perturbations should be favored. We demonstrate that these constraints can be transformed in a fused LASSO formulation for the proposed method. The comparative analysis on transcriptomics time-series data from prokaryotic species, Escherichia coli and Mycobacterium tuberculosis, as well as a eukaryotic species, mouse, demonstrated that the proposed method has the advantages of the most recent approaches for regulatory network inference, while obtaining better performance and assigning higher scores to the true regulatory links. The study indicates that the combination of sparse regression techniques with other biologically meaningful constraints is a promising framework for gene regulatory network reconstructions. PMID:26864687

  2. Network meta-analysis: an introduction for clinicians.

    PubMed

    Rouse, Benjamin; Chaimani, Anna; Li, Tianjing

    2017-02-01

    Network meta-analysis is a technique for comparing multiple treatments simultaneously in a single analysis by combining direct and indirect evidence within a network of randomized controlled trials. Network meta-analysis may assist assessing the comparative effectiveness of different treatments regularly used in clinical practice and, therefore, has become attractive among clinicians. However, if proper caution is not taken in conducting and interpreting network meta-analysis, inferences might be biased. The aim of this paper is to illustrate the process of network meta-analysis with the aid of a working example on first-line medical treatment for primary open-angle glaucoma. We discuss the key assumption of network meta-analysis, as well as the unique considerations for developing appropriate research questions, conducting the literature search, abstracting data, performing qualitative and quantitative synthesis, presenting results, drawing conclusions, and reporting the findings in a network meta-analysis.

  3. Protein Inference from the Integration of Tandem MS Data and Interactome Networks.

    PubMed

    Zhong, Jiancheng; Wang, Jianxing; Ding, Xiaojun; Zhang, Zhen; Li, Min; Wu, Fang-Xiang; Pan, Yi

    2017-01-01

    Since proteins are digested into a mixture of peptides in the preprocessing step of tandem mass spectrometry (MS), it is difficult to determine which specific protein a shared peptide belongs to. In recent studies, besides tandem MS data and peptide identification information, some other information is exploited to infer proteins. Different from the methods which first use only tandem MS data to infer proteins and then use network information to refine them, this study proposes a protein inference method named TMSIN, which uses interactome networks directly. As two interacting proteins should co-exist, it is reasonable to assume that if one of the interacting proteins is confidently inferred in a sample, its interacting partners should have a high probability in the same sample, too. Therefore, we can use the neighborhood information of a protein in an interactome network to adjust the probability that the shared peptide belongs to the protein. In TMSIN, a multi-weighted graph is constructed by incorporating the bipartite graph with interactome network information, where the bipartite graph is built with the peptide identification information. Based on multi-weighted graphs, TMSIN adopts an iterative workflow to infer proteins. At each iterative step, the probability that a shared peptide belongs to a specific protein is calculated by using the Bayes' law based on the neighbor protein support scores of each protein which are mapped by the shared peptides. We carried out experiments on yeast data and human data to evaluate the performance of TMSIN in terms of ROC, q-value, and accuracy. The experimental results show that AUC scores yielded by TMSIN are 0.742 and 0.874 in yeast dataset and human dataset, respectively, and TMSIN yields the maximum number of true positives when q-value less than or equal to 0.05. The overlap analysis shows that TMSIN is an effective complementary approach for protein inference.

  4. Inferring Phylogenetic Networks Using PhyloNet.

    PubMed

    Wen, Dingqiao; Yu, Yun; Zhu, Jiafan; Nakhleh, Luay

    2018-07-01

    PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the "minimizing deep coalescences" criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.

  5. An algebra-based method for inferring gene regulatory networks

    PubMed Central

    2014-01-01

    Background The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. Results This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network. Conclusions Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html. PMID:24669835

  6. Modeling Psychological Attributes in Psychology – An Epistemological Discussion: Network Analysis vs. Latent Variables

    PubMed Central

    Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc

    2017-01-01

    Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780

  7. Forecasting of natural gas consumption with neural network and neuro fuzzy system

    NASA Astrophysics Data System (ADS)

    Kaynar, Oguz; Yilmaz, Isik; Demirkoparan, Ferhan

    2010-05-01

    The prediction of natural gas consumption is crucial for Turkey which follows foreign-dependent policy in point of providing natural gas and whose stock capacity is only 5% of internal total consumption. Prediction accuracy of demand is one of the elements which has an influence on sectored investments and agreements about obtaining natural gas, so on development of sector. In recent years, new techniques, such as artificial neural networks and fuzzy inference systems, have been widely used in natural gas consumption prediction in addition to classical time series analysis. In this study, weekly natural gas consumption of Turkey has been predicted by means of three different approaches. The first one is Autoregressive Integrated Moving Average (ARIMA), which is classical time series analysis method. The second approach is the Artificial Neural Network. Two different ANN models, which are Multi Layer Perceptron (MLP) and Radial Basis Function Network (RBFN), are employed to predict natural gas consumption. The last is Adaptive Neuro Fuzzy Inference System (ANFIS), which combines ANN and Fuzzy Inference System. Different prediction models have been constructed and one model, which has the best forecasting performance, is determined for each method. Then predictions are made by using these models and results are compared. Keywords: ANN, ANFIS, ARIMA, Natural Gas, Forecasting

  8. Genetic network inference as a series of discrimination tasks.

    PubMed

    Kimura, Shuhei; Nakayama, Satoshi; Hatakeyama, Mariko

    2009-04-01

    Genetic network inference methods based on sets of differential equations generally require a great deal of time, as the equations must be solved many times. To reduce the computational cost, researchers have proposed other methods for inferring genetic networks by solving sets of differential equations only a few times, or even without solving them at all. When we try to obtain reasonable network models using these methods, however, we must estimate the time derivatives of the gene expression levels with great precision. In this study, we propose a new method to overcome the drawbacks of inference methods based on sets of differential equations. Our method infers genetic networks by obtaining classifiers capable of predicting the signs of the derivatives of the gene expression levels. For this purpose, we defined a genetic network inference problem as a series of discrimination tasks, then solved the defined series of discrimination tasks with a linear programming machine. Our experimental results demonstrated that the proposed method is capable of correctly inferring genetic networks, and doing so more than 500 times faster than the other inference methods based on sets of differential equations. Next, we applied our method to actual expression data of the bacterial SOS DNA repair system. And finally, we demonstrated that our approach relates to the inference method based on the S-system model. Though our method provides no estimation of the kinetic parameters, it should be useful for researchers interested only in the network structure of a target system. Supplementary data are available at Bioinformatics online.

  9. Inferring causal molecular networks: empirical assessment through a community-based effort

    PubMed Central

    Hill, Steven M.; Heiser, Laura M.; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K.; Carlin, Daniel E.; Zhang, Yang; Sokolov, Artem; Paull, Evan O.; Wong, Chris K.; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V.; Favorov, Alexander V.; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W.; Long, Byron L.; Noren, David P.; Bisberg, Alexander J.; Mills, Gordon B.; Gray, Joe W.; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A.; Fertig, Elana J.; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M.; Spellman, Paul T.; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach

    2016-01-01

    Inferring molecular networks is a central challenge in computational biology. However, it has remained unclear whether causal, rather than merely correlational, relationships can be effectively inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge that focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results constitute the most comprehensive assessment of causal network inference in a mammalian setting carried out to date and suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess the causal validity of inferred molecular networks. PMID:26901648

  10. Statistical comparison of a hybrid approach with approximate and exact inference models for Fusion 2+

    NASA Astrophysics Data System (ADS)

    Lee, K. David; Wiesenfeld, Eric; Gelfand, Andrew

    2007-04-01

    One of the greatest challenges in modern combat is maintaining a high level of timely Situational Awareness (SA). In many situations, computational complexity and accuracy considerations make the development and deployment of real-time, high-level inference tools very difficult. An innovative hybrid framework that combines Bayesian inference, in the form of Bayesian Networks, and Possibility Theory, in the form of Fuzzy Logic systems, has recently been introduced to provide a rigorous framework for high-level inference. In previous research, the theoretical basis and benefits of the hybrid approach have been developed. However, lacking is a concrete experimental comparison of the hybrid framework with traditional fusion methods, to demonstrate and quantify this benefit. The goal of this research, therefore, is to provide a statistical analysis on the comparison of the accuracy and performance of hybrid network theory, with pure Bayesian and Fuzzy systems and an inexact Bayesian system approximated using Particle Filtering. To accomplish this task, domain specific models will be developed under these different theoretical approaches and then evaluated, via Monte Carlo Simulation, in comparison to situational ground truth to measure accuracy and fidelity. Following this, a rigorous statistical analysis of the performance results will be performed, to quantify the benefit of hybrid inference to other fusion tools.

  11. Network Inference Analysis Identifies an APRR2-Like Gene Linked to Pigment Accumulation in Tomato and Pepper Fruits1[W][OA

    PubMed Central

    Pan, Yu; Bradley, Glyn; Pyke, Kevin; Ball, Graham; Lu, Chungui; Fray, Rupert; Marshall, Alexandra; Jayasuta, Subhalai; Baxter, Charles; van Wijk, Rik; Boyden, Laurie; Cade, Rebecca; Chapman, Natalie H.; Fraser, Paul D.; Hodgman, Charlie; Seymour, Graham B.

    2013-01-01

    Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening. PMID:23292788

  12. Tracking cohesive subgroups over time in inferred social networks

    NASA Astrophysics Data System (ADS)

    Chin, Alvin; Chignell, Mark; Wang, Hao

    2010-04-01

    As a first step in the development of community trackers for large-scale online interaction, this paper shows how cohesive subgroup analysis using the Social Cohesion Analysis of Networks (SCAN; Chin and Chignell 2008) and Data-Intensive Socially Similar Evolving Community Tracker (DISSECT; Chin and Chignell 2010) methods can be applied to the problem of identifying cohesive subgroups and tracking them over time. Three case studies are reported, and the findings are used to evaluate how well the SCAN and DISSECT methods work for different types of data. In the largest of the case studies, variations in temporal cohesiveness are identified across a set of subgroups extracted from the inferred social network. Further modifications to the DISSECT methodology are suggested based on the results obtained. The paper concludes with recommendations concerning further research that would be beneficial in addressing the community tracking problem for online data.

  13. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens

    PubMed Central

    Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-01-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523

  14. Wisdom of crowds for robust gene network inference

    PubMed Central

    Marbach, Daniel; Costello, James C.; Küffner, Robert; Vega, Nicci; Prill, Robert J.; Camacho, Diogo M.; Allison, Kyle R.; Kellis, Manolis; Collins, James J.; Stolovitzky, Gustavo

    2012-01-01

    Reconstructing gene regulatory networks from high-throughput data is a long-standing problem. Through the DREAM project (Dialogue on Reverse Engineering Assessment and Methods), we performed a comprehensive blind assessment of over thirty network inference methods on Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae, and in silico microarray data. We characterize performance, data requirements, and inherent biases of different inference approaches offering guidelines for both algorithm application and development. We observe that no single inference method performs optimally across all datasets. In contrast, integration of predictions from multiple inference methods shows robust and high performance across diverse datasets. Thereby, we construct high-confidence networks for E. coli and S. aureus, each comprising ~1700 transcriptional interactions at an estimated precision of 50%. We experimentally test 53 novel interactions in E. coli, of which 23 were supported (43%). Our results establish community-based methods as a powerful and robust tool for the inference of transcriptional gene regulatory networks. PMID:22796662

  15. On the Inference of Functional Circadian Networks Using Granger Causality

    PubMed Central

    Pourzanjani, Arya; Herzog, Erik D.; Petzold, Linda R.

    2015-01-01

    Being able to infer one way direct connections in an oscillatory network such as the suprachiastmatic nucleus (SCN) of the mammalian brain using time series data is difficult but crucial to understanding network dynamics. Although techniques have been developed for inferring networks from time series data, there have been no attempts to adapt these techniques to infer directional connections in oscillatory time series, while accurately distinguishing between direct and indirect connections. In this paper an adaptation of Granger Causality is proposed that allows for inference of circadian networks and oscillatory networks in general called Adaptive Frequency Granger Causality (AFGC). Additionally, an extension of this method is proposed to infer networks with large numbers of cells called LASSO AFGC. The method was validated using simulated data from several different networks. For the smaller networks the method was able to identify all one way direct connections without identifying connections that were not present. For larger networks of up to twenty cells the method shows excellent performance in identifying true and false connections; this is quantified by an area-under-the-curve (AUC) 96.88%. We note that this method like other Granger Causality-based methods, is based on the detection of high frequency signals propagating between cell traces. Thus it requires a relatively high sampling rate and a network that can propagate high frequency signals. PMID:26413748

  16. Gene expression complex networks: synthesis, identification, and analysis.

    PubMed

    Lopes, Fabrício M; Cesar, Roberto M; Costa, Luciano Da F

    2011-10-01

    Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdös-Rényi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabási-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree variation, decreasing its network recovery rate with the increase of . The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.

  17. Cognitive-Developmental Learning for a Humanoid Robot: A Caregiver’s Gift

    DTIC Science & Technology

    2004-05-01

    system . We propose a real- time algorithm to infer depth and build 3-dimensional coarse maps for objects through the analysis of cues provided by an... system is well defined at the boundary of these regions (although the derivatives are not). A time domain analysis is presented for a piece-linear... Analysis of Multivariable Systems ......................... 266 D.3.1 Networks of Multiple Neural Oscillators ................. 266 D.3.2 Networks of

  18. Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback.

    PubMed

    Orhan, A Emin; Ma, Wei Ji

    2017-07-26

    Animals perform near-optimal probabilistic inference in a wide range of psychophysical tasks. Probabilistic inference requires trial-to-trial representation of the uncertainties associated with task variables and subsequent use of this representation. Previous work has implemented such computations using neural networks with hand-crafted and task-dependent operations. We show that generic neural networks trained with a simple error-based learning rule perform near-optimal probabilistic inference in nine common psychophysical tasks. In a probabilistic categorization task, error-based learning in a generic network simultaneously explains a monkey's learning curve and the evolution of qualitative aspects of its choice behavior. In all tasks, the number of neurons required for a given level of performance grows sublinearly with the input population size, a substantial improvement on previous implementations of probabilistic inference. The trained networks develop a novel sparsity-based probabilistic population code. Our results suggest that probabilistic inference emerges naturally in generic neural networks trained with error-based learning rules.Behavioural tasks often require probability distributions to be inferred about task specific variables. Here, the authors demonstrate that generic neural networks can be trained using a simple error-based learning rule to perform such probabilistic computations efficiently without any need for task specific operations.

  19. minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information.

    PubMed

    Meyer, Patrick E; Lafitte, Frédéric; Bontempi, Gianluca

    2008-10-29

    This paper presents the R/Bioconductor package minet (version 1.1.6) which provides a set of functions to infer mutual information networks from a dataset. Once fed with a microarray dataset, the package returns a network where nodes denote genes, edges model statistical dependencies between genes and the weight of an edge quantifies the statistical evidence of a specific (e.g transcriptional) gene-to-gene interaction. Four different entropy estimators are made available in the package minet (empirical, Miller-Madow, Schurmann-Grassberger and shrink) as well as four different inference methods, namely relevance networks, ARACNE, CLR and MRNET. Also, the package integrates accuracy assessment tools, like F-scores, PR-curves and ROC-curves in order to compare the inferred network with a reference one. The package minet provides a series of tools for inferring transcriptional networks from microarray data. It is freely available from the Comprehensive R Archive Network (CRAN) as well as from the Bioconductor website.

  20. A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets.

    PubMed

    Liu, Li-Zhi; Wu, Fang-Xiang; Zhang, Wen-Jun

    2014-01-01

    As an abstract mapping of the gene regulations in the cell, gene regulatory network is important to both biological research study and practical applications. The reverse engineering of gene regulatory networks from microarray gene expression data is a challenging research problem in systems biology. With the development of biological technologies, multiple time-course gene expression datasets might be collected for a specific gene network under different circumstances. The inference of a gene regulatory network can be improved by integrating these multiple datasets. It is also known that gene expression data may be contaminated with large errors or outliers, which may affect the inference results. A novel method, Huber group LASSO, is proposed to infer the same underlying network topology from multiple time-course gene expression datasets as well as to take the robustness to large error or outliers into account. To solve the optimization problem involved in the proposed method, an efficient algorithm which combines the ideas of auxiliary function minimization and block descent is developed. A stability selection method is adapted to our method to find a network topology consisting of edges with scores. The proposed method is applied to both simulation datasets and real experimental datasets. It shows that Huber group LASSO outperforms the group LASSO in terms of both areas under receiver operating characteristic curves and areas under the precision-recall curves. The convergence analysis of the algorithm theoretically shows that the sequence generated from the algorithm converges to the optimal solution of the problem. The simulation and real data examples demonstrate the effectiveness of the Huber group LASSO in integrating multiple time-course gene expression datasets and improving the resistance to large errors or outliers.

  1. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model

    PubMed Central

    2012-01-01

    Background Starch serves as a temporal storage of carbohydrates in plant leaves during day/night cycles. To study transcriptional regulatory modules of this dynamic metabolic process, we conducted gene regulation network analysis based on small-sample inference of graphical Gaussian model (GGM). Results Time-series significant analysis was applied for Arabidopsis leaf transcriptome data to obtain a set of genes that are highly regulated under a diurnal cycle. A total of 1,480 diurnally regulated genes included 21 starch metabolic enzymes, 6 clock-associated genes, and 106 transcription factors (TF). A starch-clock-TF gene regulation network comprising 117 nodes and 266 edges was constructed by GGM from these 133 significant genes that are potentially related to the diurnal control of starch metabolism. From this network, we found that β-amylase 3 (b-amy3: At4g17090), which participates in starch degradation in chloroplast, is the most frequently connected gene (a hub gene). The robustness of gene-to-gene regulatory network was further analyzed by TF binding site prediction and by evaluating global co-expression of TFs and target starch metabolic enzymes. As a result, two TFs, indeterminate domain 5 (AtIDD5: At2g02070) and constans-like (COL: At2g21320), were identified as positive regulators of starch synthase 4 (SS4: At4g18240). The inference model of AtIDD5-dependent positive regulation of SS4 gene expression was experimentally supported by decreased SS4 mRNA accumulation in Atidd5 mutant plants during the light period of both short and long day conditions. COL was also shown to positively control SS4 mRNA accumulation. Furthermore, the knockout of AtIDD5 and COL led to deformation of chloroplast and its contained starch granules. This deformity also affected the number of starch granules per chloroplast, which increased significantly in both knockout mutant lines. Conclusions In this study, we utilized a systematic approach of microarray analysis to discover the transcriptional regulatory network of starch metabolism in Arabidopsis leaves. With this inference method, the starch regulatory network of Arabidopsis was found to be strongly associated with clock genes and TFs, of which AtIDD5 and COL were evidenced to control SS4 gene expression and starch granule formation in chloroplasts. PMID:22898356

  2. Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information

    PubMed Central

    2013-01-01

    Background In recent years, various types of cellular networks have penetrated biology and are nowadays used omnipresently for studying eukaryote and prokaryote organisms. Still, the relation and the biological overlap among phenomenological and inferential gene networks, e.g., between the protein interaction network and the gene regulatory network inferred from large-scale transcriptomic data, is largely unexplored. Results We provide in this study an in-depth analysis of the structural, functional and chromosomal relationship between a protein-protein network, a transcriptional regulatory network and an inferred gene regulatory network, for S. cerevisiae and E. coli. Further, we study global and local aspects of these networks and their biological information overlap by comparing, e.g., the functional co-occurrence of Gene Ontology terms by exploiting the available interaction structure among the genes. Conclusions Although the individual networks represent different levels of cellular interactions with global structural and functional dissimilarities, we observe crucial functions of their network interfaces for the assembly of protein complexes, proteolysis, transcription, translation, metabolic and regulatory interactions. Overall, our results shed light on the integrability of these networks and their interfacing biological processes. PMID:23663484

  3. Determining geophysical properties from well log data using artificial neural networks and fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Chang, Hsien-Cheng

    Two novel synergistic systems consisting of artificial neural networks and fuzzy inference systems are developed to determine geophysical properties by using well log data. These systems are employed to improve the determination accuracy in carbonate rocks, which are generally more complex than siliciclastic rocks. One system, consisting of a single adaptive resonance theory (ART) neural network and three fuzzy inference systems (FISs), is used to determine the permeability category. The other system, which is composed of three ART neural networks and a single FIS, is employed to determine the lithofacies. The geophysical properties studied in this research, permeability category and lithofacies, are treated as categorical data. The permeability values are transformed into a "permeability category" to account for the effects of scale differences between core analyses and well logs, and heterogeneity in the carbonate rocks. The ART neural networks dynamically cluster the input data sets into different groups. The FIS is used to incorporate geologic experts' knowledge, which is usually in linguistic forms, into systems. These synergistic systems thus provide viable alternative solutions to overcome the effects of heterogeneity, the uncertainties of carbonate rock depositional environments, and the scarcity of well log data. The results obtained in this research show promising improvements over backpropagation neural networks. For the permeability category, the prediction accuracies are 68.4% and 62.8% for the multiple-single ART neural network-FIS and a single backpropagation neural network, respectively. For lithofacies, the prediction accuracies are 87.6%, 79%, and 62.8% for the single-multiple ART neural network-FIS, a single ART neural network, and a single backpropagation neural network, respectively. The sensitivity analysis results show that the multiple-single ART neural networks-FIS and a single ART neural network possess the same matching trends in determining lithofacies. This research shows that the adaptive resonance theory neural networks enable decision-makers to clearly distinguish the importance of different pieces of data which are useful in three-dimensional subsurface modeling. Geologic experts' knowledge can be easily applied and maintained by using the fuzzy inference systems.

  4. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks, functional enrichment analysis and gene expression information provide opportunities to infer gene function in citrus. We present a publicly accessible tool, Network Inference for Citrus Co-Expression (NICCE, http://citrus.adelaide.edu.au/nicce/home.aspx), for the gene co-expression analysis in citrus. PMID:25023870

  5. Probabilistic Signal Recovery and Random Matrices

    DTIC Science & Technology

    2016-12-08

    applications in statistics , biomedical data analysis, quantization, dimen- sion reduction, and networks science. 1. High-dimensional inference and geometry Our...low-rank approxima- tion, with applications to community detection in networks, Annals of Statistics 44 (2016), 373–400. [7] C. Le, E. Levina, R...approximation, with applications to community detection in networks, Annals of Statistics 44 (2016), 373–400. C. Le, E. Levina, R. Vershynin, Concentration

  6. Evaluating the Limits of Network Topology Inference Via Virtualized Network Emulation

    DTIC Science & Technology

    2015-06-01

    76 xi Figure 5.33 Hop-plot of five best reduction methods. KDD most closely matches the Internet plot...respectively, located around the world. These monitors provide locations from which to perform network measurement experiments, primarily using the ping ...International Symposium on Modeling, Analysis and Simulation of Computer Telecommunication Systems. IEEE, 2001, pp. 346–353. 90 [21] C. Jin , Q. Chen, and S

  7. Estimation of the proteomic cancer co-expression sub networks by using association estimators.

    PubMed

    Erdoğan, Cihat; Kurt, Zeyneb; Diri, Banu

    2017-01-01

    In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators' performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists.

  8. Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response.

    PubMed

    MacGilvray, Matthew E; Shishkova, Evgenia; Chasman, Deborah; Place, Michael; Gitter, Anthony; Coon, Joshua J; Gasch, Audrey P

    2018-05-01

    Cells respond to stressful conditions by coordinating a complex, multi-faceted response that spans many levels of physiology. Much of the response is coordinated by changes in protein phosphorylation. Although the regulators of transcriptome changes during stress are well characterized in Saccharomyces cerevisiae, the upstream regulatory network controlling protein phosphorylation is less well dissected. Here, we developed a computational approach to infer the signaling network that regulates phosphorylation changes in response to salt stress. We developed an approach to link predicted regulators to groups of likely co-regulated phospho-peptides responding to stress, thereby creating new edges in a background protein interaction network. We then use integer linear programming (ILP) to integrate wild type and mutant phospho-proteomic data and predict the network controlling stress-activated phospho-proteomic changes. The network we inferred predicted new regulatory connections between stress-activated and growth-regulating pathways and suggested mechanisms coordinating metabolism, cell-cycle progression, and growth during stress. We confirmed several network predictions with co-immunoprecipitations coupled with mass-spectrometry protein identification and mutant phospho-proteomic analysis. Results show that the cAMP-phosphodiesterase Pde2 physically interacts with many stress-regulated transcription factors targeted by PKA, and that reduced phosphorylation of those factors during stress requires the Rck2 kinase that we show physically interacts with Pde2. Together, our work shows how a high-quality computational network model can facilitate discovery of new pathway interactions during osmotic stress.

  9. Estimation of the proteomic cancer co-expression sub networks by using association estimators

    PubMed Central

    Kurt, Zeyneb; Diri, Banu

    2017-01-01

    In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators’ performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists. PMID:29145449

  10. Inferring Time-Varying Network Topologies from Gene Expression Data

    PubMed Central

    2007-01-01

    Most current methods for gene regulatory network identification lead to the inference of steady-state networks, that is, networks prevalent over all times, a hypothesis which has been challenged. There has been a need to infer and represent networks in a dynamic, that is, time-varying fashion, in order to account for different cellular states affecting the interactions amongst genes. In this work, we present an approach, regime-SSM, to understand gene regulatory networks within such a dynamic setting. The approach uses a clustering method based on these underlying dynamics, followed by system identification using a state-space model for each learnt cluster—to infer a network adjacency matrix. We finally indicate our results on the mouse embryonic kidney dataset as well as the T-cell activation-based expression dataset and demonstrate conformity with reported experimental evidence. PMID:18309363

  11. Inferring time-varying network topologies from gene expression data.

    PubMed

    Rao, Arvind; Hero, Alfred O; States, David J; Engel, James Douglas

    2007-01-01

    Most current methods for gene regulatory network identification lead to the inference of steady-state networks, that is, networks prevalent over all times, a hypothesis which has been challenged. There has been a need to infer and represent networks in a dynamic, that is, time-varying fashion, in order to account for different cellular states affecting the interactions amongst genes. In this work, we present an approach, regime-SSM, to understand gene regulatory networks within such a dynamic setting. The approach uses a clustering method based on these underlying dynamics, followed by system identification using a state-space model for each learnt cluster--to infer a network adjacency matrix. We finally indicate our results on the mouse embryonic kidney dataset as well as the T-cell activation-based expression dataset and demonstrate conformity with reported experimental evidence.

  12. Inference of scale-free networks from gene expression time series.

    PubMed

    Daisuke, Tominaga; Horton, Paul

    2006-04-01

    Quantitative time-series observation of gene expression is becoming possible, for example by cell array technology. However, there are no practical methods with which to infer network structures using only observed time-series data. As most computational models of biological networks for continuous time-series data have a high degree of freedom, it is almost impossible to infer the correct structures. On the other hand, it has been reported that some kinds of biological networks, such as gene networks and metabolic pathways, may have scale-free properties. We hypothesize that the architecture of inferred biological network models can be restricted to scale-free networks. We developed an inference algorithm for biological networks using only time-series data by introducing such a restriction. We adopt the S-system as the network model, and a distributed genetic algorithm to optimize models to fit its simulated results to observed time series data. We have tested our algorithm on a case study (simulated data). We compared optimization under no restriction, which allows for a fully connected network, and under the restriction that the total number of links must equal that expected from a scale free network. The restriction reduced both false positive and false negative estimation of the links and also the differences between model simulation and the given time-series data.

  13. TMA Navigator: network inference, patient stratification and survival analysis with tissue microarray data

    PubMed Central

    Lubbock, Alexander L. R.; Katz, Elad; Harrison, David J.; Overton, Ian M.

    2013-01-01

    Tissue microarrays (TMAs) allow multiplexed analysis of tissue samples and are frequently used to estimate biomarker protein expression in tumour biopsies. TMA Navigator (www.tmanavigator.org) is an open access web application for analysis of TMA data and related information, accommodating categorical, semi-continuous and continuous expression scores. Non-biological variation, or batch effects, can hinder data analysis and may be mitigated using the ComBat algorithm, which is incorporated with enhancements for automated application to TMA data. Unsupervised grouping of samples (patients) is provided according to Gaussian mixture modelling of marker scores, with cardinality selected by Bayesian information criterion regularization. Kaplan–Meier survival analysis is available, including comparison of groups identified by mixture modelling using the Mantel-Cox log-rank test. TMA Navigator also supports network inference approaches useful for TMA datasets, which often constitute comparatively few markers. Tissue and cell-type specific networks derived from TMA expression data offer insights into the molecular logic underlying pathophenotypes, towards more effective and personalized medicine. Output is interactive, and results may be exported for use with external programs. Private anonymous access is available, and user accounts may be generated for easier data management. PMID:23761446

  14. Genome-scale estimate of the metabolic turnover of E. Coli from the energy balance analysis

    NASA Astrophysics Data System (ADS)

    De Martino, D.

    2016-02-01

    In this article the notion of metabolic turnover is revisited in the light of recent results of out-of-equilibrium thermodynamics. By means of Monte Carlo methods we perform an exact sampling of the enzymatic fluxes in a genome scale metabolic network of E. Coli in stationary growth conditions from which we infer the metabolites turnover times. However the latter are inferred from net fluxes, and we argue that this approximation is not valid for enzymes working nearby thermodynamic equilibrium. We recalculate turnover times from total fluxes by performing an energy balance analysis of the network and recurring to the fluctuation theorem. We find in many cases values one of order of magnitude lower, implying a faster picture of intermediate metabolism.

  15. GFD-Net: A novel semantic similarity methodology for the analysis of gene networks.

    PubMed

    Díaz-Montaña, Juan J; Díaz-Díaz, Norberto; Gómez-Vela, Francisco

    2017-04-01

    Since the popularization of biological network inference methods, it has become crucial to create methods to validate the resulting models. Here we present GFD-Net, the first methodology that applies the concept of semantic similarity to gene network analysis. GFD-Net combines the concept of semantic similarity with the use of gene network topology to analyze the functional dissimilarity of gene networks based on Gene Ontology (GO). The main innovation of GFD-Net lies in the way that semantic similarity is used to analyze gene networks taking into account the network topology. GFD-Net selects a functionality for each gene (specified by a GO term), weights each edge according to the dissimilarity between the nodes at its ends and calculates a quantitative measure of the network functional dissimilarity, i.e. a quantitative value of the degree of dissimilarity between the connected genes. The robustness of GFD-Net as a gene network validation tool was demonstrated by performing a ROC analysis on several network repositories. Furthermore, a well-known network was analyzed showing that GFD-Net can also be used to infer knowledge. The relevance of GFD-Net becomes more evident in Section "GFD-Net applied to the study of human diseases" where an example of how GFD-Net can be applied to the study of human diseases is presented. GFD-Net is available as an open-source Cytoscape app which offers a user-friendly interface to configure and execute the algorithm as well as the ability to visualize and interact with the results(http://apps.cytoscape.org/apps/gfdnet). Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Multi-Agent Inference in Social Networks: A Finite Population Learning Approach.

    PubMed

    Fan, Jianqing; Tong, Xin; Zeng, Yao

    When people in a society want to make inference about some parameter, each person may want to use data collected by other people. Information (data) exchange in social networks is usually costly, so to make reliable statistical decisions, people need to trade off the benefits and costs of information acquisition. Conflicts of interests and coordination problems will arise in the process. Classical statistics does not consider people's incentives and interactions in the data collection process. To address this imperfection, this work explores multi-agent Bayesian inference problems with a game theoretic social network model. Motivated by our interest in aggregate inference at the societal level, we propose a new concept, finite population learning , to address whether with high probability, a large fraction of people in a given finite population network can make "good" inference. Serving as a foundation, this concept enables us to study the long run trend of aggregate inference quality as population grows.

  17. Reasoning about Causal Relationships: Inferences on Causal Networks

    PubMed Central

    Rottman, Benjamin Margolin; Hastie, Reid

    2013-01-01

    Over the last decade, a normative framework for making causal inferences, Bayesian Probabilistic Causal Networks, has come to dominate psychological studies of inference based on causal relationships. The following causal networks—[X→Y→Z, X←Y→Z, X→Y←Z]—supply answers for questions like, “Suppose both X and Y occur, what is the probability Z occurs?” or “Suppose you intervene and make Y occur, what is the probability Z occurs?” In this review, we provide a tutorial for how normatively to calculate these inferences. Then, we systematically detail the results of behavioral studies comparing human qualitative and quantitative judgments to the normative calculations for many network structures and for several types of inferences on those networks. Overall, when the normative calculations imply that an inference should increase, judgments usually go up; when calculations imply a decrease, judgments usually go down. However, two systematic deviations appear. First, people’s inferences violate the Markov assumption. For example, when inferring Z from the structure X→Y→Z, people think that X is relevant even when Y completely mediates the relationship between X and Z. Second, even when people’s inferences are directionally consistent with the normative calculations, they are often not as sensitive to the parameters and the structure of the network as they should be. We conclude with a discussion of productive directions for future research. PMID:23544658

  18. Inferring explicit weighted consensus networks to represent alternative evolutionary histories

    PubMed Central

    2013-01-01

    Background The advent of molecular biology techniques and constant increase in availability of genetic material have triggered the development of many phylogenetic tree inference methods. However, several reticulate evolution processes, such as horizontal gene transfer and hybridization, have been shown to blur the species evolutionary history by causing discordance among phylogenies inferred from different genes. Methods To tackle this problem, we hereby describe a new method for inferring and representing alternative (reticulate) evolutionary histories of species as an explicit weighted consensus network which can be constructed from a collection of gene trees with or without prior knowledge of the species phylogeny. Results We provide a way of building a weighted phylogenetic network for each of the following reticulation mechanisms: diploid hybridization, intragenic recombination and complete or partial horizontal gene transfer. We successfully tested our method on some synthetic and real datasets to infer the above-mentioned evolutionary events which may have influenced the evolution of many species. Conclusions Our weighted consensus network inference method allows one to infer, visualize and validate statistically major conflicting signals induced by the mechanisms of reticulate evolution. The results provided by the new method can be used to represent the inferred conflicting signals by means of explicit and easy-to-interpret phylogenetic networks. PMID:24359207

  19. Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective.

    PubMed

    Chen, Chen; Tong, Hanghang; Xie, Lei; Ying, Lei; He, Qing

    2017-08-01

    The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model-multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm Fascinate that can reveal unobserved dependencies with linear complexity. Moreover, we derive Fascinate-ZERO, an online variant of Fascinate that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.

  20. Bayesian Inference and Online Learning in Poisson Neuronal Networks.

    PubMed

    Huang, Yanping; Rao, Rajesh P N

    2016-08-01

    Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.

  1. Inferring causal molecular networks: empirical assessment through a community-based effort.

    PubMed

    Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K; Carlin, Daniel E; Zhang, Yang; Sokolov, Artem; Paull, Evan O; Wong, Chris K; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V; Favorov, Alexander V; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W; Long, Byron L; Noren, David P; Bisberg, Alexander J; Mills, Gordon B; Gray, Joe W; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A; Fertig, Elana J; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M; Spellman, Paul T; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach

    2016-04-01

    It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.

  2. Diffany: an ontology-driven framework to infer, visualise and analyse differential molecular networks.

    PubMed

    Van Landeghem, Sofie; Van Parys, Thomas; Dubois, Marieke; Inzé, Dirk; Van de Peer, Yves

    2016-01-05

    Differential networks have recently been introduced as a powerful way to study the dynamic rewiring capabilities of an interactome in response to changing environmental conditions or stimuli. Currently, such differential networks are generated and visualised using ad hoc methods, and are often limited to the analysis of only one condition-specific response or one interaction type at a time. In this work, we present a generic, ontology-driven framework to infer, visualise and analyse an arbitrary set of condition-specific responses against one reference network. To this end, we have implemented novel ontology-based algorithms that can process highly heterogeneous networks, accounting for both physical interactions and regulatory associations, symmetric and directed edges, edge weights and negation. We propose this integrative framework as a standardised methodology that allows a unified view on differential networks and promotes comparability between differential network studies. As an illustrative application, we demonstrate its usefulness on a plant abiotic stress study and we experimentally confirmed a predicted regulator. Diffany is freely available as open-source java library and Cytoscape plugin from http://bioinformatics.psb.ugent.be/supplementary_data/solan/diffany/.

  3. Boolean dynamics of genetic regulatory networks inferred from microarray time series data

    DOE PAGES

    Martin, Shawn; Zhang, Zhaoduo; Martino, Anthony; ...

    2007-01-31

    Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this paper we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our methodmore » first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation–inhibition networks to match the discretized data. In conclusion, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics.« less

  4. Evaluation of artificial time series microarray data for dynamic gene regulatory network inference.

    PubMed

    Xenitidis, P; Seimenis, I; Kakolyris, S; Adamopoulos, A

    2017-08-07

    High-throughput technology like microarrays is widely used in the inference of gene regulatory networks (GRNs). We focused on time series data since we are interested in the dynamics of GRNs and the identification of dynamic networks. We evaluated the amount of information that exists in artificial time series microarray data and the ability of an inference process to produce accurate models based on them. We used dynamic artificial gene regulatory networks in order to create artificial microarray data. Key features that characterize microarray data such as the time separation of directly triggered genes, the percentage of directly triggered genes and the triggering function type were altered in order to reveal the limits that are imposed by the nature of microarray data on the inference process. We examined the effect of various factors on the inference performance such as the network size, the presence of noise in microarray data, and the network sparseness. We used a system theory approach and examined the relationship between the pole placement of the inferred system and the inference performance. We examined the relationship between the inference performance in the time domain and the true system parameter identification. Simulation results indicated that time separation and the percentage of directly triggered genes are crucial factors. Also, network sparseness, the triggering function type and noise in input data affect the inference performance. When two factors were simultaneously varied, it was found that variation of one parameter significantly affects the dynamic response of the other. Crucial factors were also examined using a real GRN and acquired results confirmed simulation findings with artificial data. Different initial conditions were also used as an alternative triggering approach. Relevant results confirmed that the number of datasets constitutes the most significant parameter with regard to the inference performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Constructing an integrated gene similarity network for the identification of disease genes.

    PubMed

    Tian, Zhen; Guo, Maozu; Wang, Chunyu; Xing, LinLin; Wang, Lei; Zhang, Yin

    2017-09-20

    Discovering novel genes that are involved human diseases is a challenging task in biomedical research. In recent years, several computational approaches have been proposed to prioritize candidate disease genes. Most of these methods are mainly based on protein-protein interaction (PPI) networks. However, since these PPI networks contain false positives and only cover less half of known human genes, their reliability and coverage are very low. Therefore, it is highly necessary to fuse multiple genomic data to construct a credible gene similarity network and then infer disease genes on the whole genomic scale. We proposed a novel method, named RWRB, to infer causal genes of interested diseases. First, we construct five individual gene (protein) similarity networks based on multiple genomic data of human genes. Then, an integrated gene similarity network (IGSN) is reconstructed based on similarity network fusion (SNF) method. Finally, we employee the random walk with restart algorithm on the phenotype-gene bilayer network, which combines phenotype similarity network, IGSN as well as phenotype-gene association network, to prioritize candidate disease genes. We investigate the effectiveness of RWRB through leave-one-out cross-validation methods in inferring phenotype-gene relationships. Results show that RWRB is more accurate than state-of-the-art methods on most evaluation metrics. Further analysis shows that the success of RWRB is benefited from IGSN which has a wider coverage and higher reliability comparing with current PPI networks. Moreover, we conduct a comprehensive case study for Alzheimer's disease and predict some novel disease genes that supported by literature. RWRB is an effective and reliable algorithm in prioritizing candidate disease genes on the genomic scale. Software and supplementary information are available at http://nclab.hit.edu.cn/~tianzhen/RWRB/ .

  6. Inferring Centrality from Network Snapshots

    PubMed Central

    Shao, Haibin; Mesbahi, Mehran; Li, Dewei; Xi, Yugeng

    2017-01-01

    The topology and dynamics of a complex network shape its functionality. However, the topologies of many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of network topology, we show how the data generated from the network dynamics can be utilised to infer the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We show that the tempo centrality can be used to construct an accurate estimate of both the propagation rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. Our findings provide an approach to infer the performance of a consensus network from its temporal data. PMID:28098166

  7. Inferring Centrality from Network Snapshots

    NASA Astrophysics Data System (ADS)

    Shao, Haibin; Mesbahi, Mehran; Li, Dewei; Xi, Yugeng

    2017-01-01

    The topology and dynamics of a complex network shape its functionality. However, the topologies of many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of network topology, we show how the data generated from the network dynamics can be utilised to infer the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We show that the tempo centrality can be used to construct an accurate estimate of both the propagation rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. Our findings provide an approach to infer the performance of a consensus network from its temporal data.

  8. A Hierarchical Poisson Log-Normal Model for Network Inference from RNA Sequencing Data

    PubMed Central

    Gallopin, Mélina; Rau, Andrea; Jaffrézic, Florence

    2013-01-01

    Gene network inference from transcriptomic data is an important methodological challenge and a key aspect of systems biology. Although several methods have been proposed to infer networks from microarray data, there is a need for inference methods able to model RNA-seq data, which are count-based and highly variable. In this work we propose a hierarchical Poisson log-normal model with a Lasso penalty to infer gene networks from RNA-seq data; this model has the advantage of directly modelling discrete data and accounting for inter-sample variance larger than the sample mean. Using real microRNA-seq data from breast cancer tumors and simulations, we compare this method to a regularized Gaussian graphical model on log-transformed data, and a Poisson log-linear graphical model with a Lasso penalty on power-transformed data. For data simulated with large inter-sample dispersion, the proposed model performs better than the other methods in terms of sensitivity, specificity and area under the ROC curve. These results show the necessity of methods specifically designed for gene network inference from RNA-seq data. PMID:24147011

  9. Random graph models for dynamic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Moore, Cristopher; Newman, Mark E. J.

    2017-10-01

    Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.

  10. Perspectives on Social Network Analysis for Observational Scientific Data

    NASA Astrophysics Data System (ADS)

    Singh, Lisa; Bienenstock, Elisa Jayne; Mann, Janet

    This chapter is a conceptual look at data quality issues that arise during scientific observations and their impact on social network analysis. We provide examples of the many types of incompleteness, bias and uncertainty that impact the quality of social network data. Our approach is to leverage the insights and experience of observational behavioral scientists familiar with the challenges of making inference when data are not complete, and suggest avenues for extending these to relational data questions. The focus of our discussion is on network data collection using observational methods because they contain high dimensionality, incomplete data, varying degrees of observational certainty, and potential observer bias. However, the problems and recommendations identified here exist in many other domains, including online social networks, cell phone networks, covert networks, and disease transmission networks.

  11. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis.

    PubMed

    van Dam, Jesse C J; Schaap, Peter J; Martins dos Santos, Vitor A P; Suárez-Diez, María

    2014-09-26

    Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each separate set has an intrinsic value that is diluted and partly lost when building a consensus network. Here we present a methodology to generate co-expression networks and, instead of a consensus network, we propose an integration framework where the different networks are kept and analysed with additional tools to efficiently combine the information extracted from each network. We developed a workflow to efficiently analyse information generated by different inference and prediction methods. Our methodology relies on providing the user the means to simultaneously visualise and analyse the coexisting networks generated by different algorithms, heterogeneous datasets, and a suite of analysis tools. As a show case, we have analysed the gene co-expression networks of Mycobacterium tuberculosis generated using over 600 expression experiments. Regarding DNA damage repair, we identified SigC as a key control element, 12 new targets for LexA, an updated LexA binding motif, and a potential mismatch repair system. We expanded the DevR regulon with 27 genes while identifying 9 targets wrongly assigned to this regulon. We discovered 10 new genes linked to zinc uptake and a new regulatory mechanism for ZuR. The use of co-expression networks to perform system level analysis allows the development of custom made methodologies. As show cases we implemented a pipeline to integrate ChIP-seq data and another method to uncover multiple regulatory layers. Our workflow is based on representing the multiple types of information as network representations and presenting these networks in a synchronous framework that allows their simultaneous visualization while keeping specific associations from the different networks. By simultaneously exploring these networks and metadata, we gained insights into regulatory mechanisms in M. tuberculosis that could not be obtained through the separate analysis of each data type.

  12. Causal Inference and Explaining Away in a Spiking Network

    PubMed Central

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-01-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification. PMID:26621426

  13. Causal Inference and Explaining Away in a Spiking Network.

    PubMed

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-12-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification.

  14. Inference of gene regulatory networks from time series by Tsallis entropy

    PubMed Central

    2011-01-01

    Background The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 ≤ q ≤ 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/. PMID:21545720

  15. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

    PubMed

    Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

    2014-01-16

    To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks.

  16. Functional Inference of Complex Anatomical Tendinous Networks at a Macroscopic Scale via Sparse Experimentation

    PubMed Central

    Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J.

    2012-01-01

    In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16th century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines. PMID:23144601

  17. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment

    PubMed Central

    2014-01-01

    Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks. PMID:24428926

  18. Functional inference of complex anatomical tendinous networks at a macroscopic scale via sparse experimentation.

    PubMed

    Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J

    2012-01-01

    In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16(th) century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines.

  19. Inferring protein domains associated with drug side effects based on drug-target interaction network.

    PubMed

    Iwata, Hiroaki; Mizutani, Sayaka; Tabei, Yasuo; Kotera, Masaaki; Goto, Susumu; Yamanishi, Yoshihiro

    2013-01-01

    Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions. In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains. The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains.

  20. Scalable Probabilistic Inference for Global Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Arora, N. S.; Dear, T.; Russell, S.

    2011-12-01

    We describe a probabilistic generative model for seismic events, their transmission through the earth, and their detection (or mis-detection) at seismic stations. We also describe an inference algorithm that constructs the most probable event bulletin explaining the observed set of detections. The model and inference are called NET-VISA (network processing vertically integrated seismic analysis) and is designed to replace the current automated network processing at the IDC, the SEL3 bulletin. Our results (attached table) demonstrate that NET-VISA significantly outperforms SEL3 by reducing the missed events from 30.3% down to 12.5%. The difference is even more dramatic for smaller magnitude events. NET-VISA has no difficulty in locating nuclear explosions as well. The attached figure demonstrates the location predicted by NET-VISA versus other bulletins for the second DPRK event. Further evaluation on dense regional networks demonstrates that NET-VISA finds many events missed in the LEB bulletin, which is produced by the human analysts. Large aftershock sequences, as produced by the 2004 December Sumatra earthquake and the 2011 March Tohoku earthquake, can pose a significant load for automated processing, often delaying the IDC bulletins by weeks or months. Indeed these sequences can overload the serial NET-VISA inference as well. We describe an enhancement to NET-VISA to make it multi-threaded, and hence take full advantage of the processing power of multi-core and -cpu machines. Our experiments show that the new inference algorithm is able to achieve 80% efficiency in parallel speedup.

  1. Intelligent Agents as a Basis for Natural Language Interfaces

    DTIC Science & Technology

    1988-01-01

    language analysis component of UC, which produces a semantic representa tion of the input. This representation is in the form of a KODIAK network (see...Appendix A). Next, UC’s Concretion Mechanism performs concretion inferences ([Wilensky, 1983] and [Norvig, 1983]) based on the semantic network...The first step in UC’s processing is done by UC’s parser/understander component which produces a KODIAK semantic network representa tion of

  2. Multi-Agent Inference in Social Networks: A Finite Population Learning Approach

    PubMed Central

    Tong, Xin; Zeng, Yao

    2016-01-01

    When people in a society want to make inference about some parameter, each person may want to use data collected by other people. Information (data) exchange in social networks is usually costly, so to make reliable statistical decisions, people need to trade off the benefits and costs of information acquisition. Conflicts of interests and coordination problems will arise in the process. Classical statistics does not consider people’s incentives and interactions in the data collection process. To address this imperfection, this work explores multi-agent Bayesian inference problems with a game theoretic social network model. Motivated by our interest in aggregate inference at the societal level, we propose a new concept, finite population learning, to address whether with high probability, a large fraction of people in a given finite population network can make “good” inference. Serving as a foundation, this concept enables us to study the long run trend of aggregate inference quality as population grows. PMID:27076691

  3. Gene network inference by fusing data from diverse distributions

    PubMed Central

    Žitnik, Marinka; Zupan, Blaž

    2015-01-01

    Motivation: Markov networks are undirected graphical models that are widely used to infer relations between genes from experimental data. Their state-of-the-art inference procedures assume the data arise from a Gaussian distribution. High-throughput omics data, such as that from next generation sequencing, often violates this assumption. Furthermore, when collected data arise from multiple related but otherwise nonidentical distributions, their underlying networks are likely to have common features. New principled statistical approaches are needed that can deal with different data distributions and jointly consider collections of datasets. Results: We present FuseNet, a Markov network formulation that infers networks from a collection of nonidentically distributed datasets. Our approach is computationally efficient and general: given any number of distributions from an exponential family, FuseNet represents model parameters through shared latent factors that define neighborhoods of network nodes. In a simulation study, we demonstrate good predictive performance of FuseNet in comparison to several popular graphical models. We show its effectiveness in an application to breast cancer RNA-sequencing and somatic mutation data, a novel application of graphical models. Fusion of datasets offers substantial gains relative to inference of separate networks for each dataset. Our results demonstrate that network inference methods for non-Gaussian data can help in accurate modeling of the data generated by emergent high-throughput technologies. Availability and implementation: Source code is at https://github.com/marinkaz/fusenet. Contact: blaz.zupan@fri.uni-lj.si Supplementary information: Supplementary information is available at Bioinformatics online. PMID:26072487

  4. From molecular noise to behavioural variability in a single bacterium

    NASA Astrophysics Data System (ADS)

    Korobkova, Ekaterina; Emonet, Thierry; Vilar, Jose M. G.; Shimizu, Thomas S.; Cluzel, Philippe

    2004-04-01

    The chemotaxis network that governs the motion of Escherichia coli has long been studied to gain a general understanding of signal transduction. Although this pathway is composed of just a few components, it exhibits some essential characteristics of biological complexity, such as adaptation and response to environmental signals. In studying intracellular networks, most experiments and mathematical models have assumed that network properties can be inferred from population measurements. However, this approach masks underlying temporal fluctuations of intracellular signalling events. We have inferred fundamental properties of the chemotaxis network from a noise analysis of behavioural variations in individual bacteria. Here we show that certain properties established by population measurements, such as adapted states, are not conserved at the single-cell level: for timescales ranging from seconds to several minutes, the behaviour of non-stimulated cells exhibit temporal variations much larger than the expected statistical fluctuations. We find that the signalling network itself causes this noise and identify the molecular events that produce it. Small changes in the concentration of one key network component suppress temporal behavioural variability, suggesting that such variability is a selected property of this adaptive system.

