Sample records for network knowledge representation

  1. Deep Logic Networks: Inserting and Extracting Knowledge From Deep Belief Networks.

    PubMed

    Tran, Son N; d'Avila Garcez, Artur S

    2018-02-01

    Developments in deep learning have seen the use of layerwise unsupervised learning combined with supervised learning for fine-tuning. With this layerwise approach, a deep network can be seen as a more modular system that lends itself well to learning representations. In this paper, we investigate whether such modularity can be useful to the insertion of background knowledge into deep networks, whether it can improve learning performance when it is available, and to the extraction of knowledge from trained deep networks, and whether it can offer a better understanding of the representations learned by such networks. To this end, we use a simple symbolic language-a set of logical rules that we call confidence rules-and show that it is suitable for the representation of quantitative reasoning in deep networks. We show by knowledge extraction that confidence rules can offer a low-cost representation for layerwise networks (or restricted Boltzmann machines). We also show that layerwise extraction can produce an improvement in the accuracy of deep belief networks. Furthermore, the proposed symbolic characterization of deep networks provides a novel method for the insertion of prior knowledge and training of deep networks. With the use of this method, a deep neural-symbolic system is proposed and evaluated, with the experimental results indicating that modularity through the use of confidence rules and knowledge insertion can be beneficial to network performance.

  2. Research in Knowledge Representation for Natural Language Understanding

    DTIC Science & Technology

    1980-11-01

    artificial intelligence, natural language understanding , parsing, syntax, semantics, speaker meaning, knowledge representation, semantic networks...TinB PAGE map M W006 1Report No. 4513 L RESEARCH IN KNOWLEDGE REPRESENTATION FOR NATURAL LANGUAGE UNDERSTANDING Annual Report 1 September 1979 to 31... understanding , knowledge representation, and knowledge based inference. The work that we have been doing falls into three classes, successively motivated by

  3. Similarity networks as a knowledge representation for space applications

    NASA Technical Reports Server (NTRS)

    Bailey, David; Thompson, Donna; Feinstein, Jerald

    1987-01-01

    Similarity networks are a powerful form of knowledge representation that are useful for many artificial intelligence applications. Similarity networks are used in applications ranging from information analysis and case based reasoning to machine learning and linking symbolic to neural processing. Strengths of similarity networks include simple construction, intuitive object storage, and flexible retrieval techniques that facilitate inferencing. Therefore, similarity networks provide great potential for space applications.

  4. Research in Knowledge Representation for Natural Language Understanding.

    DTIC Science & Technology

    1984-09-01

    TYPE OF REPORT & PERIOO COVERED RESEARCH IN KNOWLEDGE REPRESENTATION Annual Report FOR NATURAL LANGUAGE UNDERSTANDING 9/1/83 - 8/31/84 S. PERFORMING...nhaber) Artificial intelligence, natural language understanding , knowledge representation, semantics, semantic networks, KL-TWO, NIKL, belief and...attempting to understand and react to a complex, evolving situation. This report summarizes our research in knowledge representation and natural language

  5. Standard model of knowledge representation

    NASA Astrophysics Data System (ADS)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  6. Wissensstrukturierung im Unterricht: Neuere Forschung zur Wissensreprasentation und ihre Anwendung in der Didaktik (Knowledge Structuring in Instruction: Recent Research on Knowledge Representation and Its Application in the Classroom).

    ERIC Educational Resources Information Center

    Einsiedler, Wolfgang

    1996-01-01

    Asks whether theories of knowledge representation provide a basis for the development of theories of knowledge structuring in instruction. Discusses codes of knowledge, surface versus deep structures, semantic networks, and multiple memory systems. Reviews research on teaching, external representation of cognitive structures, hierarchical…

  7. On a categorial aspect of knowledge representation

    NASA Astrophysics Data System (ADS)

    Tataj, Emanuel; Mulawka, Jan; Nieznański, Edward

    Adequate representation of data is crucial for modeling any type of data. To faithfully present and describe the relevant section of the world it is necessary to select the method that can easily be implemented on a computer system which will help in further description allowing reasoning. The main objective of this contribution is to present methods of knowledge representation using categorial approach. Next to identify the main advantages for computer implementation. Categorical aspect of knowledge representation is considered in semantic networks realisation. Such method borrows already known metaphysics properties for data modeling process. The potential topics of further development of categorical semantic networks implementations are also underlined.

  8. Knowledge-base browsing: an application of hybrid distributed/local connectionist networks

    NASA Astrophysics Data System (ADS)

    Samad, Tariq; Israel, Peggy

    1990-08-01

    We describe a knowledge base browser based on a connectionist (or neural network) architecture that employs both distributed and local representations. The distributed representations are used for input and output thereby enabling associative noise-tolerant interaction with the environment. Internally all representations are fully local. This simplifies weight assignment and facilitates network configuration for specific applications. In our browser concepts and relations in a knowledge base are represented using " microfeatures. " The microfeatures can encode semantic attributes structural features contextual information etc. Desired portions of the knowledge base can then be associatively retrieved based on a structured cue. An ordered list of partial matches is presented to the user for selection. Microfeatures can also be used as " bookmarks" they can be placed dynamically at appropriate points in the knowledge base and subsequently used as retrieval cues. A proof-of-concept system has been implemented for an internally developed Honeywell-proprietary knowledge acquisition tool. 1.

  9. Team knowledge representation: a network perspective.

    PubMed

    Espinosa, J Alberto; Clark, Mark A

    2014-03-01

    We propose a network perspective of team knowledge that offers both conceptual and methodological advantages, expanding explanatory value through representation and measurement of component structure and content. Team knowledge has typically been conceptualized and measured with relatively simple aggregates, without fully accounting for differing knowledge configurations among team members. Teams with similar aggregate values of team knowledge may have very different team dynamics depending on how knowledge isolates, cliques, and densities are distributed across the team; which members are the most knowledgeable; who shares knowledge with whom; and how knowledge clusters are distributed. We illustrate our proposed network approach through a sample of 57 teams, including how to compute, analyze, and visually represent team knowledge. Team knowledge network structures (isolation, centrality) are associated with outcomes of, respectively, task coordination, strategy coordination, and the proportion of team knowledge cliques, all after controlling for shared team knowledge. Network analysis helps to represent, measure, and understand the relationship of team knowledge to outcomes of interest to team researchers, members, and managers. Our approach complements existing team knowledge measures. Researchers and managers can apply network concepts and measures to help understand where team knowledge is held within a team and how this relational structure may influence team coordination, cohesion, and performance.

  10. What Happens to Student Learning When Color Is Added to a New Knowledge Representation Strategy? Implications from Visual Thinking Networking.

    ERIC Educational Resources Information Center

    Longo, Palma J.

    A long-term study was conducted to test the effectiveness of visual thinking networking (VTN), a new generation of knowledge representation strategies with 56 ninth grade earth science students. The recent findings about the brain's organization and processing conceptually ground VTN as a new cognitive tool used by learners when making their…

  11. NetWeaver for EMDS user guide (version 1.1): a knowledge base development system.

    Treesearch

    Keith M. Reynolds

    1999-01-01

    The guide describes use of the NetWeaver knowledge base development system. Knowledge representation in NetWeaver is based on object-oriented fuzzy-logic networks that offer several significant advantages over the more traditional rulebased representation. Compared to rule-based knowledge bases, NetWeaver knowledge bases are easier to build, test, and maintain because...

  12. Knowledge representation in metabolic pathway databases.

    PubMed

    Stobbe, Miranda D; Jansen, Gerbert A; Moerland, Perry D; van Kampen, Antoine H C

    2014-05-01

    The accurate representation of all aspects of a metabolic network in a structured format, such that it can be used for a wide variety of computational analyses, is a challenge faced by a growing number of researchers. Analysis of five major metabolic pathway databases reveals that each database has made widely different choices to address this challenge, including how to deal with knowledge that is uncertain or missing. In concise overviews, we show how concepts such as compartments, enzymatic complexes and the direction of reactions are represented in each database. Importantly, also concepts which a database does not represent are described. Which aspects of the metabolic network need to be available in a structured format and to what detail differs per application. For example, for in silico phenotype prediction, a detailed representation of gene-protein-reaction relations and the compartmentalization of the network is essential. Our analysis also shows that current databases are still limited in capturing all details of the biology of the metabolic network, further illustrated with a detailed analysis of three metabolic processes. Finally, we conclude that the conceptual differences between the databases, which make knowledge exchange and integration a challenge, have not been resolved, so far, by the exchange formats in which knowledge representation is standardized.

  13. Building on prior knowledge without building it in.

    PubMed

    Hansen, Steven S; Lampinen, Andrew K; Suri, Gaurav; McClelland, James L

    2017-01-01

    Lake et al. propose that people rely on "start-up software," "causal models," and "intuitive theories" built using compositional representations to learn new tasks more efficiently than some deep neural network models. We highlight the many drawbacks of a commitment to compositional representations and describe our continuing effort to explore how the ability to build on prior knowledge and to learn new tasks efficiently could arise through learning in deep neural networks.

  14. In defense of abstract conceptual representations.

    PubMed

    Binder, Jeffrey R

    2016-08-01

    An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge.

  15. Software GOLUCA: Knowledge Representation in Mental Calculation

    ERIC Educational Resources Information Center

    Casas-Garcia, Luis M.; Luengo-Gonzalez, Ricardo; Godinho-Lopes, Vitor

    2011-01-01

    We present a new software, called Goluca (Godinho, Luengo, and Casas, 2007), based on the technique of Pathfinder Associative Networks (Schvaneveldt, 1989), which produces graphical representations of the cognitive structure of individuals in a given field knowledge. In this case, we studied the strategies used by teachers and its relationship…

  16. Systematic Representation of Knowledge of Ecology: Concepts and Relationships.

    ERIC Educational Resources Information Center

    Garb, Yaakov; And Others

    This study describes efforts to apply principles of systematic knowledge representation (concept mapping and computer-based semantic networking techniques) to the domain of ecology. A set of 24 relationships and modifiers is presented that seem sufficient for describing all ecological relationships discussed in an introductory course. Many of…

  17. Invisible Brain: Knowledge in Research Works and Neuron Activity.

    PubMed

    Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun

    2016-01-01

    If the market has an invisible hand, does knowledge creation and representation have an "invisible brain"? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an "invisible brain" or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism.

  18. Invisible Brain: Knowledge in Research Works and Neuron Activity

    PubMed Central

    Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun

    2016-01-01

    If the market has an invisible hand, does knowledge creation and representation have an “invisible brain”? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an “invisible brain” or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism. PMID:27439199

  19. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    PubMed

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  20. Human white matter and knowledge representation

    PubMed Central

    2018-01-01

    Understanding how knowledge is represented in the human brain is a fundamental challenge in neuroscience. To date, most of the work on this topic has focused on knowledge representation in cortical areas and debated whether knowledge is represented in a distributed or localized fashion. Fang and colleagues provide evidence that brain connections and the white matter supporting such connections might play a significant role. The work opens new avenues of investigation, breaking through disciplinary boundaries across network neuroscience, computational neuroscience, cognitive science, and classical lesion studies. PMID:29698391

  1. Human white matter and knowledge representation.

    PubMed

    Pestilli, Franco

    2018-04-01

    Understanding how knowledge is represented in the human brain is a fundamental challenge in neuroscience. To date, most of the work on this topic has focused on knowledge representation in cortical areas and debated whether knowledge is represented in a distributed or localized fashion. Fang and colleagues provide evidence that brain connections and the white matter supporting such connections might play a significant role. The work opens new avenues of investigation, breaking through disciplinary boundaries across network neuroscience, computational neuroscience, cognitive science, and classical lesion studies.

  2. Causal Networks or Causal Islands? The Representation of Mechanisms and the Transitivity of Causal Judgment

    ERIC Educational Resources Information Center

    Johnson, Samuel G. B.; Ahn, Woo-kyoung

    2015-01-01

    Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organizations of causal knowledge--an interconnected causal "network," where events are causally connected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms--causal "islands"--such that events in different…

  3. Assessing Students' Accounting Knowledge: A Structural Approach.

    ERIC Educational Resources Information Center

    Boldt, Margaret N.

    2001-01-01

    Comparisons of students' representations of financial accounting concepts with the knowledge structures of experts were depicted using Pathfinder networks. This structural approach identified the level of students' understanding of concepts and knowledge gaps that need to be addressed. (SK)

  4. Specificity of Structural Assessment of Knowledge

    ERIC Educational Resources Information Center

    Trumpower, David L.; Sharara, Harold; Goldsmith, Timothy E.

    2010-01-01

    This study examines the specificity of information provided by structural assessment of knowledge (SAK). SAK is a technique which uses the Pathfinder scaling algorithm to transform ratings of concept relatedness into network representations (PFnets) of individuals' knowledge. Inferences about individuals' overall domain knowledge based on the…

  5. Knowledge network model of the energy consumption in discrete manufacturing system

    NASA Astrophysics Data System (ADS)

    Xu, Binzi; Wang, Yan; Ji, Zhicheng

    2017-07-01

    Discrete manufacturing system generates a large amount of data and information because of the development of information technology. Hence, a management mechanism is urgently required. In order to incorporate knowledge generated from manufacturing data and production experience, a knowledge network model of the energy consumption in the discrete manufacturing system was put forward based on knowledge network theory and multi-granularity modular ontology technology. This model could provide a standard representation for concepts, terms and their relationships, which could be understood by both human and computer. Besides, the formal description of energy consumption knowledge elements (ECKEs) in the knowledge network was also given. Finally, an application example was used to verify the feasibility of the proposed method.

  6. The association of personal semantic memory to identity representations: insight into higher-order networks of autobiographical contents.

    PubMed

    Grilli, Matthew D

    2017-11-01

    Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.

  7. Relating brain signal variability to knowledge representation.

    PubMed

    Heisz, Jennifer J; Shedden, Judith M; McIntosh, Anthony R

    2012-11-15

    We assessed the hypothesis that brain signal variability is a reflection of functional network reconfiguration during memory processing. In the present experiments, we use multiscale entropy to capture the variability of human electroencephalogram (EEG) while manipulating the knowledge representation associated with faces stored in memory. Across two experiments, we observed increased variability as a function of greater knowledge representation. In Experiment 1, individuals with greater familiarity for a group of famous faces displayed more brain signal variability. In Experiment 2, brain signal variability increased with learning after multiple experimental exposures to previously unfamiliar faces. The results demonstrate that variability increases with face familiarity; cognitive processes during the perception of familiar stimuli may engage a broader network of regions, which manifests as higher complexity/variability in spatial and temporal domains. In addition, effects of repetition suppression on brain signal variability were observed, and the pattern of results is consistent with a selectivity model of neural adaptation. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  8. Functional brain networks reconstruction using group sparsity-regularized learning.

    PubMed

    Zhao, Qinghua; Li, Will X Y; Jiang, Xi; Lv, Jinglei; Lu, Jianfeng; Liu, Tianming

    2018-06-01

    Investigating functional brain networks and patterns using sparse representation of fMRI data has received significant interests in the neuroimaging community. It has been reported that sparse representation is effective in reconstructing concurrent and interactive functional brain networks. To date, most of data-driven network reconstruction approaches rarely take consideration of anatomical structures, which are the substrate of brain function. Furthermore, it has been rarely explored whether structured sparse representation with anatomical guidance could facilitate functional networks reconstruction. To address this problem, in this paper, we propose to reconstruct brain networks utilizing the structure guided group sparse regression (S2GSR) in which 116 anatomical regions from the AAL template, as prior knowledge, are employed to guide the network reconstruction when performing sparse representation of whole-brain fMRI data. Specifically, we extract fMRI signals from standard space aligned with the AAL template. Then by learning a global over-complete dictionary, with the learned dictionary as a set of features (regressors), the group structured regression employs anatomical structures as group information to regress whole brain signals. Finally, the decomposition coefficients matrix is mapped back to the brain volume to represent functional brain networks and patterns. We use the publicly available Human Connectome Project (HCP) Q1 dataset as the test bed, and the experimental results indicate that the proposed anatomically guided structure sparse representation is effective in reconstructing concurrent functional brain networks.

  9. More Stable Ties or Better Structure? An Examination of the Impact of Co-author Network on Team Knowledge Creation

    PubMed Central

    Li, Mingze; Zhuang, Xiaoli; Liu, Wenxing; Zhang, Pengcheng

    2017-01-01

    This study aims to explore the influence of co-author network on team knowledge creation. Integrating the two traditional perspectives of network relationship and network structure, we examine the direct and interactive effects of tie stability and structural holes on team knowledge creation. Tracking scientific articles published by 111 scholars in the research field of human resource management from the top 8 American universities, we analyze scholars’ scientific co-author networks. The result indicates that tie stability changes the teams’ information processing modes and, when graphed, results in an inverted U-shape relationship between tie stability and team knowledge creation. Moreover, structural holes in co-author network are proved to be harmful to team knowledge sharing and diffusion, thereby impeding team knowledge creation. Also, tie stability and structural hole interactively influence team knowledge creation. When the number of structural hole is low in the co-author network, the graphical representation of the relationship between tie stability and team knowledge creation tends to be a more distinct U-shape. PMID:28993744

  10. More Stable Ties or Better Structure? An Examination of the Impact of Co-author Network on Team Knowledge Creation.

    PubMed

    Li, Mingze; Zhuang, Xiaoli; Liu, Wenxing; Zhang, Pengcheng

    2017-01-01

    This study aims to explore the influence of co-author network on team knowledge creation. Integrating the two traditional perspectives of network relationship and network structure, we examine the direct and interactive effects of tie stability and structural holes on team knowledge creation. Tracking scientific articles published by 111 scholars in the research field of human resource management from the top 8 American universities, we analyze scholars' scientific co-author networks. The result indicates that tie stability changes the teams' information processing modes and, when graphed, results in an inverted U-shape relationship between tie stability and team knowledge creation. Moreover, structural holes in co-author network are proved to be harmful to team knowledge sharing and diffusion, thereby impeding team knowledge creation. Also, tie stability and structural hole interactively influence team knowledge creation. When the number of structural hole is low in the co-author network, the graphical representation of the relationship between tie stability and team knowledge creation tends to be a more distinct U-shape.

