Sample records for network information theory

  1. Scaling theory for information networks.

    PubMed

    Moses, Melanie E; Forrest, Stephanie; Davis, Alan L; Lodder, Mike A; Brown, James H

    2008-12-06

    Networks distribute energy, materials and information to the components of a variety of natural and human-engineered systems, including organisms, brains, the Internet and microprocessors. Distribution networks enable the integrated and coordinated functioning of these systems, and they also constrain their design. The similar hierarchical branching networks observed in organisms and microprocessors are striking, given that the structure of organisms has evolved via natural selection, while microprocessors are designed by engineers. Metabolic scaling theory (MST) shows that the rate at which networks deliver energy to an organism is proportional to its mass raised to the 3/4 power. We show that computational systems are also characterized by nonlinear network scaling and use MST principles to characterize how information networks scale, focusing on how MST predicts properties of clock distribution networks in microprocessors. The MST equations are modified to account for variation in the size and density of transistors and terminal wires in microprocessors. Based on the scaling of the clock distribution network, we predict a set of trade-offs and performance properties that scale with chip size and the number of transistors. However, there are systematic deviations between power requirements on microprocessors and predictions derived directly from MST. These deviations are addressed by augmenting the model to account for decentralized flow in some microprocessor networks (e.g. in logic networks). More generally, we hypothesize a set of constraints between the size, power and performance of networked information systems including transistors on chips, hosts on the Internet and neurons in the brain.

  2. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    PubMed

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The use of network theory to model disparate ship design information

    NASA Astrophysics Data System (ADS)

    Rigterink, Douglas; Piks, Rebecca; Singer, David J.

    2014-06-01

    This paper introduces the use of network theory to model and analyze disparate ship design information. This work will focus on a ship's distributed systems and their intra- and intersystem structures and interactions. The three system to be analyzed are: a passageway system, an electrical system, and a fire fighting system. These systems will be analyzed individually using common network metrics to glean information regarding their structures and attributes. The systems will also be subjected to community detection algorithms both separately and as a multiplex network to compare their similarities, differences, and interactions. Network theory will be shown to be useful in the early design stage due to its simplicity and ability to model any shipboard system.

  4. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    PubMed

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Analyzing complex networks evolution through Information Theory quantifiers

    NASA Astrophysics Data System (ADS)

    Carpi, Laura C.; Rosso, Osvaldo A.; Saco, Patricia M.; Ravetti, Martín Gómez

    2011-01-01

    A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Niño/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.

  6. Protein Signaling Networks from Single Cell Fluctuations and Information Theory Profiling

    PubMed Central

    Shin, Young Shik; Remacle, F.; Fan, Rong; Hwang, Kiwook; Wei, Wei; Ahmad, Habib; Levine, R.D.; Heath, James R.

    2011-01-01

    Protein signaling networks among cells play critical roles in a host of pathophysiological processes, from inflammation to tumorigenesis. We report on an approach that integrates microfluidic cell handling, in situ protein secretion profiling, and information theory to determine an extracellular protein-signaling network and the role of perturbations. We assayed 12 proteins secreted from human macrophages that were subjected to lipopolysaccharide challenge, which emulates the macrophage-based innate immune responses against Gram-negative bacteria. We characterize the fluctuations in protein secretion of single cells, and of small cell colonies (n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation of the conditions required for the application of a quantitative version of the Le Chatelier's principle, as derived using information theory. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein-protein interaction network. PMID:21575571

  7. Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare.

    PubMed

    Cresswell, Kathrin M; Worth, Allison; Sheikh, Aziz

    2010-11-01

    Actor-Network Theory (ANT) is an increasingly influential, but still deeply contested, approach to understand humans and their interactions with inanimate objects. We argue that health services research, and in particular evaluations of complex IT systems in health service organisations, may benefit from being informed by Actor-Network Theory perspectives. Despite some limitations, an Actor-Network Theory-based approach is conceptually useful in helping to appreciate the complexity of reality (including the complexity of organisations) and the active role of technology in this context. This can prove helpful in understanding how social effects are generated as a result of associations between different actors in a network. Of central importance in this respect is that Actor-Network Theory provides a lens through which to view the role of technology in shaping social processes. Attention to this shaping role can contribute to a more holistic appreciation of the complexity of technology introduction in healthcare settings. It can also prove practically useful in providing a theoretically informed approach to sampling (by drawing on informants that are related to the technology in question) and analysis (by providing a conceptual tool and vocabulary that can form the basis for interpretations). We draw on existing empirical work in this area and our ongoing work investigating the integration of electronic health record systems introduced as part of England's National Programme for Information Technology to illustrate salient points. Actor-Network Theory needs to be used pragmatically with an appreciation of its shortcomings. Our experiences suggest it can be helpful in investigating technology implementations in healthcare settings.

  8. Information theory-based decision support system for integrated design of multivariable hydrometric networks

    NASA Astrophysics Data System (ADS)

    Keum, Jongho; Coulibaly, Paulin

    2017-07-01

    Adequate and accurate hydrologic information from optimal hydrometric networks is an essential part of effective water resources management. Although the key hydrologic processes in the water cycle are interconnected, hydrometric networks (e.g., streamflow, precipitation, groundwater level) have been routinely designed individually. A decision support framework is proposed for integrated design of multivariable hydrometric networks. The proposed method is applied to design optimal precipitation and streamflow networks simultaneously. The epsilon-dominance hierarchical Bayesian optimization algorithm was combined with Shannon entropy of information theory to design and evaluate hydrometric networks. Specifically, the joint entropy from the combined networks was maximized to provide the most information, and the total correlation was minimized to reduce redundant information. To further optimize the efficiency between the networks, they were designed by maximizing the conditional entropy of the streamflow network given the information of the precipitation network. Compared to the traditional individual variable design approach, the integrated multivariable design method was able to determine more efficient optimal networks by avoiding the redundant stations. Additionally, four quantization cases were compared to evaluate their effects on the entropy calculations and the determination of the optimal networks. The evaluation results indicate that the quantization methods should be selected after careful consideration for each design problem since the station rankings and the optimal networks can change accordingly.

  9. Optimal design of hydrometric monitoring networks with dynamic components based on Information Theory

    NASA Astrophysics Data System (ADS)

    Alfonso, Leonardo; Chacon, Juan; Solomatine, Dimitri

    2016-04-01

    The EC-FP7 WeSenseIt project proposes the development of a Citizen Observatory of Water, aiming at enhancing environmental monitoring and forecasting with the help of citizens equipped with low-cost sensors and personal devices such as smartphones and smart umbrellas. In this regard, Citizen Observatories may complement the limited data availability in terms of spatial and temporal density, which is of interest, among other areas, to improve hydraulic and hydrological models. At this point, the following question arises: how can citizens, who are part of a citizen observatory, be optimally guided so that the data they collect and send is useful to improve modelling and water management? This research proposes a new methodology to identify the optimal location and timing of potential observations coming from moving sensors of hydrological variables. The methodology is based on Information Theory, which has been widely used in hydrometric monitoring design [1-4]. In particular, the concepts of Joint Entropy, as a measure of the amount of information that is contained in a set of random variables, which, in our case, correspond to the time series of hydrological variables captured at given locations in a catchment. The methodology presented is a step forward in the state of the art because it solves the multiobjective optimisation problem of getting simultaneously the minimum number of informative and non-redundant sensors needed for a given time, so that the best configuration of monitoring sites is found at every particular moment in time. To this end, the existing algorithms have been improved to make them efficient. The method is applied to cases in The Netherlands, UK and Italy and proves to have a great potential to complement the existing in-situ monitoring networks. [1] Alfonso, L., A. Lobbrecht, and R. Price (2010a), Information theory-based approach for location of monitoring water level gauges in polders, Water Resour. Res., 46(3), W03528 [2] Alfonso, L., A

  10. Optimization of hydrometric monitoring network in urban drainage systems using information theory.

    PubMed

    Yazdi, J

    2017-10-01

    Regular and continuous monitoring of urban runoff in both quality and quantity aspects is of great importance for controlling and managing surface runoff. Due to the considerable costs of establishing new gauges, optimization of the monitoring network is essential. This research proposes an approach for site selection of new discharge stations in urban areas, based on entropy theory in conjunction with multi-objective optimization tools and numerical models. The modeling framework provides an optimal trade-off between the maximum possible information content and the minimum shared information among stations. This approach was applied to the main surface-water collection system in Tehran to determine new optimal monitoring points under the cost considerations. Experimental results on this drainage network show that the obtained cost-effective designs noticeably outperform the consulting engineers' proposal in terms of both information contents and shared information. The research also determined the highly frequent sites at the Pareto front which might be important for decision makers to give a priority for gauge installation on those locations of the network.

  11. Information theory and the ethylene genetic network.

    PubMed

    González-García, José S; Díaz, José

    2011-10-01

    The original aim of the Information Theory (IT) was to solve a purely technical problem: to increase the performance of communication systems, which are constantly affected by interferences that diminish the quality of the transmitted information. That is, the theory deals only with the problem of transmitting with the maximal precision the symbols constituting a message. In Shannon's theory messages are characterized only by their probabilities, regardless of their value or meaning. As for its present day status, it is generally acknowledged that Information Theory has solid mathematical foundations and has fruitful strong links with Physics in both theoretical and experimental areas. However, many applications of Information Theory to Biology are limited to using it as a technical tool to analyze biopolymers, such as DNA, RNA or protein sequences. The main point of discussion about the applicability of IT to explain the information flow in biological systems is that in a classic communication channel, the symbols that conform the coded message are transmitted one by one in an independent form through a noisy communication channel, and noise can alter each of the symbols, distorting the message; in contrast, in a genetic communication channel the coded messages are not transmitted in the form of symbols but signaling cascades transmit them. Consequently, the information flow from the emitter to the effector is due to a series of coupled physicochemical processes that must ensure the accurate transmission of the message. In this review we discussed a novel proposal to overcome this difficulty, which consists of the modeling of gene expression with a stochastic approach that allows Shannon entropy (H) to be directly used to measure the amount of uncertainty that the genetic machinery has in relation to the correct decoding of a message transmitted into the nucleus by a signaling pathway. From the value of H we can define a function I that measures the amount of

  12. An information theory account of cognitive control.

    PubMed

    Fan, Jin

    2014-01-01

    Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory.

  13. An information theory account of cognitive control

    PubMed Central

    Fan, Jin

    2014-01-01

    Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory. PMID:25228875

  14. Bayesian networks and information theory for audio-visual perception modeling.

    PubMed

    Besson, Patricia; Richiardi, Jonas; Bourdin, Christophe; Bringoux, Lionel; Mestre, Daniel R; Vercher, Jean-Louis

    2010-09-01

    Thanks to their different senses, human observers acquire multiple information coming from their environment. Complex cross-modal interactions occur during this perceptual process. This article proposes a framework to analyze and model these interactions through a rigorous and systematic data-driven process. This requires considering the general relationships between the physical events or factors involved in the process, not only in quantitative terms, but also in term of the influence of one factor on another. We use tools from information theory and probabilistic reasoning to derive relationships between the random variables of interest, where the central notion is that of conditional independence. Using mutual information analysis to guide the model elicitation process, a probabilistic causal model encoded as a Bayesian network is obtained. We exemplify the method by using data collected in an audio-visual localization task for human subjects, and we show that it yields a well-motivated model with good predictive ability. The model elicitation process offers new prospects for the investigation of the cognitive mechanisms of multisensory perception.

  15. Analysis of Online Social Networks to Understand Information Sharing Behaviors Through Social Cognitive Theory.

    PubMed

    Yoon, Hong-Jun; Tourassi, Georgia

    2014-05-01

    Analyzing the contents of online social networks is an effective process for monitoring and understanding peoples' behaviors. Since the nature of conversation and information propagation is similar to traditional conversation and learning, one of the popular socio-cognitive methods, social cognitive theory was applied to online social networks to. Two major news topics about colon cancer were chosen to monitor traffic of Twitter messages. The activity of "leaders" on the issue (i.e., news companies or people will prior Twitter activity on topics related to colon cancer) was monitored. In addition, the activity of "followers", people who never discussed the topics before, but replied to the discussions was also monitored. Topics that produce tangible benefits such as positive outcomes from appropriate preventive actions received dramatically more attention and online social media traffic. Such characteristics can be explained with social cognitive theory and thus present opportunities for effective health campaigns.

  16. Analysis of Online Social Networks to Understand Information Sharing Behaviors Through Social Cognitive Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hong-Jun; Tourassi, Georgia

    Analyzing the contents of online social networks is an effective process for monitoring and understanding peoples behaviors. Since the nature of conversation and information propagation is similar to traditional conversation and learning, one of the popular socio-cognitive methods, social cognitive theory was applied to online social networks to. Two major news topics about colon cancer were chosen to monitor traffic of Twitter messages. The activity of leaders on the issue (i.e., news companies or people will prior Twitter activity on topics related to colon cancer) was monitored. In addition, the activity of followers , people who never discussed the topicsmore » before, but replied to the discussions was also monitored. Topics that produce tangible benefits such as positive outcomes from appropriate preventive actions received dramatically more attention and online social media traffic. Such characteristics can be explained with social cognitive theory and thus present opportunities for effective health campaigns.« less

  17. Psychology and social networks: a dynamic network theory perspective.

    PubMed

    Westaby, James D; Pfaff, Danielle L; Redding, Nicholas

    2014-04-01

    Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  18. Brain and Cognitive Reserve: Translation via Network Control Theory

    PubMed Central

    Medaglia, John Dominic; Pasqualetti, Fabio; Hamilton, Roy H.; Thompson-Schill, Sharon L.; Bassett, Danielle S.

    2017-01-01

    Traditional approaches to understanding the brain’s resilience to neuropathology have identified neurophysiological variables, often described as brain or cognitive “reserve,” associated with better outcomes. However, mechanisms of function and resilience in large-scale brain networks remain poorly understood. Dynamic network theory may provide a basis for substantive advances in understanding functional resilience in the human brain. In this perspective, we describe recent theoretical approaches from network control theory as a framework for investigating network level mechanisms underlying cognitive function and the dynamics of neuroplasticity in the human brain. We describe the theoretical opportunities offered by the application of network control theory at the level of the human connectome to understand cognitive resilience and inform translational intervention. PMID:28104411

  19. An information theory framework for dynamic functional domain connectivity.

    PubMed

    Vergara, Victor M; Miller, Robyn; Calhoun, Vince

    2017-06-01

    Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Research on invulnerability of equipment support information network

    NASA Astrophysics Data System (ADS)

    Sun, Xiao; Liu, Bin; Zhong, Qigen; Cao, Zhiyi

    2013-03-01

    In this paper, the entity composition of equipment support information network is studied, and the network abstract model is built. The influence factors of the invulnerability of equipment support information network are analyzed, and the invulnerability capabilities under random attack are analyzed. According to the centrality theory, the materiality evaluation centralities of the nodes are given, and the invulnerability capabilities under selective attack are analyzed. Finally, the reasons that restrict the invulnerability of equipment support information network are summarized, and the modified principles and methods are given.

  1. A novel approach to characterize information radiation in complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyang; Wang, Ying; Zhu, Lin; Li, Chao

    2016-06-01

    The traditional research of information dissemination is mostly based on the virus spreading model that the information is being spread by probability, which does not match very well to the reality, because the information that we receive is always more or less than what was sent. In order to quantitatively describe variations in the amount of information during the spreading process, this article proposes a safety information radiation model on the basis of communication theory, combining with relevant theories of complex networks. This model comprehensively considers the various influence factors when safety information radiates in the network, and introduces some concepts from the communication theory perspective, such as the radiation gain function, receiving gain function, information retaining capacity and information second reception capacity, to describe the safety information radiation process between nodes and dynamically investigate the states of network nodes. On a micro level, this article analyzes the influence of various initial conditions and parameters on safety information radiation through the new model simulation. The simulation reveals that this novel approach can reflect the variation of safety information quantity of each node in the complex network, and the scale-free network has better ;radiation explosive power;, while the small-world network has better ;radiation staying power;. The results also show that it is efficient to improve the overall performance of network security by selecting nodes with high degrees as the information source, refining and simplifying the information, increasing the information second reception capacity and decreasing the noises. In a word, this article lays the foundation for further research on the interactions of information and energy between internal components within complex systems.

  2. The transfer and transformation of collective network information in gene-matched networks.

    PubMed

    Kitsukawa, Takashi; Yagi, Takeshi

    2015-10-09

    Networks, such as the human society network, social and professional networks, and biological system networks, contain vast amounts of information. Information signals in networks are distributed over nodes and transmitted through intricately wired links, making the transfer and transformation of such information difficult to follow. Here we introduce a novel method for describing network information and its transfer using a model network, the Gene-matched network (GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected according to their expression of common genes. Because neurons have multiple genes, the GMN is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled systematically, according to the activity level of the network. Furthermore, information transfer and transformation could be traced numerically with a vector using genes expressed in the activated neurons, the active-gene array, which was used to assess the relative activity among overlapping neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding theory. The method introduced here could be applied to many real-world networks, since many systems, including human society and various biological systems, can be represented as a network of this type.

  3. Blogs and Social Network Sites as Activity Systems: Exploring Adult Informal Learning Process through Activity Theory Framework

    ERIC Educational Resources Information Center

    Heo, Gyeong Mi; Lee, Romee

    2013-01-01

    This paper uses an Activity Theory framework to explore adult user activities and informal learning processes as reflected in their blogs and social network sites (SNS). Using the assumption that a web-based space is an activity system in which learning occurs, typical features of the components were investigated and each activity system then…

  4. Towards the Integration of Niche and Network Theories.

    PubMed

    Godoy, Oscar; Bartomeus, Ignasi; Rohr, Rudolf P; Saavedra, Serguei

    2018-04-01

    The quest for understanding how species interactions modulate diversity has progressed by theoretical and empirical advances following niche and network theories. Yet, niche studies have been limited to describe coexistence within tropic levels despite incorporating information about multi-trophic interactions. Network approaches could address this limitation, but they have ignored the structure of species interactions within trophic levels. Here we call for the integration of niche and network theories to reach new frontiers of knowledge exploring how interactions within and across trophic levels promote species coexistence. This integration is possible due to the strong parallelisms in the historical development, ecological concepts, and associated mathematical tools of both theories. We provide a guideline to integrate this framework with observational and experimental studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Enabling Controlling Complex Networks with Local Topological Information.

    PubMed

    Li, Guoqi; Deng, Lei; Xiao, Gaoxi; Tang, Pei; Wen, Changyun; Hu, Wuhua; Pei, Jing; Shi, Luping; Stanley, H Eugene

    2018-03-15

    Complex networks characterize the nature of internal/external interactions in real-world systems including social, economic, biological, ecological, and technological networks. Two issues keep as obstacles to fulfilling control of large-scale networks: structural controllability which describes the ability to guide a dynamical system from any initial state to any desired final state in finite time, with a suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost for driving the network to a predefined state with a given number of control inputs. For large complex networks without global information of network topology, both problems remain essentially open. Here we combine graph theory and control theory for tackling the two problems in one go, using only local network topology information. For the structural controllability problem, a distributed local-game matching method is proposed, where every node plays a simple Bayesian game with local information and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. Starring from any structural controllability solution, a minimizing longest control path method can efficiently reach a good solution for the optimal control in large networks. Our results provide solutions for distributed complex network control and demonstrate a way to link the structural controllability and optimal control together.

  6. Network Security Validation Using Game Theory

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Vicky; Gregoriades, Andreas

    Non-functional requirements (NFR) such as network security recently gained widespread attention in distributed information systems. Despite their importance however, there is no systematic approach to validate these requirements given the complexity and uncertainty characterizing modern networks. Traditionally, network security requirements specification has been the results of a reactive process. This however, limited the immunity property of the distributed systems that depended on these networks. Security requirements specification need a proactive approach. Networks' infrastructure is constantly under attack by hackers and malicious software that aim to break into computers. To combat these threats, network designers need sophisticated security validation techniques that will guarantee the minimum level of security for their future networks. This paper presents a game-theoretic approach to security requirements validation. An introduction to game theory is presented along with an example that demonstrates the application of the approach.

  7. Detection of network attacks based on adaptive resonance theory

    NASA Astrophysics Data System (ADS)

    Bukhanov, D. G.; Polyakov, V. M.

    2018-05-01

    The paper considers an approach to intrusion detection systems using a neural network of adaptive resonant theory. It suggests the structure of an intrusion detection system consisting of two types of program modules. The first module manages connections of user applications by preventing the undesirable ones. The second analyzes the incoming network traffic parameters to check potential network attacks. After attack detection, it notifies the required stations using a secure transmission channel. The paper describes the experiment on the detection and recognition of network attacks using the test selection. It also compares the obtained results with similar experiments carried out by other authors. It gives findings and conclusions on the sufficiency of the proposed approach. The obtained information confirms the sufficiency of applying the neural networks of adaptive resonant theory to analyze network traffic within the intrusion detection system.

  8. Research on Information Sharing Mechanism of Network Organization Based on Evolutionary Game

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Liu, Gaozhi

    2018-02-01

    This article first elaborates the concept and effect of network organization, and the ability to share information is analyzed, secondly introduces the evolutionary game theory, network organization for information sharing all kinds of limitations, establishes the evolutionary game model, analyzes the dynamic evolution of network organization of information sharing, through reasoning and evolution. The network information sharing by the initial state and two sides of the game payoff matrix of excess profits and information is the information sharing of cost and risk sharing are the influence of network organization node information sharing decision.

  9. Connectivism and Information Literacy: Moving from Learning Theory to Pedagogical Practice

    ERIC Educational Resources Information Center

    Transue, Beth M.

    2013-01-01

    Connectivism is an emerging learning theory positing that knowledge comprises networked relationships and that learning comprises the ability to successfully navigate through these networks. Successful pedagogical strategies involve the instructor helping students to identify, navigate, and evaluate information from their learning networks. Many…

  10. Finding influential nodes for integration in brain networks using optimal percolation theory.

    PubMed

    Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A

    2018-06-11

    Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.

  11. A new measure based on degree distribution that links information theory and network graph analysis

    PubMed Central

    2012-01-01

    Background Detailed connection maps of human and nonhuman brains are being generated with new technologies, and graph metrics have been instrumental in understanding the general organizational features of these structures. Neural networks appear to have small world properties: they have clustered regions, while maintaining integrative features such as short average pathlengths. Results We captured the structural characteristics of clustered networks with short average pathlengths through our own variable, System Difference (SD), which is computationally simple and calculable for larger graph systems. SD is a Jaccardian measure generated by averaging all of the differences in the connection patterns between any two nodes of a system. We calculated SD over large random samples of matrices and found that high SD matrices have a low average pathlength and a larger number of clustered structures. SD is a measure of degree distribution with high SD matrices maximizing entropic properties. Phi (Φ), an information theory metric that assesses a system’s capacity to integrate information, correlated well with SD - with SD explaining over 90% of the variance in systems above 11 nodes (tested for 4 to 13 nodes). However, newer versions of Φ do not correlate well with the SD metric. Conclusions The new network measure, SD, provides a link between high entropic structures and degree distributions as related to small world properties. PMID:22726594

  12. A game theory-based trust measurement model for social networks.

    PubMed

    Wang, Yingjie; Cai, Zhipeng; Yin, Guisheng; Gao, Yang; Tong, Xiangrong; Han, Qilong

    2016-01-01

    In social networks, trust is a complex social network. Participants in online social networks want to share information and experiences with as many reliable users as possible. However, the modeling of trust is complicated and application dependent. Modeling trust needs to consider interaction history, recommendation, user behaviors and so on. Therefore, modeling trust is an important focus for online social networks. We propose a game theory-based trust measurement model for social networks. The trust degree is calculated from three aspects, service reliability, feedback effectiveness, recommendation credibility, to get more accurate result. In addition, to alleviate the free-riding problem, we propose a game theory-based punishment mechanism for specific trust and global trust, respectively. We prove that the proposed trust measurement model is effective. The free-riding problem can be resolved effectively through adding the proposed punishment mechanism.

  13. Interdisciplinary and physics challenges of network theory

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra

    2015-09-01

    Network theory has unveiled the underlying structure of complex systems such as the Internet or the biological networks in the cell. It has identified universal properties of complex networks, and the interplay between their structure and dynamics. After almost twenty years of the field, new challenges lie ahead. These challenges concern the multilayer structure of most of the networks, the formulation of a network geometry and topology, and the development of a quantum theory of networks. Making progress on these aspects of network theory can open new venues to address interdisciplinary and physics challenges including progress on brain dynamics, new insights into quantum technologies, and quantum gravity.

  14. Intra- Versus Intersex Aggression: Testing Theories of Sex Differences Using Aggression Networks.

    PubMed

    Wölfer, Ralf; Hewstone, Miles

    2015-08-01

    Two theories offer competing explanations of sex differences in aggressive behavior: sexual-selection theory and social-role theory. While each theory has specific strengths and limitations depending on the victim's sex, research hardly differentiates between intrasex and intersex aggression. In the present study, 11,307 students (mean age = 14.96 years; 50% girls, 50% boys) from 597 school classes provided social-network data (aggression and friendship networks) as well as physical (body mass index) and psychosocial (gender and masculinity norms) information. Aggression networks were used to disentangle intra- and intersex aggression, whereas their class-aggregated sex differences were analyzed using contextual predictors derived from sexual-selection and social-role theories. As expected, results revealed that sexual-selection theory predicted male-biased sex differences in intrasex aggression, whereas social-role theory predicted male-biased sex differences in intersex aggression. Findings suggest the value of explaining sex differences separately for intra- and intersex aggression with a dual-theory framework covering both evolutionary and normative components. © The Author(s) 2015.

  15. Information jet: Handling noisy big data from weakly disconnected network

    NASA Astrophysics Data System (ADS)

    Aurongzeb, Deeder

    Sudden aggregation (information jet) of large amount of data is ubiquitous around connected social networks, driven by sudden interacting and non-interacting events, network security threat attacks, online sales channel etc. Clustering of information jet based on time series analysis and graph theory is not new but little work is done to connect them with particle jet statistics. We show pre-clustering based on context can element soft network or network of information which is critical to minimize time to calculate results from noisy big data. We show difference between, stochastic gradient boosting and time series-graph clustering. For disconnected higher dimensional information jet, we use Kallenberg representation theorem (Kallenberg, 2005, arXiv:1401.1137) to identify and eliminate jet similarities from dense or sparse graph.

  16. Hodge Decomposition of Information Flow on Small-World Networks.

    PubMed

    Haruna, Taichi; Fujiki, Yuuya

    2016-01-01

    We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow.

  17. Theorising big IT programmes in healthcare: strong structuration theory meets actor-network theory.

    PubMed

    Greenhalgh, Trisha; Stones, Rob

    2010-05-01

    The UK National Health Service is grappling with various large and controversial IT programmes. We sought to develop a sharper theoretical perspective on the question "What happens - at macro-, meso- and micro-level - when government tries to modernise a health service with the help of big IT?" Using examples from data fragments at the micro-level of clinical work, we considered how structuration theory and actor-network theory (ANT) might be combined to inform empirical investigation. Giddens (1984) argued that social structures and human agency are recursively linked and co-evolve. ANT studies the relationships that link people and technologies in dynamic networks. It considers how discourses become inscribed in data structures and decision models of software, making certain network relations irreversible. Stones' (2005) strong structuration theory (SST) is a refinement of Giddens' work, systematically concerned with empirical research. It views human agents as linked in dynamic networks of position-practices. A quadripartite approcach considers [a] external social structures (conditions for action); [b] internal social structures (agents' capabilities and what they 'know' about the social world); [c] active agency and actions and [d] outcomes as they feed back on the position-practice network. In contrast to early structuration theory and ANT, SST insists on disciplined conceptual methodology and linking this with empirical evidence. In this paper, we adapt SST for the study of technology programmes, integrating elements from material interactionism and ANT. We argue, for example, that the position-practice network can be a socio-technical one in which technologies in conjunction with humans can be studied as 'actants'. Human agents, with their complex socio-cultural frames, are required to instantiate technology in social practices. Structurally relevant properties inscribed and embedded in technological artefacts constrain and enable human agency. The fortunes

  18. Information network architectures

    NASA Technical Reports Server (NTRS)

    Murray, N. D.

    1985-01-01

    Graphs, charts, diagrams and outlines of information relative to information network architectures for advanced aerospace missions, such as the Space Station, are presented. Local area information networks are considered a likely technology solution. The principle needs for the network are listed.

  19. Information transmission and signal permutation in active flow networks

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis G.; Fawcett, Joanna B.; Dunkel, Jörn

    2018-03-01

    Recent experiments show that both natural and artificial microswimmers in narrow channel-like geometries will self-organise to form steady, directed flows. This suggests that networks of flowing active matter could function as novel autonomous microfluidic devices. However, little is known about how information propagates through these far-from-equilibrium systems. Through a mathematical analogy with spin-ice vertex models, we investigate here the input–output characteristics of generic incompressible active flow networks (AFNs). Our analysis shows that information transport through an AFN is inherently different from conventional pressure or voltage driven networks. Active flows on hexagonal arrays preserve input information over longer distances than their passive counterparts and are highly sensitive to bulk topological defects, whose presence can be inferred from marginal input–output distributions alone. This sensitivity further allows controlled permutations on parallel inputs, revealing an unexpected link between active matter and group theory that can guide new microfluidic mixing strategies facilitated by active matter and aid the design of generic autonomous information transport networks.

  20. Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio; Biamonte, Jacob

    2016-10-01

    Any physical system can be viewed from the perspective that information is implicitly represented in its state. However, the quantification of this information when it comes to complex networks has remained largely elusive. In this work, we use techniques inspired by quantum statistical mechanics to define an entropy measure for complex networks and to develop a set of information-theoretic tools, based on network spectral properties, such as Rényi q entropy, generalized Kullback-Leibler and Jensen-Shannon divergences, the latter allowing us to define a natural distance measure between complex networks. First, we show that by minimizing the Kullback-Leibler divergence between an observed network and a parametric network model, inference of model parameter(s) by means of maximum-likelihood estimation can be achieved and model selection can be performed with appropriate information criteria. Second, we show that the information-theoretic metric quantifies the distance between pairs of networks and we can use it, for instance, to cluster the layers of a multilayer system. By applying this framework to networks corresponding to sites of the human microbiome, we perform hierarchical cluster analysis and recover with high accuracy existing community-based associations. Our results imply that spectral-based statistical inference in complex networks results in demonstrably superior performance as well as a conceptual backbone, filling a gap towards a network information theory.

  1. Optimal information transfer in enzymatic networks: A field theoretic formulation

    NASA Astrophysics Data System (ADS)

    Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.

    2017-07-01

    Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in

  2. Potential Theory for Directed Networks

    PubMed Central

    Zhang, Qian-Ming; Lü, Linyuan; Wang, Wen-Qiang; Zhou, Tao

    2013-01-01

    Uncovering factors underlying the network formation is a long-standing challenge for data mining and network analysis. In particular, the microscopic organizing principles of directed networks are less understood than those of undirected networks. This article proposes a hypothesis named potential theory, which assumes that every directed link corresponds to a decrease of a unit potential and subgraphs with definable potential values for all nodes are preferred. Combining the potential theory with the clustering and homophily mechanisms, it is deduced that the Bi-fan structure consisting of 4 nodes and 4 directed links is the most favored local structure in directed networks. Our hypothesis receives strongly positive supports from extensive experiments on 15 directed networks drawn from disparate fields, as indicated by the most accurate and robust performance of Bi-fan predictor within the link prediction framework. In summary, our main contribution is twofold: (i) We propose a new mechanism for the local organization of directed networks; (ii) We design the corresponding link prediction algorithm, which can not only testify our hypothesis, but also find out direct applications in missing link prediction and friendship recommendation. PMID:23408979

  3. Advances in the Theory of Complex Networks

    NASA Astrophysics Data System (ADS)

    Peruani, Fernando

    An exhaustive and comprehensive review on the theory of complex networks would imply nowadays a titanic task, and it would result in a lengthy work containing plenty of technical details of arguable relevance. Instead, this chapter addresses very briefly the ABC of complex network theory, visiting only the hallmarks of the theoretical founding, to finally focus on two of the most interesting and promising current research problems: the study of dynamical processes on transportation networks and the identification of communities in complex networks.

  4. Information Theory, Inference and Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Mackay, David J. C.

    2003-10-01

    Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

  5. Information and material flows in complex networks

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Armbruster, Dieter; Mikhailov, Alexander S.; Lefeber, Erjen

    2006-04-01

    In this special issue, an overview of the Thematic Institute (TI) on Information and Material Flows in Complex Systems is given. The TI was carried out within EXYSTENCE, the first EU Network of Excellence in the area of complex systems. Its motivation, research approach and subjects are presented here. Among the various methods used are many-particle and statistical physics, nonlinear dynamics, as well as complex systems, network and control theory. The contributions are relevant for complex systems as diverse as vehicle and data traffic in networks, logistics, production, and material flows in biological systems. The key disciplines involved are socio-, econo-, traffic- and bio-physics, and a new research area that could be called “biologistics”.

  6. Autosophy information theory provides lossless data and video compression based on the data content

    NASA Astrophysics Data System (ADS)

    Holtz, Klaus E.; Holtz, Eric S.; Holtz, Diana

    1996-09-01

    A new autosophy information theory provides an alternative to the classical Shannon information theory. Using the new theory in communication networks provides both a high degree of lossless compression and virtually unbreakable encryption codes for network security. The bandwidth in a conventional Shannon communication is determined only by the data volume and the hardware parameters, such as image size; resolution; or frame rates in television. The data content, or what is shown on the screen, is irrelevant. In contrast, the bandwidth in autosophy communication is determined only by data content, such as novelty and movement in television images. It is the data volume and hardware parameters that become irrelevant. Basically, the new communication methods use prior 'knowledge' of the data, stored in a library, to encode subsequent transmissions. The more 'knowledge' stored in the libraries, the higher the potential compression ratio. 'Information' is redefined as that which is not already known by the receiver. Everything already known is redundant and need not be re-transmitted. In a perfect communication each transmission code, called a 'tip,' creates a new 'engram' of knowledge in the library in which each tip transmission can represent any amount of data. Autosophy theories provide six separate learning modes, or omni dimensional networks, all of which can be used for data compression. The new information theory reveals the theoretical flaws of other data compression methods, including: the Huffman; Ziv Lempel; LZW codes and commercial compression codes such as V.42bis and MPEG-2.

  7. Reverse Engineering Cellular Networks with Information Theoretic Methods

    PubMed Central

    Villaverde, Alejandro F.; Ross, John; Banga, Julio R.

    2013-01-01

    Building mathematical models of cellular networks lies at the core of systems biology. It involves, among other tasks, the reconstruction of the structure of interactions between molecular components, which is known as network inference or reverse engineering. Information theory can help in the goal of extracting as much information as possible from the available data. A large number of methods founded on these concepts have been proposed in the literature, not only in biology journals, but in a wide range of areas. Their critical comparison is difficult due to the different focuses and the adoption of different terminologies. Here we attempt to review some of the existing information theoretic methodologies for network inference, and clarify their differences. While some of these methods have achieved notable success, many challenges remain, among which we can mention dealing with incomplete measurements, noisy data, counterintuitive behaviour emerging from nonlinear relations or feedback loops, and computational burden of dealing with large data sets. PMID:24709703

  8. Towards understanding the behavior of physical systems using information theory

    NASA Astrophysics Data System (ADS)

    Quax, Rick; Apolloni, Andrea; Sloot, Peter M. A.

    2013-09-01

    One of the goals of complex network analysis is to identify the most influential nodes, i.e., the nodes that dictate the dynamics of other nodes. In the case of autonomous systems or transportation networks, highly connected hubs play a preeminent role in diffusing the flow of information and viruses; in contrast, in language evolution most linguistic norms come from the peripheral nodes who have only few contacts. Clearly a topological analysis of the interactions alone is not sufficient to identify the nodes that drive the state of the network. Here we show how information theory can be used to quantify how the dynamics of individual nodes propagate through a system. We interpret the state of a node as a storage of information about the state of other nodes, which is quantified in terms of Shannon information. This information is transferred through interactions and lost due to noise, and we calculate how far it can travel through a network. We apply this concept to a model of opinion formation in a complex social network to calculate the impact of each node by measuring how long its opinion is remembered by the network. Counter-intuitively we find that the dynamics of opinions are not determined by the hubs or peripheral nodes, but rather by nodes with an intermediate connectivity.

  9. Social Network Theory and Educational Change

    ERIC Educational Resources Information Center

    Daly, Alan J., Ed.

    2010-01-01

    "Social Network Theory and Educational Change" offers a provocative and fascinating exploration of how social networks in schools can impede or facilitate the work of education reform. Drawing on the work of leading scholars, the book comprises a series of studies examining networks among teachers and school leaders, contrasting formal…

  10. Information processing by networks of quantum decision makers

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Yukalova, E. P.; Sornette, D.

    2018-02-01

    We suggest a model of a multi-agent society of decision makers taking decisions being based on two criteria, one is the utility of the prospects and the other is the attractiveness of the considered prospects. The model is the generalization of quantum decision theory, developed earlier for single decision makers realizing one-step decisions, in two principal aspects. First, several decision makers are considered simultaneously, who interact with each other through information exchange. Second, a multistep procedure is treated, when the agents exchange information many times. Several decision makers exchanging information and forming their judgment, using quantum rules, form a kind of a quantum information network, where collective decisions develop in time as a result of information exchange. In addition to characterizing collective decisions that arise in human societies, such networks can describe dynamical processes occurring in artificial quantum intelligence composed of several parts or in a cluster of quantum computers. The practical usage of the theory is illustrated on the dynamic disjunction effect for which three quantitative predictions are made: (i) the probabilistic behavior of decision makers at the initial stage of the process is described; (ii) the decrease of the difference between the initial prospect probabilities and the related utility factors is proved; (iii) the existence of a common consensus after multiple exchange of information is predicted. The predicted numerical values are in very good agreement with empirical data.

  11. Alienation Theory: Application of a Conceptual Framework to a Study of Information among Janitors.

    ERIC Educational Resources Information Center

    Chatman, Elfreda A.

    1990-01-01

    Alienation theory was applied to a study of information behavior among 51 janitors. Results showed that they lack an informal information network because of their work schedule, and a perception that their neighbors are undesirable associates and no more informed than they are. (34 references) (EAM)

  12. BOOK REVIEW: Theory of Neural Information Processing Systems

    NASA Astrophysics Data System (ADS)

    Galla, Tobias

    2006-04-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 1011 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kühn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  13. Nonlinear adaptive networks: A little theory, a few applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.D.; Qian, S.; Barnes, C.W.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We than present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series tidal prediction in Venice Lagoon, sonar transient detection, control of nonlinear processes, balancing a double inverted pendulum and design advice for free electron lasers. 26 refs., 23 figs.

  14. Network anomaly detection system with optimized DS evidence theory.

    PubMed

    Liu, Yuan; Wang, Xiaofeng; Liu, Kaiyu

    2014-01-01

    Network anomaly detection has been focused on by more people with the fast development of computer network. Some researchers utilized fusion method and DS evidence theory to do network anomaly detection but with low performance, and they did not consider features of network-complicated and varied. To achieve high detection rate, we present a novel network anomaly detection system with optimized Dempster-Shafer evidence theory (ODS) and regression basic probability assignment (RBPA) function. In this model, we add weights for each sensor to optimize DS evidence theory according to its previous predict accuracy. And RBPA employs sensor's regression ability to address complex network. By four kinds of experiments, we find that our novel network anomaly detection model has a better detection rate, and RBPA as well as ODS optimization methods can improve system performance significantly.

  15. Sender–receiver systems and applying information theory for quantitative synthetic biology

    PubMed Central

    Barcena Menendez, Diego; Senthivel, Vivek Raj; Isalan, Mark

    2015-01-01

    Sender–receiver (S–R) systems abound in biology, with communication systems sending information in various forms. Information theory provides a quantitative basis for analysing these processes and is being applied to study natural genetic, enzymatic and neural networks. Recent advances in synthetic biology are providing us with a wealth of artificial S–R systems, giving us quantitative control over networks with a finite number of well-characterised components. Combining the two approaches can help to predict how to maximise signalling robustness, and will allow us to make increasingly complex biological computers. Ultimately, pushing the boundaries of synthetic biology will require moving beyond engineering the flow of information and towards building more sophisticated circuits that interpret biological meaning. PMID:25282688

  16. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks

    PubMed Central

    Meyer-Bäse, Anke; Roberts, Rodney G.; Illan, Ignacio A.; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja

    2017-01-01

    Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary

  17. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.

    PubMed

    Meyer-Bäse, Anke; Roberts, Rodney G; Illan, Ignacio A; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja

    2017-01-01

    Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary

  18. Cartographic generalization of urban street networks based on gravitational field theory

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Li, Yongshu; Li, Zheng; Guo, Jiawei

    2014-05-01

    The automatic generalization of urban street networks is a constant and important aspect of geographical information science. Previous studies show that the dual graph for street-street relationships more accurately reflects the overall morphological properties and importance of streets than do other methods. In this study, we construct a dual graph to represent street-street relationship and propose an approach to generalize street networks based on gravitational field theory. We retain the global structural properties and topological connectivity of an original street network and borrow from gravitational field theory to define the gravitational force between nodes. The concept of multi-order neighbors is introduced and the gravitational force is taken as the measure of the importance contribution between nodes. The importance of a node is defined as the result of the interaction between a given node and its multi-order neighbors. Degree distribution is used to evaluate the level of maintaining the global structure and topological characteristics of a street network and to illustrate the efficiency of the suggested method. Experimental results indicate that the proposed approach can be used in generalizing street networks and retaining their density characteristics, connectivity and global structure.