  5. Network-assisted crop systems genetics: network inference and integrative analysis.

    PubMed

    Lee, Tak; Kim, Hyojin; Lee, Insuk

    2015-04-01

    Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Inferring Gene Regulatory Networks by Singular Value Decomposition and Gravitation Field Algorithm

    PubMed Central

    Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms. PMID:23226565

  7. Integration of multi-omics data for integrative gene regulatory network inference.

    PubMed

    Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun; Kang, Mingon

    2017-01-01

    Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called 'multi-omics data', that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN's capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed.

  8. Integration of multi-omics data for integrative gene regulatory network inference

    PubMed Central

    Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun

    2017-01-01

    Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called ‘multi-omics data’, that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN’s capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed. PMID:29354189

  9. High-dimensional inference with the generalized Hopfield model: principal component analysis and corrections.

    PubMed

    Cocco, S; Monasson, R; Sessak, V

    2011-05-01

    We consider the problem of inferring the interactions between a set of N binary variables from the knowledge of their frequencies and pairwise correlations. The inference framework is based on the Hopfield model, a special case of the Ising model where the interaction matrix is defined through a set of patterns in the variable space, and is of rank much smaller than N. We show that maximum likelihood inference is deeply related to principal component analysis when the amplitude of the pattern components ξ is negligible compared to √N. Using techniques from statistical mechanics, we calculate the corrections to the patterns to the first order in ξ/√N. We stress the need to generalize the Hopfield model and include both attractive and repulsive patterns in order to correctly infer networks with sparse and strong interactions. We present a simple geometrical criterion to decide how many attractive and repulsive patterns should be considered as a function of the sampling noise. We moreover discuss how many sampled configurations are required for a good inference, as a function of the system size N and of the amplitude ξ. The inference approach is illustrated on synthetic and biological data.

  10. CGBayesNets: Conditional Gaussian Bayesian Network Learning and Inference with Mixed Discrete and Continuous Data

    PubMed Central

    Weiss, Scott T.

    2014-01-01

    Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com. PMID:24922310

  11. CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data.

    PubMed

    McGeachie, Michael J; Chang, Hsun-Hsien; Weiss, Scott T

    2014-06-01

    Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.

  12. MINER: exploratory analysis of gene interaction networks by machine learning from expression data.

    PubMed

    Kadupitige, Sidath Randeni; Leung, Kin Chun; Sellmeier, Julia; Sivieng, Jane; Catchpoole, Daniel R; Bain, Michael E; Gaëta, Bruno A

    2009-12-03

    The reconstruction of gene regulatory networks from high-throughput "omics" data has become a major goal in the modelling of living systems. Numerous approaches have been proposed, most of which attempt only "one-shot" reconstruction of the whole network with no intervention from the user, or offer only simple correlation analysis to infer gene dependencies. We have developed MINER (Microarray Interactive Network Exploration and Representation), an application that combines multivariate non-linear tree learning of individual gene regulatory dependencies, visualisation of these dependencies as both trees and networks, and representation of known biological relationships based on common Gene Ontology annotations. MINER allows biologists to explore the dependencies influencing the expression of individual genes in a gene expression data set in the form of decision, model or regression trees, using their domain knowledge to guide the exploration and formulate hypotheses. Multiple trees can then be summarised in the form of a gene network diagram. MINER is being adopted by several of our collaborators and has already led to the discovery of a new significant regulatory relationship with subsequent experimental validation. Unlike most gene regulatory network inference methods, MINER allows the user to start from genes of interest and build the network gene-by-gene, incorporating domain expertise in the process. This approach has been used successfully with RNA microarray data but is applicable to other quantitative data produced by high-throughput technologies such as proteomics and "next generation" DNA sequencing.

  13. CaSPIAN: A Causal Compressive Sensing Algorithm for Discovering Directed Interactions in Gene Networks

    PubMed Central

    Emad, Amin; Milenkovic, Olgica

    2014-01-01

    We introduce a novel algorithm for inference of causal gene interactions, termed CaSPIAN (Causal Subspace Pursuit for Inference and Analysis of Networks), which is based on coupling compressive sensing and Granger causality techniques. The core of the approach is to discover sparse linear dependencies between shifted time series of gene expressions using a sequential list-version of the subspace pursuit reconstruction algorithm and to estimate the direction of gene interactions via Granger-type elimination. The method is conceptually simple and computationally efficient, and it allows for dealing with noisy measurements. Its performance as a stand-alone platform without biological side-information was tested on simulated networks, on the synthetic IRMA network in Saccharomyces cerevisiae, and on data pertaining to the human HeLa cell network and the SOS network in E. coli. The results produced by CaSPIAN are compared to the results of several related algorithms, demonstrating significant improvements in inference accuracy of documented interactions. These findings highlight the importance of Granger causality techniques for reducing the number of false-positives, as well as the influence of noise and sampling period on the accuracy of the estimates. In addition, the performance of the method was tested in conjunction with biological side information of the form of sparse “scaffold networks”, to which new edges were added using available RNA-seq or microarray data. These biological priors aid in increasing the sensitivity and precision of the algorithm in the small sample regime. PMID:24622336

  14. Inference of Vohradský's Models of Genetic Networks by Solving Two-Dimensional Function Optimization Problems

    PubMed Central

    Kimura, Shuhei; Sato, Masanao; Okada-Hatakeyama, Mariko

    2013-01-01

    The inference of a genetic network is a problem in which mutual interactions among genes are inferred from time-series of gene expression levels. While a number of models have been proposed to describe genetic networks, this study focuses on a mathematical model proposed by Vohradský. Because of its advantageous features, several researchers have proposed the inference methods based on Vohradský's model. When trying to analyze large-scale networks consisting of dozens of genes, however, these methods must solve high-dimensional non-linear function optimization problems. In order to resolve the difficulty of estimating the parameters of the Vohradský's model, this study proposes a new method that defines the problem as several two-dimensional function optimization problems. Through numerical experiments on artificial genetic network inference problems, we showed that, although the computation time of the proposed method is not the shortest, the method has the ability to estimate parameters of Vohradský's models more effectively with sufficiently short computation times. This study then applied the proposed method to an actual inference problem of the bacterial SOS DNA repair system, and succeeded in finding several reasonable regulations. PMID:24386175

  15. Boolean network inference from time series data incorporating prior biological knowledge.

    PubMed

    Haider, Saad; Pal, Ranadip

    2012-01-01

    Numerous approaches exist for modeling of genetic regulatory networks (GRNs) but the low sampling rates often employed in biological studies prevents the inference of detailed models from experimental data. In this paper, we analyze the issues involved in estimating a model of a GRN from single cell line time series data with limited time points. We present an inference approach for a Boolean Network (BN) model of a GRN from limited transcriptomic or proteomic time series data based on prior biological knowledge of connectivity, constraints on attractor structure and robust design. We applied our inference approach to 6 time point transcriptomic data on Human Mammary Epithelial Cell line (HMEC) after application of Epidermal Growth Factor (EGF) and generated a BN with a plausible biological structure satisfying the data. We further defined and applied a similarity measure to compare synthetic BNs and BNs generated through the proposed approach constructed from transitions of various paths of the synthetic BNs. We have also compared the performance of our algorithm with two existing BN inference algorithms. Through theoretical analysis and simulations, we showed the rarity of arriving at a BN from limited time series data with plausible biological structure using random connectivity and absence of structure in data. The framework when applied to experimental data and data generated from synthetic BNs were able to estimate BNs with high similarity scores. Comparison with existing BN inference algorithms showed the better performance of our proposed algorithm for limited time series data. The proposed framework can also be applied to optimize the connectivity of a GRN from experimental data when the prior biological knowledge on regulators is limited or not unique.

  16. Robust Inference of Genetic Exchange Communities from Microbial Genomes Using TF-IDF.

    PubMed

    Cong, Yingnan; Chan, Yao-Ban; Phillips, Charles A; Langston, Michael A; Ragan, Mark A

    2017-01-01

    Bacteria and archaea can exchange genetic material across lineages through processes of lateral genetic transfer (LGT). Collectively, these exchange relationships can be modeled as a network and analyzed using concepts from graph theory. In particular, densely connected regions within an LGT network have been defined as genetic exchange communities (GECs). However, it has been problematic to construct networks in which edges solely represent LGT. Here we apply term frequency-inverse document frequency (TF-IDF), an alignment-free method originating from document analysis, to infer regions of lateral origin in bacterial genomes. We examine four empirical datasets of different size (number of genomes) and phyletic breadth, varying a key parameter (word length k ) within bounds established in previous work. We map the inferred lateral regions to genes in recipient genomes, and construct networks in which the nodes are groups of genomes, and the edges natively represent LGT. We then extract maximum and maximal cliques (i.e., GECs) from these graphs, and identify nodes that belong to GECs across a wide range of k . Most surviving lateral transfer has happened within these GECs. Using Gene Ontology enrichment tests we demonstrate that biological processes associated with metabolism, regulation and transport are often over-represented among the genes affected by LGT within these communities. These enrichments are largely robust to change of k .

  17. Analysis of the GRNs Inference by Using Tsallis Entropy and a Feature Selection Approach

    NASA Astrophysics Data System (ADS)

    Lopes, Fabrício M.; de Oliveira, Evaldo A.; Cesar, Roberto M.

    An important problem in the bioinformatics field is to understand how genes are regulated and interact through gene networks. This knowledge can be helpful for many applications, such as disease treatment design and drugs creation purposes. For this reason, it is very important to uncover the functional relationship among genes and then to construct the gene regulatory network (GRN) from temporal expression data. However, this task usually involves data with a large number of variables and small number of observations. In this way, there is a strong motivation to use pattern recognition and dimensionality reduction approaches. In particular, feature selection is specially important in order to select the most important predictor genes that can explain some phenomena associated with the target genes. This work presents a first study about the sensibility of entropy methods regarding the entropy functional form, applied to the problem of topology recovery of GRNs. The generalized entropy proposed by Tsallis is used to study this sensibility. The inference process is based on a feature selection approach, which is applied to simulated temporal expression data generated by an artificial gene network (AGN) model. The inferred GRNs are validated in terms of global network measures. Some interesting conclusions can be drawn from the experimental results, as reported for the first time in the present paper.

  18. Mathematical inference and control of molecular networks from perturbation experiments

    NASA Astrophysics Data System (ADS)

    Mohammed-Rasheed, Mohammed

    One of the main challenges facing biologists and mathematicians in the post genomic era is to understand the behavior of molecular networks and harness this understanding into an educated intervention of the cell. The cell maintains its function via an elaborate network of interconnecting positive and negative feedback loops of genes, RNA and proteins that send different signals to a large number of pathways and molecules. These structures are referred to as genetic regulatory networks (GRNs) or molecular networks. GRNs can be viewed as dynamical systems with inherent properties and mechanisms, such as steady-state equilibriums and stability, that determine the behavior of the cell. The biological relevance of the mathematical concepts are important as they may predict the differentiation of a stem cell, the maintenance of a normal cell, the development of cancer and its aberrant behavior, and the design of drugs and response to therapy. Uncovering the underlying GRN structure from gene/protein expression data, e.g., microarrays or perturbation experiments, is called inference or reverse engineering of the molecular network. Because of the high cost and time consuming nature of biological experiments, the number of available measurements or experiments is very small compared to the number of molecules (genes, RNA and proteins). In addition, the observations are noisy, where the noise is due to the measurements imperfections as well as the inherent stochasticity of genetic expression levels. Intra-cellular activities and extra-cellular environmental attributes are also another source of variability. Thus, the inference of GRNs is, in general, an under-determined problem with a highly noisy set of observations. The ultimate goal of GRN inference and analysis is to be able to intervene within the network, in order to force it away from undesirable cellular states and into desirable ones. However, it remains a major challenge to design optimal intervention strategies in order to affect the time evolution of molecular activity in a desirable manner. In this proposal, we address both the inference and control problems of GRNs. In the first part of the thesis, we consider the control problem. We assume that we are given a general topology network structure, whose dynamics follow a discrete-time Markov chain model. We subsequently develop a comprehensive framework for optimal perturbation control of the network. The aim of the perturbation is to drive the network away from undesirable steady-states and to force it to converge to a unique desirable steady-state. The proposed framework does not make any assumptions about the topology of the initial network (e.g., ergodicity, weak and strong connectivity), and is thus applicable to general topology networks. We define the optimal perturbation as the minimum-energy perturbation measured in terms of the Frobenius norm between the initial and perturbed networks. We subsequently demonstrate that there exists at most one optimal perturbation that forces the network into the desirable steady-state. In the event where the optimal perturbation does not exist, we construct a family of sub-optimal perturbations that approximate the optimal solution arbitrarily closely. In the second part of the thesis, we address the inference problem of GRNs from time series data. We model the dynamics of the molecules using a system of ordinary differential equations corrupted by additive white noise. For large-scale networks, we formulate the inference problem as a constrained maximum likelihood estimation problem. We derive the molecular interactions that maximize the likelihood function while constraining the network to be sparse. We further propose a procedure to recover weak interactions based on the Bayesian information criterion. For small-size networks, we investigated the inference of a globally stable 7-gene melanoma genetic regulatory network from genetic perturbation experiments. We considered five melanoma cell lines, who exhibit different motility/invasion behavior under the same perturbation experiment of gene Wnt5a. The results of the simulations validate both the steady state levels and the experimental data of the perturbation experiments of all five cell lines. The goal of this study is to answer important questions that link the response of the network to perturbations, as measured by the experiments, to its structure, i.e., connectivity. Answers to these questions shed novel insights on the structure of networks and how they react to perturbations.

  19. Statistical Inference and Reverse Engineering of Gene Regulatory Networks from Observational Expression Data

    PubMed Central

    Emmert-Streib, Frank; Glazko, Galina V.; Altay, Gökmen; de Matos Simoes, Ricardo

    2012-01-01

    In this paper, we present a systematic and conceptual overview of methods for inferring gene regulatory networks from observational gene expression data. Further, we discuss two classic approaches to infer causal structures and compare them with contemporary methods by providing a conceptual categorization thereof. We complement the above by surveying global and local evaluation measures for assessing the performance of inference algorithms. PMID:22408642

  20. Differentiable cortical networks for inferences concerning people’s intentions versus physical causality

    PubMed Central

    Mason, Robert A.; Just, Marcel Adam

    2010-01-01

    Cortical activity associated with generating an inference was measured using fMRI. Participants read three-sentence passages that differed in whether or not an inference needed to be drawn to understand them. The inference was based on either a protagonist’s intention or a physical consequence of a character’s action. Activation was expected in Theory of Mind brain regions for the passages based on protagonists’ intentions but not for the physical consequence passages. The activation measured in the right temporo-parietal junction was greater in the intentional passages than in the consequence passages, consistent with predictions from a Theory of Mind perspective. In contrast, there was increased occipital activation in the physical inference passages. For both types of passage, the cortical activity related to the reading of the critical inference sentence demonstrated a recruitment of a common inference cortical network. This general inference-related activation appeared bilaterally in the language processing areas (the inferior frontal gyrus, the temporal gyrus, and the angular gyrus), as well as in the medial to superior frontal gyrus, which has been found to be active in Theory of Mind tasks. These findings are consistent with the hypothesis that component areas of the discourse processing network are recruited as needed based on the nature of the inference. A Protagonist monitoring and synthesis network is proposed as a more accurate account for Theory of Mind activation during narrative comprehension. PMID:21229617

  1. Enhancing gene regulatory network inference through data integration with markov random fields

    DOE PAGES

    Banf, Michael; Rhee, Seung Y.

    2017-02-01

    Here, a gene regulatory network links transcription factors to their target genes and represents a map of transcriptional regulation. Much progress has been made in deciphering gene regulatory networks computationally. However, gene regulatory network inference for most eukaryotic organisms remain challenging. To improve the accuracy of gene regulatory network inference and facilitate candidate selection for experimentation, we developed an algorithm called GRACE (Gene Regulatory network inference ACcuracy Enhancement). GRACE exploits biological a priori and heterogeneous data integration to generate high- confidence network predictions for eukaryotic organisms using Markov Random Fields in a semi-supervised fashion. GRACE uses a novel optimization schememore » to integrate regulatory evidence and biological relevance. It is particularly suited for model learning with sparse regulatory gold standard data. We show GRACE’s potential to produce high confidence regulatory networks compared to state of the art approaches using Drosophila melanogaster and Arabidopsis thaliana data. In an A. thaliana developmental gene regulatory network, GRACE recovers cell cycle related regulatory mechanisms and further hypothesizes several novel regulatory links, including a putative control mechanism of vascular structure formation due to modifications in cell proliferation.« less

  2. Enhancing gene regulatory network inference through data integration with markov random fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banf, Michael; Rhee, Seung Y.

    Here, a gene regulatory network links transcription factors to their target genes and represents a map of transcriptional regulation. Much progress has been made in deciphering gene regulatory networks computationally. However, gene regulatory network inference for most eukaryotic organisms remain challenging. To improve the accuracy of gene regulatory network inference and facilitate candidate selection for experimentation, we developed an algorithm called GRACE (Gene Regulatory network inference ACcuracy Enhancement). GRACE exploits biological a priori and heterogeneous data integration to generate high- confidence network predictions for eukaryotic organisms using Markov Random Fields in a semi-supervised fashion. GRACE uses a novel optimization schememore » to integrate regulatory evidence and biological relevance. It is particularly suited for model learning with sparse regulatory gold standard data. We show GRACE’s potential to produce high confidence regulatory networks compared to state of the art approaches using Drosophila melanogaster and Arabidopsis thaliana data. In an A. thaliana developmental gene regulatory network, GRACE recovers cell cycle related regulatory mechanisms and further hypothesizes several novel regulatory links, including a putative control mechanism of vascular structure formation due to modifications in cell proliferation.« less

  3. Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks

    PubMed Central

    Roy, Sushmita; Lagree, Stephen; Hou, Zhonggang; Thomson, James A.; Stewart, Ron; Gasch, Audrey P.

    2013-01-01

    Regulatory networks that control gene expression are important in diverse biological contexts including stress response and development. Each gene's regulatory program is determined by module-level regulation (e.g. co-regulation via the same signaling system), as well as gene-specific determinants that can fine-tune expression. We present a novel approach, Modular regulatory network learning with per gene information (MERLIN), that infers regulatory programs for individual genes while probabilistically constraining these programs to reveal module-level organization of regulatory networks. Using edge-, regulator- and module-based comparisons of simulated networks of known ground truth, we find MERLIN reconstructs regulatory programs of individual genes as well or better than existing approaches of network reconstruction, while additionally identifying modular organization of the regulatory networks. We use MERLIN to dissect global transcriptional behavior in two biological contexts: yeast stress response and human embryonic stem cell differentiation. Regulatory modules inferred by MERLIN capture co-regulatory relationships between signaling proteins and downstream transcription factors thereby revealing the upstream signaling systems controlling transcriptional responses. The inferred networks are enriched for regulators with genetic or physical interactions, supporting the inference, and identify modules of functionally related genes bound by the same transcriptional regulators. Our method combines the strengths of per-gene and per-module methods to reveal new insights into transcriptional regulation in stress and development. PMID:24146602

  4. Transcriptional network inference from functional similarity and expression data: a global supervised approach.

    PubMed

    Ambroise, Jérôme; Robert, Annie; Macq, Benoit; Gala, Jean-Luc

    2012-01-06

    An important challenge in system biology is the inference of biological networks from postgenomic data. Among these biological networks, a gene transcriptional regulatory network focuses on interactions existing between transcription factors (TFs) and and their corresponding target genes. A large number of reverse engineering algorithms were proposed to infer such networks from gene expression profiles, but most current methods have relatively low predictive performances. In this paper, we introduce the novel TNIFSED method (Transcriptional Network Inference from Functional Similarity and Expression Data), that infers a transcriptional network from the integration of correlations and partial correlations of gene expression profiles and gene functional similarities through a supervised classifier. In the current work, TNIFSED was applied to predict the transcriptional network in Escherichia coli and in Saccharomyces cerevisiae, using datasets of 445 and 170 affymetrix arrays, respectively. Using the area under the curve of the receiver operating characteristics and the F-measure as indicators, we showed the predictive performance of TNIFSED to be better than unsupervised state-of-the-art methods. TNIFSED performed slightly worse than the supervised SIRENE algorithm for the target genes identification of the TF having a wide range of yet identified target genes but better for TF having only few identified target genes. Our results indicate that TNIFSED is complementary to the SIRENE algorithm, and particularly suitable to discover target genes of "orphan" TFs.

  5. Automatic inference of multicellular regulatory networks using informative priors.

    PubMed

    Sun, Xiaoyun; Hong, Pengyu

    2009-01-01

    To fully understand the mechanisms governing animal development, computational models and algorithms are needed to enable quantitative studies of the underlying regulatory networks. We developed a mathematical model based on dynamic Bayesian networks to model multicellular regulatory networks that govern cell differentiation processes. A machine-learning method was developed to automatically infer such a model from heterogeneous data. We show that the model inference procedure can be greatly improved by incorporating interaction data across species. The proposed approach was applied to C. elegans vulval induction to reconstruct a model capable of simulating C. elegans vulval induction under 73 different genetic conditions.

  6. Bayesian Inference for Time Trends in Parameter Values: Case Study for the Ageing PSA Network of the European Commission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana L. Kelly; Albert Malkhasyan

    2010-06-01

    There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “industry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an application of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates the development of a generic prior distribution, which incorporates multiple sources of generic data via weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less

  7. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks

    PubMed Central

    Marbach, Daniel; Roy, Sushmita; Ay, Ferhat; Meyer, Patrick E.; Candeias, Rogerio; Kahveci, Tamer; Bristow, Christopher A.; Kellis, Manolis

    2012-01-01

    Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene expression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we predict ∼300,000 regulatory edges in a network of ∼600 TFs and 12,000 target genes. We validate our predictions using known regulatory interactions, gene functional annotations, tissue-specific expression, protein–protein interactions, and three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for hundreds of previously uncharacterized genes, including many in nervous system development, which are independently confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and demonstrates the power of data integration for network inference and studies of gene regulation at the systems level. PMID:22456606

  8. Causal inference in biology networks with integrated belief propagation.

    PubMed

    Chang, Rui; Karr, Jonathan R; Schadt, Eric E

    2015-01-01

    Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot.

  9. IMNN: Information Maximizing Neural Networks

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-04-01

    This software trains artificial neural networks to find non-linear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). As compressing large data sets vastly simplifies both frequentist and Bayesian inference, important information may be inadvertently missed. Likelihood-free inference based on automatically derived IMNN summaries produces summaries that are good approximations to sufficient statistics. IMNNs are robustly capable of automatically finding optimal, non-linear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima.

  10. Density-based clustering: A 'landscape view' of multi-channel neural data for inference and dynamic complexity analysis.

    PubMed

    Baglietto, Gabriel; Gigante, Guido; Del Giudice, Paolo

    2017-01-01

    Two, partially interwoven, hot topics in the analysis and statistical modeling of neural data, are the development of efficient and informative representations of the time series derived from multiple neural recordings, and the extraction of information about the connectivity structure of the underlying neural network from the recorded neural activities. In the present paper we show that state-space clustering can provide an easy and effective option for reducing the dimensionality of multiple neural time series, that it can improve inference of synaptic couplings from neural activities, and that it can also allow the construction of a compact representation of the multi-dimensional dynamics, that easily lends itself to complexity measures. We apply a variant of the 'mean-shift' algorithm to perform state-space clustering, and validate it on an Hopfield network in the glassy phase, in which metastable states are largely uncorrelated from memories embedded in the synaptic matrix. In this context, we show that the neural states identified as clusters' centroids offer a parsimonious parametrization of the synaptic matrix, which allows a significant improvement in inferring the synaptic couplings from the neural activities. Moving to the more realistic case of a multi-modular spiking network, with spike-frequency adaptation inducing history-dependent effects, we propose a procedure inspired by Boltzmann learning, but extending its domain of application, to learn inter-module synaptic couplings so that the spiking network reproduces a prescribed pattern of spatial correlations; we then illustrate, in the spiking network, how clustering is effective in extracting relevant features of the network's state-space landscape. Finally, we show that the knowledge of the cluster structure allows casting the multi-dimensional neural dynamics in the form of a symbolic dynamics of transitions between clusters; as an illustration of the potential of such reduction, we define and analyze a measure of complexity of the neural time series.

  11. Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio; Biamonte, Jacob

    2016-10-01

    Any physical system can be viewed from the perspective that information is implicitly represented in its state. However, the quantification of this information when it comes to complex networks has remained largely elusive. In this work, we use techniques inspired by quantum statistical mechanics to define an entropy measure for complex networks and to develop a set of information-theoretic tools, based on network spectral properties, such as Rényi q entropy, generalized Kullback-Leibler and Jensen-Shannon divergences, the latter allowing us to define a natural distance measure between complex networks. First, we show that by minimizing the Kullback-Leibler divergence between an observed network and a parametric network model, inference of model parameter(s) by means of maximum-likelihood estimation can be achieved and model selection can be performed with appropriate information criteria. Second, we show that the information-theoretic metric quantifies the distance between pairs of networks and we can use it, for instance, to cluster the layers of a multilayer system. By applying this framework to networks corresponding to sites of the human microbiome, we perform hierarchical cluster analysis and recover with high accuracy existing community-based associations. Our results imply that spectral-based statistical inference in complex networks results in demonstrably superior performance as well as a conceptual backbone, filling a gap towards a network information theory.

  12. Network Analysis of Rodent Transcriptomes in Spaceflight

    NASA Technical Reports Server (NTRS)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  13. Inference and Analysis of Population Structure Using Genetic Data and Network Theory

    PubMed Central

    Greenbaum, Gili; Templeton, Alan R.; Bar-David, Shirli

    2016-01-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition’s modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). PMID:26888080

  14. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    PubMed

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). Copyright © 2016 by the Genetics Society of America.

  15. Inferring protein domains associated with drug side effects based on drug-target interaction network

    PubMed Central

    2013-01-01

    Background Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions. Results In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains. Conclusion The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains. PMID:24565527

  16. A Study of Gaps in Attack Analysis

    DTIC Science & Technology

    2016-10-12

    2014. [86] Shobha Venkataraman , David Brumley, Subhabrata Sen, and Oliver Spatscheck. Automati- cally Inferring the Evolution of Malicious Activity on...Shobha Venkataraman , Subhabrata Sen, Oliver Spatscheck, Patrick Haffner, and Dawn Song. Exploiting Network Structure for Proactive Spam Mitigation. In

  17. Porcine Tissue-Specific Regulatory Networks Derived from Meta-Analysis of the Transcriptome

    PubMed Central

    Pérez-Montarelo, Dafne; Hudson, Nicholas J.; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P.; Reverter, Antonio

    2012-01-01

    The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species. PMID:23049964

  18. Differentiable cortical networks for inferences concerning people's intentions versus physical causality.

    PubMed

    Mason, Robert A; Just, Marcel Adam

    2011-02-01

    Cortical activity associated with generating an inference was measured using fMRI. Participants read three-sentence passages that differed in whether or not an inference needed to be drawn to understand them. The inference was based on either a protagonist's intention or a physical consequence of a character's action. Activation was expected in Theory of Mind brain regions for the passages based on protagonists' intentions but not for the physical consequence passages. The activation measured in the right temporo-parietal junction was greater in the intentional passages than in the consequence passages, consistent with predictions from a Theory of Mind perspective. In contrast, there was increased occipital activation in the physical inference passages. For both types of passage, the cortical activity related to the reading of the critical inference sentence demonstrated a recruitment of a common inference cortical network. This general inference-related activation appeared bilaterally in the language processing areas (the inferior frontal gyrus, the temporal gyrus, and the angular gyrus), as well as in the medial to superior frontal gyrus, which has been found to be active in Theory of Mind tasks. These findings are consistent with the hypothesis that component areas of the discourse processing network are recruited as needed based on the nature of the inference. A Protagonist monitoring and synthesis network is proposed as a more accurate account for Theory of Mind activation during narrative comprehension. Copyright © 2010 Wiley-Liss, Inc.

  19. NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms.

    PubMed

    Ruyssinck, Joeri; Huynh-Thu, Vân Anh; Geurts, Pierre; Dhaene, Tom; Demeester, Piet; Saeys, Yvan

    2014-01-01

    One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms) and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made publicly available.

  20. An Intuitive Dashboard for Bayesian Network Inference

    NASA Astrophysics Data System (ADS)

    Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.

    2014-03-01

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.

  1. The Reconstruction and Analysis of Gene Regulatory Networks.

    PubMed

    Zheng, Guangyong; Huang, Tao

    2018-01-01

    In post-genomic era, an important task is to explore the function of individual biological molecules (i.e., gene, noncoding RNA, protein, metabolite) and their organization in living cells. For this end, gene regulatory networks (GRNs) are constructed to show relationship between biological molecules, in which the vertices of network denote biological molecules and the edges of network present connection between nodes (Strogatz, Nature 410:268-276, 2001; Bray, Science 301:1864-1865, 2003). Biologists can understand not only the function of biological molecules but also the organization of components of living cells through interpreting the GRNs, since a gene regulatory network is a comprehensively physiological map of living cells and reflects influence of genetic and epigenetic factors (Strogatz, Nature 410:268-276, 2001; Bray, Science 301:1864-1865, 2003). In this paper, we will review the inference methods of GRN reconstruction and analysis approaches of network structure. As a powerful tool for studying complex diseases and biological processes, the applications of the network method in pathway analysis and disease gene identification will be introduced.

  2. Integration of Steady-State and Temporal Gene Expression Data for the Inference of Gene Regulatory Networks

    PubMed Central

    Wang, Yi Kan; Hurley, Daniel G.; Schnell, Santiago; Print, Cristin G.; Crampin, Edmund J.

    2013-01-01

    We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data. PMID:23967277

  3. Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data.

    PubMed

    Kim, Jongrae; Bates, Declan G; Postlethwaite, Ian; Heslop-Harrison, Pat; Cho, Kwang-Hyun

    2008-05-15

    Inherent non-linearities in biomolecular interactions make the identification of network interactions difficult. One of the principal problems is that all methods based on the use of linear time-invariant models will have fundamental limitations in their capability to infer certain non-linear network interactions. Another difficulty is the multiplicity of possible solutions, since, for a given dataset, there may be many different possible networks which generate the same time-series expression profiles. A novel algorithm for the inference of biomolecular interaction networks from temporal expression data is presented. Linear time-varying models, which can represent a much wider class of time-series data than linear time-invariant models, are employed in the algorithm. From time-series expression profiles, the model parameters are identified by solving a non-linear optimization problem. In order to systematically reduce the set of possible solutions for the optimization problem, a filtering process is performed using a phase-portrait analysis with random numerical perturbations. The proposed approach has the advantages of not requiring the system to be in a stable steady state, of using time-series profiles which have been generated by a single experiment, and of allowing non-linear network interactions to be identified. The ability of the proposed algorithm to correctly infer network interactions is illustrated by its application to three examples: a non-linear model for cAMP oscillations in Dictyostelium discoideum, the cell-cycle data for Saccharomyces cerevisiae and a large-scale non-linear model of a group of synchronized Dictyostelium cells. The software used in this article is available from http://sbie.kaist.ac.kr/software

  4. A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale Networks

    PubMed Central

    Yin, Junming; Ho, Qirong; Xing, Eric P.

    2014-01-01

    We propose a scalable approach for making inference about latent spaces of large networks. With a succinct representation of networks as a bag of triangular motifs, a parsimonious statistical model, and an efficient stochastic variational inference algorithm, we are able to analyze real networks with over a million vertices and hundreds of latent roles on a single machine in a matter of hours, a setting that is out of reach for many existing methods. When compared to the state-of-the-art probabilistic approaches, our method is several orders of magnitude faster, with competitive or improved accuracy for latent space recovery and link prediction. PMID:25400487

  5. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max).

    PubMed

    Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang

    2014-01-01

    Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN.

  6. System-Level Insights into the Cellular Interactome of a Non-Model Organism: Inferring, Modelling and Analysing Functional Gene Network of Soybean (Glycine max)

    PubMed Central

    Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang

    2014-01-01

    Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN. PMID:25423109

  7. Inferring topological features of proteins from amino acid residue networks

    NASA Astrophysics Data System (ADS)

    Alves, Nelson Augusto; Martinez, Alexandre Souto

    2007-02-01

    Topological properties of native folds are obtained from statistical analysis of 160 low homology proteins covering the four structural classes. This is done analyzing one, two and three-vertex joint distribution of quantities related to the corresponding network of amino acid residues. Emphasis on the amino acid residue hydrophobicity leads to the definition of their center of mass as vertices in this contact network model with interactions represented by edges. The network analysis helps us to interpret experimental results such as hydrophobic scales and fraction of buried accessible surface area in terms of the network connectivity. Moreover, those networks show assortative mixing by degree. To explore the vertex-type dependent correlations, we build a network of hydrophobic and polar vertices. This procedure presents the wiring diagram of the topological structure of globular proteins leading to the following attachment probabilities between hydrophobic-hydrophobic 0.424(5), hydrophobic-polar 0.419(2) and polar-polar 0.157(3) residues.

  8. Network-based machine learning and graph theory algorithms for precision oncology.

    PubMed

    Zhang, Wei; Chien, Jeremy; Yong, Jeongsik; Kuang, Rui

    2017-01-01

    Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and that the efficacy of repositioned drugs can be inferred from disease modules in molecular networks. This article reviews network-based machine learning and graph theory algorithms for integrative analysis of personal genomic data and biomedical knowledge bases to identify tumor-specific molecular mechanisms, candidate targets and repositioned drugs for personalized treatment. The review focuses on the algorithmic design and mathematical formulation of these methods to facilitate applications and implementations of network-based analysis in the practice of precision oncology. We review the methods applied in three scenarios to integrate genomic data and network models in different analysis pipelines, and we examine three categories of network-based approaches for repositioning drugs in drug-disease-gene networks. In addition, we perform a comprehensive subnetwork/pathway analysis of mutations in 31 cancer genome projects in the Cancer Genome Atlas and present a detailed case study on ovarian cancer. Finally, we discuss interesting observations, potential pitfalls and future directions in network-based precision oncology.

  9. NetBenchmark: a bioconductor package for reproducible benchmarks of gene regulatory network inference.

    PubMed

    Bellot, Pau; Olsen, Catharina; Salembier, Philippe; Oliveras-Vergés, Albert; Meyer, Patrick E

    2015-09-29

    In the last decade, a great number of methods for reconstructing gene regulatory networks from expression data have been proposed. However, very few tools and datasets allow to evaluate accurately and reproducibly those methods. Hence, we propose here a new tool, able to perform a systematic, yet fully reproducible, evaluation of transcriptional network inference methods. Our open-source and freely available Bioconductor package aggregates a large set of tools to assess the robustness of network inference algorithms against different simulators, topologies, sample sizes and noise intensities. The benchmarking framework that uses various datasets highlights the specialization of some methods toward network types and data. As a result, it is possible to identify the techniques that have broad overall performances.

  10. Robust Inference of Genetic Exchange Communities from Microbial Genomes Using TF-IDF

    PubMed Central

    Cong, Yingnan; Chan, Yao-ban; Phillips, Charles A.; Langston, Michael A.; Ragan, Mark A.

    2017-01-01

    Bacteria and archaea can exchange genetic material across lineages through processes of lateral genetic transfer (LGT). Collectively, these exchange relationships can be modeled as a network and analyzed using concepts from graph theory. In particular, densely connected regions within an LGT network have been defined as genetic exchange communities (GECs). However, it has been problematic to construct networks in which edges solely represent LGT. Here we apply term frequency-inverse document frequency (TF-IDF), an alignment-free method originating from document analysis, to infer regions of lateral origin in bacterial genomes. We examine four empirical datasets of different size (number of genomes) and phyletic breadth, varying a key parameter (word length k) within bounds established in previous work. We map the inferred lateral regions to genes in recipient genomes, and construct networks in which the nodes are groups of genomes, and the edges natively represent LGT. We then extract maximum and maximal cliques (i.e., GECs) from these graphs, and identify nodes that belong to GECs across a wide range of k. Most surviving lateral transfer has happened within these GECs. Using Gene Ontology enrichment tests we demonstrate that biological processes associated with metabolism, regulation and transport are often over-represented among the genes affected by LGT within these communities. These enrichments are largely robust to change of k. PMID:28154557

  11. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    NASA Astrophysics Data System (ADS)

    Christensen, Claire Petra

    Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author's own publications have contributed network inference, simulation, modeling, and analysis methods to the much larger body of work in systems biology, and indeed, in network science. The aim of this thesis is therefore twofold: to present this original work in the historical context of network science, but also to provide sufficient review and reference regarding complex systems (with an emphasis on complex networks in systems biology) and tools and techniques for their inference, simulation, analysis, and modeling, such that the reader will be comfortable in seeking out further information on the subject. The review-like Chapters 1, 2, and 4 are intended to convey the co-evolution of network science and the slow but noticeable breakdown of boundaries between disciplines in academia as research and comparison of diverse systems has brought to light the shared properties of these systems. It is the author's hope that theses chapters impart some sense of the remarkable and rapid progress in complex systems research that has led to this unprecedented academic synergy. Chapters 3 and 5 detail the author's original work in the context of complex systems research. Chapter 3 presents the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks of the bacterium B.subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. These networks are then analyzed from a graph theoretical perspective, and their biological viability is critiqued by comparing the networks' graph theoretical properties to those of other biological systems. The results of topological perturbation analyses revealing commonalities in behavior at multiple levels of complexity are also presented, and are shown to be an invaluable means by which to ascertain the level of complexity to which the network inference process is robust to noise. Chapter 5 outlines a learning algorithm for the development of a realistic, evolving social network (a city) into which a disease is introduced. The results of simulations in populations spanning two orders of magnitude are compared to prevaccine era measles data for England and Wales and demonstrate that the simulations are able to capture the quantitative and qualitative features of epidemics in populations as small as 10,000 people. The work presented in Chapter 5 validates the utility of network simulation in concurrently probing contact network dynamics and disease dynamics.

  12. Explaining Inference on a Population of Independent Agents Using Bayesian Networks

    ERIC Educational Resources Information Center

    Sutovsky, Peter

    2013-01-01

    The main goal of this research is to design, implement, and evaluate a novel explanation method, the hierarchical explanation method (HEM), for explaining Bayesian network (BN) inference when the network is modeling a population of conditionally independent agents, each of which is modeled as a subnetwork. For example, consider disease-outbreak…

  13. Ontology Mapping Neural Network: An Approach to Learning and Inferring Correspondences among Ontologies

    ERIC Educational Resources Information Center

    Peng, Yefei

    2010-01-01

    An ontology mapping neural network (OMNN) is proposed in order to learn and infer correspondences among ontologies. It extends the Identical Elements Neural Network (IENN)'s ability to represent and map complex relationships. The learning dynamics of simultaneous (interlaced) training of similar tasks interact at the shared connections of the…

  14. Inference of cancer-specific gene regulatory networks using soft computing rules.

    PubMed

    Wang, Xiaosheng; Gotoh, Osamu

    2010-03-24

    Perturbations of gene regulatory networks are essentially responsible for oncogenesis. Therefore, inferring the gene regulatory networks is a key step to overcoming cancer. In this work, we propose a method for inferring directed gene regulatory networks based on soft computing rules, which can identify important cause-effect regulatory relations of gene expression. First, we identify important genes associated with a specific cancer (colon cancer) using a supervised learning approach. Next, we reconstruct the gene regulatory networks by inferring the regulatory relations among the identified genes, and their regulated relations by other genes within the genome. We obtain two meaningful findings. One is that upregulated genes are regulated by more genes than downregulated ones, while downregulated genes regulate more genes than upregulated ones. The other one is that tumor suppressors suppress tumor activators and activate other tumor suppressors strongly, while tumor activators activate other tumor activators and suppress tumor suppressors weakly, indicating the robustness of biological systems. These findings provide valuable insights into the pathogenesis of cancer.

  15. Functional Genomics Assistant (FUGA): a toolbox for the analysis of complex biological networks

    PubMed Central

    2011-01-01

    Background Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology. Representation and analysis of cellular constituents through network principles is a promising and popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context. Findings We present Functional Genomics Assistant (FUGA) - an extensible and portable MATLAB toolbox for the inference of biological relationships, graph topology analysis, random network simulation, network clustering, and functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes, FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative molecular targets using concepts of systems biology. Conclusion FUGA offers a simple and customizable framework for network analysis in a variety of systems biology applications. It is freely available for individual or academic use at http://code.google.com/p/fuga. PMID:22035155

  16. MaxEnt analysis of a water distribution network in Canberra, ACT, Australia

    NASA Astrophysics Data System (ADS)

    Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael; Noack, Bernd R.

    2015-01-01

    A maximum entropy (MaxEnt) method is developed to infer the state of a pipe flow network, for situations in which there is insufficient information to form a closed equation set. This approach substantially extends existing deterministic methods for the analysis of engineered flow networks (e.g. Newton's method or the Hardy Cross scheme). The network is represented as an undirected graph structure, in which the uncertainty is represented by a continuous relative entropy on the space of internal and external flow rates. The head losses (potential differences) on the network are treated as dependent variables, using specified pipe-flow resistance functions. The entropy is maximised subject to "observable" constraints on the mean values of certain flow rates and/or potential differences, and also "physical" constraints arising from the frictional properties of each pipe and from Kirchhoff's nodal and loop laws. A numerical method is developed in Matlab for solution of the integral equation system, based on multidimensional quadrature. Several nonlinear resistance functions (e.g. power-law and Colebrook) are investigated, necessitating numerical solution of the implicit Lagrangian by a double iteration scheme. The method is applied to a 1123-node, 1140-pipe water distribution network for the suburb of Torrens in the Australian Capital Territory, Australia, using network data supplied by water authority ACTEW Corporation Limited. A number of different assumptions are explored, including various network geometric representations, prior probabilities and constraint settings, yielding useful predictions of network demand and performance. We also propose this methodology be used in conjunction with in-flow monitoring systems, to obtain better inferences of user consumption without large investments in monitoring equipment and maintenance.

  17. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks.

    PubMed

    Werhli, Adriano V; Grzegorczyk, Marco; Husmeier, Dirk

    2006-10-15

    An important problem in systems biology is the inference of biochemical pathways and regulatory networks from postgenomic data. Various reverse engineering methods have been proposed in the literature, and it is important to understand their relative merits and shortcomings. In the present paper, we compare the accuracy of reconstructing gene regulatory networks with three different modelling and inference paradigms: (1) Relevance networks (RNs): pairwise association scores independent of the remaining network; (2) graphical Gaussian models (GGMs): undirected graphical models with constraint-based inference, and (3) Bayesian networks (BNs): directed graphical models with score-based inference. The evaluation is carried out on the Raf pathway, a cellular signalling network describing the interaction of 11 phosphorylated proteins and phospholipids in human immune system cells. We use both laboratory data from cytometry experiments as well as data simulated from the gold-standard network. We also compare passive observations with active interventions. On Gaussian observational data, BNs and GGMs were found to outperform RNs. The difference in performance was not significant for the non-linear simulated data and the cytoflow data, though. Also, we did not observe a significant difference between BNs and GGMs on observational data in general. However, for interventional data, BNs outperform GGMs and RNs, especially when taking the edge directions rather than just the skeletons of the graphs into account. This suggests that the higher computational costs of inference with BNs over GGMs and RNs are not justified when using only passive observations, but that active interventions in the form of gene knockouts and over-expressions are required to exploit the full potential of BNs. Data, software and supplementary material are available from http://www.bioss.sari.ac.uk/staff/adriano/research.html

  18. A descriptive model of resting-state networks using Markov chains.

    PubMed

    Xie, H; Pal, R; Mitra, S

    2016-08-01

    Resting-state functional connectivity (RSFC) studies considering pairwise linear correlations have attracted great interests while the underlying functional network structure still remains poorly understood. To further our understanding of RSFC, this paper presents an analysis of the resting-state networks (RSNs) based on the steady-state distributions and provides a novel angle to investigate the RSFC of multiple functional nodes. This paper evaluates the consistency of two networks based on the Hellinger distance between the steady-state distributions of the inferred Markov chain models. The results show that generated steady-state distributions of default mode network have higher consistency across subjects than random nodes from various RSNs.

  19. Likelihoods for fixed rank nomination networks

    PubMed Central

    HOFF, PETER; FOSDICK, BAILEY; VOLFOVSKY, ALEX; STOVEL, KATHERINE

    2014-01-01

    Many studies that gather social network data use survey methods that lead to censored, missing, or otherwise incomplete information. For example, the popular fixed rank nomination (FRN) scheme, often used in studies of schools and businesses, asks study participants to nominate and rank at most a small number of contacts or friends, leaving the existence of other relations uncertain. However, most statistical models are formulated in terms of completely observed binary networks. Statistical analyses of FRN data with such models ignore the censored and ranked nature of the data and could potentially result in misleading statistical inference. To investigate this possibility, we compare Bayesian parameter estimates obtained from a likelihood for complete binary networks with those obtained from likelihoods that are derived from the FRN scheme, and therefore accommodate the ranked and censored nature of the data. We show analytically and via simulation that the binary likelihood can provide misleading inference, particularly for certain model parameters that relate network ties to characteristics of individuals and pairs of individuals. We also compare these different likelihoods in a data analysis of several adolescent social networks. For some of these networks, the parameter estimates from the binary and FRN likelihoods lead to different conclusions, indicating the importance of analyzing FRN data with a method that accounts for the FRN survey design. PMID:25110586

  20. Gene network biological validity based on gene-gene interaction relevance.

    PubMed

    Gómez-Vela, Francisco; Díaz-Díaz, Norberto

    2014-01-01

    In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in KEGG are one of the most widely used knowledgeable sources for analyzing relationships between genes. This paper introduces a new methodology, GeneNetVal, to assess the biological validity of gene networks based on the relevance of the gene-gene interactions stored in KEGG metabolic pathways. Hence, a complete KEGG pathway conversion into a gene association network and a new matching distance based on gene-gene interaction relevance are proposed. The performance of GeneNetVal was established with three different experiments. Firstly, our proposal is tested in a comparative ROC analysis. Secondly, a randomness study is presented to show the behavior of GeneNetVal when the noise is increased in the input network. Finally, the ability of GeneNetVal to detect biological functionality of the network is shown.

  1. PyPanda: a Python package for gene regulatory network reconstruction

    PubMed Central

    van IJzendoorn, David G.P.; Glass, Kimberly; Quackenbush, John; Kuijjer, Marieke L.

    2016-01-01

    Summary: PANDA (Passing Attributes between Networks for Data Assimilation) is a gene regulatory network inference method that uses message-passing to integrate multiple sources of ‘omics data. PANDA was originally coded in C ++. In this application note we describe PyPanda, the Python version of PANDA. PyPanda runs considerably faster than the C ++ version and includes additional features for network analysis. Availability and implementation: The open source PyPanda Python package is freely available at http://github.com/davidvi/pypanda. Contact: mkuijjer@jimmy.harvard.edu or d.g.p.van_ijzendoorn@lumc.nl PMID:27402905

  2. PyPanda: a Python package for gene regulatory network reconstruction.

    PubMed

    van IJzendoorn, David G P; Glass, Kimberly; Quackenbush, John; Kuijjer, Marieke L

    2016-11-01

    PANDA (Passing Attributes between Networks for Data Assimilation) is a gene regulatory network inference method that uses message-passing to integrate multiple sources of 'omics data. PANDA was originally coded in C ++. In this application note we describe PyPanda, the Python version of PANDA. PyPanda runs considerably faster than the C ++ version and includes additional features for network analysis. The open source PyPanda Python package is freely available at http://github.com/davidvi/pypanda CONTACT: mkuijjer@jimmy.harvard.edu or d.g.p.van_ijzendoorn@lumc.nl. © The Author 2016. Published by Oxford University Press.