  11. Character-level neural network for biomedical named entity recognition.

    PubMed

    Gridach, Mourad

    2017-06-01

    Biomedical named entity recognition (BNER), which extracts important named entities such as genes and proteins, is a challenging task in automated systems that mine knowledge in biomedical texts. The previous state-of-the-art systems required large amounts of task-specific knowledge in the form of feature engineering, lexicons and data pre-processing to achieve high performance. In this paper, we introduce a novel neural network architecture that benefits from both word- and character-level representations automatically, by using a combination of bidirectional long short-term memory (LSTM) and conditional random field (CRF) eliminating the need for most feature engineering tasks. We evaluate our system on two datasets: JNLPBA corpus and the BioCreAtIvE II Gene Mention (GM) corpus. We obtained state-of-the-art performance by outperforming the previous systems. To the best of our knowledge, we are the first to investigate the combination of deep neural networks, CRF, word embeddings and character-level representation in recognizing biomedical named entities. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Structured Semantic Knowledge Can Emerge Automatically from Predicting Word Sequences in Child-Directed Speech

    PubMed Central

    Huebner, Philip A.; Willits, Jon A.

    2018-01-01

    Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system. PMID:29520243

  13. Hypermedia-Assisted Instruction and Second Language Learning: A Semantic-Network-Based Approach.

    ERIC Educational Resources Information Center

    Liu, Min

    This literature review examines a hypermedia learning environment from a semantic network basis and the application of such an environment to second language learning. (A semantic network is defined as a conceptual representation of knowledge in human memory). The discussion is organized under the following headings and subheadings: (1) Advantages…

  14. Psychology of knowledge representation.

    PubMed

    Grimm, Lisa R

    2014-05-01

    Every cognitive enterprise involves some form of knowledge representation. Humans represent information about the external world and internal mental states, like beliefs and desires, and use this information to meet goals (e.g., classification or problem solving). Unfortunately, researchers do not have direct access to mental representations. Instead, cognitive scientists design experiments and implement computational models to develop theories about the mental representations present during task performance. There are several main types of mental representation and corresponding processes that have been posited: spatial, feature, network, and structured. Each type has a particular structure and a set of processes that are capable of accessing and manipulating information within the representation. The structure and processes determine what information can be used during task performance and what information has not been represented at all. As such, the different types of representation are likely used to solve different kinds of tasks. For example, structured representations are more complex and computationally demanding, but are good at representing relational information. Researchers interested in human psychology would benefit from considering how knowledge is represented in their domain of inquiry. For further resources related to this article, please visit the WIREs website. The author has declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  15. Deep learning of orthographic representations in baboons.

    PubMed

    Hannagan, Thomas; Ziegler, Johannes C; Dufau, Stéphane; Fagot, Joël; Grainger, Jonathan

    2014-01-01

    What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process.

  16. Knowledge representation of motor activity of patients with Parkinson's disease.

    PubMed

    Kostek, Bożena; Kupryjanow, Adam; Czyżewski, Andrzej

    An approach to the knowledge representation extraction from biomedical signals analysis concerning motor activity of Parkinson disease patients is proposed in this paper. This is done utilizing accelerometers attached to their body as well as exploiting video image of their hand movements. Experiments are carried out employing artificial neural networks and support vector machine to the recognition of characteristic motor activity disorders in patients. Obtained results indicate that it is possible to interpret some selected patient's body movements with a sufficiently high effectiveness.

  17. Survey of Knowledge Representation and Reasoning Systems

    DTIC Science & Technology

    2009-07-01

    processing large volumes of unstructured information such as natural language documents, email, audio , images and video [Ferrucci et al. 2006]. Using this...information we hope to obtain improved es- timation and prediction, data-mining, social network analysis, and semantic search and visualisation . Knowledge

  18. EMR-based medical knowledge representation and inference via Markov random fields and distributed representation learning.

    PubMed

    Zhao, Chao; Jiang, Jingchi; Guan, Yi; Guo, Xitong; He, Bin

    2018-05-01

    Electronic medical records (EMRs) contain medical knowledge that can be used for clinical decision support (CDS). Our objective is to develop a general system that can extract and represent knowledge contained in EMRs to support three CDS tasks-test recommendation, initial diagnosis, and treatment plan recommendation-given the condition of a patient. We extracted four kinds of medical entities from records and constructed an EMR-based medical knowledge network (EMKN), in which nodes are entities and edges reflect their co-occurrence in a record. Three bipartite subgraphs (bigraphs) were extracted from the EMKN, one to support each task. One part of the bigraph was the given condition (e.g., symptoms), and the other was the condition to be inferred (e.g., diseases). Each bigraph was regarded as a Markov random field (MRF) to support the inference. We proposed three graph-based energy functions and three likelihood-based energy functions. Two of these functions are based on knowledge representation learning and can provide distributed representations of medical entities. Two EMR datasets and three metrics were utilized to evaluate the performance. As a whole, the evaluation results indicate that the proposed system outperformed the baseline methods. The distributed representation of medical entities does reflect similarity relationships with respect to knowledge level. Combining EMKN and MRF is an effective approach for general medical knowledge representation and inference. Different tasks, however, require individually designed energy functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Reputation-based collaborative network biology.

    PubMed

    Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Fields, R Brett; Hayes, William; Hoeng, Julia; Park, Jennifer S; Peitsch, Manuel C

    2015-01-01

    A pilot reputation-based collaborative network biology platform, Bionet, was developed for use in the sbv IMPROVER Network Verification Challenge to verify and enhance previously developed networks describing key aspects of lung biology. Bionet was successful in capturing a more comprehensive view of the biology associated with each network using the collective intelligence and knowledge of the crowd. One key learning point from the pilot was that using a standardized biological knowledge representation language such as BEL is critical to the success of a collaborative network biology platform. Overall, Bionet demonstrated that this approach to collaborative network biology is highly viable. Improving this platform for de novo creation of biological networks and network curation with the suggested enhancements for scalability will serve both academic and industry systems biology communities.

  20. Modular representation of layered neural networks.

    PubMed

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. TARGET's role in knowledge acquisition, engineering, validation, and documentation

    NASA Technical Reports Server (NTRS)

    Levi, Keith R.

    1994-01-01

    We investigate the use of the TARGET task analysis tool for use in the development of rule-based expert systems. We found TARGET to be very helpful in the knowledge acquisition process. It enabled us to perform knowledge acquisition with one knowledge engineer rather than two. In addition, it improved communication between the domain expert and knowledge engineer. We also found it to be useful for both the rule development and refinement phases of the knowledge engineering process. Using the network in these phases required us to develop guidelines that enabled us to easily translate the network into production rules. A significant requirement for TARGET remaining useful throughout the knowledge engineering process was the need to carefully maintain consistency between the network and the rule representations. Maintaining consistency not only benefited the knowledge engineering process, but also has significant payoffs in the areas of validation of the expert system and documentation of the knowledge in the system.

  2. A Self-Organizing Incremental Neural Network based on local distribution learning.

    PubMed

    Xing, Youlu; Shi, Xiaofeng; Shen, Furao; Zhou, Ke; Zhao, Jinxi

    2016-12-01

    In this paper, we propose an unsupervised incremental learning neural network based on local distribution learning, which is called Local Distribution Self-Organizing Incremental Neural Network (LD-SOINN). The LD-SOINN combines the advantages of incremental learning and matrix learning. It can automatically discover suitable nodes to fit the learning data in an incremental way without a priori knowledge such as the structure of the network. The nodes of the network store rich local information regarding the learning data. The adaptive vigilance parameter guarantees that LD-SOINN is able to add new nodes for new knowledge automatically and the number of nodes will not grow unlimitedly. While the learning process continues, nodes that are close to each other and have similar principal components are merged to obtain a concise local representation, which we call a relaxation data representation. A denoising process based on density is designed to reduce the influence of noise. Experiments show that the LD-SOINN performs well on both artificial and real-word data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Dynamic Bayesian Networks for Student Modeling

    ERIC Educational Resources Information Center

    Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus

    2017-01-01

    Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…

  4. Dissociation of quantifiers and object nouns in speech in focal neurodegenerative disease.

    PubMed

    Ash, Sharon; Ternes, Kylie; Bisbing, Teagan; Min, Nam Eun; Moran, Eileen; York, Collin; McMillan, Corey T; Irwin, David J; Grossman, Murray

    2016-08-01

    Quantifiers such as many and some are thought to depend in part on the conceptual representation of number knowledge, while object nouns such as cookie and boy appear to depend in part on visual feature knowledge associated with object concepts. Further, number knowledge is associated with a frontal-parietal network while object knowledge is related in part to anterior and ventral portions of the temporal lobe. We examined the cognitive and anatomic basis for the spontaneous speech production of quantifiers and object nouns in non-aphasic patients with focal neurodegenerative disease associated with corticobasal syndrome (CBS, n=33), behavioral variant frontotemporal degeneration (bvFTD, n=54), and semantic variant primary progressive aphasia (svPPA, n=19). We recorded a semi-structured speech sample elicited from patients and healthy seniors (n=27) during description of the Cookie Theft scene. We observed a dissociation: CBS and bvFTD were significantly impaired in the production of quantifiers but not object nouns, while svPPA were significantly impaired in the production of object nouns but not quantifiers. MRI analysis revealed that quantifier production deficits in CBS and bvFTD were associated with disease in a frontal-parietal network important for number knowledge, while impaired production of object nouns in all patient groups was related to disease in inferior temporal regions important for representations of visual feature knowledge of objects. These findings imply that partially dissociable representations in semantic memory may underlie different segments of the lexicon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Software tool for data mining and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Ye, Chenzhou; Chen, Nianyi

    2002-03-01

    A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.

  6. Knowledge engineering for temporal dependency networks as operations procedures. [in space communication

    NASA Technical Reports Server (NTRS)

    Fayyad, Kristina E.; Hill, Randall W., Jr.; Wyatt, E. J.

    1993-01-01

    This paper presents a case study of the knowledge engineering process employed to support the Link Monitor and Control Operator Assistant (LMCOA). The LMCOA is a prototype system which automates the configuration, calibration, test, and operation (referred to as precalibration) of the communications, data processing, metric data, antenna, and other equipment used to support space-ground communications with deep space spacecraft in NASA's Deep Space Network (DSN). The primary knowledge base in the LMCOA is the Temporal Dependency Network (TDN), a directed graph which provides a procedural representation of the precalibration operation. The TDN incorporates precedence, temporal, and state constraints and uses several supporting knowledge bases and data bases. The paper provides a brief background on the DSN, and describes the evolution of the TDN and supporting knowledge bases, the process used for knowledge engineering, and an analysis of the successes and problems of the knowledge engineering effort.

  7. Knowledge represented using RDF semantic network in the concept of semantic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukasova, A., E-mail: alena.lukasova@osu.cz; Vajgl, M., E-mail: marek.vajgl@osu.cz; Zacek, M., E-mail: martin.zacek@osu.cz

    The RDF(S) model has been declared as the basic model to capture knowledge of the semantic web. It provides a common and flexible way to decompose composed knowledge to elementary statements, which can be represented by RDF triples or by RDF graph vectors. From the logical point of view, elements of knowledge can be expressed using at most binary predicates, which can be converted to RDF-triples or graph vectors. However, it is not able to capture implicit knowledge representable by logical formulas. This contribution shows how existing approaches (semantic networks and clausal form logic) can be combined together with RDFmore » to obtain RDF-compatible system with ability to represent implicit knowledge and inference over knowledge base.« less

  8. Sparse representation of whole-brain fMRI signals for identification of functional networks.

    PubMed

    Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming

    2015-02-01

    There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Deep Learning of Orthographic Representations in Baboons

    PubMed Central

    Hannagan, Thomas; Ziegler, Johannes C.; Dufau, Stéphane; Fagot, Joël; Grainger, Jonathan

    2014-01-01

    What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords [1]. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process. PMID:24416300

  10. Integrating knowledge and control into hypermedia-based training environments: Experiments with HyperCLIPS

    NASA Technical Reports Server (NTRS)

    Hill, Randall W., Jr.

    1990-01-01

    The issues of knowledge representation and control in hypermedia-based training environments are discussed. The main objective is to integrate the flexible presentation capability of hypermedia with a knowledge-based approach to lesson discourse management. The instructional goals and their associated concepts are represented in a knowledge representation structure called a 'concept network'. Its functional usages are many: it is used to control the navigation through a presentation space, generate tests for student evaluation, and model the student. This architecture was implemented in HyperCLIPS, a hybrid system that creates a bridge between HyperCard, a popular hypertext-like system used for building user interfaces to data bases and other applications, and CLIPS, a highly portable government-owned expert system shell.

  11. Ontology Design of Influential People Identification Using Centrality

    NASA Astrophysics Data System (ADS)

    Maulana Awangga, Rolly; Yusril, Muhammad; Setyawan, Helmi

    2018-04-01

    Identifying influential people as a node in a graph theory commonly calculated by social network analysis. The social network data has the user as node and edge as relation forming a friend relation graph. This research is conducting different meaning of every nodes relation in the social network. Ontology was perfect match science to describe the social network data as conceptual and domain. Ontology gives essential relationship in a social network more than a current graph. Ontology proposed as a standard for knowledge representation for the semantic web by World Wide Web Consortium. The formal data representation use Resource Description Framework (RDF) and Web Ontology Language (OWL) which is strategic for Open Knowledge-Based website data. Ontology used in the semantic description for a relationship in the social network, it is open to developing semantic based relationship ontology by adding and modifying various and different relationship to have influential people as a conclusion. This research proposes a model using OWL and RDF for influential people identification in the social network. The study use degree centrality, between ness centrality, and closeness centrality measurement for data validation. As a conclusion, influential people identification in Facebook can use proposed Ontology model in the Group, Photos, Photo Tag, Friends, Events and Works data.

  12. Systems Biology Graphical Notation: Entity Relationship language Level 1 Version 2.

    PubMed

    Sorokin, Anatoly; Le Novère, Nicolas; Luna, Augustin; Czauderna, Tobias; Demir, Emek; Haw, Robin; Mi, Huaiyu; Moodie, Stuart; Schreiber, Falk; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Entity Relationship language (ER) represents biological entities and their interactions and relationships within a network. SBGN ER focuses on all potential relationships between entities without considering temporal aspects. The nodes (elements) describe biological entities, such as proteins and complexes. The edges (connections) provide descriptions of interactions and relationships (or influences), e.g., complex formation, stimulation and inhibition. Among all three languages of SBGN, ER is the closest to protein interaction networks in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  13. A knowledge representation approach using fuzzy cognitive maps for better navigation support in an adaptive learning system.

    PubMed

    Chrysafiadi, Konstantina; Virvou, Maria

    2013-12-01

    In this paper a knowledge representation approach of an adaptive and/or personalized tutoring system is presented. The domain knowledge should be represented in a more realistic way in order to allow the adaptive and/or personalized tutoring system to deliver the learning material to each individual learner dynamically taking into account her/his learning needs and her/his different learning pace. To succeed this, the domain knowledge representation has to depict the possible increase or decrease of the learner's knowledge. Considering that the domain concepts that constitute the learning material are not independent from each other, the knowledge representation approach has to allow the system to recognize either the domain concepts that are already partly or completely known for a learner, or the domain concepts that s/he has forgotten, taking into account the learner's knowledge level of the related concepts. In other words, the system should be informed about the knowledge dependencies that exist among the domain concepts of the learning material, as well as the strength on impact of each domain concept on others. Fuzzy Cognitive Maps (FCMs) seem to be an ideal way for representing graphically this kind of information. The suggested knowledge representation approach has been implemented in an e-learning adaptive system for teaching computer programming. The particular system was used by the students of a postgraduate program in the field of Informatics in the University of Piraeus and was compared with a corresponding system, in which the domain knowledge was represented using the most common used technique of network of concepts. The results of the evaluation were very encouraging.

  14. Dependency-based Siamese long short-term memory network for learning sentence representations

    PubMed Central

    Zhu, Wenhao; Ni, Jianyue; Wei, Baogang; Lu, Zhiguo

    2018-01-01

    Textual representations play an important role in the field of natural language processing (NLP). The efficiency of NLP tasks, such as text comprehension and information extraction, can be significantly improved with proper textual representations. As neural networks are gradually applied to learn the representation of words and phrases, fairly efficient models of learning short text representations have been developed, such as the continuous bag of words (CBOW) and skip-gram models, and they have been extensively employed in a variety of NLP tasks. Because of the complex structure generated by the longer text lengths, such as sentences, algorithms appropriate for learning short textual representations are not applicable for learning long textual representations. One method of learning long textual representations is the Long Short-Term Memory (LSTM) network, which is suitable for processing sequences. However, the standard LSTM does not adequately address the primary sentence structure (subject, predicate and object), which is an important factor for producing appropriate sentence representations. To resolve this issue, this paper proposes the dependency-based LSTM model (D-LSTM). The D-LSTM divides a sentence representation into two parts: a basic component and a supporting component. The D-LSTM uses a pre-trained dependency parser to obtain the primary sentence information and generate supporting components, and it also uses a standard LSTM model to generate the basic sentence components. A weight factor that can adjust the ratio of the basic and supporting components in a sentence is introduced to generate the sentence representation. Compared with the representation learned by the standard LSTM, the sentence representation learned by the D-LSTM contains a greater amount of useful information. The experimental results show that the D-LSTM is superior to the standard LSTM for sentences involving compositional knowledge (SICK) data. PMID:29513748

  15. Applying knowledge engineering and representation methods to improve support vector machine and multivariate probabilistic neural network CAD performance

    NASA Astrophysics Data System (ADS)

    Land, Walker H., Jr.; Anderson, Frances; Smith, Tom; Fahlbusch, Stephen; Choma, Robert; Wong, Lut

    2005-04-01

    Achieving consistent and correct database cases is crucial to the correct evaluation of any computer-assisted diagnostic (CAD) paradigm. This paper describes the application of artificial intelligence (AI), knowledge engineering (KE) and knowledge representation (KR) to a data set of ~2500 cases from six separate hospitals, with the objective of removing/reducing inconsistent outlier data. Several support vector machine (SVM) kernels were used to measure diagnostic performance of the original and a "cleaned" data set. Specifically, KE and ER principles were applied to the two data sets which were re-examined with respect to the environment and agents. One data set was found to contain 25 non-characterizable sets. The other data set contained 180 non-characterizable sets. CAD system performance was measured with both the original and "cleaned" data sets using two SVM kernels as well as a multivariate probabilistic neural network (PNN). Results demonstrated: (i) a 10% average improvement in overall Az and (ii) approximately a 50% average improvement in partial Az.