  19. Information Dissemination of Public Health Emergency on Social Networks and Intelligent Computation

    PubMed Central

    Hu, Hongzhi; Mao, Huajuan; Hu, Xiaohua; Hu, Feng; Sun, Xuemin; Jing, Zaiping; Duan, Yunsuo

    2015-01-01

    Due to the extensive social influence, public health emergency has attracted great attention in today's society. The booming social network is becoming a main information dissemination platform of those events and caused high concerns in emergency management, among which a good prediction of information dissemination in social networks is necessary for estimating the event's social impacts and making a proper strategy. However, information dissemination is largely affected by complex interactive activities and group behaviors in social network; the existing methods and models are limited to achieve a satisfactory prediction result due to the open changeable social connections and uncertain information processing behaviors. ACP (artificial societies, computational experiments, and parallel execution) provides an effective way to simulate the real situation. In order to obtain better information dissemination prediction in social networks, this paper proposes an intelligent computation method under the framework of TDF (Theory-Data-Feedback) based on ACP simulation system which was successfully applied to the analysis of A (H1N1) Flu emergency. PMID:26609303

  20. Information Dissemination of Public Health Emergency on Social Networks and Intelligent Computation.

    PubMed

    Hu, Hongzhi; Mao, Huajuan; Hu, Xiaohua; Hu, Feng; Sun, Xuemin; Jing, Zaiping; Duan, Yunsuo

    2015-01-01

    Due to the extensive social influence, public health emergency has attracted great attention in today's society. The booming social network is becoming a main information dissemination platform of those events and caused high concerns in emergency management, among which a good prediction of information dissemination in social networks is necessary for estimating the event's social impacts and making a proper strategy. However, information dissemination is largely affected by complex interactive activities and group behaviors in social network; the existing methods and models are limited to achieve a satisfactory prediction result due to the open changeable social connections and uncertain information processing behaviors. ACP (artificial societies, computational experiments, and parallel execution) provides an effective way to simulate the real situation. In order to obtain better information dissemination prediction in social networks, this paper proposes an intelligent computation method under the framework of TDF (Theory-Data-Feedback) based on ACP simulation system which was successfully applied to the analysis of A (H1N1) Flu emergency.

  1. Exploring the Combination of Dempster-Shafer Theory and Neural Network for Predicting Trust and Distrust

    PubMed Central

    Wang, Xin; Wang, Ying; Sun, Hongbin

    2016-01-01

    In social media, trust and distrust among users are important factors in helping users make decisions, dissect information, and receive recommendations. However, the sparsity and imbalance of social relations bring great difficulties and challenges in predicting trust and distrust. Meanwhile, there are numerous inducing factors to determine trust and distrust relations. The relationship among inducing factors may be dependency, independence, and conflicting. Dempster-Shafer theory and neural network are effective and efficient strategies to deal with these difficulties and challenges. In this paper, we study trust and distrust prediction based on the combination of Dempster-Shafer theory and neural network. We firstly analyze the inducing factors about trust and distrust, namely, homophily, status theory, and emotion tendency. Then, we quantify inducing factors of trust and distrust, take these features as evidences, and construct evidence prototype as input nodes of multilayer neural network. Finally, we propose a framework of predicting trust and distrust which uses multilayer neural network to model the implementing process of Dempster-Shafer theory in different hidden layers, aiming to overcome the disadvantage of Dempster-Shafer theory without optimization method. Experimental results on a real-world dataset demonstrate the effectiveness of the proposed framework. PMID:27034651

  2. Spreading dynamics of an e-commerce preferential information model on scale-free networks

    NASA Astrophysics Data System (ADS)

    Wan, Chen; Li, Tao; Guan, Zhi-Hong; Wang, Yuanmei; Liu, Xiongding

    2017-02-01

    In order to study the influence of the preferential degree and the heterogeneity of underlying networks on the spread of preferential e-commerce information, we propose a novel susceptible-infected-beneficial model based on scale-free networks. The spreading dynamics of the preferential information are analyzed in detail using the mean-field theory. We determine the basic reproductive number and equilibria. The theoretical analysis indicates that the basic reproductive number depends mainly on the preferential degree and the topology of the underlying networks. We prove the global stability of the information-elimination equilibrium. The permanence of preferential information and the global attractivity of the information-prevailing equilibrium are also studied in detail. Some numerical simulations are presented to verify the theoretical results.

  3. Network Anomaly Detection System with Optimized DS Evidence Theory

    PubMed Central

    Liu, Yuan; Wang, Xiaofeng; Liu, Kaiyu

    2014-01-01

    Network anomaly detection has been focused on by more people with the fast development of computer network. Some researchers utilized fusion method and DS evidence theory to do network anomaly detection but with low performance, and they did not consider features of network—complicated and varied. To achieve high detection rate, we present a novel network anomaly detection system with optimized Dempster-Shafer evidence theory (ODS) and regression basic probability assignment (RBPA) function. In this model, we add weights for each senor to optimize DS evidence theory according to its previous predict accuracy. And RBPA employs sensor's regression ability to address complex network. By four kinds of experiments, we find that our novel network anomaly detection model has a better detection rate, and RBPA as well as ODS optimization methods can improve system performance significantly. PMID:25254258

  4. Effects of individual popularity on information spreading in complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Li, Ruiqi; Shu, Panpan; Wang, Wei; Gao, Hui; Cai, Shimin

    2018-01-01

    In real world, human activities often exhibit preferential selection mechanism based on the popularity of individuals. However, this mechanism is seldom taken into account by previous studies about spreading dynamics on networks. Thus in this work, an information spreading model is proposed by considering the preferential selection based on individuals' current popularity, which is defined as the number of individuals' cumulative contacts with informed neighbors. A mean-field theory is developed to analyze the spreading model. Through systematically studying the information spreading dynamics on uncorrelated configuration networks as well as real-world networks, we find that the popularity preference has great impacts on the information spreading. On the one hand, the information spreading is facilitated, i.e., a larger final prevalence of information and a smaller outbreak threshold, if nodes with low popularity are preferentially selected. In this situation, the effective contacts between informed nodes and susceptible nodes are increased, and nodes almost have uniform probabilities of obtaining the information. On the other hand, if nodes with high popularity are preferentially selected, the final prevalence of information is reduced, the outbreak threshold is increased, and even the information cannot outbreak. In addition, the heterogeneity of the degree distribution and the structure of real-world networks do not qualitatively affect the results. Our research can provide some theoretical supports for the promotion of spreading such as information, health related behaviors, and new products, etc.

  5. A quantitative approach to measure road network information based on edge diversity

    NASA Astrophysics Data System (ADS)

    Wu, Xun; Zhang, Hong; Lan, Tian; Cao, Weiwei; He, Jing

    2015-12-01

    The measure of map information has been one of the key issues in assessing cartographic quality and map generalization algorithms. It is also important for developing efficient approaches to transfer geospatial information. Road network is the most common linear object in real world. Approximately describe road network information will benefit road map generalization, navigation map production and urban planning. Most of current approaches focused on node diversities and supposed that all the edges are the same, which is inconsistent to real-life condition, and thus show limitations in measuring network information. As real-life traffic flow are directed and of different quantities, the original undirected vector road map was first converted to a directed topographic connectivity map. Then in consideration of preferential attachment in complex network study and rich-club phenomenon in social network, the from and to weights of each edge are assigned. The from weight of a given edge is defined as the connectivity of its end node to the sum of the connectivities of all the neighbors of the from nodes of the edge. After getting the from and to weights of each edge, edge information, node information and the whole network structure information entropies could be obtained based on information theory. The approach has been applied to several 1 square mile road network samples. Results show that information entropies based on edge diversities could successfully describe the structural differences of road networks. This approach is a complementarity to current map information measurements, and can be extended to measure other kinds of geographical objects.

  6. Information Network Development.

    ERIC Educational Resources Information Center

    Mahon, F. V.

    The International Bureau of Education (IBE) and Unesco, together with their member states, are faced with the task of implementing a proposed network--the International Network for Educational Information (INED)--for the better use of information resources for educational development. This review of issues that need to be considered in the…

  7. Operationalizing Network Theory for Ecosystem Service Assessments.

    PubMed

    Dee, Laura E; Allesina, Stefano; Bonn, Aletta; Eklöf, Anna; Gaines, Steven D; Hines, Jes; Jacob, Ute; McDonald-Madden, Eve; Possingham, Hugh; Schröter, Matthias; Thompson, Ross M

    2017-02-01

    Managing ecosystems to provide ecosystem services in the face of global change is a pressing challenge for policy and science. Predicting how alternative management actions and changing future conditions will alter services is complicated by interactions among components in ecological and socioeconomic systems. Failure to understand those interactions can lead to detrimental outcomes from management decisions. Network theory that integrates ecological and socioeconomic systems may provide a path to meeting this challenge. While network theory offers promising approaches to examine ecosystem services, few studies have identified how to operationalize networks for managing and assessing diverse ecosystem services. We propose a framework for how to use networks to assess how drivers and management actions will directly and indirectly alter ecosystem services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Towards the understanding of network information processing in biology

    NASA Astrophysics Data System (ADS)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  9. Application of Game Theory Approaches in Routing Protocols for Wireless Networks

    NASA Astrophysics Data System (ADS)

    Javidi, Mohammad M.; Aliahmadipour, Laya

    2011-09-01

    An important and essential issue for wireless networks is routing protocol design that is a major technical challenge due to the function of the network. Game theory is a powerful mathematical tool that analyzes the strategic interactions among multiple decision makers and the results of researches show that applied game theory in routing protocol lead to improvement the network performance through reduce overhead and motivates selfish nodes to collaborate in the network. This paper presents a review and comparison for typical representatives of routing protocols designed that applied game theory approaches for various wireless networks such as ad hoc networks, mobile ad hoc networks and sensor networks that all of them lead to improve the network performance.

  10. An information-based network approach for protein classification

    PubMed Central

    Wan, Xiaogeng; Zhao, Xin; Yau, Stephen S. T.

    2017-01-01

    Protein classification is one of the critical problems in bioinformatics. Early studies used geometric distances and polygenetic-tree to classify proteins. These methods use binary trees to present protein classification. In this paper, we propose a new protein classification method, whereby theories of information and networks are used to classify the multivariate relationships of proteins. In this study, protein universe is modeled as an undirected network, where proteins are classified according to their connections. Our method is unsupervised, multivariate, and alignment-free. It can be applied to the classification of both protein sequences and structures. Nine examples are used to demonstrate the efficiency of our new method. PMID:28350835

  11. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system

    USGS Publications Warehouse

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.

    2000-01-01

    Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  12. Renormalization group theory for percolation in time-varying networks.

    PubMed

    Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M

    2018-05-22

    Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.

  13. A Comparison of Geographic Information Systems, Complex Networks, and Other Models for Analyzing Transportation Network Topologies

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher

    2005-01-01

    This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.

  14. Congenital Heart Information Network

    MedlinePlus

    ... heart defects. Important Notice The Congenital Heart Information Network website is temporarily out of service. Please join ... and Uwe Baemayr for The Congenital Heart Information Network Exempt organization under Section 501(c)3. Copyright © ...

  15. How Might Better Network Theories Support School Leadership Research?

    ERIC Educational Resources Information Center

    Hadfield, Mark; Jopling, Michael

    2012-01-01

    This article explores how recent research in education has applied different aspects of "network" theory to the study of school leadership. Constructs from different network theories are often used because of their perceived potential to clarify two perennial issues in leadership research. The first is the relative importance of formal and…

  16. Information transmission on hybrid networks

    NASA Astrophysics Data System (ADS)

    Chen, Rongbin; Cui, Wei; Pu, Cunlai; Li, Jie; Ji, Bo; Gakis, Konstantinos; Pardalos, Panos M.

    2018-01-01

    Many real-world communication networks often have hybrid nature with both fixed nodes and moving modes, such as the mobile phone networks mainly composed of fixed base stations and mobile phones. In this paper, we discuss the information transmission process on the hybrid networks with both fixed and mobile nodes. The fixed nodes (base stations) are connected as a spatial lattice on the plane forming the information-carrying backbone, while the mobile nodes (users), which are the sources and destinations of information packets, connect to their current nearest fixed nodes respectively to deliver and receive information packets. We observe the phase transition of traffic load in the hybrid network when the packet generation rate goes from below and then above a critical value, which measures the network capacity of packets delivery. We obtain the optimal speed of moving nodes leading to the maximum network capacity. We further improve the network capacity by rewiring the fixed nodes and by considering the current load of fixed nodes during packets transmission. Our purpose is to optimize the network capacity of hybrid networks from the perspective of network science, and provide some insights for the construction of future communication infrastructures.

  17. Information Design Theories

    ERIC Educational Resources Information Center

    Pettersson, Rune

    2014-01-01

    Information design has practical and theoretical components. As an academic discipline we may view information design as a combined discipline, a practical theory, or as a theoretical practice. So far information design has incorporated facts, influences, methods, practices, principles, processes, strategies, and tools from a large number of…

  18. A Community Information Network.

    ERIC Educational Resources Information Center

    Consumers' Association of Canada, Ottawa (Ontario).

    The possibility of creating in Canada a non-profit community information network (a set of linked data banks containing information for use by the general public) should be explored. A network to link together a set of data banks containing information for general public use would have the following merits: (1) By its effect on household…

  19. INFORMATION: THEORY, BRAIN, AND BEHAVIOR

    PubMed Central

    Jensen, Greg; Ward, Ryan D.; Balsam, Peter D.

    2016-01-01

    In the 65 years since its formal specification, information theory has become an established statistical paradigm, providing powerful tools for quantifying probabilistic relationships. Behavior analysis has begun to adopt these tools as a novel means of measuring the interrelations between behavior, stimuli, and contingent outcomes. This approach holds great promise for making more precise determinations about the causes of behavior and the forms in which conditioning may be encoded by organisms. In addition to providing an introduction to the basics of information theory, we review some of the ways that information theory has informed the studies of Pavlovian conditioning, operant conditioning, and behavioral neuroscience. In addition to enriching each of these empirical domains, information theory has the potential to act as a common statistical framework by which results from different domains may be integrated, compared, and ultimately unified. PMID:24122456

  20. Constructor theory of information

    PubMed Central

    Deutsch, David; Marletto, Chiara

    2015-01-01

    We propose a theory of information expressed solely in terms of which transformations of physical systems are possible and which are impossible—i.e. in constructor-theoretic terms. It includes conjectured, exact laws of physics expressing the regularities that allow information to be physically instantiated. Although these laws are directly about information, independently of the details of particular physical instantiations, information is not regarded as an a priori mathematical or logical concept, but as something whose nature and properties are determined by the laws of physics alone. This theory solves a problem at the foundations of existing information theory, namely that information and distinguishability are each defined in terms of the other. It also explains the relationship between classical and quantum information, and reveals the single, constructor-theoretic property underlying the most distinctive phenomena associated with the latter, including the lack of in-principle distinguishability of some states, the impossibility of cloning, the existence of pairs of variables that cannot simultaneously have sharp values, the fact that measurement processes can be both deterministic and unpredictable, the irreducible perturbation caused by measurement, and locally inaccessible information (as in entangled systems). PMID:25663803

  1. Improving access to health information for older migrants by using grounded theory and social network analysis to understand their information behaviour and digital technology use.

    PubMed

    Goodall, K T; Newman, L A; Ward, P R

    2014-11-01

    Migrant well-being can be strongly influenced by the migration experience and subsequent degree of mainstream language acquisition. There is little research on how older Culturally And Linguistically Diverse (CALD) migrants who have 'aged in place' find health information, and the role which digital technology plays in this. Although the research for this paper was not focused on cancer, we draw out implications for providing cancer-related information to this group. We interviewed 54 participants (14 men and 40 women) aged 63-94 years, who were born in Italy or Greece, and who migrated to Australia mostly as young adults after World War II. Constructivist grounded theory and social network analysis were used for data analysis. Participants identified doctors, adult children, local television, spouse, local newspaper and radio as the most important information sources. They did not generally use computers, the Internet or mobile phones to access information. Literacy in their birth language, and the degree of proficiency in understanding and using English, influenced the range of information sources accessed and the means used. The ways in which older CALD migrants seek and access information has important implications for how professionals and policymakers deliver relevant information to them about cancer prevention, screening, support and treatment, particularly as information and resources are moved online as part of e-health. © 2014 John Wiley & Sons Ltd.

  2. Network theory and its applications in economic systems

    NASA Astrophysics Data System (ADS)

    Huang, Xuqing

    This dissertation covers the two major parts of my Ph.D. research: i) developing theoretical framework of complex networks; and ii) applying complex networks models to quantitatively analyze economics systems. In part I, we focus on developing theories of interdependent networks, which includes two chapters: 1) We develop a mathematical framework to study the percolation of interdependent networks under targeted-attack and find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. 2) We analytically demonstrates that clustering, which quantifies the propensity for two neighbors of the same vertex to also be neighbors of each other, significantly increases the vulnerability of the system. In part II, we apply the complex networks models to study economics systems, which also includes two chapters: 1) We study the US corporate governance network, in which nodes representing directors and links between two directors representing their service on common company boards, and propose a quantitative measure of information and influence transformation in the network. Thus we are able to identify the most influential directors in the network. 2) We propose a bipartite networks model to simulate the risk propagation process among commercial banks during financial crisis. With empirical bank's balance sheet data in 2007 as input to the model, we find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation during the financial crisis between 2008 and 2011. The results suggest that complex networks model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the

  3. Network inference using informative priors

    PubMed Central

    Mukherjee, Sach; Speed, Terence P.

    2008-01-01

    Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of “network inference” is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling. PMID:18799736

  4. Network inference using informative priors.

    PubMed

    Mukherjee, Sach; Speed, Terence P

    2008-09-23

    Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of "network inference" is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling.

  5. Analysis of the enzyme network involved in cattle milk production using graph theory.

    PubMed

    Ghorbani, Sholeh; Tahmoorespur, Mojtaba; Masoudi Nejad, Ali; Nasiri, Mohammad; Asgari, Yazdan

    2015-06-01

    Understanding cattle metabolism and its relationship with milk products is important in bovine breeding. A systemic view could lead to consequences that will result in a better understanding of existing concepts. Topological indices and quantitative characterizations mostly result from the application of graph theory on biological data. In the present work, the enzyme network involved in cattle milk production was reconstructed and analyzed based on available bovine genome information using several public datasets (NCBI, Uniprot, KEGG, and Brenda). The reconstructed network consisted of 3605 reactions named by KEGG compound numbers and 646 enzymes that catalyzed the corresponding reactions. The characteristics of the directed and undirected network were analyzed using Graph Theory. The mean path length was calculated to be4.39 and 5.41 for directed and undirected networks, respectively. The top 11 hub enzymes whose abnormality could harm bovine health and reduce milk production were determined. Therefore, the aim of constructing the enzyme centric network was twofold; first to find out whether such network followed the same properties of other biological networks, and second, to find the key enzymes. The results of the present study can improve our understanding of milk production in cattle. Also, analysis of the enzyme network can help improve the modeling and simulation of biological systems and help design desired phenotypes to increase milk production quality or quantity.

  6. MIDER: network inference with mutual information distance and entropy reduction.

    PubMed

    Villaverde, Alejandro F; Ross, John; Morán, Federico; Banga, Julio R

    2014-01-01

    The prediction of links among variables from a given dataset is a task referred to as network inference or reverse engineering. It is an open problem in bioinformatics and systems biology, as well as in other areas of science. Information theory, which uses concepts such as mutual information, provides a rigorous framework for addressing it. While a number of information-theoretic methods are already available, most of them focus on a particular type of problem, introducing assumptions that limit their generality. Furthermore, many of these methods lack a publicly available implementation. Here we present MIDER, a method for inferring network structures with information theoretic concepts. It consists of two steps: first, it provides a representation of the network in which the distance among nodes indicates their statistical closeness. Second, it refines the prediction of the existing links to distinguish between direct and indirect interactions and to assign directionality. The method accepts as input time-series data related to some quantitative features of the network nodes (such as e.g. concentrations, if the nodes are chemical species). It takes into account time delays between variables, and allows choosing among several definitions and normalizations of mutual information. It is general purpose: it may be applied to any type of network, cellular or otherwise. A Matlab implementation including source code and data is freely available (http://www.iim.csic.es/~gingproc/mider.html). The performance of MIDER has been evaluated on seven different benchmark problems that cover the main types of cellular networks, including metabolic, gene regulatory, and signaling. Comparisons with state of the art information-theoretic methods have demonstrated the competitive performance of MIDER, as well as its versatility. Its use does not demand any a priori knowledge from the user; the default settings and the adaptive nature of the method provide good results for a wide

  7. A Network Neuroscience of Human Learning: Potential To Inform Quantitative Theories of Brain and Behavior

    PubMed Central

    Bassett, Danielle S.; Mattar, Marcelo G.

    2017-01-01

    Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior. PMID:28259554

  8. A Network Neuroscience of Human Learning: Potential to Inform Quantitative Theories of Brain and Behavior.

    PubMed

    Bassett, Danielle S; Mattar, Marcelo G

    2017-04-01

    Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Queuing theory models for computer networks

    NASA Technical Reports Server (NTRS)

    Galant, David C.

    1989-01-01

    A set of simple queuing theory models which can model the average response of a network of computers to a given traffic load has been implemented using a spreadsheet. The impact of variations in traffic patterns and intensities, channel capacities, and message protocols can be assessed using them because of the lack of fine detail in the network traffic rates, traffic patterns, and the hardware used to implement the networks. A sample use of the models applied to a realistic problem is included in appendix A. Appendix B provides a glossary of terms used in this paper. This Ames Research Center computer communication network is an evolving network of local area networks (LANs) connected via gateways and high-speed backbone communication channels. Intelligent planning of expansion and improvement requires understanding the behavior of the individual LANs as well as the collection of networks as a whole.

  10. Modern temporal network theory: a colloquium

    NASA Astrophysics Data System (ADS)

    Holme, Petter

    2015-09-01

    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it is more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.

  11. Information Diffusion in Facebook-Like Social Networks Under Information Overload

    NASA Astrophysics Data System (ADS)

    Li, Pei; Xing, Kai; Wang, Dapeng; Zhang, Xin; Wang, Hui

    2013-07-01

    Research on social networks has received remarkable attention, since many people use social networks to broadcast information and stay connected with their friends. However, due to the information overload in social networks, it becomes increasingly difficult for users to find useful information. This paper takes Facebook-like social networks into account, and models the process of information diffusion under information overload. The term view scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated is proposed to characterize the information diffusion efficiency. Through theoretical analysis, we find that factors such as network structure and view scope number have no impact on the information diffusion efficiency, which is a surprising result. To verify the results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly.

  12. Nonequilibrium landscape theory of neural networks

    PubMed Central

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  13. Nonequilibrium landscape theory of neural networks.

    PubMed

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-11-05

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

  14. A unified data representation theory for network visualization, ordering and coarse-graining

    PubMed Central

    Kovács, István A.; Mizsei, Réka; Csermely, Péter

    2015-01-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form. PMID:26348923

  15. Dynamic information routing in complex networks

    PubMed Central

    Kirst, Christoph; Timme, Marc; Battaglia, Demian

    2016-01-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function. PMID:27067257

  16. Multimedia Information Networks in Social Media

    NASA Astrophysics Data System (ADS)

    Cao, Liangliang; Qi, Guojun; Tsai, Shen-Fu; Tsai, Min-Hsuan; Pozo, Andrey Del; Huang, Thomas S.; Zhang, Xuemei; Lim, Suk Hwan

    The popularity of personal digital cameras and online photo/video sharing community has lead to an explosion of multimedia information. Unlike traditional multimedia data, many new multimedia datasets are organized in a structural way, incorporating rich information such as semantic ontology, social interaction, community media, geographical maps, in addition to the multimedia contents by themselves. Studies of such structured multimedia data have resulted in a new research area, which is referred to as Multimedia Information Networks. Multimedia information networks are closely related to social networks, but especially focus on understanding the topics and semantics of the multimedia files in the context of network structure. This chapter reviews different categories of recent systems related to multimedia information networks, summarizes the popular inference methods used in recent works, and discusses the applications related to multimedia information networks. We also discuss a wide range of topics including public datasets, related industrial systems, and potential future research directions in this field.

  17. ("Un")Doing Standards in Education with Actor-Network Theory

    ERIC Educational Resources Information Center

    Fenwick, Tara J.

    2010-01-01

    Recent critiques have drawn important attention to the depoliticized consensus and empty promises embedded in network discourses of educational policy. While acceding this critique, this discussion argues that some forms of network analysis--specifically those adopting actor-network theory (ANT) approaches--actually offer useful theoretical…

  18. How Did the Information Flow in the #AlphaGo Hashtag Network? A Social Network Analysis of the Large-Scale Information Network on Twitter.

    PubMed

    Kim, Jinyoung

    2017-12-01

    As it becomes common for Internet users to use hashtags when posting and searching information on social media, it is important to understand who builds a hashtag network and how information is circulated within the network. This article focused on unlocking the potential of the #AlphaGo hashtag network by addressing the following questions. First, the current study examined whether traditional opinion leadership (i.e., the influentials hypothesis) or grassroot participation by the public (i.e., the interpersonal hypothesis) drove dissemination of information in the hashtag network. Second, several unique patterns of information distribution by key users were identified. Finally, the association between attributes of key users who exerted great influence on information distribution (i.e., the number of followers and follows) and their central status in the network was tested. To answer the proffered research questions, a social network analysis was conducted using a large-scale hashtag network data set from Twitter (n = 21,870). The results showed that the leading actors in the network were actively receiving information from their followers rather than serving as intermediaries between the original information sources and the public. Moreover, the leading actors played several roles (i.e., conversation starters, influencers, and active engagers) in the network. Furthermore, the number of their follows and followers were significantly associated with their central status in the hashtag network. Based on the results, the current research explained how the information was exchanged in the hashtag network by proposing the reciprocal model of information flow.

  19. Discovery of Empirical Components by Information Theory

    DTIC Science & Technology

    2016-08-10

    AFRL-AFOSR-VA-TR-2016-0289 Discovery of Empirical Components by Information Theory Amit Singer TRUSTEES OF PRINCETON UNIVERSITY 1 NASSAU HALL...3. DATES COVERED (From - To) 15 Feb 2013 to 14 Feb 2016 5a. CONTRACT NUMBER Discovery of Empirical Components by Information Theory 5b. GRANT...they draw not only from traditional linear algebra based numerical analysis or approximation theory , but also from information theory , graph theory

  20. Count Your Calories and Share Them: Health Benefits of Sharing mHealth Information on Social Networking Sites.

    PubMed

    Oeldorf-Hirsch, Anne; High, Andrew C; Christensen, John L

    2018-04-23

    This study investigates the relationship between sharing tracked mobile health (mHealth) information online, supportive communication, feedback, and health behavior. Based on the Integrated Theory of mHealth, our model asserts that sharing tracked health information on social networking sites benefits users' perceptions of their health because of the supportive communication they gain from members of their online social networks and that the amount of feedback people receive moderates these associations. Users of mHealth apps (N = 511) completed an online survey, and results revealed that both sharing tracked health information and receiving feedback from an online social network were positively associated with supportive communication. Network support both corresponded with improved health behavior and mediated the association between sharing health information and users' health behavior. As users received greater amounts of feedback from their online social networks, however, the association between sharing tracked health information and health behavior decreased. Theoretical implications for sharing tracked health information and practical implications for using mHealth apps are discussed.

  1. Using complex networks towards information retrieval and diagnostics in multidimensional imaging

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen

    2015-12-01

    We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.

  2. Using complex networks towards information retrieval and diagnostics in multidimensional imaging.

    PubMed

    Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen

    2015-12-02

    We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.

  3. Caring in the Information Age: Personal Online Networks to Improve Caregiver Support.

    PubMed

    Piraino, Emily; Byrne, Kerry; Heckman, George A; Stolee, Paul

    2017-06-01

    It is becoming increasingly important to find ways for caregivers and service providers to collaborate. This study explored the potential for improving care and social support through shared online network use by family caregivers and service providers in home care. This qualitative study was guided by Rogers' Theory of Diffusion of Innovations [NY: Free Press; 1995], and involved focus group and individual interviews of service providers (n = 31) and family caregivers (n = 4). Interview transcriptions were analyzed using descriptive, topic, and analytic coding, followed by thematic analysis. The network was identified as presenting an opportunity to fill communication gaps presented by other modes of communication and further enhance engagement with families. Barriers included time limitations and policy-related restrictions, privacy, security, and information ownership. Online networks may help address longstanding home-care issues around communication and information-sharing. The success of online networks in home care requires support from care partners. Future research should pilot the use of online networks in home care using barrier and facilitator considerations from this study.

  4. Information cascade on networks

    NASA Astrophysics Data System (ADS)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  5. Information content and cross-talk in biological signal transduction: An information theory study

    NASA Astrophysics Data System (ADS)

    Prasad, Ashok; Lyons, Samanthe

    2014-03-01

    Biological cells respond to chemical cues provided by extra-cellular chemical signals, but many of these chemical signals and the pathways they activate interfere and overlap with one another. How well cells can distinguish between interfering extra-cellular signals is thus an important question in cellular signal transduction. Here we use information theory with stochastic simulations of networks to address the question of what happens to total information content when signals interfere. We find that both total information transmitted by the biological pathway, as well as its theoretical capacity to discriminate between overlapping signals, are relatively insensitive to cross-talk between the extracellular signals, until significantly high levels of cross-talk have been reached. This robustness of information content against cross-talk requires that the average amplitude of the signals are large. We predict that smaller systems, as exemplified by simple phosphorylation relays (two-component systems) in bacteria, should be significantly much less robust against cross-talk. Our results suggest that mammalian signal transduction can tolerate a high amount of cross-talk without degrading information content, while smaller bacterial systems cannot.

  6. Unified-theory-of-reinforcement neural networks do not simulate the blocking effect.

    PubMed

    Calvin, Nicholas T; J McDowell, J

    2015-11-01

    For the last 20 years the unified theory of reinforcement (Donahoe et al., 1993) has been used to develop computer simulations to evaluate its plausibility as an account for behavior. The unified theory of reinforcement states that operant and respondent learning occurs via the same neural mechanisms. As part of a larger project to evaluate the operant behavior predicted by the theory, this project was the first replication of neural network models based on the unified theory of reinforcement. In the process of replicating these neural network models it became apparent that a previously published finding, namely, that the networks simulate the blocking phenomenon (Donahoe et al., 1993), was a misinterpretation of the data. We show that the apparent blocking produced by these networks is an artifact of the inability of these networks to generate the same conditioned response to multiple stimuli. The piecemeal approach to evaluate the unified theory of reinforcement via simulation is critiqued and alternatives are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Information Assurance in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Kabara, Joseph; Krishnamurthy, Prashant; Tipper, David

    2001-09-01

    Emerging wireless networks will contain a hybrid infrastructure based on fixed, mobile and ad hoc topologies and technologies. In such a dynamic architecture, we define information assurance as the provisions for both information security and information availability. The implications of this definition are that the wireless network architecture must (a) provide sufficient security measures, (b) be survivable under node or link attack or failure and (c) be designed such that sufficient capacity remains for all critical services (and preferably most other services) in the event of attack or component failure. We have begun a research project to investigate the provision of information assurance for wireless networks viz. survivability, security and availability and here discuss the issues and challenges therein.

  8. Random matrix theory for analyzing the brain functional network in attention deficit hyperactivity disorder

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan

    2016-11-01

    Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.

  9. Modeling and dynamical topology properties of VANET based on complex networks theory

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Jie

    2015-01-01

    Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate and control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What's more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a

  10. Modeling and dynamical topology properties of VANET based on complex networks theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong; Li, Jie, E-mail: prof.li@foxmail.com

    2015-01-15

    Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate andmore » control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What’s more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization

  11. Beyond Classical Information Theory: Advancing the Fundamentals for Improved Geophysical Prediction

    NASA Astrophysics Data System (ADS)

    Perdigão, R. A. P.; Pires, C. L.; Hall, J.; Bloeschl, G.

    2016-12-01

    Information Theory, in its original and quantum forms, has gradually made its way into various fields of science and engineering. From the very basic concepts of Information Entropy and Mutual Information to Transit Information, Interaction Information and respective partitioning into statistical synergy, redundancy and exclusivity, the overall theoretical foundations have matured as early as the mid XX century. In the Earth Sciences various interesting applications have been devised over the last few decades, such as the design of complex process networks of descriptive and/or inferential nature, wherein earth system processes are "nodes" and statistical relationships between them designed as information-theoretical "interactions". However, most applications still take the very early concepts along with their many caveats, especially in heavily non-Normal, non-linear and structurally changing scenarios. In order to overcome the traditional limitations of information theory and tackle elusive Earth System phenomena, we introduce a new suite of information dynamic methodologies towards a more physically consistent and information comprehensive framework. The methodological developments are then illustrated on a set of practical examples from geophysical fluid dynamics, where high-order nonlinear relationships elusive to the current non-linear information measures are aptly captured. In doing so, these advances increase the predictability of critical events such as the emergence of hyper-chaotic regimes in ocean-atmospheric dynamics and the occurrence of hydro-meteorological extremes.

  12. MIDER: Network Inference with Mutual Information Distance and Entropy Reduction

    PubMed Central

    Villaverde, Alejandro F.; Ross, John; Morán, Federico; Banga, Julio R.

    2014-01-01

    The prediction of links among variables from a given dataset is a task referred to as network inference or reverse engineering. It is an open problem in bioinformatics and systems biology, as well as in other areas of science. Information theory, which uses concepts such as mutual information, provides a rigorous framework for addressing it. While a number of information-theoretic methods are already available, most of them focus on a particular type of problem, introducing assumptions that limit their generality. Furthermore, many of these methods lack a publicly available implementation. Here we present MIDER, a method for inferring network structures with information theoretic concepts. It consists of two steps: first, it provides a representation of the network in which the distance among nodes indicates their statistical closeness. Second, it refines the prediction of the existing links to distinguish between direct and indirect interactions and to assign directionality. The method accepts as input time-series data related to some quantitative features of the network nodes (such as e.g. concentrations, if the nodes are chemical species). It takes into account time delays between variables, and allows choosing among several definitions and normalizations of mutual information. It is general purpose: it may be applied to any type of network, cellular or otherwise. A Matlab implementation including source code and data is freely available (http://www.iim.csic.es/~gingproc/mider.html). The performance of MIDER has been evaluated on seven different benchmark problems that cover the main types of cellular networks, including metabolic, gene regulatory, and signaling. Comparisons with state of the art information–theoretic methods have demonstrated the competitive performance of MIDER, as well as its versatility. Its use does not demand any a priori knowledge from the user; the default settings and the adaptive nature of the method provide good results for a wide

  13. AN EDUCATIONAL THEORY MODEL--(SIGGS), AN INTEGRATION OF SET THEORY, INFORMATION THEORY, AND GRAPH THEORY WITH GENERAL SYSTEMS THEORY.

    ERIC Educational Resources Information Center

    MACCIA, ELIZABETH S.; AND OTHERS

    AN ANNOTATED BIBLIOGRAPHY OF 20 ITEMS AND A DISCUSSION OF ITS SIGNIFICANCE WAS PRESENTED TO DESCRIBE CURRENT UTILIZATION OF SUBJECT THEORIES IN THE CONSTRUCTION OF AN EDUCATIONAL THEORY. ALSO, A THEORY MODEL WAS USED TO DEMONSTRATE CONSTRUCTION OF A SCIENTIFIC EDUCATIONAL THEORY. THE THEORY MODEL INCORPORATED SET THEORY (S), INFORMATION THEORY…

  14. Using complex networks towards information retrieval and diagnostics in multidimensional imaging

    PubMed Central

    Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen

    2015-01-01

    We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers. PMID:26626047

  15. Information spread in networks: Games, optimal control, and stabilization

    NASA Astrophysics Data System (ADS)

    Khanafer, Ali

    This thesis focuses on designing efficient mechanisms for controlling information spread in networks. We consider two models for information spread. The first one is the well-known distributed averaging dynamics. The second model is a nonlinear one that describes virus spread in computer and biological networks. We seek to design optimal, robust, and stabilizing controllers under practical constraints. For distributed averaging networks, we study the interaction between a network designer and an adversary. We consider two types of attacks on the network. In Attack-I, the adversary strategically disconnects a set of links to prevent the nodes from reaching consensus. Meanwhile, the network designer assists the nodes in reaching consensus by changing the weights of a limited number of links in the network. We formulate two problems to describe this competition where the order in which the players act is reversed in the two problems. Although the canonical equations provided by the Pontryagin's Maximum Principle (MP) seem to be intractable, we provide an alternative characterization for the optimal strategies that makes connection to potential theory. Further, we provide a sufficient condition for the existence of a saddle-point equilibrium (SPE) for the underlying zero-sum game. In Attack-II, the designer and the adversary are both capable of altering the measurements of all nodes in the network by injecting global signals. We impose two constraints on both players: a power constraint and an energy constraint. We assume that the available energy to each player is not sufficient to operate at maximum power throughout the horizon of the game. We show the existence of an SPE and derive the optimal strategies in closed form for this attack scenario. As an alternative to the "network designer vs. adversary" framework, we investigate the possibility of stabilizing unknown network diffusion processes using a distributed mechanism, where the uncertainty is due to an attack

  16. Exploring network operations for data and information networks

    NASA Astrophysics Data System (ADS)

    Yao, Bing; Su, Jing; Ma, Fei; Wang, Xiaomin; Zhao, Xiyang; Yao, Ming

    2017-01-01

    Barabási and Albert, in 1999, formulated scale-free models based on some real networks: World-Wide Web, Internet, metabolic and protein networks, language or sexual networks. Scale-free networks not only appear around us, but also have high qualities in the world. As known, high quality information networks can transfer feasibly and efficiently data, clearly, their topological structures are very important for data safety. We build up network operations for constructing large scale of dynamic networks from smaller scale of network models having good property and high quality. We focus on the simplest operators to formulate complex operations, and are interesting on the closeness of operations to desired network properties.

  17. Neural network approaches to capture temporal information

    NASA Astrophysics Data System (ADS)

    van Veelen, Martijn; Nijhuis, Jos; Spaanenburg, Ben

    2000-05-01

    The automated design and construction of neural networks receives growing attention of the neural networks community. Both the growing availability of computing power and development of mathematical and probabilistic theory have had severe impact on the design and modelling approaches of neural networks. This impact is most apparent in the use of neural networks to time series prediction. In this paper, we give our views on past, contemporary and future design and modelling approaches to neural forecasting.

  18. An information dimension of weighted complex networks

    NASA Astrophysics Data System (ADS)

    Wen, Tao; Jiang, Wen

    2018-07-01

    The fractal and self-similarity are important properties in complex networks. Information dimension is a useful dimension for complex networks to reveal these properties. In this paper, an information dimension is proposed for weighted complex networks. Based on the box-covering algorithm for weighted complex networks (BCANw), the proposed method can deal with the weighted complex networks which appear frequently in the real-world, and it can get the influence of the number of nodes in each box on the information dimension. To show the wide scope of information dimension, some applications are illustrated, indicating that the proposed method is effective and feasible.

  19. Computer-Based Information Networks: Selected Examples.

    ERIC Educational Resources Information Center

    Hardesty, Larry

    The history, purpose, and operation of six computer-based information networks are described in general and nontechnical terms. In the introduction the many definitions of an information network are explored. Ohio College Library Center's network (OCLC) is the first example. OCLC began in 1963, and since early 1973 has been extending its services…

  20. Satisfaction with social networks: an examination of socioemotional selectivity theory across cohorts.

    PubMed

    Lansford, J E; Sherman, A M; Antonucci, T C

    1998-12-01

    This study examines L. L. Carstensen's (1993, 1995) socioemotional selectivity theory within and across three cohorts spanning 4 decades. Socioemotional selectivity theory predicts that as individuals age, they narrow their social networks to devote more emotional resources to fewer relationships with close friends and family. Data from 3 cohorts of nationally representative samples were analyzed to determine whether respondents' satisfaction with the size of their social networks differed by age, cohort, or both. Results support socioemotional selectivity theory: More older adults than younger adults were satisfied with the current size of their social networks rather than wanting larger networks. These findings are consistent across all cohorts. Results are discussed with respect to social relationships across the life course.

  1. Analysing collaboration among HIV agencies through combining network theory and relational coordination.

    PubMed

    Khosla, Nidhi; Marsteller, Jill Ann; Hsu, Yea Jen; Elliott, David L

    2016-02-01

    Agencies with different foci (e.g. nutrition, social, medical, housing) serve people living with HIV (PLHIV). Serving needs of PLHIV comprehensively requires a high degree of coordination among agencies which often benefits from more frequent communication. We combined Social Network theory and Relational Coordination theory to study coordination among HIV agencies in Baltimore. Social Network theory implies that actors (e.g., HIV agencies) establish linkages amongst themselves in order to access resources (e.g., information). Relational Coordination theory suggests that high quality coordination among agencies or teams relies on the seven dimensions of frequency, timeliness and accuracy of communication, problem-solving communication, knowledge of agencies' work, mutual respect and shared goals. We collected data on frequency of contact from 57 agencies using a roster method. Response options were ordinal ranging from 'not at all' to 'daily'. We analyzed data using social network measures. Next, we selected agencies with which at least one-third of the sample reported monthly or more frequent interaction. This yielded 11 agencies whom we surveyed on seven relational coordination dimensions with questions scored on a Likert scale of 1-5. Network density, defined as the proportion of existing connections to all possible connections, was 20% when considering monthly or higher interaction. Relational coordination scores from individual agencies to others ranged between 1.17 and 5.00 (maximum possible score 5). The average scores for different dimensions across all agencies ranged between 3.30 and 4.00. Shared goals (4.00) and mutual respect (3.91) scores were highest, while scores such as knowledge of each other's work and problem-solving communication were relatively lower. Combining theoretically driven analyses in this manner offers an innovative way to provide a comprehensive picture of inter-agency coordination and the quality of exchange that underlies

  2. Integrated design of multivariable hydrometric networks using entropy theory with a multiobjective optimization approach

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Hwang, T.; Vose, J. M.; Martin, K. L.; Band, L. E.

    2016-12-01

    Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.

  3. Integrated design of multivariable hydrometric networks using entropy theory with a multiobjective optimization approach

    NASA Astrophysics Data System (ADS)

    Keum, J.; Coulibaly, P. D.

    2017-12-01

    Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.

  4. Optimal Information Processing in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Wiggins, Chris

    2012-02-01

    A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.

  5. Information Networks in Biomedicine

    ERIC Educational Resources Information Center

    Millard, William L.

    1975-01-01

    Describes current biomedical information networks, focusing on those with an educational function, and elaborates on the problems encountered in planning, implementing, utilizing and evaluating such networks. Journal of Biocommunication, T. Banks, Educ. TV-431N, U. of Calif., San Francisco 94143. Subscription Rates: individuals and libraries,…

  6. The Embedded Self: A Social Networks Approach to Identity Theory

    ERIC Educational Resources Information Center

    Walker, Mark H.; Lynn, Freda B.