  3. Construction of regulatory networks using expression time-series data of a genotyped population.

    PubMed

    Yeung, Ka Yee; Dombek, Kenneth M; Lo, Kenneth; Mittler, John E; Zhu, Jun; Schadt, Eric E; Bumgarner, Roger E; Raftery, Adrian E

    2011-11-29

    The inference of regulatory and biochemical networks from large-scale genomics data is a basic problem in molecular biology. The goal is to generate testable hypotheses of gene-to-gene influences and subsequently to design bench experiments to confirm these network predictions. Coexpression of genes in large-scale gene-expression data implies coregulation and potential gene-gene interactions, but provide little information about the direction of influences. Here, we use both time-series data and genetics data to infer directionality of edges in regulatory networks: time-series data contain information about the chronological order of regulatory events and genetics data allow us to map DNA variations to variations at the RNA level. We generate microarray data measuring time-dependent gene-expression levels in 95 genotyped yeast segregants subjected to a drug perturbation. We develop a Bayesian model averaging regression algorithm that incorporates external information from diverse data types to infer regulatory networks from the time-series and genetics data. Our algorithm is capable of generating feedback loops. We show that our inferred network recovers existing and novel regulatory relationships. Following network construction, we generate independent microarray data on selected deletion mutants to prospectively test network predictions. We demonstrate the potential of our network to discover de novo transcription-factor binding sites. Applying our construction method to previously published data demonstrates that our method is competitive with leading network construction algorithms in the literature.

  4. A linear programming computational framework integrates phosphor-proteomics and prior knowledge to predict drug efficacy.

    PubMed

    Ji, Zhiwei; Wang, Bing; Yan, Ke; Dong, Ligang; Meng, Guanmin; Shi, Lei

    2017-12-21

    In recent years, the integration of 'omics' technologies, high performance computation, and mathematical modeling of biological processes marks that the systems biology has started to fundamentally impact the way of approaching drug discovery. The LINCS public data warehouse provides detailed information about cell responses with various genetic and environmental stressors. It can be greatly helpful in developing new drugs and therapeutics, as well as improving the situations of lacking effective drugs, drug resistance and relapse in cancer therapies, etc. In this study, we developed a Ternary status based Integer Linear Programming (TILP) method to infer cell-specific signaling pathway network and predict compounds' treatment efficacy. The novelty of our study is that phosphor-proteomic data and prior knowledge are combined for modeling and optimizing the signaling network. To test the power of our approach, a generic pathway network was constructed for a human breast cancer cell line MCF7; and the TILP model was used to infer MCF7-specific pathways with a set of phosphor-proteomic data collected from ten representative small molecule chemical compounds (most of them were studied in breast cancer treatment). Cross-validation indicated that the MCF7-specific pathway network inferred by TILP were reliable predicting a compound's efficacy. Finally, we applied TILP to re-optimize the inferred cell-specific pathways and predict the outcomes of five small compounds (carmustine, doxorubicin, GW-8510, daunorubicin, and verapamil), which were rarely used in clinic for breast cancer. In the simulation, the proposed approach facilitates us to identify a compound's treatment efficacy qualitatively and quantitatively, and the cross validation analysis indicated good accuracy in predicting effects of five compounds. In summary, the TILP model is useful for discovering new drugs for clinic use, and also elucidating the potential mechanisms of a compound to targets.

  5. Glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) metabolism computational network analysis between chimpanzee and human left cerebrum.

    PubMed

    Sun, Lingjun; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Lin, Hong

    2011-12-01

    We identified significantly higher expression of the genes glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) from human left cerebrums versus chimpanzees. Yet the distinct low- and high-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism networks between chimpanzee and human left cerebrum remain to be elucidated. Here, we constructed low- and high-expression activated and inhibited upstream and downstream AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network between chimpanzee and human left cerebrum in GEO data set by gene regulatory network inference method based on linear programming and decomposition procedure, under covering AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 pathway and matching metabolism enrichment analysis by CapitalBio MAS 3.0 integration of public databases, including Gene Ontology, KEGG, BioCarta, GenMapp, Intact, UniGene, OMIM, etc. Our results show that the AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network has more activated and less inhibited molecules in chimpanzee, but less activated and more inhibited in the human left cerebrum. We inferred stronger carbohydrate, glutathione and proteoglycan metabolism, ATPase activity, but weaker base excision repair, arachidonic acid and drug metabolism as a result of inducing cell growth in low-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network of chimpanzee left cerebrum; whereas stronger lipid metabolism, amino acid catabolism, DNA repair but weaker inflammatory response, cell proliferation, glutathione and carbohydrate metabolism as a result of inducing cell differentiation in high-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network of human left cerebrum. Our inferences are consistent with recent reports and computational activation and inhibition gene number patterns, respectively.

  6. A Topological Criterion for Filtering Information in Complex Brain Networks

    PubMed Central

    Latora, Vito; Chavez, Mario

    2017-01-01

    In many biological systems, the network of interactions between the elements can only be inferred from experimental measurements. In neuroscience, non-invasive imaging tools are extensively used to derive either structural or functional brain networks in-vivo. As a result of the inference process, we obtain a matrix of values corresponding to a fully connected and weighted network. To turn this into a useful sparse network, thresholding is typically adopted to cancel a percentage of the weakest connections. The structural properties of the resulting network depend on how much of the inferred connectivity is eventually retained. However, how to objectively fix this threshold is still an open issue. We introduce a criterion, the efficiency cost optimization (ECO), to select a threshold based on the optimization of the trade-off between the efficiency of a network and its wiring cost. We prove analytically and we confirm through numerical simulations that the connection density maximizing this trade-off emphasizes the intrinsic properties of a given network, while preserving its sparsity. Moreover, this density threshold can be determined a-priori, since the number of connections to filter only depends on the network size according to a power-law. We validate this result on several brain networks, from micro- to macro-scales, obtained with different imaging modalities. Finally, we test the potential of ECO in discriminating brain states with respect to alternative filtering methods. ECO advances our ability to analyze and compare biological networks, inferred from experimental data, in a fast and principled way. PMID:28076353

  7. Emulation of reionization simulations for Bayesian inference of astrophysics parameters using neural networks

    NASA Astrophysics Data System (ADS)

    Schmit, C. J.; Pritchard, J. R.

    2018-03-01

    Next generation radio experiments such as LOFAR, HERA, and SKA are expected to probe the Epoch of Reionization (EoR) and claim a first direct detection of the cosmic 21cm signal within the next decade. Data volumes will be enormous and can thus potentially revolutionize our understanding of the early Universe and galaxy formation. However, numerical modelling of the EoR can be prohibitively expensive for Bayesian parameter inference and how to optimally extract information from incoming data is currently unclear. Emulation techniques for fast model evaluations have recently been proposed as a way to bypass costly simulations. We consider the use of artificial neural networks as a blind emulation technique. We study the impact of training duration and training set size on the quality of the network prediction and the resulting best-fitting values of a parameter search. A direct comparison is drawn between our emulation technique and an equivalent analysis using 21CMMC. We find good predictive capabilities of our network using training sets of as low as 100 model evaluations, which is within the capabilities of fully numerical radiative transfer codes.

  8. Dynamic modelling of microRNA regulation during mesenchymal stem cell differentiation.

    PubMed

    Weber, Michael; Sotoca, Ana M; Kupfer, Peter; Guthke, Reinhard; van Zoelen, Everardus J

    2013-11-12

    Network inference from gene expression data is a typical approach to reconstruct gene regulatory networks. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation, microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference aimes at determining interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target predictions. We applied the NetGenerator tool in order to infer an integrated gene regulatory network. Time series experiments were performed to measure mRNA and miRNA abundances of TGF-beta1+BMP2 stimulated hMSCs. Network nodes were identified by analysing temporal expression changes, miRNA target gene predictions, time series correlation and literature knowledge. Network inference was performed using NetGenerator to reconstruct a dynamical regulatory model based on the measured data and prior knowledge. The resulting model is robust against noise and shows an optimal trade-off between fitting precision and inclusion of prior knowledge. It predicts the influence of miRNAs on the expression of chondrogenic marker genes and therefore proposes novel regulatory relations in differentiation control. By analysing the inferred network, we identified a previously unknown regulatory effect of miR-524-5p on the expression of the transcription factor SOX9 and the chondrogenic marker genes COL2A1, ACAN and COL10A1. Genome-wide exploration of miRNA-mRNA regulatory relationships is a reasonable approach to identify miRNAs which have so far not been associated with the investigated differentiation process. The NetGenerator tool is able to identify valid gene regulatory networks on the basis of miRNA and mRNA time series data.

  9. Safety Network to Detect Performance Degradation and Pilot Incapacitation (Reseau de securite pour detecter la degradation des performances et la defaillance du pilote)

    DTIC Science & Technology

    1990-09-01

    military pilot acceptance of a safety network system would be based , as always, on the following: a. Do I really need such a system and will it be a...inferring pilot state based on computer analysis of pilot control inputs (or lack of)l. Having decided that the pilot is incapacitated, PMAS would alert...the advances being made in neural network computing machinery have necessitated a complete re-thinking of the conventional serial von Neuman machine

  10. Topological data analysis of contagion maps for examining spreading processes on networks.

    PubMed

    Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  11. Topological data analysis of contagion maps for examining spreading processes on networks

    NASA Astrophysics Data System (ADS)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-07-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  12. Spatiotemporal Phase Synchronization in Adaptive Reconfiguration from Action Observation Network to Mentalizing Network for Understanding Other's Action Intention.

    PubMed

    Zhang, Li; Gan, John Q; Zheng, Wenming; Wang, Haixian

    2018-05-01

    In action intention understanding, the mirror system is involved in perception-action matching process and the mentalizing system underlies higher-level intention inference. By analyzing the dynamic functional connectivity in α (8-12 Hz) and β (12-30 Hz) frequency bands over a "hand-cup interaction" observation task, this study investigates the topological transition from the action observation network (AON) to the mentalizing network (MZN), and estimates their functional relevance for intention identification from other's different action kinematics. Sequential brain microstates were extracted based on event-related potentials (ERPs), in which significantly differing neuronal responses were found in N170-P200 related to perceptually matching kinematic profiles and P400-700 involved in goal inference. Inter-electrode weighted phase lag index analysis on the ERP microstates revealed a shift of hub centrality salient in α frequency band, from the AON dominated by left-lateral frontal-premotor-temporal and temporal-parietooccipital synchronizations to the MZN consisting of more bilateral frontal-parietal and temporal-parietal synchronizations. As compared with usual actions, intention identification of unintelligible actions induces weaker synchronizations in the AON but dramatically increased connectivity in right frontal-temporal-parietal regions of the MZN, indicating a spatiotemporally complementary effect between the functional network configurations involved in mirror and mentalizing processes. Perceptual processing in observing usual/unintelligible actions decreases/increases requirements for intention inference, which would induce less/greater functional network reorganization on the way to mentalization. From the comparison, our study suggests that the adaptive topological changes from the AON to the MZN indicate implicit causal association between the mirror and mentalizing systems for decoding others' intentionality.

  13. Ensemble methods for stochastic networks with special reference to the biological clock of Neurospora crassa.

    PubMed

    Caranica, C; Al-Omari, A; Deng, Z; Griffith, J; Nilsen, R; Mao, L; Arnold, J; Schüttler, H-B

    2018-01-01

    A major challenge in systems biology is to infer the parameters of regulatory networks that operate in a noisy environment, such as in a single cell. In a stochastic regime it is hard to distinguish noise from the real signal and to infer the noise contribution to the dynamical behavior. When the genetic network displays oscillatory dynamics, it is even harder to infer the parameters that produce the oscillations. To address this issue we introduce a new estimation method built on a combination of stochastic simulations, mass action kinetics and ensemble network simulations in which we match the average periodogram and phase of the model to that of the data. The method is relatively fast (compared to Metropolis-Hastings Monte Carlo Methods), easy to parallelize, applicable to large oscillatory networks and large (~2000 cells) single cell expression data sets, and it quantifies the noise impact on the observed dynamics. Standard errors of estimated rate coefficients are typically two orders of magnitude smaller than the mean from single cell experiments with on the order of ~1000 cells. We also provide a method to assess the goodness of fit of the stochastic network using the Hilbert phase of single cells. An analysis of phase departures from the null model with no communication between cells is consistent with a hypothesis of Stochastic Resonance describing single cell oscillators. Stochastic Resonance provides a physical mechanism whereby intracellular noise plays a positive role in establishing oscillatory behavior, but may require model parameters, such as rate coefficients, that differ substantially from those extracted at the macroscopic level from measurements on populations of millions of communicating, synchronized cells.

  14. Flame analysis using image processing techniques

    NASA Astrophysics Data System (ADS)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  15. Algorithm Optimally Orders Forward-Chaining Inference Rules

    NASA Technical Reports Server (NTRS)

    James, Mark

    2008-01-01

    People typically develop knowledge bases in a somewhat ad hoc manner by incrementally adding rules with no specific organization. This often results in a very inefficient execution of those rules since they are so often order sensitive. This is relevant to tasks like Deep Space Network in that it allows the knowledge base to be incrementally developed and have it automatically ordered for efficiency. Although data flow analysis was first developed for use in compilers for producing optimal code sequences, its usefulness is now recognized in many software systems including knowledge-based systems. However, this approach for exhaustively computing data-flow information cannot directly be applied to inference systems because of the ubiquitous execution of the rules. An algorithm is presented that efficiently performs a complete producer/consumer analysis for each antecedent and consequence clause in a knowledge base to optimally order the rules to minimize inference cycles. An algorithm was developed that optimally orders a knowledge base composed of forwarding chaining inference rules such that independent inference cycle executions are minimized, thus, resulting in significantly faster execution. This algorithm was integrated into the JPL tool Spacecraft Health Inference Engine (SHINE) for verification and it resulted in a significant reduction in inference cycles for what was previously considered an ordered knowledge base. For a knowledge base that is completely unordered, then the improvement is much greater.

  16. Image feature based GPS trace filtering for road network generation and road segmentation

    DOE PAGES

    Yuan, Jiangye; Cheriyadat, Anil M.

    2015-10-19

    We propose a new method to infer road networks from GPS trace data and accurately segment road regions in high-resolution aerial images. Unlike previous efforts that rely on GPS traces alone, we exploit image features to infer road networks from noisy trace data. The inferred road network is used to guide road segmentation. We show that the number of image segments spanned by the traces and the trace orientation validated with image features are important attributes for identifying GPS traces on road regions. Based on filtered traces , we construct road networks and integrate them with image features to segmentmore » road regions. Lastly, our experiments show that the proposed method produces more accurate road networks than the leading method that uses GPS traces alone, and also achieves high accuracy in segmenting road regions even with very noisy GPS data.« less

  17. Image feature based GPS trace filtering for road network generation and road segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Jiangye; Cheriyadat, Anil M.

    We propose a new method to infer road networks from GPS trace data and accurately segment road regions in high-resolution aerial images. Unlike previous efforts that rely on GPS traces alone, we exploit image features to infer road networks from noisy trace data. The inferred road network is used to guide road segmentation. We show that the number of image segments spanned by the traces and the trace orientation validated with image features are important attributes for identifying GPS traces on road regions. Based on filtered traces , we construct road networks and integrate them with image features to segmentmore » road regions. Lastly, our experiments show that the proposed method produces more accurate road networks than the leading method that uses GPS traces alone, and also achieves high accuracy in segmenting road regions even with very noisy GPS data.« less

  18. NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble Feature Importance Algorithms

    PubMed Central

    Ruyssinck, Joeri; Huynh-Thu, Vân Anh; Geurts, Pierre; Dhaene, Tom; Demeester, Piet; Saeys, Yvan

    2014-01-01

    One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms) and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made publicly available. PMID:24667482

  19. TernaryNet: faster deep model inference without GPUs for medical 3D segmentation using sparse and binary convolutions.

    PubMed

    Heinrich, Mattias P; Blendowski, Max; Oktay, Ozan

    2018-05-30

    Deep convolutional neural networks (DCNN) are currently ubiquitous in medical imaging. While their versatility and high-quality results for common image analysis tasks including segmentation, localisation and prediction is astonishing, the large representational power comes at the cost of highly demanding computational effort. This limits their practical applications for image-guided interventions and diagnostic (point-of-care) support using mobile devices without graphics processing units (GPU). We propose a new scheme that approximates both trainable weights and neural activations in deep networks by ternary values and tackles the open question of backpropagation when dealing with non-differentiable functions. Our solution enables the removal of the expensive floating-point matrix multiplications throughout any convolutional neural network and replaces them by energy- and time-preserving binary operators and population counts. We evaluate our approach for the segmentation of the pancreas in CT. Here, our ternary approximation within a fully convolutional network leads to more than 90% memory reductions and high accuracy (without any post-processing) with a Dice overlap of 71.0% that comes close to the one obtained when using networks with high-precision weights and activations. We further provide a concept for sub-second inference without GPUs and demonstrate significant improvements in comparison with binary quantisation and without our proposed ternary hyperbolic tangent continuation. We present a key enabling technique for highly efficient DCNN inference without GPUs that will help to bring the advances of deep learning to practical clinical applications. It has also great promise for improving accuracies in large-scale medical data retrieval.

  20. ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks

    PubMed Central

    2014-01-01

    Background Uncovering the complex transcriptional regulatory networks (TRNs) that underlie plant and animal development remains a challenge. However, a vast amount of data from public microarray experiments is available, which can be subject to inference algorithms in order to recover reliable TRN architectures. Results In this study we present a simple bioinformatics methodology that uses public, carefully curated microarray data and the mutual information algorithm ARACNe in order to obtain a database of transcriptional interactions. We used data from Arabidopsis thaliana root samples to show that the transcriptional regulatory networks derived from this database successfully recover previously identified root transcriptional modules and to propose new transcription factors for the SHORT ROOT/SCARECROW and PLETHORA pathways. We further show that these networks are a powerful tool to integrate and analyze high-throughput expression data, as exemplified by our analysis of a SHORT ROOT induction time-course microarray dataset, and are a reliable source for the prediction of novel root gene functions. In particular, we used our database to predict novel genes involved in root secondary cell-wall synthesis and identified the MADS-box TF XAL1/AGL12 as an unexpected participant in this process. Conclusions This study demonstrates that network inference using carefully curated microarray data yields reliable TRN architectures. In contrast to previous efforts to obtain root TRNs, that have focused on particular functional modules or tissues, our root transcriptional interactions provide an overview of the transcriptional pathways present in Arabidopsis thaliana roots and will likely yield a plethora of novel hypotheses to be tested experimentally. PMID:24739361

  1. Integrating Information in Biological Ontologies and Molecular Networks to Infer Novel Terms.

    PubMed

    Li, Le; Yip, Kevin Y

    2016-12-15

    Currently most terms and term-term relationships in Gene Ontology (GO) are defined manually, which creates cost, consistency and completeness issues. Recent studies have demonstrated the feasibility of inferring GO automatically from biological networks, which represents an important complementary approach to GO construction. These methods (NeXO and CliXO) are unsupervised, which means 1) they cannot use the information contained in existing GO, 2) the way they integrate biological networks may not optimize the accuracy, and 3) they are not customized to infer the three different sub-ontologies of GO. Here we present a semi-supervised method called Unicorn that extends these previous methods to tackle the three problems. Unicorn uses a sub-tree of an existing GO sub-ontology as training part to learn parameters in integrating multiple networks. Cross-validation results show that Unicorn reliably inferred the left-out parts of each specific GO sub-ontology. In addition, by training Unicorn with an old version of GO together with biological networks, it successfully re-discovered some terms and term-term relationships present only in a new version of GO. Unicorn also successfully inferred some novel terms that were not contained in GO but have biological meanings well-supported by the literature. Source code of Unicorn is available at http://yiplab.cse.cuhk.edu.hk/unicorn/.

  2. Social representations and contextual adjustments as two distinct components of the Theory of Mind brain network: Evidence from the REMICS task.

    PubMed

    Lavoie, Marie-Audrey; Vistoli, Damien; Sutliff, Stephanie; Jackson, Philip L; Achim, Amélie M

    2016-08-01

    Theory of mind (ToM) refers to the ability to infer the mental states of others. Behavioral measures of ToM usually present information about both a character and the context in which this character is placed, and these different pieces of information can be used to infer the character's mental states. A set of brain regions designated as the ToM brain network is recognized to support (ToM) inferences. Different brain regions within that network could however support different ToM processes. This functional magnetic resonance imaging (fMRI) study aimed to distinguish the brain regions supporting two aspects inherent to many ToM tasks, i.e., the ability to infer or represent mental states and the ability to use the context to adjust these inferences. Nineteen healthy subjects were scanned during the REMICS task, a novel task designed to orthogonally manipulate mental state inferences (as opposed to physical inferences) and contextual adjustments of inferences (as opposed to inferences that do not require contextual adjustments). We observed that mental state inferences and contextual adjustments, which are important aspects of most behavioral ToM tasks, rely on distinct brain regions or subregions within the classical brain network activated in previous ToM research. Notably, an interesting dissociation emerged within the medial prefrontal cortex (mPFC) and temporo-parietal junctions (TPJ) such that the inferior part of these brain regions responded to mental state inferences while the superior part of these brain regions responded to the requirement for contextual adjustments. This study provides evidence that the overall set of brain regions activated during ToM tasks supports different processes, and highlights that cognitive processes related to contextual adjustments have an important role in ToM and should be further studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Inferring topologies via driving-based generalized synchronization of two-layer networks

    NASA Astrophysics Data System (ADS)

    Wang, Yingfei; Wu, Xiaoqun; Feng, Hui; Lu, Jun-an; Xu, Yuhua

    2016-05-01

    The interaction topology among the constituents of a complex network plays a crucial role in the network’s evolutionary mechanisms and functional behaviors. However, some network topologies are usually unknown or uncertain. Meanwhile, coupling delays are ubiquitous in various man-made and natural networks. Hence, it is necessary to gain knowledge of the whole or partial topology of a complex dynamical network by taking into consideration communication delay. In this paper, topology identification of complex dynamical networks is investigated via generalized synchronization of a two-layer network. Particularly, based on the LaSalle-type invariance principle of stochastic differential delay equations, an adaptive control technique is proposed by constructing an auxiliary layer and designing proper control input and updating laws so that the unknown topology can be recovered upon successful generalized synchronization. Numerical simulations are provided to illustrate the effectiveness of the proposed method. The technique provides a certain theoretical basis for topology inference of complex networks. In particular, when the considered network is composed of systems with high-dimension or complicated dynamics, a simpler response layer can be constructed, which is conducive to circuit design. Moreover, it is practical to take into consideration perturbations caused by control input. Finally, the method is applicable to infer topology of a subnetwork embedded within a complex system and locate hidden sources. We hope the results can provide basic insight into further research endeavors on understanding practical and economical topology inference of networks.

  4. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency.

    PubMed

    Yeh, Hsiang-Yuan; Cheng, Shih-Wu; Lin, Yu-Chun; Yeh, Cheng-Yu; Lin, Shih-Fang; Soo, Von-Wun

    2009-12-21

    Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN) algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD) as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2) regulated by RUNX1 and STAT3 is correlated to the pathological stage. We provide a computational framework to reconstruct the genetic regulatory network from the microarray data using biological knowledge and constraint-based inferences. Our method is helpful in verifying possible interaction relations in gene regulatory networks and filtering out incorrect relations inferred by imperfect methods. We predicted not only individual gene related to cancer but also discovered significant gene regulation networks. Our method is also validated in several enriched published papers and databases and the significant gene regulatory networks perform critical biological functions and processes including cell adhesion molecules, androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes. Those significant gene regulations and the critical concept of tumor progression are useful to understand cancer biology and disease treatment.

  5. Social networks and inference about unknown events: A case of the match between Google's AlphaGo and Sedol Lee.

    PubMed

    Bae, Jonghoon; Cha, Young-Jae; Lee, Hyungsuk; Lee, Boyun; Baek, Sojung; Choi, Semin; Jang, Dayk

    2017-01-01

    This study examines whether the way that a person makes inferences about unknown events is associated with his or her social relations, more precisely, those characterized by ego network density that reflects the structure of a person's immediate social relation. From the analysis of individual predictions over the Go match between AlphaGo and Sedol Lee in March 2016 in Seoul, Korea, this study shows that the low-density group scored higher than the high-density group in the accuracy of the prediction over a future state of a social event, i.e., the outcome of the first game. We corroborated this finding with three replication tests that asked the participants to predict the following: film awards, President Park's impeachment in Korea, and the counterfactual assessment of the US presidential election. Taken together, this study suggests that network density is negatively associated with vision advantage, i.e., the ability to discover and forecast an unknown aspect of a social event.

  6. Evidence reasoning method for constructing conditional probability tables in a Bayesian network of multimorbidity.

    PubMed

    Du, Yuanwei; Guo, Yubin

    2015-01-01

    The intrinsic mechanism of multimorbidity is difficult to recognize and prediction and diagnosis are difficult to carry out accordingly. Bayesian networks can help to diagnose multimorbidity in health care, but it is difficult to obtain the conditional probability table (CPT) because of the lack of clinically statistical data. Today, expert knowledge and experience are increasingly used in training Bayesian networks in order to help predict or diagnose diseases, but the CPT in Bayesian networks is usually irrational or ineffective for ignoring realistic constraints especially in multimorbidity. In order to solve these problems, an evidence reasoning (ER) approach is employed to extract and fuse inference data from experts using a belief distribution and recursive ER algorithm, based on which evidence reasoning method for constructing conditional probability tables in Bayesian network of multimorbidity is presented step by step. A multimorbidity numerical example is used to demonstrate the method and prove its feasibility and application. Bayesian network can be determined as long as the inference assessment is inferred by each expert according to his/her knowledge or experience. Our method is more effective than existing methods for extracting expert inference data accurately and is fused effectively for constructing CPTs in a Bayesian network of multimorbidity.

  7. Inference of financial networks using the normalised mutual information rate.

    PubMed

    Goh, Yong Kheng; Hasim, Haslifah M; Antonopoulos, Chris G

    2018-01-01

    In this paper, we study data from financial markets, using the normalised Mutual Information Rate. We show how to use it to infer the underlying network structure of interrelations in the foreign currency exchange rates and stock indices of 15 currency areas. We first present the mathematical method and discuss its computational aspects, and apply it to artificial data from chaotic dynamics and to correlated normal-variates data. We then apply the method to infer the structure of the financial system from the time-series of currency exchange rates and stock indices. In particular, we study and reveal the interrelations among the various foreign currency exchange rates and stock indices in two separate networks, of which we also study their structural properties. Our results show that both inferred networks are small-world networks, sharing similar properties and having differences in terms of assortativity. Importantly, our work shows that global economies tend to connect with other economies world-wide, rather than creating small groups of local economies. Finally, the consistent interrelations depicted among the 15 currency areas are further supported by a discussion from the viewpoint of economics.

  8. Inference of financial networks using the normalised mutual information rate

    PubMed Central

    2018-01-01

    In this paper, we study data from financial markets, using the normalised Mutual Information Rate. We show how to use it to infer the underlying network structure of interrelations in the foreign currency exchange rates and stock indices of 15 currency areas. We first present the mathematical method and discuss its computational aspects, and apply it to artificial data from chaotic dynamics and to correlated normal-variates data. We then apply the method to infer the structure of the financial system from the time-series of currency exchange rates and stock indices. In particular, we study and reveal the interrelations among the various foreign currency exchange rates and stock indices in two separate networks, of which we also study their structural properties. Our results show that both inferred networks are small-world networks, sharing similar properties and having differences in terms of assortativity. Importantly, our work shows that global economies tend to connect with other economies world-wide, rather than creating small groups of local economies. Finally, the consistent interrelations depicted among the 15 currency areas are further supported by a discussion from the viewpoint of economics. PMID:29420644

  9. A sub-space greedy search method for efficient Bayesian Network inference.

    PubMed

    Zhang, Qing; Cao, Yong; Li, Yong; Zhu, Yanming; Sun, Samuel S M; Guo, Dianjing

    2011-09-01

    Bayesian network (BN) has been successfully used to infer the regulatory relationships of genes from microarray dataset. However, one major limitation of BN approach is the computational cost because the calculation time grows more than exponentially with the dimension of the dataset. In this paper, we propose a sub-space greedy search method for efficient Bayesian Network inference. Particularly, this method limits the greedy search space by only selecting gene pairs with higher partial correlation coefficients. Using both synthetic and real data, we demonstrate that the proposed method achieved comparable results with standard greedy search method yet saved ∼50% of the computational time. We believe that sub-space search method can be widely used for efficient BN inference in systems biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Mobile Context Provider for Social Networking

    NASA Astrophysics Data System (ADS)

    Santos, André C.; Cardoso, João M. P.; Ferreira, Diogo R.; Diniz, Pedro C.

    The ability to infer user context based on a mobile device together with a set of external sensors opens up the way to new context-aware services and applications. In this paper, we describe a mobile context provider that makes use of sensors available in a smartphone as well as sensors externally connected via bluetooth. We describe the system architecture from sensor data acquisition to feature extraction, context inference and the publication of context information to well-known social networking services such as Twitter and Hi5. In the current prototype, context inference is based on decision trees, but the middleware allows the integration of other inference engines. Experimental results suggest that the proposed solution is a promising approach to provide user context to both local and network-level services.

  11. Inference of gene regulatory networks from genome-wide knockout fitness data

    PubMed Central

    Wang, Liming; Wang, Xiaodong; Arkin, Adam P.; Samoilov, Michael S.

    2013-01-01

    Motivation: Genome-wide fitness is an emerging type of high-throughput biological data generated for individual organisms by creating libraries of knockouts, subjecting them to broad ranges of environmental conditions, and measuring the resulting clone-specific fitnesses. Since fitness is an organism-scale measure of gene regulatory network behaviour, it may offer certain advantages when insights into such phenotypical and functional features are of primary interest over individual gene expression. Previous works have shown that genome-wide fitness data can be used to uncover novel gene regulatory interactions, when compared with results of more conventional gene expression analysis. Yet, to date, few algorithms have been proposed for systematically using genome-wide mutant fitness data for gene regulatory network inference. Results: In this article, we describe a model and propose an inference algorithm for using fitness data from knockout libraries to identify underlying gene regulatory networks. Unlike most prior methods, the presented approach captures not only structural, but also dynamical and non-linear nature of biomolecular systems involved. A state–space model with non-linear basis is used for dynamically describing gene regulatory networks. Network structure is then elucidated by estimating unknown model parameters. Unscented Kalman filter is used to cope with the non-linearities introduced in the model, which also enables the algorithm to run in on-line mode for practical use. Here, we demonstrate that the algorithm provides satisfying results for both synthetic data as well as empirical measurements of GAL network in yeast Saccharomyces cerevisiae and TyrR–LiuR network in bacteria Shewanella oneidensis. Availability: MATLAB code and datasets are available to download at http://www.duke.edu/∼lw174/Fitness.zip and http://genomics.lbl.gov/supplemental/fitness-bioinf/ Contact: wangx@ee.columbia.edu or mssamoilov@lbl.gov Supplementary information: Supplementary data are available at Bioinformatics online PMID:23271269

  12. Network inference and network response identification: moving genome-scale data to the next level of biological discovery

    PubMed Central

    Veiga, Diogo F. T.; Dutta, Bhaskar; Balaźsi, Gábor

    2011-01-01

    The escalating amount of genome-scale data demands a pragmatic stance from the research community. How can we utilize this deluge of information to better understand biology, cure diseases, or engage cells in bioremediation or biomaterial production for various purposes? A research pipeline moving new sequence, expression and binding data towards practical end goals seems to be necessary. While most individual researchers are not motivated by such well-articulated pragmatic end goals, the scientific community has already self-organized itself to successfully convert genomic data into fundamentally new biological knowledge and practical applications. Here we review two important steps in this workflow: network inference and network response identification, applied to transcriptional regulatory networks. Among network inference methods, we concentrate on relevance networks due to their conceptual simplicity. We classify and discuss network response identification approaches as either data-centric or network-centric. Finally, we conclude with an outlook on what is still missing from these approaches and what may be ahead on the road to biological discovery. PMID:20174676

  13. Semi-Supervised Multi-View Learning for Gene Network Reconstruction

    PubMed Central

    Ceci, Michelangelo; Pio, Gianvito; Kuzmanovski, Vladimir; Džeroski, Sašo

    2015-01-01

    The task of gene regulatory network reconstruction from high-throughput data is receiving increasing attention in recent years. As a consequence, many inference methods for solving this task have been proposed in the literature. It has been recently observed, however, that no single inference method performs optimally across all datasets. It has also been shown that the integration of predictions from multiple inference methods is more robust and shows high performance across diverse datasets. Inspired by this research, in this paper, we propose a machine learning solution which learns to combine predictions from multiple inference methods. While this approach adds additional complexity to the inference process, we expect it would also carry substantial benefits. These would come from the automatic adaptation to patterns on the outputs of individual inference methods, so that it is possible to identify regulatory interactions more reliably when these patterns occur. This article demonstrates the benefits (in terms of accuracy of the reconstructed networks) of the proposed method, which exploits an iterative, semi-supervised ensemble-based algorithm. The algorithm learns to combine the interactions predicted by many different inference methods in the multi-view learning setting. The empirical evaluation of the proposed algorithm on a prokaryotic model organism (E. coli) and on a eukaryotic model organism (S. cerevisiae) clearly shows improved performance over the state of the art methods. The results indicate that gene regulatory network reconstruction for the real datasets is more difficult for S. cerevisiae than for E. coli. The software, all the datasets used in the experiments and all the results are available for download at the following link: http://figshare.com/articles/Semi_supervised_Multi_View_Learning_for_Gene_Network_Reconstruction/1604827. PMID:26641091

  14. A Prize-Collecting Steiner Tree Approach for Transduction Network Inference

    NASA Astrophysics Data System (ADS)

    Bailly-Bechet, Marc; Braunstein, Alfredo; Zecchina, Riccardo

    Into the cell, information from the environment is mainly propagated via signaling pathways which form a transduction network. Here we propose a new algorithm to infer transduction networks from heterogeneous data, using both the protein interaction network and expression datasets. We formulate the inference problem as an optimization task, and develop a message-passing, probabilistic and distributed formalism to solve it. We apply our algorithm to the pheromone response in the baker’s yeast S. cerevisiae. We are able to find the backbone of the known structure of the MAPK cascade of pheromone response, validating our algorithm. More importantly, we make biological predictions about some proteins whose role could be at the interface between pheromone response and other cellular functions.

  15. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria

    PubMed Central

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  16. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data

    PubMed Central

    Kümmel, Anne; Panke, Sven; Heinemann, Matthias

    2006-01-01

    As one of the most recent members of the omics family, large-scale quantitative metabolomics data are currently complementing our systems biology data pool and offer the chance to integrate the metabolite level into the functional analysis of cellular networks. Network-embedded thermodynamic analysis (NET analysis) is presented as a framework for mechanistic and model-based analysis of these data. By coupling the data to an operating metabolic network via the second law of thermodynamics and the metabolites' Gibbs energies of formation, NET analysis allows inferring functional principles from quantitative metabolite data; for example it identifies reactions that are subject to active allosteric or genetic regulation as exemplified with quantitative metabolite data from Escherichia coli and Saccharomyces cerevisiae. Moreover, the optimization framework of NET analysis was demonstrated to be a valuable tool to systematically investigate data sets for consistency, for the extension of sub-omic metabolome data sets and for resolving intracompartmental concentrations from cell-averaged metabolome data. Without requiring any kind of kinetic modeling, NET analysis represents a perfectly scalable and unbiased approach to uncover insights from quantitative metabolome data. PMID:16788595

  17. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.

    PubMed

    Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak

    2006-06-06

    To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence information. This method may yield further information about biological evolution, such as the history of horizontal transfer of each gene, by studying the detailed structure of the phylogenetic tree constructed by the kernel-based method.

  18. Inferring Boolean network states from partial information

    PubMed Central

    2013-01-01

    Networks of molecular interactions regulate key processes in living cells. Therefore, understanding their functionality is a high priority in advancing biological knowledge. Boolean networks are often used to describe cellular networks mathematically and are fitted to experimental datasets. The fitting often results in ambiguities since the interpretation of the measurements is not straightforward and since the data contain noise. In order to facilitate a more reliable mapping between datasets and Boolean networks, we develop an algorithm that infers network trajectories from a dataset distorted by noise. We analyze our algorithm theoretically and demonstrate its accuracy using simulation and microarray expression data. PMID:24006954

  19. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodionov, Dmitry A; Novichkov, Pavel S

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated inmore » RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.« less

  20. Geo-Spatial Social Network Analysis of Social Media to Mitigate Disasters

    NASA Astrophysics Data System (ADS)

    Carley, K. M.

    2017-12-01

    Understanding the spatial layout of human activity can afford a better understanding many phenomena - such as local cultural, the spread of ideas, and the scope of a disaster. Today, social media is one of the key sensors for acquiring information on socio-cultural activity, some with cues as to the geo-location. We ask, What can be learned by putting such data on maps? For example, are people who chat on line more likely to be near each other? Can Twitter data support disaster planning or early warning? In this talk, such issues are examined using data collected via Twitter and analyzed using ORA. ORA is a network analysis and visualization system. It supports not just social networks (who is interacting with whom), but also high dimensional networks with many types of nodes (e.g. people, organizations, resources, activities …) and relations, geo-spatial network analysis, dynamic network analysis, & geo-temporal analysis. Using ORA lessons learned from five case studies are considered: Arab Spring, Tsunami warning in Padang Indonesia, Twitter around Fukushima in Japan, Typhoon Haiyan (Yolanda), & regional conflict. Using Padang Indonesia data, we characterize the strengths and limitations of social media data to support disaster planning & early warning, identify at risk areas & issues of concern, and estimate where people are and which areas are impacted. Using Fukushima Japanese data, social media is used to estimate geo-spatial regularities in movement and communication that can inform disaster response and risk estimation. Using Arab Spring data, we find that the spread of bots & extremists varies by country and time, to the extent that using twitter to understand who is important or what ideas are critical can be compromised. Bots and extremists can exploit disaster messaging to create havoc and facilitate criminal activity e.g. human trafficking. Event discovery mechanisms support isolating geo-epi-centers for key events become crucial. Spatial inference enables improved country, and city identification. Geo-network analytics with and without these inferences reveal that explicitly geo-tagged data may not be representative and that improved location estimation provides better insight into the social condition. These results demonstrate the value of these technique to mitigate the social impact of disasters.

  1. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.

    PubMed

    Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju

    2017-04-27

    Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.

  2. Variable neighborhood search for reverse engineering of gene regulatory networks.

    PubMed

    Nicholson, Charles; Goodwin, Leslie; Clark, Corey

    2017-01-01

    A new search heuristic, Divided Neighborhood Exploration Search, designed to be used with inference algorithms such as Bayesian networks to improve on the reverse engineering of gene regulatory networks is presented. The approach systematically moves through the search space to find topologies representative of gene regulatory networks that are more likely to explain microarray data. In empirical testing it is demonstrated that the novel method is superior to the widely employed greedy search techniques in both the quality of the inferred networks and computational time. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Revealing networks from dynamics: an introduction

    NASA Astrophysics Data System (ADS)

    Timme, Marc; Casadiego, Jose

    2014-08-01

    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.

  4. Boolean Networks in Inference and Dynamic Modeling of Biological Systems at the Molecular and Physiological Level

    NASA Astrophysics Data System (ADS)

    Thakar, Juilee; Albert, Réka

    The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References

  5. Multiple hot-deck imputation for network inference from RNA sequencing data.

    PubMed

    Imbert, Alyssa; Valsesia, Armand; Le Gall, Caroline; Armenise, Claudia; Lefebvre, Gregory; Gourraud, Pierre-Antoine; Viguerie, Nathalie; Villa-Vialaneix, Nathalie

    2018-05-15

    Network inference provides a global view of the relations existing between gene expression in a given transcriptomic experiment (often only for a restricted list of chosen genes). However, it is still a challenging problem: even if the cost of sequencing techniques has decreased over the last years, the number of samples in a given experiment is still (very) small compared to the number of genes. We propose a method to increase the reliability of the inference when RNA-seq expression data have been measured together with an auxiliary dataset that can provide external information on gene expression similarity between samples. Our statistical approach, hd-MI, is based on imputation for samples without available RNA-seq data that are considered as missing data but are observed on the secondary dataset. hd-MI can improve the reliability of the inference for missing rates up to 30% and provides more stable networks with a smaller number of false positive edges. On a biological point of view, hd-MI was also found relevant to infer networks from RNA-seq data acquired in adipose tissue during a nutritional intervention in obese individuals. In these networks, novel links between genes were highlighted, as well as an improved comparability between the two steps of the nutritional intervention. Software and sample data are available as an R package, RNAseqNet, that can be downloaded from the Comprehensive R Archive Network (CRAN). alyssa.imbert@inra.fr or nathalie.villa-vialaneix@inra.fr. Supplementary data are available at Bioinformatics online.

  6. Inferring nonlinear gene regulatory networks from gene expression data based on distance correlation.

    PubMed

    Guo, Xiaobo; Zhang, Ye; Hu, Wenhao; Tan, Haizhu; Wang, Xueqin

    2014-01-01

    Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC) has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI)-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC) curve and the precision-recall (PR) curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference.

  7. Inferring Nonlinear Gene Regulatory Networks from Gene Expression Data Based on Distance Correlation

    PubMed Central

    Guo, Xiaobo; Zhang, Ye; Hu, Wenhao; Tan, Haizhu; Wang, Xueqin

    2014-01-01

    Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC) has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI)-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC) curve and the precision-recall (PR) curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference. PMID:24551058

  8. Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference

    PubMed Central

    Jiang, Jing; Lu, Weiqiang; Li, Weihua; Liu, Guixia; Zhou, Weixing; Huang, Jin; Tang, Yun

    2012-01-01

    Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning. PMID:22589709

  9. Inference and Prediction of Metabolic Network Fluxes

    PubMed Central

    Nikoloski, Zoran; Perez-Storey, Richard; Sweetlove, Lee J.

    2015-01-01

    In this Update, we cover the basic principles of the estimation and prediction of the rates of the many interconnected biochemical reactions that constitute plant metabolic networks. This includes metabolic flux analysis approaches that utilize the rates or patterns of redistribution of stable isotopes of carbon and other atoms to estimate fluxes, as well as constraints-based optimization approaches such as flux balance analysis. Some of the major insights that have been gained from analysis of fluxes in plants are discussed, including the functioning of metabolic pathways in a network context, the robustness of the metabolic phenotype, the importance of cell maintenance costs, and the mechanisms that enable energy and redox balancing at steady state. We also discuss methodologies to exploit 'omic data sets for the construction of tissue-specific metabolic network models and to constrain the range of permissible fluxes in such models. Finally, we consider the future directions and challenges faced by the field of metabolic network flux phenotyping. PMID:26392262

  10. Social Structure Simulation and Inference Using Artificial Intelligence Techniques

    DTIC Science & Technology

    2005-06-15

    Batagelj and Mrvar , 2003] comes closest to defining a universal interchange format for social network data. PAJEK .net format is defined using a...ObjectStyle, 2005] and in future version of PAJEK[ Batagelj and Mrvar , 2003] GXL[Holt, Winter, and Schürr, 2000][Taentzer, 2001][Winter, 2001] was...Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, Oct 1999. V. Batagelj and A. Mrvar . Pajek - analysis and

  11. DEFINING THE PLAYERS IN HIGHER-ORDER NETWORKS: PREDICTIVE MODELING FOR REVERSE ENGINEERING FUNCTIONAL INFLUENCE NETWORKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Costa, Michelle N.; Stevens, S.L.

    A difficult problem that is currently growing rapidly due to the sharp increase in the amount of high-throughput data available for many systems is that of determining useful and informative causative influence networks. These networks can be used to predict behavior given observation of a small number of components, predict behavior at a future time point, or identify components that are critical to the functioning of the system under particular conditions. In these endeavors incorporating observations of systems from a wide variety of viewpoints can be particularly beneficial, but has often been undertaken with the objective of inferring networks thatmore » are generally applicable. The focus of the current work is to integrate both general observations and measurements taken for a particular pathology, that of ischemic stroke, to provide improved ability to produce useful predictions of systems behavior. A number of hybrid approaches have recently been proposed for network generation in which the Gene Ontology is used to filter or enrich network links inferred from gene expression data through reverse engineering methods. These approaches have been shown to improve the biological plausibility of the inferred relationships determined, but still treat knowledge-based and machine-learning inferences as incommensurable inputs. In this paper, we explore how further improvements may be achieved through a full integration of network inference insights achieved through application of the Gene Ontology and reverse engineering methods with specific reference to the construction of dynamic models of transcriptional regulatory networks. We show that integrating two approaches to network construction, one based on reverse-engineering from conditional transcriptional data, one based on reverse-engineering from in situ hybridization data, and another based on functional associations derived from Gene Ontology, using probabilities can improve results of clustering as evaluated by a predictive model of transcriptional expression levels.« less

  12. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.

    PubMed

    Chen, Shuonan; Mar, Jessica C

    2018-06-19

    A fundamental fact in biology states that genes do not operate in isolation, and yet, methods that infer regulatory networks for single cell gene expression data have been slow to emerge. With single cell sequencing methods now becoming accessible, general network inference algorithms that were initially developed for data collected from bulk samples may not be suitable for single cells. Meanwhile, although methods that are specific for single cell data are now emerging, whether they have improved performance over general methods is unknown. In this study, we evaluate the applicability of five general methods and three single cell methods for inferring gene regulatory networks from both experimental single cell gene expression data and in silico simulated data. Standard evaluation metrics using ROC curves and Precision-Recall curves against reference sets sourced from the literature demonstrated that most of the methods performed poorly when they were applied to either experimental single cell data, or simulated single cell data, which demonstrates their lack of performance for this task. Using default settings, network methods were applied to the same datasets. Comparisons of the learned networks highlighted the uniqueness of some predicted edges for each method. The fact that different methods infer networks that vary substantially reflects the underlying mathematical rationale and assumptions that distinguish network methods from each other. This study provides a comprehensive evaluation of network modeling algorithms applied to experimental single cell gene expression data and in silico simulated datasets where the network structure is known. Comparisons demonstrate that most of these assessed network methods are not able to predict network structures from single cell expression data accurately, even if they are specifically developed for single cell methods. Also, single cell methods, which usually depend on more elaborative algorithms, in general have less similarity to each other in the sets of edges detected. The results from this study emphasize the importance for developing more accurate optimized network modeling methods that are compatible for single cell data. Newly-developed single cell methods may uniquely capture particular features of potential gene-gene relationships, and caution should be taken when we interpret these results.

  13. Machine-learning in astronomy

    NASA Astrophysics Data System (ADS)

    Hobson, Michael; Graff, Philip; Feroz, Farhan; Lasenby, Anthony

    2014-05-01

    Machine-learning methods may be used to perform many tasks required in the analysis of astronomical data, including: data description and interpretation, pattern recognition, prediction, classification, compression, inference and many more. An intuitive and well-established approach to machine learning is the use of artificial neural networks (NNs), which consist of a group of interconnected nodes, each of which processes information that it receives and then passes this product on to other nodes via weighted connections. In particular, I discuss the first public release of the generic neural network training algorithm, called SkyNet, and demonstrate its application to astronomical problems focusing on its use in the BAMBI package for accelerated Bayesian inference in cosmology, and the identification of gamma-ray bursters. The SkyNet and BAMBI packages, which are fully parallelised using MPI, are available at http://www.mrao.cam.ac.uk/software/.

  14. Inconsistencies in spontaneous and intentional trait inferences.

    PubMed

    Ma, Ning; Vandekerckhove, Marie; Baetens, Kris; Van Overwalle, Frank; Seurinck, Ruth; Fias, Wim

    2012-11-01

    This study explores the fMRI correlates of observers making trait inferences about other people under conflicting social cues. Participants were presented with several behavioral descriptions involving an agent that implied a particular trait. The last behavior was either consistent or inconsistent with the previously implied trait. This was done under instructions that elicited either spontaneous trait inferences ('read carefully') or intentional trait inferences ('infer a trait'). The results revealed that when the behavioral descriptions violated earlier trait implications, regardless of instruction, the medial prefrontal cortex (mPFC) was more strongly recruited as well as the domain-general conflict network including the posterior medial frontal cortex (pmFC) and the right prefrontal cortex (rPFC). These latter two areas were more strongly activated under intentional than spontaneous instructions. These findings suggest that when trait-relevant behavioral information is inconsistent, not only is activity increased in the mentalizing network responsible for trait processing, but control is also passed to a higher level conflict monitoring network in order to detect and resolve the contradiction.