  16. Knowledge Representation for Decision Making Agents

    DTIC Science & Technology

    2013-07-15

    knowledge map. This knowledge map is a dictionary data structure called tmap in the code. It represents a network of locations with a number [0,1...fillRandom(): Informed initial tmap distribution (randomly generated per node) with belief one. • initialBelief = 3 uses fillCenter(): normal...triggered on AllMyFMsHaveBeenInitialized. 2. Executes main.py • Initializes knowledge map labeled tmap . • Calls initialize search() – resets distanceTot and

  17. MediaNet: a multimedia information network for knowledge representation

    NASA Astrophysics Data System (ADS)

    Benitez, Ana B.; Smith, John R.; Chang, Shih-Fu

    2000-10-01

    In this paper, we present MediaNet, which is a knowledge representation framework that uses multimedia content for representing semantic and perceptual information. The main components of MediaNet include conceptual entities, which correspond to real world objects, and relationships among concepts. MediaNet allows the concepts and relationships to be defined or exemplified by multimedia content such as images, video, audio, graphics, and text. MediaNet models the traditional relationship types such as generalization and aggregation but adds additional functionality by modeling perceptual relationships based on feature similarity. For example, MediaNet allows a concept such as car to be defined as a type of a transportation vehicle, but which is further defined and illustrated through example images, videos and sounds of cars. In constructing the MediaNet framework, we have built on the basic principles of semiotics and semantic networks in addition to utilizing the audio-visual content description framework being developed as part of the MPEG-7 multimedia content description standard. By integrating both conceptual and perceptual representations of knowledge, MediaNet has potential to impact a broad range of applications that deal with multimedia content at the semantic and perceptual levels. In particular, we have found that MediaNet can improve the performance of multimedia retrieval applications by using query expansion, refinement and translation across multiple content modalities. In this paper, we report on experiments that use MediaNet in searching for images. We construct the MediaNet knowledge base using both WordNet and an image network built from multiple example images and extracted color and texture descriptors. Initial experimental results demonstrate improved retrieval effectiveness using MediaNet in a content-based retrieval system.

  18. Conceptual Hierarchies in a Flat Attractor Network

    PubMed Central

    O’Connor, Christopher M.; Cree, George S.; McRae, Ken

    2009-01-01

    The structure of people’s conceptual knowledge of concrete nouns has traditionally been viewed as hierarchical (Collins & Quillian, 1969). For example, superordinate concepts (vegetable) are assumed to reside at a higher level than basic-level concepts (carrot). A feature-based attractor network with a single layer of semantic features developed representations of both basic-level and superordinate concepts. No hierarchical structure was built into the network. In Experiment and Simulation 1, the graded structure of categories (typicality ratings) is accounted for by the flat attractor-network. Experiment and Simulation 2 show that, as with basic-level concepts, such a network predicts feature verification latencies for superordinate concepts (vegetable ). In Experiment and Simulation 3, counterintuitive results regarding the temporal dynamics of similarity in semantic priming are explained by the model. By treating both types of concepts the same in terms of representation, learning, and computations, the model provides new insights into semantic memory. PMID:19543434

  19. Integration of object-oriented knowledge representation with the CLIPS rule based system

    NASA Technical Reports Server (NTRS)

    Logie, David S.; Kamil, Hasan

    1990-01-01

    The paper describes a portion of the work aimed at developing an integrated, knowledge based environment for the development of engineering-oriented applications. An Object Representation Language (ORL) was implemented in C++ which is used to build and modify an object-oriented knowledge base. The ORL was designed in such a way so as to be easily integrated with other representation schemes that could effectively reason with the object base. Specifically, the integration of the ORL with the rule based system C Language Production Systems (CLIPS), developed at the NASA Johnson Space Center, will be discussed. The object-oriented knowledge representation provides a natural means of representing problem data as a collection of related objects. Objects are comprised of descriptive properties and interrelationships. The object-oriented model promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects. Data is inherited through an object network via the relationship links. Together, the two schemes complement each other in that the object-oriented approach efficiently handles problem data while the rule based knowledge is used to simulate the reasoning process. Alone, the object based knowledge is little more than an object-oriented data storage scheme; however, the CLIPS inference engine adds the mechanism to directly and automatically reason with that knowledge. In this hybrid scheme, the expert system dynamically queries for data and can modify the object base with complete access to all the functionality of the ORL from rules.

  20. A Non-Cognitive Formal Approach to Knowledge Representation in Artificial Intelligence.

    DTIC Science & Technology

    1986-06-01

    example, Duda and others translated production rules into a partitioned semantic network (73). Representations were also translated into production...153. Berlin: Springer-Verlag, 1982. 38. Blikle, Andrzej . "Equational Languages," Information and Control, 21: 134-147 (September 1972). 285 39. Ezawa...Conference on Artificial Intelligence, IJCAI-75. 115-121. William Kaufmann, Inc., Los Altos CA, 1975. 73. Duda , Richard 0. and others. "Semantic

  1. Disentangling representations of shape and action components in the tool network.

    PubMed

    Wang, Xiaoying; Zhuang, Tonghe; Shen, Jiasi; Bi, Yanchao

    2018-05-30

    Shape and how they should be used are two key components of our knowledge about tools. Viewing tools preferentially activated a frontoparietal and occipitotemporal network, with dorsal regions implicated in computation of tool-related actions and ventral areas in shape representation. As shape and manners of manipulation are highly correlated for daily tools, whether they are independently represented in different regions remains inconclusive. In the current study, we collected fMRI data when participants viewed blocks of pictures of four daily tools (i.e., paintbrush, corkscrew, screwdriver, razor) where shape and action (manner of manipulation for functional use) were orthogonally manipulated, to tease apart these two dimensions. Behavioral similarity judgments tapping on object shape and finer aspects of actions (i.e., manners of motion, magnitude of arm movement, configuration of hand) were also collected to further disentangle the representation of object shape and different action components. Information analysis and representational similarity analysis were conducted on regional neural activation patterns of the tool-preferring network. In both analyses, the bilateral lateral occipitotemporal cortex showed robust shape representations but could not effectively distinguish between tool-use actions. The frontal and precentral regions represented kinematic action components, whereas the left parietal region (in information analyses) exhibited coding of both shape and tool-use action. By teasing apart shape and action components, we found both dissociation and association of them within the tool network. Taken together, our study disentangles representations for object shape from finer tool-use action components in the tool network, revealing the potential dissociable roles different tool-preferring regions play in tool processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. All for one but not one for all: how multiple number representations are recruited in one numerical task.

    PubMed

    Wood, Guilherme; Nuerk, Hans-Christoph; Moeller, Korbinian; Geppert, Barbara; Schnitker, Ralph; Weber, Jochen; Willmes, Klaus

    2008-01-02

    Number processing recruits a complex network of multiple numerical representations. Usually the components of this network are examined in a between-task approach with the disadvantage of relying upon different instructions, tasks, and inhomogeneous stimulus sets across different studies. A within-task approach may avoid these disadvantages and access involved numerical representations more specifically. In the present study we employed a within-task approach to investigate numerical representations activated in the number bisection task (NBT) using parametric rapid event-related fMRI. Participants were to judge whether the central number of a triplet was also its arithmetic mean (e.g. 23_26_29) or not (e.g. 23_25_29). Activation in the left inferior parietal cortex was associated with the deployment of arithmetic fact knowledge, while activation of the intraparietal cortex indicated more intense magnitude processing, instrumental aspects of calculation and integration of the base-10 structure of two-digit numbers. These results replicate evidence from the literature. Furthermore, activation in the dorsolateral and ventrolateral prefrontal cortex revealed mechanisms of feature monitoring and inhibition as well as allocation of cognitive resources recruited to solve a specific triplet. We conclude that the network of numerical representations should rather be studied in a within-task approach than in varying between-task approaches.

  3. Ciência & Saúde Coletiva: scientific production analysis and collaborative research networks.

    PubMed

    Conner, Norma; Provedel, Attilio; Maciel, Ethel Leonor Noia

    2017-03-01

    The purpose of this metric and descriptive study was to identify the most productive authors and their collaborative research networks from articles published in Ciência & Saúde Coletiva between, 2005, and 2014. Authors meeting the cutoff criteria of at least 10 articles were considered the most productive authors. VOSviewer and Network Workbench technologies were applied for visual representations of collaborative research networks involving the most productive authors in the period. Initial analysis recovered 2511 distinct articles, with 8920 total authors with an average of 3.55 authors per article. Author analysis revealed 6288 distinct authors, 24 of these authors were identified as the most productive. These 24 authors generated 287 articles with an average of 4.31 authors per article, and represented 8 separate collaborative partnerships, the largest of which had 14 authors, indicating a significant degree of collaboration among these authors. This analysis provides a visual representation of networks of knowledge development in public health and demonstrates the usefulness of VOSviewer and Network Workbench technologies in future research.

  4. New knowledge network evaluation method for design rationale management

    NASA Astrophysics Data System (ADS)

    Jing, Shikai; Zhan, Hongfei; Liu, Jihong; Wang, Kuan; Jiang, Hao; Zhou, Jingtao

    2015-01-01

    Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process for future computer-aided DR applications, a prerequisite is to provide the measure for the DR knowledge. In this paper, a new knowledge network evaluation method for DR management is presented. The method characterizes the DR knowledge value from four perspectives, namely, the design rationale structure scale, association knowledge and reasoning ability, degree of design justification support and degree of knowledge representation conciseness. The DR knowledge comprehensive value is also measured by the proposed method. To validate the proposed method, different style of DR knowledge network and the performance of the proposed measure are discussed. The evaluation method has been applied in two realistic design cases and compared with the structural measures. The research proposes the DR knowledge evaluation method which can provide object metric and selection basis for the DR knowledge reuse during the product design process. In addition, the method is proved to be more effective guidance and support for the application and management of DR knowledge.

  5. Prefrontal Cortex Networks Shift from External to Internal Modes during Learning.

    PubMed

    Brincat, Scott L; Miller, Earl K

    2016-09-14

    As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with "internal" memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)-regions critical for sensory associations-of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11-27 Hz) oscillatory power and synchrony associated with "top-down" or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired "top-down" knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. Copyright © 2016 the authors 0270-6474/16/369739-16$15.00/0.

  6. Prefrontal Cortex Networks Shift from External to Internal Modes during Learning

    PubMed Central

    Brincat, Scott L.

    2016-01-01

    As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with “internal” memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)—regions critical for sensory associations—of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11–27 Hz) oscillatory power and synchrony associated with “top-down” or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. SIGNIFICANCE STATEMENT As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired “top-down” knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. PMID:27629722

  7. Learning representation hierarchies by sharing visual features: a computational investigation of Persian character recognition with unsupervised deep learning.

    PubMed

    Sadeghi, Zahra; Testolin, Alberto

    2017-08-01

    In humans, efficient recognition of written symbols is thought to rely on a hierarchical processing system, where simple features are progressively combined into more abstract, high-level representations. Here, we present a computational model of Persian character recognition based on deep belief networks, where increasingly more complex visual features emerge in a completely unsupervised manner by fitting a hierarchical generative model to the sensory data. Crucially, high-level internal representations emerging from unsupervised deep learning can be easily read out by a linear classifier, achieving state-of-the-art recognition accuracy. Furthermore, we tested the hypothesis that handwritten digits and letters share many common visual features: A generative model that captures the statistical structure of the letters distribution should therefore also support the recognition of written digits. To this aim, deep networks trained on Persian letters were used to build high-level representations of Persian digits, which were indeed read out with high accuracy. Our simulations show that complex visual features, such as those mediating the identification of Persian symbols, can emerge from unsupervised learning in multilayered neural networks and can support knowledge transfer across related domains.

  8. Bayesian Networks for Modeling Dredging Decisions

    DTIC Science & Technology

    2011-10-01

    change scenarios. Arctic Expert elicitation Netica Bacon et al . 2002 Identify factors that might lead to a change in land use from farming to...tree) algorithms developed by Lauritzen and Spiegelhalter (1988) and Jensen et al . (1990). Statistical inference is simply the process of...causality when constructing a Bayesian network (Kjaerulff and Madsen 2008, Darwiche 2009, Marcot et al . 2006). A knowledge representation approach is the

  9. A new network representation of the metabolism to detect chemical transformation modules.

    PubMed

    Sorokina, Maria; Medigue, Claudine; Vallenet, David

    2015-11-14

    Metabolism is generally modeled by directed networks where nodes represent reactions and/or metabolites. In order to explore metabolic pathway conservation and divergence among organisms, previous studies were based on graph alignment to find similar pathways. Few years ago, the concept of chemical transformation modules, also called reaction modules, was introduced and correspond to sequences of chemical transformations which are conserved in metabolism. We propose here a novel graph representation of the metabolic network where reactions sharing a same chemical transformation type are grouped in Reaction Molecular Signatures (RMS). RMS were automatically computed for all reactions and encode changes in atoms and bonds. A reaction network containing all available metabolic knowledge was then reduced by an aggregation of reaction nodes and edges to obtain a RMS network. Paths in this network were explored and a substantial number of conserved chemical transformation modules was detected. Furthermore, this graph-based formalism allows us to define several path scores reflecting different biological conservation meanings. These scores are significantly higher for paths corresponding to known metabolic pathways and were used conjointly to build association rules that should predict metabolic pathway types like biosynthesis or degradation. This representation of metabolism in a RMS network offers new insights to capture relevant metabolic contexts. Furthermore, along with genomic context methods, it should improve the detection of gene clusters corresponding to new metabolic pathways.

  10. Knowledge Discovery in Spectral Data by Means of Complex Networks

    PubMed Central

    Zanin, Massimiliano; Papo, David; Solís, José Luis González; Espinosa, Juan Carlos Martínez; Frausto-Reyes, Claudio; Anda, Pascual Palomares; Sevilla-Escoboza, Ricardo; Boccaletti, Stefano; Menasalvas, Ernestina; Sousa, Pedro

    2013-01-01

    In the last decade, complex networks have widely been applied to the study of many natural and man-made systems, and to the extraction of meaningful information from the interaction structures created by genes and proteins. Nevertheless, less attention has been devoted to metabonomics, due to the lack of a natural network representation of spectral data. Here we define a technique for reconstructing networks from spectral data sets, where nodes represent spectral bins, and pairs of them are connected when their intensities follow a pattern associated with a disease. The structural analysis of the resulting network can then be used to feed standard data-mining algorithms, for instance for the classification of new (unlabeled) subjects. Furthermore, we show how the structure of the network is resilient to the presence of external additive noise, and how it can be used to extract relevant knowledge about the development of the disease. PMID:24957895

  11. Knowledge discovery in spectral data by means of complex networks.

    PubMed

    Zanin, Massimiliano; Papo, David; Solís, José Luis González; Espinosa, Juan Carlos Martínez; Frausto-Reyes, Claudio; Anda, Pascual Palomares; Sevilla-Escoboza, Ricardo; Jaimes-Reategui, Rider; Boccaletti, Stefano; Menasalvas, Ernestina; Sousa, Pedro

    2013-03-11

    In the last decade, complex networks have widely been applied to the study of many natural and man-made systems, and to the extraction of meaningful information from the interaction structures created by genes and proteins. Nevertheless, less attention has been devoted to metabonomics, due to the lack of a natural network representation of spectral data. Here we define a technique for reconstructing networks from spectral data sets, where nodes represent spectral bins, and pairs of them are connected when their intensities follow a pattern associated with a disease. The structural analysis of the resulting network can then be used to feed standard data-mining algorithms, for instance for the classification of new (unlabeled) subjects. Furthermore, we show how the structure of the network is resilient to the presence of external additive noise, and how it can be used to extract relevant knowledge about the development of the disease.

  12. Learning target masks in infrared linescan imagery

    NASA Astrophysics Data System (ADS)

    Fechner, Thomas; Rockinger, Oliver; Vogler, Axel; Knappe, Peter

    1997-04-01

    In this paper we propose a neural network based method for the automatic detection of ground targets in airborne infrared linescan imagery. Instead of using a dedicated feature extraction stage followed by a classification procedure, we propose the following three step scheme: In the first step of the recognition process, the input image is decomposed into its pyramid representation, thus obtaining a multiresolution signal representation. At the lowest three levels of the Laplacian pyramid a neural network filter of moderate size is trained to indicate the target location. The last step consists of a fusion process of the several neural network filters to obtain the final result. To perform this fusion we use a belief network to combine the various filter outputs in a statistical meaningful way. In addition, the belief network allows the integration of further knowledge about the image domain. By applying this multiresolution recognition scheme, we obtain a nearly scale- and rotational invariant target recognition with a significantly decreased false alarm rate compared with a single resolution target recognition scheme.

  13. Surveying Medieval Archaeology: a New Form for Harris Paradigm Linking Photogrammetry and Temporal Relations

    NASA Astrophysics Data System (ADS)

    Drap, P.; Papini, O.; Pruno, E.; Nucciotti, M.; Vannini, G.