    2013-01-01

    Despite the fact that key sociological theories of self and identity view the self as fundamentally rooted in networks of interpersonal relationships, empirical research investigating how personal network structure influences the self is conspicuously lacking. To address this gap, we examine links between network structure and role identity…

  7. Graph theory network function in Parkinson's disease assessed with electroencephalography.

    PubMed

    Utianski, Rene L; Caviness, John N; van Straaten, Elisabeth C W; Beach, Thomas G; Dugger, Brittany N; Shill, Holly A; Driver-Dunckley, Erika D; Sabbagh, Marwan N; Mehta, Shyamal; Adler, Charles H; Hentz, Joseph G

    2016-05-01

    To determine what differences exist in graph theory network measures derived from electroencephalography (EEG), between Parkinson's disease (PD) patients who are cognitively normal (PD-CN) and matched healthy controls; and between PD-CN and PD dementia (PD-D). EEG recordings were analyzed via graph theory network analysis to quantify changes in global efficiency and local integration. This included minimal spanning tree analysis. T-tests and correlations were used to assess differences between groups and assess the relationship with cognitive performance. Network measures showed increased local integration across all frequency bands between control and PD-CN; in contrast, decreased local integration occurred in PD-D when compared to PD-CN in the alpha1 frequency band. Differences found in PD-MCI mirrored PD-D. Correlations were found between network measures and assessments of global cognitive performance in PD. Our results reveal distinct patterns of band and network measure type alteration and breakdown for PD, as well as with cognitive decline in PD. These patterns suggest specific ways that interaction between cortical areas becomes abnormal and contributes to PD symptoms at various stages. Graph theory analysis by EEG suggests that network alteration and breakdown are robust attributes of PD cortical dysfunction pathophysiology. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Information Security and Privacy in Network Environments.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    The use of information networks for business and government is expanding enormously. Government use of networks features prominently in plans to make government more efficient, effective, and responsive. But the transformation brought about by the networking also raises new concerns for the security and privacy of networked information. This…

  9. Assortativeness and information in scale-free networks

    NASA Astrophysics Data System (ADS)

    Piraveenan, M.; Prokopenko, M.; Zomaya, A. Y.

    2009-02-01

    We analyze Shannon information of scale-free networks in terms of their assortativeness, and identify classes of networks according to the dependency of the joint remaining degree distribution on the assortativeness. We conjecture that these classes comprise minimalistic and maximalistic networks in terms of Shannon information. For the studied classes, the information is shown to depend non-linearly on the absolute value of the assortativeness, with the dominant term of the relationship being a power-law. We exemplify this dependency using a range of real-world networks. Optimization of scale-free networks according to information they contain depends on the landscape of parameters’ search-space, and we identify two regions of interest: a slope region and a stability region. In the slope region, there is more freedom to generate and evaluate candidate networks since the information content can be changed easily by modifying only the assortativeness, while even a small change in the power-law’s scaling exponent brings a reward in a higher rate of information change. This feature may explain why the exponents of real-world scale-free networks are within a certain range, defined by the slope and stability regions.

  10. Linear control theory for gene network modeling.

    PubMed

    Shin, Yong-Jun; Bleris, Leonidas

    2010-09-16

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  11. Climate change education in informal settings: Using boundary objects to frame network dissemination

    NASA Astrophysics Data System (ADS)

    Steiner, Mary Ann

    This study of climate change education dissemination takes place in the context of a larger project where institutions in four cities worked together to develop a linked set of informal learning experiences about climate change. Each city developed an organizational network to explore new ways to connect urban audiences with climate change education. The four city-specific networks shared tools, resources, and knowledge with each other. The networks were related in mission and goals, but were structured and functioned differently depending on the city context. This study illustrates how the tools, resources, and knowledge developed in one network were shared with networks in two additional cities. Boundary crossing theory frames the study to describe the role of objects and processes in sharing between networks. Findings suggest that the goals, capacity and composition of networks resulted in a different emphasis in dissemination efforts, in one case to push the approach out to partners for their own work and in the other to pull partners into a more collaborative stance. Learning experiences developed in each city as a result of the dissemination reflected these differences in the city-specific emphasis with the push city diving into messy examples of the approach to make their own examples, and the pull city offering polished experiences to partners in order to build confidence in the climate change messaging. The networks themselves underwent different kinds of growth and change as a result of dissemination. The emphasis on push and use of messy examples resulted in active use of the principles of the approach and the pull emphasis with polished examples resulted in the cultivation of partnerships with the hub and the potential to engage in the educational approach. These findings have implications for boundary object theory as a useful grounding for dissemination designs in the context of networks of informal learning organizations to support a shift in

  12. Graph Theory-Based Pinning Synchronization of Stochastic Complex Dynamical Networks.

    PubMed

    Li, Xiao-Jian; Yang, Guang-Hong

    2017-02-01

    This paper is concerned with the adaptive pinning synchronization problem of stochastic complex dynamical networks (CDNs). Based on algebraic graph theory and Lyapunov theory, pinning controller design conditions are derived, and the rigorous convergence analysis of synchronization errors in the probability sense is also conducted. Compared with the existing results, the topology structures of stochastic CDN are allowed to be unknown due to the use of graph theory. In particular, it is shown that the selection of nodes for pinning depends on the unknown lower bounds of coupling strengths. Finally, an example on a Chua's circuit network is given to validate the effectiveness of the theoretical results.

  13. Dynamical graph theory networks techniques for the analysis of sparse connectivity networks in dementia

    NASA Astrophysics Data System (ADS)

    Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke

    2017-05-01

    Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.

  14. A social network model for the development of a 'Theory of Mind'

    NASA Astrophysics Data System (ADS)

    Harré, Michael S.

    2013-02-01

    A "Theory of Mind" is one of the most important skills we as humans have developed; It enables us to infer the mental states and intentions of others, build stable networks of relationships and it plays a central role in our psychological make-up and development. Findings published earlier this year have also shown that we as a species as well as each of us individually benefit from the enlargement of the underlying neuro-anatomical regions that support our social networks, mediated by our Theory of Mind that stabilises these networks. On the basis of such progress and that of earlier work, this paper draws together several different strands from psychology, behavioural economics and network theory in order to generate a novel theoretical representation of the development of our social-cognition and how subsequent larger social networks enables much of our cultural development but at the increased risk of mental disorders.

  15. Social Capital Theory: Implications for Women's Networking and Learning

    ERIC Educational Resources Information Center

    Alfred, Mary V.

    2009-01-01

    This chapter describes social capital theory as a framework for exploring women's networking and social capital resources. It presents the foundational assumptions of the theory, the benefits and risks of social capital engagement, a feminist critique of social capital, and the role of social capital in adult learning.

  16. A Mathematical Theory of System Information Flow

    DTIC Science & Technology

    2016-06-27

    AFRL-AFOSR-VA-TR-2016-0232 A Mathematical Theory of System Information Flow Michael Mislove ADMINISTRATORS OF THE TULANE EDUCATIONAL FUND THE 6823...MM-YYYY) 17-06-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 27MAR2013 - 31MAR2016 4. TITLE AND SUBTITLE A Mathematical Theory of System...systems using techniques from information theory , domain theory and other areas of mathematics and computer science. Over time, the focus shifted

  17. Up the ANTe: Understanding Entrepreneurial Leadership Learning through Actor-Network Theory

    ERIC Educational Resources Information Center

    Smith, Sue; Kempster, Steve; Barnes, Stewart

    2017-01-01

    This article explores the role of educators in supporting the development of entrepreneurial leadership learning by creating peer learning networks of owner-managers of small businesses. Using actor-network theory, the authors think through the process of constructing and maintaining a peer learning network (conceived of as an actor-network) and…

  18. Actor-network theory: a tool to support ethical analysis of commercial genetic testing.

    PubMed

    Williams-Jones, Bryn; Graham, Janice E

    2003-12-01

    Social, ethical and policy analysis of the issues arising from gene patenting and commercial genetic testing is enhanced by the application of science and technology studies, and Actor-Network Theory (ANT) in particular. We suggest the potential for transferring ANT's flexible nature to an applied heuristic methodology for gathering empirical information and for analysing the complex networks involved in the development of genetic technologies. Three concepts are explored in this paper--actor-networks, translation, and drift--and applied to the case of Myriad Genetics and their commercial BRACAnalysis genetic susceptibility test for hereditary breast cancer. Treating this test as an active participant in socio-technical networks clarifies the extent to which it interacts with, shapes and is shaped by people, other technologies, and institutions. Such an understanding enables more sophisticated and nuanced technology assessment, academic analysis, as well as public debate about the social, ethical and policy implications of the commercialization of new genetic technologies.

  19. Dynamical influence processes on networks: general theory and applications to social contagion.

    PubMed

    Harris, Kameron Decker; Danforth, Christopher M; Dodds, Peter Sheridan

    2013-08-01

    We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean-field theory for random networks and show this predicts that the dynamics on the network is a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "limited imitation contagion" model on Poisson random graphs, finding agreement between the mean-field theory and stochastic simulations.

  20. Surrogate health information seeking in Europe: Influence of source type and social network variables.

    PubMed

    Reifegerste, Doreen; Bachl, Marko; Baumann, Eva

    2017-07-01

    Health information seeking on behalf of others is an important form of social support by which laypeople provide important sources of information for patients. Based on social network theory, we analyze whether this phenomenon also occurs in offline sources. We also seek to learn more about the type of relationships between information seekers and patients, as research to date indicates that surrogate seeking mostly occurs in close relationships between the seeker and the patient. Using a large-scale representative survey from the 28 member states of the European Union (N=26,566), our data comprise all respondents who reported seeking health information online or offline (n=18,750; 70.6%). Within the past year, 61.0% of the online health information seekers and 61.1% of the offline health information seekers had searched on behalf of someone else. Independent of the information channel, surrogate seekers primarily searched for health information for family members (online: 89.8%; offline: 92.8%); they were significantly less likely to search for information on behalf of someone with whom they had weaker ties, such as colleagues (online: 25.1%; offline: 24.4%). In a multilevel generalized linear model, living together with someone was by far the most relevant determinant for surrogate seeking, with differences between countries or Internet activity being less important. These results support the assumptions of social network theory. Implications are discussed, especially with regard to the provision of adequate health information. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Information Network Model Query Processing

    NASA Astrophysics Data System (ADS)

    Song, Xiaopu

    Information Networking Model (INM) [31] is a novel database model for real world objects and relationships management. It naturally and directly supports various kinds of static and dynamic relationships between objects. In INM, objects are networked through various natural and complex relationships. INM Query Language (INM-QL) [30] is designed to explore such information network, retrieve information about schema, instance, their attributes, relationships, and context-dependent information, and process query results in the user specified form. INM database management system has been implemented using Berkeley DB, and it supports INM-QL. This thesis is mainly focused on the implementation of the subsystem that is able to effectively and efficiently process INM-QL. The subsystem provides a lexical and syntactical analyzer of INM-QL, and it is able to choose appropriate evaluation strategies and index mechanism to process queries in INM-QL without the user's intervention. It also uses intermediate result structure to hold intermediate query result and other helping structures to reduce complexity of query processing.

  2. Theory of correlation in a network with synaptic depression

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Okada, Masato

    2012-01-01

    Synaptic depression affects not only the mean responses of neurons but also the correlation of response variability in neural populations. Although previous studies have constructed a theory of correlation in a spiking neuron model by using the mean-field theory framework, synaptic depression has not been taken into consideration. We expanded the previous theoretical framework in this study to spiking neuron models with short-term synaptic depression. On the basis of this theory we analytically calculated neural correlations in a ring attractor network with Mexican-hat-type connectivity, which was used as a model of the primary visual cortex. The results revealed that synaptic depression reduces neural correlation, which could be beneficial for sensory coding. Furthermore, our study opens the way for theoretical studies on the effect of interaction change on the linear response function in large stochastic networks.

  3. Network meta-analysis, electrical networks and graph theory.

    PubMed

    Rücker, Gerta

    2012-12-01

    Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Information Theory for Information Science: Antecedents, Philosophy, and Applications

    ERIC Educational Resources Information Center

    Losee, Robert M.

    2017-01-01

    This paper provides an historical overview of the theoretical antecedents leading to information theory, specifically those useful for understanding and teaching information science and systems. Information may be discussed in a philosophical manner and at the same time be measureable. This notion of information can thus be the subject of…

  5. Knowledge diffusion in complex networks by considering time-varying information channels

    NASA Astrophysics Data System (ADS)

    Zhu, He; Ma, Jing

    2018-03-01

    In this article, based on a model of epidemic spreading, we explore the knowledge diffusion process with an innovative mechanism for complex networks by considering time-varying information channels. To cover the knowledge diffusion process in homogeneous and heterogeneous networks, two types of networks (the BA network and the ER network) are investigated. The mean-field theory is used to theoretically draw the knowledge diffusion threshold. Numerical simulation demonstrates that the knowledge diffusion threshold is almost linearly correlated with the mean of the activity rate. In addition, under the influence of the activity rate and distinct from the classic Susceptible-Infected-Susceptible (SIS) model, the density of knowers almost linearly grows with the spreading rate. Finally, in consideration of the ubiquitous mechanism of innovation, we further study the evolution of knowledge in our proposed model. The results suggest that compared with the effect of the spreading rate, the average knowledge version of the population is affected more by the innovation parameter and the mean of the activity rate. Furthermore, in the BA network, the average knowledge version of individuals with higher degree is always newer than those with lower degree.

  6. An Attractor Network in the Hippocampus: Theory and Neurophysiology

    ERIC Educational Resources Information Center

    Rolls, Edmund T.

    2007-01-01

    A quantitative computational theory of the operation of the CA3 system as an attractor or autoassociation network is described. Based on the proposal that CA3-CA3 autoassociative networks are important for episodic or event memory in which space is a component (place in rodents and spatial view in primates), it has been shown behaviorally that the…

  7. Distributed Data Networks That Support Public Health Information Needs.

    PubMed

    Tabano, David C; Cole, Elizabeth; Holve, Erin; Davidson, Arthur J

    Data networks, consisting of pooled electronic health data assets from health care providers serving different patient populations, promote data sharing, population and disease monitoring, and methods to assess interventions. Better understanding of data networks, and their capacity to support public health objectives, will help foster partnerships, expand resources, and grow learning health systems. We conducted semistructured interviews with 16 key informants across the United States, identified as network stakeholders based on their respective experience in advancing health information technology and network functionality. Key informants were asked about their experience with and infrastructure used to develop data networks, including each network's utility to identify and characterize populations, usage, and sustainability. Among 11 identified data networks representing hundreds of thousands of patients, key informants described aggregated health care clinical data contributing to population health measures. Key informant interview responses were thematically grouped to illustrate how networks support public health, including (1) infrastructure and information sharing; (2) population health measures; and (3) network sustainability. Collaboration between clinical data networks and public health entities presents an opportunity to leverage infrastructure investments to support public health. Data networks can provide resources to enhance population health information and infrastructure.

  8. Imperishable Networks: Complexity Theory and Communication Networking-Bridging the Gap Between Algorithmic Information Theory and Communication Networking

    DTIC Science & Technology

    2003-04-01

    gener- ally considered to be passive data . Instead the genetic material should be capable of being algorith - mic information, that is, program code or...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other

  9. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks

    PubMed Central

    Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

    2017-01-01

    Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic. PMID:28245222

  10. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks.

    PubMed

    Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

    2017-01-01

    Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.

  11. Information Foraging Theory: A Framework for Intelligence Analysis

    DTIC Science & Technology

    2014-11-01

    oceanographic information, human intelligence (HUMINT), open-source intelligence ( OSINT ), and information provided by other governmental departments [1][5...Human Intelligence IFT Information Foraging Theory LSA Latent Semantic Similarity MVT Marginal Value Theorem OFT Optimal Foraging Theory OSINT

  12. A security architecture for health information networks.

    PubMed

    Kailar, Rajashekar; Muralidhar, Vinod

    2007-10-11

    Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today's healthcare enterprise. Recent work on 'nationwide health information network' architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately.

  13. Extracting information from multiplex networks

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ ˜ S for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  14. How multiple social networks affect user awareness: The information diffusion process in multiplex networks

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Tang, Shaoting; Fang, Wenyi; Guo, Quantong; Zhang, Xiao; Zheng, Zhiming

    2015-10-01

    The information diffusion process in single complex networks has been extensively studied, especially for modeling the spreading activities in online social networks. However, individuals usually use multiple social networks at the same time, and can share the information they have learned from one social network to another. This phenomenon gives rise to a new diffusion process on multiplex networks with more than one network layer. In this paper we account for this multiplex network spreading by proposing a model of information diffusion in two-layer multiplex networks. We develop a theoretical framework using bond percolation and cascading failure to describe the intralayer and interlayer diffusion. This allows us to obtain analytical solutions for the fraction of informed individuals as a function of transmissibility T and the interlayer transmission rate θ . Simulation results show that interaction between layers can greatly enhance the information diffusion process. And explosive diffusion can occur even if the transmissibility of the focal layer is under the critical threshold, due to interlayer transmission.

  15. Building a Unified Information Network.

    ERIC Educational Resources Information Center

    Avram, Henriette D.

    1988-01-01

    Discusses cooperative efforts between research organizations and libraries to create a national information network. Topics discussed include the Linked System Project (LSP); technical processing versus reference and research functions; Open Systems Interconnection (OSI) Reference Model; the National Science Foundation Network (NSFNET); and…

  16. The Network Information Management System (NIMS) in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Wales, K. J.

    1983-01-01

    In an effort to better manage enormous amounts of administrative, engineering, and management data that is distributed worldwide, a study was conducted which identified the need for a network support system. The Network Information Management System (NIMS) will provide the Deep Space Network with the tools to provide an easily accessible source of valid information to support management activities and provide a more cost-effective method of acquiring, maintaining, and retrieval data.

  17. Moving from theory to practice: A participatory social network mapping approach to address unmet need for family planning in Benin.

    PubMed

    Igras, Susan; Diakité, Mariam; Lundgren, Rebecka

    2017-07-01

    In West Africa, social factors influence whether couples with unmet need for family planning act on birth-spacing desires. Tékponon Jikuagou is testing a social network-based intervention to reduce social barriers by diffusing new ideas. Individuals and groups judged socially influential by their communities provide entrée to networks. A participatory social network mapping methodology was designed to identify these diffusion actors. Analysis of monitoring data, in-depth interviews, and evaluation reports assessed the methodology's acceptability to communities and staff and whether it produced valid, reliable data to identify influential individuals and groups who diffuse new ideas through their networks. Results indicated the methodology's acceptability. Communities were actively and equitably engaged. Staff appreciated its ability to yield timely, actionable information. The mapping methodology also provided valid and reliable information by enabling communities to identify highly connected and influential network actors. Consistent with social network theory, this methodology resulted in the selection of informal groups and individuals in both informal and formal positions. In-depth interview data suggest these actors were diffusing new ideas, further confirming their influence/connectivity. The participatory methodology generated insider knowledge of who has social influence, challenging commonly held assumptions. Collecting and displaying information fostered staff and community learning, laying groundwork for social change.

  18. Mission Networks: An Evolution in Information Sharing

    DTIC Science & Technology

    2012-03-20

    Publication 6-0 Joint Communications System states that the Global Information Grid ( GIG ) composed of the Defense Information Systems Network (DISN...of the GIG while the other branches of the United States Government (USG) such as the Department of State (DoS) utilize the ’.gov’ sub-network of...the GIG . The result is that unless the DOD has a ’need to know’ it will never have access to the DOS information that resides on the ’.gov’ sub-network

  19. Differential theory of learning for efficient neural network pattern recognition

    NASA Astrophysics Data System (ADS)

    Hampshire, John B., II; Vijaya Kumar, Bhagavatula

    1993-09-01

    We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generate well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.

  20. Differential theory of learning for efficient neural network pattern recognition

    NASA Astrophysics Data System (ADS)

    Hampshire, John B., II; Vijaya Kumar, Bhagavatula

    1993-08-01

    We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generalize well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.

  1. Students' Informal Peer Feedback Networks

    ERIC Educational Resources Information Center

    Headington, Rita

    2018-01-01

    The nature and significance of students' informal peer feedback networks is an under-explored area. This paper offers the findings of a longitudinal investigation of the informal peer feedback networks of a cohort of student teachers [n = 105] across the three years of a UK primary education degree programme. It tracked the dynamic nature of these…

  2. Optimal control of epidemic information dissemination over networks.

    PubMed

    Chen, Pin-Yu; Cheng, Shin-Ming; Chen, Kwang-Cheng

    2014-12-01

    Information dissemination control is of crucial importance to facilitate reliable and efficient data delivery, especially in networks consisting of time-varying links or heterogeneous links. Since the abstraction of information dissemination much resembles the spread of epidemics, epidemic models are utilized to characterize the collective dynamics of information dissemination over networks. From a systematic point of view, we aim to explore the optimal control policy for information dissemination given that the control capability is a function of its distribution time, which is a more realistic model in many applications. The main contributions of this paper are to provide an analytically tractable model for information dissemination over networks, to solve the optimal control signal distribution time for minimizing the accumulated network cost via dynamic programming, and to establish a parametric plug-in model for information dissemination control. In particular, we evaluate its performance in mobile and generalized social networks as typical examples.

  3. Using graph theory to analyze biological networks

    PubMed Central

    2011-01-01

    Understanding complex systems often requires a bottom-up analysis towards a systems biology approach. The need to investigate a system, not only as individual components but as a whole, emerges. This can be done by examining the elementary constituents individually and then how these are connected. The myriad components of a system and their interactions are best characterized as networks and they are mainly represented as graphs where thousands of nodes are connected with thousands of vertices. In this article we demonstrate approaches, models and methods from the graph theory universe and we discuss ways in which they can be used to reveal hidden properties and features of a network. This network profiling combined with knowledge extraction will help us to better understand the biological significance of the system. PMID:21527005

  4. A Security Architecture for Health Information Networks

    PubMed Central

    Kailar, Rajashekar

    2007-01-01

    Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today’s healthcare enterprise. Recent work on ‘nationwide health information network’ architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately. PMID:18693862

  5. New scaling relation for information transfer in biological networks

    PubMed Central

    Kim, Hyunju; Davies, Paul; Walker, Sara Imari

    2015-01-01

    We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781–4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös–Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties. PMID:26701883

  6. Essential elements of online information networks on invasive alien species

    USGS Publications Warehouse

    Simpson, A.; Sellers, E.; Grosse, A.; Xie, Y.

    2006-01-01

    In order to be effective, information must be placed in the proper context and organized in a manner that is logical and (preferably) standardized. Recently, invasive alien species (IAS) scientists have begun to create online networks to share their information concerning IAS prevention and control. At a special networking session at the Beijing International Symposium on Biological Invasions, an online Eastern Asia-North American IAS Information Network (EA-NA Network) was proposed. To prepare for the development of this network, and to provide models for other regional collaborations, we compare four examples of global, regional, and national online IAS information networks: the Global Invasive Species Information Network, the Invasives Information Network of the Inter-American Biodiversity Information Network, the Chinese Species Information System, and the Invasive Species Information Node of the US National Biological Information Infrastructure. We conclude that IAS networks require a common goal, dedicated leaders, effective communication, and broad endorsement, in order to obtain sustainable, long-term funding and long-term stability. They need to start small, use the experience of other networks, partner with others, and showcase benefits. Global integration and synergy among invasive species networks will succeed with contributions from both the top-down and the bottom-up. ?? 2006 Springer.

  7. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-05-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.

  8. Informal networks: the company behind the chart.

    PubMed

    Krackhardt, D; Hanson, J R

    1993-01-01

    A glance at an organizational chart can show who's the boss and who reports to whom. But this formal chart won't reveal which people confer on technical matters or discuss office politics over lunch. Much of the real work in any company gets done through this informal organization with its complex networks of relationships that cross functions and divisions. According to consultants David Krackhardt and Jeffrey Hanson, managers can harness the true power in their companies by diagramming three types of networks: the advice network, which reveals the people to whom others turn to get work done; the trust network, which uncovers who shares delicate information; and the communication network, which shows who talks about work-related matters. Using employee questionnaires, managers can generate network maps that will get to the root of many organizational problems. When a task force in a computer company, for example, was not achieving its goals, the CEO turned to network maps to find out why. He discovered that the task force leader was central in the advice network but marginal in the trust network. Task force members did not believe he would look out for their interests, so the CEO used the trust map to find someone to share responsibility for the group. And when a bank manager saw in the network map that there was little communication between tellers and supervisors, he looked for ways to foster interaction among employees of all levels. As companies continue to flatten and rely on teams, managers must rely less on their authority and more on understanding these informal networks. Managers who can use maps to identify, leverage, and revamp informal networks will have the key to success.

  9. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions

    PubMed Central

    Muhammed, Dalhatu; Anisi, Mohammad Hossein; Vargas-Rosales, Cesar; Khan, Anwar

    2018-01-01

    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node’s cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted. PMID:29389874

  10. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    PubMed

    Muhammed, Dalhatu; Anisi, Mohammad Hossein; Zareei, Mahdi; Vargas-Rosales, Cesar; Khan, Anwar

    2018-02-01

    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted.

  11. Noise enhances information transfer in hierarchical networks.

    PubMed

    Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.

  12. Noise enhances information transfer in hierarchical networks

    PubMed Central

    Czaplicka, Agnieszka; Holyst, Janusz A.; Sloot, Peter M. A.

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor. PMID:23390574

  13. Predicting Information Flows in Network Traffic.

    ERIC Educational Resources Information Center

    Hinich, Melvin J.; Molyneux, Robert E.

    2003-01-01

    Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)

  14. Stoichiometric network theory for nonequilibrium biochemical systems.

    PubMed

    Qian, Hong; Beard, Daniel A; Liang, Shou-dan

    2003-02-01

    We introduce the basic concepts and develop a theory for nonequilibrium steady-state biochemical systems applicable to analyzing large-scale complex isothermal reaction networks. In terms of the stoichiometric matrix, we demonstrate both Kirchhoff's flux law sigma(l)J(l)=0 over a biochemical species, and potential law sigma(l) mu(l)=0 over a reaction loop. They reflect mass and energy conservation, respectively. For each reaction, its steady-state flux J can be decomposed into forward and backward one-way fluxes J = J+ - J-, with chemical potential difference deltamu = RT ln(J-/J+). The product -Jdeltamu gives the isothermal heat dissipation rate, which is necessarily non-negative according to the second law of thermodynamics. The stoichiometric network theory (SNT) embodies all of the relevant fundamental physics. Knowing J and deltamu of a biochemical reaction, a conductance can be computed which directly reflects the level of gene expression for the particular enzyme. For sufficiently small flux a linear relationship between J and deltamu can be established as the linear flux-force relation in irreversible thermodynamics, analogous to Ohm's law in electrical circuits.

  15. Conceptual Developments in Schema Theory.

    ERIC Educational Resources Information Center

    Bigenho, Frederick W., Jr.

    The conceptual development of schema theory, the way an individual organizes knowledge, is discussed, reviewing a range of perspectives regarding schema. Schema has been defined as the interfacing of incoming information with prior knowledge, clustered in networks. These networks comprise a superordinate concept and supporting information. The…

  16. The role of social support and social networks in health information-seeking behavior among Korean Americans: a qualitative study.

    PubMed

    Kim, Wonsun; Kreps, Gary L; Shin, Cha-Nam

    2015-04-28

    This study used social network theory to explore the role of social support and social networks in health information-seeking behavior among Korean American (KA) adults. A descriptive qualitative study using a web-based online survey was conducted from January 2013 to April 2013 in the U.S. The survey included open-ended questions about health information-seeking experiences in personal social networks and their importance in KA adults. Themes emerging from a constant comparative analysis of the narrative comments by 129 of the 202 respondents were analyzed. The sample consisted of 129 KA adults, 64.7% female, with a mean age of 33.2 (SD = 7.7). Friends, church members, and family members were the important network connections for KAs to obtain health information. KAs looked for a broad range of health information from social network members, from recommendations and reviews of hospitals/doctors to specific diseases or health conditions. These social networks were regarded as important for KAs because there were no language barriers, social network members had experiences similar to those of other KAs, they felt a sense of belonging with those in their networks, the network connections promoted increased understanding of different health care systems of the U.S. system, and communication with these network connections helped enhance feelings of being physically and mentally healthy. This study demonstrates the important role that social support and personal social networks perform in the dissemination of health information for a large ethnic population, KAs, who confront distinct cultural challenges when seeking health information in the U.S. Data from this study also illustrate the cultural factors that influence health information acquisition and access to social support for ethnic minorities. This study provides practical insights for professionals in health information services, namely, that social networks can be employed as a channel for disseminating

  17. A brief historical introduction to Euler's formula for polyhedra, topology, graph theory and networks

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2010-09-01

    This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Königsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real physical systems are included. We also mention some important and modern applications of graph theory or network problems from transportation to telecommunications. Graphs or networks are effectively used as powerful tools in industrial, electrical and civil engineering, communication networks in the planning of business and industry. Graph theory and combinatorics can be used to understand the changes that occur in many large and complex scientific, technical and medical systems. With the advent of fast large computers and the ubiquitous Internet consisting of a very large network of computers, large-scale complex optimization problems can be modelled in terms of graphs or networks and then solved by algorithms available in graph theory. Many large and more complex combinatorial problems dealing with the possible arrangements of situations of various kinds, and computing the number and properties of such arrangements can be formulated in terms of networks. The Knight's tour problem, Hamilton's tour problem, problem of magic squares, the Euler Graeco-Latin squares problem and their modern developments in the twentieth century are also included.

  18. Consume, Modify, Share (CMS): The Interplay between Individual Decisions and Structural Network Properties in the Diffusion of Information.

    PubMed

    Koren, Hila; Kaminer, Ido; Raban, Daphne Ruth

    2016-01-01

    Widely used information diffusion models such as Independent Cascade Model, Susceptible Infected Recovered (SIR) and others fail to acknowledge that information is constantly subject to modification. Some aspects of information diffusion are best explained by network structural characteristics while in some cases strong influence comes from individual decisions. We introduce reinvention, the ability to modify information, as an individual level decision that affects the diffusion process as a whole. Based on a combination of constructs from the Diffusion of Innovations and the Critical Mass Theories, the present study advances the CMS (consume, modify, share) model which accounts for the interplay between network structure and human behavior and interactions. The model's building blocks include processes leading up to and following the formation of a critical mass of information adopters and disseminators. We examine the formation of an inflection point, information reach, sustainability of the diffusion process and collective value creation. The CMS model is tested on two directed networks and one undirected network, assuming weak or strong ties and applying constant and relative modification schemes. While all three networks are designed for disseminating new knowledge they differ in structural properties. Our findings suggest that modification enhances the diffusion of information in networks that support undirected connections and carries the biggest effect when information is shared via weak ties. Rogers' diffusion model and traditional information contagion models are fine tuned. Our results show that modifications not only contribute to a sustainable diffusion process, but also aid information in reaching remote areas of the network. The results point to the importance of cultivating weak ties, allowing reciprocal interaction among nodes and supporting the modification of information in promoting diffusion processes. These results have theoretical and

  19. Consume, Modify, Share (CMS): The Interplay between Individual Decisions and Structural Network Properties in the Diffusion of Information

    PubMed Central

    Koren, Hila; Kaminer, Ido

    2016-01-01

    Widely used information diffusion models such as Independent Cascade Model, Susceptible Infected Recovered (SIR) and others fail to acknowledge that information is constantly subject to modification. Some aspects of information diffusion are best explained by network structural characteristics while in some cases strong influence comes from individual decisions. We introduce reinvention, the ability to modify information, as an individual level decision that affects the diffusion process as a whole. Based on a combination of constructs from the Diffusion of Innovations and the Critical Mass Theories, the present study advances the CMS (consume, modify, share) model which accounts for the interplay between network structure and human behavior and interactions. The model's building blocks include processes leading up to and following the formation of a critical mass of information adopters and disseminators. We examine the formation of an inflection point, information reach, sustainability of the diffusion process and collective value creation. The CMS model is tested on two directed networks and one undirected network, assuming weak or strong ties and applying constant and relative modification schemes. While all three networks are designed for disseminating new knowledge they differ in structural properties. Our findings suggest that modification enhances the diffusion of information in networks that support undirected connections and carries the biggest effect when information is shared via weak ties. Rogers' diffusion model and traditional information contagion models are fine tuned. Our results show that modifications not only contribute to a sustainable diffusion process, but also aid information in reaching remote areas of the network. The results point to the importance of cultivating weak ties, allowing reciprocal interaction among nodes and supporting the modification of information in promoting diffusion processes. These results have theoretical and

  20. WATERSHED INFORMATION NETWORK

    EPA Science Inventory

    Resource Purpose:The Watershed Information Network is a set of about 30 web pages that are organized by topic. These pages access existing databases like the American Heritage Rivers Services database and Surf Your Watershed. WIN in itself has no data or data sets.
    L...

  1. Brain Network Theory Can Predict Whether Neuropsychological Outcomes Will Differ from Clinical Expectations.

    PubMed

    Warren, David E; Denburg, Natalie L; Power, Jonathan D; Bruss, Joel; Waldron, Eric J; Sun, Haoxin; Petersen, Steve E; Tranel, Daniel

    2017-02-01

    Theories of brain-network organization based on neuroimaging data have burgeoned in recent years, but the predictive power of such theories for cognition and behavior has only rarely been examined. Here, predictions from clinical neuropsychologists about the cognitive profiles of patients with focal brain lesions were used to evaluate a brain-network theory (Warren et al., 2014). Neuropsychologists made predictions regarding the neuropsychological profiles of a neurological patient sample (N = 30) based on lesion location. The neuropsychologists then rated the congruence of their predictions with observed neuropsychological outcomes, in regard to the "severity" of neuropsychological deficits and the "focality" of neuropsychological deficits. Based on the network theory, two types of lesion locations were identified: "target" locations (putative hubs in a brain-wide network) and "control" locations (hypothesized to play limited roles in network function). We found that patients with lesions of target locations (N = 19) had deficits of greater than expected severity that were more widespread than expected, whereas patients with lesions of control locations (N = 11) showed milder, circumscribed deficits that were more congruent with expectations. The findings for the target brain locations suggest that prevailing views of brain-behavior relationships may be sharpened and refined by integrating recently proposed network-oriented perspectives. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Network Theory: A Primer and Questions for Air Transportation Systems Applications

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    A new understanding (with potential applications to air transportation systems) has emerged in the past five years in the scientific field of networks. This development emerges in large part because we now have a new laboratory for developing theories about complex networks: The Internet. The premise of this new understanding is that most complex networks of interest, both of nature and of human contrivance, exhibit a fundamentally different behavior than thought for over two hundred years under classical graph theory. Classical theory held that networks exhibited random behavior, characterized by normal, (e.g., Gaussian or Poisson) degree distributions of the connectivity between nodes by links. The new understanding turns this idea on its head: networks of interest exhibit scale-free (or small world) degree distributions of connectivity, characterized by power law distributions. The implications of scale-free behavior for air transportation systems include the potential that some behaviors of complex system architectures might be analyzed through relatively simple approximations of local elements of the system. For air transportation applications, this presentation proposes a framework for constructing topologies (architectures) that represent the relationships between mobility, flight operations, aircraft requirements, and airspace capacity, and the related externalities in airspace procedures and architectures. The proposed architectures or topologies may serve as a framework for posing comparative and combinative analyses of performance, cost, security, environmental, and related metrics.

  3. Optimal multi-community network modularity for information diffusion

    NASA Astrophysics Data System (ADS)

    Wu, Jiaocan; Du, Ruping; Zheng, Yingying; Liu, Dong

    2016-02-01

    Studies demonstrate that community structure plays an important role in information spreading recently. In this paper, we investigate the impact of multi-community structure on information diffusion with linear threshold model. We utilize extended GN network that contains four communities and analyze dynamic behaviors of information that spreads on it. And we discover the optimal multi-community network modularity for information diffusion based on the social reinforcement. Results show that, within the appropriate range, multi-community structure will facilitate information diffusion instead of hindering it, which accords with the results derived from two-community network.

  4. Feasibility Evaluation of an On-site Generator Network by the Cooperative Game Theory

    NASA Astrophysics Data System (ADS)

    Komiyama, Ryoichi; Hayashi, Taketo; Fujii, Yasumasa; Yamaji, Kenji

    On-site generator, such as CGS (cogeneration system), is allegedly considered to be an effective end-use energy system in order to accomplish primary energy conservation, CO2 emission mitigation and system cost reduction, which characteristics eventually improve the whole performance of an existing energy system for the future. Considering the drawback of installing an end-use CGS into the customer with small or middle scale floor space, however, it is difficult to achieve those distinctive features because the thermal-electricity ratio of CGS does not always be in agreement with that of customer energy demand. In order to overcome that matching deficiency, it is hence better to organize an on-site generator network based on mutual electricity and heating transmission. But focusing on some cogenerators underlying their behaviors on maximizing their own profits, this on-site network, which situation corresponds to a grand coalition, is not necessarily established because of each cogenerator’s motivation to form a partial coalition and acquire its own profit as much as possible. In this paper, we attempt to analyze the optimal operation of an on-site generator network and identify by applying the nucleolus of the cooperative game theory the optimal benefit allocation strategy in order for the cogenerators to construct the network. Regarding the installation site of this network, the center of Tokyo area is assumed, which locational information includes floor space and so forth through a GIS (geographic information system) database. The results from the nucleolus suggest that all districts should impartially obtain the benefit from organizing network for the purpose of jointly attaining the system total cost reduction.

  5. Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach.

    PubMed

    Wang, Gaowei; Yuan, Ruoshi; Zhu, Xiaomei; Ao, Ping

    2018-01-01

    In light of ever apparent limitation of the current dominant cancer mutation theory, a quantitative hypothesis for cancer genesis and progression, endogenous molecular-cellular network hypothesis has been proposed from the systems biology perspective, now for more than 10 years. It was intended to include both the genetic and epigenetic causes to understand cancer. Its development enters the stage of meaningful interaction with experimental and clinical data and the limitation of the traditional cancer mutation theory becomes more evident. Under this endogenous network hypothesis, we established a core working network of hepatocellular carcinoma (HCC) according to the hypothesis and quantified the working network by a nonlinear dynamical system. We showed that the two stable states of the working network reproduce the main known features of normal liver and HCC at both the modular and molecular levels. Using endogenous network hypothesis and validated working network, we explored genetic mutation pattern in cancer and potential strategies to cure or relieve HCC from a totally new perspective. Patterns of genetic mutations have been traditionally analyzed by posteriori statistical association approaches in light of traditional cancer mutation theory. One may wonder the possibility of a priori determination of any mutation regularity. Here, we found that based on the endogenous network theory the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. Normal hepatocyte and cancerous hepatocyte stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable

  6. Analytical theory of polymer-network-mediated interaction between colloidal particles

    PubMed Central

    Di Michele, Lorenzo; Zaccone, Alessio; Eiser, Erika

    2012-01-01

    Nanostructured materials based on colloidal particles embedded in a polymer network are used in a variety of applications ranging from nanocomposite rubbers to organic-inorganic hybrid solar cells. Further, polymer-network-mediated colloidal interactions are highly relevant to biological studies whereby polymer hydrogels are commonly employed to probe the mechanical response of living cells, which can determine their biological function in physiological environments. The performance of nanomaterials crucially relies upon the spatial organization of the colloidal particles within the polymer network that depends, in turn, on the effective interactions between the particles in the medium. Existing models based on nonlocal equilibrium thermodynamics fail to clarify the nature of these interactions, precluding the way toward the rational design of polymer-composite materials. In this article, we present a predictive analytical theory of these interactions based on a coarse-grained model for polymer networks. We apply the theory to the case of colloids partially embedded in cross-linked polymer substrates and clarify the origin of attractive interactions recently observed experimentally. Monte Carlo simulation results that quantitatively confirm the theoretical predictions are also presented. PMID:22679289

  7. Analytical transport network theory to guide the design of 3-D microstructural networks in energy materials: Part 1. Flow without reactions

    NASA Astrophysics Data System (ADS)

    Cocco, Alex P.; Nakajo, Arata; Chiu, Wilson K. S.

    2017-12-01

    We present a fully analytical, heuristic model - the "Analytical Transport Network Model" - for steady-state, diffusive, potential flow through a 3-D network. Employing a combination of graph theory, linear algebra, and geometry, the model explicitly relates a microstructural network's topology and the morphology of its channels to an effective material transport coefficient (a general term meant to encompass, e.g., conductivity or diffusion coefficient). The model's transport coefficient predictions agree well with those from electrochemical fin (ECF) theory and finite element analysis (FEA), but are computed 0.5-1.5 and 5-6 orders of magnitude faster, respectively. In addition, the theory explicitly relates a number of morphological and topological parameters directly to the transport coefficient, whereby the distributions that characterize the structure are readily available for further analysis. Furthermore, ATN's explicit development provides insight into the nature of the tortuosity factor and offers the potential to apply theory from network science and to consider the optimization of a network's effective resistance in a mathematically rigorous manner. The ATN model's speed and relative ease-of-use offer the potential to aid in accelerating the design (with respect to transport), and thus reducing the cost, of energy materials.

  8. Critical Theory and Information Studies: A Marcusean Infusion

    ERIC Educational Resources Information Center

    Pyati, Ajit K.

    2006-01-01

    In the field of library and information science, also known as information studies, critical theory is often not included in debates about the discipline's theoretical foundations. This paper argues that the critical theory of Herbert Marcuse, in particular, has a significant contribution to make to the field of information studies. Marcuse's…

  9. 76 FR 67750 - Homeland Security Information Network Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0107] Homeland Security Information Network... Information Network Advisory Committee. SUMMARY: The Secretary of Homeland Security has determined that the renewal of the Homeland Security Information Network Advisory Committee (HSINAC) is necessary and in the...

  10. Information Network on Rural Development (INRD), Bangladesh.

    ERIC Educational Resources Information Center

    Wanasundra, Leelangi

    1994-01-01

    Discusses information networking in Bangladesh and describes the formation of the Information Network on Rural Development (INRD) which was initiated by the Center on Integrated Rural Development for Asia and the Pacific (CIRDAP). Organization, membership, activities, participation, and finance are examined. (four references) (LRW)

  11. An information spreading model based on online social networks

    NASA Astrophysics Data System (ADS)

    Wang, Tao; He, Juanjuan; Wang, Xiaoxia

    2018-01-01

    Online social platforms are very popular in recent years. In addition to spreading information, users could review or collect information on online social platforms. According to the information spreading rules of online social network, a new information spreading model, namely IRCSS model, is proposed in this paper. It includes sharing mechanism, reviewing mechanism, collecting mechanism and stifling mechanism. Mean-field equations are derived to describe the dynamics of the IRCSS model. Moreover, the steady states of reviewers, collectors and stiflers and the effects of parameters on the peak values of reviewers, collectors and sharers are analyzed. Finally, numerical simulations are performed on different networks. Results show that collecting mechanism and reviewing mechanism, as well as the connectivity of the network, make information travel wider and faster, and compared to WS network and ER network, the speed of reviewing, sharing and collecting information is fastest on BA network.