  15. Exploring Wound-Healing Genomic Machinery with a Network-Based Approach

    PubMed Central

    Vitali, Francesca; Marini, Simone; Balli, Martina; Grosemans, Hanne; Sampaolesi, Maurilio; Lussier, Yves A.; Cusella De Angelis, Maria Gabriella; Bellazzi, Riccardo

    2017-01-01

    The molecular mechanisms underlying tissue regeneration and wound healing are still poorly understood despite their importance. In this paper we develop a bioinformatics approach, combining biology and network theory to drive experiments for better understanding the genetic underpinnings of wound healing mechanisms and for selecting potential drug targets. We start by selecting literature-relevant genes in murine wound healing, and inferring from them a Protein-Protein Interaction (PPI) network. Then, we analyze the network to rank wound healing-related genes according to their topological properties. Lastly, we perform a procedure for in-silico simulation of a treatment action in a biological pathway. The findings obtained by applying the developed pipeline, including gene expression analysis, confirms how a network-based bioinformatics method is able to prioritize candidate genes for in vitro analysis, thus speeding up the understanding of molecular mechanisms and supporting the discovery of potential drug targets. PMID:28635674

  16. MCAM: multiple clustering analysis methodology for deriving hypotheses and insights from high-throughput proteomic datasets.

    PubMed

    Naegle, Kristen M; Welsch, Roy E; Yaffe, Michael B; White, Forest M; Lauffenburger, Douglas A

    2011-07-01

    Advances in proteomic technologies continue to substantially accelerate capability for generating experimental data on protein levels, states, and activities in biological samples. For example, studies on receptor tyrosine kinase signaling networks can now capture the phosphorylation state of hundreds to thousands of proteins across multiple conditions. However, little is known about the function of many of these protein modifications, or the enzymes responsible for modifying them. To address this challenge, we have developed an approach that enhances the power of clustering techniques to infer functional and regulatory meaning of protein states in cell signaling networks. We have created a new computational framework for applying clustering to biological data in order to overcome the typical dependence on specific a priori assumptions and expert knowledge concerning the technical aspects of clustering. Multiple clustering analysis methodology ('MCAM') employs an array of diverse data transformations, distance metrics, set sizes, and clustering algorithms, in a combinatorial fashion, to create a suite of clustering sets. These sets are then evaluated based on their ability to produce biological insights through statistical enrichment of metadata relating to knowledge concerning protein functions, kinase substrates, and sequence motifs. We applied MCAM to a set of dynamic phosphorylation measurements of the ERRB network to explore the relationships between algorithmic parameters and the biological meaning that could be inferred and report on interesting biological predictions. Further, we applied MCAM to multiple phosphoproteomic datasets for the ERBB network, which allowed us to compare independent and incomplete overlapping measurements of phosphorylation sites in the network. We report specific and global differences of the ERBB network stimulated with different ligands and with changes in HER2 expression. Overall, we offer MCAM as a broadly-applicable approach for analysis of proteomic data which may help increase the current understanding of molecular networks in a variety of biological problems. © 2011 Naegle et al.

  17. Inference of Gene Regulatory Networks Using Time-Series Data: A Survey

    PubMed Central

    Sima, Chao; Hua, Jianping; Jung, Sungwon

    2009-01-01

    The advent of high-throughput technology like microarrays has provided the platform for studying how different cellular components work together, thus created an enormous interest in mathematically modeling biological network, particularly gene regulatory network (GRN). Of particular interest is the modeling and inference on time-series data, which capture a more thorough picture of the system than non-temporal data do. We have given an extensive review of methodologies that have been used on time-series data. In realizing that validation is an impartible part of the inference paradigm, we have also presented a discussion on the principles and challenges in performance evaluation of different methods. This survey gives a panoramic view on these topics, with anticipation that the readers will be inspired to improve and/or expand GRN inference and validation tool repository. PMID:20190956

  18. Nonparametric Bayesian inference of the microcanonical stochastic block model

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    2017-01-01

    A principled approach to characterize the hidden modular structure of networks is to formulate generative models and then infer their parameters from data. When the desired structure is composed of modules or "communities," a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard constraints, i.e., the generated networks are not allowed to violate the patterns imposed by the model. We show how this simple model variation allows simultaneously for two important improvements over more traditional inference approaches: (1) deeper Bayesian hierarchies, with noninformative priors replaced by sequences of priors and hyperpriors, which not only remove limitations that seriously degrade the inference on large networks but also reveal structures at multiple scales; (2) a very efficient inference algorithm that scales well not only for networks with a large number of nodes and edges but also with an unlimited number of modules. We show also how this approach can be used to sample modular hierarchies from the posterior distribution, as well as to perform model selection. We discuss and analyze the differences between sampling from the posterior and simply finding the single parameter estimate that maximizes it. Furthermore, we expose a direct equivalence between our microcanonical approach and alternative derivations based on the canonical SBM.

  19. Estimating the off-network presence of STAA dimensioned vehicles on North Carolina roadways using CMV crash data, 2001-2005

    DOT National Transportation Integrated Search

    2008-05-06

    The present study used commercial motor vehicle (CMV) crash data from NCDOTs Traffic Engineering Accident : Analysis System (TEAAS) to infer the presence and relative extent of STAA dimensioned vehicles operating : beyond the 3-mile buffer of the ...

  20. Integrating Information in Biological Ontologies and Molecular Networks to Infer Novel Terms

    PubMed Central

    Li, Le; Yip, Kevin Y.

    2016-01-01

    Currently most terms and term-term relationships in Gene Ontology (GO) are defined manually, which creates cost, consistency and completeness issues. Recent studies have demonstrated the feasibility of inferring GO automatically from biological networks, which represents an important complementary approach to GO construction. These methods (NeXO and CliXO) are unsupervised, which means 1) they cannot use the information contained in existing GO, 2) the way they integrate biological networks may not optimize the accuracy, and 3) they are not customized to infer the three different sub-ontologies of GO. Here we present a semi-supervised method called Unicorn that extends these previous methods to tackle the three problems. Unicorn uses a sub-tree of an existing GO sub-ontology as training part to learn parameters in integrating multiple networks. Cross-validation results show that Unicorn reliably inferred the left-out parts of each specific GO sub-ontology. In addition, by training Unicorn with an old version of GO together with biological networks, it successfully re-discovered some terms and term-term relationships present only in a new version of GO. Unicorn also successfully inferred some novel terms that were not contained in GO but have biological meanings well-supported by the literature.Availability: Source code of Unicorn is available at http://yiplab.cse.cuhk.edu.hk/unicorn/. PMID:27976738

  1. CCLasso: correlation inference for compositional data through Lasso.

    PubMed

    Fang, Huaying; Huang, Chengcheng; Zhao, Hongyu; Deng, Minghua

    2015-10-01

    Direct analysis of microbial communities in the environment and human body has become more convenient and reliable owing to the advancements of high-throughput sequencing techniques for 16S rRNA gene profiling. Inferring the correlation relationship among members of microbial communities is of fundamental importance for genomic survey study. Traditional Pearson correlation analysis treating the observed data as absolute abundances of the microbes may lead to spurious results because the data only represent relative abundances. Special care and appropriate methods are required prior to correlation analysis for these compositional data. In this article, we first discuss the correlation definition of latent variables for compositional data. We then propose a novel method called CCLasso based on least squares with [Formula: see text] penalty to infer the correlation network for latent variables of compositional data from metagenomic data. An effective alternating direction algorithm from augmented Lagrangian method is used to solve the optimization problem. The simulation results show that CCLasso outperforms existing methods, e.g. SparCC, in edge recovery for compositional data. It also compares well with SparCC in estimating correlation network of microbe species from the Human Microbiome Project. CCLasso is open source and freely available from https://github.com/huayingfang/CCLasso under GNU LGPL v3. dengmh@pku.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Genetic variation and phylogenetic relationship analysis of Jatropha curcas L. inferred from nrDNA ITS sequences.

    PubMed

    Guo, Guo-Ye; Chen, Fang; Shi, Xiao-Dong; Tian, Yin-Shuai; Yu, Mao-Qun; Han, Xue-Qin; Yuan, Li-Chun; Zhang, Ying

    2016-01-01

    Genetic variation and phylogenetic relationships among 102 Jatropha curcas accessions from Asia, Africa, and the Americas were assessed using the internal transcribed spacer region of nuclear ribosomal DNA (nrDNA ITS). The average G+C content (65.04%) was considerably higher than the A+T (34.96%) content. The estimated genetic diversity revealed moderate genetic variation. The pairwise genetic divergences (GD) between haplotypes were evaluated and ranged from 0.000 to 0.017, suggesting a higher level of genetic differentiation in Mexican accessions than those of other regions. Phylogenetic relationships and intraspecific divergence were inferred by Bayesian inference (BI), maximum parsimony (MP), and median joining (MJ) network analysis and were generally resolved. The J. curcas accessions were consistently divided into three lineages, groups A, B, and C, which demonstrated distant geographical isolation and genetic divergence between American accessions and those from other regions. The MJ network analysis confirmed that Central America was the possible center of origin. The putative migration route suggested that J. curcas was distributed from Mexico or Brazil, via Cape Verde and then split into two routes. One route was dispersed to Spain, then migrated to China, eventually spreading to southeastern Asia, while the other route was dispersed to Africa, via Madagascar and migrated to China, later spreading to southeastern Asia. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. Approximation and inference methods for stochastic biochemical kinetics—a tutorial review

    NASA Astrophysics Data System (ADS)

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2017-03-01

    Stochastic fluctuations of molecule numbers are ubiquitous in biological systems. Important examples include gene expression and enzymatic processes in living cells. Such systems are typically modelled as chemical reaction networks whose dynamics are governed by the chemical master equation. Despite its simple structure, no analytic solutions to the chemical master equation are known for most systems. Moreover, stochastic simulations are computationally expensive, making systematic analysis and statistical inference a challenging task. Consequently, significant effort has been spent in recent decades on the development of efficient approximation and inference methods. This article gives an introduction to basic modelling concepts as well as an overview of state of the art methods. First, we motivate and introduce deterministic and stochastic methods for modelling chemical networks, and give an overview of simulation and exact solution methods. Next, we discuss several approximation methods, including the chemical Langevin equation, the system size expansion, moment closure approximations, time-scale separation approximations and hybrid methods. We discuss their various properties and review recent advances and remaining challenges for these methods. We present a comparison of several of these methods by means of a numerical case study and highlight some of their respective advantages and disadvantages. Finally, we discuss the problem of inference from experimental data in the Bayesian framework and review recent methods developed the literature. In summary, this review gives a self-contained introduction to modelling, approximations and inference methods for stochastic chemical kinetics.

  4. Social network models predict movement and connectivity in ecological landscapes

    USGS Publications Warehouse

    Fletcher, R.J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, W.M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  5. Multi-Objective data analysis using Bayesian Inference for MagLIF experiments

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick; Glinksy, Michael; Evans, Matthew; Gom, Matth; Han, Stephanie; Harding, Eric; Slutz, Steve; Hahn, Kelly; Harvey-Thompson, Adam; Geissel, Matthias; Ampleford, David; Jennings, Christopher; Schmit, Paul; Smith, Ian; Schwarz, Jens; Peterson, Kyle; Jones, Brent; Rochau, Gregory; Sinars, Daniel

    2017-10-01

    The MagLIF concept has recently demonstrated Gbar pressures and confinement of charged fusion products at stagnation. We present a new analysis methodology that allows for integration of multiple diagnostics including nuclear, x-ray imaging, and x-ray power to determine the temperature, pressure, liner areal density, and mix fraction. A simplified hot-spot model is used with a Bayesian inference network to determine the most probable model parameters that describe the observations while simultaneously revealing the principal uncertainties in the analysis. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  6. Methods for inferring health-related social networks among coworkers from online communication patterns.

    PubMed

    Matthews, Luke J; DeWan, Peter; Rula, Elizabeth Y

    2013-01-01

    Studies of social networks, mapped using self-reported contacts, have demonstrated the strong influence of social connections on the propensity for individuals to adopt or maintain healthy behaviors and on their likelihood to adopt health risks such as obesity. Social network analysis may prove useful for businesses and organizations that wish to improve the health of their populations by identifying key network positions. Health traits have been shown to correlate across friendship ties, but evaluating network effects in large coworker populations presents the challenge of obtaining sufficiently comprehensive network data. The purpose of this study was to evaluate methods for using online communication data to generate comprehensive network maps that reproduce the health-associated properties of an offline social network. In this study, we examined three techniques for inferring social relationships from email traffic data in an employee population using thresholds based on: (1) the absolute number of emails exchanged, (2) logistic regression probability of an offline relationship, and (3) the highest ranked email exchange partners. As a model of the offline social network in the same population, a network map was created using social ties reported in a survey instrument. The email networks were evaluated based on the proportion of survey ties captured, comparisons of common network metrics, and autocorrelation of body mass index (BMI) across social ties. Results demonstrated that logistic regression predicted the greatest proportion of offline social ties, thresholding on number of emails exchanged produced the best match to offline network metrics, and ranked email partners demonstrated the strongest autocorrelation of BMI. Since each method had unique strengths, researchers should choose a method based on the aspects of offline behavior of interest. Ranked email partners may be particularly useful for purposes related to health traits in a social network.

  7. Methods for Inferring Health-Related Social Networks among Coworkers from Online Communication Patterns

    PubMed Central

    Matthews, Luke J.; DeWan, Peter; Rula, Elizabeth Y.

    2013-01-01

    Studies of social networks, mapped using self-reported contacts, have demonstrated the strong influence of social connections on the propensity for individuals to adopt or maintain healthy behaviors and on their likelihood to adopt health risks such as obesity. Social network analysis may prove useful for businesses and organizations that wish to improve the health of their populations by identifying key network positions. Health traits have been shown to correlate across friendship ties, but evaluating network effects in large coworker populations presents the challenge of obtaining sufficiently comprehensive network data. The purpose of this study was to evaluate methods for using online communication data to generate comprehensive network maps that reproduce the health-associated properties of an offline social network. In this study, we examined three techniques for inferring social relationships from email traffic data in an employee population using thresholds based on: (1) the absolute number of emails exchanged, (2) logistic regression probability of an offline relationship, and (3) the highest ranked email exchange partners. As a model of the offline social network in the same population, a network map was created using social ties reported in a survey instrument. The email networks were evaluated based on the proportion of survey ties captured, comparisons of common network metrics, and autocorrelation of body mass index (BMI) across social ties. Results demonstrated that logistic regression predicted the greatest proportion of offline social ties, thresholding on number of emails exchanged produced the best match to offline network metrics, and ranked email partners demonstrated the strongest autocorrelation of BMI. Since each method had unique strengths, researchers should choose a method based on the aspects of offline behavior of interest. Ranked email partners may be particularly useful for purposes related to health traits in a social network. PMID:23418436

  8. Staged Inference using Conditional Deep Learning for energy efficient real-time smart diagnosis.

    PubMed

    Parsa, Maryam; Panda, Priyadarshini; Sen, Shreyas; Roy, Kaushik

    2017-07-01

    Recent progress in biosensor technology and wearable devices has created a formidable opportunity for remote healthcare monitoring systems as well as real-time diagnosis and disease prevention. The use of data mining techniques is indispensable for analysis of the large pool of data generated by the wearable devices. Deep learning is among the promising methods for analyzing such data for healthcare applications and disease diagnosis. However, the conventional deep neural networks are computationally intensive and it is impractical to use them in real-time diagnosis with low-powered on-body devices. We propose Staged Inference using Conditional Deep Learning (SICDL), as an energy efficient approach for creating healthcare monitoring systems. For smart diagnostics, we observe that all diagnoses are not equally challenging. The proposed approach thus decomposes the diagnoses into preliminary analysis (such as healthy vs unhealthy) and detailed analysis (such as identifying the specific type of cardio disease). The preliminary diagnosis is conducted real-time with a low complexity neural network realized on the resource-constrained on-body device. The detailed diagnosis requires a larger network that is implemented remotely in cloud and is conditionally activated only for detailed diagnosis (unhealthy individuals). We evaluated the proposed approach using available physiological sensor data from Physionet databases, and achieved 38% energy reduction in comparison to the conventional deep learning approach.

  9. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

    PubMed

    Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

    2017-08-01

    Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

  10. Decision generation tools and Bayesian inference

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Wang, Wenjian; Forrester, Thomas; Kostrzewski, Andrew; Veeris, Christian; Nielsen, Thomas

    2014-05-01

    Digital Decision Generation (DDG) tools are important software sub-systems of Command and Control (C2) systems and technologies. In this paper, we present a special type of DDGs based on Bayesian Inference, related to adverse (hostile) networks, including such important applications as terrorism-related networks and organized crime ones.

  11. Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion

    PubMed Central

    Žitnik, Marinka; Zupan, Blaž

    2015-01-01

    Abstract Epistatic miniarray profile (E-MAP) is a popular large-scale genetic interaction discovery platform. E-MAPs benefit from quantitative output, which makes it possible to detect subtle interactions with greater precision. However, due to the limits of biotechnology, E-MAP studies fail to measure genetic interactions for up to 40% of gene pairs in an assay. Missing measurements can be recovered by computational techniques for data imputation, in this way completing the interaction profiles and enabling downstream analysis algorithms that could otherwise be sensitive to missing data values. We introduce a new interaction data imputation method called network-guided matrix completion (NG-MC). The core part of NG-MC is low-rank probabilistic matrix completion that incorporates prior knowledge presented as a collection of gene networks. NG-MC assumes that interactions are transitive, such that latent gene interaction profiles inferred by NG-MC depend on the profiles of their direct neighbors in gene networks. As the NG-MC inference algorithm progresses, it propagates latent interaction profiles through each of the networks and updates gene network weights toward improved prediction. In a study with four different E-MAP data assays and considered protein–protein interaction and gene ontology similarity networks, NG-MC significantly surpassed existing alternative techniques. Inclusion of information from gene networks also allowed NG-MC to predict interactions for genes that were not included in original E-MAP assays, a task that could not be considered by current imputation approaches. PMID:25658751

  12. Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms.

    PubMed

    Chen, Lei; Liu, Tao; Zhao, Xian

    2018-06-01

    The anatomical therapeutic chemical (ATC) classification system is a widely accepted drug classification scheme. This system comprises five levels and includes several classes in each level. Drugs are classified into classes according to their therapeutic effects and characteristics. The first level includes 14 main classes. In this study, we proposed two network-based models to infer novel potential chemicals deemed to belong in the first level of ATC classification. To build these models, two large chemical networks were constructed using the chemical-chemical interaction information retrieved from the Search Tool for Interactions of Chemicals (STITCH). Two classic network algorithms, shortest path (SP) and random walk with restart (RWR) algorithms, were executed on the corresponding network to mine novel chemicals for each ATC class using the validated drugs in a class as seed nodes. Then, the obtained chemicals yielded by these two algorithms were further evaluated by a permutation test and an association test. The former can exclude chemicals produced by the structure of the network, i.e., false positive discoveries. By contrast, the latter identifies the most important chemicals that have strong associations with the ATC class. Comparisons indicated that the two models can provide quite dissimilar results, suggesting that the results yielded by one model can be essential supplements for those obtained by the other model. In addition, several representative inferred chemicals were analyzed to confirm the reliability of the results generated by the two models. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Co-occurrence Analysis of Microbial Taxa in the Atlantic Ocean Reveals High Connectivity in the Free-Living Bacterioplankton

    PubMed Central

    Milici, Mathias; Deng, Zhi-Luo; Tomasch, Jürgen; Decelle, Johan; Wos-Oxley, Melissa L.; Wang, Hui; Jáuregui, Ruy; Plumeier, Iris; Giebel, Helge-Ansgar; Badewien, Thomas H.; Wurst, Mascha; Pieper, Dietmar H.; Simon, Meinhard; Wagner-Döbler, Irene

    2016-01-01

    We determined the taxonomic composition of the bacterioplankton of the epipelagic zone of the Atlantic Ocean along a latitudinal transect (51°S–47°N) using Illumina sequencing of the V5-V6 region of the 16S rRNA gene and inferred co-occurrence networks. Bacterioplankon community composition was distinct for Longhurstian provinces and water depth. Free-living microbial communities (between 0.22 and 3 μm) were dominated by highly abundant and ubiquitous taxa with streamlined genomes (e.g., SAR11, SAR86, OM1, Prochlorococcus) and could clearly be separated from particle-associated communities which were dominated by Bacteroidetes, Planktomycetes, Verrucomicrobia, and Roseobacters. From a total of 369 different communities we then inferred co-occurrence networks for each size fraction and depth layer of the plankton between bacteria and between bacteria and phototrophic micro-eukaryotes. The inferred networks showed a reduction of edges in the deepest layer of the photic zone. Networks comprised of free-living bacteria had a larger amount of connections per OTU when compared to the particle associated communities throughout the water column. Negative correlations accounted for roughly one third of the total edges in the free-living communities at all depths, while they decreased with depth in the particle associated communities where they amounted for roughly 10% of the total in the last part of the epipelagic zone. Co-occurrence networks of bacteria with phototrophic micro-eukaryotes were not taxon-specific, and dominated by mutual exclusion (~60%). The data show a high degree of specialization to micro-environments in the water column and highlight the importance of interdependencies particularly between free-living bacteria in the upper layers of the epipelagic zone. PMID:27199970

  14. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells

    PubMed Central

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J.; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-01-01

    Abstract The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems. PMID:27124473

  15. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    PubMed

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antczak, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems.

  16. Successful Reconstruction of a Physiological Circuit with Known Connectivity from Spiking Activity Alone

    PubMed Central

    Gerhard, Felipe; Kispersky, Tilman; Gutierrez, Gabrielle J.; Marder, Eve; Kramer, Mark; Eden, Uri

    2013-01-01

    Identifying the structure and dynamics of synaptic interactions between neurons is the first step to understanding neural network dynamics. The presence of synaptic connections is traditionally inferred through the use of targeted stimulation and paired recordings or by post-hoc histology. More recently, causal network inference algorithms have been proposed to deduce connectivity directly from electrophysiological signals, such as extracellularly recorded spiking activity. Usually, these algorithms have not been validated on a neurophysiological data set for which the actual circuitry is known. Recent work has shown that traditional network inference algorithms based on linear models typically fail to identify the correct coupling of a small central pattern generating circuit in the stomatogastric ganglion of the crab Cancer borealis. In this work, we show that point process models of observed spike trains can guide inference of relative connectivity estimates that match the known physiological connectivity of the central pattern generator up to a choice of threshold. We elucidate the necessary steps to derive faithful connectivity estimates from a model that incorporates the spike train nature of the data. We then apply the model to measure changes in the effective connectivity pattern in response to two pharmacological interventions, which affect both intrinsic neural dynamics and synaptic transmission. Our results provide the first successful application of a network inference algorithm to a circuit for which the actual physiological synapses between neurons are known. The point process methodology presented here generalizes well to larger networks and can describe the statistics of neural populations. In general we show that advanced statistical models allow for the characterization of effective network structure, deciphering underlying network dynamics and estimating information-processing capabilities. PMID:23874181

  17. Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors.

    PubMed

    Peterson, Christine; Vannucci, Marina; Karakas, Cemal; Choi, William; Ma, Lihua; Maletić-Savatić, Mirjana

    2013-10-01

    Metabolic processes are essential for cellular function and survival. We are interested in inferring a metabolic network in activated microglia, a major neuroimmune cell in the brain responsible for the neuroinflammation associated with neurological diseases, based on a set of quantified metabolites. To achieve this, we apply the Bayesian adaptive graphical lasso with informative priors that incorporate known relationships between covariates. To encourage sparsity, the Bayesian graphical lasso places double exponential priors on the off-diagonal entries of the precision matrix. The Bayesian adaptive graphical lasso allows each double exponential prior to have a unique shrinkage parameter. These shrinkage parameters share a common gamma hyperprior. We extend this model to create an informative prior structure by formulating tailored hyperpriors on the shrinkage parameters. By choosing parameter values for each hyperprior that shift probability mass toward zero for nodes that are close together in a reference network, we encourage edges between covariates with known relationships. This approach can improve the reliability of network inference when the sample size is small relative to the number of parameters to be estimated. When applied to the data on activated microglia, the inferred network includes both known relationships and associations of potential interest for further investigation.

  18. Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors

    PubMed Central

    PETERSON, CHRISTINE; VANNUCCI, MARINA; KARAKAS, CEMAL; CHOI, WILLIAM; MA, LIHUA; MALETIĆ-SAVATIĆ, MIRJANA

    2014-01-01

    Metabolic processes are essential for cellular function and survival. We are interested in inferring a metabolic network in activated microglia, a major neuroimmune cell in the brain responsible for the neuroinflammation associated with neurological diseases, based on a set of quantified metabolites. To achieve this, we apply the Bayesian adaptive graphical lasso with informative priors that incorporate known relationships between covariates. To encourage sparsity, the Bayesian graphical lasso places double exponential priors on the off-diagonal entries of the precision matrix. The Bayesian adaptive graphical lasso allows each double exponential prior to have a unique shrinkage parameter. These shrinkage parameters share a common gamma hyperprior. We extend this model to create an informative prior structure by formulating tailored hyperpriors on the shrinkage parameters. By choosing parameter values for each hyperprior that shift probability mass toward zero for nodes that are close together in a reference network, we encourage edges between covariates with known relationships. This approach can improve the reliability of network inference when the sample size is small relative to the number of parameters to be estimated. When applied to the data on activated microglia, the inferred network includes both known relationships and associations of potential interest for further investigation. PMID:24533172

  19. Genexpi: a toolset for identifying regulons and validating gene regulatory networks using time-course expression data.

    PubMed

    Modrák, Martin; Vohradský, Jiří

    2018-04-13

    Identifying regulons of sigma factors is a vital subtask of gene network inference. Integrating multiple sources of data is essential for correct identification of regulons and complete gene regulatory networks. Time series of expression data measured with microarrays or RNA-seq combined with static binding experiments (e.g., ChIP-seq) or literature mining may be used for inference of sigma factor regulatory networks. We introduce Genexpi: a tool to identify sigma factors by combining candidates obtained from ChIP experiments or literature mining with time-course gene expression data. While Genexpi can be used to infer other types of regulatory interactions, it was designed and validated on real biological data from bacterial regulons. In this paper, we put primary focus on CyGenexpi: a plugin integrating Genexpi with the Cytoscape software for ease of use. As a part of this effort, a plugin for handling time series data in Cytoscape called CyDataseries has been developed and made available. Genexpi is also available as a standalone command line tool and an R package. Genexpi is a useful part of gene network inference toolbox. It provides meaningful information about the composition of regulons and delivers biologically interpretable results.

  20. Inferring network structure from cascades.

    PubMed

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  1. Inferring network structure from cascades

    NASA Astrophysics Data System (ADS)

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  2. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    PubMed

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. MORE: mixed optimization for reverse engineering--an application to modeling biological networks response via sparse systems of nonlinear differential equations.

    PubMed

    Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas

    2012-01-01

    Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.

  4. Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks

    PubMed Central

    Yamanaka, Ryota; Kitano, Hiroaki

    2013-01-01

    Elucidating gene regulatory network (GRN) from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i) a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii) TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks. PMID:24278007

  5. Network Model-Assisted Inference from Respondent-Driven Sampling Data

    PubMed Central

    Gile, Krista J.; Handcock, Mark S.

    2015-01-01

    Summary Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population. PMID:26640328

  6. Network Model-Assisted Inference from Respondent-Driven Sampling Data.

    PubMed

    Gile, Krista J; Handcock, Mark S

    2015-06-01

    Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population.

  7. Construction and Analysis of Functional Networks in the Gut Microbiome of Type 2 Diabetes Patients.

    PubMed

    Li, Lianshuo; Wang, Zicheng; He, Peng; Ma, Shining; Du, Jie; Jiang, Rui

    2016-10-01

    Although networks of microbial species have been widely used in the analysis of 16S rRNA sequencing data of a microbiome, the construction and analysis of a complete microbial gene network are in general problematic because of the large number of microbial genes in metagenomics studies. To overcome this limitation, we propose to map microbial genes to functional units, including KEGG orthologous groups and the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) orthologous groups, to enable the construction and analysis of a microbial functional network. We devised two statistical methods to infer pairwise relationships between microbial functional units based on a deep sequencing dataset of gut microbiome from type 2 diabetes (T2D) patients as well as healthy controls. Networks containing such functional units and their significant interactions were constructed subsequently. We conducted a variety of analyses of global properties, local properties, and functional modules in the resulting functional networks. Our data indicate that besides the observations consistent with the current knowledge, this study provides novel biological insights into the gut microbiome associated with T2D. Copyright © 2016. Production and hosting by Elsevier Ltd.

  8. Modular verification of chemical reaction network encodings via serializability analysis

    PubMed Central

    Lakin, Matthew R.; Stefanovic, Darko; Phillips, Andrew

    2015-01-01

    Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a “commit reaction” that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of “extra tolerance”, which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited. PMID:27325906

  9. Metabolic PathFinding: inferring relevant pathways in biochemical networks.

    PubMed

    Croes, Didier; Couche, Fabian; Wodak, Shoshana J; van Helden, Jacques

    2005-07-01

    Our knowledge of metabolism can be represented as a network comprising several thousands of nodes (compounds and reactions). Several groups applied graph theory to analyse the topological properties of this network and to infer metabolic pathways by path finding. This is, however, not straightforward, with a major problem caused by traversing irrelevant shortcuts through highly connected nodes, which correspond to pool metabolites and co-factors (e.g. H2O, NADP and H+). In this study, we present a web server implementing two simple approaches, which circumvent this problem, thereby improving the relevance of the inferred pathways. In the simplest approach, the shortest path is computed, while filtering out the selection of highly connected compounds. In the second approach, the shortest path is computed on the weighted metabolic graph where each compound is assigned a weight equal to its connectivity in the network. This approach significantly increases the accuracy of the inferred pathways, enabling the correct inference of relatively long pathways (e.g. with as many as eight intermediate reactions). Available options include the calculation of the k-shortest paths between two specified seed nodes (either compounds or reactions). Multiple requests can be submitted in a queue. Results are returned by email, in textual as well as graphical formats (available in http://www.scmbb.ulb.ac.be/pathfinding/).

  10. Causal functional contributions and interactions in the attention network of the brain: an objective multi-perturbation analysis.

    PubMed

    Zavaglia, Melissa; Hilgetag, Claus C

    2016-06-01

    Spatial attention is a prime example for the distributed network functions of the brain. Lesion studies in animal models have been used to investigate intact attentional mechanisms as well as perspectives for rehabilitation in the injured brain. Here, we systematically analyzed behavioral data from cooling deactivation and permanent lesion experiments in the cat, where unilateral deactivation of the posterior parietal cortex (in the vicinity of the posterior middle suprasylvian cortex, pMS) or the superior colliculus (SC) cause a severe neglect in the contralateral hemifield. Counterintuitively, additional deactivation of structures in the opposite hemisphere reverses the deficit. Using such lesion data, we employed a game-theoretical approach, multi-perturbation Shapley value analysis (MSA), for inferring functional contributions and network interactions of bilateral pMS and SC from behavioral performance in visual attention studies. The approach provides an objective theoretical strategy for lesion inferences and allows a unique quantitative characterization of regional functional contributions and interactions on the basis of multi-perturbations. The quantitative analysis demonstrated that right posterior parietal cortex and superior colliculus made the strongest positive contributions to left-field orienting, while left brain regions had negative contributions, implying that their perturbation may reverse the effects of contralateral lesions or improve normal function. An analysis of functional modulations and interactions among the regions revealed redundant interactions (implying functional overlap) between regions within each hemisphere, and synergistic interactions between bilateral regions. To assess the reliability of the MSA method in the face of variable and incomplete input data, we performed a sensitivity analysis, investigating how much the contribution values of the four regions depended on the performance of specific configurations and on the prediction of unknown performances. The results suggest that the MSA approach is sensitive to categorical, but insensitive to gradual changes in the input data. Finally, we created a basic network model that was based on the known anatomical interactions among cortical-tectal regions and reproduced the experimentally observed behavior in visual orienting. We discuss the structural organization of the network model relative to the causal modulations identified by MSA, to aid a mechanistic understanding of the attention network of the brain.

  11. INfORM: Inference of NetwOrk Response Modules.

    PubMed

    Marwah, Veer Singh; Kinaret, Pia Anneli Sofia; Serra, Angela; Scala, Giovanni; Lauerma, Antti; Fortino, Vittorio; Greco, Dario

    2018-06-15

    Detecting and interpreting responsive modules from gene expression data by using network-based approaches is a common but laborious task. It often requires the application of several computational methods implemented in different software packages, forcing biologists to compile complex analytical pipelines. Here we introduce INfORM (Inference of NetwOrk Response Modules), an R shiny application that enables non-expert users to detect, evaluate and select gene modules with high statistical and biological significance. INfORM is a comprehensive tool for the identification of biologically meaningful response modules from consensus gene networks inferred by using multiple algorithms. It is accessible through an intuitive graphical user interface allowing for a level of abstraction from the computational steps. INfORM is freely available for academic use at https://github.com/Greco-Lab/INfORM. Supplementary data are available at Bioinformatics online.

  12. Prophetic Granger Causality to infer gene regulatory networks.

    PubMed

    Carlin, Daniel E; Paull, Evan O; Graim, Kiley; Wong, Christopher K; Bivol, Adrian; Ryabinin, Peter; Ellrott, Kyle; Sokolov, Artem; Stuart, Joshua M

    2017-01-01

    We introduce a novel method called Prophetic Granger Causality (PGC) for inferring gene regulatory networks (GRNs) from protein-level time series data. The method uses an L1-penalized regression adaptation of Granger Causality to model protein levels as a function of time, stimuli, and other perturbations. When combined with a data-independent network prior, the framework outperformed all other methods submitted to the HPN-DREAM 8 breast cancer network inference challenge. Our investigations reveal that PGC provides complementary information to other approaches, raising the performance of ensemble learners, while on its own achieves moderate performance. Thus, PGC serves as a valuable new tool in the bioinformatics toolkit for analyzing temporal datasets. We investigate the general and cell-specific interactions predicted by our method and find several novel interactions, demonstrating the utility of the approach in charting new tumor wiring.

  13. Prophetic Granger Causality to infer gene regulatory networks

    PubMed Central

    Carlin, Daniel E.; Paull, Evan O.; Graim, Kiley; Wong, Christopher K.; Bivol, Adrian; Ryabinin, Peter; Ellrott, Kyle; Sokolov, Artem

    2017-01-01

    We introduce a novel method called Prophetic Granger Causality (PGC) for inferring gene regulatory networks (GRNs) from protein-level time series data. The method uses an L1-penalized regression adaptation of Granger Causality to model protein levels as a function of time, stimuli, and other perturbations. When combined with a data-independent network prior, the framework outperformed all other methods submitted to the HPN-DREAM 8 breast cancer network inference challenge. Our investigations reveal that PGC provides complementary information to other approaches, raising the performance of ensemble learners, while on its own achieves moderate performance. Thus, PGC serves as a valuable new tool in the bioinformatics toolkit for analyzing temporal datasets. We investigate the general and cell-specific interactions predicted by our method and find several novel interactions, demonstrating the utility of the approach in charting new tumor wiring. PMID:29211761

  14. Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons.

    PubMed

    Probst, Dimitri; Petrovici, Mihai A; Bytschok, Ilja; Bill, Johannes; Pecevski, Dejan; Schemmel, Johannes; Meier, Karlheinz

    2015-01-01

    The means by which cortical neural networks are able to efficiently solve inference problems remains an open question in computational neuroscience. Recently, abstract models of Bayesian computation in neural circuits have been proposed, but they lack a mechanistic interpretation at the single-cell level. In this article, we describe a complete theoretical framework for building networks of leaky integrate-and-fire neurons that can sample from arbitrary probability distributions over binary random variables. We test our framework for a model inference task based on a psychophysical phenomenon (the Knill-Kersten optical illusion) and further assess its performance when applied to randomly generated distributions. As the local computations performed by the network strongly depend on the interaction between neurons, we compare several types of couplings mediated by either single synapses or interneuron chains. Due to its robustness to substrate imperfections such as parameter noise and background noise correlations, our model is particularly interesting for implementation on novel, neuro-inspired computing architectures, which can thereby serve as a fast, low-power substrate for solving real-world inference problems.

  15. Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons

    PubMed Central

    Probst, Dimitri; Petrovici, Mihai A.; Bytschok, Ilja; Bill, Johannes; Pecevski, Dejan; Schemmel, Johannes; Meier, Karlheinz

    2015-01-01

    The means by which cortical neural networks are able to efficiently solve inference problems remains an open question in computational neuroscience. Recently, abstract models of Bayesian computation in neural circuits have been proposed, but they lack a mechanistic interpretation at the single-cell level. In this article, we describe a complete theoretical framework for building networks of leaky integrate-and-fire neurons that can sample from arbitrary probability distributions over binary random variables. We test our framework for a model inference task based on a psychophysical phenomenon (the Knill-Kersten optical illusion) and further assess its performance when applied to randomly generated distributions. As the local computations performed by the network strongly depend on the interaction between neurons, we compare several types of couplings mediated by either single synapses or interneuron chains. Due to its robustness to substrate imperfections such as parameter noise and background noise correlations, our model is particularly interesting for implementation on novel, neuro-inspired computing architectures, which can thereby serve as a fast, low-power substrate for solving real-world inference problems. PMID:25729361

  16. Using Pathfinder networks to discover alignment between expert and consumer conceptual knowledge from online vaccine content.

    PubMed

    Amith, Muhammad; Cunningham, Rachel; Savas, Lara S; Boom, Julie; Schvaneveldt, Roger; Tao, Cui; Cohen, Trevor

    2017-10-01

    This study demonstrates the use of distributed vector representations and Pathfinder Network Scaling (PFNETS) to represent online vaccine content created by health experts and by laypeople. By analyzing a target audience's conceptualization of a topic, domain experts can develop targeted interventions to improve the basic health knowledge of consumers. The underlying assumption is that the content created by different groups reflects the mental organization of their knowledge. Applying automated text analysis to this content may elucidate differences between the knowledge structures of laypeople (heath consumers) and professionals (health experts). This paper utilizes vaccine information generated by laypeople and health experts to investigate the utility of this approach. We used an established technique from cognitive psychology, Pathfinder Network Scaling to infer the structure of the associational networks between concepts learned from online content using methods of distributional semantics. In doing so, we extend the original application of PFNETS to infer knowledge structures from individual participants, to infer the prevailing knowledge structures within communities of content authors. The resulting graphs reveal opportunities for public health and vaccination education experts to improve communication and intervention efforts directed towards health consumers. Our efforts demonstrate the feasibility of using an automated procedure to examine the manifestation of conceptual models within large bodies of free text, revealing evidence of conflicting understanding of vaccine concepts among health consumers as compared with health experts. Additionally, this study provides insight into the differences between consumer and expert abstraction of domain knowledge, revealing vaccine-related knowledge gaps that suggest opportunities to improve provider-patient communication. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Process-driven inference of biological network structure: feasibility, minimality, and multiplicity

    NASA Astrophysics Data System (ADS)

    Zeng, Chen

    2012-02-01

    For a given dynamic process, identifying the putative interaction networks to achieve it is the inference problem. In this talk, we address the computational complexity of inference problem in the context of Boolean networks under dominant inhibition condition. The first is a proof that the feasibility problem (is there a network that explains the dynamics?) can be solved in polynomial-time. Second, while the minimality problem (what is the smallest network that explains the dynamics?) is shown to be NP-hard, a simple polynomial-time heuristic is shown to produce near-minimal solutions, as demonstrated by simulation. Third, the theoretical framework also leads to a fast polynomial-time heuristic to estimate the number of network solutions with reasonable accuracy. We will apply these approaches to two simplified Boolean network models for the cell cycle process of budding yeast (Li 2004) and fission yeast (Davidich 2008). Our results demonstrate that each of these networks contains a giant backbone motif spanning all the network nodes that provides the desired main functionality, while the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. Moreover, we show that the bioprocesses of these two cell cycle models differ considerably from a typically generated process and are intrinsically cascade-like.

  18. Integrative approach for inference of gene regulatory networks using lasso-based random featuring and application to psychiatric disorders.

    PubMed

    Kim, Dongchul; Kang, Mingon; Biswas, Ashis; Liu, Chunyu; Gao, Jean

    2016-08-10

    Inferring gene regulatory networks is one of the most interesting research areas in the systems biology. Many inference methods have been developed by using a variety of computational models and approaches. However, there are two issues to solve. First, depending on the structural or computational model of inference method, the results tend to be inconsistent due to innately different advantages and limitations of the methods. Therefore the combination of dissimilar approaches is demanded as an alternative way in order to overcome the limitations of standalone methods through complementary integration. Second, sparse linear regression that is penalized by the regularization parameter (lasso) and bootstrapping-based sparse linear regression methods were suggested in state of the art methods for network inference but they are not effective for a small sample size data and also a true regulator could be missed if the target gene is strongly affected by an indirect regulator with high correlation or another true regulator. We present two novel network inference methods based on the integration of three different criteria, (i) z-score to measure the variation of gene expression from knockout data, (ii) mutual information for the dependency between two genes, and (iii) linear regression-based feature selection. Based on these criterion, we propose a lasso-based random feature selection algorithm (LARF) to achieve better performance overcoming the limitations of bootstrapping as mentioned above. In this work, there are three main contributions. First, our z score-based method to measure gene expression variations from knockout data is more effective than similar criteria of related works. Second, we confirmed that the true regulator selection can be effectively improved by LARF. Lastly, we verified that an integrative approach can clearly outperform a single method when two different methods are effectively jointed. In the experiments, our methods were validated by outperforming the state of the art methods on DREAM challenge data, and then LARF was applied to inferences of gene regulatory network associated with psychiatric disorders.

  19. Personalized microbial network inference via co-regularized spectral clustering.

    PubMed

    Imangaliyev, Sultan; Keijser, Bart; Crielaard, Wim; Tsivtsivadze, Evgeni

    2015-07-15

    We use Human Microbiome Project (HMP) cohort (Peterson et al., 2009) to infer personalized oral microbial networks of healthy individuals. To determine clustering of individuals with similar microbial profiles, co-regularized spectral clustering algorithm is applied to the dataset. For each cluster we discovered, we compute co-occurrence relationships among the microbial species that determine microbial network per cluster of individuals. The results of our study suggest that there are several differences in microbial interactions on personalized network level in healthy oral samples acquired from various niches. Based on the results of co-regularized spectral clustering we discover two groups of individuals with different topology of their microbial interaction network. The results of microbial network inference suggest that niche-wise interactions are different in these two groups. Our study shows that healthy individuals have different microbial clusters according to their oral microbiota. Such personalized microbial networks open a better understanding of the microbial ecology of healthy oral cavities and new possibilities for future targeted medication. The scripts written in scientific Python and in Matlab, which were used for network visualization, are provided for download on the website http://learning-machines.com/. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Rewiring of the inferred protein interactome during blood development studied with the tool PPICompare.

    PubMed

    Will, Thorsten; Helms, Volkhard

    2017-04-04

    Differential analysis of cellular conditions is a key approach towards understanding the consequences and driving causes behind biological processes such as developmental transitions or diseases. The progress of whole-genome expression profiling enabled to conveniently capture the state of a cell's transcriptome and to detect the characteristic features that distinguish cells in specific conditions. In contrast, mapping the physical protein interactome for many samples is experimentally infeasible at the moment. For the understanding of the whole system, however, it is equally important how the interactions of proteins are rewired between cellular states. To overcome this deficiency, we recently showed how condition-specific protein interaction networks that even consider alternative splicing can be inferred from transcript expression data. Here, we present the differential network analysis tool PPICompare that was specifically designed for isoform-sensitive protein interaction networks. Besides detecting significant rewiring events between the interactomes of grouped samples, PPICompare infers which alterations to the transcriptome caused each rewiring event and what is the minimal set of alterations necessary to explain all between-group changes. When applied to the development of blood cells, we verified that a reasonable amount of rewiring events were reported by the tool and found that differential gene expression was the major determinant of cellular adjustments to the interactome. Alternative splicing events were consistently necessary in each developmental step to explain all significant alterations and were especially important for rewiring in the context of transcriptional control. Applying PPICompare enabled us to investigate the dynamics of the human protein interactome during developmental transitions. A platform-independent implementation of the tool PPICompare is available at https://sourceforge.net/projects/ppicompare/ .

  1. Spiking neuron network Helmholtz machine.

    PubMed

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.

  2. Spiking neuron network Helmholtz machine

    PubMed Central

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule. PMID:25954191

  3. Sparse Measurement Systems: Applications, Analysis, Algorithms and Design

    ERIC Educational Resources Information Center

    Narayanaswamy, Balakrishnan

    2011-01-01

    This thesis deals with "large-scale" detection problems that arise in many real world applications such as sensor networks, mapping with mobile robots and group testing for biological screening and drug discovery. These are problems where the values of a large number of inputs need to be inferred from noisy observations and where the…

  4. Effects of spatial constraints on channel network topology: Implications for geomorphological inference

    NASA Astrophysics Data System (ADS)

    Cabral, Mariza Castanheira De Moura Da Costa

    In the fifty-two years since Robert Horton's 1945 pioneering quantitative description of channel network planform (or plan view morphology), no conclusive findings have been presented that permit inference of geomorphological processes from any measures of network planform. All measures of network planform studied exhibit limited geographic variability across different environments. Horton (1945), Langbein et al. (1947), Schumm (1956), Hack (1957), Melton (1958), and Gray (1961) established various "laws" of network planform, that is, statistical relationships between different variables which have limited variability. A wide variety of models which have been proposed to simulate the growth of channel networks in time over a landsurface are generally also in agreement with the above planform laws. An explanation is proposed for the generality of the channel network planform laws. Channel networks must be space filling, that is, they must extend over the landscape to drain every hillslope, leaving no large undrained areas, and with no crossing of channels, often achieving a roughly uniform drainage density in a given environment. It is shown that the space-filling constraint can reduce the sensitivity of planform variables to different network growth models, and it is proposed that this constraint may determine the planform laws. The "Q model" of network growth of Van Pelt and Verwer (1985) is used to generate samples of networks. Sensitivity to the model parameter Q is markedly reduced when the networks generated are required to be space filling. For a wide variety of Q values, the space-filling networks are in approximate agreement with the various channel network planform laws. Additional constraints, including of energy efficiency, were not studied but may further reduce the variability of planform laws. Inference of model parameter Q from network topology is successful only in networks not subject to spatial constraints. In space-filling networks, for a wide range of Q values, the maximal-likelihood Q parameter value is generally in the vicinity of 1/2, which yields topological randomness. It is proposed that space filling originates the appearance of randomness in channel network topology, and may cause difficulties to geomorphological inference from network planform.