    2017-02-01

    The paper presents some reflexions concerning an interdisciplinary project between Medieval Archaeologists from the University of Florence (Italy) and ICT researchers from CNRS LSIS of Marseille (France), aiming towards a connection between 3D spatial representation and archaeological knowledge. It is well known that Laser Scanner, Photogrammetry and Computer Vision are very attractive tools for archaeologists, although the integration of representation of space and representation of archaeological time has not yet found a methodological standard of reference. We try to develop an integrated system for archaeological 3D survey and all other types of archaeological data and knowledge through integrating observable (material) and non-graphic (interpretive) data. Survey plays a central role, since it is both a metric representation of the archaeological site and, to a wider extent, an interpretation of it (being also a common basis for communication between the 2 teams). More specifically 3D survey is crucial, allowing archaeologists to connect actual spatial assets to the stratigraphic formation processes (i.e. to the archaeological time) and to translate spatial observations into historical interpretation of the site. We propose a common formalism for describing photogrammetrical survey and archaeological knowledge stemming from ontologies: Indeed, ontologies are fully used to model and store 3D data and archaeological knowledge. Xe equip this formalism with a qualitative representation of time. Stratigraphic analyses (both of excavated deposits and of upstanding structures) are closely related to E. C. Harris theory of "Stratigraphic Unit" ("US" from now on). Every US is connected to the others by geometric, topological and, eventually, temporal links, and are recorded by the 3D photogrammetric survey. However, the limitations of the Harris Matrix approach lead to use another representation formalism for stratigraphic relationships, namely Qualitative Constraints Networks (QCN) successfully used in the domain of knowledge representation and reasoning in artificial intelligence for representing temporal relations.

  14. Mapping university students' epistemic framing of computational physics using network analysis

    NASA Astrophysics Data System (ADS)

    Bodin, Madelen

    2012-06-01

    Solving physics problem in university physics education using a computational approach requires knowledge and skills in several domains, for example, physics, mathematics, programming, and modeling. These competences are in turn related to students’ beliefs about the domains as well as about learning. These knowledge and beliefs components are referred to here as epistemic elements, which together represent the students’ epistemic framing of the situation. The purpose of this study was to investigate university physics students’ epistemic framing when solving and visualizing a physics problem using a particle-spring model system. Students’ epistemic framings are analyzed before and after the task using a network analysis approach on interview transcripts, producing visual representations as epistemic networks. The results show that students change their epistemic framing from a modeling task, with expectancies about learning programming, to a physics task, in which they are challenged to use physics principles and conservation laws in order to troubleshoot and understand their simulations. This implies that the task, even though it is not introducing any new physics, helps the students to develop a more coherent view of the importance of using physics principles in problem solving. The network analysis method used in this study is shown to give intelligible representations of the students’ epistemic framing and is proposed as a useful method of analysis of textual data.

  15. Image understanding systems based on the unifying representation of perceptual and conceptual information and the solution of mid-level and high-level vision problems

    NASA Astrophysics Data System (ADS)

    Kuvychko, Igor

    2001-10-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.

  16. Emergent latent symbol systems in recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Monner, Derek; Reggia, James A.

    2012-12-01

    Fodor and Pylyshyn [(1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28(1-2), 3-71] famously argued that neural networks cannot behave systematically short of implementing a combinatorial symbol system. A recent response from Frank et al. [(2009). Connectionist semantic systematicity. Cognition, 110(3), 358-379] claimed to have trained a neural network to behave systematically without implementing a symbol system and without any in-built predisposition towards combinatorial representations. We believe systems like theirs may in fact implement a symbol system on a deeper and more interesting level: one where the symbols are latent - not visible at the level of network structure. In order to illustrate this possibility, we demonstrate our own recurrent neural network that learns to understand sentence-level language in terms of a scene. We demonstrate our model's learned understanding by testing it on novel sentences and scenes. By paring down our model into an architecturally minimal version, we demonstrate how it supports combinatorial computation over distributed representations by using the associative memory operations of Vector Symbolic Architectures. Knowledge of the model's memory scheme gives us tools to explain its errors and construct superior future models. We show how the model designs and manipulates a latent symbol system in which the combinatorial symbols are patterns of activation distributed across the layers of a neural network, instantiating a hybrid of classical symbolic and connectionist representations that combines advantages of both.

  17. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3.

    PubMed

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  18. Object segmentation and recovery via neural oscillators implementing the similarity and prior knowledge gestalt rules.

    PubMed

    Ursino, Mauro; Magosso, Elisa; La Cara, Giuseppe-Emiliano; Cuppini, Cristiano

    2006-09-01

    Object recognition requires the solution of the binding and segmentation problems, i.e., grouping different features to achieve a coherent representation. Synchronization of neural activity in the gamma-band, associated with gestalt perception, has often been proposed as a putative mechanism to solve these problems, not only as to low-level processing, but also in higher cortical functions. In the present work, a network of Wilson-Cowan oscillators is used to segment simultaneous objects, and recover an object from partial or corrupted information, by implementing two gestalt rules: similarity and prior knowledge. The network consists of H different areas, each devoted to representation of a particular feature of the object, according to a topological organization. The similarity law is realized via lateral intra-area connections, arranged as a "Mexican-hat". Prior knowledge is realized via inter-area connections, which link properties belonging to a previously memorized object. A global inhibitor allows segmentation of several objects avoiding interference. Simulation results, performed using three simultaneous input objects, show that the network is able to detect an object even in difficult conditions (i.e., when some features are absent or shifted with respect to the original one). Moreover, the trade-off between sensitivity (capacity to detect true positives) and specificity (capacity to reject false positives) can be controlled acting on the extension of lateral synapses (i.e., on the level of accepted similarity). Finally, the network can also deal with correlated objects, i.e., objects which have some common features. Simulations performed using a different number of objects (2, 3, 4 or 5) suggest that the network is able to segment and recall up to four objects, but the oscillation frequency must increase, the lower the number of objects simultaneously present. The model, although quite simpler compared with neurophysiology, may represent a theoretical framework for the analysis of the relationships between object representation, memory, learning, and gamma-band activity. In particular, it extends previous studies on autoassociative memory since it exploits not only oscillatory dynamics, but also a topological organization of features.

  19. Learning disease relationships from clinical drug trials.

    PubMed

    Haslam, Bryan; Perez-Breva, Luis

    2017-01-01

    Our objective is to test the limits of the assumption that better learning from data in medicine requires more granular data. We hypothesize that clinical trial metadata contains latent scientific, clinical, and regulatory expert knowledge that can be accessed to draw conclusions about the underlying biology of diseases. We seek to demonstrate that this latent information can be uncovered from the whole body of clinical trials. We extract free-text metadata from 93 654 clinical drug trials and introduce a representation that allows us to compare different trials. We then construct a network of diseases using only the trial metadata. We view each trial as the summation of expert knowledge of biological mechanisms and medical evidence linking a disease to a drug believed to modulate the pathways of that disease. Our network representation allows us to visualize disease relationships based on this underlying information. Our disease network shows surprising agreement with another disease network based on genetic data and on the Medical Subject Headings (MeSH) taxonomy, yet also contains unique disease similarities. The agreement of our results with other sources indicates that our premise regarding latent expert knowledge holds. The disease relationships unique to our network may be used to generate hypotheses for future biological and clinical research as well as drug repurposing and design. Our results provide an example of using experimental data on humans to generate biologically useful information and point to a set of new and promising strategies to link clinical outcomes data back to biological research. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Randomizing world trade. II. A weighted network analysis

    NASA Astrophysics Data System (ADS)

    Squartini, Tiziano; Fagiolo, Giorgio; Garlaschelli, Diego

    2011-10-01

    Based on the misleading expectation that weighted network properties always offer a more complete description than purely topological ones, current economic models of the International Trade Network (ITN) generally aim at explaining local weighted properties, not local binary ones. Here we complement our analysis of the binary projections of the ITN by considering its weighted representations. We show that, unlike the binary case, all possible weighted representations of the ITN (directed and undirected, aggregated and disaggregated) cannot be traced back to local country-specific properties, which are therefore of limited informativeness. Our two papers show that traditional macroeconomic approaches systematically fail to capture the key properties of the ITN. In the binary case, they do not focus on the degree sequence and hence cannot characterize or replicate higher-order properties. In the weighted case, they generally focus on the strength sequence, but the knowledge of the latter is not enough in order to understand or reproduce indirect effects.

  1. Strong systematicity through sensorimotor conceptual grounding: an unsupervised, developmental approach to connectionist sentence processing

    NASA Astrophysics Data System (ADS)

    Jansen, Peter A.; Watter, Scott

    2012-03-01

    Connectionist language modelling typically has difficulty with syntactic systematicity, or the ability to generalise language learning to untrained sentences. This work develops an unsupervised connectionist model of infant grammar learning. Following the semantic boostrapping hypothesis, the network distils word category using a developmentally plausible infant-scale database of grounded sensorimotor conceptual representations, as well as a biologically plausible semantic co-occurrence activation function. The network then uses this knowledge to acquire an early benchmark clausal grammar using correlational learning, and further acquires separate conceptual and grammatical category representations. The network displays strongly systematic behaviour indicative of the general acquisition of the combinatorial systematicity present in the grounded infant-scale language stream, outperforms previous contemporary models that contain primarily noun and verb word categories, and successfully generalises broadly to novel untrained sensorimotor grounded sentences composed of unfamiliar nouns and verbs. Limitations as well as implications to later grammar learning are discussed.

  2. Corpus Linguistics, Network Analysis and Co-Occurrence Matrices

    ERIC Educational Resources Information Center

    Stuart, Keith; Botella, Ana

    2009-01-01

    This article describes research undertaken in order to design a methodology for the reticular representation of knowledge of a specific discourse community. To achieve this goal, a representative corpus of the scientific production of the members of this discourse community (Universidad Politecnica de Valencia, UPV) was created. This article…

  3. A Bayesian network approach to knowledge integration and representation of farm irrigation: 1. Model development

    NASA Astrophysics Data System (ADS)

    Wang, Q. J.; Robertson, D. E.; Haines, C. L.

    2009-02-01

    Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.

  4. Social representations of electricity network technologies: exploring processes of anchoring and objectification through the use of visual research methods.

    PubMed

    Devine-Wright, Hannah; Devine-Wright, Patrick

    2009-06-01

    The aim of this study was to explore everyday thinking about the UK electricity network, in light of government policy to increase the generation of electricity from renewable energy sources. Existing literature on public perceptions of electricity network technologies was broadened by adopting a more socially embedded conception of the construction of knowledge using the theory of social representations (SRT) to explore symbolic associations with network technologies. Drawing and association tasks were administered within nine discussion groups held in two places: a Scottish town where significant upgrades to the local transmission network were planned and an English city with no such plans. Our results illustrate the ways in which network technologies, such as high voltage (HV) pylons, are objectified in talk and drawings. These invoked positive as well as negative symbolic and affective associations, both at the level of specific pylons, and the 'National Grid' as a whole and are anchored in understanding of other networks such as mobile telecommunications. We conclude that visual methods are especially useful for exploring beliefs about technologies that are widespread, proximal to our everyday experience but nevertheless unfamiliar topics of everyday conversation.

  5. Active vision and image/video understanding with decision structures based on the network-symbolic models

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2003-08-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. The ability of human brain to emulate knowledge structures in the form of networks-symbolic models is found. And that means an important shift of paradigm in our knowledge about brain from neural networks to "cortical software". Symbols, predicates and grammars naturally emerge in such active multilevel hierarchical networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type decision structure created via multilevel hierarchical compression of visual information. Mid-level vision processes like clustering, perceptual grouping, separation of figure from ground, are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models works similar to frames and agents, combines learning, classification, analogy together with higher-level model-based reasoning into a single framework. Such models do not require supercomputers. Based on such principles, and using methods of Computational intelligence, an Image Understanding system can convert images into the network-symbolic knowledge models, and effectively resolve uncertainty and ambiguity, providing unifying representation for perception and cognition. That allows creating new intelligent computer vision systems for robotic and defense industries.

  6. Top-down attention based on object representation and incremental memory for knowledge building and inference.

    PubMed

    Kim, Bumhwi; Ban, Sang-Woo; Lee, Minho

    2013-10-01

    Humans can efficiently perceive arbitrary visual objects based on an incremental learning mechanism with selective attention. This paper proposes a new task specific top-down attention model to locate a target object based on its form and color representation along with a bottom-up saliency based on relativity of primitive visual features and some memory modules. In the proposed model top-down bias signals corresponding to the target form and color features are generated, which draw the preferential attention to the desired object by the proposed selective attention model in concomitance with the bottom-up saliency process. The object form and color representation and memory modules have an incremental learning mechanism together with a proper object feature representation scheme. The proposed model includes a Growing Fuzzy Topology Adaptive Resonance Theory (GFTART) network which plays two important roles in object color and form biased attention; one is to incrementally learn and memorize color and form features of various objects, and the other is to generate a top-down bias signal to localize a target object by focusing on the candidate local areas. Moreover, the GFTART network can be utilized for knowledge inference which enables the perception of new unknown objects on the basis of the object form and color features stored in the memory during training. Experimental results show that the proposed model is successful in focusing on the specified target objects, in addition to the incremental representation and memorization of various objects in natural scenes. In addition, the proposed model properly infers new unknown objects based on the form and color features of previously trained objects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation

    PubMed Central

    Kitson, Alison; Brook, Alan; Harvey, Gill; Jordan, Zoe; Marshall, Rhianon; O’Shea, Rebekah; Wilson, David

    2018-01-01

    Many representations of the movement of healthcare knowledge through society exist, and multiple models for the translation of evidence into policy and practice have been articulated. Most are linear or cyclical and very few come close to reflecting the dense and intricate relationships, systems and politics of organizations and the processes required to enact sustainable improvements. We illustrate how using complexity and network concepts can better inform knowledge translation (KT) and argue that changing the way we think and talk about KT could enhance the creation and movement of knowledge throughout those systems needing to develop and utilise it. From our theoretical refinement, we propose that KT is a complex network composed of five interdependent sub-networks, or clusters, of key processes (problem identification [PI], knowledge creation [KC], knowledge synthesis [KS], implementation [I], and evaluation [E]) that interact dynamically in different ways at different times across one or more sectors (community; health; government; education; research for example). We call this the KT Complexity Network, defined as a network that optimises the effective, appropriate and timely creation and movement of knowledge to those who need it in order to improve what they do. Activation within and throughout any one of these processes and systems depends upon the agents promoting the change, successfully working across and between multiple systems and clusters. The case is presented for moving to a way of thinking about KT using complexity and network concepts. This extends the thinking that is developing around integrated KT approaches. There are a number of policy and practice implications that need to be considered in light of this shift in thinking. PMID:29524952

  8. Evidence of semantic processing impairments in behavioural variant frontotemporal dementia and Parkinson's disease.

    PubMed

    Cousins, Katheryn A Q; Grossman, Murray

    2017-12-01

    Category-specific impairments caused by brain damage can provide important insights into how semantic concepts are organized in the brain. Recent research has demonstrated that disease to sensory and motor cortices can impair perceptual feature knowledge important to the representation of semantic concepts. This evidence supports the grounded cognition theory of semantics, the view that lexical knowledge is partially grounded in perceptual experience and that sensory and motor regions support semantic representations. Less well understood, however, is how heteromodal semantic hubs work to integrate and process semantic information. Although the majority of semantic research to date has focused on how sensory cortical areas are important for the representation of semantic features, new research explores how semantic memory is affected by neurodegeneration in regions important for semantic processing. Here, we review studies that demonstrate impairments to abstract noun knowledge in behavioural variant frontotemporal degeneration (bvFTD) and to action verb knowledge in Parkinson's disease, and discuss how these deficits relate to disease of the semantic selection network. Findings demonstrate that semantic selection processes are supported by the left inferior frontal gyrus (LIFG) and basal ganglia, and that disease to these regions in bvFTD and Parkinson's disease can lead to categorical impairments for abstract nouns and action verbs, respectively.

  9. Ologs: a categorical framework for knowledge representation.

    PubMed

    Spivak, David I; Kent, Robert E

    2012-01-01

    In this paper we introduce the olog, or ontology log, a category-theoretic model for knowledge representation (KR). Grounded in formal mathematics, ologs can be rigorously formulated and cross-compared in ways that other KR models (such as semantic networks) cannot. An olog is similar to a relational database schema; in fact an olog can serve as a data repository if desired. Unlike database schemas, which are generally difficult to create or modify, ologs are designed to be user-friendly enough that authoring or reconfiguring an olog is a matter of course rather than a difficult chore. It is hoped that learning to author ologs is much simpler than learning a database definition language, despite their similarity. We describe ologs carefully and illustrate with many examples. As an application we show that any primitive recursive function can be described by an olog. We also show that ologs can be aligned or connected together into a larger network using functors. The various methods of information flow and institutions can then be used to integrate local and global world-views. We finish by providing several different avenues for future research.

  10. Ologs: A Categorical Framework for Knowledge Representation

    PubMed Central

    Spivak, David I.; Kent, Robert E.

    2012-01-01

    In this paper we introduce the olog, or ontology log, a category-theoretic model for knowledge representation (KR). Grounded in formal mathematics, ologs can be rigorously formulated and cross-compared in ways that other KR models (such as semantic networks) cannot. An olog is similar to a relational database schema; in fact an olog can serve as a data repository if desired. Unlike database schemas, which are generally difficult to create or modify, ologs are designed to be user-friendly enough that authoring or reconfiguring an olog is a matter of course rather than a difficult chore. It is hoped that learning to author ologs is much simpler than learning a database definition language, despite their similarity. We describe ologs carefully and illustrate with many examples. As an application we show that any primitive recursive function can be described by an olog. We also show that ologs can be aligned or connected together into a larger network using functors. The various methods of information flow and institutions can then be used to integrate local and global world-views. We finish by providing several different avenues for future research. PMID:22303434

  11. Time-related patient data retrieval for the case studies from the pharmacogenomics research network

    PubMed Central

    Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G.

    2012-01-01

    There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users’ own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities. PMID:23076712

  12. Time-related patient data retrieval for the case studies from the pharmacogenomics research network.

    PubMed

    Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G

    2012-11-01

    There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users' own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities.

  13. Identification of input variables for feature based artificial neural networks-saccade detection in EOG recordings.

    PubMed

    Tigges, P; Kathmann, N; Engel, R R

    1997-07-01

    Though artificial neural networks (ANN) are excellent tools for pattern recognition problems when signal to noise ratio is low, the identification of decision relevant features for ANN input data is still a crucial issue. The experience of the ANN designer and the existing knowledge and understanding of the problem seem to be the only links for a specific construction. In the present study a backpropagation ANN based on modified raw data inputs showed encouraging results. Investigating the specific influences of prototypical input patterns on a specially designed ANN led to a new sparse and efficient input data presentation. This data coding obtained by a semiautomatic procedure combining existing expert knowledge and the internal representation structures of the raw data based ANN yielded a list of feature vectors, each representing the relevant information for saccade identification. The feature based ANN produced a reduction of the error rate of nearly 40% compared with the raw data ANN. An overall correct classification of 92% of so far unknown data was realized. The proposed method of extracting internal ANN knowledge for the production of a better input data representation is not restricted to EOG recordings, and could be used in various fields of signal analysis.