  12. Searching Information Sources in Networks

    DTIC Science & Technology

    2017-06-14

    SECURITY CLASSIFICATION OF: During the course of this project, we made significant progresses in multiple directions of the information detection...result on information source detection on non-tree networks; (2) The development of information source localization algorithms to detect multiple... information sources. The algorithms have provable performance guarantees and outperform existing algorithms in 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND

  13. Quantum Information Theory - an Invitation

    NASA Astrophysics Data System (ADS)

    Werner, Reinhard F.

    Quantum information and quantum computers have received a lot of public attention recently. Quantum computers have been advertised as a kind of warp drive for computing, and indeed the promise of the algorithms of Shor and Grover is to perform computations which are extremely hard or even provably impossible on any merely ``classical'' computer.In this article I shall give an account of the basic concepts of quantum information theory is given, staying as much as possible in the area of general agreement.The article is divided into two parts. The first (up to the end of Sect. 2.5) is mostly in plain English, centered around the exploration of what can or cannot be done with quantum systems as information carriers. The second part, Sect. 2.6, then gives a description of the mathematical structures and of some of the tools needed to develop the theory.

  14. Improving information filtering via network manipulation

    NASA Astrophysics Data System (ADS)

    Zhang, Fuguo; Zeng, An

    2012-12-01

    The recommender system is a very promising way to address the problem of overabundant information for online users. Although the information filtering for the online commercial systems has received much attention recently, almost all of the previous works are dedicated to design new algorithms and consider the user-item bipartite networks as given and constant information. However, many problems for recommender systems such as the cold-start problem (i.e., low recommendation accuracy for the small-degree items) are actually due to the limitation of the underlying user-item bipartite networks. In this letter, we propose a strategy to enhance the performance of the already existing recommendation algorithms by directly manipulating the user-item bipartite networks, namely adding some virtual connections to the networks. Numerical analyses on two benchmark data sets, MovieLens and Netflix, show that our method can remarkably improves the recommendation performance. Specifically, it not only improves the recommendations accuracy (especially for the small-degree items), but also helps the recommender systems generate more diverse and novel recommendations.

  15. How Neural Networks Learn from Experience.

    ERIC Educational Resources Information Center

    Hinton, Geoffrey E.

    1992-01-01

    Discusses computational studies of learning in artificial neural networks and findings that may provide insights into the learning abilities of the human brain. Describes efforts to test theories about brain information processing, using artificial neural networks. Vignettes include information concerning how a neural network represents…

  16. Unification of quantum information theory

    NASA Astrophysics Data System (ADS)

    Abeyesinghe, Anura

    We present the unification of many previously disparate results in noisy quantum Shannon theory and the unification of all of noiseless quantum Shannon theory. More specifically we deal here with bipartite, unidirectional, and memoryless quantum Shannon theory. We find all the optimal protocols and quantify the relationship between the resources used, both for the one-shot and for the ensemble case, for what is arguably the most fundamental task in quantum information theory: sharing entangled states between a sender and a receiver. We find that all of these protocols are derived from our one-shot superdense coding protocol and relate nicely to each other. We then move on to noisy quantum information theory and give a simple, direct proof of the "mother" protocol, or rather her generalization to the Fully Quantum Slepian-Wolf protocol (FQSW). FQSW simultaneously accomplishes two goals: quantum communication-assisted entanglement distillation, and state transfer from the sender to the receiver. As a result, in addition to her other "children," the mother protocol generates the state merging primitive of Horodecki, Oppenheim, and Winter as well as a new class of distributed compression protocols for correlated quantum sources, which are optimal for sources described by separable density operators. Moreover, the mother protocol described here is easily transformed into the so-called "father" protocol, demonstrating that the division of single-sender/single-receiver protocols into two families was unnecessary: all protocols in the family are children of the mother.

  17. Maximizing information exchange between complex networks

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Geneston, Elvis L.; Grigolini, Paolo

    2008-10-01

    Science is not merely the smooth progressive interaction of hypothesis, experiment and theory, although it sometimes has that form. More realistically the scientific study of any given complex phenomenon generates a number of explanations, from a variety of perspectives, that eventually requires synthesis to achieve a deep level of insight and understanding. One such synthesis has created the field of out-of-equilibrium statistical physics as applied to the understanding of complex dynamic networks. Over the past forty years the concept of complexity has undergone a metamorphosis. Complexity was originally seen as a consequence of memory in individual particle trajectories, in full agreement with a Hamiltonian picture of microscopic dynamics and, in principle, macroscopic dynamics could be derived from the microscopic Hamiltonian picture. The main difficulty in deriving macroscopic dynamics from microscopic dynamics is the need to take into account the actions of a very large number of components. The existence of events such as abrupt jumps, considered by the conventional continuous time random walk approach to describing complexity was never perceived as conflicting with the Hamiltonian view. Herein we review many of the reasons why this traditional Hamiltonian view of complexity is unsatisfactory. We show that as a result of technological advances, which make the observation of single elementary events possible, the definition of complexity has shifted from the conventional memory concept towards the action of non-Poisson renewal events. We show that the observation of crucial processes, such as the intermittent fluorescence of blinking quantum dots as well as the brain’s response to music, as monitored by a set of electrodes attached to the scalp, has forced investigators to go beyond the traditional concept of complexity and to establish closer contact with the nascent field of complex networks. Complex networks form one of the most challenging areas of

  18. Animal Social Network Theory Can Help Wildlife Conservation.

    PubMed

    Snijders, Lysanne; Blumstein, Daniel T; Stanley, Christina R; Franks, Daniel W

    2017-08-01

    Many animals preferentially associate with certain other individuals. This social structuring can influence how populations respond to changes to their environment, thus making network analysis a promising technique for understanding, predicting, and potentially manipulating population dynamics. Various network statistics can correlate with individual fitness components and key population-level processes, yet the logical role and formal application of animal social network theory for conservation and management have not been well articulated. We outline how understanding of direct and indirect relationships between animals can be profitably applied by wildlife managers and conservationists. By doing so, we aim to stimulate the development and implementation of practical tools for wildlife conservation and management and to inspire novel behavioral research in this field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Parallel Distributed Processing Theory in the Age of Deep Networks.

    PubMed

    Bowers, Jeffrey S

    2017-12-01

    Parallel distributed processing (PDP) models in psychology are the precursors of deep networks used in computer science. However, only PDP models are associated with two core psychological claims, namely that all knowledge is coded in a distributed format and cognition is mediated by non-symbolic computations. These claims have long been debated in cognitive science, and recent work with deep networks speaks to this debate. Specifically, single-unit recordings show that deep networks learn units that respond selectively to meaningful categories, and researchers are finding that deep networks need to be supplemented with symbolic systems to perform some tasks. Given the close links between PDP and deep networks, it is surprising that research with deep networks is challenging PDP theory. Copyright © 2017. Published by Elsevier Ltd.

  20. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    PubMed Central

    Onesto, Valentina; Cosentino, Carlo; Di Fabrizio, Enzo; Cesarelli, Mario; Amato, Francesco; Gentile, Francesco

    2016-01-01

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect. PMID:27403421

  1. Implications of Information Theory for Computational Modeling of Schizophrenia.

    PubMed

    Silverstein, Steven M; Wibral, Michael; Phillips, William A

    2017-10-01

    Information theory provides a formal framework within which information processing and its disorders can be described. However, information theory has rarely been applied to modeling aspects of the cognitive neuroscience of schizophrenia. The goal of this article is to highlight the benefits of an approach based on information theory, including its recent extensions, for understanding several disrupted neural goal functions as well as related cognitive and symptomatic phenomena in schizophrenia. We begin by demonstrating that foundational concepts from information theory-such as Shannon information, entropy, data compression, block coding, and strategies to increase the signal-to-noise ratio-can be used to provide novel understandings of cognitive impairments in schizophrenia and metrics to evaluate their integrity. We then describe more recent developments in information theory, including the concepts of infomax, coherent infomax, and coding with synergy, to demonstrate how these can be used to develop computational models of schizophrenia-related failures in the tuning of sensory neurons, gain control, perceptual organization, thought organization, selective attention, context processing, predictive coding, and cognitive control. Throughout, we demonstrate how disordered mechanisms may explain both perceptual/cognitive changes and symptom emergence in schizophrenia. Finally, we demonstrate that there is consistency between some information-theoretic concepts and recent discoveries in neurobiology, especially involving the existence of distinct sites for the accumulation of driving input and contextual information prior to their interaction. This convergence can be used to guide future theory, experiment, and treatment development.

  2. IEEE International Symposium Information Theory, held at Santa Monica California, February 9-12, 1981.

    DTIC Science & Technology

    1981-01-01

    Channel and study permutation codes as a special case. ,uch a code is generated by an initial vector x, a group G of orthogonal n by n matrices, and a...random-access components, is introduced and studied . Under this scheme, the network stations are divided into groups , each of which is assigned a...IEEE INFORMATION THEORY GROUP CO-SPONSORED BY: UNION RADIO SCIENTIFIQUE INTERNATIONALE IEEE Catalog Number 81 CH 1609-7 IT 𔃻. 81 ~20 04Q SECURITY

  3. Extending unified-theory-of-reinforcement neural networks to steady-state operant behavior.

    PubMed

    Calvin, Olivia L; McDowell, J J

    2016-06-01

    The unified theory of reinforcement has been used to develop models of behavior over the last 20 years (Donahoe et al., 1993). Previous research has focused on the theory's concordance with the respondent behavior of humans and animals. In this experiment, neural networks were developed from the theory to extend the unified theory of reinforcement to operant behavior on single-alternative variable-interval schedules. This area of operant research was selected because previously developed neural networks could be applied to it without significant alteration. Previous research with humans and animals indicates that the pattern of their steady-state behavior is hyperbolic when plotted against the obtained rate of reinforcement (Herrnstein, 1970). A genetic algorithm was used in the first part of the experiment to determine parameter values for the neural networks, because values that were used in previous research did not result in a hyperbolic pattern of behavior. After finding these parameters, hyperbolic and other similar functions were fitted to the behavior produced by the neural networks. The form of the neural network's behavior was best described by an exponentiated hyperbola (McDowell, 1986; McLean and White, 1983; Wearden, 1981), which was derived from the generalized matching law (Baum, 1974). In post-hoc analyses the addition of a baseline rate of behavior significantly improved the fit of the exponentiated hyperbola and removed systematic residuals. The form of this function was consistent with human and animal behavior, but the estimated parameter values were not. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. IMNN: Information Maximizing Neural Networks

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-04-01

    This software trains artificial neural networks to find non-linear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). As compressing large data sets vastly simplifies both frequentist and Bayesian inference, important information may be inadvertently missed. Likelihood-free inference based on automatically derived IMNN summaries produces summaries that are good approximations to sufficient statistics. IMNNs are robustly capable of automatically finding optimal, non-linear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima.

  5. Eavesdropping-aware routing and spectrum allocation based on multi-flow virtual concatenation for confidential information service in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Yang, Hui; Yu, Ao; Xiao, Hongyun; He, Linkuan; Feng, Lei; Zhang, Jie

    2018-01-01

    The leakage of confidential information is one of important issues in the network security area. Elastic Optical Networks (EON) as a promising technology in the optical transport network is under threat from eavesdropping attacks. It is a great demand to support confidential information service (CIS) and design efficient security strategy against the eavesdropping attacks. In this paper, we propose a solution to cope with the eavesdropping attacks in routing and spectrum allocation. Firstly, we introduce probability theory to describe eavesdropping issue and achieve awareness of eavesdropping attacks. Then we propose an eavesdropping-aware routing and spectrum allocation (ES-RSA) algorithm to guarantee information security. For further improving security and network performance, we employ multi-flow virtual concatenation (MFVC) and propose an eavesdropping-aware MFVC-based secure routing and spectrum allocation (MES-RSA) algorithm. The presented simulation results show that the proposed two RSA algorithms can both achieve greater security against the eavesdropping attacks and MES-RSA can also improve the network performance efficiently.

  6. Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy.

    PubMed

    Gleichgerrcht, Ezequiel; Kocher, Madison; Bonilha, Leonardo

    2015-11-01

    The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the

  7. Information Networks and Education: An Analytic Bibliography.

    ERIC Educational Resources Information Center

    Pritchard, Roger

    This literature review presents a broad and overall perspective on the various kinds of information networks that will be useful to educators in developing nations. There are five sections to the essay. The first section cites and briefly describes the literature dealing with library, information, and computer networks. Sections two and three…

  8. A resource management architecture based on complex network theory in cloud computing federation

    NASA Astrophysics Data System (ADS)

    Zhang, Zehua; Zhang, Xuejie

    2011-10-01

    Cloud Computing Federation is a main trend of Cloud Computing. Resource Management has significant effect on the design, realization, and efficiency of Cloud Computing Federation. Cloud Computing Federation has the typical characteristic of the Complex System, therefore, we propose a resource management architecture based on complex network theory for Cloud Computing Federation (abbreviated as RMABC) in this paper, with the detailed design of the resource discovery and resource announcement mechanisms. Compare with the existing resource management mechanisms in distributed computing systems, a Task Manager in RMABC can use the historical information and current state data get from other Task Managers for the evolution of the complex network which is composed of Task Managers, thus has the advantages in resource discovery speed, fault tolerance and adaptive ability. The result of the model experiment confirmed the advantage of RMABC in resource discovery performance.

  9. Workplace Learning in Informal Networks

    ERIC Educational Resources Information Center

    Milligan, Colin; Littlejohn, Allison; Margaryan, Anoush

    2014-01-01

    Learning does not stop when an individual leaves formal education, but becomes increasingly informal, and deeply embedded within other activities such as work. This article describes the challenges of informal learning in knowledge intensive industries, highlighting the important role of personal learning networks. The article argues that…

  10. Developing Visualization Techniques for Semantics-based Information Networks

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Hall, David R.

    2003-01-01

    Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.

  11. Game Theory Based Security in Wireless Body Area Network with Stackelberg Security Equilibrium

    PubMed Central

    Somasundaram, M.; Sivakumar, R.

    2015-01-01

    Wireless Body Area Network (WBAN) is effectively used in healthcare to increase the value of the patient's life and also the value of healthcare services. The biosensor based approach in medical care system makes it difficult to respond to the patients with minimal response time. The medical care unit does not deploy the accessing of ubiquitous broadband connections full time and hence the level of security will not be high always. The security issue also arises in monitoring the user body function records. Most of the systems on the Wireless Body Area Network are not effective in facing the security deployment issues. To access the patient's information with higher security on WBAN, Game Theory with Stackelberg Security Equilibrium (GTSSE) is proposed in this paper. GTSSE mechanism takes all the players into account. The patients are monitored by placing the power position authority initially. The position authority in GTSSE is the organizer and all the other players react to the organizer decision. Based on our proposed approach, experiment has been conducted on factors such as security ratio based on patient's health information, system flexibility level, energy consumption rate, and information loss rate. Stackelberg Security considerably improves the strength of solution with higher security. PMID:26759829

  12. Game Theory Based Security in Wireless Body Area Network with Stackelberg Security Equilibrium.

    PubMed

    Somasundaram, M; Sivakumar, R

    2015-01-01

    Wireless Body Area Network (WBAN) is effectively used in healthcare to increase the value of the patient's life and also the value of healthcare services. The biosensor based approach in medical care system makes it difficult to respond to the patients with minimal response time. The medical care unit does not deploy the accessing of ubiquitous broadband connections full time and hence the level of security will not be high always. The security issue also arises in monitoring the user body function records. Most of the systems on the Wireless Body Area Network are not effective in facing the security deployment issues. To access the patient's information with higher security on WBAN, Game Theory with Stackelberg Security Equilibrium (GTSSE) is proposed in this paper. GTSSE mechanism takes all the players into account. The patients are monitored by placing the power position authority initially. The position authority in GTSSE is the organizer and all the other players react to the organizer decision. Based on our proposed approach, experiment has been conducted on factors such as security ratio based on patient's health information, system flexibility level, energy consumption rate, and information loss rate. Stackelberg Security considerably improves the strength of solution with higher security.

  13. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks

    PubMed Central

    Salim, Shelly; Moh, Sangman

    2016-01-01

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead. PMID:27376290

  14. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.

    PubMed

    Salim, Shelly; Moh, Sangman

    2016-06-30

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.

  15. Information flow in the auditory cortical network

    PubMed Central

    Hackett, Troy A.

    2011-01-01

    Auditory processing in the cerebral cortex is comprised of an interconnected network of auditory and auditory-related areas distributed throughout the forebrain. The nexus of auditory activity is located in temporal cortex among several specialized areas, or fields, that receive dense inputs from the medial geniculate complex. These areas are collectively referred to as auditory cortex. Auditory activity is extended beyond auditory cortex via connections with auditory-related areas elsewhere in the cortex. Within this network, information flows between areas to and from countless targets, but in a manner that is characterized by orderly regional, areal and laminar patterns. These patterns reflect some of the structural constraints that passively govern the flow of information at all levels of the network. In addition, the exchange of information within these circuits is dynamically regulated by intrinsic neurochemical properties of projecting neurons and their targets. This article begins with an overview of the principal circuits and how each is related to information flow along major axes of the network. The discussion then turns to a description of neurochemical gradients along these axes, highlighting recent work on glutamate transporters in the thalamocortical projections to auditory cortex. The article concludes with a brief discussion of relevant neurophysiological findings as they relate to structural gradients in the network. PMID:20116421

  16. Information processing in network architecture of genome controlled signal transduction circuit. A proposed theoretical explanation.

    PubMed

    Chakraborty, Chiranjib; Sarkar, Bimal Kumar; Patel, Pratiksha; Agoramoorthy, Govindasamy

    2012-01-01

    In this paper, Shannon information theory has been applied to elaborate cell signaling. It is proposed that in the cellular network architecture, four components viz. source (DNA), transmitter (mRNA), receiver (protein) and destination (another protein) are involved. The message transmits from source (DNA) to transmitter (mRNA) and then passes through a noisy channel reaching finally the receiver (protein). The protein synthesis process is here considered as the noisy channel. Ultimately, signal is transmitted from receiver to destination (another protein). The genome network architecture elements were compared with genetic alphabet L = {A, C, G, T} with a biophysical model based on the popular Shannon information theory. This study found the channel capacity as maximum for zero error (sigma = 0) and at this condition, transition matrix becomes a unit matrix with rank 4. The transition matrix will be erroneous and finally at sigma = 1 channel capacity will be localized maxima with a value of 0.415 due to the increased value at sigma. On the other hand, minima exists at sigma = 0.75, where all transition probabilities become 0.25 and uncertainty will be maximum resulting in channel capacity with the minima value of zero.

  17. The tensor network theory library

    NASA Astrophysics Data System (ADS)

    Al-Assam, S.; Clark, S. R.; Jaksch, D.

    2017-09-01

    In this technical paper we introduce the tensor network theory (TNT) library—an open-source software project aimed at providing a platform for rapidly developing robust, easy to use and highly optimised code for TNT calculations. The objectives of this paper are (i) to give an overview of the structure of TNT library, and (ii) to help scientists decide whether to use the TNT library in their research. We show how to employ the TNT routines by giving examples of ground-state and dynamical calculations of one-dimensional bosonic lattice system. We also discuss different options for gaining access to the software available at www.tensornetworktheory.org.

  18. Discovery of Information Diffusion Process in Social Networks

    NASA Astrophysics Data System (ADS)

    Kim, Kwanho; Jung, Jae-Yoon; Park, Jonghun

    Information diffusion analysis in social networks is of significance since it enables us to deeply understand dynamic social interactions among users. In this paper, we introduce approaches to discovering information diffusion process in social networks based on process mining. Process mining techniques are applied from three perspectives: social network analysis, process discovery and community recognition. We then present experimental results by using a real-life social network data. The proposed techniques are expected to employ as new analytical tools in online social networks such as blog and wikis for company marketers, politicians, news reporters and online writers.

  19. Management of ATM-based networks supporting multimedia medical information systems

    NASA Astrophysics Data System (ADS)

    Whitman, Robert A.; Blaine, G. James; Fritz, Kevin; Goodgold, Ken; Heisinger, Patrick

    1997-05-01

    Medical information systems are acquiring the ability to collect and deliver many different types of medical information. In support of the increased network demands necessitated by these expanded capabilities, asynchronous transfer mode (ATM) based networks are being deployed in medical care systems. While ATM supplies a much greater line rate than currently deployed networks, the management and standards surrounding ATM are yet to mature. This paper explores the management and control issues surrounding an ATM network supporting medical information systems, and examines how management impacts network performance and robustness. A multivendor ATM network at the BJC Health System/Washington University and the applications using the network are discussed. Performance information for specific applications is presented and analyzed. Network management's influence on application reliability is outlined. The information collected is used to show how ATM network standards and management tools influence network reliability and performance. Performance of current applications using the ATM network is discussed. Special attention is given to issues encountered in implementation of hypertext transfer protocol over ATM internet protocol (IP) communications. A classical IP ATM implementation yields greater than twenty percent higher network performance over LANE. Maximum performance for a host's suite of applications can be obtained by establishing multiple individually engineered IP links through its ATM network connection.

  20. Network information security in a phase III Integrated Academic Information Management System (IAIMS).

    PubMed

    Shea, S; Sengupta, S; Crosswell, A; Clayton, P D

    1992-01-01

    The developing Integrated Academic Information System (IAIMS) at Columbia-Presbyterian Medical Center provides data sharing links between two separate corporate entities, namely Columbia University Medical School and The Presbyterian Hospital, using a network-based architecture. Multiple database servers with heterogeneous user authentication protocols are linked to this network. "One-stop information shopping" implies one log-on procedure per session, not separate log-on and log-off procedures for each server or application used during a session. These circumstances provide challenges at the policy and technical levels to data security at the network level and insuring smooth information access for end users of these network-based services. Five activities being conducted as part of our security project are described: (1) policy development; (2) an authentication server for the network; (3) Kerberos as a tool for providing mutual authentication, encryption, and time stamping of authentication messages; (4) a prototype interface using Kerberos services to authenticate users accessing a network database server; and (5) a Kerberized electronic signature.

  1. Sailor: Maryland's Online Public Information Network. Sailor Network Assessment Final Report: Findings and Future Sailor Network Development.

    ERIC Educational Resources Information Center

    Bertot, John Carlo; McClure, Charles R.

    This report describes the results of an assessment of Sailor, Maryland's Online Public Information Network, which provides statewide Internet connection to 100% of Maryland public libraries. The concept of a "statewide networked environment" includes information services, products, hardware and software, telecommunications…

  2. 78 FR 17418 - Rural Health Information Technology Network Development Grant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... Information Technology Network Development Grant AGENCY: Health Resources and Services Administration (HRSA...-competitive replacement award under the Rural Health Information Technology Network Development Grant (RHITND... relinquishing its fiduciary responsibilities for the Rural Health Information Technology Network Development...

  3. Network Data: Statistical Theory and New Models

    DTIC Science & Technology

    2016-02-17

    SECURITY CLASSIFICATION OF: During this period of review, Bin Yu worked on many thrusts of high-dimensional statistical theory and methodologies. Her...research covered a wide range of topics in statistics including analysis and methods for spectral clustering for sparse and structured networks...2,7,8,21], sparse modeling (e.g. Lasso) [4,10,11,17,18,19], statistical guarantees for the EM algorithm [3], statistical analysis of algorithm leveraging

  4. Finite-block-length analysis in classical and quantum information theory.

    PubMed

    Hayashi, Masahito

    2017-01-01

    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects.

  5. Client-controlled case information: a general system theory perspective.

    PubMed

    Fitch, Dale

    2004-07-01

    The author proposes a model for client control of case information via the World Wide Web built on principles of general system theory. It incorporates the client into the design, resulting in an information structure that differs from traditional human services information-sharing practices. Referencing general system theory, the concepts of controller and controlled system, as well as entropy and negentropy, are applied to the information flow and autopoietic behavior as they relate to the boundary-maintaining functions of today's organizations. The author's conclusions synthesize general system theory and human services values to lay the foundation for an information-sharing framework for human services in the 21st century.

  6. Coordination sequences and information spreading in small-world networks

    NASA Astrophysics Data System (ADS)

    Herrero, Carlos P.

    2002-10-01

    We study the spread of information in small-world networks generated from different d-dimensional regular lattices, with d=1, 2, and 3. With this purpose, we analyze by numerical simulations the behavior of the coordination sequence, e.g., the average number of sites C(n) that can be reached from a given node of the network in n steps along its bonds. For sufficiently large networks, we find an asymptotic behavior C(n)~ρn, with a constant ρ that depends on the network dimension d and on the rewiring probability p (which measures the disorder strength of a given network). A simple model of information spreading in these networks is studied, assuming that only a fraction q of the network sites are active. The number of active nodes reached in n steps has an asymptotic form λn, λ being a constant that depends on p and q, as well as on the dimension d of the underlying lattice. The information spreading presents two different regimes depending on the value of λ: For λ>1 the information propagates along the whole system, and for λ<1 the spreading is damped and the information remains confined in a limited region of the network. We discuss the connection of these results with site percolation in small-world networks.

  7. 78 FR 7797 - Homeland Security Information Network Advisory Committee (HSINAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2013-0005] Homeland Security Information Network... Committee Meeting. SUMMARY: The Homeland Security Information Network Advisory Committee (HSIN AC) will meet... received by the (Homeland Security Information Network Advisory Committee), go to http://www.regulations...

  8. Modeling of information diffusion in Twitter-like social networks under information overload.

    PubMed

    Li, Pei; Li, Wei; Wang, Hui; Zhang, Xin

    2014-01-01

    Due to the existence of information overload in social networks, it becomes increasingly difficult for users to find useful information according to their interests. This paper takes Twitter-like social networks into account and proposes models to characterize the process of information diffusion under information overload. Users are classified into different types according to their in-degrees and out-degrees, and user behaviors are generalized into two categories: generating and forwarding. View scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated by a given type user is adopted to characterize the information diffusion efficiency, which is calculated theoretically. To verify the accuracy of theoretical analysis results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of importance to understand the diffusion dynamics in social networks, and this analysis framework can be extended to consider more realistic situations.

  9. Modeling of Information Diffusion in Twitter-Like Social Networks under Information Overload

    PubMed Central

    Li, Wei

    2014-01-01

    Due to the existence of information overload in social networks, it becomes increasingly difficult for users to find useful information according to their interests. This paper takes Twitter-like social networks into account and proposes models to characterize the process of information diffusion under information overload. Users are classified into different types according to their in-degrees and out-degrees, and user behaviors are generalized into two categories: generating and forwarding. View scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated by a given type user is adopted to characterize the information diffusion efficiency, which is calculated theoretically. To verify the accuracy of theoretical analysis results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of importance to understand the diffusion dynamics in social networks, and this analysis framework can be extended to consider more realistic situations. PMID:24795541

  10. Transient response of nonlinear polymer networks: A kinetic theory

    NASA Astrophysics Data System (ADS)

    Vernerey, Franck J.

    2018-06-01

    Dynamic networks are found in a majority of natural materials, but also in engineering materials, such as entangled polymers and physically cross-linked gels. Owing to their transient bond dynamics, these networks display a rich class of behaviors, from elasticity, rheology, self-healing, or growth. Although classical theories in rheology and mechanics have enabled us to characterize these materials, there is still a gap in our understanding on how individuals (i.e., the mechanics of each building blocks and its connection with others) affect the emerging response of the network. In this work, we introduce an alternative way to think about these networks from a statistical point of view. More specifically, a network is seen as a collection of individual polymer chains connected by weak bonds that can associate and dissociate over time. From the knowledge of these individual chains (elasticity, transient attachment, and detachment events), we construct a statistical description of the population and derive an evolution equation of their distribution based on applied deformation and their local interactions. We specifically concentrate on nonlinear elastic response that follows from the strain stiffening response of individual chains of finite size. Upon appropriate averaging operations and using a mean field approximation, we show that the distribution can be replaced by a so-called chain distribution tensor that is used to determine important macroscopic measures such as stress, energy storage and dissipation in the network. Prediction of the kinetic theory are then explored against known experimental measurement of polymer responses under uniaxial loading. It is found that even under the simplest assumptions of force-independent chain kinetics, the model is able to reproduce complex time-dependent behaviors of rubber and self-healing supramolecular polymers.

  11. Gossip in Random Networks

    NASA Astrophysics Data System (ADS)

    Malarz, K.; Szvetelszky, Z.; Szekf, B.; Kulakowski, K.

    2006-11-01

    We consider the average probability X of being informed on a gossip in a given social network. The network is modeled within the random graph theory of Erd{õ}s and Rényi. In this theory, a network is characterized by two parameters: the size N and the link probability p. Our experimental data suggest three levels of social inclusion of friendship. The critical value pc, for which half of agents are informed, scales with the system size as N-gamma with gamma approx 0.68. Computer simulations show that the probability X varies with p as a sigmoidal curve. Influence of the correlations between neighbors is also evaluated: with increasing clustering coefficient C, X decreases.

  12. Information transfer in community structured multiplex networks

    NASA Astrophysics Data System (ADS)

    Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex

    2015-08-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  13. From information theory to quantitative description of steric effects.

    PubMed

    Alipour, Mojtaba; Safari, Zahra

    2016-07-21

    Immense efforts have been made in the literature to apply the information theory descriptors for investigating the electronic structure theory of various systems. In the present study, the information theoretic quantities, such as Fisher information, Shannon entropy, Onicescu information energy, and Ghosh-Berkowitz-Parr entropy, have been used to present a quantitative description for one of the most widely used concepts in chemistry, namely the steric effects. Taking the experimental steric scales for the different compounds as benchmark sets, there are reasonable linear relationships between the experimental scales of the steric effects and theoretical values of steric energies calculated from information theory functionals. Perusing the results obtained from the information theoretic quantities with the two representations of electron density and shape function, the Shannon entropy has the best performance for the purpose. On the one hand, the usefulness of considering the contributions of functional groups steric energies and geometries, and on the other hand, dissecting the effects of both global and local information measures simultaneously have also been explored. Furthermore, the utility of the information functionals for the description of steric effects in several chemical transformations, such as electrophilic and nucleophilic reactions and host-guest chemistry, has been analyzed. The functionals of information theory correlate remarkably with the stability of systems and experimental scales. Overall, these findings show that the information theoretic quantities can be introduced as quantitative measures of steric effects and provide further evidences of the quality of information theory toward helping theoreticians and experimentalists to interpret different problems in real systems.

  14. Information Theory and the Earth's Density Distribution

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1979-01-01

    An argument for using the information theory approach as an inference technique in solid earth geophysics. A spherically symmetric density distribution is derived as an example of the method. A simple model of the earth plus knowledge of its mass and moment of inertia lead to a density distribution which was surprisingly close to the optimum distribution. Future directions for the information theory approach in solid earth geophysics as well as its strengths and weaknesses are discussed.

  15. Finite-block-length analysis in classical and quantum information theory

    PubMed Central

    HAYASHI, Masahito

    2017-01-01

    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects. PMID:28302962

  16. Information Theory in Biology after 18 Years

    ERIC Educational Resources Information Center

    Johnson, Horton A.

    1970-01-01

    Reviews applications of information theory to biology, concluding that they have not proved very useful. Suggests modifications and extensions to increase the biological relevance of the theory, and speculates about applications in quantifying cell proliferation, chemical homeostasis and aging. (EB)

  17. Client-Controlled Case Information: A General System Theory Perspective

    ERIC Educational Resources Information Center

    Fitch, Dale

    2004-01-01

    The author proposes a model for client control of case information via the World Wide Web built on principles of general system theory. It incorporates the client into the design, resulting in an information structure that differs from traditional human services information-sharing practices. Referencing general system theory, the concepts of…

  18. Implications of Information Theory for Computational Modeling of Schizophrenia

    PubMed Central

    Wibral, Michael; Phillips, William A.

    2017-01-01

    Information theory provides a formal framework within which information processing and its disorders can be described. However, information theory has rarely been applied to modeling aspects of the cognitive neuroscience of schizophrenia. The goal of this article is to highlight the benefits of an approach based on information theory, including its recent extensions, for understanding several disrupted neural goal functions as well as related cognitive and symptomatic phenomena in schizophrenia. We begin by demonstrating that foundational concepts from information theory—such as Shannon information, entropy, data compression, block coding, and strategies to increase the signal-to-noise ratio—can be used to provide novel understandings of cognitive impairments in schizophrenia and metrics to evaluate their integrity. We then describe more recent developments in information theory, including the concepts of infomax, coherent infomax, and coding with synergy, to demonstrate how these can be used to develop computational models of schizophrenia-related failures in the tuning of sensory neurons, gain control, perceptual organization, thought organization, selective attention, context processing, predictive coding, and cognitive control. Throughout, we demonstrate how disordered mechanisms may explain both perceptual/cognitive changes and symptom emergence in schizophrenia. Finally, we demonstrate that there is consistency between some information-theoretic concepts and recent discoveries in neurobiology, especially involving the existence of distinct sites for the accumulation of driving input and contextual information prior to their interaction. This convergence can be used to guide future theory, experiment, and treatment development. PMID:29601053

  19. Applied Actant Network Theory: Toward the Automated Detection of Technoscientific Emergence from Full Text Publications and Patents (Open Access)

    DTIC Science & Technology

    2012-11-02

    Applied Actant-Network Theory: Toward the Automated Detection of Technoscientific Emergence from Full-Text Publications and Patents David C...Brock**, Olga Babko-Malaya*, James Pustejovsky***, Patrick Thomas****, *BAE Systems Advanced Information Technologies, ** David C. Brock Consulting... Wojick , D. 2008. Population modeling of the emergence and development of scientific fields. Scientometrics, 75(3):495–518. Cook, T. D. and

  20. Equilibria, information and frustration in heterogeneous network games with conflicting preferences

    NASA Astrophysics Data System (ADS)

    Mazzoli, M.; Sánchez, A.

    2017-11-01

    Interactions between people are the basis on which the structure of our society arises as a complex system and, at the same time, are the starting point of any physical description of it. In the last few years, much theoretical research has addressed this issue by combining the physics of complex networks with a description of interactions in terms of evolutionary game theory. We here take this research a step further by introducing a most salient societal factor such as the individuals’ preferences, a characteristic that is key to understanding much of the social phenomenology these days. We consider a heterogeneous, agent-based model in which agents interact strategically with their neighbors, but their preferences and payoffs for the possible actions differ. We study how such a heterogeneous network behaves under evolutionary dynamics and different strategic interactions, namely coordination games and best shot games. With this model we study the emergence of the equilibria predicted analytically in random graphs under best response dynamics, and we extend this test to unexplored contexts like proportional imitation and scale free networks. We show that some theoretically predicted equilibria do not arise in simulations with incomplete information, and we demonstrate the importance of the graph topology and the payoff function parameters for some games. Finally, we discuss our results with the available experimental evidence on coordination games, showing that our model agrees better with the experiment than standard economic theories, and draw hints as to how to maximize social efficiency in situations of conflicting preferences.

  1. Econophysics: from Game Theory and Information Theory to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Jimenez, Edward; Moya, Douglas

    2005-03-01

    Rationality is the universal invariant among human behavior, universe physical laws and ordered and complex biological systems. Econophysics isboth the use of physical concepts in Finance and Economics, and the use of Information Economics in Physics. In special, we will show that it is possible to obtain the Quantum Mechanics principles using Information and Game Theory.

  2. Information Processing Theory and Conceptual Development.

    ERIC Educational Resources Information Center

    Schroder, H. M.

    An educational program based upon information processing theory has been developed at Southern Illinois University. The integrating theme was the development of conceptual ability for coping with social and personal problems. It utilized student information search and concept formation as foundations for discussion and judgment and was organized…

  3. Functional Organization of the Action Observation Network in Autism: A Graph Theory Approach.

    PubMed

    Alaerts, Kaat; Geerlings, Franca; Herremans, Lynn; Swinnen, Stephan P; Verhoeven, Judith; Sunaert, Stefan; Wenderoth, Nicole

    2015-01-01

    The ability to recognize, understand and interpret other's actions and emotions has been linked to the mirror system or action-observation-network (AON). Although variations in these abilities are prevalent in the neuro-typical population, persons diagnosed with autism spectrum disorders (ASD) have deficits in the social domain and exhibit alterations in this neural network. Here, we examined functional network properties of the AON using graph theory measures and region-to-region functional connectivity analyses of resting-state fMRI-data from adolescents and young adults with ASD and typical controls (TC). Overall, our graph theory analyses provided convergent evidence that the network integrity of the AON is altered in ASD, and that reductions in network efficiency relate to reductions in overall network density (i.e., decreased overall connection strength). Compared to TC, individuals with ASD showed significant reductions in network efficiency and increased shortest path lengths and centrality. Importantly, when adjusting for overall differences in network density between ASD and TC groups, participants with ASD continued to display reductions in network integrity, suggesting that also network-level organizational properties of the AON are altered in ASD. While differences in empirical connectivity contributed to reductions in network integrity, graph theoretical analyses provided indications that also changes in the high-level network organization reduced integrity of the AON.

  4. Functional Organization of the Action Observation Network in Autism: A Graph Theory Approach

    PubMed Central

    Alaerts, Kaat; Geerlings, Franca; Herremans, Lynn; Swinnen, Stephan P.; Verhoeven, Judith; Sunaert, Stefan; Wenderoth, Nicole

    2015-01-01

    Background The ability to recognize, understand and interpret other’s actions and emotions has been linked to the mirror system or action-observation-network (AON). Although variations in these abilities are prevalent in the neuro-typical population, persons diagnosed with autism spectrum disorders (ASD) have deficits in the social domain and exhibit alterations in this neural network. Method Here, we examined functional network properties of the AON using graph theory measures and region-to-region functional connectivity analyses of resting-state fMRI-data from adolescents and young adults with ASD and typical controls (TC). Results Overall, our graph theory analyses provided convergent evidence that the network integrity of the AON is altered in ASD, and that reductions in network efficiency relate to reductions in overall network density (i.e., decreased overall connection strength). Compared to TC, individuals with ASD showed significant reductions in network efficiency and increased shortest path lengths and centrality. Importantly, when adjusting for overall differences in network density between ASD and TC groups, participants with ASD continued to display reductions in network integrity, suggesting that also network-level organizational properties of the AON are altered in ASD. Conclusion While differences in empirical connectivity contributed to reductions in network integrity, graph theoretical analyses provided indications that also changes in the high-level network organization reduced integrity of the AON. PMID:26317222

  5. Geographic information modeling of Econet of Northwestern Federal District territory on graph theory basis

    NASA Astrophysics Data System (ADS)

    Kopylova, N. S.; Bykova, A. A.; Beregovoy, D. N.

    2018-05-01

    Based on the landscape-geographical approach, a structural and logical scheme for the Northwestern Federal District Econet has been developed, which can be integrated into the federal and world ecological network in order to improve the environmental infrastructure of the region. The method of Northwestern Federal District Econet organization on the basis of graph theory by means of the Quantum GIS geographic information system is proposed as an effective mean of preserving and recreating the unique biodiversity of landscapes, regulation of the sphere of environmental protection.

  6. Self-Organized Information Processing in Neuronal Networks: Replacing Layers in Deep Networks by Dynamics

    NASA Astrophysics Data System (ADS)

    Kirst, Christoph

    It is astonishing how the sub-parts of a brain co-act to produce coherent behavior. What are mechanism that coordinate information processing and communication and how can those be changed flexibly in order to cope with variable contexts? Here we show that when information is encoded in the deviations around a collective dynamical reference state of a recurrent network the propagation of these fluctuations is strongly dependent on precisely this underlying reference. Information here 'surfs' on top of the collective dynamics and switching between states enables fast and flexible rerouting of information. This in turn affects local processing and consequently changes in the global reference dynamics that re-regulate the distribution of information. This provides a generic mechanism for self-organized information processing as we demonstrate with an oscillatory Hopfield network that performs contextual pattern recognition. Deep neural networks have proven to be very successful recently. Here we show that generating information channels via collective reference dynamics can effectively compress a deep multi-layer architecture into a single layer making this mechanism a promising candidate for the organization of information processing in biological neuronal networks.

  7. The Social Side of Information Networking.

    ERIC Educational Resources Information Center

    Katz, James E.

    1997-01-01

    Explores the social issues, including manners, security, crime (fraud), and social control associated with information networking, with emphasis on the Internet. Also addresses the influence of cellular phones, the Internet and other information technologies on society. (GR)

  8. Comment on Gallistel: behavior theory and information theory: some parallels.

    PubMed

    Nevin, John A

    2012-05-01

    In this article, Gallistel proposes information theory as an approach to some enduring problems in the study of operant and classical conditioning. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Tufts academic health information network: concept and scenario.

    PubMed

    Stearns, N S

    1986-04-01

    Tufts University School of Medicine's new health sciences education building, the Arthur M. Sackler Center for Health Communications, will house a modern medical library and computer center, classrooms, auditoria, and media facilities. The building will also serve as the center for an information and communication network linking the medical school and adjacent New England Medical Center, Tufts' primary teaching hospital, with Tufts Associated Teaching Hospitals throughout New England. Ultimately, the Tufts network will join other gateway networks, information resource facilities, health care institutions, and medical schools throughout the world. The center and the network are intended to facilitate and improve the education of health professionals, the delivery of health care to patients, the conduct of research, and the implementation of administrative management approaches that should provide more efficient utilization of resources and save dollars. A model and scenario show how health care delivery and health care education are integrated through better use of information transfer technologies by health information specialists, practitioners, and educators.

  10. Tufts academic health information network: concept and scenario.

    PubMed Central

    Stearns, N S

    1986-01-01

    Tufts University School of Medicine's new health sciences education building, the Arthur M. Sackler Center for Health Communications, will house a modern medical library and computer center, classrooms, auditoria, and media facilities. The building will also serve as the center for an information and communication network linking the medical school and adjacent New England Medical Center, Tufts' primary teaching hospital, with Tufts Associated Teaching Hospitals throughout New England. Ultimately, the Tufts network will join other gateway networks, information resource facilities, health care institutions, and medical schools throughout the world. The center and the network are intended to facilitate and improve the education of health professionals, the delivery of health care to patients, the conduct of research, and the implementation of administrative management approaches that should provide more efficient utilization of resources and save dollars. A model and scenario show how health care delivery and health care education are integrated through better use of information transfer technologies by health information specialists, practitioners, and educators. PMID:3708191

  11. Extraction of business relationships in supply networks using statistical learning theory.

    PubMed

    Zuo, Yi; Kajikawa, Yuya; Mori, Junichiro

    2016-06-01

    Supply chain management represents one of the most important scientific streams of operations research. The supply of energy, materials, products, and services involves millions of transactions conducted among national and local business enterprises. To deliver efficient and effective support for supply chain design and management, structural analyses and predictive models of customer-supplier relationships are expected to clarify current enterprise business conditions and to help enterprises identify innovative business partners for future success. This article presents the outcomes of a recent structural investigation concerning a supply network in the central area of Japan. We investigated the effectiveness of statistical learning theory to express the individual differences of a supply chain of enterprises within a certain business community using social network analysis. In the experiments, we employ support vector machine to train a customer-supplier relationship model on one of the main communities extracted from a supply network in the central area of Japan. The prediction results reveal an F-value of approximately 70% when the model is built by using network-based features, and an F-value of approximately 77% when the model is built by using attribute-based features. When we build the model based on both, F-values are improved to approximately 82%. The results of this research can help to dispel the implicit design space concerning customer-supplier relationships, which can be explored and refined from detailed topological information provided by network structures rather than from traditional and attribute-related enterprise profiles. We also investigate and discuss differences in the predictive accuracy of the model for different sizes of enterprises and types of business communities.