  5. Optimal design of gene knockout experiments for gene regulatory network inference

    PubMed Central

    Ud-Dean, S. M. Minhaz; Gunawan, Rudiyanto

    2016-01-01

    Motivation: We addressed the problem of inferring gene regulatory network (GRN) from gene expression data of knockout (KO) experiments. This inference is known to be underdetermined and the GRN is not identifiable from data. Past studies have shown that suboptimal design of experiments (DOE) contributes significantly to the identifiability issue of biological networks, including GRNs. However, optimizing DOE has received much less attention than developing methods for GRN inference. Results: We developed REDuction of UnCertain Edges (REDUCE) algorithm for finding the optimal gene KO experiment for inferring directed graphs (digraphs) of GRNs. REDUCE employed ensemble inference to define uncertain gene interactions that could not be verified by prior data. The optimal experiment corresponds to the maximum number of uncertain interactions that could be verified by the resulting data. For this purpose, we introduced the concept of edge separatoid which gave a list of nodes (genes) that upon their removal would allow the verification of a particular gene interaction. Finally, we proposed a procedure that iterates over performing KO experiments, ensemble update and optimal DOE. The case studies including the inference of Escherichia coli GRN and DREAM 4 100-gene GRNs, demonstrated the efficacy of the iterative GRN inference. In comparison to systematic KOs, REDUCE could provide much higher information return per gene KO experiment and consequently more accurate GRN estimates. Conclusions: REDUCE represents an enabling tool for tackling the underdetermined GRN inference. Along with advances in gene deletion and automation technology, the iterative procedure brings an efficient and fully automated GRN inference closer to reality. Availability and implementation: MATLAB and Python scripts of REDUCE are available on www.cabsel.ethz.ch/tools/REDUCE. Contact: rudi.gunawan@chem.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26568633

  6. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency

    PubMed Central

    2009-01-01

    Background Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. Results To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN) algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD) as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2) regulated by RUNX1 and STAT3 is correlated to the pathological stage. Conclusions We provide a computational framework to reconstruct the genetic regulatory network from the microarray data using biological knowledge and constraint-based inferences. Our method is helpful in verifying possible interaction relations in gene regulatory networks and filtering out incorrect relations inferred by imperfect methods. We predicted not only individual gene related to cancer but also discovered significant gene regulation networks. Our method is also validated in several enriched published papers and databases and the significant gene regulatory networks perform critical biological functions and processes including cell adhesion molecules, androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes. Those significant gene regulations and the critical concept of tumor progression are useful to understand cancer biology and disease treatment. PMID:20025723

  7. Social networks and inference about unknown events: A case of the match between Google’s AlphaGo and Sedol Lee

    PubMed Central

    Bae, Jonghoon; Cha, Young-Jae; Lee, Hyungsuk; Lee, Boyun; Baek, Sojung; Choi, Semin

    2017-01-01

    This study examines whether the way that a person makes inferences about unknown events is associated with his or her social relations, more precisely, those characterized by ego network density that reflects the structure of a person’s immediate social relation. From the analysis of individual predictions over the Go match between AlphaGo and Sedol Lee in March 2016 in Seoul, Korea, this study shows that the low-density group scored higher than the high-density group in the accuracy of the prediction over a future state of a social event, i.e., the outcome of the first game. We corroborated this finding with three replication tests that asked the participants to predict the following: film awards, President Park’s impeachment in Korea, and the counterfactual assessment of the US presidential election. Taken together, this study suggests that network density is negatively associated with vision advantage, i.e., the ability to discover and forecast an unknown aspect of a social event. PMID:28222114

  8. An integrated approach to characterize transcription factor and microRNA regulatory networks involved in Schwann cell response to peripheral nerve injury

    PubMed Central

    2013-01-01

    Background The regenerative response of Schwann cells after peripheral nerve injury is a critical process directly related to the pathophysiology of a number of neurodegenerative diseases. This SC injury response is dependent on an intricate gene regulatory program coordinated by a number of transcription factors and microRNAs, but the interactions among them remain largely unknown. Uncovering the transcriptional and post-transcriptional regulatory networks governing the Schwann cell injury response is a key step towards a better understanding of Schwann cell biology and may help develop novel therapies for related diseases. Performing such comprehensive network analysis requires systematic bioinformatics methods to integrate multiple genomic datasets. Results In this study we present a computational pipeline to infer transcription factor and microRNA regulatory networks. Our approach combined mRNA and microRNA expression profiling data, ChIP-Seq data of transcription factors, and computational transcription factor and microRNA target prediction. Using mRNA and microRNA expression data collected in a Schwann cell injury model, we constructed a regulatory network and studied regulatory pathways involved in Schwann cell response to injury. Furthermore, we analyzed network motifs and obtained insights on cooperative regulation of transcription factors and microRNAs in Schwann cell injury recovery. Conclusions This work demonstrates a systematic method for gene regulatory network inference that may be used to gain new information on gene regulation by transcription factors and microRNAs. PMID:23387820

  9. Combining epidemiological and genetic networks signifies the importance of early treatment in HIV-1 transmission.

    PubMed

    Zarrabi, Narges; Prosperi, Mattia; Belleman, Robert G; Colafigli, Manuela; De Luca, Andrea; Sloot, Peter M A

    2012-01-01

    Inferring disease transmission networks is important in epidemiology in order to understand and prevent the spread of infectious diseases. Reconstruction of the infection transmission networks requires insight into viral genome data as well as social interactions. For the HIV-1 epidemic, current research either uses genetic information of patients' virus to infer the past infection events or uses statistics of sexual interactions to model the network structure of viral spreading. Methods for a reliable reconstruction of HIV-1 transmission dynamics, taking into account both molecular and societal data are still lacking. The aim of this study is to combine information from both genetic and epidemiological scales to characterize and analyse a transmission network of the HIV-1 epidemic in central Italy.We introduce a novel filter-reduction method to build a network of HIV infected patients based on their social and treatment information. The network is then combined with a genetic network, to infer a hypothetical infection transmission network. We apply this method to a cohort study of HIV-1 infected patients in central Italy and find that patients who are highly connected in the network have longer untreated infection periods. We also find that the network structures for homosexual males and heterosexual populations are heterogeneous, consisting of a majority of 'peripheral nodes' that have only a few sexual interactions and a minority of 'hub nodes' that have many sexual interactions. Inferring HIV-1 transmission networks using this novel combined approach reveals remarkable correlations between high out-degree individuals and longer untreated infection periods. These findings signify the importance of early treatment and support the potential benefit of wide population screening, management of early diagnoses and anticipated antiretroviral treatment to prevent viral transmission and spread. The approach presented here for reconstructing HIV-1 transmission networks can have important repercussions in the design of intervention strategies for disease control.

  10. Macrostructure from Microstructure: Generating Whole Systems from Ego Networks

    PubMed Central

    Smith, Jeffrey A.

    2014-01-01

    This paper presents a new simulation method to make global network inference from sampled data. The proposed simulation method takes sampled ego network data and uses Exponential Random Graph Models (ERGM) to reconstruct the features of the true, unknown network. After describing the method, the paper presents two validity checks of the approach: the first uses the 20 largest Add Health networks while the second uses the Sociology Coauthorship network in the 1990's. For each test, I take random ego network samples from the known networks and use my method to make global network inference. I find that my method successfully reproduces the properties of the networks, such as distance and main component size. The results also suggest that simpler, baseline models provide considerably worse estimates for most network properties. I end the paper by discussing the bounds/limitations of ego network sampling. I also discuss possible extensions to the proposed approach. PMID:25339783

  11. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  12. Automatic physical inference with information maximizing neural networks

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-04-01

    Compressing large data sets to a manageable number of summaries that are informative about the underlying parameters vastly simplifies both frequentist and Bayesian inference. When only simulations are available, these summaries are typically chosen heuristically, so they may inadvertently miss important information. We introduce a simulation-based machine learning technique that trains artificial neural networks to find nonlinear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). In test cases where the posterior can be derived exactly, likelihood-free inference based on automatically derived IMNN summaries produces nearly exact posteriors, showing that these summaries are good approximations to sufficient statistics. In a series of numerical examples of increasing complexity and astrophysical relevance we show that IMNNs are robustly capable of automatically finding optimal, nonlinear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima. We anticipate that the automatic physical inference method described in this paper will be essential to obtain both accurate and precise cosmological parameter estimates from complex and large astronomical data sets, including those from LSST and Euclid.

  13. Petri Nets with Fuzzy Logic (PNFL): Reverse Engineering and Parametrization

    PubMed Central

    Küffner, Robert; Petri, Tobias; Windhager, Lukas; Zimmer, Ralf

    2010-01-01

    Background The recent DREAM4 blind assessment provided a particularly realistic and challenging setting for network reverse engineering methods. The in silico part of DREAM4 solicited the inference of cycle-rich gene regulatory networks from heterogeneous, noisy expression data including time courses as well as knockout, knockdown and multifactorial perturbations. Methodology and Principal Findings We inferred and parametrized simulation models based on Petri Nets with Fuzzy Logic (PNFL). This completely automated approach correctly reconstructed networks with cycles as well as oscillating network motifs. PNFL was evaluated as the best performer on DREAM4 in silico networks of size 10 with an area under the precision-recall curve (AUPR) of 81%. Besides topology, we inferred a range of additional mechanistic details with good reliability, e.g. distinguishing activation from inhibition as well as dependent from independent regulation. Our models also performed well on new experimental conditions such as double knockout mutations that were not included in the provided datasets. Conclusions The inference of biological networks substantially benefits from methods that are expressive enough to deal with diverse datasets in a unified way. At the same time, overly complex approaches could generate multiple different models that explain the data equally well. PNFL appears to strike the balance between expressive power and complexity. This also applies to the intuitive representation of PNFL models combining a straightforward graphical notation with colloquial fuzzy parameters. PMID:20862218

  14. Extracting neuronal functional network dynamics via adaptive Granger causality analysis.

    PubMed

    Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash

    2018-04-24

    Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.

  15. Hybrid regulatory models: a statistically tractable approach to model regulatory network dynamics.

    PubMed

    Ocone, Andrea; Millar, Andrew J; Sanguinetti, Guido

    2013-04-01

    Computational modelling of the dynamics of gene regulatory networks is a central task of systems biology. For networks of small/medium scale, the dominant paradigm is represented by systems of coupled non-linear ordinary differential equations (ODEs). ODEs afford great mechanistic detail and flexibility, but calibrating these models to data is often an extremely difficult statistical problem. Here, we develop a general statistical inference framework for stochastic transcription-translation networks. We use a coarse-grained approach, which represents the system as a network of stochastic (binary) promoter and (continuous) protein variables. We derive an exact inference algorithm and an efficient variational approximation that allows scalable inference and learning of the model parameters. We demonstrate the power of the approach on two biological case studies, showing that the method allows a high degree of flexibility and is capable of testable novel biological predictions. http://homepages.inf.ed.ac.uk/gsanguin/software.html. Supplementary data are available at Bioinformatics online.

  16. Quantum Enhanced Inference in Markov Logic Networks

    NASA Astrophysics Data System (ADS)

    Wittek, Peter; Gogolin, Christian

    2017-04-01

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

  17. Quantum Enhanced Inference in Markov Logic Networks.

    PubMed

    Wittek, Peter; Gogolin, Christian

    2017-04-19

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

  18. Quantum Enhanced Inference in Markov Logic Networks

    PubMed Central

    Wittek, Peter; Gogolin, Christian

    2017-01-01

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning. PMID:28422093

  19. Modeling gene regulatory networks: A network simplification algorithm

    NASA Astrophysics Data System (ADS)

    Ferreira, Luiz Henrique O.; de Castro, Maria Clicia S.; da Silva, Fabricio A. B.

    2016-12-01

    Boolean networks have been used for some time to model Gene Regulatory Networks (GRNs), which describe cell functions. Those models can help biologists to make predictions, prognosis and even specialized treatment when some disturb on the GRN lead to a sick condition. However, the amount of information related to a GRN can be huge, making the task of inferring its boolean network representation quite a challenge. The method shown here takes into account information about the interactome to build a network, where each node represents a protein, and uses the entropy of each node as a key to reduce the size of the network, allowing the further inferring process to focus only on the main protein hubs, the ones with most potential to interfere in overall network behavior.

  20. Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses

    PubMed Central

    Stephen, Emily P.; Lepage, Kyle Q.; Eden, Uri T.; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S.; Guenther, Frank H.; Kramer, Mark A.

    2014-01-01

    The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty—both in the functional network edges and the corresponding aggregate measures of network topology—are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here—appropriate for static and dynamic network inference and different statistical measures of coupling—permits the evaluation of confidence in network measures in a variety of settings common to neuroscience. PMID:24678295

  1. Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses.

    PubMed

    Stephen, Emily P; Lepage, Kyle Q; Eden, Uri T; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S; Guenther, Frank H; Kramer, Mark A

    2014-01-01

    The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty-both in the functional network edges and the corresponding aggregate measures of network topology-are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here-appropriate for static and dynamic network inference and different statistical measures of coupling-permits the evaluation of confidence in network measures in a variety of settings common to neuroscience.

  2. Gene regulatory networks reused to build novel traits: co-option of an eye-related gene regulatory network in eye-like organs and red wing patches on insect wings is suggested by optix expression.

    PubMed

    Monteiro, Antónia

    2012-03-01

    Co-option of the eye developmental gene regulatory network may have led to the appearance of novel functional traits on the wings of flies and butterflies. The first trait is a recently described wing organ in a species of extinct midge resembling the outer layers of the midge's own compound eye. The second trait is red pigment patches on Heliconius butterfly wings connected to the expression of an eye selector gene, optix. These examples, as well as others, are discussed regarding the type of empirical evidence and burden of proof that have been used to infer gene network co-option underlying the origin of novel traits. A conceptual framework describing increasing confidence in inference of network co-option is proposed. Novel research directions to facilitate inference of network co-option are also highlighted, especially in cases where the pre-existent and novel traits do not resemble each other. Copyright © 2012 WILEY Periodicals, Inc.

  3. Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast.

    PubMed

    Wang, Zhuo; Danziger, Samuel A; Heavner, Benjamin D; Ma, Shuyi; Smith, Jennifer J; Li, Song; Herricks, Thurston; Simeonidis, Evangelos; Baliga, Nitin S; Aitchison, John D; Price, Nathan D

    2017-05-01

    Gene regulatory and metabolic network models have been used successfully in many organisms, but inherent differences between them make networks difficult to integrate. Probabilistic Regulation Of Metabolism (PROM) provides a partial solution, but it does not incorporate network inference and underperforms in eukaryotes. We present an Integrated Deduced And Metabolism (IDREAM) method that combines statistically inferred Environment and Gene Regulatory Influence Network (EGRIN) models with the PROM framework to create enhanced metabolic-regulatory network models. We used IDREAM to predict phenotypes and genetic interactions between transcription factors and genes encoding metabolic activities in the eukaryote, Saccharomyces cerevisiae. IDREAM models contain many fewer interactions than PROM and yet produce significantly more accurate growth predictions. IDREAM consistently outperformed PROM using any of three popular yeast metabolic models and across three experimental growth conditions. Importantly, IDREAM's enhanced accuracy makes it possible to identify subtle synthetic growth defects. With experimental validation, these novel genetic interactions involving the pyruvate dehydrogenase complex suggested a new role for fatty acid-responsive factor Oaf1 in regulating acetyl-CoA production in glucose grown cells.

  4. MapReduce Algorithms for Inferring Gene Regulatory Networks from Time-Series Microarray Data Using an Information-Theoretic Approach.

    PubMed

    Abduallah, Yasser; Turki, Turki; Byron, Kevin; Du, Zongxuan; Cervantes-Cervantes, Miguel; Wang, Jason T L

    2017-01-01

    Gene regulation is a series of processes that control gene expression and its extent. The connections among genes and their regulatory molecules, usually transcription factors, and a descriptive model of such connections are known as gene regulatory networks (GRNs). Elucidating GRNs is crucial to understand the inner workings of the cell and the complexity of gene interactions. To date, numerous algorithms have been developed to infer gene regulatory networks. However, as the number of identified genes increases and the complexity of their interactions is uncovered, networks and their regulatory mechanisms become cumbersome to test. Furthermore, prodding through experimental results requires an enormous amount of computation, resulting in slow data processing. Therefore, new approaches are needed to expeditiously analyze copious amounts of experimental data resulting from cellular GRNs. To meet this need, cloud computing is promising as reported in the literature. Here, we propose new MapReduce algorithms for inferring gene regulatory networks on a Hadoop cluster in a cloud environment. These algorithms employ an information-theoretic approach to infer GRNs using time-series microarray data. Experimental results show that our MapReduce program is much faster than an existing tool while achieving slightly better prediction accuracy than the existing tool.

  5. Reinforce: An Ensemble Approach for Inferring PPI Network from AP-MS Data.

    PubMed

    Tian, Bo; Duan, Qiong; Zhao, Can; Teng, Ben; He, Zengyou

    2017-05-17

    Affinity Purification-Mass Spectrometry (AP-MS) is one of the most important technologies for constructing protein-protein interaction (PPI) networks. In this paper, we propose an ensemble method, Reinforce, for inferring PPI network from AP-MS data set. The new algorithm named Reinforce is based on rank aggregation and false discovery rate control. Under the null hypothesis that the interaction scores from different scoring methods are randomly generated, Reinforce follows three steps to integrate multiple ranking results from different algorithms or different data sets. The experimental results show that Reinforce can get more stable and accurate inference results than existing algorithms. The source codes of Reinforce and data sets used in the experiments are available at: https://sourceforge.net/projects/reinforce/.

  6. Network meta-analysis: application and practice using Stata

    PubMed Central

    2017-01-01

    This review aimed to arrange the concepts of a network meta-analysis (NMA) and to demonstrate the analytical process of NMA using Stata software under frequentist framework. The NMA tries to synthesize evidences for a decision making by evaluating the comparative effectiveness of more than two alternative interventions for the same condition. Before conducting a NMA, 3 major assumptions—similarity, transitivity, and consistency—should be checked. The statistical analysis consists of 5 steps. The first step is to draw a network geometry to provide an overview of the network relationship. The second step checks the assumption of consistency. The third step is to make the network forest plot or interval plot in order to illustrate the summary size of comparative effectiveness among various interventions. The fourth step calculates cumulative rankings for identifying superiority among interventions. The last step evaluates publication bias or effect modifiers for a valid inference from results. The synthesized evidences through five steps would be very useful to evidence-based decision-making in healthcare. Thus, NMA should be activated in order to guarantee the quality of healthcare system. PMID:29092392

  7. Network meta-analysis: application and practice using Stata.

    PubMed

    Shim, Sungryul; Yoon, Byung-Ho; Shin, In-Soo; Bae, Jong-Myon

    2017-01-01

    This review aimed to arrange the concepts of a network meta-analysis (NMA) and to demonstrate the analytical process of NMA using Stata software under frequentist framework. The NMA tries to synthesize evidences for a decision making by evaluating the comparative effectiveness of more than two alternative interventions for the same condition. Before conducting a NMA, 3 major assumptions-similarity, transitivity, and consistency-should be checked. The statistical analysis consists of 5 steps. The first step is to draw a network geometry to provide an overview of the network relationship. The second step checks the assumption of consistency. The third step is to make the network forest plot or interval plot in order to illustrate the summary size of comparative effectiveness among various interventions. The fourth step calculates cumulative rankings for identifying superiority among interventions. The last step evaluates publication bias or effect modifiers for a valid inference from results. The synthesized evidences through five steps would be very useful to evidence-based decision-making in healthcare. Thus, NMA should be activated in order to guarantee the quality of healthcare system.

  8. The internet worm

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1989-01-01

    In November 1988 a worm program invaded several thousand UNIX-operated Sun workstations and VAX computers attached to the Research Internet, seriously disrupting service for several days but damaging no files. An analysis of the work's decompiled code revealed a battery of attacks by a knowledgeable insider, and demonstrated a number of security weaknesses. The attack occurred in an open network, and little can be inferred about the vulnerabilities of closed networks used for critical operations. The attack showed that passwork protection procedures need review and strengthening. It showed that sets of mutually trusting computers need to be carefully controlled. Sharp public reaction crystalized into a demand for user awareness and accountability in a networked world.

  9. Parameter inference in small world network disease models with approximate Bayesian Computational methods

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Allingham, David; Lee, Heung Wing Joseph; Small, Michael

    2010-02-01

    Small world network models have been effective in capturing the variable behaviour of reported case data of the SARS coronavirus outbreak in Hong Kong during 2003. Simulations of these models have previously been realized using informed “guesses” of the proposed model parameters and tested for consistency with the reported data by surrogate analysis. In this paper we attempt to provide statistically rigorous parameter distributions using Approximate Bayesian Computation sampling methods. We find that such sampling schemes are a useful framework for fitting parameters of stochastic small world network models where simulation of the system is straightforward but expressing a likelihood is cumbersome.

  10. The Use of Weighted Graphs for Large-Scale Genome Analysis

    PubMed Central

    Zhou, Fang; Toivonen, Hannu; King, Ross D.

    2014-01-01

    There is an acute need for better tools to extract knowledge from the growing flood of sequence data. For example, thousands of complete genomes have been sequenced, and their metabolic networks inferred. Such data should enable a better understanding of evolution. However, most existing network analysis methods are based on pair-wise comparisons, and these do not scale to thousands of genomes. Here we propose the use of weighted graphs as a data structure to enable large-scale phylogenetic analysis of networks. We have developed three types of weighted graph for enzymes: taxonomic (these summarize phylogenetic importance), isoenzymatic (these summarize enzymatic variety/redundancy), and sequence-similarity (these summarize sequence conservation); and we applied these types of weighted graph to survey prokaryotic metabolism. To demonstrate the utility of this approach we have compared and contrasted the large-scale evolution of metabolism in Archaea and Eubacteria. Our results provide evidence for limits to the contingency of evolution. PMID:24619061

  11. Structural and functional networks in complex systems with delay.

    PubMed

    Eguíluz, Víctor M; Pérez, Toni; Borge-Holthoefer, Javier; Arenas, Alex

    2011-05-01

    Functional networks of complex systems are obtained from the analysis of the temporal activity of their components, and are often used to infer their unknown underlying connectivity. We obtain the equations relating topology and function in a system of diffusively delay-coupled elements in complex networks. We solve exactly the resulting equations in motifs (directed structures of three nodes) and in directed networks. The mean-field solution for directed uncorrelated networks shows that the clusterization of the activity is dominated by the in-degree of the nodes, and that the locking frequency decreases with increasing average degree. We find that the exponent of a power law degree distribution of the structural topology γ is related to the exponent of the associated functional network as α=(2-γ)(-1) for γ<2. © 2011 American Physical Society

  12. Inferring the interplay between network structure and market effects in Bitcoin

    NASA Astrophysics Data System (ADS)

    Kondor, Dániel; Csabai, István; Szüle, János; Pósfai, Márton; Vattay, Gábor

    2014-12-01

    A main focus in economics research is understanding the time series of prices of goods and assets. While statistical models using only the properties of the time series itself have been successful in many aspects, we expect to gain a better understanding of the phenomena involved if we can model the underlying system of interacting agents. In this article, we consider the history of Bitcoin, a novel digital currency system, for which the complete list of transactions is available for analysis. Using this dataset, we reconstruct the transaction network between users and analyze changes in the structure of the subgraph induced by the most active users. Our approach is based on the unsupervised identification of important features of the time variation of the network. Applying the widely used method of Principal Component Analysis to the matrix constructed from snapshots of the network at different times, we are able to show how structural changes in the network accompany significant changes in the exchange price of bitcoins.

  13. Stochastic Spiking Neural Networks Enabled by Magnetic Tunnel Junctions: From Nontelegraphic to Telegraphic Switching Regimes

    NASA Astrophysics Data System (ADS)

    Liyanagedera, Chamika M.; Sengupta, Abhronil; Jaiswal, Akhilesh; Roy, Kaushik

    2017-12-01

    Stochastic spiking neural networks based on nanoelectronic spin devices can be a possible pathway to achieving "brainlike" compact and energy-efficient cognitive intelligence. The computational model attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural components to perform learning or inference. However, there has been limited analysis on the scaling effect of stochastic spin devices and its impact on the operation of such stochastic networks at the system level. This work attempts to explore the design space and analyze the performance of nanomagnet-based stochastic neuromorphic computing architectures for magnets with different barrier heights. We illustrate how the underlying network architecture must be modified to account for the random telegraphic switching behavior displayed by magnets with low barrier heights as they are scaled into the superparamagnetic regime. We perform a device-to-system-level analysis on a deep neural-network architecture for a digit-recognition problem on the MNIST data set.

  14. [Spectral quantitative analysis by nonlinear partial least squares based on neural network internal model for flue gas of thermal power plant].

    PubMed

    Cao, Hui; Li, Yao-Jiang; Zhou, Yan; Wang, Yan-Xia

    2014-11-01

    To deal with nonlinear characteristics of spectra data for the thermal power plant flue, a nonlinear partial least square (PLS) analysis method with internal model based on neural network is adopted in the paper. The latent variables of the independent variables and the dependent variables are extracted by PLS regression firstly, and then they are used as the inputs and outputs of neural network respectively to build the nonlinear internal model by train process. For spectra data of flue gases of the thermal power plant, PLS, the nonlinear PLS with the internal model of back propagation neural network (BP-NPLS), the non-linear PLS with the internal model of radial basis function neural network (RBF-NPLS) and the nonlinear PLS with the internal model of adaptive fuzzy inference system (ANFIS-NPLS) are compared. The root mean square error of prediction (RMSEP) of sulfur dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 16.96%, 16.60% and 19.55% than that of PLS, respectively. The RMSEP of nitric oxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 8.60%, 8.47% and 10.09% than that of PLS, respectively. The RMSEP of nitrogen dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 2.11%, 3.91% and 3.97% than that of PLS, respectively. Experimental results show that the nonlinear PLS is more suitable for the quantitative analysis of glue gas than PLS. Moreover, by using neural network function which can realize high approximation of nonlinear characteristics, the nonlinear partial least squares method with internal model mentioned in this paper have well predictive capabilities and robustness, and could deal with the limitations of nonlinear partial least squares method with other internal model such as polynomial and spline functions themselves under a certain extent. ANFIS-NPLS has the best performance with the internal model of adaptive fuzzy inference system having ability to learn more and reduce the residuals effectively. Hence, ANFIS-NPLS is an accurate and useful quantitative thermal power plant flue gas analysis method.

  15. Multisensory integration processing during olfactory-visual stimulation-An fMRI graph theoretical network analysis.

    PubMed

    Ripp, Isabelle; Zur Nieden, Anna-Nora; Blankenagel, Sonja; Franzmeier, Nicolai; Lundström, Johan N; Freiherr, Jessica

    2018-05-07

    In this study, we aimed to understand how whole-brain neural networks compute sensory information integration based on the olfactory and visual system. Task-related functional magnetic resonance imaging (fMRI) data was obtained during unimodal and bimodal sensory stimulation. Based on the identification of multisensory integration processing (MIP) specific hub-like network nodes analyzed with network-based statistics using region-of-interest based connectivity matrices, we conclude the following brain areas to be important for processing the presented bimodal sensory information: right precuneus connected contralaterally to the supramarginal gyrus for memory-related imagery and phonology retrieval, and the left middle occipital gyrus connected ipsilaterally to the inferior frontal gyrus via the inferior fronto-occipital fasciculus including functional aspects of working memory. Applied graph theory for quantification of the resulting complex network topologies indicates a significantly increased global efficiency and clustering coefficient in networks including aspects of MIP reflecting a simultaneous better integration and segregation. Graph theoretical analysis of positive and negative network correlations allowing for inferences about excitatory and inhibitory network architectures revealed-not significant, but very consistent-that MIP-specific neural networks are dominated by inhibitory relationships between brain regions involved in stimulus processing. © 2018 Wiley Periodicals, Inc.

  16. A systematic approach to infer biological relevance and biases of gene network structures.

    PubMed

    Antonov, Alexey V; Tetko, Igor V; Mewes, Hans W

    2006-01-10

    The development of high-throughput technologies has generated the need for bioinformatics approaches to assess the biological relevance of gene networks. Although several tools have been proposed for analysing the enrichment of functional categories in a set of genes, none of them is suitable for evaluating the biological relevance of the gene network. We propose a procedure and develop a web-based resource (BIOREL) to estimate the functional bias (biological relevance) of any given genetic network by integrating different sources of biological information. The weights of the edges in the network may be either binary or continuous. These essential features make our web tool unique among many similar services. BIOREL provides standardized estimations of the network biases extracted from independent data. By the analyses of real data we demonstrate that the potential application of BIOREL ranges from various benchmarking purposes to systematic analysis of the network biology.

  17. Mixture models with entropy regularization for community detection in networks

    NASA Astrophysics Data System (ADS)

    Chang, Zhenhai; Yin, Xianjun; Jia, Caiyan; Wang, Xiaoyang

    2018-04-01

    Community detection is a key exploratory tool in network analysis and has received much attention in recent years. NMM (Newman's mixture model) is one of the best models for exploring a range of network structures including community structure, bipartite and core-periphery structures, etc. However, NMM needs to know the number of communities in advance. Therefore, in this study, we have proposed an entropy regularized mixture model (called EMM), which is capable of inferring the number of communities and identifying network structure contained in a network, simultaneously. In the model, by minimizing the entropy of mixing coefficients of NMM using EM (expectation-maximization) solution, the small clusters contained little information can be discarded step by step. The empirical study on both synthetic networks and real networks has shown that the proposed model EMM is superior to the state-of-the-art methods.

  18. Effective network inference through multivariate information transfer estimation

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Carl-Henrik; Gnabo, Jean-Yves

    2018-06-01

    Network representation has steadily gained in popularity over the past decades. In many disciplines such as finance, genetics, neuroscience or human travel to cite a few, the network may not directly be observable and needs to be inferred from time-series data, leading to the issue of separating direct interactions between two entities forming the network from indirect interactions coming through its remaining part. Drawing on recent contributions proposing strategies to deal with this problem such as the so-called "global silencing" approach of Barzel and Barabasi or "network deconvolution" of Feizi et al. (2013), we propose a novel methodology to infer an effective network structure from multivariate conditional information transfers. Its core principal is to test the information transfer between two nodes through a step-wise approach by conditioning the transfer for each pair on a specific set of relevant nodes as identified by our algorithm from the rest of the network. The methodology is model free and can be applied to high-dimensional networks with both inter-lag and intra-lag relationships. It outperforms state-of-the-art approaches for eliminating the redundancies and more generally retrieving simulated artificial networks in our Monte-Carlo experiments. We apply the method to stock market data at different frequencies (15 min, 1 h, 1 day) to retrieve the network of US largest financial institutions and then document how bank's centrality measurements relate to bank's systemic vulnerability.

  19. A Hybrid Stochastic-Neuro-Fuzzy Model-Based System for In-Flight Gas Turbine Engine Diagnostics

    DTIC Science & Technology

    2001-04-05

    Margin (ADM) and (ii) Fault Detection Margin (FDM). Key Words: ANFIS, Engine Health Monitoring , Gas Path Analysis, and Stochastic Analysis Adaptive Network...The paper illustrates the application of a hybrid Stochastic- Fuzzy -Inference Model-Based System (StoFIS) to fault diagnostics and prognostics for both...operational history monitored on-line by the engine health management (EHM) system. To capture the complex functional relationships between different

  20. Gene Regulatory Network Inferences Using a Maximum-Relevance and Maximum-Significance Strategy

    PubMed Central

    Liu, Wei; Zhu, Wen; Liao, Bo; Chen, Xiangtao

    2016-01-01

    Recovering gene regulatory networks from expression data is a challenging problem in systems biology that provides valuable information on the regulatory mechanisms of cells. A number of algorithms based on computational models are currently used to recover network topology. However, most of these algorithms have limitations. For example, many models tend to be complicated because of the “large p, small n” problem. In this paper, we propose a novel regulatory network inference method called the maximum-relevance and maximum-significance network (MRMSn) method, which converts the problem of recovering networks into a problem of how to select the regulator genes for each gene. To solve the latter problem, we present an algorithm that is based on information theory and selects the regulator genes for a specific gene by maximizing the relevance and significance. A first-order incremental search algorithm is used to search for regulator genes. Eventually, a strict constraint is adopted to adjust all of the regulatory relationships according to the obtained regulator genes and thus obtain the complete network structure. We performed our method on five different datasets and compared our method to five state-of-the-art methods for network inference based on information theory. The results confirm the effectiveness of our method. PMID:27829000

  1. Data-driven reconstruction of directed networks

    NASA Astrophysics Data System (ADS)

    Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran

    2013-06-01

    We investigate the properties of a recently introduced asymmetric association measure, called inner composition alignment (IOTA), aimed at inferring regulatory links (couplings). We show that the measure can be used to determine the direction of coupling, detect superfluous links, and to account for autoregulation. In addition, the measure can be extended to infer the type of regulation (positive or negative). The capabilities of IOTA to correctly infer couplings together with their directionality are compared against Kendall's rank correlation for time series of different lengths, particularly focussing on biological examples. We demonstrate that an extended version of the measure, bidirectional inner composition alignment (biIOTA), increases the accuracy of the network reconstruction for short time series. Finally, we discuss the applicability of the measure to infer couplings in chaotic systems.

  2. Ensemble stacking mitigates biases in inference of synaptic connectivity.

    PubMed

    Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N

    2018-01-01

    A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.

  3. Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks.

    PubMed

    Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong

    2017-07-03

    Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes' energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs' election, we take nodes' energies, nodes' degree and neighbor nodes' residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks.

  4. STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data

    PubMed Central

    Jupiter, Daniel; Chen, Hailin; VanBuren, Vincent

    2009-01-01

    Background Although expression microarrays have become a standard tool used by biologists, analysis of data produced by microarray experiments may still present challenges. Comparison of data from different platforms, organisms, and labs may involve complicated data processing, and inferring relationships between genes remains difficult. Results STARNET 2 is a new web-based tool that allows post hoc visual analysis of correlations that are derived from expression microarray data. STARNET 2 facilitates user discovery of putative gene regulatory networks in a variety of species (human, rat, mouse, chicken, zebrafish, Drosophila, C. elegans, S. cerevisiae, Arabidopsis and rice) by graphing networks of genes that are closely co-expressed across a large heterogeneous set of preselected microarray experiments. For each of the represented organisms, raw microarray data were retrieved from NCBI's Gene Expression Omnibus for a selected Affymetrix platform. All pairwise Pearson correlation coefficients were computed for expression profiles measured on each platform, respectively. These precompiled results were stored in a MySQL database, and supplemented by additional data retrieved from NCBI. A web-based tool allows user-specified queries of the database, centered at a gene of interest. The result of a query includes graphs of correlation networks, graphs of known interactions involving genes and gene products that are present in the correlation networks, and initial statistical analyses. Two analyses may be performed in parallel to compare networks, which is facilitated by the new HEATSEEKER module. Conclusion STARNET 2 is a useful tool for developing new hypotheses about regulatory relationships between genes and gene products, and has coverage for 10 species. Interpretation of the correlation networks is supported with a database of previously documented interactions, a test for enrichment of Gene Ontology terms, and heat maps of correlation distances that may be used to compare two networks. The list of genes in a STARNET network may be useful in developing a list of candidate genes to use for the inference of causal networks. The tool is freely available at , and does not require user registration. PMID:19828039

  5. Fine-granularity inference and estimations to network traffic for SDN.

    PubMed

    Jiang, Dingde; Huo, Liuwei; Li, Ya

    2018-01-01

    An end-to-end network traffic matrix is significantly helpful for network management and for Software Defined Networks (SDN). However, the end-to-end network traffic matrix's inferences and estimations are a challenging problem. Moreover, attaining the traffic matrix in high-speed networks for SDN is a prohibitive challenge. This paper investigates how to estimate and recover the end-to-end network traffic matrix in fine time granularity from the sampled traffic traces, which is a hard inverse problem. Different from previous methods, the fractal interpolation is used to reconstruct the finer-granularity network traffic. Then, the cubic spline interpolation method is used to obtain the smooth reconstruction values. To attain an accurate the end-to-end network traffic in fine time granularity, we perform a weighted-geometric-average process for two interpolation results that are obtained. The simulation results show that our approaches are feasible and effective.

  6. Fine-granularity inference and estimations to network traffic for SDN

    PubMed Central

    Huo, Liuwei; Li, Ya

    2018-01-01

    An end-to-end network traffic matrix is significantly helpful for network management and for Software Defined Networks (SDN). However, the end-to-end network traffic matrix's inferences and estimations are a challenging problem. Moreover, attaining the traffic matrix in high-speed networks for SDN is a prohibitive challenge. This paper investigates how to estimate and recover the end-to-end network traffic matrix in fine time granularity from the sampled traffic traces, which is a hard inverse problem. Different from previous methods, the fractal interpolation is used to reconstruct the finer-granularity network traffic. Then, the cubic spline interpolation method is used to obtain the smooth reconstruction values. To attain an accurate the end-to-end network traffic in fine time granularity, we perform a weighted-geometric-average process for two interpolation results that are obtained. The simulation results show that our approaches are feasible and effective. PMID:29718913

  7. Empirical Bayes conditional independence graphs for regulatory network recovery.

    PubMed

    Mahdi, Rami; Madduri, Abishek S; Wang, Guoqing; Strulovici-Barel, Yael; Salit, Jacqueline; Hackett, Neil R; Crystal, Ronald G; Mezey, Jason G

    2012-08-01

    Computational inference methods that make use of graphical models to extract regulatory networks from gene expression data can have difficulty reconstructing dense regions of a network, a consequence of both computational complexity and unreliable parameter estimation when sample size is small. As a result, identification of hub genes is of special difficulty for these methods. We present a new algorithm, Empirical Light Mutual Min (ELMM), for large network reconstruction that has properties well suited for recovery of graphs with high-degree nodes. ELMM reconstructs the undirected graph of a regulatory network using empirical Bayes conditional independence testing with a heuristic relaxation of independence constraints in dense areas of the graph. This relaxation allows only one gene of a pair with a putative relation to be aware of the network connection, an approach that is aimed at easing multiple testing problems associated with recovering densely connected structures. Using in silico data, we show that ELMM has better performance than commonly used network inference algorithms including GeneNet, ARACNE, FOCI, GENIE3 and GLASSO. We also apply ELMM to reconstruct a network among 5492 genes expressed in human lung airway epithelium of healthy non-smokers, healthy smokers and individuals with chronic obstructive pulmonary disease assayed using microarrays. The analysis identifies dense sub-networks that are consistent with known regulatory relationships in the lung airway and also suggests novel hub regulatory relationships among a number of genes that play roles in oxidative stress and secretion. Software for running ELMM is made available at http://mezeylab.cb.bscb.cornell.edu/Software.aspx. ramimahdi@yahoo.com or jgm45@cornell.edu Supplementary data are available at Bioinformatics online.

  8. Using a network modularity analysis to inform management of a rare endemic plant in the northern Great Plains, USA

    USGS Publications Warehouse

    Larson, Diane L.; Droege, Sam; Rabie, Paul A.; Larson, Jennifer L.; Devalez, Jelle; Haar, Milton; McDermott-Kubeczko, Margaret

    2014-01-01

    1. Analyses of flower-visitor interaction networks allow application of community-level information to conservation problems, but management recommendations that ensue from such analyses are not well characterized. Results of modularity analyses, which detect groups of species (modules) that interact more with each other than with species outside their module, may be particularly applicable to management concerns. 2. We conducted modularity analyses of networks surrounding a rare endemic annual plant, Eriogonum visheri, at Badlands National Park, USA, in 2010 and 2011. Plant species visited were determined by pollen on insect bodies and by flower species upon which insects were captured. Roles within modules (network hub, module hub, connector and peripheral, in decreasing order of network structural importance) were determined for each species. 3. Relationships demonstrated by the modularity analysis, in concert with knowledge of pollen species carried by insects, allowed us to infer effects of two invasive species on E. visheri. Sharing a module increased risk of interspecific pollen transfer to E. visheri. Control of invasive Salsola tragus, which shared a module with E. visheri, is therefore a prudent management objective, but lack of control of invasive Melilotus officinalis, which occupied a different module, is unlikely to negatively affect pollination of E. visheri. Eriogonum pauciflorum may occupy a key position in this network, supporting insects from the E. visheri module when E. visheri is less abundant. 4. Year-to-year variation in species' roles suggests management decisions must be based on observations over several years. Information on pollen deposition on stigmas would greatly strengthen inferences made from the modularity analysis. 5. Synthesis and applications: Assessing the consequences of pollination, whether at the community or individual level, is inherently time-consuming. A trade-off exists: rather than an estimate of fitness effects, the network approach provides a broad understanding of the relationships among insect visitors and other plant species that may affect the focal rare plant. Knowledge of such relationships allows managers to detect, target and prioritize control of only the important subset of invasive species present and identify other species that may augment a rare species' population stability, such as E. pauciflorum in our study.

  9. Augmenting Microarray Data with Literature-Based Knowledge to Enhance Gene Regulatory Network Inference

    PubMed Central

    Kilicoglu, Halil; Shin, Dongwook; Rindflesch, Thomas C.

    2014-01-01

    Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding the complex interactions involved in cellular behavior and molecular physiology. PMID:24921649

  10. Augmenting microarray data with literature-based knowledge to enhance gene regulatory network inference.

    PubMed

    Chen, Guocai; Cairelli, Michael J; Kilicoglu, Halil; Shin, Dongwook; Rindflesch, Thomas C

    2014-06-01

    Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding the complex interactions involved in cellular behavior and molecular physiology.

  11. Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure.

    PubMed

    Kemppainen, Petri; Knight, Christopher G; Sarma, Devojit K; Hlaing, Thaung; Prakash, Anil; Maung Maung, Yan Naung; Somboon, Pradya; Mahanta, Jagadish; Walton, Catherine

    2015-09-01

    Recent advances in sequencing allow population-genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction-site-associated DNA sequence (RAD-seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well-characterized single nucleotide polymorphism (SNP) data set from 21 three-spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single-outlier clusters, SOCs), each comprising many loci connected by high LD. In A. baimaii, further population-genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population-demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population-genomic data set, making it especially valuable for nonmodel species. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  12. Combination of a proteomics approach and reengineering of meso scale network models for prediction of mode-of-action for tyrosine kinase inhibitors.

    PubMed

    Balabanov, Stefan; Wilhelm, Thomas; Venz, Simone; Keller, Gunhild; Scharf, Christian; Pospisil, Heike; Braig, Melanie; Barett, Christine; Bokemeyer, Carsten; Walther, Reinhard; Brümmendorf, Tim H; Schuppert, Andreas

    2013-01-01

    In drug discovery, the characterisation of the precise modes of action (MoA) and of unwanted off-target effects of novel molecularly targeted compounds is of highest relevance. Recent approaches for identification of MoA have employed various techniques for modeling of well defined signaling pathways including structural information, changes in phenotypic behavior of cells and gene expression patterns after drug treatment. However, efficient approaches focusing on proteome wide data for the identification of MoA including interference with mutations are underrepresented. As mutations are key drivers of drug resistance in molecularly targeted tumor therapies, efficient analysis and modeling of downstream effects of mutations on drug MoA is a key to efficient development of improved targeted anti-cancer drugs. Here we present a combination of a global proteome analysis, reengineering of network models and integration of apoptosis data used to infer the mode-of-action of various tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) cell lines expressing wild type as well as TKI resistance conferring mutants of BCR-ABL. The inferred network models provide a tool to predict the main MoA of drugs as well as to grouping of drugs with known similar kinase inhibitory activity patterns in comparison to drugs with an additional MoA. We believe that our direct network reconstruction approach, demonstrated on proteomics data, can provide a complementary method to the established network reconstruction approaches for the preclinical modeling of the MoA of various types of targeted drugs in cancer treatment. Hence it may contribute to the more precise prediction of clinically relevant on- and off-target effects of TKIs.

  13. Combination of a Proteomics Approach and Reengineering of Meso Scale Network Models for Prediction of Mode-of-Action for Tyrosine Kinase Inhibitors

    PubMed Central

    Balabanov, Stefan; Wilhelm, Thomas; Venz, Simone; Keller, Gunhild; Scharf, Christian; Pospisil, Heike; Braig, Melanie; Barett, Christine; Bokemeyer, Carsten; Walther, Reinhard

    2013-01-01

    In drug discovery, the characterisation of the precise modes of action (MoA) and of unwanted off-target effects of novel molecularly targeted compounds is of highest relevance. Recent approaches for identification of MoA have employed various techniques for modeling of well defined signaling pathways including structural information, changes in phenotypic behavior of cells and gene expression patterns after drug treatment. However, efficient approaches focusing on proteome wide data for the identification of MoA including interference with mutations are underrepresented. As mutations are key drivers of drug resistance in molecularly targeted tumor therapies, efficient analysis and modeling of downstream effects of mutations on drug MoA is a key to efficient development of improved targeted anti-cancer drugs. Here we present a combination of a global proteome analysis, reengineering of network models and integration of apoptosis data used to infer the mode-of-action of various tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) cell lines expressing wild type as well as TKI resistance conferring mutants of BCR-ABL. The inferred network models provide a tool to predict the main MoA of drugs as well as to grouping of drugs with known similar kinase inhibitory activity patterns in comparison to drugs with an additional MoA. We believe that our direct network reconstruction approach, demonstrated on proteomics data, can provide a complementary method to the established network reconstruction approaches for the preclinical modeling of the MoA of various types of targeted drugs in cancer treatment. Hence it may contribute to the more precise prediction of clinically relevant on- and off-target effects of TKIs. PMID:23326482

  14. DMirNet: Inferring direct microRNA-mRNA association networks.

    PubMed

    Lee, Minsu; Lee, HyungJune

    2016-12-05

    MicroRNAs (miRNAs) play important regulatory roles in the wide range of biological processes by inducing target mRNA degradation or translational repression. Based on the correlation between expression profiles of a miRNA and its target mRNA, various computational methods have previously been proposed to identify miRNA-mRNA association networks by incorporating the matched miRNA and mRNA expression profiles. However, there remain three major issues to be resolved in the conventional computation approaches for inferring miRNA-mRNA association networks from expression profiles. 1) Inferred correlations from the observed expression profiles using conventional correlation-based methods include numerous erroneous links or over-estimated edge weight due to the transitive information flow among direct associations. 2) Due to the high-dimension-low-sample-size problem on the microarray dataset, it is difficult to obtain an accurate and reliable estimate of the empirical correlations between all pairs of expression profiles. 3) Because the previously proposed computational methods usually suffer from varying performance across different datasets, a more reliable model that guarantees optimal or suboptimal performance across different datasets is highly needed. In this paper, we present DMirNet, a new framework for identifying direct miRNA-mRNA association networks. To tackle the aforementioned issues, DMirNet incorporates 1) three direct correlation estimation methods (namely Corpcor, SPACE, Network deconvolution) to infer direct miRNA-mRNA association networks, 2) the bootstrapping method to fully utilize insufficient training expression profiles, and 3) a rank-based Ensemble aggregation to build a reliable and robust model across different datasets. Our empirical experiments on three datasets demonstrate the combinatorial effects of necessary components in DMirNet. Additional performance comparison experiments show that DMirNet outperforms the state-of-the-art Ensemble-based model [1] which has shown the best performance across the same three datasets, with a factor of up to 1.29. Further, we identify 43 putative novel multi-cancer-related miRNA-mRNA association relationships from an inferred Top 1000 direct miRNA-mRNA association network. We believe that DMirNet is a promising method to identify novel direct miRNA-mRNA relations and to elucidate the direct miRNA-mRNA association networks. Since DMirNet infers direct relationships from the observed data, DMirNet can contribute to reconstructing various direct regulatory pathways, including, but not limited to, the direct miRNA-mRNA association networks.

  15. Inferring genetic interactions via a nonlinear model and an optimization algorithm.

    PubMed

    Chen, Chung-Ming; Lee, Chih; Chuang, Cheng-Long; Wang, Chia-Chang; Shieh, Grace S

    2010-02-26

    Biochemical pathways are gradually becoming recognized as central to complex human diseases and recently genetic/transcriptional interactions have been shown to be able to predict partial pathways. With the abundant information made available by microarray gene expression data (MGED), nonlinear modeling of these interactions is now feasible. Two of the latest advances in nonlinear modeling used sigmoid models to depict transcriptional interaction of a transcription factor (TF) for a target gene, but do not model cooperative or competitive interactions of several TFs for a target. An S-shape model and an optimization algorithm (GASA) were developed to infer genetic interactions/transcriptional regulation of several genes simultaneously using MGED. GASA consists of a genetic algorithm (GA) and a simulated annealing (SA) algorithm, which is enhanced by a steepest gradient descent algorithm to avoid being trapped in local minimum. Using simulated data with various degrees of noise, we studied how GASA with two model selection criteria and two search spaces performed. Furthermore, GASA was shown to outperform network component analysis, the time series network inference algorithm (TSNI), GA with regular GA (GAGA) and GA with regular SA. Two applications are demonstrated. First, GASA is applied to infer a subnetwork of human T-cell apoptosis. Several of the predicted interactions are supported by the literature. Second, GASA was applied to infer the transcriptional factors of 34 cell cycle regulated targets in S. cerevisiae, and GASA performed better than one of the latest advances in nonlinear modeling, GAGA and TSNI. Moreover, GASA is able to predict multiple transcription factors for certain targets, and these results coincide with experiments confirmed data in YEASTRACT. GASA is shown to infer both genetic interactions and transcriptional regulatory interactions well. In particular, GASA seems able to characterize the nonlinear mechanism of transcriptional regulatory interactions (TIs) in yeast, and may be applied to infer TIs in other organisms. The predicted genetic interactions of a subnetwork of human T-cell apoptosis coincide with existing partial pathways, suggesting the potential of GASA on inferring biochemical pathways.

  16. An integrated approach to infer dynamic protein-gene interactions - A case study of the human P53 protein.

    PubMed

    Wang, Junbai; Wu, Qianqian; Hu, Xiaohua Tony; Tian, Tianhai

    2016-11-01

    Investigating the dynamics of genetic regulatory networks through high throughput experimental data, such as microarray gene expression profiles, is a very important but challenging task. One of the major hindrances in building detailed mathematical models for genetic regulation is the large number of unknown model parameters. To tackle this challenge, a new integrated method is proposed by combining a top-down approach and a bottom-up approach. First, the top-down approach uses probabilistic graphical models to predict the network structure of DNA repair pathway that is regulated by the p53 protein. Two networks are predicted, namely a network of eight genes with eight inferred interactions and an extended network of 21 genes with 17 interactions. Then, the bottom-up approach using differential equation models is developed to study the detailed genetic regulations based on either a fully connected regulatory network or a gene network obtained by the top-down approach. Model simulation error, parameter identifiability and robustness property are used as criteria to select the optimal network. Simulation results together with permutation tests of input gene network structures indicate that the prediction accuracy and robustness property of the two predicted networks using the top-down approach are better than those of the corresponding fully connected networks. In particular, the proposed approach reduces computational cost significantly for inferring model parameters. Overall, the new integrated method is a promising approach for investigating the dynamics of genetic regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Neural Network Emulation of Reionization Simulations

    NASA Astrophysics Data System (ADS)

    Schmit, Claude J.; Pritchard, Jonathan R.

    2018-05-01

    Next generation radio experiments such as LOFAR, HERA and SKA are expected to probe the Epoch of Reionization and claim a first direct detection of the cosmic 21cm signal within the next decade. One of the major challenges for these experiments will be dealing with enormous incoming data volumes. Machine learning is key to increasing our data analysis efficiency. We consider the use of an artificial neural network to emulate 21cmFAST simulations and use it in a Bayesian parameter inference study. We then compare the network predictions to a direct evaluation of the EoR simulations and analyse the dependence of the results on the training set size. We find that the use of a training set of size 100 samples can recover the error contours of a full scale MCMC analysis which evaluates the model at each step.