  14. Temporal abstraction and temporal Bayesian networks in clinical domains: a survey.

    PubMed

    Orphanou, Kalia; Stassopoulou, Athena; Keravnou, Elpida

    2014-03-01

    Temporal abstraction (TA) of clinical data aims to abstract and interpret clinical data into meaningful higher-level interval concepts. Abstracted concepts are used for diagnostic, prediction and therapy planning purposes. On the other hand, temporal Bayesian networks (TBNs) are temporal extensions of the known probabilistic graphical models, Bayesian networks. TBNs can represent temporal relationships between events and their state changes, or the evolution of a process, through time. This paper offers a survey on techniques/methods from these two areas that were used independently in many clinical domains (e.g. diabetes, hepatitis, cancer) for various clinical tasks (e.g. diagnosis, prognosis). A main objective of this survey, in addition to presenting the key aspects of TA and TBNs, is to point out important benefits from a potential integration of TA and TBNs in medical domains and tasks. The motivation for integrating these two areas is their complementary function: TA provides clinicians with high level views of data while TBNs serve as a knowledge representation and reasoning tool under uncertainty, which is inherent in all clinical tasks. Key publications from these two areas of relevance to clinical systems, mainly circumscribed to the latest two decades, are reviewed and classified. TA techniques are compared on the basis of: (a) knowledge acquisition and representation for deriving TA concepts and (b) methodology for deriving basic and complex temporal abstractions. TBNs are compared on the basis of: (a) representation of time, (b) knowledge representation and acquisition, (c) inference methods and the computational demands of the network, and (d) their applications in medicine. The survey performs an extensive comparative analysis to illustrate the separate merits and limitations of various TA and TBN techniques used in clinical systems with the purpose of anticipating potential gains through an integration of the two techniques, thus leading to a unified methodology for clinical systems. The surveyed contributions are evaluated using frameworks of respective key features. In addition, for the evaluation of TBN methods, a unifying clinical domain (diabetes) is used. The main conclusion transpiring from this review is that techniques/methods from these two areas, that so far are being largely used independently of each other in clinical domains, could be effectively integrated in the context of medical decision-support systems. The anticipated key benefits of the perceived integration are: (a) during problem solving, the reasoning can be directed at different levels of temporal and/or conceptual abstractions since the nodes of the TBNs can be complex entities, temporally and structurally and (b) during model building, knowledge generated in the form of basic and/or complex abstractions, can be deployed in a TBN. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Taxonomy development and knowledge representation of nurses' personal cognitive artifacts.

    PubMed

    McLane, Sharon; Turley, James P

    2009-11-14

    Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.

  16. Self organising hypothesis networks: a new approach for representing and structuring SAR knowledge

    PubMed Central

    2014-01-01

    Background Combining different sources of knowledge to build improved structure activity relationship models is not easy owing to the variety of knowledge formats and the absence of a common framework to interoperate between learning techniques. Most of the current approaches address this problem by using consensus models that operate at the prediction level. We explore the possibility to directly combine these sources at the knowledge level, with the aim to harvest potentially increased synergy at an earlier stage. Our goal is to design a general methodology to facilitate knowledge discovery and produce accurate and interpretable models. Results To combine models at the knowledge level, we propose to decouple the learning phase from the knowledge application phase using a pivot representation (lingua franca) based on the concept of hypothesis. A hypothesis is a simple and interpretable knowledge unit. Regardless of its origin, knowledge is broken down into a collection of hypotheses. These hypotheses are subsequently organised into hierarchical network. This unification permits to combine different sources of knowledge into a common formalised framework. The approach allows us to create a synergistic system between different forms of knowledge and new algorithms can be applied to leverage this unified model. This first article focuses on the general principle of the Self Organising Hypothesis Network (SOHN) approach in the context of binary classification problems along with an illustrative application to the prediction of mutagenicity. Conclusion It is possible to represent knowledge in the unified form of a hypothesis network allowing interpretable predictions with performances comparable to mainstream machine learning techniques. This new approach offers the potential to combine knowledge from different sources into a common framework in which high level reasoning and meta-learning can be applied; these latter perspectives will be explored in future work. PMID:24959206

  17. Semantic Data Integration and Knowledge Management to Represent Biological Network Associations.

    PubMed

    Losko, Sascha; Heumann, Klaus

    2017-01-01

    The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data, including experimental data, originating from a multitude of "-omics" platforms, phenotype information, and clinical data. For bioinformatics, the challenge remains to structure this information so that scientists can identify relevant information, to integrate this information as specific "knowledge bases," and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation. Here we report on progress made in building a generic knowledge management environment capable of representing and mining both explicit and implicit knowledge and, thus, generating new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM™ Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.

  18. On the biological plausibility of grandmother cells: implications for neural network theories in psychology and neuroscience.

    PubMed

    Bowers, Jeffrey S

    2009-01-01

    A fundamental claim associated with parallel distributed processing (PDP) theories of cognition is that knowledge is coded in a distributed manner in mind and brain. This approach rejects the claim that knowledge is coded in a localist fashion, with words, objects, and simple concepts (e.g. "dog"), that is, coded with their own dedicated representations. One of the putative advantages of this approach is that the theories are biologically plausible. Indeed, advocates of the PDP approach often highlight the close parallels between distributed representations learned in connectionist models and neural coding in brain and often dismiss localist (grandmother cell) theories as biologically implausible. The author reviews a range a data that strongly challenge this claim and shows that localist models provide a better account of single-cell recording studies. The author also contrast local and alternative distributed coding schemes (sparse and coarse coding) and argues that common rejection of grandmother cell theories in neuroscience is due to a misunderstanding about how localist models behave. The author concludes that the localist representations embedded in theories of perception and cognition are consistent with neuroscience; biology only calls into question the distributed representations often learned in PDP models.

  19. Ontological Representation of Light Wave Camera Data to Support Vision-Based AmI

    PubMed Central

    Serrano, Miguel Ángel; Gómez-Romero, Juan; Patricio, Miguel Ángel; García, Jesús; Molina, José Manuel

    2012-01-01

    Recent advances in technologies for capturing video data have opened a vast amount of new application areas in visual sensor networks. Among them, the incorporation of light wave cameras on Ambient Intelligence (AmI) environments provides more accurate tracking capabilities for activity recognition. Although the performance of tracking algorithms has quickly improved, symbolic models used to represent the resulting knowledge have not yet been adapted to smart environments. This lack of representation does not allow to take advantage of the semantic quality of the information provided by new sensors. This paper advocates for the introduction of a part-based representational level in cognitive-based systems in order to accurately represent the novel sensors' knowledge. The paper also reviews the theoretical and practical issues in part-whole relationships proposing a specific taxonomy for computer vision approaches. General part-based patterns for human body and transitive part-based representation and inference are incorporated to an ontology-based previous framework to enhance scene interpretation in the area of video-based AmI. The advantages and new features of the model are demonstrated in a Social Signal Processing (SSP) application for the elaboration of live market researches.

  20. The Delta Connectome: A network-based framework for studying connectivity in river deltas

    NASA Astrophysics Data System (ADS)

    Passalacqua, Paola

    2017-01-01

    Many deltas, including the Mississippi River Delta, have been losing land at fast rates compromising the safety and sustainability of their ecosystems. Knowledge of delta vulnerability has raised global concern and stimulated active interdisciplinary research as deltas are densely populated landscapes, rich in agriculture, fisheries, oil and gas, and important means for navigation. There are many ways of looking at this problem which all contribute to a deeper understanding of the functioning of coastal systems. One aspect that has been overlooked thus far, yet fundamental for advancing delta science is connectivity, both physical (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). In this paper, I propose a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. After analyzing the classic network representation as a set of nodes (e.g., bifurcations and junctions or regions with distinct physical or statistical behavior) and links (e.g., channels), I show that from connectivity considerations the delta emerges as a leaky network that continuously exchanges fluxes of matter, energy, and information with its surroundings and evolves over time. I explore each network representation and show through several examples how quantifying connectivity can bring to light aspects of deltaic systems so far unexplored and yet fundamental to understanding system functioning and informing coastal management and restoration. This paper serves both as an introduction to the Delta Connectome framework as well as a review of recent applications of the concepts of network and connectivity to deltaic systems within the Connectome framework.

  1. Toward domain-specific design environments: Some representation ideas from the telecommunications domain

    NASA Technical Reports Server (NTRS)

    Greenspan, Sol; Feblowitz, Mark

    1992-01-01

    ACME is an experimental environment for investigating new approaches to modeling and analysis of system requirements and designs. ACME is built on and extends object-oriented conceptual modeling techniques and knowledge representation and reasoning (KRR) tools. The most immediate intended use for ACME is to help represent, understand, and communicate system designs during the early stages of system planning and requirements engineering. While our research is ostensibly aimed at software systems in general, we are particularly motivated to make an impact in the telecommunications domain, especially in the area referred to as Intelligent Networks (IN's). IN systems contain the software to provide services to users of a telecommunications network (e.g., call processing services, information services, etc.) as well as the software that provides the internal infrastructure for providing the services (e.g., resource management, billing, etc.). The software includes not only systems developed by the network proprietors but also by a growing group of independent service software providers.

  2. Mobile, Virtual Enhancements for Rehabilitation (MOVER)

    DTIC Science & Technology

    2013-11-28

    Modeling Autobiographical Memory for Believable Agents, AIIDE, Boston, MA. 2013. From the abstract: “We present a multi-layer hierarchical...connectionist network model for simulating human autobiographical memory in believable agents. Grounded in psychological theory, this model improves on...previous attempts to model agents’ event knowledge by providing a more dynamic and nondeterministic representation of autobiographical memories .” This

  3. A unified data representation theory for network visualization, ordering and coarse-graining

    PubMed Central

    Kovács, István A.; Mizsei, Réka; Csermely, Péter

    2015-01-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form. PMID:26348923

  4. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology.

    PubMed

    Lamontagne, Marie-Eve

    2013-01-01

    Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. To illustrate social network analysis use in the context of systems of care for traumatic brain injury. We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Social network analysis is a useful methodology to objectively characterise integrated networks.

  5. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks

    PubMed Central

    Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei

    2017-01-01

    Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction. PMID:28672867

  6. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks.

    PubMed

    Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei

    2017-06-26

    Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.

  7. Different categories of living and non-living sound-sources activate distinct cortical networks

    PubMed Central

    Engel, Lauren R.; Frum, Chris; Puce, Aina; Walker, Nathan A.; Lewis, James W.

    2009-01-01

    With regard to hearing perception, it remains unclear as to whether, or the extent to which, different conceptual categories of real-world sounds and related categorical knowledge are differentially represented in the brain. Semantic knowledge representations are reported to include the major divisions of living versus non-living things, plus more specific categories including animals, tools, biological motion, faces, and places—categories typically defined by their characteristic visual features. Here, we used functional magnetic resonance imaging (fMRI) to identify brain regions showing preferential activity to four categories of action sounds, which included non-vocal human and animal actions (living), plus mechanical and environmental sound-producing actions (non-living). The results showed a striking antero-posterior division in cortical representations for sounds produced by living versus non-living sources. Additionally, there were several significant differences by category, depending on whether the task was category-specific (e.g. human or not) versus non-specific (detect end-of-sound). In general, (1) human-produced sounds yielded robust activation in the bilateral posterior superior temporal sulci independent of task. Task demands modulated activation of left-lateralized fronto-parietal regions, bilateral insular cortices, and subcortical regions previously implicated in observation-execution matching, consistent with “embodied” and mirror-neuron network representations subserving recognition. (2) Animal action sounds preferentially activated the bilateral posterior insulae. (3) Mechanical sounds activated the anterior superior temporal gyri and parahippocampal cortices. (4) Environmental sounds preferentially activated dorsal occipital and medial parietal cortices. Overall, this multi-level dissociation of networks for preferentially representing distinct sound-source categories provides novel support for grounded cognition models that may underlie organizational principles for hearing perception. PMID:19465134

  8. Organizing knowledge for tutoring fire loss prevention

    NASA Astrophysics Data System (ADS)

    Schmoldt, Daniel L.

    1989-09-01

    The San Bernardino National Forest in southern California has recently developed a systematic approach to wildfire prevention planning. However, a comprehensive document or other mechanism for teaching this process to other prevention personnel does not exist. An intelligent tutorial expert system is being constructed to provide a means for learning the process and to assist in the creation of specific prevention plans. An intelligent tutoring system (ITS) contains two types of knowledge—domain and tutoring. The domain knowledge for wildfire prevention is structured around several foci: (1) individual concepts used in prevention planning; (2) explicitly specified interrelationships between concepts; (3) deductive methods that contain subjective judgment normally unavailable to less-experienced users; (4) analytical models of fire behavior used for identification of hazard areas; (5) how-to guidance needed for performance of planning tasks; and (6) expository information that provides a rationale for planning steps and ideas. Combining analytical, procedure, inferential, conceptual, and expositional knowledge into a tutoring environment provides the student and/or user with a multiple perspective of the subject matter. A concept network provides a unifying framework for structuring and utilizing these diverse forms of prevention planning knowledge. This network structure borrows from and combines semantic networks and frame-based knowledge representations. The flexibility of this organization facilitates an effective synthesis and organization of multiple knowledge forms.

  9. Frontotemporal neural systems supporting semantic processing in Alzheimer's disease.

    PubMed

    Peelle, Jonathan E; Powers, John; Cook, Philip A; Smith, Edward E; Grossman, Murray

    2014-03-01

    We hypothesized that semantic memory for object concepts involves both representations of visual feature knowledge in modality-specific association cortex and heteromodal regions that are important for integrating and organizing this semantic knowledge so that it can be used in a flexible, contextually appropriate manner. We examined this hypothesis in an fMRI study of mild Alzheimer's disease (AD). Participants were presented with pairs of printed words and asked whether the words matched on a given visual-perceptual feature (e.g., guitar, violin: SHAPE). The stimuli probed natural kinds and manufactured objects, and the judgments involved shape or color. We found activation of bilateral ventral temporal cortex and left dorsolateral prefrontal cortex during semantic judgments, with AD patients showing less activation of these regions than healthy seniors. Moreover, AD patients showed less ventral temporal activation than did healthy seniors for manufactured objects, but not for natural kinds. We also used diffusion-weighted MRI of white matter to examine fractional anisotropy (FA). Patients with AD showed significantly reduced FA in the superior longitudinal fasciculus and inferior frontal-occipital fasciculus, which carry projections linking temporal and frontal regions of this semantic network. Our results are consistent with the hypothesis that semantic memory is supported in part by a large-scale neural network involving modality-specific association cortex, heteromodal association cortex, and projections between these regions. The semantic deficit in AD thus arises from gray matter disease that affects the representation of feature knowledge and processing its content, as well as white matter disease that interrupts the integrated functioning of this large-scale network.

  10. Dynamic Uncertain Causality Graph for Knowledge Representation and Reasoning: Utilization of Statistical Data and Domain Knowledge in Complex Cases.

    PubMed

    Zhang, Qin; Yao, Quanying

    2018-05-01

    The dynamic uncertain causality graph (DUCG) is a newly presented framework for uncertain causality representation and probabilistic reasoning. It has been successfully applied to online fault diagnoses of large, complex industrial systems, and decease diagnoses. This paper extends the DUCG to model more complex cases than what could be previously modeled, e.g., the case in which statistical data are in different groups with or without overlap, and some domain knowledge and actions (new variables with uncertain causalities) are introduced. In other words, this paper proposes to use -mode, -mode, and -mode of the DUCG to model such complex cases and then transform them into either the standard -mode or the standard -mode. In the former situation, if no directed cyclic graph is involved, the transformed result is simply a Bayesian network (BN), and existing inference methods for BNs can be applied. In the latter situation, an inference method based on the DUCG is proposed. Examples are provided to illustrate the methodology.

  11. Image/video understanding systems based on network-symbolic models

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2004-03-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.

  12. Using ontologies to model human navigation behavior in information networks: A study based on Wikipedia.

    PubMed

    Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F; Musen, Mark A

    The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks.

  13. Using ontologies to model human navigation behavior in information networks: A study based on Wikipedia

    PubMed Central

    Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F.; Musen, Mark A.

    2015-01-01

    The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks. PMID:26568745

  14. Neuro-symbolic representation learning on biological knowledge graphs.

    PubMed

    Alshahrani, Mona; Khan, Mohammad Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Núria; Hoehndorf, Robert

    2017-09-01

    Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge. Results: We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of Semantic Web based knowledge bases in biology to use in machine learning and data analytics. https://github.com/bio-ontology-research-group/walking-rdf-and-owl. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  15. Learning high-level features for chord recognition using Autoencoder

    NASA Astrophysics Data System (ADS)

    Phongthongloa, Vilailukkana; Kamonsantiroj, Suwatchai; Pipanmaekaporn, Luepol

    2016-07-01

    Chord transcription is valuable to do by itself. It is known that the manual transcription of chords is very tiresome, time-consuming. It requires, moreover, musical knowledge. Automatic chord recognition has recently attracted a number of researches in the Music Information Retrieval field. It has known that a pitch class profile (PCP) is the commonly signal representation of musical harmonic analysis. However, the PCP may contain additional non-harmonic noise such as harmonic overtones and transient noise. The problem of non-harmonic might be generating the sound energy in term of frequency more than the actual notes of the respective chord. Autoencoder neural network may be trained to learn a mapping from low level feature to one or more higher-level representation. These high-level representations can explain dependencies of the inputs and reduce the effect of non-harmonic noise. Then these improve features are fed into neural network classifier. The proposed high-level musical features show 80.90% of accuracy. The experimental results have shown that the proposed approach can achieve better performance in comparison with other based method.