  12. Network Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    1996-05-01

    The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following are the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors andmore » visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an

  13. ASIST 2001: Information in a Networked World--Harnessing the Flow. Proceedings of the ASIST Annual Meeting (64th, Washington, DC, November 3-8, 2001).

    ERIC Educational Resources Information Center

    Aversa, Elizabeth, Ed.; Manley, Cynthia, Ed.

    The theme of the 2001 "ASIST" (American Society for Information Science and Technology) annual conference is "Information in a Networked World," which covers a broad range of theory and practice in information science. The program includes 52 refereed papers, 46 SIG and panel sessions, and 33 poster presentations. Topics include: digital…

  14. Spatial analysis of bus transport networks using network theory

    NASA Astrophysics Data System (ADS)

    Shanmukhappa, Tanuja; Ho, Ivan Wang-Hei; Tse, Chi Kong

    2018-07-01

    In this paper, we analyze the bus transport network (BTN) structure considering the spatial embedding of the network for three cities, namely, Hong Kong (HK), London (LD), and Bengaluru (BL). We propose a novel approach called supernode graph structuring for modeling the bus transport network. A static demand estimation procedure is proposed to assign the node weights by considering the points of interests (POIs) and the population distribution in the city over various localized zones. In addition, the end-to-end delay is proposed as a parameter to measure the topological efficiency of the bus networks instead of the shortest distance measure used in previous works. With the aid of supernode graph representation, important network parameters are analyzed for the directed, weighted and geo-referenced bus transport networks. It is observed that the supernode concept has significant advantage in analyzing the inherent topological behavior. For instance, the scale-free and small-world behavior becomes evident with supernode representation as compared to conventional or regular graph representation for the Hong Kong network. Significant improvement in clustering, reduction in path length, and increase in centrality values are observed in all the three networks with supernode representation. The correlation between topologically central nodes and the geographically central nodes reveals the interesting fact that the proposed static demand estimation method for assigning node weights aids in better identifying the geographically significant nodes in the network. The impact of these geographically significant nodes on the local traffic behavior is demonstrated by simulation using the SUMO (Simulation of Urban Mobility) tool which is also supported by real-world empirical data, and our results indicate that the traffic speed around a particular bus stop can reach a jammed state from a free flow state due to the presence of these geographically important nodes. A comparison

  15. Running a network on a shoestring: the Global Invasive Species Information Network

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Simpson, Annie; Graham, James J; Newman, Gregory J.; Bargeron, Chuck T.

    2015-01-01

    The Global Invasive Species Information Network (GISIN) was conceptualized in 2004 to aggregate and disseminate invasive species data in a standardized way. A decade later the GISIN community has implemented a data portal and three of six GISIN data aggregation models in the GISIN data exchange Protocol, including invasive species status information, resource URLs, and occurrence data. The portal is based on a protocol developed by representatives from 15 countries and 27 organizations of the global invasive species information management community. The GISIN has 19 data providers sharing 34,343 species status records, 1,693,073 occurrences, and 15,601 resource URLs. While the GISIN's goal is to be global, much of its data and funding are provided by the United States. Several initiatives use the GISIN as their information backbone, such as the Great Lakes Early Detection Network (GLEDN) and the North American Invasive Species Network (NAISN). Here we share several success stories and organizational challenges that remain.

  16. International School Health Network: an informal network for advocacy and knowledge exchange.

    PubMed

    McCall, Douglas S; Rootman, Irving; Bayley, Dale

    2005-01-01

    In Canada, researchers, policy-makers and non-governmental organisations have re-conceptualized the school setting as being an ecological entity, linked to parallel ecologies of the homes and the community it serves. The school, public health and other systems that seek to deliver programs in that setting are open, loosely coupled and bureaucratic. This reconceived view of the school as a setting for health promotion leads to an emphasis on building organizational, system, professional and community capacity. One of the most effective ways of building such capacities when resources are scarce is to invest in a variety of formal and informal networks that can sustain themselves with little or no external resources. A number of recognised researchers from the health and education sectors have emphasized this systems-based approach and the need to build supportive, small-scale networks or learning communities. In recent health promotion research, networking at various levels, across sectors and within communities is viewed as a key strategy within new, more effective health promotion strategies. In education, the notion of networking for educational change has been described as "learning communities" for continuous school improvement. The authors suggest that this strategy of networking be used at the international level to address several global challenges: There is no single, convenient way to obtain basic information about the status and nature of national and state/provincial school health programs around the world. There is no global research agenda in school health promotion, despite the obvious value of sharing such research and knowledge. There is no global mechanism to facilitate the development of common or shared tools for surveillance of child/youth health and monitoring of school health policies and programs, despite the excellent work being done in individual countries and by the European Network of Health Promoting Schools. There is no international

  17. Extracting spatial information from networks with low-order eigenvectors

    NASA Astrophysics Data System (ADS)

    Cucuringu, Mihai; Blondel, Vincent D.; Van Dooren, Paul

    2013-03-01

    We consider the problem of inferring meaningful spatial information in networks from incomplete information on the connection intensity between the nodes of the network. We consider two spatially distributed networks: a population migration flow network within the US, and a network of mobile phone calls between cities in Belgium. For both networks we use the eigenvectors of the Laplacian matrix constructed from the link intensities to obtain informative visualizations and capture natural geographical subdivisions. We observe that some low-order eigenvectors localize very well and seem to reveal small geographically cohesive regions that match remarkably well with political and administrative boundaries. We discuss possible explanations for this observation by describing diffusion maps and localized eigenfunctions. In addition, we discuss a possible connection with the weighted graph cut problem, and provide numerical evidence supporting the idea that lower-order eigenvectors point out local cuts in the network. However, we do not provide a formal and rigorous justification for our observations.

  18. How Fast Can Networks Synchronize? A Random Matrix Theory Approach

    NASA Astrophysics Data System (ADS)

    Timme, Marc; Wolf, Fred; Geisel, Theo

    2004-03-01

    Pulse-coupled oscillators constitute a paradigmatic class of dynamical systems interacting on networks because they model a variety of biological systems including flashing fireflies and chirping crickets as well as pacemaker cells of the heart and neural networks. Synchronization is one of the most simple and most prevailing kinds of collective dynamics on such networks. Here we study collective synchronization [1] of pulse-coupled oscillators interacting on asymmetric random networks. Using random matrix theory we analytically determine the speed of synchronization in such networks in dependence on the dynamical and network parameters [2]. The speed of synchronization increases with increasing coupling strengths. Surprisingly, however, it stays finite even for infinitely strong interactions. The results indicate that the speed of synchronization is limited by the connectivity of the network. We discuss the relevance of our findings to general equilibration processes on complex networks. [5mm] [1] M. Timme, F. Wolf, T. Geisel, Phys. Rev. Lett. 89:258701 (2002). [2] M. Timme, F. Wolf, T. Geisel, cond-mat/0306512 (2003).

  19. Theory of liquid crystal elastomers and polymer networks : Connection between neoclassical theory and differential geometry.

    PubMed

    Nguyen, Thanh-Son; Selinger, Jonathan V

    2017-09-01

    In liquid crystal elastomers and polymer networks, the orientational order of liquid crystals is coupled with elastic distortions of crosslinked polymers. Previous theoretical research has described these materials through two different approaches: a neoclassical theory based on the liquid crystal director and the deformation gradient tensor, and a geometric elasticity theory based on the difference between the actual metric tensor and a reference metric. Here, we connect those two approaches using a formalism based on differential geometry. Through this connection, we determine how both the director and the geometry respond to a change of temperature.

  20. Adaptive capacity of geographical clusters: Complexity science and network theory approach

    NASA Astrophysics Data System (ADS)

    Albino, Vito; Carbonara, Nunzia; Giannoccaro, Ilaria

    This paper deals with the adaptive capacity of geographical clusters (GCs), that is a relevant topic in the literature. To address this topic, GC is considered as a complex adaptive system (CAS). Three theoretical propositions concerning the GC adaptive capacity are formulated by using complexity theory. First, we identify three main properties of CAS s that affect the adaptive capacity, namely the interconnectivity, the heterogeneity, and the level of control, and define how the value of these properties influence the adaptive capacity. Then, we associate these properties with specific GC characteristics so obtaining the key conditions of GCs that give them the adaptive capacity so assuring their competitive advantage. To test these theoretical propositions, a case study on two real GCs is carried out. The considered GCs are modeled as networks where firms are nodes and inter-firms relationships are links. Heterogeneity, interconnectivity, and level of control are considered as network properties and thus measured by using the methods of the network theory.

  1. Stimulus information stored in lasting active and hidden network states is destroyed by network bursts

    PubMed Central

    Dranias, Mark R.; Westover, M. Brandon; Cash, Sidney; VanDongen, Antonius M. J.

    2015-01-01

    In both humans and animals brief synchronizing bursts of epileptiform activity known as interictal epileptiform discharges (IEDs) can, even in the absence of overt seizures, cause transient cognitive impairments (TCI) that include problems with perception or short-term memory. While no evidence from single units is available, it has been assumed that IEDs destroy information represented in neuronal networks. Cultured neuronal networks are a model for generic cortical microcircuits, and their spontaneous activity is characterized by the presence of synchronized network bursts (SNBs), which share a number of properties with IEDs, including the high degree of synchronization and their spontaneous occurrence in the absence of an external stimulus. As a model approach to understanding the processes underlying IEDs, optogenetic stimulation and multielectrode array (MEA) recordings of cultured neuronal networks were used to study whether stimulus information represented in these networks survives SNBs. When such networks are optically stimulated they encode and maintain stimulus information for as long as one second. Experiments involved recording the network response to a single stimulus and trials where two different stimuli were presented sequentially, akin to a paired pulse trial. We broke the sequential stimulus trials into encoding, delay and readout phases and found that regardless of which phase the SNB occurs, stimulus-specific information was impaired. SNBs were observed to increase the mean network firing rate, but this did not translate monotonically into increases in network entropy. It was found that the more excitable a network, the more stereotyped its response was during a network burst. These measurements speak to whether SNBs are capable of transmitting information in addition to blocking it. These results are consistent with previous reports and provide baseline predictions concerning the neural mechanisms by which IEDs might cause TCI. PMID:25755638

  2. Information theory, spectral geometry, and quantum gravity.

    PubMed

    Kempf, Achim; Martin, Robert

    2008-01-18

    We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well-known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.

  3. Florida Information Resource Network.

    ERIC Educational Resources Information Center

    Watson, Francis C.

    1986-01-01

    The Florida Information Resource Network (FIRN) is an effort by the Florida education community and the Florida Legislature to provide an electronic link among all agencies, institutions, and schools in the public education system. The communications link, perhaps one of the most advanced in the nation, has three purposes: (1) to provide equal…

  4. Study on Network Error Analysis and Locating based on Integrated Information Decision System

    NASA Astrophysics Data System (ADS)

    Yang, F.; Dong, Z. H.

    2017-10-01

    Integrated information decision system (IIDS) integrates multiple sub-system developed by many facilities, including almost hundred kinds of software, which provides with various services, such as email, short messages, drawing and sharing. Because the under-layer protocols are different, user standards are not unified, many errors are occurred during the stages of setup, configuration, and operation, which seriously affect the usage. Because the errors are various, which may be happened in different operation phases, stages, TCP/IP communication protocol layers, sub-system software, it is necessary to design a network error analysis and locating tool for IIDS to solve the above problems. This paper studies on network error analysis and locating based on IIDS, which provides strong theory and technology supports for the running and communicating of IIDS.

  5. Game Theory for Wireless Sensor Networks: A Survey

    PubMed Central

    Shi, Hai-Yan; Wang, Wan-Liang; Kwok, Ngai-Ming; Chen, Sheng-Yong

    2012-01-01

    Game theory (GT) is a mathematical method that describes the phenomenon of conflict and cooperation between intelligent rational decision-makers. In particular, the theory has been proven very useful in the design of wireless sensor networks (WSNs). This article surveys the recent developments and findings of GT, its applications in WSNs, and provides the community a general view of this vibrant research area. We first introduce the typical formulation of GT in the WSN application domain. The roles of GT are described that include routing protocol design, topology control, power control and energy saving, packet forwarding, data collection, spectrum allocation, bandwidth allocation, quality of service control, coverage optimization, WSN security, and other sensor management tasks. Then, three variations of game theory are described, namely, the cooperative, non-cooperative, and repeated schemes. Finally, existing problems and future trends are identified for researchers and engineers in the field. PMID:23012533

  6. Functional neural networks of honesty and dishonesty in children: Evidence from graph theory analysis.

    PubMed

    Ding, Xiao Pan; Wu, Si Jia; Liu, Jiangang; Fu, Genyue; Lee, Kang

    2017-09-21

    The present study examined how different brain regions interact with each other during spontaneous honest vs. dishonest communication. More specifically, we took a complex network approach based on the graph-theory to analyze neural response data when children are spontaneously engaged in honest or dishonest acts. Fifty-nine right-handed children between 7 and 12 years of age participated in the study. They lied or told the truth out of their own volition. We found that lying decreased both the global and local efficiencies of children's functional neural network. This finding, for the first time, suggests that lying disrupts the efficiency of children's cortical network functioning. Further, it suggests that the graph theory based network analysis is a viable approach to study the neural development of deception.

  7. Information Theory - The Bridge Connecting Bounded Rational Game Theory and Statistical Physics

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality of all red-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. This paper shows that the same information theoretic mathematical structure, known as Product Distribution (PD) theory, addresses both issues. In this, PD theory not only provides a principle formulation of bounded rationality and a set of new types of mean field theory in statistical physics; it also shows that those topics are fundamentally one and the same.

  8. Mutual information-based LPI optimisation for radar network

    NASA Astrophysics Data System (ADS)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  9. Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory

    PubMed Central

    Ye, Qing; Guan, Jun

    2016-01-01

    This paper analyzed the spreading effect of industrial sectors with complex network model under perspective of econophysics. Input-output analysis, as an important research tool, focuses more on static analysis. However, the fundamental aim of industry analysis is to figure out how interaction between different industries makes impacts on economic development, which turns out to be a dynamic process. Thus, industrial complex network based on input-output tables from WIOD is proposed to be a bridge connecting accurate static quantitative analysis and comparable dynamic one. With application of revised structural holes theory, flow betweenness and random walk centrality were respectively chosen to evaluate industrial sectors’ long-term and short-term spreading effect process in this paper. It shows that industries with higher flow betweenness or random walk centrality would bring about more intensive industrial spreading effect to the industrial chains they stands in, because value stream transmission of industrial sectors depends on how many products or services it can get from the other ones, and they are regarded as brokers with bigger information superiority and more intermediate interests. PMID:27218468

  10. Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory.

    PubMed

    Xing, Lizhi; Ye, Qing; Guan, Jun

    2016-01-01

    This paper analyzed the spreading effect of industrial sectors with complex network model under perspective of econophysics. Input-output analysis, as an important research tool, focuses more on static analysis. However, the fundamental aim of industry analysis is to figure out how interaction between different industries makes impacts on economic development, which turns out to be a dynamic process. Thus, industrial complex network based on input-output tables from WIOD is proposed to be a bridge connecting accurate static quantitative analysis and comparable dynamic one. With application of revised structural holes theory, flow betweenness and random walk centrality were respectively chosen to evaluate industrial sectors' long-term and short-term spreading effect process in this paper. It shows that industries with higher flow betweenness or random walk centrality would bring about more intensive industrial spreading effect to the industrial chains they stands in, because value stream transmission of industrial sectors depends on how many products or services it can get from the other ones, and they are regarded as brokers with bigger information superiority and more intermediate interests.

  11. Elastic Network Models For Biomolecular Dynamics: Theory and Application to Membrane Proteins and Viruses

    NASA Astrophysics Data System (ADS)

    Lezon, Timothy R.; Shrivastava, Indira H.; Yang, Zheng; Bahar, Ivet

    The following sections are included: * Introduction * Theory and Assumptions * Statistical mechanical foundations * Anisotropic network models * Gaussian network model * Rigid block models * Treatment of perturbations * Langevin dynamics * Applications * Membrane proteins * Viruses * Conclusion * References

  12. Actor-Network Theory and methodology: Just what does it mean to say that nonhumans have agency?

    PubMed

    Sayes, Edwin

    2014-02-01

    Actor-Network Theory is a controversial social theory. In no respect is this more so than the role it 'gives' to nonhumans: nonhumans have agency, as Latour provocatively puts it. This article aims to interrogate the multiple layers of this declaration to understand what it means to assert with Actor-Network Theory that nonhumans exercise agency. The article surveys a wide corpus of statements by the position's leading figures and emphasizes the wider methodological framework in which these statements are embedded. With this work done, readers will then be better placed to reject or accept the Actor-Network position - understanding more precisely what exactly it is at stake in this decision.

  13. 78 FR 34665 - Homeland Security Information Network Advisory Committee (HSINAC); Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... DEPARTMENT OF HOMELAND SECURITY [DHS-2013-0037] Homeland Security Information Network Advisory... Committee Meeting. SUMMARY: The Homeland Security Information Network Advisory Committee (HSINAC) will meet... posted beforehand at this link: http://www.dhs.gov/homeland-security-information-network-advisory...

  14. Information Exchange Between Resilient and High-Threat Networks: Techniques for Threat Mitigation

    DTIC Science & Technology

    2004-11-01

    Information Exchange between Resilient and High-Threat Networks : Techniques for Threat Mitigation Tim Dean and Graham Wyatt QinetiQ...SUMMARY High resilience military networks frequently have requirements for exchange of information with networks of low assurance, including networks of...assured, two-way, information flow between high resilience networks and other networks of unknown threat. The techniques include conventional and

  15. Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks.

    PubMed

    Teng, Xian; Pei, Sen; Morone, Flaviano; Makse, Hernán A

    2016-10-26

    Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called "Collective Influence (CI)" has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes' significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct "virtual" information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes' importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.

  16. Relay-based information broadcast in complex networks

    NASA Astrophysics Data System (ADS)

    Fan, Zhongyan; Han, Zeyu; Tang, Wallace K. S.; Lin, Dong

    2018-04-01

    Information broadcast (IB) is a critical process in complex network, usually accomplished by flooding mechanism. Although flooding is simple and no prior topological information is required, it consumes a lot of transmission overhead. Another extreme is the tree-based broadcast (TB), for which information is disseminated via a spanning tree. It achieves the minimal transmission overhead but the maintenance of spanning tree for every node is an obvious obstacle for implementation. Motivated by the success of scale-free network models for real-world networks, in this paper, we investigate the issues in IB by considering an alternative solution in-between these two extremes. A novel relay-based broadcast (RB) mechanism is proposed by employing a subset of nodes as relays. Information is firstly forwarded to one of these relays and then re-disseminated to others through the spanning tree whose root is the relay. This mechanism provides a trade-off solution between flooding and TB. On one hand, it saves up a lot of transmission overhead as compared to flooding; on the other hand, it costs much less resource for maintenance than TB as only a few spanning trees are needed. Based on two major criteria, namely the transmission overhead and the convergence time, the effectiveness of RB is confirmed. The impacts of relay assignment and network structures on performance are also studied in this work.

  17. Resistance and Security Index of Networks: Structural Information Perspective of Network Security

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-06-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.

  18. Resistance and Security Index of Networks: Structural Information Perspective of Network Security.

    PubMed

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-06-03

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.

  19. Resistance and Security Index of Networks: Structural Information Perspective of Network Security

    PubMed Central

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-01-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks. PMID:27255783

  20. Enhancing topology adaptation in information-sharing social networks

    NASA Astrophysics Data System (ADS)

    Cimini, Giulio; Chen, Duanbing; Medo, Matúš; Lü, Linyuan; Zhang, Yi-Cheng; Zhou, Tao

    2012-04-01

    The advent of the Internet and World Wide Web has led to unprecedent growth of the information available. People usually face the information overload by following a limited number of sources which best fit their interests. It has thus become important to address issues like who gets followed and how to allow people to discover new and better information sources. In this paper we conduct an empirical analysis of different online social networking sites and draw inspiration from its results to present different source selection strategies in an adaptive model for social recommendation. We show that local search rules which enhance the typical topological features of real social communities give rise to network configurations that are globally optimal. These rules create networks which are effective in information diffusion and resemble structures resulting from real social systems.

  1. Analysis of Computer Network Information Based on "Big Data"

    NASA Astrophysics Data System (ADS)

    Li, Tianli

    2017-11-01

    With the development of the current era, computer network and large data gradually become part of the people's life, people use the computer to provide convenience for their own life, but at the same time there are many network information problems has to pay attention. This paper analyzes the information security of computer network based on "big data" analysis, and puts forward some solutions.

  2. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.

    PubMed

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain Bin; Wu, Jianjun

    2015-01-01

    Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.

  3. The Value of Information in Distributed Decision Networks

    DTIC Science & Technology

    2016-03-04

    formulation, and then we describe the various results at- tained. 1 Mathematical description of Distributed Decision Network un- der Information...Constraints We now define a mathematical framework for networks. Let G = (V,E) be an undirected random network (graph) drawn from a known distribution pG, 1

  4. An integrated multimedia medical information network system.

    PubMed

    Yamamoto, K; Makino, J; Sasagawa, N; Nagira, M

    1998-01-01

    An integrated multimedia medical information network system at Shimane Medical university has been developed to organize medical information generated from each section and provide information services useful for education, research and clinical practice. The report describes the outline of our system. It is designed to serve as a distributed database for electronic medical records and images. We are developing the MML engine that is to be linked to the world wide web (WWW) network system. To the users, this system will present an integrated multimedia representation of the patient records, providing access to both the image and text-based data required for an effective clinical decision making and medical education.

  5. Child Rights Information Network Newsletter, 1996.

    ERIC Educational Resources Information Center

    Purbrick, Becky, Ed.

    1996-01-01

    These two newsletter issues communicate activities of the newly formed Child Rights Information Network (CRIN) and report on emerging information resources and activities concerning children and child rights. The January 1996 issue describes the history of CRIN, provides updates on the activities of projects linked to CRIN, and summarizes…

  6. Child Rights Information Network Newsletter, 1997.

    ERIC Educational Resources Information Center

    Purbrick, Becky, Ed.

    1997-01-01

    These three newsletter issues communicate activities of the Child Rights Information Network (CRIN) and report on information resources and worldwide activities concerning children and child rights. The January 1997 issue profiles CRIN members in Costa Rica, Tanzania, Germany, and Switzerland; and provides updates on the activities of projects…

  7. Multi-Modal Traveler Information System - Information Clearinghouse Final Network

    DOT National Transportation Integrated Search

    1997-07-23

    This Working Paper will summarize the lessons learned from the initial implementation of the Information Clearinghouse and outline the proposed configuration and functional capabilities of the Final Network. In addition, all new users added since Mar...

  8. Competition between Homophily and Information Entropy Maximization in Social Networks

    PubMed Central

    Zhao, Jichang; Liang, Xiao; Xu, Ke

    2015-01-01

    In social networks, it is conventionally thought that two individuals with more overlapped friends tend to establish a new friendship, which could be stated as homophily breeding new connections. While the recent hypothesis of maximum information entropy is presented as the possible origin of effective navigation in small-world networks. We find there exists a competition between information entropy maximization and homophily in local structure through both theoretical and experimental analysis. This competition suggests that a newly built relationship between two individuals with more common friends would lead to less information entropy gain for them. We demonstrate that in the evolution of the social network, both of the two assumptions coexist. The rule of maximum information entropy produces weak ties in the network, while the law of homophily makes the network highly clustered locally and the individuals would obtain strong and trust ties. A toy model is also presented to demonstrate the competition and evaluate the roles of different rules in the evolution of real networks. Our findings could shed light on the social network modeling from a new perspective. PMID:26334994

  9. Putting Gino's lesson to work: Actor-network theory, enacted humanity, and rehabilitation.

    PubMed

    Abrams, Thomas; Gibson, Barbara E

    2016-02-01

    This article argues that rehabilitation enacts a particular understanding of "the human" throughout therapeutic assessment and treatment. Following Michel Callon and Vololona Rabeharisoa's "Gino's Lesson on Humanity," we suggest that this is not simply a top-down process, but is cultivated in the application and response to biomedical frameworks of human ability, competence, and responsibility. The emergence of the human is at once a materially contingent, moral, and interpersonal process. We begin the article by outlining the basics of the actor-network theory that underpins "Gino's Lesson on Humanity." Next, we elucidate its central thesis regarding how disabled personhood emerges through actor-network interactions. Section "Learning Gino's lesson" draws on two autobiographical examples, examining the emergence of humanity through rehabilitation, particularly assessment measures and the responses to them. We conclude by thinking about how rehabilitation and actor-network theory might take this lesson on humanity seriously. © The Author(s) 2016.

  10. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    NASA Astrophysics Data System (ADS)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical

  11. Information and the War against Terrorism.

    ERIC Educational Resources Information Center

    Strickland, Lee S.

    2002-01-01

    Considers the effectiveness of information and information theory as tools in the war against terrorism following the September 11 attacks, as well as the legal and political authority for their covert use. Topics include understanding the elements of an information network; and using organizational theory to disrupt the target information…

  12. Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

    NASA Astrophysics Data System (ADS)

    Rangan, Aaditya V.; Cai, David; Tao, Louis

    2007-02-01

    Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of

  13. Understanding cancer complexome using networks, spectral graph theory and multilayer framework

    NASA Astrophysics Data System (ADS)

    Rai, Aparna; Pradhan, Priodyuti; Nagraj, Jyothi; Lohitesh, K.; Chowdhury, Rajdeep; Jalan, Sarika

    2017-02-01

    Cancer complexome comprises a heterogeneous and multifactorial milieu that varies in cytology, physiology, signaling mechanisms and response to therapy. The combined framework of network theory and spectral graph theory along with the multilayer analysis provides a comprehensive approach to analyze the proteomic data of seven different cancers, namely, breast, oral, ovarian, cervical, lung, colon and prostate. Our analysis demonstrates that the protein-protein interaction networks of the normal and the cancerous tissues associated with the seven cancers have overall similar structural and spectral properties. However, few of these properties implicate unsystematic changes from the normal to the disease networks depicting difference in the interactions and highlighting changes in the complexity of different cancers. Importantly, analysis of common proteins of all the cancer networks reveals few proteins namely the sensors, which not only occupy significant position in all the layers but also have direct involvement in causing cancer. The prediction and analysis of miRNAs targeting these sensor proteins hint towards the possible role of these proteins in tumorigenesis. This novel approach helps in understanding cancer at the fundamental level and provides a clue to develop promising and nascent concept of single drug therapy for multiple diseases as well as personalized medicine.

  14. Understanding cancer complexome using networks, spectral graph theory and multilayer framework.

    PubMed

    Rai, Aparna; Pradhan, Priodyuti; Nagraj, Jyothi; Lohitesh, K; Chowdhury, Rajdeep; Jalan, Sarika

    2017-02-03

    Cancer complexome comprises a heterogeneous and multifactorial milieu that varies in cytology, physiology, signaling mechanisms and response to therapy. The combined framework of network theory and spectral graph theory along with the multilayer analysis provides a comprehensive approach to analyze the proteomic data of seven different cancers, namely, breast, oral, ovarian, cervical, lung, colon and prostate. Our analysis demonstrates that the protein-protein interaction networks of the normal and the cancerous tissues associated with the seven cancers have overall similar structural and spectral properties. However, few of these properties implicate unsystematic changes from the normal to the disease networks depicting difference in the interactions and highlighting changes in the complexity of different cancers. Importantly, analysis of common proteins of all the cancer networks reveals few proteins namely the sensors, which not only occupy significant position in all the layers but also have direct involvement in causing cancer. The prediction and analysis of miRNAs targeting these sensor proteins hint towards the possible role of these proteins in tumorigenesis. This novel approach helps in understanding cancer at the fundamental level and provides a clue to develop promising and nascent concept of single drug therapy for multiple diseases as well as personalized medicine.

  15. Maximally informative pairwise interactions in networks

    PubMed Central

    Fitzgerald, Jeffrey D.; Sharpee, Tatyana O.

    2010-01-01

    Several types of biological networks have recently been shown to be accurately described by a maximum entropy model with pairwise interactions, also known as the Ising model. Here we present an approach for finding the optimal mappings between input signals and network states that allow the network to convey the maximal information about input signals drawn from a given distribution. This mapping also produces a set of linear equations for calculating the optimal Ising-model coupling constants, as well as geometric properties that indicate the applicability of the pairwise Ising model. We show that the optimal pairwise interactions are on average zero for Gaussian and uniformly distributed inputs, whereas they are nonzero for inputs approximating those in natural environments. These nonzero network interactions are predicted to increase in strength as the noise in the response functions of each network node increases. This approach also suggests ways for how interactions with unmeasured parts of the network can be inferred from the parameters of response functions for the measured network nodes. PMID:19905153

  16. Illuminating a plant’s tissue-specific metabolic diversity using computational metabolomics and information theory

    PubMed Central

    Li, Dapeng; Heiling, Sven; Baldwin, Ian T.

    2016-01-01

    Secondary metabolite diversity is considered an important fitness determinant for plants’ biotic and abiotic interactions in nature. This diversity can be examined in two dimensions. The first one considers metabolite diversity across plant species. A second way of looking at this diversity is by considering the tissue-specific localization of pathways underlying secondary metabolism within a plant. Although these cross-tissue metabolite variations are increasingly regarded as important readouts of tissue-level gene function and regulatory processes, they have rarely been comprehensively explored by nontargeted metabolomics. As such, important questions have remained superficially addressed. For instance, which tissues exhibit prevalent signatures of metabolic specialization? Reciprocally, which metabolites contribute most to this tissue specialization in contrast to those metabolites exhibiting housekeeping characteristics? Here, we explore tissue-level metabolic specialization in Nicotiana attenuata, an ecological model with rich secondary metabolism, by combining tissue-wide nontargeted mass spectral data acquisition, information theory analysis, and tandem MS (MS/MS) molecular networks. This analysis was conducted for two different methanolic extracts of 14 tissues and deconvoluted 895 nonredundant MS/MS spectra. Using information theory analysis, anthers were found to harbor the most specialized metabolome, and most unique metabolites of anthers and other tissues were annotated through MS/MS molecular networks. Tissue–metabolite association maps were used to predict tissue-specific gene functions. Predictions for the function of two UDP-glycosyltransferases in flavonoid metabolism were confirmed by virus-induced gene silencing. The present workflow allows biologists to amortize the vast amount of data produced by modern MS instrumentation in their quest to understand gene function. PMID:27821729

  17. Design of surface-water data networks for regional information

    USGS Publications Warehouse

    Moss, Marshall E.; Gilroy, E.J.; Tasker, Gary D.; Karlinger, M.R.

    1982-01-01

    This report describes a technique, Network Analysis of Regional Information (NARI), and the existing computer procedures that have been developed for the specification of the regional information-cost relation for several statistical parameters of streamflow. The measure of information used is the true standard error of estimate of a regional logarithmic regression. The cost is a function of the number of stations at which hydrologic data are collected and the number of years for which the data are collected. The technique can be used to obtain either (1) a minimum cost network that will attain a prespecified accuracy and reliability or (2) a network that maximizes information given a set of budgetary and time constraints.

  18. Understanding information exchange during disaster response: Methodological insights from infocentric analysis

    Treesearch

    Toddi A. Steelman; Branda Nowell; Deena Bayoumi; Sarah McCaffrey

    2014-01-01

    We leverage economic theory, network theory, and social network analytical techniques to bring greater conceptual and methodological rigor to understand how information is exchanged during disasters. We ask, "How can information relationships be evaluated more systematically during a disaster response?" "Infocentric analysis"—a term and...

  19. A DNA network as an information processing system.

    PubMed

    Santini, Cristina Costa; Bath, Jonathan; Turberfield, Andrew J; Tyrrell, Andy M

    2012-01-01

    Biomolecular systems that can process information are sought for computational applications, because of their potential for parallelism and miniaturization and because their biocompatibility also makes them suitable for future biomedical applications. DNA has been used to design machines, motors, finite automata, logic gates, reaction networks and logic programs, amongst many other structures and dynamic behaviours. Here we design and program a synthetic DNA network to implement computational paradigms abstracted from cellular regulatory networks. These show information processing properties that are desirable in artificial, engineered molecular systems, including robustness of the output in relation to different sources of variation. We show the results of numerical simulations of the dynamic behaviour of the network and preliminary experimental analysis of its main components.

  20. Models, Entropy and Information of Temporal Social Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Karsai, Márton; Bianconi, Ginestra

    Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.

  1. Mutual information, neural networks and the renormalization group

    NASA Astrophysics Data System (ADS)

    Koch-Janusz, Maciej; Ringel, Zohar

    2018-06-01

    Physical systems differing in their microscopic details often display strikingly similar behaviour when probed at macroscopic scales. Those universal properties, largely determining their physical characteristics, are revealed by the powerful renormalization group (RG) procedure, which systematically retains `slow' degrees of freedom and integrates out the rest. However, the important degrees of freedom may be difficult to identify. Here we demonstrate a machine-learning algorithm capable of identifying the relevant degrees of freedom and executing RG steps iteratively without any prior knowledge about the system. We introduce an artificial neural network based on a model-independent, information-theoretic characterization of a real-space RG procedure, which performs this task. We apply the algorithm to classical statistical physics problems in one and two dimensions. We demonstrate RG flow and extract the Ising critical exponent. Our results demonstrate that machine-learning techniques can extract abstract physical concepts and consequently become an integral part of theory- and model-building.

  2. Some characteristics of supernetworks based on unified hybrid network theory framework

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Fang, Jin-Qing; Li, Yong

    Comparing with single complex networks, supernetworks are more close to the real world in some ways, and have become the newest research hot spot in the network science recently. Some progresses have been made in the research of supernetworks, but the theoretical research method and complex network characteristics of supernetwork models are still needed to further explore. In this paper, we propose three kinds of supernetwork models with three layers based on the unified hybrid network theory framework (UHNTF), and introduce preferential and random linking, respectively, between the upper and lower layers. Then we compared the topological characteristics of the single networks with the supernetwork models. In order to analyze the influence of the interlayer edges on network characteristics, the cross-degree is defined as a new important parameter. Then some interesting new phenomena are found, the results imply this supernetwork model has reference value and application potential.

  3. Applying Information Processing Theory to Supervision: An Initial Exploration

    ERIC Educational Resources Information Center

    Tangen, Jodi L.; Borders, L. DiAnne

    2017-01-01

    Although clinical supervision is an educational endeavor (Borders & Brown, [Borders, L. D., 2005]), many scholars neglect theories of learning in working with supervisees. The authors describe 1 learning theory--information processing theory (Atkinson & Shiffrin, 1968, 1971; Schunk, 2016)--and the ways its associated interventions may…

  4. Blending Formal and Informal Learning Networks for Online Learning

    ERIC Educational Resources Information Center

    Czerkawski, Betül C.

    2016-01-01

    With the emergence of social software and the advance of web-based technologies, online learning networks provide invaluable opportunities for learning, whether formal or informal. Unlike top-down, instructor-centered, and carefully planned formal learning settings, informal learning networks offer more bottom-up, student-centered participatory…

  5. Effect of Heterogeneous Interest Similarity on the Spread of Information in Mobile Social Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Narisa; Sui, Guoqin; Yang, Fan

    2018-06-01

    Mobile social networks (MSNs) are important platforms for spreading news. The fact that individuals usually forward information aligned with their own interests inevitably changes the dynamics of information spread. Thereby, first we present a theoretical model based on the discrete Markov chain and mean field theory to evaluate the effect of interest similarity on the information spread in MSNs. Meanwhile, individuals' interests are heterogeneous and vary with time. These two features result in interest shift behavior, and both features are considered in our model. A leveraging simulation demonstrates the accuracy of our model. Moreover, the basic reproduction number R0 is determined. Further extensive numerical analyses based on the model indicate that interest similarity has a critical impact on information spread at the early spreading stage. Specifically, the information always spreads more quickly and widely if the interest similarity between an individual and the information is higher. Finally, five actual data sets from Sina Weibo illustrate the validity of the model.

  6. Exploring a social network for sharing information about pain.

    PubMed

    Alvarez, Ana Graziela; Dal Sasso, Grace T Marcon

    2012-01-01

    The purpose of study was to evaluate the opinion of users about the experience of sharing information about pain in a social network. An electronic survey study was conducted from September to November/2009. Nine participants assessed the social network through of an electronic questionnaire. positive aspects (easy access, organized information, interactivity, encourages the sharing of information, learning opportunity). The sharing of information contributes to the development of a collective intelligence based on exchanging experiences and knowledge sharing.

  7. Assessing the Robustness of Graph Statistics for Network Analysis Under Incomplete Information

    DTIC Science & Technology

    strategy for dismantling these networks based on their network structure. However, these strategies typically assume complete information about the...combat them with missing information . This thesis analyzes the performance of a variety of network statistics in the context of incomplete information by...leveraging simulation to remove nodes and edges from networks and evaluating the effect this missing information has on our ability to accurately

  8. Should the model for risk-informed regulation be game theory rather than decision theory?

    PubMed

    Bier, Vicki M; Lin, Shi-Woei

    2013-02-01

    Risk analysts frequently view the regulation of risks as being largely a matter of decision theory. According to this view, risk analysis methods provide information on the likelihood and severity of various possible outcomes; this information should then be assessed using a decision-theoretic approach (such as cost/benefit analysis) to determine whether the risks are acceptable, and whether additional regulation is warranted. However, this view ignores the fact that in many industries (particularly industries that are technologically sophisticated and employ specialized risk and safety experts), risk analyses may be done by regulated firms, not by the regulator. Moreover, those firms may have more knowledge about the levels of safety at their own facilities than the regulator does. This creates a situation in which the regulated firm has both the opportunity-and often also the motive-to provide inaccurate (in particular, favorably biased) risk information to the regulator, and hence the regulator has reason to doubt the accuracy of the risk information provided by regulated parties. Researchers have argued that decision theory is capable of dealing with many such strategic interactions as well as game theory can. This is especially true in two-player, two-stage games in which the follower has a unique best strategy in response to the leader's strategy, as appears to be the case in the situation analyzed in this article. However, even in such cases, we agree with Cox that game-theoretic methods and concepts can still be useful. In particular, the tools of mechanism design, and especially the revelation principle, can simplify the analysis of such games because the revelation principle provides rigorous assurance that it is sufficient to analyze only games in which licensees truthfully report their risk levels, making the problem more manageable. Without that, it would generally be necessary to consider much more complicated forms of strategic behavior (including

  9. Incorporating profile information in community detection for online social networks

    NASA Astrophysics Data System (ADS)

    Fan, W.; Yeung, K. H.

    2014-07-01

    Community structure is an important feature in the study of complex networks. It is because nodes of the same community may have similar properties. In this paper we extend two popular community detection methods to partition online social networks. In our extended methods, the profile information of users is used for partitioning. We apply the extended methods in several sample networks of Facebook. Compared with the original methods, the community structures we obtain have higher modularity. Our results indicate that users' profile information is consistent with the community structure of their friendship network to some extent. To the best of our knowledge, this paper is the first to discuss how profile information can be used to improve community detection in online social networks.

  10. Enabling information management systems in tactical network environments

    NASA Astrophysics Data System (ADS)

    Carvalho, Marco; Uszok, Andrzej; Suri, Niranjan; Bradshaw, Jeffrey M.; Ceccio, Philip J.; Hanna, James P.; Sinclair, Asher

    2009-05-01

    Net-Centric Information Management (IM) and sharing in tactical environments promises to revolutionize forward command and control capabilities by providing ubiquitous shared situational awareness to the warfighter. This vision can be realized by leveraging the tactical and Mobile Ad hoc Networks (MANET) which provide the underlying communications infrastructure, but, significant technical challenges remain. Enabling information management in these highly dynamic environments will require multiple support services and protocols which are affected by, and highly dependent on, the underlying capabilities and dynamics of the tactical network infrastructure. In this paper we investigate, discuss, and evaluate the effects of realistic tactical and mobile communications network environments on mission-critical information management systems. We motivate our discussion by introducing the Advanced Information Management System (AIMS) which is targeted for deployment in tactical sensor systems. We present some operational requirements for AIMS and highlight how critical IM support services such as discovery, transport, federation, and Quality of Service (QoS) management are necessary to meet these requirements. Our goal is to provide a qualitative analysis of the impact of underlying assumptions of availability and performance of some of the critical services supporting tactical information management. We will also propose and describe a number of technologies and capabilities that have been developed to address these challenges, providing alternative approaches for transport, service discovery, and federation services for tactical networks.

  11. Using Bayesian networks to support decision-focused information retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehner, P.; Elsaesser, C.; Seligman, L.