  18. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions

    PubMed Central

    Nayak, Renuka R.; Kearns, Michael; Spielman, Richard S.; Cheung, Vivian G.

    2009-01-01

    Genes interact in networks to orchestrate cellular processes. Analysis of these networks provides insights into gene interactions and functions. Here, we took advantage of normal variation in human gene expression to infer gene networks, which we constructed using correlations in expression levels of more than 8.5 million gene pairs in immortalized B cells from three independent samples. The resulting networks allowed us to identify biological processes and gene functions. Among the biological pathways, we found processes such as translation and glycolysis that co-occur in the same subnetworks. We predicted the functions of poorly characterized genes, including CHCHD2 and TMEM111, and provided experimental evidence that TMEM111 is part of the endoplasmic reticulum-associated secretory pathway. We also found that IFIH1, a susceptibility gene of type 1 diabetes, interacts with YES1, which plays a role in glucose transport. Furthermore, genes that predispose to the same diseases are clustered nonrandomly in the coexpression network, suggesting that networks can provide candidate genes that influence disease susceptibility. Therefore, our analysis of gene coexpression networks offers information on the role of human genes in normal and disease processes. PMID:19797678

  19. Using soft computing techniques to predict corrected air permeability using Thomeer parameters, air porosity and grain density

    NASA Astrophysics Data System (ADS)

    Nooruddin, Hasan A.; Anifowose, Fatai; Abdulraheem, Abdulazeez

    2014-03-01

    Soft computing techniques are recently becoming very popular in the oil industry. A number of computational intelligence-based predictive methods have been widely applied in the industry with high prediction capabilities. Some of the popular methods include feed-forward neural networks, radial basis function network, generalized regression neural network, functional networks, support vector regression and adaptive network fuzzy inference system. A comparative study among most popular soft computing techniques is presented using a large dataset published in literature describing multimodal pore systems in the Arab D formation. The inputs to the models are air porosity, grain density, and Thomeer parameters obtained using mercury injection capillary pressure profiles. Corrected air permeability is the target variable. Applying developed permeability models in recent reservoir characterization workflow ensures consistency between micro and macro scale information represented mainly by Thomeer parameters and absolute permeability. The dataset was divided into two parts with 80% of data used for training and 20% for testing. The target permeability variable was transformed to the logarithmic scale as a pre-processing step and to show better correlations with the input variables. Statistical and graphical analysis of the results including permeability cross-plots and detailed error measures were created. In general, the comparative study showed very close results among the developed models. The feed-forward neural network permeability model showed the lowest average relative error, average absolute relative error, standard deviations of error and root means squares making it the best model for such problems. Adaptive network fuzzy inference system also showed very good results.

  20. Boosting probabilistic graphical model inference by incorporating prior knowledge from multiple sources.

    PubMed

    Praveen, Paurush; Fröhlich, Holger

    2013-01-01

    Inferring regulatory networks from experimental data via probabilistic graphical models is a popular framework to gain insights into biological systems. However, the inherent noise in experimental data coupled with a limited sample size reduces the performance of network reverse engineering. Prior knowledge from existing sources of biological information can address this low signal to noise problem by biasing the network inference towards biologically plausible network structures. Although integrating various sources of information is desirable, their heterogeneous nature makes this task challenging. We propose two computational methods to incorporate various information sources into a probabilistic consensus structure prior to be used in graphical model inference. Our first model, called Latent Factor Model (LFM), assumes a high degree of correlation among external information sources and reconstructs a hidden variable as a common source in a Bayesian manner. The second model, a Noisy-OR, picks up the strongest support for an interaction among information sources in a probabilistic fashion. Our extensive computational studies on KEGG signaling pathways as well as on gene expression data from breast cancer and yeast heat shock response reveal that both approaches can significantly enhance the reconstruction accuracy of Bayesian Networks compared to other competing methods as well as to the situation without any prior. Our framework allows for using diverse information sources, like pathway databases, GO terms and protein domain data, etc. and is flexible enough to integrate new sources, if available.

  1. Statistical mechanics of unsupervised feature learning in a restricted Boltzmann machine with binary synapses

    NASA Astrophysics Data System (ADS)

    Huang, Haiping

    2017-05-01

    Revealing hidden features in unlabeled data is called unsupervised feature learning, which plays an important role in pretraining a deep neural network. Here we provide a statistical mechanics analysis of the unsupervised learning in a restricted Boltzmann machine with binary synapses. A message passing equation to infer the hidden feature is derived, and furthermore, variants of this equation are analyzed. A statistical analysis by replica theory describes the thermodynamic properties of the model. Our analysis confirms an entropy crisis preceding the non-convergence of the message passing equation, suggesting a discontinuous phase transition as a key characteristic of the restricted Boltzmann machine. Continuous phase transition is also confirmed depending on the embedded feature strength in the data. The mean-field result under the replica symmetric assumption agrees with that obtained by running message passing algorithms on single instances of finite sizes. Interestingly, in an approximate Hopfield model, the entropy crisis is absent, and a continuous phase transition is observed instead. We also develop an iterative equation to infer the hyper-parameter (temperature) hidden in the data, which in physics corresponds to iteratively imposing Nishimori condition. Our study provides insights towards understanding the thermodynamic properties of the restricted Boltzmann machine learning, and moreover important theoretical basis to build simplified deep networks.

  2. Concentric network symmetry grasps authors' styles in word adjacency networks

    NASA Astrophysics Data System (ADS)

    Amancio, Diego R.; Silva, Filipi N.; Costa, Luciano da F.

    2015-06-01

    Several characteristics of written texts have been inferred from statistical analysis derived from networked models. Even though many network measurements have been adapted to study textual properties at several levels of complexity, some textual aspects have been disregarded. In this paper, we study the symmetry of word adjacency networks, a well-known representation of text as a graph. A statistical analysis of the symmetry distribution performed in several novels showed that most of the words do not display symmetric patterns of connectivity. More specifically, the merged symmetry displayed a distribution similar to the ubiquitous power-law distribution. Our experiments also revealed that the studied metrics do not correlate with other traditional network measurements, such as the degree or the betweenness centrality. The discriminability power of the symmetry measurements was verified in the authorship attribution task. Interestingly, we found that specific authors prefer particular types of symmetric motifs. As a consequence, the authorship of books could be accurately identified in 82.5% of the cases, in a dataset comprising books written by 8 authors. Because the proposed measurements for text analysis are complementary to the traditional approach, they can be used to improve the characterization of text networks, which might be useful for applications based on stylistic classification.

  3. A Coalitional Game for Distributed Inference in Sensor Networks With Dependent Observations

    NASA Astrophysics Data System (ADS)

    He, Hao; Varshney, Pramod K.

    2016-04-01

    We consider the problem of collaborative inference in a sensor network with heterogeneous and statistically dependent sensor observations. Each sensor aims to maximize its inference performance by forming a coalition with other sensors and sharing information within the coalition. It is proved that the inference performance is a nondecreasing function of the coalition size. However, in an energy constrained network, the energy consumption of inter-sensor communication also increases with increasing coalition size, which discourages the formation of the grand coalition (the set of all sensors). In this paper, the formation of non-overlapping coalitions with statistically dependent sensors is investigated under a specific communication constraint. We apply a game theoretical approach to fully explore and utilize the information contained in the spatial dependence among sensors to maximize individual sensor performance. Before formulating the distributed inference problem as a coalition formation game, we first quantify the gain and loss in forming a coalition by introducing the concepts of diversity gain and redundancy loss for both estimation and detection problems. These definitions, enabled by the statistical theory of copulas, allow us to characterize the influence of statistical dependence among sensor observations on inference performance. An iterative algorithm based on merge-and-split operations is proposed for the solution and the stability of the proposed algorithm is analyzed. Numerical results are provided to demonstrate the superiority of our proposed game theoretical approach.

  4. Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells

    PubMed Central

    de Luis Balaguer, Maria Angels; Fisher, Adam P.; Clark, Natalie M.; Fernandez-Espinosa, Maria Guadalupe; Möller, Barbara K.; Weijers, Dolf; Williams, Cranos; Lorenzo, Oscar; Sozzani, Rosangela

    2017-01-01

    Identifying the transcription factors (TFs) and associated networks involved in stem cell regulation is essential for understanding the initiation and growth of plant tissues and organs. Although many TFs have been shown to have a role in the Arabidopsis root stem cells, a comprehensive view of the transcriptional signature of the stem cells is lacking. In this work, we used spatial and temporal transcriptomic data to predict interactions among the genes involved in stem cell regulation. To accomplish this, we transcriptionally profiled several stem cell populations and developed a gene regulatory network inference algorithm that combines clustering with dynamic Bayesian network inference. We leveraged the topology of our networks to infer potential major regulators. Specifically, through mathematical modeling and experimental validation, we identified PERIANTHIA (PAN) as an important molecular regulator of quiescent center function. The results presented in this work show that our combination of molecular biology, computational biology, and mathematical modeling is an efficient approach to identify candidate factors that function in the stem cells. PMID:28827319

  5. Model-based redesign of global transcription regulation

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso

    2009-01-01

    Synthetic biology aims to the design or redesign of biological systems. In particular, one possible goal could be the rewiring of the transcription regulation network by exchanging the endogenous promoters. To achieve this objective, we have adapted current methods to the inference of a model based on ordinary differential equations that is able to predict the network response after a major change in its topology. Our procedure utilizes microarray data for training. We have experimentally validated our inferred global regulatory model in Escherichia coli by predicting transcriptomic profiles under new perturbations. We have also tested our methodology in silico by providing accurate predictions of the underlying networks from expression data generated with artificial genomes. In addition, we have shown the predictive power of our methodology by obtaining the gene profile in experimental redesigns of the E. coli genome, where rewiring the transcriptional network by means of knockouts of master regulators or by upregulating transcription factors controlled by different promoters. Our approach is compatible with most network inference methods, allowing to explore computationally future genome-wide redesign experiments in synthetic biology. PMID:19188257

  6. Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions.

    PubMed

    Takemoto, Kazuhiro; Aie, Kazuki

    2017-05-25

    Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.

  7. Community Structure in Online Collegiate Social Networks

    NASA Astrophysics Data System (ADS)

    Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason

    2009-03-01

    Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.

  8. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis

    NASA Astrophysics Data System (ADS)

    Pietrowski, Wojciech; Górny, Konrad

    2017-12-01

    Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN). The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN) and multi-layer perceptron neural network (MLP). Based on the results of the research, the efficiency of the developed algorithm can be inferred.

  9. Mental Models of Invisible Logical Networks

    NASA Technical Reports Server (NTRS)

    Sanderson, P.

    1984-01-01

    Subjects were required to discover the structure of a logical network whose links were invisible. Network structure had to be inferred from the behavior of the components after a failure. It was hypothesized that since such failure diagnosis tasks often draw on spatial processes, a good deal of spatial complexity in the network should affect network discovery. Results show that the ability to discover the linkages in the network is directly related to the spatial complexity of the pathway described by the linkages. This effect was generally independent of the amount of evidence available to subjects about the existence of the link. These results raise the question of whether inferences about spatially complex pathways were simply not made, or whether they were made but not retained because of a high load on memory resources.

  10. Experiments on neural network architectures for fuzzy logic

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1991-01-01

    The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.

  11. Inferring global network properties from egocentric data with applications to epidemics.

    PubMed

    Britton, Tom; Trapman, Pieter

    2015-03-01

    Social networks are often only partly observed, and it is sometimes desirable to infer global properties of the network from 'egocentric' data. In the current paper, we study different types of egocentric data, and show which global network properties are consistent with data. Two global network properties are considered: the size of the largest connected component (the giant) and the size of an epidemic outbreak taking place on the network. The main conclusion is that, in most cases, egocentric data allow for a large range of possible sizes of the giant and the outbreak, implying that egocentric data carry very little information about these global properties. The asymptotic size of the giant and the outbreak is also characterized, assuming the network is selected uniformly among networks with prescribed egocentric data. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  12. A symmetric multivariate leakage correction for MEG connectomes

    PubMed Central

    Colclough, G.L.; Brookes, M.J.; Smith, S.M.; Woolrich, M.W.

    2015-01-01

    Ambiguities in the source reconstruction of magnetoencephalographic (MEG) measurements can cause spurious correlations between estimated source time-courses. In this paper, we propose a symmetric orthogonalisation method to correct for these artificial correlations between a set of multiple regions of interest (ROIs). This process enables the straightforward application of network modelling methods, including partial correlation or multivariate autoregressive modelling, to infer connectomes, or functional networks, from the corrected ROIs. Here, we apply the correction to simulated MEG recordings of simple networks and to a resting-state dataset collected from eight subjects, before computing the partial correlations between power envelopes of the corrected ROItime-courses. We show accurate reconstruction of our simulated networks, and in the analysis of real MEGresting-state connectivity, we find dense bilateral connections within the motor and visual networks, together with longer-range direct fronto-parietal connections. PMID:25862259

  13. Bankruptcy prediction based on financial ratios using Jordan Recurrent Neural Networks: a case study in Polish companies

    NASA Astrophysics Data System (ADS)

    Hardinata, Lingga; Warsito, Budi; Suparti

    2018-05-01

    Complexity of bankruptcy causes the accurate models of bankruptcy prediction difficult to be achieved. Various prediction models have been developed to improve the accuracy of bankruptcy predictions. Machine learning has been widely used to predict because of its adaptive capabilities. Artificial Neural Networks (ANN) is one of machine learning which proved able to complete inference tasks such as prediction and classification especially in data mining. In this paper, we propose the implementation of Jordan Recurrent Neural Networks (JRNN) to classify and predict corporate bankruptcy based on financial ratios. Feedback interconnection in JRNN enable to make the network keep important information well allowing the network to work more effectively. The result analysis showed that JRNN works very well in bankruptcy prediction with average success rate of 81.3785%.

  14. Pathway analysis of high-throughput biological data within a Bayesian network framework.

    PubMed

    Isci, Senol; Ozturk, Cengizhan; Jones, Jon; Otu, Hasan H

    2011-06-15

    Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Proposed method takes into account the connectivity and relatedness between nodes of the pathway through factoring pathway topology in its model. Our simulations using synthetic data demonstrated robustness of our approach. We tested proposed method, Bayesian Pathway Analysis (BPA), on human microarray data regarding renal cell carcinoma (RCC) and compared our results with gene set enrichment analysis. BPA was able to find broader and more specific pathways related to RCC. Accompanying BPA software (BPAS) package is freely available for academic use at http://bumil.boun.edu.tr/bpa.

  15. Statistical inference approach to structural reconstruction of complex networks from binary time series

    NASA Astrophysics Data System (ADS)

    Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng

    2018-02-01

    Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.

  16. Statistical inference approach to structural reconstruction of complex networks from binary time series.

    PubMed

    Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng

    2018-02-01

    Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.

  17. Novel application of multi-stimuli network inference to synovial fibroblasts of rheumatoid arthritis patients

    PubMed Central

    2014-01-01

    Background Network inference of gene expression data is an important challenge in systems biology. Novel algorithms may provide more detailed gene regulatory networks (GRN) for complex, chronic inflammatory diseases such as rheumatoid arthritis (RA), in which activated synovial fibroblasts (SFBs) play a major role. Since the detailed mechanisms underlying this activation are still unclear, simultaneous investigation of multi-stimuli activation of SFBs offers the possibility to elucidate the regulatory effects of multiple mediators and to gain new insights into disease pathogenesis. Methods A GRN was therefore inferred from RA-SFBs treated with 4 different stimuli (IL-1 β, TNF- α, TGF- β, and PDGF-D). Data from time series microarray experiments (0, 1, 2, 4, 12 h; Affymetrix HG-U133 Plus 2.0) were batch-corrected applying ‘ComBat’, analyzed for differentially expressed genes over time with ‘Limma’, and used for the inference of a robust GRN with NetGenerator V2.0, a heuristic ordinary differential equation-based method with soft integration of prior knowledge. Results Using all genes differentially expressed over time in RA-SFBs for any stimulus, and selecting the genes belonging to the most significant gene ontology (GO) term, i.e., ‘cartilage development’, a dynamic, robust, moderately complex multi-stimuli GRN was generated with 24 genes and 57 edges in total, 31 of which were gene-to-gene edges. Prior literature-based knowledge derived from Pathway Studio or manual searches was reflected in the final network by 25/57 confirmed edges (44%). The model contained known network motifs crucial for dynamic cellular behavior, e.g., cross-talk among pathways, positive feed-back loops, and positive feed-forward motifs (including suppression of the transcriptional repressor OSR2 by all 4 stimuli. Conclusion A multi-stimuli GRN highly concordant with literature data was successfully generated by network inference from the gene expression of stimulated RA-SFBs. The GRN showed high reliability, since 10 predicted edges were independently validated by literature findings post network inference. The selected GO term ‘cartilage development’ contained a number of differentiation markers, growth factors, and transcription factors with potential relevance for RA. Finally, the model provided new insight into the response of RA-SFBs to multiple stimuli implicated in the pathogenesis of RA, in particular to the ‘novel’ potent growth factor PDGF-D. PMID:24989895

  18. CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data.

    PubMed

    Zheng, Guangyong; Xu, Yaochen; Zhang, Xiujun; Liu, Zhi-Ping; Wang, Zhuo; Chen, Luonan; Zhu, Xin-Guang

    2016-12-23

    A gene regulatory network (GRN) represents interactions of genes inside a cell or tissue, in which vertexes and edges stand for genes and their regulatory interactions respectively. Reconstruction of gene regulatory networks, in particular, genome-scale networks, is essential for comparative exploration of different species and mechanistic investigation of biological processes. Currently, most of network inference methods are computationally intensive, which are usually effective for small-scale tasks (e.g., networks with a few hundred genes), but are difficult to construct GRNs at genome-scale. Here, we present a software package for gene regulatory network reconstruction at a genomic level, in which gene interaction is measured by the conditional mutual information measurement using a parallel computing framework (so the package is named CMIP). The package is a greatly improved implementation of our previous PCA-CMI algorithm. In CMIP, we provide not only an automatic threshold determination method but also an effective parallel computing framework for network inference. Performance tests on benchmark datasets show that the accuracy of CMIP is comparable to most current network inference methods. Moreover, running tests on synthetic datasets demonstrate that CMIP can handle large datasets especially genome-wide datasets within an acceptable time period. In addition, successful application on a real genomic dataset confirms its practical applicability of the package. This new software package provides a powerful tool for genomic network reconstruction to biological community. The software can be accessed at http://www.picb.ac.cn/CMIP/ .

  19. Inferring multi-scale neural mechanisms with brain network modelling

    PubMed Central

    Schirner, Michael; McIntosh, Anthony Randal; Jirsa, Viktor; Deco, Gustavo

    2018-01-01

    The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies. PMID:29308767

  20. Modular representation of layered neural networks.

    PubMed

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A decision network account of reasoning about other people's choices

    PubMed Central

    Jern, Alan; Kemp, Charles

    2015-01-01

    The ability to predict and reason about other people's choices is fundamental to social interaction. We propose that people reason about other people's choices using mental models that are similar to decision networks. Decision networks are extensions of Bayesian networks that incorporate the idea that choices are made in order to achieve goals. In our first experiment, we explore how people predict the choices of others. Our remaining three experiments explore how people infer the goals and knowledge of others by observing the choices that they make. We show that decision networks account for our data better than alternative computational accounts that do not incorporate the notion of goal-directed choice or that do not rely on probabilistic inference. PMID:26010559

  2. ARNetMiT R Package: association rules based gene co-expression networks of miRNA targets.

    PubMed

    Özgür Cingiz, M; Biricik, G; Diri, B

    2017-03-31

    miRNAs are key regulators that bind to target genes to suppress their gene expression level. The relations between miRNA-target genes enable users to derive co-expressed genes that may be involved in similar biological processes and functions in cells. We hypothesize that target genes of miRNAs are co-expressed, when they are regulated by multiple miRNAs. With the usage of these co-expressed genes, we can theoretically construct co-expression networks (GCNs) related to 152 diseases. In this study, we introduce ARNetMiT that utilize a hash based association rule algorithm in a novel way to infer the GCNs on miRNA-target genes data. We also present R package of ARNetMiT, which infers and visualizes GCNs of diseases that are selected by users. Our approach assumes miRNAs as transactions and target genes as their items. Support and confidence values are used to prune association rules on miRNA-target genes data to construct support based GCNs (sGCNs) along with support and confidence based GCNs (scGCNs). We use overlap analysis and the topological features for the performance analysis of GCNs. We also infer GCNs with popular GNI algorithms for comparison with the GCNs of ARNetMiT. Overlap analysis results show that ARNetMiT outperforms the compared GNI algorithms. We see that using high confidence values in scGCNs increase the ratio of the overlapped gene-gene interactions between the compared methods. According to the evaluation of the topological features of ARNetMiT based GCNs, the degrees of nodes have power-law distribution. The hub genes discovered by ARNetMiT based GCNs are consistent with the literature.

  3. Excavation of attractor modules for nasopharyngeal carcinoma via integrating systemic module inference with attract method.

    PubMed

    Jiang, T; Jiang, C-Y; Shu, J-H; Xu, Y-J

    2017-07-10

    The molecular mechanism of nasopharyngeal carcinoma (NPC) is poorly understood and effective therapeutic approaches are needed. This research aimed to excavate the attractor modules involved in the progression of NPC and provide further understanding of the underlying mechanism of NPC. Based on the gene expression data of NPC, two specific protein-protein interaction networks for NPC and control conditions were re-weighted using Pearson correlation coefficient. Then, a systematic tracking of candidate modules was conducted on the re-weighted networks via cliques algorithm, and a total of 19 and 38 modules were separately identified from NPC and control networks, respectively. Among them, 8 pairs of modules with similar gene composition were selected, and 2 attractor modules were identified via the attract method. Functional analysis indicated that these two attractor modules participate in one common bioprocess of cell division. Based on the strategy of integrating systemic module inference with the attract method, we successfully identified 2 attractor modules. These attractor modules might play important roles in the molecular pathogenesis of NPC via affecting the bioprocess of cell division in a conjunct way. Further research is needed to explore the correlations between cell division and NPC.

  4. Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators.

    PubMed

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski et al. [Phys. Rev. Lett. 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  5. Reverse engineering of gene regulatory networks.

    PubMed

    Cho, K H; Choo, S M; Jung, S H; Kim, J R; Choi, H S; Kim, J

    2007-05-01

    Systems biology is a multi-disciplinary approach to the study of the interactions of various cellular mechanisms and cellular components. Owing to the development of new technologies that simultaneously measure the expression of genetic information, systems biological studies involving gene interactions are increasingly prominent. In this regard, reconstructing gene regulatory networks (GRNs) forms the basis for the dynamical analysis of gene interactions and related effects on cellular control pathways. Various approaches of inferring GRNs from gene expression profiles and biological information, including machine learning approaches, have been reviewed, with a brief introduction of DNA microarray experiments as typical tools for measuring levels of messenger ribonucleic acid (mRNA) expression. In particular, the inference methods are classified according to the required input information, and the main idea of each method is elucidated by comparing its advantages and disadvantages with respect to the other methods. In addition, recent developments in this field are introduced and discussions on the challenges and opportunities for future research are provided.

  6. Inference of Transmission Network Structure from HIV Phylogenetic Trees

    DOE PAGES

    Giardina, Federica; Romero-Severson, Ethan Obie; Albert, Jan; ...

    2017-01-13

    Phylogenetic inference is an attractive means to reconstruct transmission histories and epidemics. However, there is not a perfect correspondence between transmission history and virus phylogeny. Both node height and topological differences may occur, depending on the interaction between within-host evolutionary dynamics and between-host transmission patterns. To investigate these interactions, we added a within-host evolutionary model in epidemiological simulations and examined if the resulting phylogeny could recover different types of contact networks. To further improve realism, we also introduced patient-specific differences in infectivity across disease stages, and on the epidemic level we considered incomplete sampling and the age of the epidemic.more » Second, we implemented an inference method based on approximate Bayesian computation (ABC) to discriminate among three well-studied network models and jointly estimate both network parameters and key epidemiological quantities such as the infection rate. Our ABC framework used both topological and distance-based tree statistics for comparison between simulated and observed trees. Overall, our simulations showed that a virus time-scaled phylogeny (genealogy) may be substantially different from the between-host transmission tree. This has important implications for the interpretation of what a phylogeny reveals about the underlying epidemic contact network. In particular, we found that while the within-host evolutionary process obscures the transmission tree, the diversification process and infectivity dynamics also add discriminatory power to differentiate between different types of contact networks. We also found that the possibility to differentiate contact networks depends on how far an epidemic has progressed, where distance-based tree statistics have more power early in an epidemic. Finally, we applied our ABC inference on two different outbreaks from the Swedish HIV-1 epidemic.« less

  7. Inference of Transmission Network Structure from HIV Phylogenetic Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giardina, Federica; Romero-Severson, Ethan Obie; Albert, Jan

    Phylogenetic inference is an attractive means to reconstruct transmission histories and epidemics. However, there is not a perfect correspondence between transmission history and virus phylogeny. Both node height and topological differences may occur, depending on the interaction between within-host evolutionary dynamics and between-host transmission patterns. To investigate these interactions, we added a within-host evolutionary model in epidemiological simulations and examined if the resulting phylogeny could recover different types of contact networks. To further improve realism, we also introduced patient-specific differences in infectivity across disease stages, and on the epidemic level we considered incomplete sampling and the age of the epidemic.more » Second, we implemented an inference method based on approximate Bayesian computation (ABC) to discriminate among three well-studied network models and jointly estimate both network parameters and key epidemiological quantities such as the infection rate. Our ABC framework used both topological and distance-based tree statistics for comparison between simulated and observed trees. Overall, our simulations showed that a virus time-scaled phylogeny (genealogy) may be substantially different from the between-host transmission tree. This has important implications for the interpretation of what a phylogeny reveals about the underlying epidemic contact network. In particular, we found that while the within-host evolutionary process obscures the transmission tree, the diversification process and infectivity dynamics also add discriminatory power to differentiate between different types of contact networks. We also found that the possibility to differentiate contact networks depends on how far an epidemic has progressed, where distance-based tree statistics have more power early in an epidemic. Finally, we applied our ABC inference on two different outbreaks from the Swedish HIV-1 epidemic.« less

  8. Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data.

    PubMed

    Drakesmith, M; Caeyenberghs, K; Dutt, A; Lewis, G; David, A S; Jones, D K

    2015-09-01

    Graph theory (GT) is a powerful framework for quantifying topological features of neuroimaging-derived functional and structural networks. However, false positive (FP) connections arise frequently and influence the inferred topology of networks. Thresholding is often used to overcome this problem, but an appropriate threshold often relies on a priori assumptions, which will alter inferred network topologies. Four common network metrics (global efficiency, mean clustering coefficient, mean betweenness and smallworldness) were tested using a model tractography dataset. It was found that all four network metrics were significantly affected even by just one FP. Results also show that thresholding effectively dampens the impact of FPs, but at the expense of adding significant bias to network metrics. In a larger number (n=248) of tractography datasets, statistics were computed across random group permutations for a range of thresholds, revealing that statistics for network metrics varied significantly more than for non-network metrics (i.e., number of streamlines and number of edges). Varying degrees of network atrophy were introduced artificially to half the datasets, to test sensitivity to genuine group differences. For some network metrics, this atrophy was detected as significant (p<0.05, determined using permutation testing) only across a limited range of thresholds. We propose a multi-threshold permutation correction (MTPC) method, based on the cluster-enhanced permutation correction approach, to identify sustained significant effects across clusters of thresholds. This approach minimises requirements to determine a single threshold a priori. We demonstrate improved sensitivity of MTPC-corrected metrics to genuine group effects compared to an existing approach and demonstrate the use of MTPC on a previously published network analysis of tractography data derived from a clinical population. In conclusion, we show that there are large biases and instability induced by thresholding, making statistical comparisons of network metrics difficult. However, by testing for effects across multiple thresholds using MTPC, true group differences can be robustly identified. Copyright © 2015. Published by Elsevier Inc.

  9. Social brain volume is associated with in-degree social network size among older adults

    PubMed Central

    2018-01-01

    The social brain hypothesis proposes that large neocortex size evolved to support cognitively demanding social interactions. Accordingly, previous studies have observed that larger orbitofrontal and amygdala structures predict the size of an individual's social network. However, it remains uncertain how an individual's social connectedness reported by other people is associated with the social brain volume. In this study, we found that a greater in-degree network size, a measure of social ties identified by a subject's social connections rather than by the subject, significantly correlated with a larger regional volume of the orbitofrontal cortex, dorsomedial prefrontal cortex and lingual gyrus. By contrast, out-degree size, which is based on an individual's self-perceived connectedness, showed no associations. Meta-analytic reverse inference further revealed that regional volume pattern of in-degree size was specifically involved in social inference ability. These findings were possible because our dataset contained the social networks of an entire village, i.e. a global network. The results suggest that the in-degree aspect of social network size not only confirms the previously reported brain correlates of the social network but also shows an association in brain regions involved in the ability to infer other people's minds. This study provides insight into understanding how the social brain is uniquely associated with sociocentric measures derived from a global network. PMID:29367402

  10. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns.

    PubMed

    Lezon, Timothy R; Banavar, Jayanth R; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V

    2006-12-12

    We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems.

  11. Discovering novel phenotypes with automatically inferred dynamic models: a partial melanocyte conversion in Xenopus

    NASA Astrophysics Data System (ADS)

    Lobo, Daniel; Lobikin, Maria; Levin, Michael

    2017-01-01

    Progress in regenerative medicine requires reverse-engineering cellular control networks to infer perturbations with desired systems-level outcomes. Such dynamic models allow phenotypic predictions for novel perturbations to be rapidly assessed in silico. Here, we analyzed a Xenopus model of conversion of melanocytes to a metastatic-like phenotype only previously observed in an all-or-none manner. Prior in vivo genetic and pharmacological experiments showed that individual animals either fully convert or remain normal, at some characteristic frequency after a given perturbation. We developed a Machine Learning method which inferred a model explaining this complex, stochastic all-or-none dataset. We then used this model to ask how a new phenotype could be generated: animals in which only some of the melanocytes converted. Systematically performing in silico perturbations, the model predicted that a combination of altanserin (5HTR2 inhibitor), reserpine (VMAT inhibitor), and VP16-XlCreb1 (constitutively active CREB) would break the all-or-none concordance. Remarkably, applying the predicted combination of three reagents in vivo revealed precisely the expected novel outcome, resulting in partial conversion of melanocytes within individuals. This work demonstrates the capability of automated analysis of dynamic models of signaling networks to discover novel phenotypes and predictively identify specific manipulations that can reach them.

  12. Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.

    PubMed

    Dombert, Pascasie L; Kuhns, Anna; Mengotti, Paola; Fink, Gereon R; Vossel, Simone

    2016-11-15

    Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Inference of Expanded Lrp-Like Feast/Famine Transcription Factor Targets in a Non-Model Organism Using Protein Structure-Based Prediction

    PubMed Central

    Ashworth, Justin; Plaisier, Christopher L.; Lo, Fang Yin; Reiss, David J.; Baliga, Nitin S.

    2014-01-01

    Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer. PMID:25255272

  14. Inference of expanded Lrp-like feast/famine transcription factor targets in a non-model organism using protein structure-based prediction.

    PubMed

    Ashworth, Justin; Plaisier, Christopher L; Lo, Fang Yin; Reiss, David J; Baliga, Nitin S

    2014-01-01

    Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer.

  15. Inflammatory Gene Regulatory Networks in Amnion Cells Following Cytokine Stimulation: Translational Systems Approach to Modeling Human Parturition

    PubMed Central

    Summerfield, Taryn L.; Yu, Lianbo; Gulati, Parul; Zhang, Jie; Huang, Kun; Romero, Roberto; Kniss, Douglas A.

    2011-01-01

    A majority of the studies examining the molecular regulation of human labor have been conducted using single gene approaches. While the technology to produce multi-dimensional datasets is readily available, the means for facile analysis of such data are limited. The objective of this study was to develop a systems approach to infer regulatory mechanisms governing global gene expression in cytokine-challenged cells in vitro, and to apply these methods to predict gene regulatory networks (GRNs) in intrauterine tissues during term parturition. To this end, microarray analysis was applied to human amnion mesenchymal cells (AMCs) stimulated with interleukin-1β, and differentially expressed transcripts were subjected to hierarchical clustering, temporal expression profiling, and motif enrichment analysis, from which a GRN was constructed. These methods were then applied to fetal membrane specimens collected in the absence or presence of spontaneous term labor. Analysis of cytokine-responsive genes in AMCs revealed a sterile immune response signature, with promoters enriched in response elements for several inflammation-associated transcription factors. In comparison to the fetal membrane dataset, there were 34 genes commonly upregulated, many of which were part of an acute inflammation gene expression signature. Binding motifs for nuclear factor-κB were prominent in the gene interaction and regulatory networks for both datasets; however, we found little evidence to support the utilization of pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens were also enriched for transcripts governed by hypoxia-inducible factor. The approach presented here provides an uncomplicated means to infer global relationships among gene clusters involved in cellular responses to labor-associated signals. PMID:21655103

  16. Recent development and biomedical applications of probabilistic Boolean networks

    PubMed Central

    2013-01-01

    Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be considered. A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past few years, with a focus on network inference, network intervention and control. With respect to areas of applications, PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal transduction, metabolic, and also physiological networks. At the same time, a number of computational tools, facilitating the modelling and analysis of PBNs, are continuously developed. A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis of complex biological systems, ranging from molecular to physiological levels. PMID:23815817

  17. LASSIM-A network inference toolbox for genome-wide mechanistic modeling.

    PubMed

    Magnusson, Rasmus; Mariotti, Guido Pio; Köpsén, Mattias; Lövfors, William; Gawel, Danuta R; Jörnsten, Rebecka; Linde, Jörg; Nordling, Torbjörn E M; Nyman, Elin; Schulze, Sylvie; Nestor, Colm E; Zhang, Huan; Cedersund, Gunnar; Benson, Mikael; Tjärnberg, Andreas; Gustafsson, Mika

    2017-06-01

    Recent technological advancements have made time-resolved, quantitative, multi-omics data available for many model systems, which could be integrated for systems pharmacokinetic use. Here, we present large-scale simulation modeling (LASSIM), which is a novel mathematical tool for performing large-scale inference using mechanistically defined ordinary differential equations (ODE) for gene regulatory networks (GRNs). LASSIM integrates structural knowledge about regulatory interactions and non-linear equations with multiple steady state and dynamic response expression datasets. The rationale behind LASSIM is that biological GRNs can be simplified using a limited subset of core genes that are assumed to regulate all other gene transcription events in the network. The LASSIM method is implemented as a general-purpose toolbox using the PyGMO Python package to make the most of multicore computers and high performance clusters, and is available at https://gitlab.com/Gustafsson-lab/lassim. As a method, LASSIM works in two steps, where it first infers a non-linear ODE system of the pre-specified core gene expression. Second, LASSIM in parallel optimizes the parameters that model the regulation of peripheral genes by core system genes. We showed the usefulness of this method by applying LASSIM to infer a large-scale non-linear model of naïve Th2 cell differentiation, made possible by integrating Th2 specific bindings, time-series together with six public and six novel siRNA-mediated knock-down experiments. ChIP-seq showed significant overlap for all tested transcription factors. Next, we performed novel time-series measurements of total T-cells during differentiation towards Th2 and verified that our LASSIM model could monitor those data significantly better than comparable models that used the same Th2 bindings. In summary, the LASSIM toolbox opens the door to a new type of model-based data analysis that combines the strengths of reliable mechanistic models with truly systems-level data. We demonstrate the power of this approach by inferring a mechanistically motivated, genome-wide model of the Th2 transcription regulatory system, which plays an important role in several immune related diseases.

  18. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states

    PubMed Central

    Jang, Sumin; Choubey, Sandeep; Furchtgott, Leon; Zou, Ling-Nan; Doyle, Adele; Menon, Vilas; Loew, Ethan B; Krostag, Anne-Rachel; Martinez, Refugio A; Madisen, Linda; Levi, Boaz P; Ramanathan, Sharad

    2017-01-01

    The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development. DOI: http://dx.doi.org/10.7554/eLife.20487.001 PMID:28296635

  19. Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data.

    PubMed

    Gong, Wuming; Koyano-Nakagawa, Naoko; Li, Tongbin; Garry, Daniel J

    2015-03-07

    Decoding the temporal control of gene expression patterns is key to the understanding of the complex mechanisms that govern developmental decisions during heart development. High-throughput methods have been employed to systematically study the dynamic and coordinated nature of cardiac differentiation at the global level with multiple dimensions. Therefore, there is a pressing need to develop a systems approach to integrate these data from individual studies and infer the dynamic regulatory networks in an unbiased fashion. We developed a two-step strategy to integrate data from (1) temporal RNA-seq, (2) temporal histone modification ChIP-seq, (3) transcription factor (TF) ChIP-seq and (4) gene perturbation experiments to reconstruct the dynamic network during heart development. First, we trained a logistic regression model to predict the probability (LR score) of any base being bound by 543 TFs with known positional weight matrices. Second, four dimensions of data were combined using a time-varying dynamic Bayesian network model to infer the dynamic networks at four developmental stages in the mouse [mouse embryonic stem cells (ESCs), mesoderm (MES), cardiac progenitors (CP) and cardiomyocytes (CM)]. Our method not only infers the time-varying networks between different stages of heart development, but it also identifies the TF binding sites associated with promoter or enhancers of downstream genes. The LR scores of experimentally verified ESCs and heart enhancers were significantly higher than random regions (p <10(-100)), suggesting that a high LR score is a reliable indicator for functional TF binding sites. Our network inference model identified a region with an elevated LR score approximately -9400 bp upstream of the transcriptional start site of Nkx2-5, which overlapped with a previously reported enhancer region (-9435 to -8922 bp). TFs such as Tead1, Gata4, Msx2, and Tgif1 were predicted to bind to this region and participate in the regulation of Nkx2-5 gene expression. Our model also predicted the key regulatory networks for the ESC-MES, MES-CP and CP-CM transitions. We report a novel method to systematically integrate multi-dimensional -omics data and reconstruct the gene regulatory networks. This method will allow one to rapidly determine the cis-modules that regulate key genes during cardiac differentiation.

  20. Spatial fingerprints of community structure in human interaction network for an extensive set of large-scale regions.

    PubMed

    Kallus, Zsófia; Barankai, Norbert; Szüle, János; Vattay, Gábor

    2015-01-01

    Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization.

  1. Reconstruction of stochastic temporal networks through diffusive arrival times

    NASA Astrophysics Data System (ADS)

    Li, Xun; Li, Xiang

    2017-06-01

    Temporal networks have opened a new dimension in defining and quantification of complex interacting systems. Our ability to identify and reproduce time-resolved interaction patterns is, however, limited by the restricted access to empirical individual-level data. Here we propose an inverse modelling method based on first-arrival observations of the diffusion process taking place on temporal networks. We describe an efficient coordinate-ascent implementation for inferring stochastic temporal networks that builds in particular but not exclusively on the null model assumption of mutually independent interaction sequences at the dyadic level. The results of benchmark tests applied on both synthesized and empirical network data sets confirm the validity of our algorithm, showing the feasibility of statistically accurate inference of temporal networks only from moderate-sized samples of diffusion cascades. Our approach provides an effective and flexible scheme for the temporally augmented inverse problems of network reconstruction and has potential in a broad variety of applications.

  2. Reconstruction of stochastic temporal networks through diffusive arrival times

    PubMed Central

    Li, Xun; Li, Xiang

    2017-01-01

    Temporal networks have opened a new dimension in defining and quantification of complex interacting systems. Our ability to identify and reproduce time-resolved interaction patterns is, however, limited by the restricted access to empirical individual-level data. Here we propose an inverse modelling method based on first-arrival observations of the diffusion process taking place on temporal networks. We describe an efficient coordinate-ascent implementation for inferring stochastic temporal networks that builds in particular but not exclusively on the null model assumption of mutually independent interaction sequences at the dyadic level. The results of benchmark tests applied on both synthesized and empirical network data sets confirm the validity of our algorithm, showing the feasibility of statistically accurate inference of temporal networks only from moderate-sized samples of diffusion cascades. Our approach provides an effective and flexible scheme for the temporally augmented inverse problems of network reconstruction and has potential in a broad variety of applications. PMID:28604687

  3. Pan- and core- network analysis of co-expression genes in a model plant

    DOE PAGES

    He, Fei; Maslov, Sergei

    2016-12-16

    Genome-wide gene expression experiments have been performed using the model plant Arabidopsis during the last decade. Some studies involved construction of coexpression networks, a popular technique used to identify groups of co-regulated genes, to infer unknown gene functions. One approach is to construct a single coexpression network by combining multiple expression datasets generated in different labs. We advocate a complementary approach in which we construct a large collection of 134 coexpression networks based on expression datasets reported in individual publications. To this end we reanalyzed public expression data. To describe this collection of networks we introduced concepts of ‘pan-network’ andmore » ‘core-network’ representing union and intersection between a sizeable fractions of individual networks, respectively. Here, we showed that these two types of networks are different both in terms of their topology and biological function of interacting genes. For example, the modules of the pan-network are enriched in regulatory and signaling functions, while the modules of the core-network tend to include components of large macromolecular complexes such as ribosomes and photosynthetic machinery. Our analysis is aimed to help the plant research community to better explore the information contained within the existing vast collection of gene expression data in Arabidopsis.« less

  4. Pan- and core- network analysis of co-expression genes in a model plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Fei; Maslov, Sergei

    Genome-wide gene expression experiments have been performed using the model plant Arabidopsis during the last decade. Some studies involved construction of coexpression networks, a popular technique used to identify groups of co-regulated genes, to infer unknown gene functions. One approach is to construct a single coexpression network by combining multiple expression datasets generated in different labs. We advocate a complementary approach in which we construct a large collection of 134 coexpression networks based on expression datasets reported in individual publications. To this end we reanalyzed public expression data. To describe this collection of networks we introduced concepts of ‘pan-network’ andmore » ‘core-network’ representing union and intersection between a sizeable fractions of individual networks, respectively. Here, we showed that these two types of networks are different both in terms of their topology and biological function of interacting genes. For example, the modules of the pan-network are enriched in regulatory and signaling functions, while the modules of the core-network tend to include components of large macromolecular complexes such as ribosomes and photosynthetic machinery. Our analysis is aimed to help the plant research community to better explore the information contained within the existing vast collection of gene expression data in Arabidopsis.« less

  5. Driver-centred vehicle automation: using network analysis for agent-based modelling of the driver in highly automated driving systems.

    PubMed

    Banks, Victoria A; Stanton, Neville A

    2016-11-01

    To the average driver, the concept of automation in driving infers that they can become completely 'hands and feet free'. This is a common misconception, however, one that has been shown through the application of Network Analysis to new Cruise Assist technologies that may feature on our roads by 2020. Through the adoption of a Systems Theoretic approach, this paper introduces the concept of driver-initiated automation which reflects the role of the driver in highly automated driving systems. Using a combination of traditional task analysis and the application of quantitative network metrics, this agent-based modelling paper shows how the role of the driver remains an integral part of the driving system implicating the need for designers to ensure they are provided with the tools necessary to remain actively in-the-loop despite giving increasing opportunities to delegate their control to the automated subsystems. Practitioner Summary: This paper describes and analyses a driver-initiated command and control system of automation using representations afforded by task and social networks to understand how drivers remain actively involved in the task. A network analysis of different driver commands suggests that such a strategy does maintain the driver in the control loop.

  6. A transcriptional dynamic network during Arabidopsis thaliana pollen development.

    PubMed

    Wang, Jigang; Qiu, Xiaojie; Li, Yuhua; Deng, Youping; Shi, Tieliu

    2011-01-01

    To understand transcriptional regulatory networks (TRNs), especially the coordinated dynamic regulation between transcription factors (TFs) and their corresponding target genes during development, computational approaches would represent significant advances in the genome-wide expression analysis. The major challenges for the experiments include monitoring the time-specific TFs' activities and identifying the dynamic regulatory relationships between TFs and their target genes, both of which are currently not yet available at the large scale. However, various methods have been proposed to computationally estimate those activities and regulations. During the past decade, significant progresses have been made towards understanding pollen development at each development stage under the molecular level, yet the regulatory mechanisms that control the dynamic pollen development processes remain largely unknown. Here, we adopt Networks Component Analysis (NCA) to identify TF activities over time course, and infer their regulatory relationships based on the coexpression of TFs and their target genes during pollen development. We carried out meta-analysis by integrating several sets of gene expression data related to Arabidopsis thaliana pollen development (stages range from UNM, BCP, TCP, HP to 0.5 hr pollen tube and 4 hr pollen tube). We constructed a regulatory network, including 19 TFs, 101 target genes and 319 regulatory interactions. The computationally estimated TF activities were well correlated to their coordinated genes' expressions during the development process. We clustered the expression of their target genes in the context of regulatory influences, and inferred new regulatory relationships between those TFs and their target genes, such as transcription factor WRKY34, which was identified that specifically expressed in pollen, and regulated several new target genes. Our finding facilitates the interpretation of the expression patterns with more biological relevancy, since the clusters corresponding to the activity of specific TF or the combination of TFs suggest the coordinated regulation of TFs to their target genes. Through integrating different resources, we constructed a dynamic regulatory network of Arabidopsis thaliana during pollen development with gene coexpression and NCA. The network illustrated the relationships between the TFs' activities and their target genes' expression, as well as the interactions between TFs, which provide new insight into the molecular mechanisms that control the pollen development.

  7. PageRank versatility analysis of multilayer modality-based network for exploring the evolution of oil-water slug flow.

    PubMed

    Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan

    2017-07-14

    Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.