  16. Network embedding-based representation learning for single cell RNA-seq data.

    PubMed

    Li, Xiangyu; Chen, Weizheng; Chen, Yang; Zhang, Xuegong; Gu, Jin; Zhang, Michael Q

    2017-11-02

    Single cell RNA-seq (scRNA-seq) techniques can reveal valuable insights of cell-to-cell heterogeneities. Projection of high-dimensional data into a low-dimensional subspace is a powerful strategy in general for mining such big data. However, scRNA-seq suffers from higher noise and lower coverage than traditional bulk RNA-seq, hence bringing in new computational difficulties. One major challenge is how to deal with the frequent drop-out events. The events, usually caused by the stochastic burst effect in gene transcription and the technical failure of RNA transcript capture, often render traditional dimension reduction methods work inefficiently. To overcome this problem, we have developed a novel Single Cell Representation Learning (SCRL) method based on network embedding. This method can efficiently implement data-driven non-linear projection and incorporate prior biological knowledge (such as pathway information) to learn more meaningful low-dimensional representations for both cells and genes. Benchmark results show that SCRL outperforms other dimensional reduction methods on several recent scRNA-seq datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Hybrid expert system for decision supporting in the medical area: complexity and cognitive computing.

    PubMed

    Brasil, L M; de Azevedo, F M; Barreto, J M

    2001-09-01

    This paper proposes a hybrid expert system (HES) to minimise some complexity problems pervasive to the artificial intelligence such as: the knowledge elicitation process, known as the bottleneck of expert systems; the model choice for knowledge representation to code human reasoning; the number of neurons in the hidden layer and the topology used in the connectionist approach; the difficulty to obtain the explanation on how the network arrived to a conclusion. Two algorithms applied to developing of HES are also suggested. One of them is used to train the fuzzy neural network and the other to obtain explanations on how the fuzzy neural network attained a conclusion. To overcome these difficulties the cognitive computing was integrated to the developed system. A case study is presented (e.g. epileptic crisis) with the problem definition and simulations. Results are also discussed.

  18. Using Pathfinder networks to discover alignment between expert and consumer conceptual knowledge from online vaccine content.

    PubMed

    Amith, Muhammad; Cunningham, Rachel; Savas, Lara S; Boom, Julie; Schvaneveldt, Roger; Tao, Cui; Cohen, Trevor

    2017-10-01

    This study demonstrates the use of distributed vector representations and Pathfinder Network Scaling (PFNETS) to represent online vaccine content created by health experts and by laypeople. By analyzing a target audience's conceptualization of a topic, domain experts can develop targeted interventions to improve the basic health knowledge of consumers. The underlying assumption is that the content created by different groups reflects the mental organization of their knowledge. Applying automated text analysis to this content may elucidate differences between the knowledge structures of laypeople (heath consumers) and professionals (health experts). This paper utilizes vaccine information generated by laypeople and health experts to investigate the utility of this approach. We used an established technique from cognitive psychology, Pathfinder Network Scaling to infer the structure of the associational networks between concepts learned from online content using methods of distributional semantics. In doing so, we extend the original application of PFNETS to infer knowledge structures from individual participants, to infer the prevailing knowledge structures within communities of content authors. The resulting graphs reveal opportunities for public health and vaccination education experts to improve communication and intervention efforts directed towards health consumers. Our efforts demonstrate the feasibility of using an automated procedure to examine the manifestation of conceptual models within large bodies of free text, revealing evidence of conflicting understanding of vaccine concepts among health consumers as compared with health experts. Additionally, this study provides insight into the differences between consumer and expert abstraction of domain knowledge, revealing vaccine-related knowledge gaps that suggest opportunities to improve provider-patient communication. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    PubMed

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  20. [Unconscious sexual desire: fMRI and EEG evidences from self-expansion theory to mirror neurons].

    PubMed

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2010-03-24

    Recent advances in cognitive-social neuroscience allow a better understanding of the mechanisms underlying dyadic relationships. From a neuronal viewpoint, desire in dyadic relationships involves a specific fronto-temporo-parietal network and also a subcortical network that mediates conscious and unconscious mechanisms of reward, satisfaction, attention, self representation and self-expansion. The integration of this neuroscientific knowledge on the unconscious neurobiological activation for sexual desire in the human brain will provide physicians with new therapeutical and neuroscientific tools to apprehend sexual disorders in couple.

  1. Effects of the soil pore network architecture on the soil's physical functionalities

    NASA Astrophysics Data System (ADS)

    Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore

    2017-04-01

    The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured parameters uncertainties? Sarah Smet, as a research fellow, acknowledges the support of the National Fund for Scientific Research (Brussels, Belgium).

  2. Developing integrated crop knowledge networks to advance candidate gene discovery.

    PubMed

    Hassani-Pak, Keywan; Castellote, Martin; Esch, Maria; Hindle, Matthew; Lysenko, Artem; Taubert, Jan; Rawlings, Christopher

    2016-12-01

    The chances of raising crop productivity to enhance global food security would be greatly improved if we had a complete understanding of all the biological mechanisms that underpinned traits such as crop yield, disease resistance or nutrient and water use efficiency. With more crop genomes emerging all the time, we are nearer having the basic information, at the gene-level, to begin assembling crop gene catalogues and using data from other plant species to understand how the genes function and how their interactions govern crop development and physiology. Unfortunately, the task of creating such a complete knowledge base of gene functions, interaction networks and trait biology is technically challenging because the relevant data are dispersed in myriad databases in a variety of data formats with variable quality and coverage. In this paper we present a general approach for building genome-scale knowledge networks that provide a unified representation of heterogeneous but interconnected datasets to enable effective knowledge mining and gene discovery. We describe the datasets and outline the methods, workflows and tools that we have developed for creating and visualising these networks for the major crop species, wheat and barley. We present the global characteristics of such knowledge networks and with an example linking a seed size phenotype to a barley WRKY transcription factor orthologous to TTG2 from Arabidopsis, we illustrate the value of integrated data in biological knowledge discovery. The software we have developed (www.ondex.org) and the knowledge resources (http://knetminer.rothamsted.ac.uk) we have created are all open-source and provide a first step towards systematic and evidence-based gene discovery in order to facilitate crop improvement.

  3. Incorporating linguistic knowledge for learning distributed word representations.

    PubMed

    Wang, Yan; Liu, Zhiyuan; Sun, Maosong

    2015-01-01

    Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining.

  4. Incorporating Linguistic Knowledge for Learning Distributed Word Representations

    PubMed Central

    Wang, Yan; Liu, Zhiyuan; Sun, Maosong

    2015-01-01

    Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining. PMID:25874581

  5. Dynamic neural architecture for social knowledge retrieval

    PubMed Central

    Wang, Yin; Collins, Jessica A.; Koski, Jessica; Nugiel, Tehila; Metoki, Athanasia; Olson, Ingrid R.

    2017-01-01

    Social behavior is often shaped by the rich storehouse of biographical information that we hold for other people. In our daily life, we rapidly and flexibly retrieve a host of biographical details about individuals in our social network, which often guide our decisions as we navigate complex social interactions. Even abstract traits associated with an individual, such as their political affiliation, can cue a rich cascade of person-specific knowledge. Here, we asked whether the anterior temporal lobe (ATL) serves as a hub for a distributed neural circuit that represents person knowledge. Fifty participants across two studies learned biographical information about fictitious people in a 2-d training paradigm. On day 3, they retrieved this biographical information while undergoing an fMRI scan. A series of multivariate and connectivity analyses suggest that the ATL stores abstract person identity representations. Moreover, this region coordinates interactions with a distributed network to support the flexible retrieval of person attributes. Together, our results suggest that the ATL is a central hub for representing and retrieving person knowledge. PMID:28289200

  6. Dynamic neural architecture for social knowledge retrieval.

    PubMed

    Wang, Yin; Collins, Jessica A; Koski, Jessica; Nugiel, Tehila; Metoki, Athanasia; Olson, Ingrid R

    2017-04-18

    Social behavior is often shaped by the rich storehouse of biographical information that we hold for other people. In our daily life, we rapidly and flexibly retrieve a host of biographical details about individuals in our social network, which often guide our decisions as we navigate complex social interactions. Even abstract traits associated with an individual, such as their political affiliation, can cue a rich cascade of person-specific knowledge. Here, we asked whether the anterior temporal lobe (ATL) serves as a hub for a distributed neural circuit that represents person knowledge. Fifty participants across two studies learned biographical information about fictitious people in a 2-d training paradigm. On day 3, they retrieved this biographical information while undergoing an fMRI scan. A series of multivariate and connectivity analyses suggest that the ATL stores abstract person identity representations. Moreover, this region coordinates interactions with a distributed network to support the flexible retrieval of person attributes. Together, our results suggest that the ATL is a central hub for representing and retrieving person knowledge.

  7. The nature of compounds: a psychocentric perspective.

    PubMed

    Libben, Gary

    2014-01-01

    Although compound words often seem to be words that themselves contain words, this paper argues that this is not the case for the vast majority of lexicalized compounds. Rather, it is claimed that as a result of acts of lexical processing, the constituents of compound words develop into new lexical representations. These representations are bound to specific morphological roles and positions (e.g., head, modifier) within a compound word. The development of these positionally bound compound constituents creates a rich network of lexical knowledge that facilitates compound processing and also creates some of the well-documented patterns in the psycholinguistic and neurolinguistic study of compounding.

  8. Evaluation, Use, and Refinement of Knowledge Representations through Acquisition Modeling

    ERIC Educational Resources Information Center

    Pearl, Lisa

    2017-01-01

    Generative approaches to language have long recognized the natural link between theories of knowledge representation and theories of knowledge acquisition. The basic idea is that the knowledge representations provided by Universal Grammar enable children to acquire language as reliably as they do because these representations highlight the…

  9. The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1991-01-01

    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications.

  10. A hybrid job-shop scheduling system

    NASA Technical Reports Server (NTRS)

    Hellingrath, Bernd; Robbach, Peter; Bayat-Sarmadi, Fahid; Marx, Andreas

    1992-01-01

    The intention of the scheduling system developed at the Fraunhofer-Institute for Material Flow and Logistics is the support of a scheduler working in a job-shop. Due to the existing requirements for a job-shop scheduling system the usage of flexible knowledge representation and processing techniques is necessary. Within this system the attempt was made to combine the advantages of symbolic AI-techniques with those of neural networks.

  11. Learning, memory, and the role of neural network architecture.

    PubMed

    Hermundstad, Ann M; Brown, Kevin S; Bassett, Danielle S; Carlson, Jean M

    2011-06-01

    The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.

  12. Formalizing nursing knowledge: from theories and models to ontologies.

    PubMed

    Peace, Jane; Brennan, Patricia Flatley

    2009-01-01

    Knowledge representation in nursing is poised to address the depth of nursing knowledge about the specific phenomena of importance to nursing. Nursing theories and models may provide a starting point for making this knowledge explicit in representations. We combined knowledge building methods from nursing and ontology design methods from biomedical informatics to create a nursing representation of family health history. Our experience provides an example of how knowledge representations may be created to facilitate electronic support for nursing practice and knowledge development.

  13. MINER: exploratory analysis of gene interaction networks by machine learning from expression data.

    PubMed

    Kadupitige, Sidath Randeni; Leung, Kin Chun; Sellmeier, Julia; Sivieng, Jane; Catchpoole, Daniel R; Bain, Michael E; Gaëta, Bruno A

    2009-12-03

    The reconstruction of gene regulatory networks from high-throughput "omics" data has become a major goal in the modelling of living systems. Numerous approaches have been proposed, most of which attempt only "one-shot" reconstruction of the whole network with no intervention from the user, or offer only simple correlation analysis to infer gene dependencies. We have developed MINER (Microarray Interactive Network Exploration and Representation), an application that combines multivariate non-linear tree learning of individual gene regulatory dependencies, visualisation of these dependencies as both trees and networks, and representation of known biological relationships based on common Gene Ontology annotations. MINER allows biologists to explore the dependencies influencing the expression of individual genes in a gene expression data set in the form of decision, model or regression trees, using their domain knowledge to guide the exploration and formulate hypotheses. Multiple trees can then be summarised in the form of a gene network diagram. MINER is being adopted by several of our collaborators and has already led to the discovery of a new significant regulatory relationship with subsequent experimental validation. Unlike most gene regulatory network inference methods, MINER allows the user to start from genes of interest and build the network gene-by-gene, incorporating domain expertise in the process. This approach has been used successfully with RNA microarray data but is applicable to other quantitative data produced by high-throughput technologies such as proteomics and "next generation" DNA sequencing.

  14. Learning fuzzy logic control system

    NASA Technical Reports Server (NTRS)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the D.C. motor. Furthermore, the LFLC has better performance in rise time, settling time and steady state error than to the conventional PI controller. This abstract accurately represents the content of the candidate's thesis. I recommend its publication.

  15. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology

    PubMed Central

    Lamontagne, Marie-Eve

    2013-01-01

    Introduction Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. Goal of the article To illustrate social network analysis use in the context of systems of care for traumatic brain injury. Method We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. Results The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Conclusion Social network analysis is a useful methodology to objectively characterise integrated networks. PMID:24250281

  16. Deep Learning and Developmental Learning: Emergence of Fine-to-Coarse Conceptual Categories at Layers of Deep Belief Network.

    PubMed

    Sadeghi, Zahra

    2016-09-01

    In this paper, I investigate conceptual categories derived from developmental processing in a deep neural network. The similarity matrices of deep representation at each layer of neural network are computed and compared with their raw representation. While the clusters generated by raw representation stand at the basic level of abstraction, conceptual categories obtained from deep representation shows a bottom-up transition procedure. Results demonstrate a developmental course of learning from specific to general level of abstraction through learned layers of representations in a deep belief network. © The Author(s) 2016.

  17. Knowledge Construction and Knowledge Representation in High School Students' Design of Hypermedia Documents

    ERIC Educational Resources Information Center

    Chen, Pearl; McGrath, Diane

    2003-01-01

    This study documented the processes of knowledge construction and knowledge representation in high school students' hypermedia design projects. Analysis of knowledge construction in linking and structural building yielded distinct types and subtypes of hypermedia documents, which were characterized by four features of knowledge representation: (a)…

  18. How the Human Brain Represents Perceived Dangerousness or “Predacity” of Animals

    PubMed Central

    Sha, Long; Guntupalli, J. Swaroop; Oosterhof, Nikolaas; Halchenko, Yaroslav O.; Nastase, Samuel A.; di Oleggio Castello, Matteo Visconti; Abdi, Hervé; Jobst, Barbara C.; Gobbini, M. Ida; Haxby, James V.

    2016-01-01

    Common or folk knowledge about animals is dominated by three dimensions: (1) level of cognitive complexity or “animacy;” (2) dangerousness or “predacity;” and (3) size. We investigated the neural basis of the perceived dangerousness or aggressiveness of animals, which we refer to more generally as “perception of threat.” Using functional magnetic resonance imaging (fMRI), we analyzed neural activity evoked by viewing images of animal categories that spanned the dissociable semantic dimensions of threat and taxonomic class. The results reveal a distributed network for perception of threat extending along the right superior temporal sulcus. We compared neural representational spaces with target representational spaces based on behavioral judgments and a computational model of early vision and found a processing pathway in which perceived threat emerges as a dominant dimension: whereas visual features predominate in early visual cortex and taxonomy in lateral occipital and ventral temporal cortices, these dimensions fall away progressively from posterior to anterior temporal cortices, leaving threat as the dominant explanatory variable. Our results suggest that the perception of threat in the human brain is associated with neural structures that underlie perception and cognition of social actions and intentions, suggesting a broader role for these regions than has been thought previously, one that includes the perception of potential threat from agents independent of their biological class. SIGNIFICANCE STATEMENT For centuries, philosophers have wondered how the human mind organizes the world into meaningful categories and concepts. Today this question is at the core of cognitive science, but our focus has shifted to understanding how knowledge manifests in dynamic activity of neural systems in the human brain. This study advances the young field of empirical neuroepistemology by characterizing the neural systems engaged by an important dimension in our cognitive representation of the animal kingdom ontological subdomain: how the brain represents the perceived threat, dangerousness, or “predacity” of animals. Our findings reveal how activity for domain-specific knowledge of animals overlaps the social perception networks of the brain, suggesting domain-general mechanisms underlying the representation of conspecifics and other animals. PMID:27170133

  19. Cortical circuits for mathematical knowledge: evidence for a major subdivision within the brain's semantic networks.

    PubMed

    Amalric, Marie; Dehaene, Stanislas

    2017-02-19

    Is mathematical language similar to natural language? Are language areas used by mathematicians when they do mathematics? And does the brain comprise a generic semantic system that stores mathematical knowledge alongside knowledge of history, geography or famous people? Here, we refute those views by reviewing three functional MRI studies of the representation and manipulation of high-level mathematical knowledge in professional mathematicians. The results reveal that brain activity during professional mathematical reflection spares perisylvian language-related brain regions as well as temporal lobe areas classically involved in general semantic knowledge. Instead, mathematical reflection recycles bilateral intraparietal and ventral temporal regions involved in elementary number sense. Even simple fact retrieval, such as remembering that 'the sine function is periodical' or that 'London buses are red', activates dissociated areas for math versus non-math knowledge. Together with other fMRI and recent intracranial studies, our results indicated a major separation between two brain networks for mathematical and non-mathematical semantics, which goes a long way to explain a variety of facts in neuroimaging, neuropsychology and developmental disorders.This article is part of a discussion meeting issue 'The origins of numerical abilities'. © 2017 The Author(s).

  20. Efficient Results in Semantic Interoperability for Health Care. Findings from the Section on Knowledge Representation and Management.