    This paper has described an approach to controlling the process of pulling data/information from distributed data bases in a way that is specific to a persons specific decision making context. Our prototype implementation of this approach uses a knowledge-based planner to generate a plan, an automatically constructed Bayesian network to evaluate the plan, specialized processing of the network to derive key information items that would substantially impact the evaluation of the plan (e.g., determine that replanning is needed), automated construction of Standing Requests for Information (SRIs) which are automated functions that monitor changes and trends in distributed data base thatmore » are relevant to the key information items. This emphasis of this paper is on how Bayesian networks are used.« less

  12. The Role of the Australian Open Learning Information Network.

    ERIC Educational Resources Information Center

    Bishop, Robin; And Others

    Three documents are presented which describe the Australian Open Learning Information Network (AOLIN)--a national, independent, and self-supporting network of educational researchers with a common interest in the use of information technology for open and distance education--and discuss two evaluative studies undertaken by the organization. The…

  13. The Philosophy of Information as an Underlying and Unifying Theory of Information Science

    ERIC Educational Resources Information Center

    Tomic, Taeda

    2010-01-01

    Introduction: Philosophical analyses of theoretical principles underlying these sub-domains reveal philosophy of information as underlying meta-theory of information science. Method: Conceptual research on the knowledge sub-domains in information science and philosophy and analysis of their mutual connection. Analysis: Similarities between…

  14. Optimal Phase Oscillatory Network

    NASA Astrophysics Data System (ADS)

    Follmann, Rosangela

    2013-03-01

    Important topics as preventive detection of epidemics, collective self-organization, information flow and systemic robustness in clusters are typical examples of processes that can be studied in the context of the theory of complex networks. It is an emerging theory in a field, which has recently attracted much interest, involving the synchronization of dynamical systems associated to nodes, or vertices, of the network. Studies have shown that synchronization in oscillatory networks depends not only on the individual dynamics of each element, but also on the combination of the topology of the connections as well as on the properties of the interactions of these elements. Moreover, the response of the network to small damages, caused at strategic points, can enhance the global performance of the whole network. In this presentation we explore an optimal phase oscillatory network altered by an additional term in the coupling function. The application to associative-memory network shows improvement on the correct information retrieval as well as increase of the storage capacity. The inclusion of some small deviations on the nodes, when solutions are attracted to a false state, results in additional enhancement of the performance of the associative-memory network. Supported by FAPESP - Sao Paulo Research Foundation, grant number 2012/12555-4

  15. Value of Information and Prospect theory as tools to involve decision-makers in water-related design, operation and planning of water systems

    NASA Astrophysics Data System (ADS)

    Alfonso, Leonardo

    2013-04-01

    The role of decision-makers is to take the outputs from hydrological and hydraulic analyses and, in some extent, use them as inputs to make decisions that are related to planning, design and operation of water systems. However, the use of these technical analyses is frequently limited, since there are other non-hydrological issues that must be considered, that may end up in very different solutions than those envisaged by the purely technical ones. A possibility to account for the nature of the human decisions under uncertainty is by exploring the use of concepts from decision theory and behavioural economics, such as Value of Information and Prospect Theory and embed them into the methodologies we use in the hydrology practice. Three examples are presented to illustrate these multidisciplinary interactions. The first one, for monitoring network design, uses Value of Information within a methodology to locate water level stations in a complex canal of networks in the Netherlands. The second example, for operation, shows how the Value of Information concept can be used to formulate alternative methods to evaluate flood risk according to the set of options available for decision-making during a flood event. The third example, for planning, uses Prospect Theory concepts to understand how the "losses hurt more than gains feel good" effect can determine the final decision of urbanise or not a flood-prone area. It is demonstrated that decision theory and behavioural economic principles are promising to evaluate the complex decision-making process in water-related issues.

  16. Geosciences Information Network (GIN): A modular, distributed, interoperable data network for the geosciences

    NASA Astrophysics Data System (ADS)

    Allison, M.; Gundersen, L. C.; Richard, S. M.; Dickinson, T. L.

    2008-12-01

    A coalition of the state geological surveys (AASG), the U.S. Geological Survey (USGS), and partners will receive NSF funding over 3 years under the INTEROP solicitation to start building the Geoscience Information Network (www.geoinformatics.info/gin) a distributed, interoperable data network. The GIN project will develop standardized services to link existing and in-progress components using a few standards and protocols, and work with data providers to implement these services. The key components of this network are 1) catalog system(s) for data discovery; 2) service definitions for interfaces for searching catalogs and accessing resources; 3) shared interchange formats to encode information for transmission (e.g. various XML markup languages); 4) data providers that publish information using standardized services defined by the network; and 5) client applications adapted to use information resources provided by the network. The GIN will integrate and use catalog resources that currently exist or are in development. We are working with the USGS National Geologic Map Database's existing map catalog, with the USGS National Geological and Geophysical Data Preservation Program, which is developing a metadata catalog (National Digital Catalog) for geoscience information resource discovery, and with the GEON catalog. Existing interchange formats will be used, such as GeoSciML, ChemML, and Open Geospatial Consortium sensor, observation and measurement MLs. Client application development will be fostered by collaboration with industry and academic partners. The GIN project will focus on the remaining aspects of the system -- service definitions and assistance to data providers to implement the services and bring content online - and on system integration of the modules. Initial formal collaborators include the OneGeology-Europe consortium of 27 nations that is building a comparable network under the EU INSPIRE initiative, GEON, Earthchem, and GIS software company ESRI

  17. Information Filtering on Coupled Social Networks

    PubMed Central

    Nie, Da-Cheng; Zhang, Zi-Ke; Zhou, Jun-Lin; Fu, Yan; Zhang, Kui

    2014-01-01

    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the effects of both social similarity and personalized preference. Experimental results based on two real datasets, Epinions and Friendfeed, show that the hybrid pattern can not only provide more accurate recommendations, but also enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding of the structure and function of coupled social networks. PMID:25003525

  18. Information filtering on coupled social networks.

    PubMed

    Nie, Da-Cheng; Zhang, Zi-Ke; Zhou, Jun-Lin; Fu, Yan; Zhang, Kui

    2014-01-01

    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the effects of both social similarity and personalized preference. Experimental results based on two real datasets, Epinions and Friendfeed, show that the hybrid pattern can not only provide more accurate recommendations, but also enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding of the structure and function of coupled social networks.

  19. Information Theoretic Characterization of Physical Theories with Projective State Space

    NASA Astrophysics Data System (ADS)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  20. Driving the brain towards creativity and intelligence: A network control theory analysis.

    PubMed

    Kenett, Yoed N; Medaglia, John D; Beaty, Roger E; Chen, Qunlin; Betzel, Richard F; Thompson-Schill, Sharon L; Qiu, Jiang

    2018-01-04

    High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, including cognitive control processes. Recent neurocognitive research on these constructs highlight the importance of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control contributes to creativity and intelligence? To address this question, we apply a computational network control theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that intelligence is related to the ability to "drive" the brain system into easy to reach neural states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also find that creativity is related to the ability to "drive" the brain system into difficult to reach states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas. Furthermore, we found that different facets of creativity-fluency, flexibility, and originality-relate to generally similar but not identical network controllability processes. We relate our findings to general theories on intelligence and creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Thermodynamical transcription of density functional theory with minimum Fisher information

    NASA Astrophysics Data System (ADS)

    Nagy, Á.

    2018-03-01

    Ghosh, Berkowitz and Parr designed a thermodynamical transcription of the ground-state density functional theory and introduced a local temperature that varies from point to point. The theory, however, is not unique because the kinetic energy density is not uniquely defined. Here we derive the expression of the phase-space Fisher information in the GBP theory taking the inverse temperature as the Fisher parameter. It is proved that this Fisher information takes its minimum for the case of constant temperature. This result is consistent with the recently proven theorem that the phase-space Shannon information entropy attains its maximum at constant temperature.

  2. Network marketing with bounded rationality and partial information

    NASA Astrophysics Data System (ADS)

    Kiet, Hoang Anh Tuan; Kim, Beom Jun

    2008-08-01

    Network marketing has been proposed and used as a way to spread the product information to consumers through social connections. We extend the previous game model of the network marketing on a small-world tree network and propose two games: In the first model with the bounded rationality, each consumer makes purchase decision stochastically, while in the second model, consumers get only partial information due to the finite length of social connections. Via extensive numerical simulations, we find that as the rationality is enhanced not only the consumer surplus but also the firm’s profit is increased. The implication of our results is also discussed.

  3. The system of technical diagnostics of the industrial safety information network

    NASA Astrophysics Data System (ADS)

    Repp, P. V.

    2017-01-01

    This research is devoted to problems of safety of the industrial information network. Basic sub-networks, ensuring reliable operation of the elements of the industrial Automatic Process Control System, were identified. The core tasks of technical diagnostics of industrial information safety were presented. The structure of the technical diagnostics system of the information safety was proposed. It includes two parts: a generator of cyber-attacks and the virtual model of the enterprise information network. The virtual model was obtained by scanning a real enterprise network. A new classification of cyber-attacks was proposed. This classification enables one to design an efficient generator of cyber-attacks sets for testing the virtual modes of the industrial information network. The numerical method of the Monte Carlo (with LPτ - sequences of Sobol), and Markov chain was considered as the design method for the cyber-attacks generation algorithm. The proposed system also includes a diagnostic analyzer, performing expert functions. As an integrative quantitative indicator of the network reliability the stability factor (Kstab) was selected. This factor is determined by the weight of sets of cyber-attacks, identifying the vulnerability of the network. The weight depends on the frequency and complexity of cyber-attacks, the degree of damage, complexity of remediation. The proposed Kstab is an effective integral quantitative measure of the information network reliability.

  4. Information Systems at Enterprise. Design of Secure Network of Enterprise

    NASA Astrophysics Data System (ADS)

    Saigushev, N. Y.; Mikhailova, U. V.; Vedeneeva, O. A.; Tsaran, A. A.

    2018-05-01

    No enterprise and company can do without designing its own corporate network in today's information society. It accelerates and facilitates the work of employees at any level, but contains a big threat to confidential information of the company. In addition to the data theft attackers, there are plenty of information threats posed by modern malware effects. In this regard, the computational security of corporate networks is an important component of modern information technologies of computer security for any enterprise. This article says about the design of the protected corporate network of the enterprise that provides the computers on the network access to the Internet, as well interoperability with the branch. The access speed to the Internet at a high level is provided through the use of high-speed access channels and load balancing between devices. The security of the designed network is performed through the use of VLAN technology as well as access lists and AAA server.

  5. 78 FR 71631 - Committee Name: Homeland Security Information Network Advisory Committee (HSINAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Network Advisory Committee (HSINAC) AGENCY: Operation Coordination and Planning/Office of Chief.... SUMMARY: The Homeland Security Information Network Advisory Council (HSINAC) will meet December 17, 2013... , Phone: 202-343-4212. SUPPLEMENTARY INFORMATION: The Homeland Security Information Network Advisory...

  6. Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks

    NASA Astrophysics Data System (ADS)

    Teng, Xian; Pei, Sen; Morone, Flaviano; Makse, Hernán A.

    2016-10-01

    Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called “Collective Influence (CI)” has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes’ significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct “virtual” information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes’ importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.

  7. Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks

    PubMed Central

    Teng, Xian; Pei, Sen; Morone, Flaviano; Makse, Hernán A.

    2016-01-01

    Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called “Collective Influence (CI)” has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes’ significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct “virtual” information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes’ importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community. PMID:27782207

  8. INfORM: Inference of NetwOrk Response Modules.

    PubMed

    Marwah, Veer Singh; Kinaret, Pia Anneli Sofia; Serra, Angela; Scala, Giovanni; Lauerma, Antti; Fortino, Vittorio; Greco, Dario

    2018-06-15

    Detecting and interpreting responsive modules from gene expression data by using network-based approaches is a common but laborious task. It often requires the application of several computational methods implemented in different software packages, forcing biologists to compile complex analytical pipelines. Here we introduce INfORM (Inference of NetwOrk Response Modules), an R shiny application that enables non-expert users to detect, evaluate and select gene modules with high statistical and biological significance. INfORM is a comprehensive tool for the identification of biologically meaningful response modules from consensus gene networks inferred by using multiple algorithms. It is accessible through an intuitive graphical user interface allowing for a level of abstraction from the computational steps. INfORM is freely available for academic use at https://github.com/Greco-Lab/INfORM. Supplementary data are available at Bioinformatics online.

  9. Combining a dispersal model with network theory to assess habitat connectivity.

    PubMed

    Lookingbill, Todd R; Gardner, Robert H; Ferrari, Joseph R; Keller, Cherry E

    2010-03-01

    Assessing the potential for threatened species to persist and spread within fragmented landscapes requires the identification of core areas that can sustain resident populations and dispersal corridors that can link these core areas with isolated patches of remnant habitat. We developed a set of GIS tools, simulation methods, and network analysis procedures to assess potential landscape connectivity for the Delmarva fox squirrel (DFS; Sciurus niger cinereus), an endangered species inhabiting forested areas on the Delmarva Peninsula, USA. Information on the DFS's life history and dispersal characteristics, together with data on the composition and configuration of land cover on the peninsula, were used as input data for an individual-based model to simulate dispersal patterns of millions of squirrels. Simulation results were then assessed using methods from graph theory, which quantifies habitat attributes associated with local and global connectivity. Several bottlenecks to dispersal were identified that were not apparent from simple distance-based metrics, highlighting specific locations for landscape conservation, restoration, and/or squirrel translocations. Our approach links simulation models, network analysis, and available field data in an efficient and general manner, making these methods useful and appropriate for assessing the movement dynamics of threatened species within landscapes being altered by human and natural disturbances.

  10. Network-based machine learning and graph theory algorithms for precision oncology.

    PubMed

    Zhang, Wei; Chien, Jeremy; Yong, Jeongsik; Kuang, Rui

    2017-01-01

    Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and that the efficacy of repositioned drugs can be inferred from disease modules in molecular networks. This article reviews network-based machine learning and graph theory algorithms for integrative analysis of personal genomic data and biomedical knowledge bases to identify tumor-specific molecular mechanisms, candidate targets and repositioned drugs for personalized treatment. The review focuses on the algorithmic design and mathematical formulation of these methods to facilitate applications and implementations of network-based analysis in the practice of precision oncology. We review the methods applied in three scenarios to integrate genomic data and network models in different analysis pipelines, and we examine three categories of network-based approaches for repositioning drugs in drug-disease-gene networks. In addition, we perform a comprehensive subnetwork/pathway analysis of mutations in 31 cancer genome projects in the Cancer Genome Atlas and present a detailed case study on ovarian cancer. Finally, we discuss interesting observations, potential pitfalls and future directions in network-based precision oncology.

  11. Securing Information with Complex Optical Encryption Networks

    DTIC Science & Technology

    2015-08-11

    Network Security, Network Vulnerability , Multi-dimentional Processing, optoelectronic devices 16. SECURITY CLASSIFICATION OF: 17. LIMITATION... optoelectronic devices and systems should be analyzed before the retrieval, any hostile hacker will need to possess multi-disciplinary scientific...sophisticated optoelectronic principles and systems where he/she needs to process the information. However, in the military applications, most military

  12. Information Security Analysis Using Game Theory and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlicher, Bob G; Abercrombie, Robert K

    Information security analysis can be performed using game theory implemented in dynamic simulations of Agent Based Models (ABMs). Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. Our approach addresses imperfect information and scalability that allows us to also address previous limitations of current stochastic game models. Such models only consider perfect information assuming that the defender is always able to detect attacks; assuming that the state transition probabilities are fixed before the game assuming that the players actions aremore » always synchronous; and that most models are not scalable with the size and complexity of systems under consideration. Our use of ABMs yields results of selected experiments that demonstrate our proposed approach and provides a quantitative measure for realistic information systems and their related security scenarios.« less

  13. Scattering theory of efficient quantum transport across finite networks

    NASA Astrophysics Data System (ADS)

    Walschaers, Mattia; Mulet, Roberto; Buchleitner, Andreas

    2017-11-01

    We present a scattering theory for the efficient transmission of an excitation across a finite network with designed disorder. We show that the presence of randomly positioned network sites allows significant acceleration of the excitation transfer processes as compared to a dimer structure, but only if the disordered Hamiltonians are constrained to be centrosymmetric and exhibit a dominant doublet in their spectrum. We identify the cause of this efficiency enhancement to be the constructive interplay between disorder-induced fluctuations of the dominant doublet’s splitting and the coupling strength between the input and output sites to the scattering channels. We find that the characteristic strength of these fluctuations together with the channel coupling fully control the transfer efficiency.

  14. 47 CFR 64.2011 - Notification of customer proprietary network information security breaches.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Notification of customer proprietary network information security breaches. 64.2011 Section 64.2011 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Proprietary Network Information § 64.2011 Notification of customer proprietary network information security...

  15. 47 CFR 64.2011 - Notification of customer proprietary network information security breaches.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Notification of customer proprietary network information security breaches. 64.2011 Section 64.2011 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Proprietary Network Information § 64.2011 Notification of customer proprietary network information security...

  16. 47 CFR 64.2011 - Notification of customer proprietary network information security breaches.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Proprietary Network Information § 64.2011 Notification of customer proprietary network information security... 47 Telecommunication 3 2013-10-01 2013-10-01 false Notification of customer proprietary network information security breaches. 64.2011 Section 64.2011 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  17. 47 CFR 64.5111 - Notification of customer proprietary network information security breaches.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Proprietary Network Information. § 64.5111 Notification of customer proprietary network information security... 47 Telecommunication 3 2013-10-01 2013-10-01 false Notification of customer proprietary network information security breaches. 64.5111 Section 64.5111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  18. 47 CFR 64.5111 - Notification of customer proprietary network information security breaches.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Proprietary Network Information. § 64.5111 Notification of customer proprietary network information security... 47 Telecommunication 3 2014-10-01 2014-10-01 false Notification of customer proprietary network information security breaches. 64.5111 Section 64.5111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  19. 47 CFR 64.2011 - Notification of customer proprietary network information security breaches.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Proprietary Network Information § 64.2011 Notification of customer proprietary network information security... 47 Telecommunication 3 2014-10-01 2014-10-01 false Notification of customer proprietary network information security breaches. 64.2011 Section 64.2011 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  20. 47 CFR 64.2011 - Notification of customer proprietary network information security breaches.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Proprietary Network Information § 64.2011 Notification of customer proprietary network information security... 47 Telecommunication 3 2012-10-01 2012-10-01 false Notification of customer proprietary network information security breaches. 64.2011 Section 64.2011 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  1. Analysis of surface-water data network in Kansas for effectiveness in providing regional streamflow information; with a section on theory and application of generalized least squares

    USGS Publications Warehouse

    Medina, K.D.; Tasker, Gary D.

    1987-01-01

    This report documents the results of an analysis of the surface-water data network in Kansas for its effectiveness in providing regional streamflow information. The network was analyzed using generalized least squares regression. The correlation and time-sampling error of the streamflow characteristic are considered in the generalized least squares method. Unregulated medium-, low-, and high-flow characteristics were selected to be representative of the regional information that can be obtained from streamflow-gaging-station records for use in evaluating the effectiveness of continuing the present network stations, discontinuing some stations, and (or) adding new stations. The analysis used streamflow records for all currently operated stations that were not affected by regulation and for discontinued stations for which unregulated flow characteristics, as well as physical and climatic characteristics, were available. The State was divided into three network areas, western, northeastern, and southeastern Kansas, and analysis was made for the three streamflow characteristics in each area, using three planning horizons. The analysis showed that the maximum reduction of sampling mean-square error for each cost level could be obtained by adding new stations and discontinuing some current network stations. Large reductions in sampling mean-square error for low-flow information could be achieved in all three network areas, the reduction in western Kansas being the most dramatic. The addition of new stations would be most beneficial for mean-flow information in western Kansas. The reduction of sampling mean-square error for high-flow information would benefit most from the addition of new stations in western Kansas. Southeastern Kansas showed the smallest error reduction in high-flow information. A comparison among all three network areas indicated that funding resources could be most effectively used by discontinuing more stations in northeastern and southeastern Kansas

  2. Social networks predict selective observation and information spread in ravens

    PubMed Central

    Rubenstein, Daniel I.; Bugnyar, Thomas; Hoppitt, William; Mikus, Nace; Schwab, Christine

    2016-01-01

    Animals are predicted to selectively observe and learn from the conspecifics with whom they share social connections. Yet, hardly anything is known about the role of different connections in observation and learning. To address the relationships between social connections, observation and learning, we investigated transmission of information in two raven (Corvus corax) groups. First, we quantified social connections in each group by constructing networks on affiliative interactions, aggressive interactions and proximity. We then seeded novel information by training one group member on a novel task and allowing others to observe. In each group, an observation network based on who observed whose task-solving behaviour was strongly correlated with networks based on affiliative interactions and proximity. Ravens with high social centrality (strength, eigenvector, information centrality) in the affiliative interaction network were also central in the observation network, possibly as a result of solving the task sooner. Network-based diffusion analysis revealed that the order that ravens first solved the task was best predicted by connections in the affiliative interaction network in a group of subadult ravens, and by social rank and kinship (which influenced affiliative interactions) in a group of juvenile ravens. Our results demonstrate that not all social connections are equally effective at predicting the patterns of selective observation and information transmission. PMID:27493780

  3. Minimum energy information fusion in sensor networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, G

    1999-05-11

    In this paper we consider how to organize the sharing of information in a distributed network of sensors and data processors so as to provide explanations for sensor readings with minimal expenditure of energy. We point out that the Minimum Description Length principle provides an approach to information fusion that is more naturally suited to energy minimization than traditional Bayesian approaches. In addition we show that for networks consisting of a large number of identical sensors Kohonen self-organization provides an exact solution to the problem of combing the sensor outputs into minimal description length explanations.

  4. The Weight-control Information Network (WIN) | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Javascript on. Feature: Reducing Childhood Obesity The Weight-control Information Network (WIN) Past Issues / Spring - Summer 2010 ... overweight children, here are tips from the Weight-control Information Network (WIN), an information service of the ...

  5. Scalable Hierarchical Network Management System for Displaying Network Information in Three Dimensions

    NASA Technical Reports Server (NTRS)

    George, Jude (Inventor); Schlecht, Leslie (Inventor); McCabe, James D. (Inventor); LeKashman, John Jr. (Inventor)

    1998-01-01

    A network management system has SNMP agents distributed at one or more sites, an input output module at each site, and a server module located at a selected site for communicating with input output modules, each of which is configured for both SNMP and HNMP communications. The server module is configured exclusively for HNMP communications, and it communicates with each input output module according to the HNMP. Non-iconified, informationally complete views are provided of network elements to aid in network management.

  6. Information Retrieval on social network: An Adaptive Proof

    NASA Astrophysics Data System (ADS)

    Elveny, M.; Syah, R.; Elfida, M.; Nasution, M. K. M.

    2018-01-01

    Information Retrieval has become one of the areas for studying to get the trusty information, with which the recall and precision become the measurement form that represents it. Nevertheless, development in certain scientific fields make it possible to improve the performance of the Information Retrieval. In this case, through social networks whereby the role of social actor degrees plays a role. This is an implication of the query in which co-occurrence becomes an indication of social networks. An adaptive approach we use by involving this query in sequence to a stand-alone query, it has proven the relationship among them.

  7. Towards Information Polycentricity Theory--Investigation of a Hospital Revenue Cycle

    ERIC Educational Resources Information Center

    Singh, Rajendra

    2011-01-01

    This research takes steps towards developing a new theory of organizational information management based on the ideas that, first, information creates ordering effects in transactions and, second, that there are multiple centers of authority in organizations. The rationale for developing this theory is the empirical observation that hospitals have…

  8. Extension of analog network coding in wireless information exchange

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Huang, Jiaqing

    2012-01-01

    Ever since the concept of analog network coding(ANC) was put forward by S.Katti, much attention has been focused on how to utilize analog network coding to take advantage of wireless interference, which used to be considered generally harmful, to improve throughput performance. Previously, only the case of two nodes that need to exchange information has been fully discussed while the issue of extending analog network coding to more than three nodes remains undeveloped. In this paper, we propose a practical transmission scheme to extend analog network coding to more than two nodes that need to exchange information among themselves. We start with the case of three nodes that need to exchange information and demonstrate that through utilizing our algorithm, the throughput can achieve 33% and 20% increase compared with that of traditional transmission scheduling and digital network coding, respectively. Then, we generalize the algorithm so that it can fit for occasions with any number of nodes. We also discuss some technical issues and throughput analysis as well as the bit error rate.

  9. Tackling Information Asymmetry in Networks: A New Entropy-Based Ranking Index

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo; Caldarelli, Guido; Squartini, Tiziano

    2018-06-01

    Information is a valuable asset in socio-economic systems, a significant part of which is entailed into the network of connections between agents. The different interlinkages patterns that agents establish may, in fact, lead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant, systemic properties (e.g. the risk of contagion in a network of liabilities), agents capable of providing a better estimation of (otherwise) inaccessible network properties, ultimately have a competitive advantage. In this paper, we address the issue of quantifying the information asymmetry of nodes: to this aim, we define a novel index—InfoRank—intended to rank nodes according to their information content. In order to do so, each node ego-network is enforced as a constraint of an entropy-maximization problem and the subsequent uncertainty reduction is used to quantify the node-specific accessible information. We, then, test the performance of our ranking procedure in terms of reconstruction accuracy and show that it outperforms other centrality measures in identifying the "most informative" nodes. Finally, we discuss the socio-economic implications of network information asymmetry.

  10. Evaluating Action Learning: A Critical Realist Complex Network Theory Approach

    ERIC Educational Resources Information Center

    Burgoyne, John G.

    2010-01-01

    This largely theoretical paper will argue the case for the usefulness of applying network and complex adaptive systems theory to an understanding of action learning and the challenge it is evaluating. This approach, it will be argued, is particularly helpful in the context of improving capability in dealing with wicked problems spread around…

  11. Interspecific social networks promote information transmission in wild songbirds.

    PubMed

    Farine, Damien R; Aplin, Lucy M; Sheldon, Ben C; Hoppitt, William

    2015-03-22

    Understanding the functional links between social structure and population processes is a central aim of evolutionary ecology. Multiple types of interactions can be represented by networks drawn for the same population, such as kinship, dominance or affiliative networks, but the relative importance of alternative networks in modulating population processes may not be clear. We illustrate this problem, and a solution, by developing a framework for testing the importance of different types of association in facilitating the transmission of information. We apply this framework to experimental data from wild songbirds that form mixed-species flocks, recording the arrival (patch discovery) of individuals to novel foraging sites. We tested whether intraspecific and interspecific social networks predicted the spread of information about novel food sites, and found that both contributed to transmission. The likelihood of acquiring information per unit of connection to knowledgeable individuals increased 22-fold for conspecifics, and 12-fold for heterospecifics. We also found that species varied in how much information they produced, suggesting that some species play a keystone role in winter foraging flocks. More generally, these analyses demonstrate that this method provides a powerful approach, using social networks to quantify the relative transmission rates across different social relationships.

  12. College Students' Nutrition Information Networks.

    ERIC Educational Resources Information Center

    Hertzler, Ann A.; Frary, Robert B.

    1995-01-01

    Use of nutrition information networks (consumer market, media, authority, family, and high school classes), food choices, fat practices, and nutrient intake were rated by 179 male and 300 female undergraduates. Family was an important influence; media and consumer market influenced fat practices, especially for women. No source was used very…

  13. Effective network inference through multivariate information transfer estimation

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Carl-Henrik; Gnabo, Jean-Yves

    2018-06-01

    Network representation has steadily gained in popularity over the past decades. In many disciplines such as finance, genetics, neuroscience or human travel to cite a few, the network may not directly be observable and needs to be inferred from time-series data, leading to the issue of separating direct interactions between two entities forming the network from indirect interactions coming through its remaining part. Drawing on recent contributions proposing strategies to deal with this problem such as the so-called "global silencing" approach of Barzel and Barabasi or "network deconvolution" of Feizi et al. (2013), we propose a novel methodology to infer an effective network structure from multivariate conditional information transfers. Its core principal is to test the information transfer between two nodes through a step-wise approach by conditioning the transfer for each pair on a specific set of relevant nodes as identified by our algorithm from the rest of the network. The methodology is model free and can be applied to high-dimensional networks with both inter-lag and intra-lag relationships. It outperforms state-of-the-art approaches for eliminating the redundancies and more generally retrieving simulated artificial networks in our Monte-Carlo experiments. We apply the method to stock market data at different frequencies (15 min, 1 h, 1 day) to retrieve the network of US largest financial institutions and then document how bank's centrality measurements relate to bank's systemic vulnerability.

  14. An Information-Related Systems Theory of Counseling

    ERIC Educational Resources Information Center

    Wilkinson, Melvin

    1973-01-01

    The author suggests that a systems theory of counseling should have an adequate theoretical foundation in the way various types of systems handle information. Using the works of W. R. Ashby as a basis, the paper is a beginning attempt to establish this foundation. It describes how information can be used to maintain homeostasis and protect key…

  15. Optimal Learning Paths in Information Networks

    PubMed Central

    Rodi, G. C.; Loreto, V.; Servedio, V. D. P.; Tria, F.

    2015-01-01

    Each sphere of knowledge and information could be depicted as a complex mesh of correlated items. By properly exploiting these connections, innovative and more efficient navigation strategies could be defined, possibly leading to a faster learning process and an enduring retention of information. In this work we investigate how the topological structure embedding the items to be learned can affect the efficiency of the learning dynamics. To this end we introduce a general class of algorithms that simulate the exploration of knowledge/information networks standing on well-established findings on educational scheduling, namely the spacing and lag effects. While constructing their learning schedules, individuals move along connections, periodically revisiting some concepts, and sometimes jumping on very distant ones. In order to investigate the effect of networked information structures on the proposed learning dynamics we focused both on synthetic and real-world graphs such as subsections of Wikipedia and word-association graphs. We highlight the existence of optimal topological structures for the simulated learning dynamics whose efficiency is affected by the balance between hubs and the least connected items. Interestingly, the real-world graphs we considered lead naturally to almost optimal learning performances. PMID:26030508

  16. Recoverability in quantum information theory

    NASA Astrophysics Data System (ADS)

    Wilde, Mark

    The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities. This is based on arXiv:1505.04661, now accepted for publication in Proceedings of the Royal Society A. I acknowledge support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.

  17. GTRF: a game theory approach for regulating node behavior in real-time wireless sensor networks.

    PubMed

    Lin, Chi; Wu, Guowei; Pirozmand, Poria

    2015-06-04

    The selfish behaviors of nodes (or selfish nodes) cause packet loss, network congestion or even void regions in real-time wireless sensor networks, which greatly decrease the network performance. Previous methods have focused on detecting selfish nodes or avoiding selfish behavior, but little attention has been paid to regulating selfish behavior. In this paper, a Game Theory-based Real-time & Fault-tolerant (GTRF) routing protocol is proposed. GTRF is composed of two stages. In the first stage, a game theory model named VA is developed to regulate nodes' behaviors and meanwhile balance energy cost. In the second stage, a jumping transmission method is adopted, which ensures that real-time packets can be successfully delivered to the sink before a specific deadline. We prove that GTRF theoretically meets real-time requirements with low energy cost. Finally, extensive simulations are conducted to demonstrate the performance of our scheme. Simulation results show that GTRF not only balances the energy cost of the network, but also prolongs network lifetime.

  18. USING INFORMATION THEORY TO DEFINE A SUSTAINABILITY INDEX

    EPA Science Inventory

    Information theory has many applications in Ecology and Environmental science, such as a biodiversity indicator, as a measure of evolution, a measure of distance from thermodynamic equilibrium, and as a measure of system organization. Fisher Information, in particular, provides a...

  19. Managing for resilience: an information theory-based ...

    EPA Pesticide Factsheets

    Ecosystems are complex and multivariate; hence, methods to assess the dynamics of ecosystems should have the capacity to evaluate multiple indicators simultaneously. Most research on identifying leading indicators of regime shifts has focused on univariate methods and simple models which have limited utility when evaluating real ecosystems, particularly because drivers are often unknown. We discuss some common univariate and multivariate approaches for detecting critical transitions in ecosystems and demonstrate their capabilities via case studies. Synthesis and applications. We illustrate the utility of an information theory-based index for assessing ecosystem dynamics. Trends in this index also provide a sentinel of both abrupt and gradual transitions in ecosystems. In response to the need to identify leading indicators of regime shifts in ecosystems, our research compares traditional indicators and Fisher information, an information theory based method, by examining four case study systems. Results demonstrate the utility of methods and offers great promise for quantifying and managing for resilience.

  20. Response to Patrick Love's "Informal Theory": A Rejoinder

    ERIC Educational Resources Information Center

    Evans, Nancy J.; Guido, Florence M.

    2012-01-01

    This rejoinder to Patrick Love's article, "Informal Theory: The Ignored Link in Theory-to-Practice," which appears earlier in this issue of the "Journal of College Student Development", was written at the invitation of the Editor. In the critique, we point out the weaknesses of many of Love's arguments and propositions. We provide an alternative…

  1. Urban occupational structures as information networks: The effect on network density of increasing number of occupations.

    PubMed

    Shutters, Shade T; Lobo, José; Muneepeerakul, Rachata; Strumsky, Deborah; Mellander, Charlotta; Brachert, Matthias; Farinha, Teresa; Bettencourt, Luis M A

    2018-01-01

    Urban economies are composed of diverse activities, embodied in labor occupations, which depend on one another to produce goods and services. Yet little is known about how the nature and intensity of these interdependences change as cities increase in population size and economic complexity. Understanding the relationship between occupational interdependencies and the number of occupations defining an urban economy is relevant because interdependence within a networked system has implications for system resilience and for how easily can the structure of the network be modified. Here, we represent the interdependencies among occupations in a city as a non-spatial information network, where the strengths of interdependence between pairs of occupations determine the strengths of the links in the network. Using those quantified link strengths we calculate a single metric of interdependence-or connectedness-which is equivalent to the density of a city's weighted occupational network. We then examine urban systems in six industrialized countries, analyzing how the density of urban occupational networks changes with network size, measured as the number of unique occupations present in an urban workforce. We find that in all six countries, density, or economic interdependence, increases superlinearly with the number of distinct occupations. Because connections among occupations represent flows of information, we provide evidence that connectivity scales superlinearly with network size in information networks.

  2. Urban occupational structures as information networks: The effect on network density of increasing number of occupations

    PubMed Central

    Lobo, José; Muneepeerakul, Rachata; Strumsky, Deborah; Mellander, Charlotta; Brachert, Matthias; Farinha, Teresa; Bettencourt, Luis M. A.

    2018-01-01

    Urban economies are composed of diverse activities, embodied in labor occupations, which depend on one another to produce goods and services. Yet little is known about how the nature and intensity of these interdependences change as cities increase in population size and economic complexity. Understanding the relationship between occupational interdependencies and the number of occupations defining an urban economy is relevant because interdependence within a networked system has implications for system resilience and for how easily can the structure of the network be modified. Here, we represent the interdependencies among occupations in a city as a non-spatial information network, where the strengths of interdependence between pairs of occupations determine the strengths of the links in the network. Using those quantified link strengths we calculate a single metric of interdependence–or connectedness–which is equivalent to the density of a city’s weighted occupational network. We then examine urban systems in six industrialized countries, analyzing how the density of urban occupational networks changes with network size, measured as the number of unique occupations present in an urban workforce. We find that in all six countries, density, or economic interdependence, increases superlinearly with the number of distinct occupations. Because connections among occupations represent flows of information, we provide evidence that connectivity scales superlinearly with network size in information networks. PMID:29734354

  3. An Appraisal of Social Network Theory and Analysis as Applied to Public Health: Challenges and Opportunities.

    PubMed

    Valente, Thomas W; Pitts, Stephanie R

    2017-03-20

    The use of social network theory and analysis methods as applied to public health has expanded greatly in the past decade, yielding a significant academic literature that spans almost every conceivable health issue. This review identifies several important theoretical challenges that confront the field but also provides opportunities for new research. These challenges include (a) measuring network influences, (b) identifying appropriate influence mechanisms, (c) the impact of social media and computerized communications, (d) the role of networks in evaluating public health interventions, and (e) ethics. Next steps for the field are outlined and the need for funding is emphasized. Recently developed network analysis techniques, technological innovations in communication, and changes in theoretical perspectives to include a focus on social and environmental behavioral influences have created opportunities for new theory and ever broader application of social networks to public health topics.

  4. Searching LOGIN, the Local Government Information Network.

    ERIC Educational Resources Information Center

    Jack, Robert F.

    1984-01-01

    Describes a computer-based information retrieval and electronic messaging system produced by Control Data Corporation now being used by government agencies and other organizations. Background of Local Government Information Network (LOGIN), database structure, types of LOGIN units, searching LOGIN (intersect, display, and list commands), and how…

  5. Medical libraries, bioinformatics, and networked information: a coming convergence?

    PubMed

    Lynch, C

    1999-10-01

    Libraries will be changed by technological and social developments that are fueled by information technology, bioinformatics, and networked information. Libraries in highly focused settings such as the health sciences are at a pivotal point in their development as the synthesis of historically diverse and independent information sources transforms health care institutions. Boundaries are breaking down between published literature and research data, between research databases and clinical patient data, and between consumer health information and professional literature. This paper focuses on the dynamics that are occurring with networked information sources and the roles that libraries will need to play in the world of medical informatics in the early twenty-first century.

  6. Expanding the informational chemistries of life: peptide/RNA networks

    NASA Astrophysics Data System (ADS)

    Taran, Olga; Chen, Chenrui; Omosun, Tolulope O.; Hsieh, Ming-Chien; Rha, Allisandra; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.

    2017-11-01

    The RNA world hypothesis simplifies the complex biopolymer networks underlining the informational and metabolic needs of living systems to a single biopolymer scaffold. This simplification requires abiotic reaction cascades for the construction of RNA, and this chemistry remains the subject of active research. Here, we explore a complementary approach involving the design of dynamic peptide networks capable of amplifying encoded chemical information and setting the stage for mutualistic associations with RNA. Peptide conformational networks are known to be capable of evolution in disease states and of co-opting metal ions, aromatic heterocycles and lipids to extend their emergent behaviours. The coexistence and association of dynamic peptide and RNA networks appear to have driven the emergence of higher-order informational systems in biology that are not available to either scaffold independently, and such mutualistic interdependence poses critical questions regarding the search for life across our Solar System and beyond. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  7. Information flow in a network of dispersed signalers-receivers

    NASA Astrophysics Data System (ADS)

    Halupka, Konrad

    2017-11-01

    I consider a stochastic model of multi-agent communication in regular network. The model describes how dispersed animals exchange information. Each agent can initiate and transfer the signal to its nearest neighbors, who may pass it farther. For an external observer of busy networks, signaling activity may appear random, even though information flow actually thrives. Only when signal initiation and transfer are at low levels do spatiotemporal autocorrelations emerge as clumping signaling activity in space and pink noise time series. Under such conditions, the costs of signaling are moderate, but the signaler can reach a large audience. I propose that real-world networks of dispersed signalers-receivers may self-organize into this state and the flow of information maintains their integrity.

  8. Discretized kinetic theory on scale-free networks

    NASA Astrophysics Data System (ADS)

    Bertotti, Maria Letizia; Modanese, Giovanni

    2016-10-01

    The network of interpersonal connections is one of the possible heterogeneous factors which affect the income distribution emerging from micro-to-macro economic models. In this paper we equip our model discussed in [1, 2] with a network structure. The model is based on a system of n differential equations of the kinetic discretized-Boltzmann kind. The network structure is incorporated in a probabilistic way, through the introduction of a link density P(α) and of correlation coefficients P(β|α), which give the conditioned probability that an individual with α links is connected to one with β links. We study the properties of the equations and give analytical results concerning the existence, normalization and positivity of the solutions. For a fixed network with P(α) = c/α q , we investigate numerically the dependence of the detailed and marginal equilibrium distributions on the initial conditions and on the exponent q. Our results are compatible with those obtained from the Bouchaud-Mezard model and from agent-based simulations, and provide additional information about the dependence of the individual income on the level of connectivity.

  9. Information transfer network of global market indices

    NASA Astrophysics Data System (ADS)

    Kim, Yup; Kim, Jinho; Yook, Soon-Hyung

    2015-07-01

    We study the topological properties of the information transfer networks (ITN) of the global financial market indices for six different periods. ITN is a directed weighted network, in which the direction and weight are determined by the transfer entropy between market indices. By applying the threshold method, it is found that ITN undergoes a crossover from the complete graph to a small-world (SW) network. SW regime of ITN for a global crisis is found to be much more enhanced than that for ordinary periods. Furthermore, when ITN is in SW regime, the average clustering coefficient is found to be synchronized with average volatility of markets. We also compare the results with the topological properties of correlation networks.

  10. Quantitative design of emergency monitoring network for river chemical spills based on discrete entropy theory.

    PubMed

    Shi, Bin; Jiang, Jiping; Sivakumar, Bellie; Zheng, Yi; Wang, Peng

    2018-05-01

    Field monitoring strategy is critical for disaster preparedness and watershed emergency environmental management. However, development of such is also highly challenging. Despite the efforts and progress thus far, no definitive guidelines or solutions are available worldwide for quantitatively designing a monitoring network in response to river chemical spill incidents, except general rules based on administrative divisions or arbitrary interpolation on routine monitoring sections. To address this gap, a novel framework for spatial-temporal network design was proposed in this study. The framework combines contaminant transport modelling with discrete entropy theory and spectral analysis. The water quality model was applied to forecast the spatio-temporal distribution of contaminant after spills and then corresponding information transfer indexes (ITIs) and Fourier approximation periodic functions were estimated as critical measures for setting sampling locations and times. The results indicate that the framework can produce scientific preparedness plans of emergency monitoring based on scenario analysis of spill risks as well as rapid design as soon as the incident happened but not prepared. The framework was applied to a hypothetical spill case based on tracer experiment and a real nitrobenzene spill incident case to demonstrate its suitability and effectiveness. The newly-designed temporal-spatial monitoring network captured major pollution information at relatively low costs. It showed obvious benefits for follow-up early-warning and treatment as well as for aftermath recovery and assessment. The underlying drivers of ITIs as well as the limitations and uncertainty of the approach were analyzed based on the case studies. Comparison with existing monitoring network design approaches, management implications, and generalized applicability were also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Leadership in Groups: Social Networks and Perceptions of Formal and Informal Leaders

    DTIC Science & Technology

    2006-03-01

    LEADERSHIP IN GROUPS: SOCIAL NETWORKS AND PERCEPTIONS OF FORMAL AND INFORMAL LEADERS THESIS...01 LEADERSHIP IN GROUPS: SOCIAL NETWORKS AND PERCEPTIONS OF FORMAL AND INFORMAL LEADERS THESIS Presented to the Faculty...DISTRIBUTION UNLIMITED. AFIT/GSS/ENV/06M-01 LEADERSHIP IN GROUPS: SOCIAL NETWORKS AND PERCEPTIONS OF FORMAL AND INFORMAL LEADERS

  12. A multivariate extension of mutual information for growing neural networks.

    PubMed

    Ball, Kenneth R; Grant, Christopher; Mundy, William R; Shafer, Timothy J

    2017-11-01

    Recordings of neural network activity in vitro are increasingly being used to assess the development of neural network activity and the effects of drugs, chemicals and disease states on neural network function. The high-content nature of the data derived from such recordings can be used to infer effects of compounds or disease states on a variety of important neural functions, including network synchrony. Historically, synchrony of networks in vitro has been assessed either by determination of correlation coefficients (e.g. Pearson's correlation), by statistics estimated from cross-correlation histograms between pairs of active electrodes, and/or by pairwise mutual information and related measures. The present study examines the application of Normalized Multiinformation (NMI) as a scalar measure of shared information content in a multivariate network that is robust with respect to changes in network size. Theoretical simulations are designed to investigate NMI as a measure of complexity and synchrony in a developing network relative to several alternative approaches. The NMI approach is applied to these simulations and also to data collected during exposure of in vitro neural networks to neuroactive compounds during the first 12 days in vitro, and compared to other common measures, including correlation coefficients and mean firing rates of neurons. NMI is shown to be more sensitive to developmental effects than first order synchronous and nonsynchronous measures of network complexity. Finally, NMI is a scalar measure of global (rather than pairwise) mutual information in a multivariate network, and hence relies on less assumptions for cross-network comparisons than historical approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Theory of rumour spreading in complex social networks

    NASA Astrophysics Data System (ADS)

    Nekovee, M.; Moreno, Y.; Bianconi, G.; Marsili, M.