  8. Enlightening discriminative network functional modules behind Principal Component Analysis separation in differential-omic science studies

    PubMed Central

    Ciucci, Sara; Ge, Yan; Durán, Claudio; Palladini, Alessandra; Jiménez-Jiménez, Víctor; Martínez-Sánchez, Luisa María; Wang, Yuting; Sales, Susanne; Shevchenko, Andrej; Poser, Steven W.; Herbig, Maik; Otto, Oliver; Androutsellis-Theotokis, Andreas; Guck, Jochen; Gerl, Mathias J.; Cannistraci, Carlo Vittorio

    2017-01-01

    Omic science is rapidly growing and one of the most employed techniques to explore differential patterns in omic datasets is principal component analysis (PCA). However, a method to enlighten the network of omic features that mostly contribute to the sample separation obtained by PCA is missing. An alternative is to build correlation networks between univariately-selected significant omic features, but this neglects the multivariate unsupervised feature compression responsible for the PCA sample segregation. Biologists and medical researchers often prefer effective methods that offer an immediate interpretation to complicated algorithms that in principle promise an improvement but in practice are difficult to be applied and interpreted. Here we present PC-corr: a simple algorithm that associates to any PCA segregation a discriminative network of features. Such network can be inspected in search of functional modules useful in the definition of combinatorial and multiscale biomarkers from multifaceted omic data in systems and precision biomedicine. We offer proofs of PC-corr efficacy on lipidomic, metagenomic, developmental genomic, population genetic, cancer promoteromic and cancer stem-cell mechanomic data. Finally, PC-corr is a general functional network inference approach that can be easily adopted for big data exploration in computer science and analysis of complex systems in physics. PMID:28287094

  9. Recursive regularization for inferring gene networks from time-course gene expression profiles

    PubMed Central

    Shimamura, Teppei; Imoto, Seiya; Yamaguchi, Rui; Fujita, André; Nagasaki, Masao; Miyano, Satoru

    2009-01-01

    Background Inferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number of true positives while it also results in increasing the number of false positives. Results By incorporating relative importance of the VAR coefficients into the elastic net, we propose a new class of regularization, called recursive elastic net, to increase the capability of the elastic net and estimate gene networks based on the VAR model. The recursive elastic net can reduce the number of false positives gradually by updating the importance. Numerical simulations and comparisons demonstrate that the proposed method succeeds in reducing the number of false positives drastically while keeping the high number of true positives in the network inference and achieves two or more times higher true discovery rate (the proportion of true positives among the selected edges) than the competing methods even when the number of time points is small. We also compared our method with various reverse-engineering algorithms on experimental data of MCF-7 breast cancer cells stimulated with two ErbB ligands, EGF and HRG. Conclusion The recursive elastic net is a powerful tool for inferring gene networks from time-course gene expression profiles. PMID:19386091

  10. Boosting Probabilistic Graphical Model Inference by Incorporating Prior Knowledge from Multiple Sources

    PubMed Central

    Praveen, Paurush; Fröhlich, Holger

    2013-01-01

    Inferring regulatory networks from experimental data via probabilistic graphical models is a popular framework to gain insights into biological systems. However, the inherent noise in experimental data coupled with a limited sample size reduces the performance of network reverse engineering. Prior knowledge from existing sources of biological information can address this low signal to noise problem by biasing the network inference towards biologically plausible network structures. Although integrating various sources of information is desirable, their heterogeneous nature makes this task challenging. We propose two computational methods to incorporate various information sources into a probabilistic consensus structure prior to be used in graphical model inference. Our first model, called Latent Factor Model (LFM), assumes a high degree of correlation among external information sources and reconstructs a hidden variable as a common source in a Bayesian manner. The second model, a Noisy-OR, picks up the strongest support for an interaction among information sources in a probabilistic fashion. Our extensive computational studies on KEGG signaling pathways as well as on gene expression data from breast cancer and yeast heat shock response reveal that both approaches can significantly enhance the reconstruction accuracy of Bayesian Networks compared to other competing methods as well as to the situation without any prior. Our framework allows for using diverse information sources, like pathway databases, GO terms and protein domain data, etc. and is flexible enough to integrate new sources, if available. PMID:23826291

  11. Detection of the inferred interaction network in hepatocellular carcinoma from EHCO (Encyclopedia of Hepatocellular Carcinoma genes Online)

    PubMed Central

    Hsu, Chun-Nan; Lai, Jin-Mei; Liu, Chia-Hung; Tseng, Huei-Hun; Lin, Chih-Yun; Lin, Kuan-Ting; Yeh, Hsu-Hua; Sung, Ting-Yi; Hsu, Wen-Lian; Su, Li-Jen; Lee, Sheng-An; Chen, Chang-Han; Lee, Gen-Cher; Lee, DT; Shiue, Yow-Ling; Yeh, Chang-Wei; Chang, Chao-Hui; Kao, Cheng-Yan; Huang, Chi-Ying F

    2007-01-01

    Background The significant advances in microarray and proteomics analyses have resulted in an exponential increase in potential new targets and have promised to shed light on the identification of disease markers and cellular pathways. We aim to collect and decipher the HCC-related genes at the systems level. Results Here, we build an integrative platform, the Encyclopedia of Hepatocellular Carcinoma genes Online, dubbed EHCO , to systematically collect, organize and compare the pileup of unsorted HCC-related studies by using natural language processing and softbots. Among the eight gene set collections, ranging across PubMed, SAGE, microarray, and proteomics data, there are 2,906 genes in total; however, more than 77% genes are only included once, suggesting that tremendous efforts need to be exerted to characterize the relationship between HCC and these genes. Of these HCC inventories, protein binding represents the largest proportion (~25%) from Gene Ontology analysis. In fact, many differentially expressed gene sets in EHCO could form interaction networks (e.g. HBV-associated HCC network) by using available human protein-protein interaction datasets. To further highlight the potential new targets in the inferred network from EHCO, we combine comparative genomics and interactomics approaches to analyze 120 evolutionary conserved and overexpressed genes in HCC. 47 out of 120 queries can form a highly interactive network with 18 queries serving as hubs. Conclusion This architectural map may represent the first step toward the attempt to decipher the hepatocarcinogenesis at the systems level. Targeting hubs and/or disruption of the network formation might reveal novel strategy for HCC treatment. PMID:17326819

  12. Estimating individual contribution from group-based structural correlation networks.

    PubMed

    Saggar, Manish; Hosseini, S M Hadi; Bruno, Jennifer L; Quintin, Eve-Marie; Raman, Mira M; Kesler, Shelli R; Reiss, Allan L

    2015-10-15

    Coordinated variations in brain morphology (e.g., cortical thickness) across individuals have been widely used to infer large-scale population brain networks. These structural correlation networks (SCNs) have been shown to reflect synchronized maturational changes in connected brain regions. Further, evidence suggests that SCNs, to some extent, reflect both anatomical and functional connectivity and hence provide a complementary measure of brain connectivity in addition to diffusion weighted networks and resting-state functional networks. Although widely used to study between-group differences in network properties, SCNs are inferred only at the group-level using brain morphology data from a set of participants, thereby not providing any knowledge regarding how the observed differences in SCNs are associated with individual behavioral, cognitive and disorder states. In the present study, we introduce two novel distance-based approaches to extract information regarding individual differences from the group-level SCNs. We applied the proposed approaches to a moderately large dataset (n=100) consisting of individuals with fragile X syndrome (FXS; n=50) and age-matched typically developing individuals (TD; n=50). We tested the stability of proposed approaches using permutation analysis. Lastly, to test the efficacy of our method, individual contributions extracted from the group-level SCNs were examined for associations with intelligence scores and genetic data. The extracted individual contributions were stable and were significantly related to both genetic and intelligence estimates, in both typically developing individuals and participants with FXS. We anticipate that the approaches developed in this work could be used as a putative biomarker for altered connectivity in individuals with neurodevelopmental disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Descriptive vs. mechanistic network models in plant development in the post-genomic era.

    PubMed

    Davila-Velderrain, J; Martinez-Garcia, J C; Alvarez-Buylla, E R

    2015-01-01

    Network modeling is now a widespread practice in systems biology, as well as in integrative genomics, and it constitutes a rich and diverse scientific research field. A conceptually clear understanding of the reasoning behind the main existing modeling approaches, and their associated technical terminologies, is required to avoid confusions and accelerate the transition towards an undeniable necessary more quantitative, multidisciplinary approach to biology. Herein, we focus on two main network-based modeling approaches that are commonly used depending on the information available and the intended goals: inference-based methods and system dynamics approaches. As far as data-based network inference methods are concerned, they enable the discovery of potential functional influences among molecular components. On the other hand, experimentally grounded network dynamical models have been shown to be perfectly suited for the mechanistic study of developmental processes. How do these two perspectives relate to each other? In this chapter, we describe and compare both approaches and then apply them to a given specific developmental module. Along with the step-by-step practical implementation of each approach, we also focus on discussing their respective goals, utility, assumptions, and associated limitations. We use the gene regulatory network (GRN) involved in Arabidopsis thaliana Root Stem Cell Niche patterning as our illustrative example. We show that descriptive models based on functional genomics data can provide important background information consistent with experimentally supported functional relationships integrated in mechanistic GRN models. The rationale of analysis and modeling can be applied to any other well-characterized functional developmental module in multicellular organisms, like plants and animals.

  14. Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons

    PubMed Central

    Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang

    2011-01-01

    The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons. PMID:22096452

  15. Introduction to bioinformatics.

    PubMed

    Can, Tolga

    2014-01-01

    Bioinformatics is an interdisciplinary field mainly involving molecular biology and genetics, computer science, mathematics, and statistics. Data intensive, large-scale biological problems are addressed from a computational point of view. The most common problems are modeling biological processes at the molecular level and making inferences from collected data. A bioinformatics solution usually involves the following steps: Collect statistics from biological data. Build a computational model. Solve a computational modeling problem. Test and evaluate a computational algorithm. This chapter gives a brief introduction to bioinformatics by first providing an introduction to biological terminology and then discussing some classical bioinformatics problems organized by the types of data sources. Sequence analysis is the analysis of DNA and protein sequences for clues regarding function and includes subproblems such as identification of homologs, multiple sequence alignment, searching sequence patterns, and evolutionary analyses. Protein structures are three-dimensional data and the associated problems are structure prediction (secondary and tertiary), analysis of protein structures for clues regarding function, and structural alignment. Gene expression data is usually represented as matrices and analysis of microarray data mostly involves statistics analysis, classification, and clustering approaches. Biological networks such as gene regulatory networks, metabolic pathways, and protein-protein interaction networks are usually modeled as graphs and graph theoretic approaches are used to solve associated problems such as construction and analysis of large-scale networks.

  16. An inference method from multi-layered structure of biomedical data.

    PubMed

    Kim, Myungjun; Nam, Yonghyun; Shin, Hyunjung

    2017-05-18

    Biological system is a multi-layered structure of omics with genome, epigenome, transcriptome, metabolome, proteome, etc., and can be further stretched to clinical/medical layers such as diseasome, drugs, and symptoms. One advantage of omics is that we can figure out an unknown component or its trait by inferring from known omics components. The component can be inferred by the ones in the same level of omics or the ones in different levels. To implement the inference process, an algorithm that can be applied to the multi-layered complex system is required. In this study, we develop a semi-supervised learning algorithm that can be applied to the multi-layered complex system. In order to verify the validity of the inference, it was applied to the prediction problem of disease co-occurrence with a two-layered network composed of symptom-layer and disease-layer. The symptom-disease layered network obtained a fairly high value of AUC, 0.74, which is regarded as noticeable improvement when comparing 0.59 AUC of single-layered disease network. If further stretched to whole layered structure of omics, the proposed method is expected to produce more promising results. This research has novelty in that it is a new integrative algorithm that incorporates the vertical structure of omics data, on contrary to other existing methods that integrate the data in parallel fashion. The results can provide enhanced guideline for disease co-occurrence prediction, thereby serve as a valuable tool for inference process of multi-layered biological system.

  17. Multi-Array Back-Projections of The 2015 Gorkha Earthquake With Physics-Based Aftershock Calibrations

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhang, A.; Yagi, Y.

    2015-12-01

    The 2015 Mw 7.8 Nepal-Gorkha earthquake with casualties of over 9,000 people is the most devastating disaster to strike Nepal since the 1934 Nepal-Bihar earthquake. Its rupture process is well imaged by the teleseismic MUSIC back-projections (BP). Here, we perform independent back-projections of high-frequency recordings (0.5-2 Hz) from the Australian seismic network (AU), the North America network (NA) and the European seismic network (EU), located in complementary orientations. Our results of all three arrays show unilateral linear rupture path to the east of the hypocenter. But the propagating directions and the inferred rupture speeds differ significantly among different arrays. To understand the spatial uncertainties of the BP analysis, we image four moderate-size (M5~6) aftershocks based on the timing correction derived from the alignment of the initial P-wave of the mainshock. We find that the apparent source locations inferred from BP are systematically biased along the source-array orientation, which can be explained by the uncertainty of the 3D velocity structure deviated from the 1D reference model (e.g. IASP91). We introduced a slowness error term in travel time as a first-order calibration that successfully mitigates the source location discrepancies of different arrays. The calibrated BP results of three arrays are mutually consistent and reveal a unilateral rupture propagating eastward at a speed of 2.7 km/s along the down-dip edge of the locked Himalaya thrust zone over ~ 150 km, in agreement with a narrow slip distribution inferred from finite source inversions.

  18. Deconvolution of mixing time series on a graph

    PubMed Central

    Blocker, Alexander W.; Airoldi, Edoardo M.

    2013-01-01

    In many applications we are interested in making inference on latent time series from indirect measurements, which are often low-dimensional projections resulting from mixing or aggregation. Positron emission tomography, super-resolution, and network traffic monitoring are some examples. Inference in such settings requires solving a sequence of ill-posed inverse problems, yt = Axt, where the projection mechanism provides information on A. We consider problems in which A specifies mixing on a graph of times series that are bursty and sparse. We develop a multilevel state-space model for mixing times series and an efficient approach to inference. A simple model is used to calibrate regularization parameters that lead to efficient inference in the multilevel state-space model. We apply this method to the problem of estimating point-to-point traffic flows on a network from aggregate measurements. Our solution outperforms existing methods for this problem, and our two-stage approach suggests an efficient inference strategy for multilevel models of multivariate time series. PMID:25309135

  19. RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.

    PubMed

    Novichkov, Pavel S; Kazakov, Alexey E; Ravcheev, Dmitry A; Leyn, Semen A; Kovaleva, Galina Y; Sutormin, Roman A; Kazanov, Marat D; Riehl, William; Arkin, Adam P; Dubchak, Inna; Rodionov, Dmitry A

    2013-11-01

    Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches). RegPrecise (http://regprecise.lbl.gov) is a web resource for collection, visualization and analysis of transcriptional regulons reconstructed by comparative genomics. We significantly expanded a reference collection of manually curated regulons we introduced earlier. RegPrecise 3.0 provides access to inferred regulatory interactions organized by phylogenetic, structural and functional properties. Taxonomy-specific collections include 781 TF regulogs inferred in more than 160 genomes representing 14 taxonomic groups of Bacteria. TF-specific collections include regulogs for a selected subset of 40 TFs reconstructed across more than 30 taxonomic lineages. Novel collections of regulons operated by RNA regulatory elements (riboswitches) include near 400 regulogs inferred in 24 bacterial lineages. RegPrecise 3.0 provides four classifications of the reference regulons implemented as controlled vocabularies: 55 TF protein families; 43 RNA motif families; ~150 biological processes or metabolic pathways; and ~200 effectors or environmental signals. Genome-wide visualization of regulatory networks and metabolic pathways covered by the reference regulons are available for all studied genomes. A separate section of RegPrecise 3.0 contains draft regulatory networks in 640 genomes obtained by an conservative propagation of the reference regulons to closely related genomes. RegPrecise 3.0 gives access to the transcriptional regulons reconstructed in bacterial genomes. Analytical capabilities include exploration of: regulon content, structure and function; TF binding site motifs; conservation and variations in genome-wide regulatory networks across all taxonomic groups of Bacteria. RegPrecise 3.0 was selected as a core resource on transcriptional regulation of the Department of Energy Systems Biology Knowledgebase, an emerging software and data environment designed to enable researchers to collaboratively generate, test and share new hypotheses about gene and protein functions, perform large-scale analyses, and model interactions in microbes, plants, and their communities.

  20. The common ground of genomics and systems biology

    PubMed Central

    2014-01-01

    The rise of systems biology is intertwined with that of genomics, yet their primordial relationship to one another is ill-defined. We discuss how the growth of genomics provided a critical boost to the popularity of systems biology. We describe the parts of genomics that share common areas of interest with systems biology today in the areas of gene expression, network inference, chromatin state analysis, pathway analysis, personalized medicine, and upcoming areas of synergy as genomics continues to expand its scope across all biomedical fields. PMID:25033072

  1. A decision network account of reasoning about other people's choices.

    PubMed

    Jern, Alan; Kemp, Charles

    2015-09-01

    The ability to predict and reason about other people's choices is fundamental to social interaction. We propose that people reason about other people's choices using mental models that are similar to decision networks. Decision networks are extensions of Bayesian networks that incorporate the idea that choices are made in order to achieve goals. In our first experiment, we explore how people predict the choices of others. Our remaining three experiments explore how people infer the goals and knowledge of others by observing the choices that they make. We show that decision networks account for our data better than alternative computational accounts that do not incorporate the notion of goal-directed choice or that do not rely on probabilistic inference. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Anomaly Detection in Dynamic Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turcotte, Melissa

    2014-10-14

    Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. Amore » second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the communication counts. In a sequential analysis, anomalous behavior is then identified from outlying behavior with respect to the fitted predictive probability models. Seasonality is again incorporated into the model and is treated as a changepoint model on the transition probabilities of a discrete time Markov process. Second stage analytics are then developed which combine anomalous edges to identify anomalous substructures in the network.« less

  3. Reconstruction of cellular signal transduction networks using perturbation assays and linear programming.

    PubMed

    Knapp, Bettina; Kaderali, Lars

    2013-01-01

    Perturbation experiments for example using RNA interference (RNAi) offer an attractive way to elucidate gene function in a high throughput fashion. The placement of hit genes in their functional context and the inference of underlying networks from such data, however, are challenging tasks. One of the problems in network inference is the exponential number of possible network topologies for a given number of genes. Here, we introduce a novel mathematical approach to address this question. We formulate network inference as a linear optimization problem, which can be solved efficiently even for large-scale systems. We use simulated data to evaluate our approach, and show improved performance in particular on larger networks over state-of-the art methods. We achieve increased sensitivity and specificity, as well as a significant reduction in computing time. Furthermore, we show superior performance on noisy data. We then apply our approach to study the intracellular signaling of human primary nave CD4(+) T-cells, as well as ErbB signaling in trastuzumab resistant breast cancer cells. In both cases, our approach recovers known interactions and points to additional relevant processes. In ErbB signaling, our results predict an important role of negative and positive feedback in controlling the cell cycle progression.

  4. Discriminative Relational Topic Models.

    PubMed

    Chen, Ning; Zhu, Jun; Xia, Fei; Zhang, Bo

    2015-05-01

    Relational topic models (RTMs) provide a probabilistic generative process to describe both the link structure and document contents for document networks, and they have shown promise on predicting network structures and discovering latent topic representations. However, existing RTMs have limitations in both the restricted model expressiveness and incapability of dealing with imbalanced network data. To expand the scope and improve the inference accuracy of RTMs, this paper presents three extensions: 1) unlike the common link likelihood with a diagonal weight matrix that allows the-same-topic interactions only, we generalize it to use a full weight matrix that captures all pairwise topic interactions and is applicable to asymmetric networks; 2) instead of doing standard Bayesian inference, we perform regularized Bayesian inference (RegBayes) with a regularization parameter to deal with the imbalanced link structure issue in real networks and improve the discriminative ability of learned latent representations; and 3) instead of doing variational approximation with strict mean-field assumptions, we present collapsed Gibbs sampling algorithms for the generalized relational topic models by exploring data augmentation without making restricting assumptions. Under the generic RegBayes framework, we carefully investigate two popular discriminative loss functions, namely, the logistic log-loss and the max-margin hinge loss. Experimental results on several real network datasets demonstrate the significance of these extensions on improving prediction performance.

  5. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host–Pathogen Interaction Networks

    PubMed Central

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host–pathogen dynamic interaction networks. The consideration of host–pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host–pathogen molecular interaction networks, and consequent inferences of the host–pathogen relationship could be translated into biomedical applications. PMID:26881892

  6. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    PubMed

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  7. An Algebraic Approach to Inference in Complex Networked Structures

    DTIC Science & Technology

    2015-07-09

    44], [45],[46] where the shift is the elementary non-trivial filter that generates, under an appropriate notion of shift invariance, all linear ... elementary filter, and its output is a graph signal with the value at vertex n of the graph given approximately by a weighted linear combination of...AFRL-AFOSR-VA-TR-2015-0265 An Algebraic Approach to Inference in Complex Networked Structures Jose Moura CARNEGIE MELLON UNIVERSITY Final Report 07

  8. Model-free inference of direct network interactions from nonlinear collective dynamics.

    PubMed

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  9. Dynamical Bayesian inference of time-evolving interactions: From a pair of coupled oscillators to networks of oscillators

    NASA Astrophysics Data System (ADS)

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.024101 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  10. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System

    PubMed Central

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054

  11. Mapping the ecological networks of microbial communities.

    PubMed

    Xiao, Yandong; Angulo, Marco Tulio; Friedman, Jonathan; Waldor, Matthew K; Weiss, Scott T; Liu, Yang-Yu

    2017-12-11

    Mapping the ecological networks of microbial communities is a necessary step toward understanding their assembly rules and predicting their temporal behavior. However, existing methods require assuming a particular population dynamics model, which is not known a priori. Moreover, those methods require fitting longitudinal abundance data, which are often not informative enough for reliable inference. To overcome these limitations, here we develop a new method based on steady-state abundance data. Our method can infer the network topology and inter-taxa interaction types without assuming any particular population dynamics model. Additionally, when the population dynamics is assumed to follow the classic Generalized Lotka-Volterra model, our method can infer the inter-taxa interaction strengths and intrinsic growth rates. We systematically validate our method using simulated data, and then apply it to four experimental data sets. Our method represents a key step towards reliable modeling of complex, real-world microbial communities, such as the human gut microbiota.

  12. Inferring Social Influence of Anti-Tobacco Mass Media Campaign.

    PubMed

    Zhan, Qianyi; Zhang, Jiawei; Yu, Philip S; Emery, Sherry; Xie, Junyuan

    2017-07-01

    Anti-tobacco mass media campaigns are designed to influence tobacco users. It has been proved that campaigns will produce users' changes in awareness, knowledge, and attitudes, and also produce meaningful behavior change of audience. Anti-smoking television advertising is the most important part in the campaign. Meanwhile, nowadays, successful online social networks are creating new media environment, however, little is known about the relation between social conversations and anti-tobacco campaigns. This paper aims to infer social influence of these campaigns, and the problem is formally referred to as the Social Influence inference of anti-Tobacco mass mEdia campaigns (Site) problem. To address the Site problem, a novel influence inference framework, TV advertising social influence estimation (Asie), is proposed based on our analysis of two real anti-tobacco campaigns. Asie divides audience attitudes toward TV ads into three distinct stages: 1) cognitive; 2) affective; and 3) conative. Audience online reactions at each of these three stages are depicted by Asie with specific probabilistic models based on the synergistic influences from both online social friends and offline TV ads. Extensive experiments demonstrate the effectiveness of Asie.

  13. Network exploitation using WAMI tracks

    NASA Astrophysics Data System (ADS)

    Rimey, Ray; Record, Jim; Keefe, Dan; Kennedy, Levi; Cramer, Chris

    2011-06-01

    Creating and exploiting network models from wide area motion imagery (WAMI) is an important task for intelligence analysis. Tracks of entities observed moving in the WAMI sensor data are extracted, then large numbers of tracks are studied over long time intervals to determine specific locations that are visited (e.g., buildings in an urban environment), what locations are related to other locations, and the function of each location. This paper describes several parts of the network detection/exploitation problem, and summarizes a solution technique for each: (a) Detecting nodes; (b) Detecting links between known nodes; (c) Node attributes to characterize a node; (d) Link attributes to characterize each link; (e) Link structure inferred from node attributes and vice versa; and (f) Decomposing a detected network into smaller networks. Experimental results are presented for each solution technique, and those are used to discuss issues for each problem part and its solution technique.

  14. Sequential defense against random and intentional attacks in complex networks.

    PubMed

    Chen, Pin-Yu; Cheng, Shin-Ming

    2015-02-01

    Network robustness against attacks is one of the most fundamental researches in network science as it is closely associated with the reliability and functionality of various networking paradigms. However, despite the study on intrinsic topological vulnerabilities to node removals, little is known on the network robustness when network defense mechanisms are implemented, especially for networked engineering systems equipped with detection capabilities. In this paper, a sequential defense mechanism is first proposed in complex networks for attack inference and vulnerability assessment, where the data fusion center sequentially infers the presence of an attack based on the binary attack status reported from the nodes in the network. The network robustness is evaluated in terms of the ability to identify the attack prior to network disruption under two major attack schemes, i.e., random and intentional attacks. We provide a parametric plug-in model for performance evaluation on the proposed mechanism and validate its effectiveness and reliability via canonical complex network models and real-world large-scale network topology. The results show that the sequential defense mechanism greatly improves the network robustness and mitigates the possibility of network disruption by acquiring limited attack status information from a small subset of nodes in the network.

  15. Functional Module Analysis for Gene Coexpression Networks with Network Integration.

    PubMed

    Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.

  16. Inferring causal genomic alterations in breast cancer using gene expression data

    PubMed Central

    2011-01-01

    Background One of the primary objectives in cancer research is to identify causal genomic alterations, such as somatic copy number variation (CNV) and somatic mutations, during tumor development. Many valuable studies lack genomic data to detect CNV; therefore, methods that are able to infer CNVs from gene expression data would help maximize the value of these studies. Results We developed a framework for identifying recurrent regions of CNV and distinguishing the cancer driver genes from the passenger genes in the regions. By inferring CNV regions across many datasets we were able to identify 109 recurrent amplified/deleted CNV regions. Many of these regions are enriched for genes involved in many important processes associated with tumorigenesis and cancer progression. Genes in these recurrent CNV regions were then examined in the context of gene regulatory networks to prioritize putative cancer driver genes. The cancer driver genes uncovered by the framework include not only well-known oncogenes but also a number of novel cancer susceptibility genes validated via siRNA experiments. Conclusions To our knowledge, this is the first effort to systematically identify and validate drivers for expression based CNV regions in breast cancer. The framework where the wavelet analysis of copy number alteration based on expression coupled with the gene regulatory network analysis, provides a blueprint for leveraging genomic data to identify key regulatory components and gene targets. This integrative approach can be applied to many other large-scale gene expression studies and other novel types of cancer data such as next-generation sequencing based expression (RNA-Seq) as well as CNV data. PMID:21806811

  17. Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals

    PubMed Central

    Stetter, Olav; Battaglia, Demian; Soriano, Jordi; Geisel, Theo

    2012-01-01

    A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local. PMID:22927808

  18. PREMER: a Tool to Infer Biological Networks.

    PubMed

    Villaverde, Alejandro F; Becker, Kolja; Banga, Julio R

    2017-10-04

    Inferring the structure of unknown cellular networks is a main challenge in computational biology. Data-driven approaches based on information theory can determine the existence of interactions among network nodes automatically. However, the elucidation of certain features - such as distinguishing between direct and indirect interactions or determining the direction of a causal link - requires estimating information-theoretic quantities in a multidimensional space. This can be a computationally demanding task, which acts as a bottleneck for the application of elaborate algorithms to large-scale network inference problems. The computational cost of such calculations can be alleviated by the use of compiled programs and parallelization. To this end we have developed PREMER (Parallel Reverse Engineering with Mutual information & Entropy Reduction), a software toolbox that can run in parallel and sequential environments. It uses information theoretic criteria to recover network topology and determine the strength and causality of interactions, and allows incorporating prior knowledge, imputing missing data, and correcting outliers. PREMER is a free, open source software tool that does not require any commercial software. Its core algorithms are programmed in FORTRAN 90 and implement OpenMP directives. It has user interfaces in Python and MATLAB/Octave, and runs on Windows, Linux and OSX (https://sites.google.com/site/premertoolbox/).

  19. Clustering network layers with the strata multilayer stochastic block model.

    PubMed

    Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J

    2016-01-01

    Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the "strata multilayer stochastic block model" (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called "strata", which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project.

  20. Bayesian Networks Improve Causal Environmental Assessments for Evidence-Based Policy.

    PubMed

    Carriger, John F; Barron, Mace G; Newman, Michael C

    2016-12-20

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on valued ecological resources. These aspects are demonstrated through hypothetical problem scenarios that explore some major benefits of using Bayesian networks for reasoning and making inferences in evidence-based policy.

  1. Clustering network layers with the strata multilayer stochastic block model

    PubMed Central

    Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J.

    2016-01-01

    Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the “strata multilayer stochastic block model” (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called “strata”, which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project. PMID:28435844

  2. Reverse engineering and analysis of large genome-scale gene networks

    PubMed Central

    Aluru, Maneesha; Zola, Jaroslaw; Nettleton, Dan; Aluru, Srinivas

    2013-01-01

    Reverse engineering the whole-genome networks of complex multicellular organisms continues to remain a challenge. While simpler models easily scale to large number of genes and gene expression datasets, more accurate models are compute intensive limiting their scale of applicability. To enable fast and accurate reconstruction of large networks, we developed Tool for Inferring Network of Genes (TINGe), a parallel mutual information (MI)-based program. The novel features of our approach include: (i) B-spline-based formulation for linear-time computation of MI, (ii) a novel algorithm for direct permutation testing and (iii) development of parallel algorithms to reduce run-time and facilitate construction of large networks. We assess the quality of our method by comparison with ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) and GeneNet and demonstrate its unique capability by reverse engineering the whole-genome network of Arabidopsis thaliana from 3137 Affymetrix ATH1 GeneChips in just 9 min on a 1024-core cluster. We further report on the development of a new software Gene Network Analyzer (GeNA) for extracting context-specific subnetworks from a given set of seed genes. Using TINGe and GeNA, we performed analysis of 241 Arabidopsis AraCyc 8.0 pathways, and the results are made available through the web. PMID:23042249

  3. Noise-induced relations between network connectivity and dynamics

    NASA Astrophysics Data System (ADS)

    Ching, Emily Sc

    Many biological systems of interest can be represented as networks of many nodes that are interacting with one another. Often these systems are subject to external influence or noise. One of the central issues is to understand the relation between dynamics and the interaction pattern of the system or the connectivity structure of the network. In particular, a challenging problem is to infer the network connectivity structure from the dynamics. In this talk, we show that for stochastic dynamical systems subjected to noise, the presence of noise gives rise to mathematical relations between the network connectivity structure and quantities that can be calculated using solely the time-series measurements of the dynamics of the nodes. We present these relations for both undirected networks with bidirectional coupling and directed networks with directional coupling and discuss how such relations can be utilized to infer the network connectivity structure of the systems. Work supported by the Hong Kong Research Grants Council under Grant No. CUHK 14300914.

  4. Functional network inference of the suprachiasmatic nucleus

    PubMed Central

    Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel; St. John, Peter C.; Wang, Thomas J.; Bales, Benjamin B.; Doyle, Francis J.; Herzog, Erik D.; Petzold, Linda R.

    2016-01-01

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure. PMID:27044085

  5. Reconstructing directed gene regulatory network by only gene expression data.

    PubMed

    Zhang, Lu; Feng, Xi Kang; Ng, Yen Kaow; Li, Shuai Cheng

    2016-08-18

    Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues. In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are related to Alzheimer's disease; 2. ZNF329 and RB1 significantly regulate those 'mesenchymal' gene expression signature genes for brain tumors. By merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene interactions as well as their regulatory directions. The constructed networks are helpful in the identification of important regulators for complex diseases.

  6. Implicit and explicit social mentalizing: dual processes driven by a shared neural network

    PubMed Central

    Van Overwalle, Frank; Vandekerckhove, Marie

    2013-01-01

    Recent social neuroscientific evidence indicates that implicit and explicit inferences on the mind of another person (i.e., intentions, attributions or traits), are subserved by a shared mentalizing network. Under both implicit and explicit instructions, ERP studies reveal that early inferences occur at about the same time, and fMRI studies demonstrate an overlap in core mentalizing areas, including the temporo-parietal junction (TPJ) and the medial prefrontal cortex (mPFC). These results suggest a rapid shared implicit intuition followed by a slower explicit verification processes (as revealed by additional brain activation during explicit vs. implicit inferences). These data provide support for a default-adjustment dual-process framework of social mentalizing. PMID:24062663

  7. Inferring personal economic status from social network location

    NASA Astrophysics Data System (ADS)

    Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A.

    2017-05-01

    It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.

  8. Inferring personal economic status from social network location.

    PubMed

    Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A

    2017-05-16

    It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.

  9. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns

    PubMed Central

    Lezon, Timothy R.; Banavar, Jayanth R.; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V.

    2006-01-01

    We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. PMID:17138668

  10. Geographic patterns of networks derived from extreme precipitation over the Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Bookhagen, Bodo; Marwan, Norbert; Kurths, Juergen

    2014-05-01

    Complex networks (CN) and event synchronization (ES) methods have been applied to study a number of climate phenomena such as Indian Summer Monsoon (ISM), South-American Monsoon, and African Monsoon. These methods proved to be powerful tools to infer interdependencies in climate dynamics between geographical sites, spatial structures, and key regions of the considered climate phenomenon. Here, we use these methods to study the spatial temporal variability of the extreme rainfall over the Indian subcontinent, in order to filter the data by coarse-graining the network, and to identify geographic patterns that are signature features (spatial signatures) of the ISM. We find four main geographic patterns of networks derived from extreme precipitation over the Indian subcontinent using up-to-date satellite-derived, and high temporal and spatial resolution rain-gauge interpolated daily rainfall datasets. In order to prove that our results are also relevant for other climatic variables like pressure and temperature, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). We find that two of the patterns revealed from the CN extreme rainfall analysis coincide with those obtained for the pressure and temperature fields, and all four above mentioned patterns can be explained by topography, winds, and monsoon circulation. CN and ES enable to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to infer geographic pattern that are spatial signatures of the ISM. These patterns deserve a special attention for the meteorologists and can be used as markers of the ISM variability.

  11. HIV Transmission Networks in the San Diego–Tijuana Border Region

    PubMed Central

    Mehta, Sanjay R.; Wertheim, Joel O.; Brouwer, Kimberly C.; Wagner, Karla D.; Chaillon, Antoine; Strathdee, Steffanie; Patterson, Thomas L.; Rangel, Maria G.; Vargas, Mlenka; Murrell, Ben; Garfein, Richard; Little, Susan J.; Smith, Davey M.

    2015-01-01

    Background HIV sequence data can be used to reconstruct local transmission networks. Along international borders, like the San Diego–Tijuana region, understanding the dynamics of HIV transmission across reported risks, racial/ethnic groups, and geography can help direct effective prevention efforts on both sides of the border. Methods We gathered sociodemographic, geographic, clinical, and viral sequence data from HIV infected individuals participating in ten studies in the San Diego–Tijuana border region. Phylogenetic and network analysis was performed to infer putative relationships between HIV sequences. Correlates of identified clusters were evaluated and spatiotemporal relationships were explored using Bayesian phylogeographic analysis. Findings After quality filtering, 843 HIV sequences with associated demographic data and 263 background sequences from the region were analyzed, and 138 clusters were inferred (2–23 individuals). Overall, the rate of clustering did not differ by ethnicity, residence, or sex, but bisexuals were less likely to cluster than heterosexuals or men who have sex with men (p = 0.043), and individuals identifying as white (p ≤ 0.01) were more likely to cluster than other races. Clustering individuals were also 3.5 years younger than non-clustering individuals (p < 0.001). Although the sampled San Diego and Tijuana epidemics were phylogenetically compartmentalized, five clusters contained individuals residing on both sides of the border. Interpretation This study sampled ~ 7% of HIV infected individuals in the border region, and although the sampled networks on each side of the border were largely separate, there was evidence of persistent bidirectional cross-border transmissions that linked risk groups, thus highlighting the importance of the border region as a “melting pot” of risk groups. Funding NIH, VA, and Pendleton Foundation. PMID:26629540

  12. HIV Transmission Networks in the San Diego-Tijuana Border Region.

    PubMed

    Mehta, Sanjay R; Wertheim, Joel O; Brouwer, Kimberly C; Wagner, Karla D; Chaillon, Antoine; Strathdee, Steffanie; Patterson, Thomas L; Rangel, Maria G; Vargas, Mlenka; Murrell, Ben; Garfein, Richard; Little, Susan J; Smith, Davey M

    2015-10-01

    HIV sequence data can be used to reconstruct local transmission networks. Along international borders, like the San Diego-Tijuana region, understanding the dynamics of HIV transmission across reported risks, racial/ethnic groups, and geography can help direct effective prevention efforts on both sides of the border. We gathered sociodemographic, geographic, clinical, and viral sequence data from HIV infected individuals participating in ten studies in the San Diego-Tijuana border region. Phylogenetic and network analysis was performed to infer putative relationships between HIV sequences. Correlates of identified clusters were evaluated and spatiotemporal relationships were explored using Bayesian phylogeographic analysis. After quality filtering, 843 HIV sequences with associated demographic data and 263 background sequences from the region were analyzed, and 138 clusters were inferred (2-23 individuals). Overall, the rate of clustering did not differ by ethnicity, residence, or sex, but bisexuals were less likely to cluster than heterosexuals or men who have sex with men (p = 0.043), and individuals identifying as white (p ≤ 0.01) were more likely to cluster than other races. Clustering individuals were also 3.5 years younger than non-clustering individuals (p < 0.001). Although the sampled San Diego and Tijuana epidemics were phylogenetically compartmentalized, five clusters contained individuals residing on both sides of the border. This study sampled ~ 7% of HIV infected individuals in the border region, and although the sampled networks on each side of the border were largely separate, there was evidence of persistent bidirectional cross-border transmissions that linked risk groups, thus highlighting the importance of the border region as a "melting pot" of risk groups. NIH, VA, and Pendleton Foundation.

  13. Detection of Significant Pneumococcal Meningitis Biomarkers by Ego Network.

    PubMed

    Wang, Qian; Lou, Zhifeng; Zhai, Liansuo; Zhao, Haibin

    2017-06-01

    To identify significant biomarkers for detection of pneumococcal meningitis based on ego network. Based on the gene expression data of pneumococcal meningitis and global protein-protein interactions (PPIs) data recruited from open access databases, the authors constructed a differential co-expression network (DCN) to identify pneumococcal meningitis biomarkers in a network view. Here EgoNet algorithm was employed to screen the significant ego networks that could accurately distinguish pneumococcal meningitis from healthy controls, by sequentially seeking ego genes, searching candidate ego networks, refinement of candidate ego networks and significance analysis to identify ego networks. Finally, the functional inference of the ego networks was performed to identify significant pathways for pneumococcal meningitis. By differential co-expression analysis, the authors constructed the DCN that covered 1809 genes and 3689 interactions. From the DCN, a total of 90 ego genes were identified. Starting from these ego genes, three significant ego networks (Module 19, Module 70 and Module 71) that could predict clinical outcomes for pneumococcal meningitis were identified by EgoNet algorithm, and the corresponding ego genes were GMNN, MAD2L1 and TPX2, respectively. Pathway analysis showed that these three ego networks were related to CDT1 association with the CDC6:ORC:origin complex, inactivation of APC/C via direct inhibition of the APC/C complex pathway, and DNA strand elongation, respectively. The authors successfully screened three significant ego modules which could accurately predict the clinical outcomes for pneumococcal meningitis and might play important roles in host response to pathogen infection in pneumococcal meningitis.

  14. Network Inference via the Time-Varying Graphical Lasso

    PubMed Central

    Hallac, David; Park, Youngsuk; Boyd, Stephen; Leskovec, Jure

    2018-01-01

    Many important problems can be modeled as a system of interconnected entities, where each entity is recording time-dependent observations or measurements. In order to spot trends, detect anomalies, and interpret the temporal dynamics of such data, it is essential to understand the relationships between the different entities and how these relationships evolve over time. In this paper, we introduce the time-varying graphical lasso (TVGL), a method of inferring time-varying networks from raw time series data. We cast the problem in terms of estimating a sparse time-varying inverse covariance matrix, which reveals a dynamic network of interdependencies between the entities. Since dynamic network inference is a computationally expensive task, we derive a scalable message-passing algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in an efficient way. We also discuss several extensions, including a streaming algorithm to update the model and incorporate new observations in real time. Finally, we evaluate our TVGL algorithm on both real and synthetic datasets, obtaining interpretable results and outperforming state-of-the-art baselines in terms of both accuracy and scalability. PMID:29770256

  15. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage.

    PubMed

    Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli

    2016-02-01

    Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. © 2015 Society for Risk Analysis.

  16. Prediction and Control of Network Cascade: Example of Power Grid or Networking Adaptability from WMD Disruption and Cascading Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael

    2012-07-24

    The goal of the DTRA project is to develop a mathematical framework that will provide the fundamental understanding of network survivability, algorithms for detecting/inferring pre-cursors of abnormal network behaviors, and methods for network adaptability and self-healing from cascading failures.

  17. TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES.

    PubMed

    Cordero, Pablo; Stuart, Joshua M

    2017-01-01

    The availability of gene expression data at the single cell level makes it possible to probe the molecular underpinnings of complex biological processes such as differentiation and oncogenesis. Promising new methods have emerged for reconstructing a progression 'trajectory' from static single-cell transcriptome measurements. However, it remains unclear how to adequately model the appreciable level of noise in these data to elucidate gene regulatory network rewiring. Here, we present a framework called Single Cell Inference of MorphIng Trajectories and their Associated Regulation (SCIMITAR) that infers progressions from static single-cell transcriptomes by employing a continuous parametrization of Gaussian mixtures in high-dimensional curves. SCIMITAR yields rich models from the data that highlight genes with expression and co-expression patterns that are associated with the inferred progression. Further, SCIMITAR extracts regulatory states from the implicated trajectory-evolvingco-expression networks. We benchmark the method on simulated data to show that it yields accurate cell ordering and gene network inferences. Applied to the interpretation of a single-cell human fetal neuron dataset, SCIMITAR finds progression-associated genes in cornerstone neural differentiation pathways missed by standard differential expression tests. Finally, by leveraging the rewiring of gene-gene co-expression relations across the progression, the method reveals the rise and fall of co-regulatory states and trajectory-dependent gene modules. These analyses implicate new transcription factors in neural differentiation including putative co-factors for the multi-functional NFAT pathway.

  18. Predictive minimum description length principle approach to inferring gene regulatory networks.

    PubMed

    Chaitankar, Vijender; Zhang, Chaoyang; Ghosh, Preetam; Gong, Ping; Perkins, Edward J; Deng, Youping

    2011-01-01

    Reverse engineering of gene regulatory networks using information theory models has received much attention due to its simplicity, low computational cost, and capability of inferring large networks. One of the major problems with information theory models is to determine the threshold that defines the regulatory relationships between genes. The minimum description length (MDL) principle has been implemented to overcome this problem. The description length of the MDL principle is the sum of model length and data encoding length. A user-specified fine tuning parameter is used as control mechanism between model and data encoding, but it is difficult to find the optimal parameter. In this work, we propose a new inference algorithm that incorporates mutual information (MI), conditional mutual information (CMI), and predictive minimum description length (PMDL) principle to infer gene regulatory networks from DNA microarray data. In this algorithm, the information theoretic quantities MI and CMI determine the regulatory relationships between genes and the PMDL principle method attempts to determine the best MI threshold without the need of a user-specified fine tuning parameter. The performance of the proposed algorithm is evaluated using both synthetic time series data sets and a biological time series data set (Saccharomyces cerevisiae). The results show that the proposed algorithm produced fewer false edges and significantly improved the precision when compared to existing MDL algorithm.

  19. Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo

    PubMed Central

    Golightly, Andrew; Wilkinson, Darren J.

    2011-01-01

    Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583

  20. fastBMA: scalable network inference and transitive reduction.

    PubMed

    Hung, Ling-Hong; Shi, Kaiyuan; Wu, Migao; Young, William Chad; Raftery, Adrian E; Yeung, Ka Yee

    2017-10-01

    Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have developed fastBMA, a distributed, parallel, and scalable implementation of Bayesian model averaging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminating redundant indirect edges in the network by mapping the transitive reduction to an easily solved shortest-path problem. We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time series yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory-efficient, parallel, and distributed application that scales to human genome-wide expression data. A 10 000-gene regulation network can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network inference methods such as the 1 based on LASSO. The improved scalability allows it to calculate networks from genome scale data in a reasonable time frame. The transitive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated networkBMA Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) and as ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/). © The Authors 2017. Published by Oxford University Press.

  1. Drought prediction using co-active neuro-fuzzy inference system, validation, and uncertainty analysis (case study: Birjand, Iran)

    NASA Astrophysics Data System (ADS)

    Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid

    2016-08-01

    This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS in the climatic region of Birjand.

  2. Mineral and Geochemical Classification From Spectroscopy/Diffraction Through Neural Networks

    NASA Astrophysics Data System (ADS)

    Ferralis, N.; Grossman, J.; Summons, R. E.

    2017-12-01

    Spectroscopy and diffraction techniques are essential for understanding structural, chemical and functional properties of geological materials for Earth and Planetary Sciences. Beyond data collection, quantitative insight relies on experimentally assembled, or computationally derived spectra. Inference on the geochemical or geophysical properties (such as crystallographic order, chemical functionality, elemental composition, etc.) of a particular geological material (mineral, organic matter, etc.) is based on fitting unknown spectra and comparing the fit with consolidated databases. The complexity of fitting highly convoluted spectra, often limits the ability to infer geochemical characteristics, and limits the throughput for extensive datasets. With the emergence of heuristic approaches to pattern recognitions though machine learning, in this work we investigate the possibility and potential of using supervised neural networks trained on available public spectroscopic database to directly infer geochemical parameters from unknown spectra. Using Raman, infrared spectroscopy and powder x-ray diffraction from the publicly available RRUFF database, we train neural network models to classify mineral and organic compounds (pure or mixtures) based on crystallographic structure from diffraction, chemical functionality, elemental composition and bonding from spectroscopy. As expected, the accuracy of the inference is strongly dependent on the quality and extent of the training data. We will identify a series of requirements and guidelines for the training dataset needed to achieve consistent high accuracy inference, along with methods to compensate for limited of data.

  3. From Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae)

    PubMed Central

    Marcussen, Thomas; Heier, Lise; Brysting, Anne K.; Oxelman, Bengt; Jakobsen, Kjetill S.

    2015-01-01

    Allopolyploidization accounts for a significant fraction of speciation events in many eukaryotic lineages. However, existing phylogenetic and dating methods require tree-like topologies and are unable to handle the network-like phylogenetic relationships of lineages containing allopolyploids. No explicit framework has so far been established for evaluating competing network topologies, and few attempts have been made to date phylogenetic networks. We used a four-step approach to generate a dated polyploid species network for the cosmopolitan angiosperm genus Viola L. (Violaceae Batch.). The genus contains ca 600 species and both recent (neo-) and more ancient (meso-) polyploid lineages distributed over 16 sections. First, we obtained DNA sequences of three low-copy nuclear genes and one chloroplast region, from 42 species representing all 16 sections. Second, we obtained fossil-calibrated chronograms for each nuclear gene marker. Third, we determined the most parsimonious multilabeled genome tree and its corresponding network, resolved at the section (not the species) level. Reconstructing the “correct” network for a set of polyploids depends on recovering all homoeologs, i.e., all subgenomes, in these polyploids. Assuming the presence of Viola subgenome lineages that were not detected by the nuclear gene phylogenies (“ghost subgenome lineages”) significantly reduced the number of inferred polyploidization events. We identified the most parsimonious network topology from a set of five competing scenarios differing in the interpretation of homoeolog extinctions and lineage sorting, based on (i) fewest possible ghost subgenome lineages, (ii) fewest possible polyploidization events, and (iii) least possible deviation from expected ploidy as inferred from available chromosome counts of the involved polyploid taxa. Finally, we estimated the homoploid and polyploid speciation times of the most parsimonious network. Homoploid speciation times were estimated by coalescent analysis of gene tree node ages. Polyploid speciation times were estimated by comparing branch lengths and speciation rates of lineages with and without ploidy shifts. Our analyses recognize Viola as an old genus (crown age 31 Ma) whose evolutionary history has been profoundly affected by allopolyploidy. Between 16 and 21 allopolyploidizations are necessary to explain the diversification of the 16 major lineages (sections) of Viola, suggesting that allopolyploidy has accounted for a high percentage—between 67% and 88%—of the speciation events at this level. The theoretical and methodological approaches presented here for (i) constructing networks and (ii) dating speciation events within a network, have general applicability for phylogenetic studies of groups where allopolyploidization has occurred. They make explicit use of a hitherto underexplored source of ploidy information from chromosome counts to help resolve phylogenetic cases where incomplete sequence data hampers network inference. Importantly, the coalescent-based method used herein circumvents the assumption of tree-like evolution required by most techniques for dating speciation events. PMID:25281848

  4. Deep Unfolding for Topic Models.

    PubMed

    Chien, Jen-Tzung; Lee, Chao-Hsi

    2018-02-01

    Deep unfolding provides an approach to integrate the probabilistic generative models and the deterministic neural networks. Such an approach is benefited by deep representation, easy interpretation, flexible learning and stochastic modeling. This study develops the unsupervised and supervised learning of deep unfolded topic models for document representation and classification. Conventionally, the unsupervised and supervised topic models are inferred via the variational inference algorithm where the model parameters are estimated by maximizing the lower bound of logarithm of marginal likelihood using input documents without and with class labels, respectively. The representation capability or classification accuracy is constrained by the variational lower bound and the tied model parameters across inference procedure. This paper aims to relax these constraints by directly maximizing the end performance criterion and continuously untying the parameters in learning process via deep unfolding inference (DUI). The inference procedure is treated as the layer-wise learning in a deep neural network. The end performance is iteratively improved by using the estimated topic parameters according to the exponentiated updates. Deep learning of topic models is therefore implemented through a back-propagation procedure. Experimental results show the merits of DUI with increasing number of layers compared with variational inference in unsupervised as well as supervised topic models.

  5. False belief and counterfactual reasoning in a social environment.

    PubMed

    Van Hoeck, Nicole; Begtas, Elizabet; Steen, Johan; Kestemont, Jenny; Vandekerckhove, Marie; Van Overwalle, Frank

    2014-04-15

    Behavioral studies indicate that theory of mind and counterfactual reasoning are strongly related cognitive processes. In a neuroimaging study, we explored the common and distinct regions underlying these inference processes. We directly compared false belief reasoning (inferring an agent's false belief about an object's location or content) and counterfactual reasoning (inferring what the object's location or content would be if an agent had acted differently), both in contrast with a baseline condition of conditional reasoning (inferring what the true location or content of an object is). Results indicate that these three types of reasoning about social scenarios are supported by activations in the mentalizing network (left temporo-parietal junction and precuneus) and the executive control network (bilateral prefrontal cortex [PFC] and right inferior parietal lobule). In addition, representing a false belief or counterfactual state (both not directly observable in the external world) recruits additional activity in the executive control network (left dorsolateral PFC and parietal lobe). The results further suggest that counterfactual reasoning is a more complex cognitive process than false belief reasoning, showing stronger activation of the dorsomedial, left dorsolateral PFC, cerebellum and left temporal cortex. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification.

    PubMed

    Burgess, K E V; Borutzki, Y; Rankin, N; Daly, R; Jourdan, F

    2017-12-15

    Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise, adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between detected compounds can provide a wealth of information about the nature of the samples and the biochemistry that gave rise to them. We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape plugin that creates ab initio networks. The new version supports two major improvements: the generation of adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples, providing a readout of compound relationships. We have applied this tool to the analysis of adduct patterns in the same sample separated under two different chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct detection, and the application of the chemical transformation analysis to both a single fragmentation analysis and an all-ions fragmentation dataset. Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism Staphylococcus aureus demonstrating the utility of the tool for biological analysis. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Information Warfare-Worthy Jamming Attack Detection Mechanism for Wireless Sensor Networks Using a Fuzzy Inference System

    PubMed Central

    Misra, Sudip; Singh, Ranjit; Rohith Mohan, S. V.