    PubMed

    Soualmia, L F; Charlet, J

    2016-11-10

    To summarize excellent current research in the field of Knowledge Representation and Management (KRM) within the health and medical care domain. We provide a synopsis of the 2016 IMIA selected articles as well as a related synthetic overview of the current and future field activities. A first step of the selection was performed through MEDLINE querying with a list of MeSH descriptors completed by a list of terms adapted to the KRM section. The second step of the selection was completed by the two section editors who separately evaluated the set of 1,432 articles. The third step of the selection consisted of a collective work that merged the evaluation results to retain 15 articles for peer-review. The selection and evaluation process of this Yearbook's section on Knowledge Representation and Management has yielded four excellent and interesting articles regarding semantic interoperability for health care by gathering heterogeneous sources (knowledge and data) and auditing ontologies. In the first article, the authors present a solution based on standards and Semantic Web technologies to access distributed and heterogeneous datasets in the domain of breast cancer clinical trials. The second article describes a knowledge-based recommendation system that relies on ontologies and Semantic Web rules in the context of chronic diseases dietary. The third article is related to concept-recognition and text-mining to derive common human diseases model and a phenotypic network of common diseases. In the fourth article, the authors highlight the need for auditing the SNOMED CT. They propose to use a crowdbased method for ontology engineering. The current research activities further illustrate the continuous convergence of Knowledge Representation and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care by proposing solutions to cope with the problem of semantic interoperability. Indeed, there is a need for powerful tools able to manage and interpret complex, large-scale and distributed datasets and knowledge bases, but also a need for user-friendly tools developed for the clinicians in their daily practice.

  1. Representation of molecular structure using quantum topology with inductive logic programming in structure-activity relationships.

    PubMed

    Buttingsrud, Bård; Ryeng, Einar; King, Ross D; Alsberg, Bjørn K

    2006-06-01

    The requirement of aligning each individual molecule in a data set severely limits the type of molecules which can be analysed with traditional structure activity relationship (SAR) methods. A method which solves this problem by using relations between objects is inductive logic programming (ILP). Another advantage of this methodology is its ability to include background knowledge as 1st-order logic. However, previous molecular ILP representations have not been effective in describing the electronic structure of molecules. We present a more unified and comprehensive representation based on Richard Bader's quantum topological atoms in molecules (AIM) theory where critical points in the electron density are connected through a network. AIM theory provides a wealth of chemical information about individual atoms and their bond connections enabling a more flexible and chemically relevant representation. To obtain even more relevant rules with higher coverage, we apply manual postprocessing and interpretation of ILP rules. We have tested the usefulness of the new representation in SAR modelling on classifying compounds of low/high mutagenicity and on a set of factor Xa inhibitors of high and low affinity.

  2. Exhaustive analysis of the modular structure of the spliceosomal assembly network: a petri net approach.

    PubMed

    Bortfeldt, Ralf H; Schuster, Stefan; Koch, Ina

    2011-01-01

    Spliceosomes are macro-complexes involving hundreds of proteins with many functional interactions. Spliceosome assembly belongs to the key processes that enable splicing of mRNA and modulate alternative splicing. A detailed list of factors involved in spliceosomal reactions has been assorted over the past decade, but, their functional interplay is often unknown and most of the present biological models cover only parts of the complete assembly process. It is a challenging task to build a computational model that integrates dispersed knowledge and combines a multitude of reaction schemes proposed earlier. Because for most reactions involved in spliceosome assembly kinetic parameters are not available, we propose a discrete modeling using Petri nets, through which we are enabled to get insights into the system's behavior via computation of structural and dynamic properties. In this paper, we compile and examine reactions from experimental reports that contribute to a functional spliceosome. All these reactions form a network, which describes the inventory and conditions necessary to perform the splicing process. The analysis is mainly based on system invariants. Transition invariants (T-invariants) can be interpreted as signaling routes through the network. Due to the huge number of T-invariants that arise with increasing network size and complexity, maximal common transition sets (MCTS) and T-clusters were used for further analysis. Additionally, we introduce a false color map representation, which allows a quick survey of network modules and the visual detection of single reactions or reaction sequences, which participate in more than one signaling route. We designed a structured model of spliceosome assembly, which combines the demands on a platform that i) can display involved factors and concurrent processes, ii) offers the possibility to run computational methods for knowledge extraction, and iii) is successively extendable as new insights into spliceosome function are reported by experimental reports. The network consists of 161 transitions (reactions) and 140 places (reactants). All reactions are part of at least one of the 71 T-invariants. These T-invariants define pathways, which are in good agreement with the current knowledge and known hypotheses on reaction sequences during spliceosome assembly, hence contributing to a functional spliceosome. We demonstrate that present knowledge, in particular of the initial part of the assembly process, describes parallelism and interaction of signaling routes, which indicate functional redundancy and reflect the dependency of spliceosome assembly initiation on different cellular conditions. The complexity of the network is further increased by two switches, which introduce alternative routes during A-complex formation in early spliceosome assembly and upon transition from the B-complex to the C-complex. By compiling known reactions into a complete network, the combinatorial nature of invariant computation leads to pathways that have previously not been described as connected routes, although their constituents were known. T-clusters divide the network into modules, which we interpret as building blocks in spliceosome maturation. We conclude that Petri net representations of large biological networks and system invariants, are well-suited as a means for validating the integration of experimental knowledge into a consistent model. Based on this network model, the design of further experiments is facilitated.

  3. Exhaustive analysis of the modular structure of the spliceosomal assembly network: a Petri net approach.

    PubMed

    Bortfeldt, Ralf H; Schuster, Stefan; Koch, Ina

    2010-01-01

    Spliceosomes are macro-complexes involving hundreds of proteins with many functional interactions. Spliceosome assembly belongs to the key processes that enable splicing of mRNA and modulate alternative splicing. A detailed list of factors involved in spliceosomal reactions has been assorted over the past decade, but, their functional interplay is often unknown and most of the present biological models cover only parts of the complete assembly process. It is a challenging task to build a computational model that integrates dispersed knowledge and combines a multitude of reaction schemes proposed earlier.Because for most reactions involved in spliceosome assembly kinetic parameters are not available, we propose a discrete modeling using Petri nets, through which we are enabled to get insights into the system's behavior via computation of structural and dynamic properties. In this paper, we compile and examine reactions from experimental reports that contribute to a functional spliceosome. All these reactions form a network, which describes the inventory and conditions necessary to perform the splicing process. The analysis is mainly based on system invariants. Transition invariants (T-invariants) can be interpreted as signaling routes through the network. Due to the huge number of T-invariants that arise with increasing network size and complexity, maximal common transition sets (MCTS) and T-clusters were used for further analysis. Additionally, we introduce a false color map representation, which allows a quick survey of network modules and the visual detection of single reactions or reaction sequences, which participate in more than one signaling route. We designed a structured model of spliceosome assembly, which combines the demands on a platform that i) can display involved factors and concurrent processes, ii) offers the possibility to run computational methods for knowledge extraction, and iii) is successively extendable as new insights into spliceosome function are reported by experimental reports. The network consists of 161 transitions (reactions) and 140 places (reactants). All reactions are part of at least one of the 71 T-invariants. These T-invariants define pathways, which are in good agreement with the current knowledge and known hypotheses on reaction sequences during spliceosome assembly, hence contributing to a functional spliceosome. We demonstrate that present knowledge, in particular of the initial part of the assembly process, describes parallelism and interaction of signaling routes, which indicate functional redundancy and reflect the dependency of spliceosome assembly initiation on different cellular conditions. The complexity of the network is further increased by two switches, which introduce alternative routes during A-complex formation in early spliceosome assembly and upon transition from the B-complex to the C-complex. By compiling known reactions into a complete network, the combinatorial nature of invariant computation leads to pathways that have previously not been described as connected routes, although their constituents were known. T-clusters divide the network into modules, which we interpret as building blocks in spliceosome maturation. We conclude that Petri net representations of large biological networks and system invariants, are well-suited as a means for validating the integration of experimental knowledge into a consistent model. Based on this network model, the design of further experiments is facilitated.

  4. What puts the how in where? Tool use and the divided visual streams hypothesis.

    PubMed

    Frey, Scott H

    2007-04-01

    An influential theory suggests that the dorsal (occipito-parietal) visual stream computes representations of objects for purposes of guiding actions (determining 'how') independently of ventral (occipito-temporal) stream processes supporting object recognition and semantic processing (determining 'what'). Yet, the ability of the dorsal stream alone to account for one of the most common forms of human action, tool use, is limited. While experience-dependent modifications to existing dorsal stream representations may explain simple tool use behaviors (e.g., using sticks to extend reach) found among a variety of species, skillful use of manipulable artifacts (e.g., cups, hammers, pencils) requires in addition access to semantic representations of objects' functions and uses. Functional neuroimaging suggests that this latter information is represented in a left-lateralized network of temporal, frontal and parietal areas. I submit that the well-established dominance of the human left hemisphere in the representation of familiar skills stems from the ability for this acquired knowledge to influence the organization of actions within the dorsal pathway.

  5. EDNA: Expert fault digraph analysis using CLIPS

    NASA Technical Reports Server (NTRS)

    Dixit, Vishweshwar V.

    1990-01-01

    Traditionally fault models are represented by trees. Recently, digraph models have been proposed (Sack). Digraph models closely imitate the real system dependencies and hence are easy to develop, validate and maintain. However, they can also contain directed cycles and analysis algorithms are hard to find. Available algorithms tend to be complicated and slow. On the other hand, the tree analysis (VGRH, Tayl) is well understood and rooted in vast research effort and analytical techniques. The tree analysis algorithms are sophisticated and orders of magnitude faster. Transformation of a digraph (cyclic) into trees (CLP, LP) is a viable approach to blend the advantages of the representations. Neither the digraphs nor the trees provide the ability to handle heuristic knowledge. An expert system, to capture the engineering knowledge, is essential. We propose an approach here, namely, expert network analysis. We combine the digraph representation and tree algorithms. The models are augmented by probabilistic and heuristic knowledge. CLIPS, an expert system shell from NASA-JSC will be used to develop a tool. The technique provides the ability to handle probabilities and heuristic knowledge. Mixed analysis, some nodes with probabilities, is possible. The tool provides graphics interface for input, query, and update. With the combined approach it is expected to be a valuable tool in the design process as well in the capture of final design knowledge.

  6. QPA-CLIPS: A language and representation for process control

    NASA Technical Reports Server (NTRS)

    Freund, Thomas G.

    1994-01-01

    QPA-CLIPS is an extension of CLIPS oriented towards process control applications. Its constructs define a dependency network of process actions driven by sensor information. The language consists of three basic constructs: TASK, SENSOR, and FILTER. TASK's define the dependency network describing alternative state transitions for a process. SENSOR's and FILTER's define sensor information sources used to activate state transitions within the network. Deftemplate's define these constructs and their run-time environment is an interpreter knowledge base, performing pattern matching on sensor information and so activating TASK's in the dependency network. The pattern matching technique is based on the repeatable occurrence of a sensor data pattern. QPA-CIPS has been successfully tested on a SPARCStation providing supervisory control to an Allen-Bradley PLC 5 controller driving molding equipment.

  7. An Argument from Acquisition: Comparing English Metrical Stress Representations by How Learnable They Are from Child-Directed Speech

    ERIC Educational Resources Information Center

    Pearl, Lisa; Ho, Timothy; Detrano, Zephyr

    2017-01-01

    It has long been recognized that there is a natural dependence between theories of knowledge representation and theories of knowledge acquisition, with the idea that the right knowledge representation enables acquisition to happen as reliably as it does. Given this, a reasonable criterion for a theory of knowledge representation is that it be…

  8. Biologically Plausible, Human-Scale Knowledge Representation.

    PubMed

    Crawford, Eric; Gingerich, Matthew; Eliasmith, Chris

    2016-05-01

    Several approaches to implementing symbol-like representations in neurally plausible models have been proposed. These approaches include binding through synchrony (Shastri & Ajjanagadde, ), "mesh" binding (van der Velde & de Kamps, ), and conjunctive binding (Smolensky, ). Recent theoretical work has suggested that most of these methods will not scale well, that is, that they cannot encode structured representations using any of the tens of thousands of terms in the adult lexicon without making implausible resource assumptions. Here, we empirically demonstrate that the biologically plausible structured representations employed in the Semantic Pointer Architecture (SPA) approach to modeling cognition (Eliasmith, ) do scale appropriately. Specifically, we construct a spiking neural network of about 2.5 million neurons that employs semantic pointers to successfully encode and decode the main lexical relations in WordNet, which has over 100,000 terms. In addition, we show that the same representations can be employed to construct recursively structured sentences consisting of arbitrary WordNet concepts, while preserving the original lexical structure. We argue that these results suggest that semantic pointers are uniquely well-suited to providing a biologically plausible account of the structured representations that underwrite human cognition. Copyright © 2015 Cognitive Science Society, Inc.

  9. Putting Man in the Machine: Exploiting Expertise to Enhance Multiobjective Design of Water Supply Monitoring Network

    NASA Astrophysics Data System (ADS)

    Bode, F.; Nowak, W.; Reed, P. M.; Reuschen, S.

    2016-12-01

    Drinking-water well catchments need effective early-warning monitoring networks. Groundwater water supply wells in complex urban environments are in close proximity to a myriad of potential industrial pollutant sources that could irreversibly damage their source aquifers. These urban environments pose fiscal and physical challenges to designing monitoring networks. Ideal early-warning monitoring networks would satisfy three objectives: to detect (1) all potential contaminations within the catchment (2) as early as possible before they reach the pumping wells, (3) while minimizing costs. Obviously, the ideal case is nonexistent, so we search for tradeoffs using multiobjective optimization. The challenge of this optimization problem is the high number of potential monitoring-well positions (the search space) and the non-linearity of the underlying groundwater flow-and-transport problem. This study evaluates (1) different ways to effectively restrict the search space in an efficient way, with and without expert knowledge, (2) different methods to represent the search space during the optimization and (3) the influence of incremental increases in uncertainty in the system. Conductivity, regional flow direction and potential source locations are explored as key uncertainties. We show the need and the benefit of our methods by comparing optimized monitoring networks for different uncertainty levels with networks that seek to effectively exploit expert knowledge. The study's main contributions are the different approaches restricting and representing the search space. The restriction algorithms are based on a point-wise comparison of decision elements of the search space. The representation of the search space can be either binary or continuous. For both cases, the search space must be adjusted properly. Our results show the benefits and drawbacks of binary versus continuous search space representations and the high potential of automated search space restriction algorithms for high-dimensional, highly non-linear optimization problems.

  10. Disease gene classification with metagraph representations.

    PubMed

    Kircali Ata, Sezin; Fang, Yuan; Wu, Min; Li, Xiao-Li; Xiao, Xiaokui

    2017-12-01

    Protein-protein interaction (PPI) networks play an important role in studying the functional roles of proteins, including their association with diseases. However, protein interaction networks are not sufficient without the support of additional biological knowledge for proteins such as their molecular functions and biological processes. To complement and enrich PPI networks, we propose to exploit biological properties of individual proteins. More specifically, we integrate keywords describing protein properties into the PPI network, and construct a novel PPI-Keywords (PPIK) network consisting of both proteins and keywords as two different types of nodes. As disease proteins tend to have a similar topological characteristics on the PPIK network, we further propose to represent proteins with metagraphs. Different from a traditional network motif or subgraph, a metagraph can capture a particular topological arrangement involving the interactions/associations between both proteins and keywords. Based on the novel metagraph representations for proteins, we further build classifiers for disease protein classification through supervised learning. Our experiments on three different PPI databases demonstrate that the proposed method consistently improves disease protein prediction across various classifiers, by 15.3% in AUC on average. It outperforms the baselines including the diffusion-based methods (e.g., RWR) and the module-based methods by 13.8-32.9% for overall disease protein prediction. For predicting breast cancer genes, it outperforms RWR, PRINCE and the module-based baselines by 6.6-14.2%. Finally, our predictions also turn out to have better correlations with literature findings from PubMed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Knowledge Representation Issues in Semantic Graphs for Relationship Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelemy, M; Chow, E; Eliassi-Rad, T

    2005-02-02

    An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' maymore » be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.« less

  12. Knowledge-based approaches to the maintenance of a large controlled medical terminology.

    PubMed Central

    Cimino, J J; Clayton, P D; Hripcsak, G; Johnson, S B

    1994-01-01

    OBJECTIVE: Develop a knowledge-based representation for a controlled terminology of clinical information to facilitate creation, maintenance, and use of the terminology. DESIGN: The Medical Entities Dictionary (MED) is a semantic network, based on the Unified Medical Language System (UMLS), with a directed acyclic graph to represent multiple hierarchies. Terms from four hospital systems (laboratory, electrocardiography, medical records coding, and pharmacy) were added as nodes in the network. Additional knowledge about terms, added as semantic links, was used to assist in integration, harmonization, and automated classification of disparate terminologies. RESULTS: The MED contains 32,767 terms and is in active clinical use. Automated classification was successfully applied to terms for laboratory specimens, laboratory tests, and medications. One benefit of the approach has been the automated inclusion of medications into multiple pharmacologic and allergenic classes that were not present in the pharmacy system. Another benefit has been the reduction of maintenance efforts by 90%. CONCLUSION: The MED is a hybrid of terminology and knowledge. It provides domain coverage, synonymy, consistency of views, explicit relationships, and multiple classification while preventing redundancy, ambiguity (homonymy) and misclassification. PMID:7719786

  13. Autonomous mental development with selective attention, object perception, and knowledge representation

    NASA Astrophysics Data System (ADS)

    Ban, Sang-Woo; Lee, Minho

    2008-04-01

    Knowledge-based clustering and autonomous mental development remains a high priority research topic, among which the learning techniques of neural networks are used to achieve optimal performance. In this paper, we present a new framework that can automatically generate a relevance map from sensory data that can represent knowledge regarding objects and infer new knowledge about novel objects. The proposed model is based on understating of the visual what pathway in our brain. A stereo saliency map model can selectively decide salient object areas by additionally considering local symmetry feature. The incremental object perception model makes clusters for the construction of an ontology map in the color and form domains in order to perceive an arbitrary object, which is implemented by the growing fuzzy topology adaptive resonant theory (GFTART) network. Log-polar transformed color and form features for a selected object are used as inputs of the GFTART. The clustered information is relevant to describe specific objects, and the proposed model can automatically infer an unknown object by using the learned information. Experimental results with real data have demonstrated the validity of this approach.