    2007-01-01

    We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.

  14. BOULDER AREA SUSTAINABILITY INFORMATION NETWORK (BASIN)

    EPA Science Inventory

    The primary goal of the Boulder Area Sustainability Information Network (BASIN) is to help citizens make meaningful connections between environmental data and their day-to-day activities and facilitate involvement in public policy development. Objectives include:

      ...

    • Child Rights Information Network Newsletter, 2000-2002.

      ERIC Educational Resources Information Center

      Khan, Andrea, Ed.; Greenwood, Laura, Ed.

      These five newsletter issues communicate activities of the Child Rights Information Network (CRIN) and report on information resources and world-wide activities concerning children and child rights. The March 2000 issue focuses on children's right to education, assessing the matter form a range of differing perspectives, at international and…

    • Grower Communication Networks: Information Sources for Organic Farmers

      ERIC Educational Resources Information Center

      Crawford, Chelsi; Grossman, Julie; Warren, Sarah T.; Cubbage, Fred

      2015-01-01

      This article reports on a study to determine which information sources organic growers use to inform farming practices by conducting in-depth semi-structured interviews with 23 organic farmers across 17 North Carolina counties. Effective information sources included: networking, agricultural organizations, universities, conferences, Extension, Web…

    • An Agent-Based Model of Private Woodland Owner Management Behavior Using Social Interactions, Information Flow, and Peer-To-Peer Networks

      PubMed Central

      Huff, Emily Silver; Leahy, Jessica E.; Hiebeler, David; Weiskittel, Aaron R.; Noblet, Caroline L.

      2015-01-01

      Privately owned woodlands are an important source of timber and ecosystem services in North America and worldwide. Impacts of management on these ecosystems and timber supply from these woodlands are difficult to estimate because complex behavioral theory informs the owner’s management decisions. The decision-making environment consists of exogenous market factors, internal cognitive processes, and social interactions with fellow landowners, foresters, and other rural community members. This study seeks to understand how social interactions, information flow, and peer-to-peer networks influence timber harvesting behavior using an agent-based model. This theoretical model includes forested polygons in various states of ‘harvest readiness’ and three types of agents: forest landowners, foresters, and peer leaders (individuals trained in conservation who use peer-to-peer networking). Agent rules, interactions, and characteristics were parameterized with values from existing literature and an empirical survey of forest landowner attitudes, intentions, and demographics. The model demonstrates that as trust in foresters and peer leaders increases, the percentage of the forest that is harvested sustainably increases. Furthermore, peer leaders can serve to increase landowner trust in foresters. Model output and equations will inform forest policy and extension/outreach efforts. The model also serves as an important testing ground for new theories of landowner decision making and behavior. PMID:26562429

    • Testing of information condensation in a model reverberating spiking neural network.

      PubMed

      Vidybida, Alexander

      2011-06-01

      Information about external world is delivered to the brain in the form of structured in time spike trains. During further processing in higher areas, information is subjected to a certain condensation process, which results in formation of abstract conceptual images of external world, apparently, represented as certain uniform spiking activity partially independent on the input spike trains details. Possible physical mechanism of condensation at the level of individual neuron was discussed recently. In a reverberating spiking neural network, due to this mechanism the dynamics should settle down to the same uniform/ periodic activity in response to a set of various inputs. Since the same periodic activity may correspond to different input spike trains, we interpret this as possible candidate for information condensation mechanism in a network. Our purpose is to test this possibility in a network model consisting of five fully connected neurons, particularly, the influence of geometric size of the network, on its ability to condense information. Dynamics of 20 spiking neural networks of different geometric sizes are modelled by means of computer simulation. Each network was propelled into reverberating dynamics by applying various initial input spike trains. We run the dynamics until it becomes periodic. The Shannon's formula is used to calculate the amount of information in any input spike train and in any periodic state found. As a result, we obtain explicit estimate of the degree of information condensation in the networks, and conclude that it depends strongly on the net's geometric size.

    • Stochastic cycle selection in active flow networks

      NASA Astrophysics Data System (ADS)

      Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

      2016-11-01

      Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

    • Synthesizing animal and human behavior research via neural network learning theory.

      PubMed

      Tryon, W W

      1995-12-01

      Animal and human research have been "divorced" since approximately 1968. Several recent articles have tried to persuade behavior therapists of the merits of animal research. Three reasons are given concerning why disinterest in animal research is so widespread: (1) functional explanations are given for animals, and cognitive explanations are given for humans; (2) serial symbol manipulating models are used to explain human behavior; and (3) human learning was assumed, thereby removing it as something to be explained. Brain-inspired connectionist neural networks, collectively referred to as neural network learning theory (NNLT), are briefly described, and a spectrum of their accomplishments from simple conditioning through speech is outlined. Five benefits that behavior therapists can derive from NNLT are described. They include (a) enhanced professional identity derived from a comprehensive learning theory, (b) improved interdisciplinary collaboration both clinically and scientifically, (c) renewed perceived relevance of animal research, (d) access to plausible proximal causal mechanisms capable of explaining operant conditioning, and (e) an inherently developmental perspective.

  1. Exploring the use of grounded theory as a methodological approach to examine the 'black box' of network leadership in the national quality forum.

    PubMed

    Hoflund, A Bryce

    2013-01-01

    This paper describes how grounded theory was used to investigate the "black box" of network leadership in the creation of the National Quality Forum. Scholars are beginning to recognize the importance of network organizations and are in the embryonic stages of collecting and analyzing data about network leadership processes. Grounded theory, with its focus on deriving theory from empirical data, offers researchers a distinctive way of studying little-known phenomena and is therefore well suited to exploring network leadership processes. Specifically, this paper provides an overview of grounded theory, a discussion of the appropriateness of grounded theory to investigating network phenomena, a description of how the research was conducted, and a discussion of the limitations and lessons learned from using this approach.

  2. Suppressing disease spreading by using information diffusion on multiplex networks.

    PubMed

    Wang, Wei; Liu, Quan-Hui; Cai, Shi-Min; Tang, Ming; Braunstein, Lidia A; Stanley, H Eugene

    2016-07-06

    Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.

  3. Technical research aspect of the Pan-Pacific Information Network using satellite

    NASA Astrophysics Data System (ADS)

    Iida, Takashi; Morikawa, Hisashi; Noguchi, Shoichi

    The Pan-Pacific Information Network would provide an important new mechanism for education, research, health service, emergency communication, and cultural exchange. The paper discusses the technical research items related to the Pan-Pacific Information Network, reviews small earth-station systems, and considers the system configuration pointed to the network in the Asia/Pacific region.

  4. Protecting Personal Information on Social Networking Sites

    ERIC Educational Resources Information Center

    Gallant, David T.

    2011-01-01

    Almost everyone uses social networking sites like Facebook, MySpace, and LinkedIn. Since Facebook is the most popular site in the history of the Internet, this article will focus on how one can protect his/her personal information and how that extends to protecting the private information of others.

  5. A Theory for Educational Research: Socialisation Theory and Symbolic Interaction

    ERIC Educational Resources Information Center

    Potts, Anthony

    2015-01-01

    This article develops a theory of socialisation based on the Chicago School of symbolic interactionism but infused with new and important insights offered by contemporary scholars and their writings on roles and relationships in the twenty first century and life in the informational, network and global world. While still rooted in the seminal…

  6. A Brief Historical Introduction to Euler's Formula for Polyhedra, Topology, Graph Theory and Networks

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2010-01-01

    This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Konigsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real…

  7. Social Networking among Library and Information Science Undergraduate Students

    ERIC Educational Resources Information Center

    Alakpodia, Onome Norah

    2015-01-01

    The purpose of this study was to examine social networking use among Library and Information Science students of the Delta State University, Abraka. In this study, students completed a questionnaire which assessed their familiarity with social networking sites, the purpose for which they use social networking site and their most preferred sites to…

  8. National information network and database system of hazardous waste management in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Hongchang

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry,more » and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.« less

  9. Networking Theories on Giftedness--What We Can Learn from Synthesizing Renzulli's Domain General and Krutetskii's Mathematics-Specific Theory

    ERIC Educational Resources Information Center

    Schindler, Maike; Rott, Benjamin

    2017-01-01

    Giftedness is an increasingly important research topic in educational sciences and mathematics education in particular. In this paper, we contribute to further theorizing mathematical giftedness through illustrating how networking processes can be conducted and illustrating their potential benefits. The paper focuses on two theories: Renzulli's…

  10. Network gatekeeping: complementary medicine information on the websites of medical institutions.

    PubMed

    Keshet, Yael

    2012-03-01

    Integrative medicine - complementary and alternative medicine (CAM) practised in mainstream healthcare organizations - combines medical treatments based on incommensurable paradigms. As the Internet has been portrayed as a crucial pathway to CAM and sites administered by reputable organizations are considered to be relatively reliable sources of medical information, the research sought to explore and compare the ways in which CAM is presented on the Internet websites of diverse medical institutions. The contents of the websites of the Ministry of Health, the Israeli Medical Association and Israeli healthcare organizations were analysed, using an interdisciplinary theory of network gatekeeping. The websites were analysed not only according to the degree to which they are considered to be informative, but also with regard to the perceptions of integration that they convey. Comparison of the websites of community healthcare organizations and hospitals indicates that while the former display CAM treatments as an attractive commodity, the latter convey a message stressing the need to subject CAM to bio-medical scrutiny. Little or no information was provided concerning a number of important issues, such as research findings about efficacy and safety, risks and ethical considerations.

  11. [Research on Zhejiang blood information network and management system].

    PubMed

    Yan, Li-Xing; Xu, Yan; Meng, Zhong-Hua; Kong, Chang-Hong; Wang, Jian-Min; Jin, Zhen-Liang; Wu, Shi-Ding; Chen, Chang-Shui; Luo, Ling-Fei

    2007-02-01

    This research was aimed to develop the first level blood information centralized database and real time communication network at a province area in China. Multiple technology like local area network database separate operation, real time data concentration and distribution mechanism, allopatric backup, and optical fiber virtual private network (VPN) were used. As a result, the blood information centralized database and management system were successfully constructed, which covers all the Zhejiang province, and the real time exchange of blood data was realised. In conclusion, its implementation promote volunteer blood donation and ensure the blood safety in Zhejiang, especially strengthen the quick response to public health emergency. This project lays the first stone of centralized test and allotment among blood banks in Zhejiang, and can serve as a reference of contemporary blood bank information systems in China.

  12. Information fusion-based approach for studying influence on Twitter using belief theory.

    PubMed

    Azaza, Lobna; Kirgizov, Sergey; Savonnet, Marinette; Leclercq, Éric; Gastineau, Nicolas; Faiz, Rim

    2016-01-01

    Influence in Twitter has become recently a hot research topic, since this micro-blogging service is widely used to share and disseminate information. Some users are more able than others to influence and persuade peers. Thus, studying most influential users leads to reach a large-scale information diffusion area, something very useful in marketing or political campaigns. In this study, we propose a new approach for multi-level influence assessment on multi-relational networks, such as Twitter . We define a social graph to model the relationships between users as a multiplex graph where users are represented by nodes, and links model the different relations between them (e.g., retweets , mentions , and replies ). We explore how relations between nodes in this graph could reveal about the influence degree and propose a generic computational model to assess influence degree of a certain node. This is based on the conjunctive combination rule from the belief functions theory to combine different types of relations. We experiment the proposed method on a large amount of data gathered from Twitter during the European Elections 2014 and deduce top influential candidates. The results show that our model is flexible enough to to consider multiple interactions combination according to social scientists needs or requirements and that the numerical results of the belief theory are accurate. We also evaluate the approach over the CLEF RepLab 2014 data set and show that our approach leads to quite interesting results.

  13. Temporal Information Partitioning Networks (TIPNets): A process network approach to infer ecohydrologic shifts

    NASA Astrophysics Data System (ADS)

    Goodwell, Allison E.; Kumar, Praveen

    2017-07-01

    In an ecohydrologic system, components of atmospheric, vegetation, and root-soil subsystems participate in forcing and feedback interactions at varying time scales and intensities. The structure of this network of complex interactions varies in terms of connectivity, strength, and time scale due to perturbations or changing conditions such as rainfall, drought, or land use. However, characterization of these interactions is difficult due to multivariate and weak dependencies in the presence of noise, nonlinearities, and limited data. We introduce a framework for Temporal Information Partitioning Networks (TIPNets), in which time-series variables are viewed as nodes, and lagged multivariate mutual information measures are links. These links are partitioned into synergistic, unique, and redundant information components, where synergy is information provided only jointly, unique information is only provided by a single source, and redundancy is overlapping information. We construct TIPNets from 1 min weather station data over several hour time windows. From a comparison of dry, wet, and rainy conditions, we find that information strengths increase when solar radiation and surface moisture are present, and surface moisture and wind variability are redundant and synergistic influences, respectively. Over a growing season, network trends reveal patterns that vary with vegetation and rainfall patterns. The framework presented here enables us to interpret process connectivity in a multivariate context, which can lead to better inference of behavioral shifts due to perturbations in ecohydrologic systems. This work contributes to more holistic characterizations of system behavior, and can benefit a wide variety of studies of complex systems.

  14. An integration of integrated information theory with fundamental physics

    PubMed Central

    Barrett, Adam B.

    2014-01-01

    To truly eliminate Cartesian ghosts from the science of consciousness, we must describe consciousness as an aspect of the physical. Integrated Information Theory states that consciousness arises from intrinsic information generated by dynamical systems; however existing formulations of this theory are not applicable to standard models of fundamental physical entities. Modern physics has shown that fields are fundamental entities, and in particular that the electromagnetic field is fundamental. Here I hypothesize that consciousness arises from information intrinsic to fundamental fields. This hypothesis unites fundamental physics with what we know empirically about the neuroscience underlying consciousness, and it bypasses the need to consider quantum effects. PMID:24550877

  15. Diffusion processes of fragmentary information on scale-free networks

    NASA Astrophysics Data System (ADS)

    Li, Xun; Cao, Lang

    2016-05-01

    Compartmental models of diffusion over contact networks have proven representative of real-life propagation phenomena among interacting individuals. However, there is a broad class of collective spreading mechanisms departing from compartmental representations, including those for diffusive objects capable of fragmentation and transmission unnecessarily as a whole. Here, we consider a continuous-state susceptible-infected-susceptible (SIS) model as an ideal limit-case of diffusion processes of fragmentary information on networks, where individuals possess fractions of the information content and update them by selectively exchanging messages with partners in the vicinity. Specifically, we incorporate local information, such as neighbors' node degrees and carried contents, into the individual partner choice, and examine the roles of a variety of such strategies in the information diffusion process, both qualitatively and quantitatively. Our method provides an effective and flexible route of modulating continuous-state diffusion dynamics on networks and has potential in a wide array of practical applications.

  16. Information dynamics of brain-heart physiological networks during sleep

    NASA Astrophysics Data System (ADS)

    Faes, L.; Nollo, G.; Jurysta, F.; Marinazzo, D.

    2014-10-01

    This study proposes an integrated approach, framed in the emerging fields of network physiology and information dynamics, for the quantitative analysis of brain-heart interaction networks during sleep. With this approach, the time series of cardiac vagal autonomic activity and brain wave activities measured respectively as the normalized high frequency component of heart rate variability and the EEG power in the δ, θ, α, σ, and β bands, are considered as realizations of the stochastic processes describing the dynamics of the heart system and of different brain sub-systems. Entropy-based measures are exploited to quantify the predictive information carried by each (sub)system, and to dissect this information into a part actively stored in the system and a part transferred to it from the other connected systems. The application of this approach to polysomnographic recordings of ten healthy subjects led us to identify a structured network of sleep brain-brain and brain-heart interactions, with the node described by the β EEG power acting as a hub which conveys the largest amount of information flowing between the heart and brain nodes. This network was found to be sustained mostly by the transitions across different sleep stages, as the information transfer was weaker during specific stages than during the whole night, and vanished progressively when moving from light sleep to deep sleep and to REM sleep.

  17. [Study on network architecture of a tele-medical information sharing platform].

    PubMed

    Pan, Lin; Yu, Lun; Chen, Jin-xiong

    2006-07-01

    In the article,a plan of network construction which satisfies the demand of applications for a telemedical information sharing platform is proposed. We choice network access plans in view of user actual situation, through the analysis of the service demand and many kinds of network access technologies. Hospital servers that locate in LAN link sharing platform with node servers, should separate from the broadband network of sharing platform in order to ensure the security of the internal hospital network and the administration management. We use the VPN technology to realize the safe transmission of information in the platform network. Preliminary experiments have proved the plan is practicable.

  18. Quantum Information as a Non-Kolmogorovian Generalization of Shannon's Theory

    NASA Astrophysics Data System (ADS)

    Holik, Federico; Bosyk, Gustavo; Bellomo, Guido

    2015-10-01

    In this article we discuss the formal structure of a generalized information theory based on the extension of the probability calculus of Kolmogorov to a (possibly) non-commutative setting. By studying this framework, we argue that quantum information can be considered as a particular case of a huge family of non-commutative extensions of its classical counterpart. In any conceivable information theory, the possibility of dealing with different kinds of information measures plays a key role. Here, we generalize a notion of state spectrum, allowing us to introduce a majorization relation and a new family of generalized entropic measures.

  19. 77 FR 33229 - Notice of Proposed Information Collection: Comment Request; National Resource Network

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Information Collection: Comment Request; National Resource Network AGENCY: Office of the Assistant Secretary... information: Title of Proposal: National Resource Network. OMB Control Number, if applicable: None... and reporting information related to the proposed National Resource Network. The U.S. Department of...

  20. Information recall using relative spike timing in a spiking neural network.

    PubMed

    Sterne, Philip

    2012-08-01

    We present a neural network that is capable of completing and correcting a spiking pattern given only a partial, noisy version. It operates in continuous time and represents information using the relative timing of individual spikes. The network is capable of correcting and recalling multiple patterns simultaneously. We analyze the network's performance in terms of information recall. We explore two measures of the capacity of the network: one that values the accurate recall of individual spike times and another that values only the presence or absence of complete patterns. Both measures of information are found to scale linearly in both the number of neurons and the period of the patterns, suggesting these are natural measures of network information. We show a smooth transition from encodings that provide precise spike times to flexible encodings that can encode many scenes. This makes it plausible that many diverse tasks could be learned with such an encoding.

  1. Unified Research on Network-Based Hard/Soft Information Fusion

    DTIC Science & Technology

    2016-02-02

    types). There are a number of search tree run parameters which must be set depending on the experimental setting. A pilot study was run to identify...Unlimited Final Report: Unified Research on Network-Based Hard/Soft Information Fusion The views, opinions and/or findings contained in this report...Final Report: Unified Research on Network-Based Hard/Soft Information Fusion Report Title The University at Buffalo (UB) Center for Multisource

  2. REGIME CHANGES IN ECOLOGICAL SYSTEMS: AN INFORMATION THEORY APPROACH

    EPA Science Inventory

    We present our efforts at developing an ecological system using Information Theory. We derive an expression for Fisher Information based on sampling of the system trajectory as it evolves in the state space. The Fisher Information index as we have derived it captures the characte...

  3. Information loss method to measure node similarity in networks

    NASA Astrophysics Data System (ADS)

    Li, Yongli; Luo, Peng; Wu, Chong

    2014-09-01

    Similarity measurement for the network node has been paid increasing attention in the field of statistical physics. In this paper, we propose an entropy-based information loss method to measure the node similarity. The whole model is established based on this idea that less information loss is caused by seeing two more similar nodes as the same. The proposed new method has relatively low algorithm complexity, making it less time-consuming and more efficient to deal with the large scale real-world network. In order to clarify its availability and accuracy, this new approach was compared with some other selected approaches on two artificial examples and synthetic networks. Furthermore, the proposed method is also successfully applied to predict the network evolution and predict the unknown nodes' attributions in the two application examples.

  4. Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies

    PubMed Central

    Blonder, Benjamin; Dornhaus, Anna

    2011-01-01

    Background An important function of many complex networks is to inhibit or promote the transmission of disease, resources, or information between individuals. However, little is known about how the temporal dynamics of individual-level interactions affect these networks and constrain their function. Ant colonies are a model comparative system for understanding general principles linking individual-level interactions to network-level functions because interactions among individuals enable integration of multiple sources of information to collectively make decisions, and allocate tasks and resources. Methodology/Findings Here we show how the temporal and spatial dynamics of such individual interactions provide upper bounds to rates of colony-level information flow in the ant Temnothorax rugatulus. We develop a general framework for analyzing dynamic networks and a mathematical model that predicts how information flow scales with individual mobility and group size. Conclusions/Significance Using thousands of time-stamped interactions between uniquely marked ants in four colonies of a range of sizes, we demonstrate that observed maximum rates of information flow are always slower than predicted, and are constrained by regulation of individual mobility and contact rate. By accounting for the ordering and timing of interactions, we can resolve important difficulties with network sampling frequency and duration, enabling a broader understanding of interaction network functioning across systems and scales. PMID:21625450

  5. Optimal Network Modularity for Information Diffusion

    NASA Astrophysics Data System (ADS)

    Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol

    2014-08-01

    We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.

  6. Privacy policy analysis for health information networks and regional health information organizations.

    PubMed

    Noblin, Alice M

    2007-01-01

    Regional Health Information Organizations (RHIOs) are forming in response to President George W. Bush's 2004 mandate that medical information be made available electronically to facilitate continuity of care. Privacy concerns are a deterrent to widespread acceptance of RHIOs. The Health Information Portability and Accountability Act of 1996 provides some guidelines for privacy protection. However, most states have stricter guidelines, causing difficulty when RHIOs form across these jurisdictions. This article compares several RHIOs including their privacy policies where available. In addition, studies were reviewed considering privacy concerns of people in the United States and elsewhere. Surveys reveal that Americans are concerned about the privacy of their personal health information and ultimately feel it is the role of the government to provide protection. The purpose of this article is to look at the privacy issues and recommend a policy that may help to resolve some of the concerns of both providers and patients. Policy research and action are needed to move the National Health Information Network toward reality. Efforts to provide consistency in privacy laws are a necessary early step to facilitate the construction and maintenance of RHIOs and the National Health Information Network.

  7. Application of wireless networks-peer-to-peer information sharing

    NASA Astrophysics Data System (ADS)

    ellappan, Vijayan; chaki, suchismita; kumar, avn

    2017-11-01

    Peer to Peer communications and its applications have gotten to be ordinary construction modelling in the wired network environment. But then, they have not been successfully adjusted with the wireless environment. Unlike the traditional client-server framework, in a P2P framework, each node can play the role of client as well as server simultaneously and exchange data or information with others. We aim to design an application which can adapt to the wireless ad-hoc networks. Peer to Peer communication can help people to share their files (information, image, audio, video and so on) and communicate with each other without relying on a particular network infrastructure or limited data usage. Here there is a central server with the help of which, the peers will have the capability to get the information about the other peers in the network. Indeed, even without the Internet, devices have the potential to allow users to connect and communicate in a special way through short range remote protocols such Wi-Fi.

  8. Information theory applications for biological sequence analysis.

    PubMed

    Vinga, Susana

    2014-05-01

    Information theory (IT) addresses the analysis of communication systems and has been widely applied in molecular biology. In particular, alignment-free sequence analysis and comparison greatly benefited from concepts derived from IT, such as entropy and mutual information. This review covers several aspects of IT applications, ranging from genome global analysis and comparison, including block-entropy estimation and resolution-free metrics based on iterative maps, to local analysis, comprising the classification of motifs, prediction of transcription factor binding sites and sequence characterization based on linguistic complexity and entropic profiles. IT has also been applied to high-level correlations that combine DNA, RNA or protein features with sequence-independent properties, such as gene mapping and phenotype analysis, and has also provided models based on communication systems theory to describe information transmission channels at the cell level and also during evolutionary processes. While not exhaustive, this review attempts to categorize existing methods and to indicate their relation with broader transversal topics such as genomic signatures, data compression and complexity, time series analysis and phylogenetic classification, providing a resource for future developments in this promising area.

  9. Finding an information concept suited for a universal theory of information.

    PubMed

    Brier, Søren

    2015-12-01

    The view argued in this article is that if we want to define a universal concept of information covering subjective experiential and meaningful cognition - as well as intersubjective meaningful communication in nature, technology, society and life worlds - then the main problem is to decide, which epistemological, ontological and philosophy of science framework the concept of information should be based on and integrated in. All the ontological attempts to create objective concepts of information result in concepts that cannot encompass meaning and experience of embodied living and social systems. There is no conclusive evidence that the core of reality across nature, culture, life and mind is purely either mathematical, logical or of a computational nature. Therefore the core of the information concept should not only be based only on pure logical or mathematical rationality. We need to include interpretation, signification and meaning construction in our transdisciplinary framework for information as a basic aspect of reality alongside the physical, chemical and molecular biological. Dretske defines information as the content of new, true, meaningful, and understandable knowledge. According to this widely held definition information in a transdisciplinary theory cannot be 'objective', but has to be relativized in relation to the receiver's knowledge, as also proposed by Floridi. It is difficult to produce a quantitative statement independently of a qualitative analysis based on some sort of relation to the human condition as a semiotic animal. I therefore alternatively suggest to build information theories based on semiotics from the basic relations of embodied living systems meaningful cognition and communication. I agree with Peircean biosemiotics that all information must be part of real relational sign-processes manifesting as tokens. Copyright © 2015. Published by Elsevier Ltd.

  10. 47 CFR 64.2005 - Use of customer proprietary network information without customer approval.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Use of customer proprietary network information without customer approval. 64.2005 Section 64.2005 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Proprietary Network Information § 64.2005 Use of customer proprietary network information without customer...

  11. 47 CFR 64.2008 - Notice required for use of customer proprietary network information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Notice required for use of customer proprietary network information. 64.2008 Section 64.2008 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Proprietary Network Information § 64.2008 Notice required for use of customer proprietary network information...

  12. 47 CFR 64.2005 - Use of customer proprietary network information without customer approval.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Use of customer proprietary network information without customer approval. 64.2005 Section 64.2005 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Proprietary Network Information § 64.2005 Use of customer proprietary network information without customer...

  13. 47 CFR 64.2008 - Notice required for use of customer proprietary network information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Notice required for use of customer proprietary network information. 64.2008 Section 64.2008 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Proprietary Network Information § 64.2008 Notice required for use of customer proprietary network information...

  14. Symmetric polynomials in information theory: Entropy and subentropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozsa, Richard; Mitchison, Graeme

    2015-06-15

    Entropy and other fundamental quantities of information theory are customarily expressed and manipulated as functions of probabilities. Here we study the entropy H and subentropy Q as functions of the elementary symmetric polynomials in the probabilities and reveal a series of remarkable properties. Derivatives of all orders are shown to satisfy a complete monotonicity property. H and Q themselves become multivariate Bernstein functions and we derive the density functions of their Levy-Khintchine representations. We also show that H and Q are Pick functions in each symmetric polynomial variable separately. Furthermore, we see that H and the intrinsically quantum informational quantitymore » Q become surprisingly closely related in functional form, suggesting a special significance for the symmetric polynomials in quantum information theory. Using the symmetric polynomials, we also derive a series of further properties of H and Q.« less

  15. Conceptual Framework for Developing a Diabetes Information Network.

    PubMed

    Riazi, Hossein; Langarizadeh, Mostafa; Larijani, Bagher; Shahmoradi, Leila

    2016-06-01

    To provide a conceptual framework for managing diabetic patient care, and creating an information network for clinical research. A wide range of information technology (IT) based interventions such as distance learning, diabetes registries, personal or electronic health record systems, clinical information systems, and clinical decision support systems have so far been used in supporting diabetic care. Previous studies demonstrated that IT could improve diabetes care at its different aspects. There is however no comprehensive conceptual framework that defines how different IT applications can support diverse aspects of this care. Therefore, a conceptual framework that combines different IT solutions into a wide information network for improving care processes and for research purposes is widely lacking. In this study we describe the theoretical underpin of a big project aiming at building a wide diabetic information network namely DIANET. A literature review and a survey of national programs and existing regulations for diabetes management was conducted in order to define different aspects of diabetic care that should be supported by IT solutions. Both qualitative and quantitative research methods were used in this study. In addition to the results of a previous systematic literature review, two brainstorming and three expert panel sessions were conducted to identify requirements of a comprehensive information technology solution. Based on these inputs, the requirements for creating a diabetes information network were identified and used to create a questionnaire based on 9-point Likert scale. The questionnaire was finalized after removing some items based on calculated content validity ratio and content validity index coefficients. Cronbach's alpha reliability coefficient was also calculated (αTotal= 0.98, P<0.05, CI=0.95). The final questionnaire was containing 45 items. It was sent to 13 clinicians at two diabetes clinics of endocrine and metabolism research

  16. Computer network access to scientific information systems for minority universities

    NASA Astrophysics Data System (ADS)

    Thomas, Valerie L.; Wakim, Nagi T.

    1993-08-01

    The evolution of computer networking technology has lead to the establishment of a massive networking infrastructure which interconnects various types of computing resources at many government, academic, and corporate institutions. A large segment of this infrastructure has been developed to facilitate information exchange and resource sharing within the scientific community. The National Aeronautics and Space Administration (NASA) supports both the development and the application of computer networks which provide its community with access to many valuable multi-disciplinary scientific information systems and on-line databases. Recognizing the need to extend the benefits of this advanced networking technology to the under-represented community, the National Space Science Data Center (NSSDC) in the Space Data and Computing Division at the Goddard Space Flight Center has developed the Minority University-Space Interdisciplinary Network (MU-SPIN) Program: a major networking and education initiative for Historically Black Colleges and Universities (HBCUs) and Minority Universities (MUs). In this paper, we will briefly explain the various components of the MU-SPIN Program while highlighting how, by providing access to scientific information systems and on-line data, it promotes a higher level of collaboration among faculty and students and NASA scientists.

  17. Information flow in layered networks of non-monotonic units

    NASA Astrophysics Data System (ADS)

    Schittler Neves, Fabio; Martim Schubert, Benno; Erichsen, Rubem, Jr.

    2015-07-01

    Layered neural networks are feedforward structures that yield robust parallel and distributed pattern recognition. Even though much attention has been paid to pattern retrieval properties in such systems, many aspects of their dynamics are not yet well characterized or understood. In this work we study, at different temperatures, the memory activity and information flows through layered networks in which the elements are the simplest binary odd non-monotonic function. Our results show that, considering a standard Hebbian learning approach, the network information content has its maximum always at the monotonic limit, even though the maximum memory capacity can be found at non-monotonic values for small enough temperatures. Furthermore, we show that such systems exhibit rich macroscopic dynamics, including not only fixed point solutions of its iterative map, but also cyclic and chaotic attractors that also carry information.

  18. Stochastic cycle selection in active flow networks.

    PubMed

    Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn

    2016-07-19

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models.

  19. Stochastic cycle selection in active flow networks

    PubMed Central

    Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn

    2016-01-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  20. Searching for realism, structure and agency in Actor Network Theory.

    PubMed

    Elder-Vass, Dave

    2008-09-01

    Superficially, Actor Network Theory (ANT) and critical realism (CR) are radically opposed research traditions. Written from a realist perspective, this paper asks whether there might be a basis for finding common ground between these two traditions. It looks in turn at the questions of realism, structure, and agency, analysing the differences between the two perspectives and seeking to identify what each might learn from the other. Overall, the paper argues that there is a great deal that realists can learn from actor network theory; yet ANT remains stunted by its lack of a depth ontology. It fails to recognize the significance of mechanisms, and of their dependence on emergence, and thus lacks both dimensions of the depth that is characteristic of critical realism's ontology. This prevents ANT from recognizing the role and powers of social structure; but on the other hand, realists would do well to heed ANT's call for us to trace the connections through which structures are constantly made and remade. A lack of ontological depth also underpins ANT's practice of treating human and non-human actors symmetrically, yet this remains a valuable provocation to sociologists who neglect non-human entities entirely.

  1. Finite state model and compatibility theory - New analysis tools for permutation networks

    NASA Technical Reports Server (NTRS)

    Huang, S.-T.; Tripathi, S. K.

    1986-01-01

    A simple model to describe the fundamental operation theory of shuffle-exchange-type permutation networks, the finite permutation machine (FPM), is described, and theorems which transform the control matrix result to a continuous compatible vector result are developed. It is found that only 2n-1 shuffle exchange passes are necessary, and that 3n-3 passes are sufficient, to realize all permutations, reducing the sufficient number of passes by two from previous results. The flexibility of the approach is demonstrated by the description of a stack permutation machine (SPM) which can realize all permutations, and by showing that the FPM corresponding to the Benes (1965) network belongs to the SPM. The FPM corresponding to the network with two cascaded reverse-exchange networks is found to realize all permutations, and a simple mechanism to verify several equivalence relationships of various permutation networks is discussed.

  2. Game theory and extremal optimization for community detection in complex dynamic networks.

    PubMed

    Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca

    2014-01-01

    The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.

  3. A Danger-Theory-Based Immune Network Optimization Algorithm

    PubMed Central

    Li, Tao; Xiao, Xin; Shi, Yuanquan

    2013-01-01

    Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853

  4. Conceptions and Practice of Information Literacy in Academic Libraries: Espoused Theories and Theories-in-Use

    ERIC Educational Resources Information Center

    Kerr, Paulette A.

    2010-01-01

    This research was conducted to investigate the relationships between conceptions and practice of information literacy in academic libraries. To create a structure for the investigation, the research adopted the framework of Argyris and Schon (1974) in which professional practice is examined via theories of action, namely espoused theories and…

  5. Effects of rewiring strategies on information spreading in complex dynamic networks

    NASA Astrophysics Data System (ADS)

    Ally, Abdulla F.; Zhang, Ning

    2018-04-01

    Recent advances in networks and communication services have attracted much interest to understand information spreading in social networks. Consequently, numerous studies have been devoted to provide effective and accurate models for mimicking information spreading. However, knowledge on how to spread information faster and more widely remains a contentious issue. Yet, most existing works are based on static networks which limit the reality of dynamism of entities that participate in information spreading. Using the SIR epidemic model, this study explores and compares effects of two rewiring models (Fermi-Dirac and Linear functions) on information spreading in scale free and small world networks. Our results show that for all the rewiring strategies, the spreading influence replenishes with time but stabilizes in a steady state at later time-steps. This means that information spreading takes-off during the initial spreading steps, after which the spreading prevalence settles toward its equilibrium, with majority of the population having recovered and thus, no longer affecting the spreading. Meanwhile, rewiring strategy based on Fermi-Dirac distribution function in one way or another impedes the spreading process, however, the structure of the networks mimic the spreading, even with a low spreading rate. The worst case can be when the spreading rate is extremely small. The results emphasize that despite a big role of such networks in mimicking the spreading, the role of the parameters cannot be simply ignored. Apparently, the probability of giant degree neighbors being informed grows much faster with the rewiring strategy of linear function compared to that of Fermi-Dirac distribution function. Clearly, rewiring model based on linear function generates the fastest spreading across the networks. Therefore, if we are interested in speeding up the spreading process in stochastic modeling, linear function may play a pivotal role.

  6. 32 CFR 2001.50 - Telecommunications automated information systems and network security.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and network security. 2001.50 Section 2001.50 National Defense Other Regulations Relating to National Defense INFORMATION SECURITY OVERSIGHT OFFICE, NATIONAL ARCHIVES AND RECORDS ADMINISTRATION CLASSIFIED... network security. Each agency head shall ensure that classified information electronically accessed...

  7. 32 CFR 2001.50 - Telecommunications automated information systems and network security.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and network security. 2001.50 Section 2001.50 National Defense Other Regulations Relating to National Defense INFORMATION SECURITY OVERSIGHT OFFICE, NATIONAL ARCHIVES AND RECORDS ADMINISTRATION CLASSIFIED... network security. Each agency head shall ensure that classified information electronically accessed...

  8. 32 CFR 2001.50 - Telecommunications automated information systems and network security.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and network security. 2001.50 Section 2001.50 National Defense Other Regulations Relating to National Defense INFORMATION SECURITY OVERSIGHT OFFICE, NATIONAL ARCHIVES AND RECORDS ADMINISTRATION CLASSIFIED... network security. Each agency head shall ensure that classified information electronically accessed...

  9. Information diffusion in structured online social networks

    NASA Astrophysics Data System (ADS)

    Li, Pei; Zhang, Yini; Qiao, Fengcai; Wang, Hui

    2015-05-01

    Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.

  10. Theory, Design, and Algorithms for Optimal Control of wireless Networks

    DTIC Science & Technology

    2010-06-09

    The implementation of network-centric warfare technologies is an abiding, critical interest of Air Force Science and Technology efforts for the Warfighter. Wireless communications, strategic signaling are areas of critical Air Force Mission need. Autonomous networks of multiple, heterogeneous Throughput enhancement and robust connectivity in communications and sensor networks are critical factors in net-centric USAF operations. This research directly supports the Air Force vision of information dominance and the development of anywhere, anytime operational readiness.

  11. Identifying influential nodes in complex networks: A node information dimension approach

    NASA Astrophysics Data System (ADS)

    Bian, Tian; Deng, Yong

    2018-04-01

    In the field of complex networks, how to identify influential nodes is a significant issue in analyzing the structure of a network. In the existing method proposed to identify influential nodes based on the local dimension, the global structure information in complex networks is not taken into consideration. In this paper, a node information dimension is proposed by synthesizing the local dimensions at different topological distance scales. A case study of the Netscience network is used to illustrate the efficiency and practicability of the proposed method.

  12. The Public Health Information Network (PHIN) Preparedness Initiative

    PubMed Central

    Loonsk, John W.; McGarvey, Sunanda R.; Conn, Laura A.; Johnson, Jennifer

    2006-01-01

    The Public Health Information Network (PHIN) Preparedness initiative strives to implement, on an accelerated pace, a consistent national network of information systems that will support public health in being prepared for public health emergencies. Using the principles and practices of the broader PHIN initiative, PHIN Preparedness concentrates in the short term on ensuring that all public health jurisdictions have, or have access to, systems to accomplish known preparedness functions. The PHIN Preparedness initiative defines functional requirements, technical standards and specifications, and a process to achieve consistency and interconnectedness of preparedness systems across public health. PMID:16221945

  13. A novel information cascade model in online social networks

    NASA Astrophysics Data System (ADS)

    Tong, Chao; He, Wenbo; Niu, Jianwei; Xie, Zhongyu

    2016-02-01

    The spread and diffusion of information has become one of the hot issues in today's social network analysis. To analyze the spread of online social network information and the attribute of cascade, in this paper, we discuss the spread of two kinds of users' decisions for city-wide activities, namely the "want to take part in the activity" and "be interested in the activity", based on the users' attention in "DouBan" and the data of the city-wide activities. We analyze the characteristics of the activity-decision's spread in these aspects: the scale and scope of the cascade subgraph, the structure characteristic of the cascade subgraph, the topological attribute of spread tree, and the occurrence frequency of cascade subgraph. On this basis, we propose a new information spread model. Based on the classical independent diffusion model, we introduce three mechanisms, equal probability, similarity of nodes, and popularity of nodes, which can generate and affect the spread of information. Besides, by conducting the experiments in six different kinds of network data set, we compare the effects of three mechanisms above mentioned, totally six specific factors, on the spread of information, and put forward that the node's popularity plays an important role in the information spread.

  14. Differential recruitment of theory of mind brain network across three tasks: An independent component analysis.

    PubMed

    Thye, Melissa D; Ammons, Carla J; Murdaugh, Donna L; Kana, Rajesh K

    2018-07-16

    Social neuroscience research has focused on an identified network of brain regions primarily associated with processing Theory of Mind (ToM). However, ToM is a broad cognitive process, which encompasses several sub-processes, such as mental state detection and intentional attribution, and the connectivity of brain regions underlying the broader ToM network in response to paradigms assessing these sub-processes requires further characterization. Standard fMRI analyses which focus only on brain activity cannot capture information about ToM processing at a network level. An alternative method, independent component analysis (ICA), is a data-driven technique used to isolate intrinsic connectivity networks, and this approach provides insight into network-level regional recruitment. In this fMRI study, three complementary, but distinct ToM tasks assessing mental state detection (e.g. RMIE: Reading the Mind in the Eyes; RMIV: Reading the Mind in the Voice) and intentional attribution (Causality task) were each analyzed using ICA in order to separately characterize the recruitment and functional connectivity of core nodes in the ToM network in response to the sub-processes of ToM. Based on visual comparison of the derived networks for each task, the spatiotemporal network patterns were similar between the RMIE and RMIV tasks, which elicited mentalizing about the mental states of others, and these networks differed from the network derived for the Causality task, which elicited mentalizing about goal-directed actions. The medial prefrontal cortex, precuneus, and right inferior frontal gyrus were seen in the components with the highest correlation with the task condition for each of the tasks highlighting the role of these regions in general ToM processing. Using a data-driven approach, the current study captured the differences in task-related brain response to ToM in three distinct ToM paradigms. The findings of this study further elucidate the neural mechanisms associated

  15. Pathways, Networks, and Systems: Theory and Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph H. Nadeau; John D. Lambris

    2004-10-30

    The international conference provided a unique opportunity for theoreticians and experimenters to exchange ideas, strategies, problems, challenges, language and opportunities in both formal and informal settings. This dialog is an important step towards developing a deep and effective integration of theory and experiments in studies of systems biology in humans and model organisms.

  16. Large-scale transportation network congestion evolution prediction using deep learning theory.

    PubMed

    Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai

    2015-01-01

    Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.

  17. Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory

    PubMed Central

    Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai

    2015-01-01

    Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation. PMID:25780910

  18. Estimating User Influence in Online Social Networks Subject to Information Overload

    NASA Astrophysics Data System (ADS)

    Li, Pei; Sun, Yunchuan; Chen, Yingwen; Tian, Zhi

    2014-11-01

    Online social networks have attracted remarkable attention since they provide various approaches for hundreds of millions of people to stay connected with their friends. Due to the existence of information overload, the research on diffusion dynamics in epidemiology cannot be adopted directly to that in online social networks. In this paper, we consider diffusion dynamics in online social networks subject to information overload, and model the information-processing process of a user by a queue with a batch arrival and a finite buffer. We use the average number of times a message is processed after it is generated by a given user to characterize the user influence, which is then estimated through theoretical analysis for a given network. We validate the accuracy of our estimation by simulations, and apply the results to study the impacts of different factors on the user influence. Among the observations, we find that the impact of network size on the user influence is marginal while the user influence decreases with assortativity due to information overload, which is particularly interesting.