    2010-01-01

    The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes. PMID:22319307

  8. Paule‐Mandel estimators for network meta‐analysis with random inconsistency effects

    PubMed Central

    Veroniki, Areti Angeliki; Law, Martin; Tricco, Andrea C.; Baker, Rose

    2017-01-01

    Network meta‐analysis is used to simultaneously compare multiple treatments in a single analysis. However, network meta‐analyses may exhibit inconsistency, where direct and different forms of indirect evidence are not in agreement with each other, even after allowing for between‐study heterogeneity. Models for network meta‐analysis with random inconsistency effects have the dual aim of allowing for inconsistencies and estimating average treatment effects across the whole network. To date, two classical estimation methods for fitting this type of model have been developed: a method of moments that extends DerSimonian and Laird's univariate method and maximum likelihood estimation. However, the Paule and Mandel estimator is another recommended classical estimation method for univariate meta‐analysis. In this paper, we extend the Paule and Mandel method so that it can be used to fit models for network meta‐analysis with random inconsistency effects. We apply all three estimation methods to a variety of examples that have been used previously and we also examine a challenging new dataset that is highly heterogenous. We perform a simulation study based on this new example. We find that the proposed Paule and Mandel method performs satisfactorily and generally better than the previously proposed method of moments because it provides more accurate inferences. Furthermore, the Paule and Mandel method possesses some advantages over likelihood‐based methods because it is both semiparametric and requires no convergence diagnostics. Although restricted maximum likelihood estimation remains the gold standard, the proposed methodology is a fully viable alternative to this and other estimation methods. PMID:28585257

  9. INVESTIGATING DIFFERENCES IN BRAIN FUNCTIONAL NETWORKS USING HIERARCHICAL COVARIATE-ADJUSTED INDEPENDENT COMPONENT ANALYSIS.

    PubMed

    Shi, Ran; Guo, Ying

    2016-12-01

    Human brains perform tasks via complex functional networks consisting of separated brain regions. A popular approach to characterize brain functional networks in fMRI studies is independent component analysis (ICA), which is a powerful method to reconstruct latent source signals from their linear mixtures. In many fMRI studies, an important goal is to investigate how brain functional networks change according to specific clinical and demographic variabilities. Existing ICA methods, however, cannot directly incorporate covariate effects in ICA decomposition. Heuristic post-ICA analysis to address this need can be inaccurate and inefficient. In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal statistical framework for estimating covariate effects and testing differences between brain functional networks. Our method provides a more reliable and powerful statistical tool for evaluating group differences in brain functional networks while appropriately controlling for potential confounding factors. We present an analytically tractable EM algorithm to obtain maximum likelihood estimates of our model. We also develop a subspace-based approximate EM that runs significantly faster while retaining high accuracy. To test the differences in functional networks, we introduce a voxel-wise approximate inference procedure which eliminates the need of computationally expensive covariance matrix estimation and inversion. We demonstrate the advantages of our methods over the existing method via simulation studies. We apply our method to an fMRI study to investigate differences in brain functional networks associated with post-traumatic stress disorder (PTSD).

  10. Reef-fish larval dispersal patterns validate no-take marine reserve network connectivity that links human communities

    NASA Astrophysics Data System (ADS)

    Abesamis, Rene A.; Saenz-Agudelo, Pablo; Berumen, Michael L.; Bode, Michael; Jadloc, Claro Renato L.; Solera, Leilani A.; Villanoy, Cesar L.; Bernardo, Lawrence Patrick C.; Alcala, Angel C.; Russ, Garry R.

    2017-09-01

    Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish ( Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds ( n = 35) far outnumbering those indicating self-recruitment ( n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population connectivity via larval dispersal to sustain reef-fish populations within these networks.

  11. Divisibility patterns of natural numbers on a complex network.

    PubMed

    Shekatkar, Snehal M; Bhagwat, Chandrasheel; Ambika, G

    2015-09-16

    Investigation of divisibility properties of natural numbers is one of the most important themes in the theory of numbers. Various tools have been developed over the centuries to discover and study the various patterns in the sequence of natural numbers in the context of divisibility. In the present paper, we study the divisibility of natural numbers using the framework of a growing complex network. In particular, using tools from the field of statistical inference, we show that the network is scale-free but has a non-stationary degree distribution. Along with this, we report a new kind of similarity pattern for the local clustering, which we call "stretching similarity", in this network. We also show that the various characteristics like average degree, global clustering coefficient and assortativity coefficient of the network vary smoothly with the size of the network. Using analytical arguments we estimate the asymptotic behavior of global clustering and average degree which is validated using numerical analysis.

  12. Personalized recommendation via an improved NBI algorithm and user influence model in a Microblog network

    NASA Astrophysics Data System (ADS)

    Lian, Jie; Liu, Yun; Zhang, Zhen-jiang; Gui, Chang-ni

    2013-10-01

    Bipartite network based recommendations have attracted extensive attentions in recent years. Differing from traditional object-oriented recommendations, the recommendation in a Microblog network has two crucial differences. One is high authority users or one’s special friends usually play a very active role in tweet-oriented recommendation. The other is that the object in a Microblog network corresponds to a set of tweets on same topic instead of an actual and single entity, e.g. goods or movies in traditional networks. Thus repeat recommendations of the tweets in one’s collected topics are indispensable. Therefore, this paper improves network based inference (NBI) algorithm by original link matrix and link weight on resource allocation processes. This paper finally proposes the Microblog recommendation model based on the factors of improved network based inference and user influence model. Adjusting the weights of these two factors could generate the best recommendation results in algorithm accuracy and recommendation personalization.

  13. Ability of the current global observing network to constrain N2O sources and sinks

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Wells, K. C.; Chaliyakunnel, S.; Griffis, T. J.; Henze, D. K.; Bousserez, N.

    2014-12-01

    The global observing network for atmospheric N2O combines flask and in-situ measurements at ground stations with sustained and campaign-based aircraft observations. In this talk we apply a new global model of N2O (based on GEOS-Chem) and its adjoint to assess the strengths and weaknesses of this network for quantifying N2O emissions. We employ an ensemble of pseudo-observation analyses to evaluate the relative constraints provided by ground-based (surface, tall tower) and airborne (HIPPO, CARIBIC) observations, and the extent to which variability (e.g. associated with pulsing or seasonality of emissions) not captured by the a priori inventory can bias the inferred fluxes. We find that the ground-based and HIPPO datasets each provide a stronger constraint on the distribution of global emissions than does the CARIBIC dataset on its own. Given appropriate initial conditions, we find that our inferred surface fluxes are insensitive to model errors in the stratospheric loss rate of N2O over the timescale of our analysis (2 years); however, the same is not necessarily true for model errors in stratosphere-troposphere exchange. Finally, we examine the a posteriori error reduction distribution to identify priority locations for future N2O measurements.

  14. Bayesian Inference for Time Trends in Parameter Values using Weighted Evidence Sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Kelly; A. Malkhasyan

    2010-09-01

    There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “in-dustry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an applica-tion of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates an approach to incorporating multiple sources of data via applicability weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less

  15. A Method for Using Player Tracking Data in Basketball to Learn Player Skills and Predict Team Performance.

    PubMed

    Skinner, Brian; Guy, Stephen J

    2015-01-01

    Player tracking data represents a revolutionary new data source for basketball analysis, in which essentially every aspect of a player's performance is tracked and can be analyzed numerically. We suggest a way by which this data set, when coupled with a network-style model of the offense that relates players' skills to the team's success at running different plays, can be used to automatically learn players' skills and predict the performance of untested 5-man lineups in a way that accounts for the interaction between players' respective skill sets. After developing a general analysis procedure, we present as an example a specific implementation of our method using a simplified network model. While player tracking data is not yet available in the public domain, we evaluate our model using simulated data and show that player skills can be accurately inferred by a simple statistical inference scheme. Finally, we use the model to analyze games from the 2011 playoff series between the Memphis Grizzlies and the Oklahoma City Thunder and we show that, even with a very limited data set, the model can consistently describe a player's interactions with a given lineup based only on his performance with a different lineup.

  16. A Method for Using Player Tracking Data in Basketball to Learn Player Skills and Predict Team Performance

    PubMed Central

    Skinner, Brian; Guy, Stephen J.

    2015-01-01

    Player tracking data represents a revolutionary new data source for basketball analysis, in which essentially every aspect of a player’s performance is tracked and can be analyzed numerically. We suggest a way by which this data set, when coupled with a network-style model of the offense that relates players’ skills to the team’s success at running different plays, can be used to automatically learn players’ skills and predict the performance of untested 5-man lineups in a way that accounts for the interaction between players’ respective skill sets. After developing a general analysis procedure, we present as an example a specific implementation of our method using a simplified network model. While player tracking data is not yet available in the public domain, we evaluate our model using simulated data and show that player skills can be accurately inferred by a simple statistical inference scheme. Finally, we use the model to analyze games from the 2011 playoff series between the Memphis Grizzlies and the Oklahoma City Thunder and we show that, even with a very limited data set, the model can consistently describe a player’s interactions with a given lineup based only on his performance with a different lineup. PMID:26351846

  17. The architecture of adaptive neural network based on a fuzzy inference system for implementing intelligent control in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Gimazov, R.; Shidlovskiy, S.

    2018-05-01

    In this paper, we consider the architecture of the algorithm for extreme regulation in the photovoltaic system. An algorithm based on an adaptive neural network with fuzzy inference is proposed. The implementation of such an algorithm not only allows solving a number of problems in existing algorithms for extreme power regulation of photovoltaic systems, but also creates a reserve for the creation of a universal control system for a photovoltaic system.

  18. DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli.

    PubMed

    Lemmens, Karen; De Bie, Tijl; Dhollander, Thomas; De Keersmaecker, Sigrid C; Thijs, Inge M; Schoofs, Geert; De Weerdt, Ami; De Moor, Bart; Vanderleyden, Jos; Collado-Vides, Julio; Engelen, Kristof; Marchal, Kathleen

    2009-01-01

    We present DISTILLER, a data integration framework for the inference of transcriptional module networks. Experimental validation of predicted targets for the well-studied fumarate nitrate reductase regulator showed the effectiveness of our approach in Escherichia coli. In addition, the condition dependency and modularity of the inferred transcriptional network was studied. Surprisingly, the level of regulatory complexity seemed lower than that which would be expected from RegulonDB, indicating that complex regulatory programs tend to decrease the degree of modularity.

  19. Probabilistic inference using linear Gaussian importance sampling for hybrid Bayesian networks

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Chang, K. C.

    2005-05-01

    Probabilistic inference for Bayesian networks is in general NP-hard using either exact algorithms or approximate methods. However, for very complex networks, only the approximate methods such as stochastic sampling could be used to provide a solution given any time constraint. There are several simulation methods currently available. They include logic sampling (the first proposed stochastic method for Bayesian networks, the likelihood weighting algorithm) the most commonly used simulation method because of its simplicity and efficiency, the Markov blanket scoring method, and the importance sampling algorithm. In this paper, we first briefly review and compare these available simulation methods, then we propose an improved importance sampling algorithm called linear Gaussian importance sampling algorithm for general hybrid model (LGIS). LGIS is aimed for hybrid Bayesian networks consisting of both discrete and continuous random variables with arbitrary distributions. It uses linear function and Gaussian additive noise to approximate the true conditional probability distribution for continuous variable given both its parents and evidence in a Bayesian network. One of the most important features of the newly developed method is that it can adaptively learn the optimal important function from the previous samples. We test the inference performance of LGIS using a 16-node linear Gaussian model and a 6-node general hybrid model. The performance comparison with other well-known methods such as Junction tree (JT) and likelihood weighting (LW) shows that LGIS-GHM is very promising.

  20. A Multi-Method Approach for Proteomic Network Inference in 11 Human Cancers.

    PubMed

    Şenbabaoğlu, Yasin; Sümer, Selçuk Onur; Sánchez-Vega, Francisco; Bemis, Debra; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris

    2016-02-01

    Protein expression and post-translational modification levels are tightly regulated in neoplastic cells to maintain cellular processes known as 'cancer hallmarks'. The first Pan-Cancer initiative of The Cancer Genome Atlas (TCGA) Research Network has aggregated protein expression profiles for 3,467 patient samples from 11 tumor types using the antibody based reverse phase protein array (RPPA) technology. The resultant proteomic data can be utilized to computationally infer protein-protein interaction (PPI) networks and to study the commonalities and differences across tumor types. In this study, we compare the performance of 13 established network inference methods in their capacity to retrieve the curated Pathway Commons interactions from RPPA data. We observe that no single method has the best performance in all tumor types, but a group of six methods, including diverse techniques such as correlation, mutual information, and regression, consistently rank highly among the tested methods. We utilize the high performing methods to obtain a consensus network; and identify four robust and densely connected modules that reveal biological processes as well as suggest antibody-related technical biases. Mapping the consensus network interactions to Reactome gene lists confirms the pan-cancer importance of signal transduction pathways, innate and adaptive immune signaling, cell cycle, metabolism, and DNA repair; and also suggests several biological processes that may be specific to a subset of tumor types. Our results illustrate the utility of the RPPA platform as a tool to study proteomic networks in cancer.

  1. Inferring Weighted Directed Association Network from Multivariate Time Series with a Synthetic Method of Partial Symbolic Transfer Entropy Spectrum and Granger Causality

    PubMed Central

    Hu, Yanzhu; Ai, Xinbo

    2016-01-01

    Complex network methodology is very useful for complex system explorer. However, the relationships among variables in complex system are usually not clear. Therefore, inferring association networks among variables from their observed data has been a popular research topic. We propose a synthetic method, named small-shuffle partial symbolic transfer entropy spectrum (SSPSTES), for inferring association network from multivariate time series. The method synthesizes surrogate data, partial symbolic transfer entropy (PSTE) and Granger causality. A proper threshold selection is crucial for common correlation identification methods and it is not easy for users. The proposed method can not only identify the strong correlation without selecting a threshold but also has the ability of correlation quantification, direction identification and temporal relation identification. The method can be divided into three layers, i.e. data layer, model layer and network layer. In the model layer, the method identifies all the possible pair-wise correlation. In the network layer, we introduce a filter algorithm to remove the indirect weak correlation and retain strong correlation. Finally, we build a weighted adjacency matrix, the value of each entry representing the correlation level between pair-wise variables, and then get the weighted directed association network. Two numerical simulated data from linear system and nonlinear system are illustrated to show the steps and performance of the proposed approach. The ability of the proposed method is approved by an application finally. PMID:27832153

  2. Multi-user investigation organizer

    NASA Technical Reports Server (NTRS)

    Panontin, Tina L. (Inventor); Williams, James F. (Inventor); Carvalho, Robert E. (Inventor); Sturken, Ian (Inventor); Wolfe, Shawn R. (Inventor); Gawdiak, Yuri O. (Inventor); Keller, Richard M. (Inventor)

    2009-01-01

    A system that allows a team of geographically dispersed users to collaboratively analyze a mishap event. The system includes a reconfigurable ontology, including instances that are related to and characterize the mishap, a semantic network that receives, indexes and stores, for retrieval, viewing and editing, the instances and links between the instances, a network browser interface for retrieving and viewing screens that present the instances and links to other instances and that allow editing thereof, and a rule-based inference engine, including a collection of rules associated with establishment of links between the instances. A possible conclusion arising from analysis of the mishap event may be characterized as one or more of: not a credible conclusion; an unlikely conclusion; a credible conclusion; conclusion needs analysis; conclusion needs supporting data; conclusion proposed to be closed; and an un-reviewed conclusion.

  3. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.

    PubMed

    Zhao, Yu; Dong, Qinglin; Chen, Hanbo; Iraji, Armin; Li, Yujie; Makkie, Milad; Kou, Zhifeng; Liu, Tianming

    2017-12-01

    State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A survey of application: genomics and genetic programming, a new frontier.

    PubMed

    Khan, Mohammad Wahab; Alam, Mansaf

    2012-08-01

    The aim of this paper is to provide an introduction to the rapidly developing field of genetic programming (GP). Particular emphasis is placed on the application of GP to genomics. First, the basic methodology of GP is introduced. This is followed by a review of applications in the areas of gene network inference, gene expression data analysis, SNP analysis, epistasis analysis and gene annotation. Finally this paper concluded by suggesting potential avenues of possible future research on genetic programming, opportunities to extend the technique, and areas for possible practical applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Multinomial Bayesian learning for modeling classical and nonclassical receptive field properties.

    PubMed

    Hosoya, Haruo

    2012-08-01

    We study the interplay of Bayesian inference and natural image learning in a hierarchical vision system, in relation to the response properties of early visual cortex. We particularly focus on a Bayesian network with multinomial variables that can represent discrete feature spaces similar to hypercolumns combining minicolumns, enforce sparsity of activation to learn efficient representations, and explain divisive normalization. We demonstrate that maximal-likelihood learning using sampling-based Bayesian inference gives rise to classical receptive field properties similar to V1 simple cells and V2 cells, while inference performed on the trained network yields nonclassical context-dependent response properties such as cross-orientation suppression and filling in. Comparison with known physiological properties reveals some qualitative and quantitative similarities.

  6. 3D structure of macropore networks within natural and de-embarked estuary saltmarsh sediments: towards an improved understanding of network structural control over hydrologic function

    NASA Astrophysics Data System (ADS)

    Carr, Simon; Spencer, Kate; James, Tempest; Lucy, Diggens

    2015-04-01

    Saltmarshes are globally important environments which, though occupying < 4% of the Earth's surface, provide a range of ecosystem services. Yet, they are threatened by sea level rise, human population growth, urbanization and pollution resulting in degradation. To compensate for this habitat loss many coastal restoration projects have been implemented over the last few decades, largely driven by legislative requirements for improved biodiversity e.g. the EU Habitats Directive and Birds Directive. However, there is growing evidence that restored saltmarshes, recreated through the return to tidal inundation of previously drained and defended low-lying coastal land, do not have the same species composition even after 100 years and while environmental enhancement has been achieved, there may be consequences for ecosystem functioning This study presents the findings of a comparative analysis of detailed sediment structure and hydrological functioning of equivalent natural and de-embanked saltmarsh sediments at Orplands Farm, Essex, UK. 3D x-ray CT scanning of triplicate undisturbed sediment cores recovered in 2013 have been used to derive detailed volumetric reconstructions of macropore structure and networks, and to infer differences in bulk microporosity between natural and de-embanked saltmarshes. These volumes have been further visualised for qualitative analysis of the main sediment components, and extraction of key macropore space parameters for quantified analysis including total porosity and connectivity, as well as structure, organisation and efficiency (tortuosity) of macropore networks. Although total porosity was significantly greater within the de-embanked saltmarsh sediments, pore networks in these samples were less organised and more tortuous, and were also inferred to have significantly lower micro-porosity than those of the natural saltmarsh. These datasets are applied to explain significant differences in the hydraulic behaviour and functioning observed between natural and de-embarked saltmarsh at Orplands. Piezometer wells and pressure transducers recorded fluctuations in water level at 15 minute intervals over a 4.5 month period (winter 2011-2012). Basic patterns for water level fluctuations in both the natural and de-embanked saltmarsh are similar and reflect tidal flooding. However, in the de-embanked saltmarsh, water levels are higher and less responsive to tidal flooding.

  7. Impact of biased scores on ranking in bipartite competition networks and inference of modular structure via generalized modularity

    NASA Astrophysics Data System (ADS)

    Jeon, Gyuhyeon; Park, Juyong

    2017-02-01

    In the common jury-contestant competition format, a jury consisting of multiple judges grade contestants on their performances to determine their ranking. Unlike in another common competition format where two contestants play a head-to-head match to produce the winner such as in football or basketball, the objectivity of judges are often called into question, potentially undermining the public's trust in the fairness of the competition. In this work we show, by modeling the jury-contestant competition format as a weighted bipartite network, how one can identify biased scores and how they impact the competition and its structure. Analyzing the prestigious International Chopin Piano Competition of 2015 as an example with a well-publicized scoring controversy, we show that the presence of even a very small fraction of biased edges can gravely distort our inference of the network structure —in the example a single biased edge is shown to lead to an incorrect “solution” that also wrongly appears to be robust exclusively, dominating other reasonable solutions— highlighting the importance of bias detection and elimination in network inference. In the process our work also presents a modified modularity measure for the one-mode projection of weighted complete bipartite networks.

  8. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks.

    PubMed

    Kelman, Ilan; Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H; Evers, Yvette; Curran, Marina Martin; Williams, Richard J; Berlow, Eric L

    2016-01-01

    This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally 'peripheral' actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance.

  9. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks

    PubMed Central

    Luthe, Tobias; Wyss, Romano; Tørnblad, Silje H.; Evers, Yvette; Curran, Marina Martin; Williams, Richard J.; Berlow, Eric L.

    2016-01-01

    This study integrates quantitative social network analysis (SNA) and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally ‘peripheral’ actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance. PMID:27258007

  10. Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis

    PubMed Central

    Wen, Dingqiao; Yu, Yun; Hahn, Matthew W.; Nakhleh, Luay

    2016-01-01

    The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of ‘network thinking’ and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence. PMID:26808290

  11. New machine-learning algorithms for prediction of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Mandal, Indrajit; Sairam, N.

    2014-03-01

    This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.

  12. Bayesian Inference of Natural Rankings in Incomplete Competition Networks

    PubMed Central

    Park, Juyong; Yook, Soon-Hyung

    2014-01-01

    Competition between a complex system's constituents and a corresponding reward mechanism based on it have profound influence on the functioning, stability, and evolution of the system. But determining the dominance hierarchy or ranking among the constituent parts from the strongest to the weakest – essential in determining reward and penalty – is frequently an ambiguous task due to the incomplete (partially filled) nature of competition networks. Here we introduce the “Natural Ranking,” an unambiguous ranking method applicable to a round robin tournament, and formulate an analytical model based on the Bayesian formula for inferring the expected mean and error of the natural ranking of nodes from an incomplete network. We investigate its potential and uses in resolving important issues of ranking by applying it to real-world competition networks. PMID:25163528

  13. Bayesian Inference of Natural Rankings in Incomplete Competition Networks

    NASA Astrophysics Data System (ADS)

    Park, Juyong; Yook, Soon-Hyung

    2014-08-01

    Competition between a complex system's constituents and a corresponding reward mechanism based on it have profound influence on the functioning, stability, and evolution of the system. But determining the dominance hierarchy or ranking among the constituent parts from the strongest to the weakest - essential in determining reward and penalty - is frequently an ambiguous task due to the incomplete (partially filled) nature of competition networks. Here we introduce the ``Natural Ranking,'' an unambiguous ranking method applicable to a round robin tournament, and formulate an analytical model based on the Bayesian formula for inferring the expected mean and error of the natural ranking of nodes from an incomplete network. We investigate its potential and uses in resolving important issues of ranking by applying it to real-world competition networks.

  14. Personalized recommendation via unbalance full-connectivity inference

    NASA Astrophysics Data System (ADS)

    Ma, Wenping; Ren, Chen; Wu, Yue; Wang, Shanfeng; Feng, Xiang

    2017-10-01

    Recommender systems play an important role to help us to find useful information. They are widely used by most e-commerce web sites to push the potential items to individual user according to purchase history. Network-based recommendation algorithms are popular and effective in recommendation, which use two types of elements to represent users and items respectively. In this paper, based on consistence-based inference (CBI) algorithm, we propose a novel network-based algorithm, in which users and items are recognized with no difference. The proposed algorithm also uses information diffusion to find the relationship between users and items. Different from traditional network-based recommendation algorithms, information diffusion initializes from users and items, respectively. Experiments show that the proposed algorithm is effective compared with traditional network-based recommendation algorithms.

  15. Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks

    PubMed Central

    Kaltenbacher, Barbara; Hasenauer, Jan

    2017-01-01

    Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351

  16. Efficient Reverse-Engineering of a Developmental Gene Regulatory Network

    PubMed Central

    Cicin-Sain, Damjan; Ashyraliyev, Maksat; Jaeger, Johannes

    2012-01-01

    Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to discover whether there are rules or regularities governing development and evolution of complex multi-cellular organisms. PMID:22807664

  17. Performance Optimization Control of ECH using Fuzzy Inference Application

    NASA Astrophysics Data System (ADS)

    Dubey, Abhay Kumar

    Electro-chemical honing (ECH) is a hybrid electrolytic precision micro-finishing technology that, by combining physico-chemical actions of electro-chemical machining and conventional honing processes, provides the controlled functional surfaces-generation and fast material removal capabilities in a single operation. Process multi-performance optimization has become vital for utilizing full potential of manufacturing processes to meet the challenging requirements being placed on the surface quality, size, tolerances and production rate of engineering components in this globally competitive scenario. This paper presents an strategy that integrates the Taguchi matrix experimental design, analysis of variances and fuzzy inference system (FIS) to formulate a robust practical multi-performance optimization methodology for complex manufacturing processes like ECH, which involve several control variables. Two methodologies one using a genetic algorithm tuning of FIS (GA-tuned FIS) and another using an adaptive network based fuzzy inference system (ANFIS) have been evaluated for a multi-performance optimization case study of ECH. The actual experimental results confirm their potential for a wide range of machining conditions employed in ECH.

  18. Extraction of Martian valley networks from digital topography

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Collier, M. L.

    2004-01-01

    We have developed a novel method for delineating valley networks on Mars. The valleys are inferred from digital topography by an autonomous computer algorithm as drainage networks, instead of being manually mapped from images. Individual drainage basins are precisely defined and reconstructed to restore flow continuity disrupted by craters. Drainage networks are extracted from their underlying basins using the contributing area threshold method. We demonstrate that such drainage networks coincide with mapped valley networks verifying that valley networks are indeed drainage systems. Our procedure is capable of delineating and analyzing valley networks with unparalleled speed and consistency. We have applied this method to 28 Noachian locations on Mars exhibiting prominent valley networks. All extracted networks have a planar morphology similar to that of terrestrial river networks. They are characterized by a drainage density of approx.0.1/km, low in comparison to the drainage density of terrestrial river networks. Slopes of "streams" in Martian valley networks decrease downstream at a slower rate than slopes of streams in terrestrial river networks. This analysis, based on a sizable data set of valley networks, reveals that although valley networks have some features pointing to their origin by precipitation-fed runoff erosion, their quantitative characteristics suggest that precipitation intensity and/or longevity of past pluvial climate were inadequate to develop mature drainage basins on Mars.

  19. Spatial Fingerprints of Community Structure in Human Interaction Network for an Extensive Set of Large-Scale Regions

    PubMed Central

    Kallus, Zsófia; Barankai, Norbert; Szüle, János; Vattay, Gábor

    2015-01-01

    Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization. PMID:25993329

  20. Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers

    NASA Astrophysics Data System (ADS)

    Del Pozzo, Walter

    2012-08-01

    The advanced worldwide network of gravitational waves (GW) observatories is scheduled to begin operations within the current decade. Thanks to their improved sensitivity, they promise to yield a number of detections and thus to open new observational windows for astronomy and astrophysics. Among the scientific goals that should be achieved, there is the independent measurement of the value of the cosmological parameters, hence an independent test of the current cosmological paradigm. Because of the importance of such a task, a number of studies have evaluated the capabilities of GW telescopes in this respect. However, since GW do not yield information about the source redshift, different groups have made different assumptions regarding the means through which the GW redshift can be obtained. These different assumptions imply also different methodologies to solve this inference problem. This work presents a formalism based on Bayesian inference developed to facilitate the inclusion of all assumptions and prior information about a GW source within a single data analysis framework. This approach guarantees the minimization of information loss and the possibility of including naturally event-specific knowledge (such as the sky position for a gamma ray burst-GW coincident observation) in the analysis. The workings of the method are applied to a specific example, loosely designed along the lines of the method proposed by Schutz in 1986, in which one uses information from wide-field galaxy surveys as prior information for the location of a GW source. I show that combining the results from few tens of observations from a network of advanced interferometers will constrain the Hubble constant H0 to an accuracy of ˜4%-5% at 95% confidence.

  1. Overarching framework for data-based modelling

    NASA Astrophysics Data System (ADS)

    Schelter, Björn; Mader, Malenka; Mader, Wolfgang; Sommerlade, Linda; Platt, Bettina; Lai, Ying-Cheng; Grebogi, Celso; Thiel, Marco

    2014-02-01

    One of the main modelling paradigms for complex physical systems are networks. When estimating the network structure from measured signals, typically several assumptions such as stationarity are made in the estimation process. Violating these assumptions renders standard analysis techniques fruitless. We here propose a framework to estimate the network structure from measurements of arbitrary non-linear, non-stationary, stochastic processes. To this end, we propose a rigorous mathematical theory that underlies this framework. Based on this theory, we present a highly efficient algorithm and the corresponding statistics that are immediately sensibly applicable to measured signals. We demonstrate its performance in a simulation study. In experiments of transitions between vigilance stages in rodents, we infer small network structures with complex, time-dependent interactions; this suggests biomarkers for such transitions, the key to understand and diagnose numerous diseases such as dementia. We argue that the suggested framework combines features that other approaches followed so far lack.

  2. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    PubMed

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Inference of Gene Regulatory Networks Incorporating Multi-Source Biological Knowledge via a State Space Model with L1 Regularization

    PubMed Central

    Hasegawa, Takanori; Yamaguchi, Rui; Nagasaki, Masao; Miyano, Satoru; Imoto, Seiya

    2014-01-01

    Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in the field of systems biology. Currently, there are two main approaches in GRN analysis using time-course observation data, namely an ordinary differential equation (ODE)-based approach and a statistical model-based approach. The ODE-based approach can generate complex dynamics of GRNs according to biologically validated nonlinear models. However, it cannot be applied to ten or more genes to simultaneously estimate system dynamics and regulatory relationships due to the computational difficulties. The statistical model-based approach uses highly abstract models to simply describe biological systems and to infer relationships among several hundreds of genes from the data. However, the high abstraction generates false regulations that are not permitted biologically. Thus, when dealing with several tens of genes of which the relationships are partially known, a method that can infer regulatory relationships based on a model with low abstraction and that can emulate the dynamics of ODE-based models while incorporating prior knowledge is urgently required. To accomplish this, we propose a method for inference of GRNs using a state space representation of a vector auto-regressive (VAR) model with L1 regularization. This method can estimate the dynamic behavior of genes based on linear time-series modeling constructed from an ODE-based model and can infer the regulatory structure among several tens of genes maximizing prediction ability for the observational data. Furthermore, the method is capable of incorporating various types of existing biological knowledge, e.g., drug kinetics and literature-recorded pathways. The effectiveness of the proposed method is shown through a comparison of simulation studies with several previous methods. For an application example, we evaluated mRNA expression profiles over time upon corticosteroid stimulation in rats, thus incorporating corticosteroid kinetics/dynamics, literature-recorded pathways and transcription factor (TF) information. PMID:25162401

  4. Inferring microbial interaction networks from metagenomic data using SgLV-EKF algorithm.

    PubMed

    Alshawaqfeh, Mustafa; Serpedin, Erchin; Younes, Ahmad Bani

    2017-03-27

    Inferring the microbial interaction networks (MINs) and modeling their dynamics are critical in understanding the mechanisms of the bacterial ecosystem and designing antibiotic and/or probiotic therapies. Recently, several approaches were proposed to infer MINs using the generalized Lotka-Volterra (gLV) model. Main drawbacks of these models include the fact that these models only consider the measurement noise without taking into consideration the uncertainties in the underlying dynamics. Furthermore, inferring the MIN is characterized by the limited number of observations and nonlinearity in the regulatory mechanisms. Therefore, novel estimation techniques are needed to address these challenges. This work proposes SgLV-EKF: a stochastic gLV model that adopts the extended Kalman filter (EKF) algorithm to model the MIN dynamics. In particular, SgLV-EKF employs a stochastic modeling of the MIN by adding a noise term to the dynamical model to compensate for modeling uncertainties. This stochastic modeling is more realistic than the conventional gLV model which assumes that the MIN dynamics are perfectly governed by the gLV equations. After specifying the stochastic model structure, we propose the EKF to estimate the MIN. SgLV-EKF was compared with two similarity-based algorithms, one algorithm from the integral-based family and two regression-based algorithms, in terms of the achieved performance on two synthetic data-sets and two real data-sets. The first data-set models the randomness in measurement data, whereas, the second data-set incorporates uncertainties in the underlying dynamics. The real data-sets are provided by a recent study pertaining to an antibiotic-mediated Clostridium difficile infection. The experimental results demonstrate that SgLV-EKF outperforms the alternative methods in terms of robustness to measurement noise, modeling errors, and tracking the dynamics of the MIN. Performance analysis demonstrates that the proposed SgLV-EKF algorithm represents a powerful and reliable tool to infer MINs and track their dynamics.

  5. Inferring Structure and Forecasting Dynamics on Evolving Networks

    DTIC Science & Technology

    2016-01-05

    Graphs ........................................................................................................................ 23 7. Sacred Values...5) Team Formation; (6) Games of Graphs; (7) Sacred Values and Legitimacy in Network Interactions; (8) Network processes in Geo-Social Context. 1...Authority, Cooperation and Competition in Religious Networks Key Papers: McBride 2015a [72] and McBride 2015b [73] McBride (2015a) examines

  6. Functional network inference of the suprachiasmatic nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel

    2016-04-04

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data frommore » individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.« less

  7. Unlocking Proteomic Heterogeneity in Complex Diseases through Visual Analytics

    PubMed Central

    Bhavnani, Suresh K.; Dang, Bryant; Bellala, Gowtham; Divekar, Rohit; Visweswaran, Shyam; Brasier, Allan; Kurosky, Alex

    2015-01-01

    Despite years of preclinical development, biological interventions designed to treat complex diseases like asthma often fail in phase III clinical trials. These failures suggest that current methods to analyze biomedical data might be missing critical aspects of biological complexity such as the assumption that cases and controls come from homogeneous distributions. Here we discuss why and how methods from the rapidly evolving field of visual analytics can help translational teams (consisting of biologists, clinicians, and bioinformaticians) to address the challenge of modeling and inferring heterogeneity in the proteomic and phenotypic profiles of patients with complex diseases. Because a primary goal of visual analytics is to amplify the cognitive capacities of humans for detecting patterns in complex data, we begin with an overview of the cognitive foundations for the field of visual analytics. Next, we organize the primary ways in which a specific form of visual analytics called networks have been used to model and infer biological mechanisms, which help to identify the properties of networks that are particularly useful for the discovery and analysis of proteomic heterogeneity in complex diseases. We describe one such approach called subject-protein networks, and demonstrate its application on two proteomic datasets. This demonstration provides insights to help translational teams overcome theoretical, practical, and pedagogical hurdles for the widespread use of subject-protein networks for analyzing molecular heterogeneities, with the translational goal of designing biomarker-based clinical trials, and accelerating the development of personalized approaches to medicine. PMID:25684269

  8. Inference of RhoGAP/GTPase regulation using single-cell morphological data from a combinatorial RNAi screen.

    PubMed

    Nir, Oaz; Bakal, Chris; Perrimon, Norbert; Berger, Bonnie

    2010-03-01

    Biological networks are highly complex systems, consisting largely of enzymes that act as molecular switches to activate/inhibit downstream targets via post-translational modification. Computational techniques have been developed to perform signaling network inference using some high-throughput data sources, such as those generated from transcriptional and proteomic studies, but comparable methods have not been developed to use high-content morphological data, which are emerging principally from large-scale RNAi screens, to these ends. Here, we describe a systematic computational framework based on a classification model for identifying genetic interactions using high-dimensional single-cell morphological data from genetic screens, apply it to RhoGAP/GTPase regulation in Drosophila, and evaluate its efficacy. Augmented by knowledge of the basic structure of RhoGAP/GTPase signaling, namely, that GAPs act directly upstream of GTPases, we apply our framework for identifying genetic interactions to predict signaling relationships between these proteins. We find that our method makes mediocre predictions using only RhoGAP single-knockdown morphological data, yet achieves vastly improved accuracy by including original data from a double-knockdown RhoGAP genetic screen, which likely reflects the redundant network structure of RhoGAP/GTPase signaling. We consider other possible methods for inference and show that our primary model outperforms the alternatives. This work demonstrates the fundamental fact that high-throughput morphological data can be used in a systematic, successful fashion to identify genetic interactions and, using additional elementary knowledge of network structure, to infer signaling relations.

  9. Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging

    PubMed Central

    Patel, Tapan P.; Man, Karen; Firestein, Bonnie L.; Meaney, David F.

    2017-01-01

    Background Recent advances in genetically engineered calcium and membrane potential indicators provide the potential to estimate the activation dynamics of individual neurons within larger, mesoscale networks (100s–1000 +neurons). However, a fully integrated automated workflow for the analysis and visualization of neural microcircuits from high speed fluorescence imaging data is lacking. New method Here we introduce FluoroSNNAP, Fluorescence Single Neuron and Network Analysis Package. FluoroSNNAP is an open-source, interactive software developed in MATLAB for automated quantification of numerous biologically relevant features of both the calcium dynamics of single-cells and network activity patterns. FluoroSNNAP integrates and improves upon existing tools for spike detection, synchronization analysis, and inference of functional connectivity, making it most useful to experimentalists with little or no programming knowledge. Results We apply FluoroSNNAP to characterize the activity patterns of neuronal microcircuits undergoing developmental maturation in vitro. Separately, we highlight the utility of single-cell analysis for phenotyping a mixed population of neurons expressing a human mutant variant of the microtubule associated protein tau and wild-type tau. Comparison with existing method(s) We show the performance of semi-automated cell segmentation using spatiotemporal independent component analysis and significant improvement in detecting calcium transients using a template-based algorithm in comparison to peak-based or wavelet-based detection methods. Our software further enables automated analysis of microcircuits, which is an improvement over existing methods. Conclusions We expect the dissemination of this software will facilitate a comprehensive analysis of neuronal networks, promoting the rapid interrogation of circuits in health and disease. PMID:25629800

  10. Impact of environmental inputs on reverse-engineering approach to network structures.

    PubMed

    Wu, Jianhua; Sinfield, James L; Buchanan-Wollaston, Vicky; Feng, Jianfeng

    2009-12-04

    Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs. With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. We first represent the environmental inputs by a harmonic oscillator and combine them with Granger causality to identify environmental inputs and then uncover the causal network structures. We also generalize it to multiple harmonic oscillators to represent various exogenous influences. This system approach is extensively tested with toy models and successfully applied to a real biological network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The aim is to identify those genes that are directly affected by the presence of the sunlight and uncover the interactive network structures associating with flowering metabolism. We demonstrate that environmental inputs are crucial for correctly inferring network structures. Harmonic causal method is proved to be a powerful technique to detect environment inputs and uncover network structures, especially when the biological data exhibit periodic oscillations.

  11. Statistical inference, the bootstrap, and neural-network modeling with application to foreign exchange rates.

    PubMed

    White, H; Racine, J

    2001-01-01

    We propose tests for individual and joint irrelevance of network inputs. Such tests can be used to determine whether an input or group of inputs "belong" in a particular model, thus permitting valid statistical inference based on estimated feedforward neural-network models. The approaches employ well-known statistical resampling techniques. We conduct a small Monte Carlo experiment showing that our tests have reasonable level and power behavior, and we apply our methods to examine whether there are predictable regularities in foreign exchange rates. We find that exchange rates do appear to contain information that is exploitable for enhanced point prediction, but the nature of the predictive relations evolves through time.

  12. Inverse Ising problem in continuous time: A latent variable approach

    NASA Astrophysics Data System (ADS)

    Donner, Christian; Opper, Manfred

    2017-12-01

    We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.

  13. Discovering time-lagged rules from microarray data using gene profile classifiers

    PubMed Central

    2011-01-01

    Background Gene regulatory networks have an essential role in every process of life. In this regard, the amount of genome-wide time series data is becoming increasingly available, providing the opportunity to discover the time-delayed gene regulatory networks that govern the majority of these molecular processes. Results This paper aims at reconstructing gene regulatory networks from multiple genome-wide microarray time series datasets. In this sense, a new model-free algorithm called GRNCOP2 (Gene Regulatory Network inference by Combinatorial OPtimization 2), which is a significant evolution of the GRNCOP algorithm, was developed using combinatorial optimization of gene profile classifiers. The method is capable of inferring potential time-delay relationships with any span of time between genes from various time series datasets given as input. The proposed algorithm was applied to time series data composed of twenty yeast genes that are highly relevant for the cell-cycle study, and the results were compared against several related approaches. The outcomes have shown that GRNCOP2 outperforms the contrasted methods in terms of the proposed metrics, and that the results are consistent with previous biological knowledge. Additionally, a genome-wide study on multiple publicly available time series data was performed. In this case, the experimentation has exhibited the soundness and scalability of the new method which inferred highly-related statistically-significant gene associations. Conclusions A novel method for inferring time-delayed gene regulatory networks from genome-wide time series datasets is proposed in this paper. The method was carefully validated with several publicly available data sets. The results have demonstrated that the algorithm constitutes a usable model-free approach capable of predicting meaningful relationships between genes, revealing the time-trends of gene regulation. PMID:21524308

  14. Inferring Regulatory Networks from Experimental Morphological Phenotypes: A Computational Method Reverse-Engineers Planarian Regeneration

    PubMed Central

    Lobo, Daniel; Levin, Michael

    2015-01-01

    Transformative applications in biomedicine require the discovery of complex regulatory networks that explain the development and regeneration of anatomical structures, and reveal what external signals will trigger desired changes of large-scale pattern. Despite recent advances in bioinformatics, extracting mechanistic pathway models from experimental morphological data is a key open challenge that has resisted automation. The fundamental difficulty of manually predicting emergent behavior of even simple networks has limited the models invented by human scientists to pathway diagrams that show necessary subunit interactions but do not reveal the dynamics that are sufficient for complex, self-regulating pattern to emerge. To finally bridge the gap between high-resolution genetic data and the ability to understand and control patterning, it is critical to develop computational tools to efficiently extract regulatory pathways from the resultant experimental shape phenotypes. For example, planarian regeneration has been studied for over a century, but despite increasing insight into the pathways that control its stem cells, no constructive, mechanistic model has yet been found by human scientists that explains more than one or two key features of its remarkable ability to regenerate its correct anatomical pattern after drastic perturbations. We present a method to infer the molecular products, topology, and spatial and temporal non-linear dynamics of regulatory networks recapitulating in silico the rich dataset of morphological phenotypes resulting from genetic, surgical, and pharmacological experiments. We demonstrated our approach by inferring complete regulatory networks explaining the outcomes of the main functional regeneration experiments in the planarian literature; By analyzing all the datasets together, our system inferred the first systems-biology comprehensive dynamical model explaining patterning in planarian regeneration. This method provides an automated, highly generalizable framework for identifying the underlying control mechanisms responsible for the dynamic regulation of growth and form. PMID:26042810

  15. Enriching regulatory networks by bootstrap learning using optimised GO-based gene similarity and gene links mined from PubMed abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Ronald C.; Sanfilippo, Antonio P.; McDermott, Jason E.

    2011-02-18

    Transcriptional regulatory networks are being determined using “reverse engineering” methods that infer connections based on correlations in gene state. Corroboration of such networks through independent means such as evidence from the biomedical literature is desirable. Here, we explore a novel approach, a bootstrapping version of our previous Cross-Ontological Analytic method (XOA) that can be used for semi-automated annotation and verification of inferred regulatory connections, as well as for discovery of additional functional relationships between the genes. First, we use our annotation and network expansion method on a biological network learned entirely from the literature. We show how new relevant linksmore » between genes can be iteratively derived using a gene similarity measure based on the Gene Ontology that is optimized on the input network at each iteration. Second, we apply our method to annotation, verification, and expansion of a set of regulatory connections found by the Context Likelihood of Relatedness algorithm.« less

  16. Statistical inference to advance network models in epidemiology.

    PubMed

    Welch, David; Bansal, Shweta; Hunter, David R

    2011-03-01

    Contact networks are playing an increasingly important role in the study of epidemiology. Most of the existing work in this area has focused on considering the effect of underlying network structure on epidemic dynamics by using tools from probability theory and computer simulation. This work has provided much insight on the role that heterogeneity in host contact patterns plays on infectious disease dynamics. Despite the important understanding afforded by the probability and simulation paradigm, this approach does not directly address important questions about the structure of contact networks such as what is the best network model for a particular mode of disease transmission, how parameter values of a given model should be estimated, or how precisely the data allow us to estimate these parameter values. We argue that these questions are best answered within a statistical framework and discuss the role of statistical inference in estimating contact networks from epidemiological data. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Distinguishing between direct and indirect directional couplings in large oscillator networks: Partial or non-partial phase analyses?

    NASA Astrophysics Data System (ADS)

    Rings, Thorsten; Lehnertz, Klaus

    2016-09-01

    We investigate the relative merit of phase-based methods for inferring directional couplings in complex networks of weakly interacting dynamical systems from multivariate time-series data. We compare the evolution map approach and its partialized extension to each other with respect to their ability to correctly infer the network topology in the presence of indirect directional couplings for various simulated experimental situations using coupled model systems. In addition, we investigate whether the partialized approach allows for additional or complementary indications of directional interactions in evolving epileptic brain networks using intracranial electroencephalographic recordings from an epilepsy patient. For such networks, both direct and indirect directional couplings can be expected, given the brain's connection structure and effects that may arise from limitations inherent to the recording technique. Our findings indicate that particularly in larger networks (number of nodes ≫10 ), the partialized approach does not provide information about directional couplings extending the information gained with the evolution map approach.

  18. Theory of Mind disruption and recruitment of the right hemisphere during narrative comprehension in autism

    PubMed Central

    Mason, Robert A.; Williams, Diane L.; Kana, Rajesh K.; Minshew, Nancy; Just, Marcel Adam

    2008-01-01

    The intersection of Theory of Mind (ToM) processing and complex narrative comprehension in high functioning autism was examined by comparing cortical activation during the reading of passages that required inferences based on either intentions, emotional states, or physical causality. Right hemisphere activation was substantially greater for all sentences in the autism group than in a matched control group suggesting decreased LH capacity in autism resulting in a spillover of processing to RH homologs. Moreover, the ToM network was disrupted. The autism group showed similar activation for all inference types in the right temporo-parietal component of the ToM network whereas the control participants selectively activated this network only when appropriate. The autism group had lower functional connectivity within the ToM network and also between the ToM and a left hemisphere language network. Furthermore, the within-network functional connectivity in autism was correlated with the size of the anterior portion of the corpus callosum. PMID:17869314

  19. Theory of Mind disruption and recruitment of the right hemisphere during narrative comprehension in autism.

    PubMed

    Mason, Robert A; Williams, Diane L; Kana, Rajesh K; Minshew, Nancy; Just, Marcel Adam

    2008-01-15

    The intersection of Theory of Mind (ToM) processing and complex narrative comprehension in high functioning autism was examined by comparing cortical activation during the reading of passages that required inferences based on either intentions, emotional states, or physical causality. Right hemisphere activation was substantially greater for all sentences in the autism group than in a matched control group suggesting decreased LH capacity in autism resulting in a spillover of processing to RH homologs. Moreover, the ToM network was disrupted. The autism group showed similar activation for all inference types in the right temporo-parietal component of the ToM network whereas the control participants selectively activated this network only when appropriate. The autism group had lower functional connectivity within the ToM network and also between the ToM and a left hemisphere language network. Furthermore, the within-network functional connectivity in autism was correlated with the size of the anterior portion of the corpus callosum.

  20. Learning a Markov Logic network for supervised gene regulatory network inference

    PubMed Central

    2013-01-01

    Background Gene regulatory network inference remains a challenging problem in systems biology despite the numerous approaches that have been proposed. When substantial knowledge on a gene regulatory network is already available, supervised network inference is appropriate. Such a method builds a binary classifier able to assign a class (Regulation/No regulation) to an ordered pair of genes. Once learnt, the pairwise classifier can be used to predict new regulations. In this work, we explore the framework of Markov Logic Networks (MLN) that combine features of probabilistic graphical models with the expressivity of first-order logic rules. Results We propose to learn a Markov Logic network, e.g. a set of weighted rules that conclude on the predicate “regulates”, starting from a known gene regulatory network involved in the switch proliferation/differentiation of keratinocyte cells, a set of experimental transcriptomic data and various descriptions of genes all encoded into first-order logic. As training data are unbalanced, we use asymmetric bagging to learn a set of MLNs. The prediction of a new regulation can then be obtained by averaging predictions of individual MLNs. As a side contribution, we propose three in silico tests to assess the performance of any pairwise classifier in various network inference tasks on real datasets. A first test consists of measuring the average performance on balanced edge prediction problem; a second one deals with the ability of the classifier, once enhanced by asymmetric bagging, to update a given network. Finally our main result concerns a third test that measures the ability of the method to predict regulations with a new set of genes. As expected, MLN, when provided with only numerical discretized gene expression data, does not perform as well as a pairwise SVM in terms of AUPR. However, when a more complete description of gene properties is provided by heterogeneous sources, MLN achieves the same performance as a black-box model such as a pairwise SVM while providing relevant insights on the predictions. Conclusions The numerical studies show that MLN achieves very good predictive performance while opening the door to some interpretability of the decisions. Besides the ability to suggest new regulations, such an approach allows to cross-validate experimental data with existing knowledge. PMID:24028533

Top