  19. Graphs for information security control in software defined networks

    NASA Astrophysics Data System (ADS)

    Grusho, Alexander A.; Abaev, Pavel O.; Shorgin, Sergey Ya.; Timonina, Elena E.

    2017-07-01

    Information security control in software defined networks (SDN) is connected with execution of the security policy rules regulating information accesses and protection against distribution of the malicious code and harmful influences. The paper offers a representation of a security policy in the form of hierarchical structure which in case of distribution of resources for the solution of tasks defines graphs of admissible interactions in a networks. These graphs define commutation tables of switches via the SDN controller.

  20. Quantum demultiplexer of quantum parameter-estimation information in quantum networks

    NASA Astrophysics Data System (ADS)

    Xie, Yanqing; Huang, Yumeng; Wu, Yinzhong; Hao, Xiang

    2018-05-01

    The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.

  1. Modelling information flow along the human connectome using maximum flow.

    PubMed

    Lyoo, Youngwook; Kim, Jieun E; Yoon, Sujung

    2018-01-01

    The human connectome is a complex network that transmits information between interlinked brain regions. Using graph theory, previously well-known network measures of integration between brain regions have been constructed under the key assumption that information flows strictly along the shortest paths possible between two nodes. However, it is now apparent that information does flow through non-shortest paths in many real-world networks such as cellular networks, social networks, and the internet. In the current hypothesis, we present a novel framework using the maximum flow to quantify information flow along all possible paths within the brain, so as to implement an analogy to network traffic. We hypothesize that the connection strengths of brain networks represent a limit on the amount of information that can flow through the connections per unit of time. This allows us to compute the maximum amount of information flow between two brain regions along all possible paths. Using this novel framework of maximum flow, previous network topological measures are expanded to account for information flow through non-shortest paths. The most important advantage of the current approach using maximum flow is that it can integrate the weighted connectivity data in a way that better reflects the real information flow of the brain network. The current framework and its concept regarding maximum flow provides insight on how network structure shapes information flow in contrast to graph theory, and suggests future applications such as investigating structural and functional connectomes at a neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. An experimental study of the Online Information Paradox: Does en-route information improve road network performance?

    PubMed

    Wijayaratna, Kasun P; Dixit, Vinayak V; Denant-Boemont, Laurent; Waller, S Travis

    2017-01-01

    This study investigates the empirical presence of a theoretical transportation paradox, defined as the "Online Information Paradox" (OIP). The paradox suggests that, for certain road networks, the provision of online information deteriorate travel conditions for all users of that network relative to the situation where no online information is provided to users. The analytical presence of the paradox was derived for a specific network structure by using two equilibrium models, the first being the Expected User Equilibrium (EUE) solution (no information scenario) and the other being the User Equilibrium with Recourse (UER) solution (with information scenario). An incentivised computerised route choice game was designed using the concepts of experimental economics and administered in a controlled laboratory environment to investigate the physical presence of the paradox. Aggregate statistics of path flows and Total System Travel Costs (TSTC) were used to compare the experimental results with the theoretical findings. A total of 12 groups of 12 participants completed the experiment and the OIP and the occurrence of the OIP being significant was observed in 11 of the 12 cases. Though information increased travel costs for users on average, it reduced the volatility of travel costs experienced in the no information scenario indicating that information can achieve a more reliable system. Further replications of similar experiments and more importantly field based identification of the phenomena will force transport professionals to be aware of the emergence of the paradox. In addition, studies such as this emphasise the need for the adoption of adaptive traffic assignment techniques to appropriately model the acquisition of information on a road network.

  3. Topological analysis of metabolic networks based on petri net theory.

    PubMed

    Zevedei-Oancea, Ionela; Schuster, Stefan

    2011-01-01

    Petri net concepts provide additional tools for the modelling of metabolic networks. Here, the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometry matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, P-invariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism.

  4. Topological analysis of metabolic networks based on Petri net theory.

    PubMed

    Zevedei-Oancea, Ionela; Schuster, Stefan

    2003-01-01

    Petri net concepts provide additional tools for the modelling of metabolic networks. Here, the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometry matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, P-invariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism.

  5. Polarity-specific high-level information propagation in neural networks.

    PubMed

    Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2014-01-01

    Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals.

  6. Polarity-specific high-level information propagation in neural networks

    PubMed Central

    Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2014-01-01

    Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals. PMID:24672472

  7. 32 CFR 2001.50 - Telecommunications automated information systems and network security.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Telecommunications automated information systems and network security. 2001.50 Section 2001.50 National Defense Other Regulations Relating to National... network security. Each agency head shall ensure that classified information electronically accessed...

  8. 32 CFR 2001.50 - Telecommunications automated information systems and network security.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Telecommunications automated information systems and network security. 2001.50 Section 2001.50 National Defense Other Regulations Relating to National... network security. Each agency head shall ensure that classified information electronically accessed...

  9. Networks as systems.

    PubMed

    Best, Allan; Berland, Alex; Greenhalgh, Trisha; Bourgeault, Ivy L; Saul, Jessie E; Barker, Brittany

    2018-03-19

    Purpose The purpose of this paper is to present a case study of the World Health Organization's Global Healthcare Workforce Alliance (GHWA). Based on a commissioned evaluation of GHWA, it applies network theory and key concepts from systems thinking to explore network emergence, effectiveness, and evolution to over a ten-year period. The research was designed to provide high-level strategic guidance for further evolution of global governance in human resources for health (HRH). Design/methodology/approach Methods included a review of published literature on HRH governance and current practice in the field and an in-depth case study whose main data sources were relevant GHWA background documents and key informant interviews with GHWA leaders, staff, and stakeholders. Sampling was purposive and at a senior level, focusing on board members, executive directors, funders, and academics. Data were analyzed thematically with reference to systems theory and Shiffman's theory of network development. Findings Five key lessons emerged: effective management and leadership are critical; networks need to balance "tight" and "loose" approaches to their structure and processes; an active communication strategy is key to create and maintain support; the goals, priorities, and membership must be carefully focused; and the network needs to support shared measurement of progress on agreed-upon goals. Shiffman's middle-range network theory is a useful tool when guided by the principles of complex systems that illuminate dynamic situations and shifting interests as global alliances evolve. Research limitations/implications This study was implemented at the end of the ten-year funding cycle. A more continuous evaluation throughout the term would have provided richer understanding of issues. Experience and perspectives at the country level were not assessed. Practical implications Design and management of large, complex networks requires ongoing attention to key issues like leadership

  10. The use of information theory in evolutionary biology.

    PubMed

    Adami, Christoph

    2012-05-01

    Information is a key concept in evolutionary biology. Information stored in a biological organism's genome is used to generate the organism and to maintain and control it. Information is also that which evolves. When a population adapts to a local environment, information about this environment is fixed in a representative genome. However, when an environment changes, information can be lost. At the same time, information is processed by animal brains to survive in complex environments, and the capacity for information processing also evolves. Here, I review applications of information theory to the evolution of proteins and to the evolution of information processing in simulated agents that adapt to perform a complex task. © 2012 New York Academy of Sciences.

  11. The Role of the Theory-of-Mind Cortical Network in the Comprehension of Narratives

    PubMed Central

    Mason, Robert A.; Just, Marcel Adam

    2009-01-01

    Narrative comprehension rests on the ability to understand the intentions and perceptions of various agents in a story who interact with respect to some goal or problem. Reasoning about the state of mind of another person, real or fictional, has been referred to as Theory of Mind processing. While Theory of Mind Processing was first postulated prior to the existence of neuroimaging research, fMRI studies make it possible to characterize this processing in some detail. We propose that narrative comprehension makes use of some of the neural substrate of Theory of Mind reasoning, evoking what is referred to as a protagonist perspective network. The main cortical components of this protagonist-based network are the dorsomedial prefrontal cortex and the right temporo-parietal junction. The article discusses how these two cortical centers interact in narrative comprehension but still play distinguishable roles, and how the interaction between the two centers is disrupted in individuals with autism. PMID:19809575

  12. Telecommunications Information Network: A Model for On-Demand Transfer of Medical Information. Annual Report.

    ERIC Educational Resources Information Center

    Lorenzi, Nancy M.; And Others

    This report describes and evaluates the first year of a demonstration project to develop an on-demand telecommunications network linking four remote hospitals in southwestern Ohio to the University of Cincinnati Medical Center. The Telecommunications Information Network (TIN) is designed to allow health care professionals at those hospitals to…

  13. Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory

    PubMed Central

    Nekovarova, Tereza; Fajnerova, Iveta; Horacek, Jiri; Spaniel, Filip

    2014-01-01

    Schizophrenia is a complex neuropsychiatric disorder with variable symptomatology, traditionally divided into positive and negative symptoms, and cognitive deficits. However, the etiology of this disorder has yet to be fully understood. Recent findings suggest that alteration of the basic sense of self-awareness may be an essential distortion of schizophrenia spectrum disorders. In addition, extensive research of social and mentalizing abilities has stressed the role of distortion of social skills in schizophrenia.This article aims to propose and support a concept of a triple brain network model of the dysfunctional switching between default mode and central executive network (CEN) related to the aberrant activity of the salience network. This model could represent a unitary mechanism of a wide array of symptom domains present in schizophrenia including the deficit of self (self-awareness and self-representation) and theory of mind (ToM) dysfunctions along with the traditional positive, negative and cognitive domains. We review previous studies which document the dysfunctions of self and ToM in schizophrenia together with neuroimaging data that support the triple brain network model as a common neuronal substrate of this dysfunction. PMID:24910597

  14. Information and the Origin of Qualia

    PubMed Central

    Orpwood, Roger

    2017-01-01

    This article argues that qualia are a likely outcome of the processing of information in local cortical networks. It uses an information-based approach and makes a distinction between information structures (the physical embodiment of information in the brain, primarily patterns of action potentials), and information messages (the meaning of those structures to the brain, and the basis of qualia). It develops formal relationships between these two kinds of information, showing how information structures can represent messages, and how information messages can be identified from structures. The article applies this perspective to basic processing in cortical networks or ensembles, showing how networks can transform between the two kinds of information. The article argues that an input pattern of firing is identified by a network as an information message, and that the output pattern of firing generated is a representation of that message. If a network is encouraged to develop an attractor state through attention or other re-entrant processes, then the message identified each time physical information is cycled through the network becomes “representation of the previous message”. Using an example of olfactory perception, it is shown how this piggy-backing of messages on top of previous messages could lead to olfactory qualia. The message identified on each pass of information could evolve from inner identity, to inner form, to inner likeness or image. The outcome is an olfactory quale. It is shown that the same outcome could result from information cycled through a hierarchy of networks in a resonant state. The argument for qualia generation is applied to other sensory modalities, showing how, through a process of brain-wide constraint satisfaction, a particular state of consciousness could develop at any given moment. Evidence for some of the key predictions of the theory is presented, using ECoG data and studies of gamma oscillations and attractors, together

  15. Description of a method to support public health information management: organizational network analysis

    PubMed Central

    Merrill, Jacqueline; Bakken, Suzanne; Rockoff, Maxine; Gebbie, Kristine; Carley, Kathleen

    2007-01-01

    In this case study we describe a method that has potential to provide systematic support for public health information management. Public health agencies depend on specialized information that travels throughout an organization via communication networks among employees. Interactions that occur within these networks are poorly understood and are generally unmanaged. We applied organizational network analysis, a method for studying communication networks, to assess the method’s utility to support decision making for public health managers, and to determine what links existed between information use and agency processes. Data on communication links among a health department’s staff was obtained via survey with a 93% response rate, and analyzed using Organizational Risk Analyzer (ORA) software. The findings described the structure of information flow in the department’s communication networks. The analysis succeeded in providing insights into organizational processes which informed public health managers’ strategies to address problems and to take advantage of network strengths. PMID:17098480

  16. Networked Information: Finding What's Out There.

    ERIC Educational Resources Information Center

    Lynch, Clifford A.

    1997-01-01

    Clifford A. Lynch, developer of MELVYL and former director of library automation at the University of California, is now executive director for the Coalition for Networked Information (CNI). This interview discusses Lynch's background, MELVYL, the Web and the role of libraries and librarians, community and collaborative filtering, the library of…

  17. Faculty Social Networking Interactions: Using Social Domain Theory to Assess Student Views

    ERIC Educational Resources Information Center

    Nemetz, Patricia L.

    2012-01-01

    As educators consider using social networking sites, like Facebook, for educational innovations, they must be aware of possible vulnerabilities associated with the blurring of social and professional boundaries. This research uses social domain theory to examine how students rate the appropriateness of various faculty postings, behaviors, and…

  18. Information-theoretic metamodel of organizational evolution

    NASA Astrophysics Data System (ADS)

    Sepulveda, Alfredo

    2011-12-01

    Social organizations are abstractly modeled by holarchies---self-similar connected networks---and intelligent complex adaptive multiagent systems---large networks of autonomous reasoning agents interacting via scaled processes. However, little is known of how information shapes evolution in such organizations, a gap that can lead to misleading analytics. The research problem addressed in this study was the ineffective manner in which classical model-predict-control methods used in business analytics attempt to define organization evolution. The purpose of the study was to construct an effective metamodel for organization evolution based on a proposed complex adaptive structure---the info-holarchy. Theoretical foundations of this study were holarchies, complex adaptive systems, evolutionary theory, and quantum mechanics, among other recently developed physical and information theories. Research questions addressed how information evolution patterns gleamed from the study's inductive metamodel more aptly explained volatility in organization. In this study, a hybrid grounded theory based on abstract inductive extensions of information theories was utilized as the research methodology. An overarching heuristic metamodel was framed from the theoretical analysis of the properties of these extension theories and applied to business, neural, and computational entities. This metamodel resulted in the synthesis of a metaphor for, and generalization of organization evolution, serving as the recommended and appropriate analytical tool to view business dynamics for future applications. This study may manifest positive social change through a fundamental understanding of complexity in business from general information theories, resulting in more effective management.

  19. Maximizing Information Diffusion in the Cyber-physical Integrated Network

    PubMed Central

    Lu, Hongliang; Lv, Shaohe; Jiao, Xianlong; Wang, Xiaodong; Liu, Juan

    2015-01-01

    Nowadays, our living environment has been embedded with smart objects, such as smart sensors, smart watches and smart phones. They make cyberspace and physical space integrated by their abundant abilities of sensing, communication and computation, forming a cyber-physical integrated network. In order to maximize information diffusion in such a network, a group of objects are selected as the forwarding points. To optimize the selection, a minimum connected dominating set (CDS) strategy is adopted. However, existing approaches focus on minimizing the size of the CDS, neglecting an important factor: the weight of links. In this paper, we propose a distributed maximizing the probability of information diffusion (DMPID) algorithm in the cyber-physical integrated network. Unlike previous approaches that only consider the size of CDS selection, DMPID also considers the information spread probability that depends on the weight of links. To weaken the effects of excessively-weighted links, we also present an optimization strategy that can properly balance the two factors. The results of extensive simulation show that DMPID can nearly double the information diffusion probability, while keeping a reasonable size of selection with low overhead in different distributed networks. PMID:26569254

  20. Information carriers and (reading them through) information theory in quantum chemistry.

    PubMed

    Geerlings, Paul; Borgoo, Alex

    2011-01-21

    This Perspective discusses the reduction of the electronic wave function via the second-order reduced density matrix to the electron density ρ(r), which is the key ingredient in density functional theory (DFT) as a basic carrier of information. Simplifying further, the 1-normalized density function turns out to contain essentially the same information as ρ(r) and is even of preferred use as an information carrier when discussing the periodic properties along Mendeleev's table where essentially the valence electrons are at stake. The Kullback-Leibler information deficiency turns out to be the most interesting choice to obtain information on the differences in ρ(r) or σ(r) between two systems. To put it otherwise: when looking for the construction of a functional F(AB) = F[ζ(A)(r),ζ(B)(r)] for extracting differences in information from an information carrier ζ(r) (i.e. ρ(r), σ(r)) for two systems A and B the Kullback-Leibler information measure ΔS is a particularly adequate choice. Examples are given, varying from atoms, to molecules and molecular interactions. Quantum similarity of atoms indicates that the shape function based KL information deficiency is the most appropriate tool to retrieve periodicity in the Periodic Table. The dissimilarity of enantiomers for which different information measures are presented at global and local (i.e. molecular and atomic) level leads to an extension of Mezey's holographic density theorem and shows numerical evidence that in a chiral molecule the whole molecule is pervaded by chirality. Finally Kullback-Leibler information profiles are discussed for intra- and intermolecular proton transfer reactions and a simple S(N)2 reaction indicating that the theoretical information profile can be used as a companion to the energy based Hammond postulate to discuss the early or late transition state character of a reaction. All in all this Perspective's answer is positive to the question of whether an even simpler carrier of

  1. Using Social Network Theory to Influence the Development of State and Local Primary Prevention Capacity-Building Teams

    ERIC Educational Resources Information Center

    Cook-Craig, Patricia G.

    2010-01-01

    This article examines the role that social network theory and social network analysis has played in assessing and developing effective primary prevention networks across a southeastern state. In 2004 the state began an effort to develop a strategic plan for the primary prevention of violence working with local communities across the state. The…

  2. Networking Sensors for Information Dominance - Joint Signal Processing and Communication Design

    DTIC Science & Technology

    2012-01-01

    2012 4. TITLE AND SUBTITLE NETWORKING SENSORS FOR INFORMATION DOMINANCE - JOINT SIGNAL PROCESSING AND COMMUNICATION DESIGN, Final Report for FA9550...Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 Public A AFRL-OSR-VA-TR-2012-0729 NETWORKING SENSORS FOR INFORMATION DOMINANCE - JOINT

  3. An Information Theory Approach to Nonlinear, Nonequilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Rogers, David M.; Beck, Thomas L.; Rempe, Susan B.

    2011-10-01

    Using the problem of ion channel thermodynamics as an example, we illustrate the idea of building up complex thermodynamic models by successively adding physical information. We present a new formulation of information algebra that generalizes methods of both information theory and statistical mechanics. From this foundation we derive a theory for ion channel kinetics, identifying a nonequilibrium `process' free energy functional in addition to the well-known integrated work functionals. The Gibbs-Maxwell relation for the free energy functional is a Green-Kubo relation, applicable arbitrarily far from equilibrium, that captures the effect of non-local and time-dependent behavior from transient thermal and mechanical driving forces. Comparing the physical significance of the Lagrange multipliers to the canonical ensemble suggests definitions of nonequilibrium ensembles at constant capacitance or inductance in addition to constant resistance. Our result is that statistical mechanical descriptions derived from a few primitive algebraic operations on information can be used to create experimentally-relevant and computable models. By construction, these models may use information from more detailed atomistic simulations. Two surprising consequences to be explored in further work are that (in)distinguishability factors are automatically predicted from the problem formulation and that a direct analogue of the second law for thermodynamic entropy production is found by considering information loss in stochastic processes. The information loss identifies a novel contribution from the instantaneous information entropy that ensures non-negative loss.

  4. Brain activity and cognition: a connection from thermodynamics and information theory.

    PubMed

    Collell, Guillem; Fauquet, Jordi

    2015-01-01

    The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity.

  5. Brain activity and cognition: a connection from thermodynamics and information theory

    PubMed Central

    Collell, Guillem; Fauquet, Jordi

    2015-01-01

    The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity. PMID:26136709

  6. Existence of an information unit as a postulate of quantum theory.

    PubMed

    Masanes, Lluís; Müller, Markus P; Augusiak, Remigiusz; Pérez-García, David

    2013-10-08

    Does information play a significant role in the foundations of physics? Information is the abstraction that allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever there exists an information unit such that the state of any system can be reversibly encoded in a sufficient number of such units. In this work, we show how the abstract formalism of quantum theory can be deduced solely from the existence of an information unit with suitable properties, together with two further natural assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of a composite system by local measurements. This constitutes a set of postulates for quantum theory with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it articulates a strong connection between physics and information.

  7. Existence of an information unit as a postulate of quantum theory

    PubMed Central

    Masanes, Lluís; Müller, Markus P.; Augusiak, Remigiusz; Pérez-García, David

    2013-01-01

    Does information play a significant role in the foundations of physics? Information is the abstraction that allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever there exists an information unit such that the state of any system can be reversibly encoded in a sufficient number of such units. In this work, we show how the abstract formalism of quantum theory can be deduced solely from the existence of an information unit with suitable properties, together with two further natural assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of a composite system by local measurements. This constitutes a set of postulates for quantum theory with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it articulates a strong connection between physics and information. PMID:24062431

  8. Digital Networked Information Society and Public Health: Problems and Promises of Networked Health Communication of Lay Publics.

    PubMed

    Kim, Jeong-Nam

    2018-01-01

    This special issue of Health Communication compiles 10 articles to laud the promise and yet confront the problems in the digital networked information society related to public health. We present this anthology of symphony and cacophony of lay individuals' communicative actions in a digital networked information society. The collection of problems and promise of the new digital world may be a cornerstone joining two worlds-pre- and postdigital network society-and we hope this special issue will help better shape our future states of public health.

  9. Comparing cosmic web classifiers using information theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Ourmore » study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.« less

  10. Topology for efficient information dissemination in ad-hoc networking

    NASA Technical Reports Server (NTRS)

    Jennings, E.; Okino, C. M.

    2002-01-01

    In this paper, we explore the information dissemination problem in ad-hoc wirless networks. First, we analyze the probability of successful broadcast, assuming: the nodes are uniformly distributed, the available area has a lower bould relative to the total number of nodes, and there is zero knowledge of the overall topology of the network. By showing that the probability of such events is small, we are motivated to extract good graph topologies to minimize the overall transmissions. Three algorithms are used to generate topologies of the network with guaranteed connectivity. These are the minimum radius graph, the relative neighborhood graph and the minimum spanning tree. Our simulation shows that the relative neighborhood graph has certain good graph properties, which makes it suitable for efficient information dissemination.

  11. Network Learning for Educational Change. Professional Learning

    ERIC Educational Resources Information Center

    Veugelers, Wiel, Ed.; O'Hair, Mary John, Ed.

    2005-01-01

    School-university networks are becoming an important method to enhance educational renewal and student achievement. Networks go beyond tensions of top-down versus bottom-up, school development and professional development of individuals, theory and practice, and formal and informal organizational structures. The theoretical base of networking…

  12. Quality of Information Approach to Improving Source Selection in Tactical Networks

    DTIC Science & Technology

    2017-02-01

    consider the performance of this process based on metrics relating to quality of information: accuracy, timeliness, completeness and reliability. These...that are indicators of that the network is meeting these quality requirements. We study effective data rate, social distance, link integrity and the...utility of information as metrics within a multi-genre network to determine the quality of information of its available sources. This paper proposes a

  13. An experimental study of the Online Information Paradox: Does en-route information improve road network performance?

    PubMed Central

    2017-01-01

    This study investigates the empirical presence of a theoretical transportation paradox, defined as the “Online Information Paradox” (OIP). The paradox suggests that, for certain road networks, the provision of online information deteriorate travel conditions for all users of that network relative to the situation where no online information is provided to users. The analytical presence of the paradox was derived for a specific network structure by using two equilibrium models, the first being the Expected User Equilibrium (EUE) solution (no information scenario) and the other being the User Equilibrium with Recourse (UER) solution (with information scenario). An incentivised computerised route choice game was designed using the concepts of experimental economics and administered in a controlled laboratory environment to investigate the physical presence of the paradox. Aggregate statistics of path flows and Total System Travel Costs (TSTC) were used to compare the experimental results with the theoretical findings. A total of 12 groups of 12 participants completed the experiment and the OIP and the occurrence of the OIP being significant was observed in 11 of the 12 cases. Though information increased travel costs for users on average, it reduced the volatility of travel costs experienced in the no information scenario indicating that information can achieve a more reliable system. Further replications of similar experiments and more importantly field based identification of the phenomena will force transport professionals to be aware of the emergence of the paradox. In addition, studies such as this emphasise the need for the adoption of adaptive traffic assignment techniques to appropriately model the acquisition of information on a road network. PMID:28902854

  14. Group field theory and tensor networks: towards a Ryu–Takayanagi formula in full quantum gravity

    NASA Astrophysics Data System (ADS)

    Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi

    2018-06-01

    We establish a dictionary between group field theory (thus, spin networks and random tensors) states and generalized random tensor networks. Then, we use this dictionary to compute the Rényi entropy of such states and recover the Ryu–Takayanagi formula, in two different cases corresponding to two different truncations/approximations, suggested by the established correspondence.

  15. Networked Information Resources. SPEC Kit 253.

    ERIC Educational Resources Information Center

    Bleiler, Richard, Comp.; Plum, Terry, Comp.

    1999-01-01

    This SPEC Kit, published six times per year, examines how Association of Research Libraries (ARL) libraries have structured themselves to identify networked information resources in the market, to evaluate them for purchase, to make purchasing decisions, to publicize them, and to assess their continued utility. In the summer of 1999, the survey…

  16. Ranking streamflow model performance based on Information theory metrics

    NASA Astrophysics Data System (ADS)

    Martinez, Gonzalo; Pachepsky, Yakov; Pan, Feng; Wagener, Thorsten; Nicholson, Thomas

    2016-04-01

    The accuracy-based model performance metrics not necessarily reflect the qualitative correspondence between simulated and measured streamflow time series. The objective of this work was to use the information theory-based metrics to see whether they can be used as complementary tool for hydrologic model evaluation and selection. We simulated 10-year streamflow time series in five watersheds located in Texas, North Carolina, Mississippi, and West Virginia. Eight model of different complexity were applied. The information-theory based metrics were obtained after representing the time series as strings of symbols where different symbols corresponded to different quantiles of the probability distribution of streamflow. The symbol alphabet was used. Three metrics were computed for those strings - mean information gain that measures the randomness of the signal, effective measure complexity that characterizes predictability and fluctuation complexity that characterizes the presence of a pattern in the signal. The observed streamflow time series has smaller information content and larger complexity metrics than the precipitation time series. Watersheds served as information filters and and streamflow time series were less random and more complex than the ones of precipitation. This is reflected the fact that the watershed acts as the information filter in the hydrologic conversion process from precipitation to streamflow. The Nash Sutcliffe efficiency metric increased as the complexity of models increased, but in many cases several model had this efficiency values not statistically significant from each other. In such cases, ranking models by the closeness of the information-theory based parameters in simulated and measured streamflow time series can provide an additional criterion for the evaluation of hydrologic model performance.

  17. Network analysis for a network disorder: The emerging role of graph theory in the study of epilepsy.

    PubMed

    Bernhardt, Boris C; Bonilha, Leonardo; Gross, Donald W

    2015-09-01

    Recent years have witnessed a paradigm shift in the study and conceptualization of epilepsy, which is increasingly understood as a network-level disorder. An emblematic case is temporal lobe epilepsy (TLE), the most common drug-resistant epilepsy that is electroclinically defined as a focal epilepsy and pathologically associated with hippocampal sclerosis. In this review, we will summarize histopathological, electrophysiological, and neuroimaging evidence supporting the concept that the substrate of TLE is not limited to the hippocampus alone, but rather is broadly distributed across multiple brain regions and interconnecting white matter pathways. We will introduce basic concepts of graph theory, a formalism to quantify topological properties of complex systems that has recently been widely applied to study networks derived from brain imaging and electrophysiology. We will discuss converging graph theoretical evidence indicating that networks in TLE show marked shifts in their overall topology, providing insight into the neurobiology of TLE as a network-level disorder. Our review will conclude by discussing methodological challenges and future clinical applications of this powerful analytical approach. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Efficient network disintegration under incomplete information: the comic effect of link prediction

    NASA Astrophysics Data System (ADS)

    Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin

    2016-03-01

    The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the “comic effect” of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized.

  19. Efficient network disintegration under incomplete information: the comic effect of link prediction.

    PubMed

    Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin

    2016-03-10

    The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the "comic effect" of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized.

  20. Efficient network disintegration under incomplete information: the comic effect of link prediction

    PubMed Central

    Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin

    2016-01-01

    The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the “comic effect” of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized. PMID:26960247

  1. Experiences with using information and communication technology to build a multi-municipal support network for informal carers.

    PubMed

    Torp, Steffen; Bing-Jonsson, Pia C; Hanson, Elizabeth

    2013-09-01

    This multi-municipal intervention study explored whether informal carers of frail older people and disabled children living at home made use of information and communication technology (ICT) to gain knowledge about caring and to form informal support networks, thereby improving their health. Seventy-nine informal carers accessed web-based information about caring and an e-based discussion forum via their personal computers. They were able to maintain contact with each other using a web camera and via normal group meetings. After the first 12 months, 17 informal carers participated in focus group interviews and completed a short questionnaire. Four staff members were also interviewed. Participant carers who had prior experiences with a similar ICT-based support network reported greater satisfaction and more extensive use of the network than did participants with no such prior experience. It seems that infrequent usage of the service may be explained by too few other carers to identify with and inappropriate recruitment procedures. Nevertheless, carers of disabled children reported that the intervention had resulted in improved services across the participant municipalities. To achieve optimal effects of an ICT-based support network due attention must be given to recruitment processes and social environment building for which care practitioners require training and support.

  2. Mission Command in the Age of Network-Enabled Operations: Social Network Analysis of Information Sharing and Situation Awareness.

    PubMed

    Buchler, Norbou; Fitzhugh, Sean M; Marusich, Laura R; Ungvarsky, Diane M; Lebiere, Christian; Gonzalez, Cleotilde

    2016-01-01

    A common assumption in organizations is that information sharing improves situation awareness and ultimately organizational effectiveness. The sheer volume and rapid pace of information and communications received and readily accessible through computer networks, however, can overwhelm individuals, resulting in data overload from a combination of diverse data sources, multiple data formats, and large data volumes. The current conceptual framework of network enabled operations (NEO) posits that robust networking and information sharing act as a positive feedback loop resulting in greater situation awareness and mission effectiveness in military operations (Alberts and Garstka, 2004). We test this assumption in a large-scale, 2-week military training exercise. We conducted a social network analysis of email communications among the multi-echelon Mission Command staff (one Division and two sub-ordinate Brigades) and assessed the situational awareness of every individual. Results from our exponential random graph models challenge the aforementioned assumption, as increased email output was associated with lower individual situation awareness. It emerged that higher situation awareness was associated with a lower probability of out-ties, so that broadly sending many messages decreased the likelihood of attaining situation awareness. This challenges the hypothesis that increased information sharing improves situation awareness, at least for those doing the bulk of the sharing. In addition, we observed two trends that reflect a compartmentalizing of networked information sharing as email links were more commonly formed among members of the command staff with both similar functions and levels of situation awareness, than between two individuals with dissimilar functions and levels of situation awareness; both those findings can be interpreted to reflect effects of homophily. Our results have major implications that challenge the current conceptual framework of NEO. In

  3. Mission Command in the Age of Network-Enabled Operations: Social Network Analysis of Information Sharing and Situation Awareness

    PubMed Central

    Buchler, Norbou; Fitzhugh, Sean M.; Marusich, Laura R.; Ungvarsky, Diane M.; Lebiere, Christian; Gonzalez, Cleotilde

    2016-01-01

    A common assumption in organizations is that information sharing improves situation awareness and ultimately organizational effectiveness. The sheer volume and rapid pace of information and communications received and readily accessible through computer networks, however, can overwhelm individuals, resulting in data overload from a combination of diverse data sources, multiple data formats, and large data volumes. The current conceptual framework of network enabled operations (NEO) posits that robust networking and information sharing act as a positive feedback loop resulting in greater situation awareness and mission effectiveness in military operations (Alberts and Garstka, 2004). We test this assumption in a large-scale, 2-week military training exercise. We conducted a social network analysis of email communications among the multi-echelon Mission Command staff (one Division and two sub-ordinate Brigades) and assessed the situational awareness of every individual. Results from our exponential random graph models challenge the aforementioned assumption, as increased email output was associated with lower individual situation awareness. It emerged that higher situation awareness was associated with a lower probability of out-ties, so that broadly sending many messages decreased the likelihood of attaining situation awareness. This challenges the hypothesis that increased information sharing improves situation awareness, at least for those doing the bulk of the sharing. In addition, we observed two trends that reflect a compartmentalizing of networked information sharing as email links were more commonly formed among members of the command staff with both similar functions and levels of situation awareness, than between two individuals with dissimilar functions and levels of situation awareness; both those findings can be interpreted to reflect effects of homophily. Our results have major implications that challenge the current conceptual framework of NEO. In

  4. Untangling Word Webs: Graph Theory and the Notion of Density in Second Language Word Association Networks.

    ERIC Educational Resources Information Center

    Wilks, Clarissa; Meara, Paul

    2002-01-01

    Examines the implications of the metaphor of the vocabulary network. Takes a formal approach to the exploration of this metaphor by applying the principles of graph theory to word association data to compare the relative densities of the first language and second language lexical networks. (Author/VWL)

  5. On-Line Learning Technologies: Networking in the Classroom. Rural, Small Schools Network Information Exchange No. 16, Summer 1994.

    ERIC Educational Resources Information Center

    Regional Laboratory for Educational Improvement of the Northeast & Islands, Andover, MA.

    This packet includes reprints of articles and other information concerning the use of computer networks in small, rural schools. Computer networks can minimize isolation; develop stronger links to the community; access reference information from remote sources; and create professional and academic exchanges for teachers, administrators, and…

  6. Information exchange networks for chronic illness care in primary care practices: an observational study

    PubMed Central

    2010-01-01

    Background Information exchange networks for chronic illness care may influence the uptake of innovations in patient care. Valid and feasible methods are needed to document and analyse information exchange networks in healthcare settings. This observational study aimed to examine the usefulness of methods to study information exchange networks in primary care practices, related to chronic heart failure, diabetes and chronic obstructive pulmonary disease. Methods The study was linked to a quality improvement project in the Netherlands. All health professionals in the practices were asked to complete a short questionnaire that documented their information exchange relations. Feasibility was determined in terms of response rates and reliability in terms of reciprocity of reports of receiving and providing information. For each practice, a number of network characteristics were derived for each of the chronic conditions. Results Ten of the 21 practices in the quality improvement project agreed to participate in this network study. The response rates were high in all but one of the participating practices. For the analysis, we used data from 67 health professionals from eight practices. The agreement between receiving and providing information was, on average, 65.6%. The values for density, centralization, hierarchy, and overlap of the information exchange networks showed substantial variation between the practices as well as between the chronic conditions. The most central individual in the information exchange network could be a nurse or a physician. Conclusions Further research is needed to refine the measure of information networks and to test the impact of network characteristics on the uptake of innovations. PMID:20205758

  7. Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network.

    PubMed

    Novkovic, Mario; Onder, Lucas; Bocharov, Gennady; Ludewig, Burkhard

    2017-01-01

    Secondary lymphoid organs have developed segregated niches that are able to initiate and maintain effective immune responses. Such global organization requires tight control of diverse cellular components, specifically those that regulate lymphocyte trafficking. Fibroblastic reticular cells (FRCs) form a densely interconnected network in lymph nodes and provide key factors necessary for T cell migration and retention, and foster subsequent interactions between T cells and dendritic cells. Development of integrative systems biology approaches has made it possible to elucidate this multilevel complexity of the immune system. Here, we present a graph theory-based analysis of the FRC network in murine lymph nodes, where generation of the network topology is performed using high-resolution confocal microscopy and 3D reconstruction. This approach facilitates the analysis of physical cell-to-cell connectivity, and estimation of topological robustness and global behavior of the network when it is subjected to perturbation in silico.

  8. Deep Space Network information system architecture study

    NASA Technical Reports Server (NTRS)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  9. Game Theory Meets Wireless Sensor Networks Security Requirements and Threats Mitigation: A Survey

    PubMed Central

    Abdalzaher, Mohamed S.; Seddik, Karim; Elsabrouty, Maha; Muta, Osamu; Furukawa, Hiroshi; Abdel-Rahman, Adel

    2016-01-01

    We present a study of using game theory for protecting wireless sensor networks (WSNs) from selfish behavior or malicious nodes. Due to scalability, low complexity and disseminated nature of WSNs, malicious attacks can be modeled effectively using game theory. In this study, we survey the different game-theoretic defense strategies for WSNs. We present a taxonomy of the game theory approaches based on the nature of the attack, whether it is caused by an external attacker or it is the result of an internal node acting selfishly or maliciously. We also present a general trust model using game theory for decision making. We, finally, identify the significant role of evolutionary games for WSNs security against intelligent attacks; then, we list several prospect applications of game theory to enhance the data trustworthiness and node cooperation in different WSNs. PMID:27367700

  10. Game Theory Meets Wireless Sensor Networks Security Requirements and Threats Mitigation: A Survey.

    PubMed

    Abdalzaher, Mohamed S; Seddik, Karim; Elsabrouty, Maha; Muta, Osamu; Furukawa, Hiroshi; Abdel-Rahman, Adel

    2016-06-29

    We present a study of using game theory for protecting wireless sensor networks (WSNs) from selfish behavior or malicious nodes. Due to scalability, low complexity and disseminated nature of WSNs, malicious attacks can be modeled effectively using game theory. In this study, we survey the different game-theoretic defense strategies for WSNs. We present a taxonomy of the game theory approaches based on the nature of the attack, whether it is caused by an external attacker or it is the result of an internal node acting selfishly or maliciously. We also present a general trust model using game theory for decision making. We, finally, identify the significant role of evolutionary games for WSNs security against intelligent attacks; then, we list several prospect applications of game theory to enhance the data trustworthiness and node cooperation in different WSNs.

  11. 47 CFR 64.2009 - Safeguards required for use of customer proprietary network information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Safeguards required for use of customer proprietary network information. 64.2009 Section 64.2009 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Proprietary Network Information § 64.2009 Safeguards required for use of customer proprietary network...

  12. 47 CFR 64.2007 - Approval required for use of customer proprietary network information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Approval required for use of customer proprietary network information. 64.2007 Section 64.2007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Proprietary Network Information § 64.2007 Approval required for use of customer proprietary network...

  13. 47 CFR 64.2007 - Approval required for use of customer proprietary network information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Approval required for use of customer proprietary network information. 64.2007 Section 64.2007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Proprietary Network Information § 64.2007 Approval required for use of customer proprietary network...

  14. 47 CFR 64.2009 - Safeguards required for use of customer proprietary network information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Safeguards required for use of customer proprietary network information. 64.2009 Section 64.2009 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Proprietary Network Information § 64.2009 Safeguards required for use of customer proprietary network...

  15. 47 CFR 64.2010 - Safeguards on the disclosure of customer proprietary network information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Safeguards on the disclosure of customer proprietary network information. 64.2010 Section 64.2010 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Proprietary Network Information § 64.2010 Safeguards on the disclosure of customer proprietary network...

  16. Smooth information flow in temperature climate network reflects mass transport

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Jajcay, Nikola; Hartman, David; Paluš, Milan

    2017-03-01

    A directed climate network is constructed by Granger causality analysis of air temperature time series from a regular grid covering the whole Earth. Using winner-takes-all network thresholding approach, a structure of a smooth information flow is revealed, hidden to previous studies. The relevance of this observation is confirmed by comparison with the air mass transfer defined by the wind field. Their close relation illustrates that although the information transferred due to the causal influence is not a physical quantity, the information transfer is tied to the transfer of mass and energy.

  17. Group Centric Networking: Addressing Information Sharing Requirements at the Tactical Edge

    DTIC Science & Technology

    2016-04-10

    gateways are typically used to translate information from one network to another. The challenge with gateways is to understand what information...should be relayed from one network to another (with different message formats and technologies) and what platform should perform the gateway function such...information centric paradigm in that GCN does not specify what constitutes a group ID. Group IDs can be mapped to named data objects, content identifiers

  18. Part mutual information for quantifying direct associations in networks.

    PubMed

    Zhao, Juan; Zhou, Yiwei; Zhang, Xiujun; Chen, Luonan

    2016-05-03

    Quantitatively identifying direct dependencies between variables is an important task in data analysis, in particular for reconstructing various types of networks and causal relations in science and engineering. One of the most widely used criteria is partial correlation, but it can only measure linearly direct association and miss nonlinear associations. However, based on conditional independence, conditional mutual information (CMI) is able to quantify nonlinearly direct relationships among variables from the observed data, superior to linear measures, but suffers from a serious problem of underestimation, in particular for those variables with tight associations in a network, which severely limits its applications. In this work, we propose a new concept, "partial independence," with a new measure, "part mutual information" (PMI), which not only can overcome the problem of CMI but also retains the quantification properties of both mutual information (MI) and CMI. Specifically, we first defined PMI to measure nonlinearly direct dependencies between variables and then derived its relations with MI and CMI. Finally, we used a number of simulated data as benchmark examples to numerically demonstrate PMI features and further real gene expression data from Escherichia coli and yeast to reconstruct gene regulatory networks, which all validated the advantages of PMI for accurately quantifying nonlinearly direct associations in networks.

  19. Chaotic, informational and synchronous behaviour of multiplex networks

    NASA Astrophysics Data System (ADS)

    Baptista, M. S.; Szmoski, R. M.; Pereira, R. F.; Pinto, S. E. De Souza

    2016-03-01

    The understanding of the relationship between topology and behaviour in interconnected networks would allow to charac- terise and predict behaviour in many real complex networks since both are usually not simultaneously known. Most previous studies have focused on the relationship between topology and synchronisation. In this work, we provide analytical formulas that shows how topology drives complex behaviour: chaos, information, and weak or strong synchronisation; in multiplex net- works with constant Jacobian. We also study this relationship numerically in multiplex networks of Hindmarsh-Rose neurons. Whereas behaviour in the analytically tractable network is a direct but not trivial consequence of the spectra of eigenvalues of the Laplacian matrix, where behaviour may strongly depend on the break of symmetry in the topology of interconnections, in Hindmarsh-Rose neural networks the nonlinear nature of the chemical synapses breaks the elegant mathematical connec- tion between the spectra of eigenvalues of the Laplacian matrix and the behaviour of the network, creating networks whose behaviour strongly depends on the nature (chemical or electrical) of the inter synapses.

  20. Developing Evidence to Inform Decisions about Effectiveness (DeCIDE) Network

    Cancer.gov

    The Developing Evidence to Inform Decisions about Effectiveness Network is a network of research centers that the Agency for Healthcare Research and Quality created to conduct practical studies about health care items and services.