  14. Formal Representations of Eligibility Criteria: A Literature Review

    PubMed Central

    Weng, Chunhua; Tu, Samson W.; Sim, Ida; Richesson, Rachel

    2010-01-01

    Standards-based, computable knowledge representations for eligibility criteria are increasingly needed to provide computer-based decision support for automated research participant screening, clinical evidence application, and clinical research knowledge management. We surveyed the literature and identified five aspects of eligibility criteria knowledge representations that contribute to the various research and clinical applications: the intended use of computable eligibility criteria, the classification of eligibility criteria, the expression language for representing eligibility rules, the encoding of eligibility concepts, and the modeling of patient data. We consider three of them (expression language, codification of eligibility concepts, and patient data modeling), to be essential constructs of a formal knowledge representation for eligibility criteria. The requirements for each of the three knowledge constructs vary for different use cases, which therefore should inform the development and choice of the constructs toward cost-effective knowledge representation efforts. We discuss the implications of our findings for standardization efforts toward sharable knowledge representation of eligibility criteria. PMID:20034594

  15. Language Networks as Models of Cognition: Understanding Cognition through Language

    NASA Astrophysics Data System (ADS)

    Beckage, Nicole M.; Colunga, Eliana

    Language is inherently cognitive and distinctly human. Separating the object of language from the human mind that processes and creates language fails to capture the full language system. Linguistics traditionally has focused on the study of language as a static representation, removed from the human mind. Network analysis has traditionally been focused on the properties and structure that emerge from network representations. Both disciplines could gain from looking at language as a cognitive process. In contrast, psycholinguistic research has focused on the process of language without committing to a representation. However, by considering language networks as approximations of the cognitive system we can take the strength of each of these approaches to study human performance and cognition as related to language. This paper reviews research showcasing the contributions of network science to the study of language. Specifically, we focus on the interplay of cognition and language as captured by a network representation. To this end, we review different types of language network representations before considering the influence of global level network features. We continue by considering human performance in relation to network structure and conclude with theoretical network models that offer potential and testable explanations of cognitive and linguistic phenomena.

  16. ProphTools: general prioritization tools for heterogeneous biological networks.

    PubMed

    Navarro, Carmen; Martínez, Victor; Blanco, Armando; Cano, Carlos

    2017-12-01

    Networks have been proven effective representations for the analysis of biological data. As such, there exist multiple methods to extract knowledge from biological networks. However, these approaches usually limit their scope to a single biological entity type of interest or they lack the flexibility to analyze user-defined data. We developed ProphTools, a flexible open-source command-line tool that performs prioritization on a heterogeneous network. ProphTools prioritization combines a Flow Propagation algorithm similar to a Random Walk with Restarts and a weighted propagation method. A flexible model for the representation of a heterogeneous network allows the user to define a prioritization problem involving an arbitrary number of entity types and their interconnections. Furthermore, ProphTools provides functionality to perform cross-validation tests, allowing users to select the best network configuration for a given problem. ProphTools core prioritization methodology has already been proven effective in gene-disease prioritization and drug repositioning. Here we make ProphTools available to the scientific community as flexible, open-source software and perform a new proof-of-concept case study on long noncoding RNAs (lncRNAs) to disease prioritization. ProphTools is robust prioritization software that provides the flexibility not present in other state-of-the-art network analysis approaches, enabling researchers to perform prioritization tasks on any user-defined heterogeneous network. Furthermore, the application to lncRNA-disease prioritization shows that ProphTools can reach the performance levels of ad hoc prioritization tools without losing its generality. © The Authors 2017. Published by Oxford University Press.

  17. Network representations of angular regions for electromagnetic scattering

    PubMed Central

    2017-01-01

    Network modeling in electromagnetics is an effective technique in treating scattering problems by canonical and complex structures. Geometries constituted of angular regions (wedges) together with planar layers can now be approached with the Generalized Wiener-Hopf Technique supported by network representation in spectral domain. Even if the network representations in spectral planes are of great importance by themselves, the aim of this paper is to present a theoretical base and a general procedure for the formulation of complex scattering problems using network representation for the Generalized Wiener Hopf Technique starting basically from the wave equation. In particular while the spectral network representations are relatively well known for planar layers, the network modelling for an angular region requires a new theory that will be developed in this paper. With this theory we complete the formulation of a network methodology whose effectiveness is demonstrated by the application to a complex scattering problem with practical solutions given in terms of GTD/UTD diffraction coefficients and total far fields for engineering applications. The methodology can be applied to other physics fields. PMID:28817573

  18. Auditing Associative Relations across Two Knowledge Sources

    PubMed Central

    Vizenor, Lowell T.; Bodenreider, Olivier; McCray, Alexa T.

    2009-01-01

    Objectives This paper proposes a novel semantic method for auditing associative relations in biomedical terminologies. We tested our methodology on two Unified Medical Language System (UMLS) knowledge sources. Methods We use the UMLS semantic groups as high-level representations of the domain and range of relationships in the Metathesaurus and in the Semantic Network. A mapping created between Metathesaurus relationships and Semantic Network relationships forms the basis for comparing the signatures of a given Metathesaurus relationship to the signatures of the semantic relationship to which it is mapped. The consistency of Metathesaurus relations is studied for each relationship. Results Of the 177 associative relationships in the Metathesaurus, 84 (48%) exhibit a high degree of consistency with the corresponding Semantic Network relationships. Overall, 63% of the 1.8M associative relations in the Metathesaurus are consistent with relations in the Semantic Network. Conclusion The semantics of associative relationships in biomedical terminologies should be defined explicitly by their developers. The Semantic Network would benefit from being extended with new relationships and with new relations for some existing relationships. The UMLS editing environment could take advantage of the correspondence established between relationships in the Metathesaurus and the Semantic Network. Finally, the auditing method also yielded useful information for refining the mapping of associative relationships between the two sources. PMID:19475724

  19. Alignment of dynamic networks.

    PubMed

    Vijayan, V; Critchlow, D; Milenkovic, T

    2017-07-15

    Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems' static network representations, as is currently done. For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. http://nd.edu/∼cone/DynaMAGNA++/ . tmilenko@nd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. Alignment of dynamic networks

    PubMed Central

    Vijayan, V.; Critchlow, D.; Milenković, T.

    2017-01-01

    Abstract Motivation: Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems’ static network representations, as is currently done. Results: For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. Availability and implementation: http://nd.edu/∼cone/DynaMAGNA++/. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881980

  1. HoPaCI-DB: host-Pseudomonas and Coxiella interaction database

    PubMed Central

    Bleves, Sophie; Dunger, Irmtraud; Walter, Mathias C.; Frangoulidis, Dimitrios; Kastenmüller, Gabi; Voulhoux, Romé; Ruepp, Andreas

    2014-01-01

    Bacterial infectious diseases are the result of multifactorial processes affected by the interplay between virulence factors and host targets. The host-Pseudomonas and Coxiella interaction database (HoPaCI-DB) is a publicly available manually curated integrative database (http://mips.helmholtz-muenchen.de/HoPaCI/) of host–pathogen interaction data from Pseudomonas aeruginosa and Coxiella burnetii. The resource provides structured information on 3585 experimentally validated interactions between molecules, bioprocesses and cellular structures extracted from the scientific literature. Systematic annotation and interactive graphical representation of disease networks make HoPaCI-DB a versatile knowledge base for biologists and network biology approaches. PMID:24137008

  2. Analytic tools for investigating the structure of network reliability measures with regard to observation correlations

    NASA Astrophysics Data System (ADS)

    Prószyński, W.; Kwaśniak, M.

    2018-03-01

    A global measure of observation correlations in a network is proposed, together with the auxiliary indices related to non-diagonal elements of the correlation matrix. Based on the above global measure, a specific representation of the correlation matrix is presented, being the result of rigorously proven theorem formulated within the present research. According to the theorem, each positive definite correlation matrix can be expressed by a scale factor and a so-called internal weight matrix. Such a representation made it possible to investigate the structure of the basic reliability measures with regard to observation correlations. Numerical examples carried out for two test networks illustrate the structure of those measures that proved to be dependent on global correlation index. Also, the levels of global correlation are proposed. It is shown that one can readily find an approximate value of the global correlation index, and hence the correlation level, for the expected values of auxiliary indices being the only knowledge about a correlation matrix of interest. The paper is an extended continuation of the previous study of authors that was confined to the elementary case termed uniform correlation. The extension covers arbitrary correlation matrices and a structure of correlation effect.

  3. Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network

    PubMed Central

    Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2009-01-01

    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly’s halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support. PMID:20396612

  4. Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network.

    PubMed

    Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2009-06-01

    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.

  5. Identifying network representation issues with the network trip.

    DOT National Transportation Integrated Search

    2012-04-23

    The purpose of this study was to evaluate the effects of road-network representation on the application of the Network Robustness Index (NRI), using the Chittenden County Regional Transportation Model. The results are expected to improve the requirem...

  6. Knowledge representation and management: towards an integration of a semantic web in daily health practice.

    PubMed

    Griffon, N; Charlet, J; Darmoni, Sj

    2013-01-01

    To summarize the best papers in the field of Knowledge Representation and Management (KRM). A synopsis of the four selected articles for the IMIA Yearbook 2013 KRM section is provided, as well as highlights of current KRM trends, in particular, of the semantic web in daily health practice. The manual selection was performed in three stages: first a set of 3,106 articles, then a second set of 86 articles followed by a third set of 15 articles, and finally the last set of four chosen articles. Among the four selected articles (see Table 1), one focuses on knowledge engineering to prevent adverse drug events; the objective of the second is to propose mappings between clinical archetypes and SNOMED CT in the context of clinical practice; the third presents an ontology to create a question-answering system; the fourth describes a biomonitoring network based on semantic web technologies. These four articles clearly indicate that the health semantic web has become a part of daily practice of health professionals since 2012. In the review of the second set of 86 articles, the same topics included in the previous IMIA yearbook remain active research fields: Knowledge extraction, automatic indexing, information retrieval, natural language processing, management of health terminologies and ontologies.

  7. Towards a standardised representation of a knowledge base for adverse drug event prevention.

    PubMed

    Koutkias, Vassilis; Lazou, Katerina; de Clercq, Paul; Maglaveras, Nicos

    2011-01-01

    Knowledge representation is an important part of knowledge engineering activities that is crucial for enabling knowledge sharing and reuse. In this regard, standardised formalisms and technologies play a significant role. Especially for the medical domain, where knowledge may be tacit, not articulated and highly diverse, the development and adoption of standardised knowledge representations is highly challenging and of outmost importance to achieve knowledge interoperability. To this end, this paper presents a research effort towards the standardised representation of a Knowledge Base (KB) encapsulating rule-based signals and procedures for Adverse Drug Event (ADE) prevention. The KB constitutes an integral part of Clinical Decision Support Systems (CDSSs) to be used at the point of care. The paper highlights the requirements at the domain of discourse with respect to knowledge representation, according to which GELLO (an HL7 and ANSI standard) has been adopted. Results of our prototype implementation are presented along with the advantages and the limitations introduced by the employed approach.

  8. The ventral visual pathway: an expanded neural framework for the processing of object quality.

    PubMed

    Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Ungerleider, Leslie G; Mishkin, Mortimer

    2013-01-01

    Since the original characterization of the ventral visual pathway, our knowledge of its neuroanatomy, functional properties, and extrinsic targets has grown considerably. Here we synthesize this recent evidence and propose that the ventral pathway is best understood as a recurrent occipitotemporal network containing neural representations of object quality both utilized and constrained by at least six distinct cortical and subcortical systems. Each system serves its own specialized behavioral, cognitive, or affective function, collectively providing the raison d'être for the ventral visual pathway. This expanded framework contrasts with the depiction of the ventral visual pathway as a largely serial staged hierarchy culminating in singular object representations and more parsimoniously incorporates attentional, contextual, and feedback effects. Published by Elsevier Ltd.

  9. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.

    PubMed

    Wu, Mengmeng; Zeng, Wanwen; Liu, Wenqiang; Lv, Hairong; Chen, Ting; Jiang, Rui

    2018-06-03

    Genome-wide association studies (GWAS) have successfully discovered a number of disease-associated genetic variants in the past decade, providing an unprecedented opportunity for deciphering genetic basis of human inherited diseases. However, it is still a challenging task to extract biological knowledge from the GWAS data, due to such issues as missing heritability and weak interpretability. Indeed, the fact that the majority of discovered loci fall into noncoding regions without clear links to genes has been preventing the characterization of their functions and appealing for a sophisticated approach to bridge genetic and genomic studies. Towards this problem, network-based prioritization of candidate genes, which performs integrated analysis of gene networks with GWAS data, has emerged as a promising direction and attracted much attention. However, most existing methods overlook the sparse and noisy properties of gene networks and thus may lead to suboptimal performance. Motivated by this understanding, we proposed a novel method called REGENT for integrating multiple gene networks with GWAS data to prioritize candidate genes for complex diseases. We leveraged a technique called the network representation learning to embed a gene network into a compact and robust feature space, and then designed a hierarchical statistical model to integrate features of multiple gene networks with GWAS data for the effective inference of genes associated with a disease of interest. We applied our method to six complex diseases and demonstrated the superior performance of REGENT over existing approaches in recovering known disease-associated genes. We further conducted a pathway analysis and showed that the ability of REGENT to discover disease-associated pathways. We expect to see applications of our method to a broad spectrum of diseases for post-GWAS analysis. REGENT is freely available at https://github.com/wmmthu/REGENT. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Audio Spectrogram Representations for Processing with Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Wyse, L.

    2017-05-01

    One of the decisions that arise when designing a neural network for any application is how the data should be represented in order to be presented to, and possibly generated by, a neural network. For audio, the choice is less obvious than it seems to be for visual images, and a variety of representations have been used for different applications including the raw digitized sample stream, hand-crafted features, machine discovered features, MFCCs and variants that include deltas, and a variety of spectral representations. This paper reviews some of these representations and issues that arise, focusing particularly on spectrograms for generating audio using neural networks for style transfer.

  11. ChloroKB: A Web Application for the Integration of Knowledge Related to Chloroplast Metabolic Network1[OPEN

    PubMed Central

    Gloaguen, Pauline; Alban, Claude; Ravanel, Stéphane; Seigneurin-Berny, Daphné; Matringe, Michel; Ferro, Myriam; Bruley, Christophe; Rolland, Norbert; Vandenbrouck, Yves

    2017-01-01

    Higher plants, as autotrophic organisms, are effective sources of molecules. They hold great promise for metabolic engineering, but the behavior of plant metabolism at the network level is still incompletely described. Although structural models (stoichiometry matrices) and pathway databases are extremely useful, they cannot describe the complexity of the metabolic context, and new tools are required to visually represent integrated biocurated knowledge for use by both humans and computers. Here, we describe ChloroKB, a Web application (http://chlorokb.fr/) for visual exploration and analysis of the Arabidopsis (Arabidopsis thaliana) metabolic network in the chloroplast and related cellular pathways. The network was manually reconstructed through extensive biocuration to provide transparent traceability of experimental data. Proteins and metabolites were placed in their biological context (spatial distribution within cells, connectivity in the network, participation in supramolecular complexes, and regulatory interactions) using CellDesigner software. The network contains 1,147 reviewed proteins (559 localized exclusively in plastids, 68 in at least one additional compartment, and 520 outside the plastid), 122 proteins awaiting biochemical/genetic characterization, and 228 proteins for which genes have not yet been identified. The visual presentation is intuitive and browsing is fluid, providing instant access to the graphical representation of integrated processes and to a wealth of refined qualitative and quantitative data. ChloroKB will be a significant support for structural and quantitative kinetic modeling, for biological reasoning, when comparing novel data with established knowledge, for computer analyses, and for educational purposes. ChloroKB will be enhanced by continuous updates following contributions from plant researchers. PMID:28442501

  12. Knowledge Representation: A Brief Review.

    ERIC Educational Resources Information Center

    Vickery, B. C.

    1986-01-01

    Reviews different structures and techniques of knowledge representation: structure of database records and files, data structures in computer programming, syntatic and semantic structure of natural language, knowledge representation in artificial intelligence, and models of human memory. A prototype expert system that makes use of some of these…

  13. Stochastic Modeling as a Means of Automatic Speech Recognition

    DTIC Science & Technology

    1975-04-01

    companng ihc features of different speech recognition systems, attention is often focused on thc control structures and the methods o’ communication...with no need to use secondary storage . Note that we go from a group of separate knowledge sources to an integrated network representation in...exhaust the available lime or storage . - - - . . 1- .-.-.. mmm^~ i — ■ ■ ’ ■ C haplcr I - IN I ROÜliCl ION Page 13 On the other hand

  14. Differential involvement of knowledge representation and executive control in episodic memory performance in young and older adults.

    PubMed

    Bouazzaoui, Badiâa; Fay, Séverine; Taconnat, Laurence; Angel, Lucie; Vanneste, Sandrine; Isingrini, Michel

    2013-06-01

    Craik and Bialystok (2006, 2008) postulated that examining the evolution of knowledge representation and control processes across the life span could help in understanding age-related cognitive changes. The present study explored the hypothesis that knowledge representation and control processes are differentially involved in the episodic memory performance of young and older adults. Young and older adults were administered a cued-recall task and tests of crystallized knowledge and executive functioning to measure representation and control processes, respectively. Results replicate the classic finding that executive and cued-recall performance decline with age, but crystallized-knowledge performance does not. Factor analysis confirmed the independence of representation and control. Correlation analyses showed that the memory performance of younger adults was correlated with representation but not with control measures, whereas the memory performance of older adults was correlated with both representation and control measures. Regression analyses indicated that the control factor was the main predictor of episodic-memory performance for older adults, with the representation factor adding an independent contribution, but the representation factor was the sole predictor for young adults. This finding supports the view that factors sustaining episodic memory vary from young adulthood to old age; representation was shown to be important throughout adulthood, and control was also important for older adults. The results also indicated that control and representation modulate age-group-related variance in episodic memory.

  15. Complex networks as a unified framework for descriptive analysis and predictive modeling in climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhaeuser, Karsten J K; Chawla, Nitesh; Ganguly, Auroop R

    The analysis of climate data has relied heavily on hypothesis-driven statistical methods, while projections of future climate are based primarily on physics-based computational models. However, in recent years a wealth of new datasets has become available. Therefore, we take a more data-centric approach and propose a unified framework for studying climate, with an aim towards characterizing observed phenomena as well as discovering new knowledge in the climate domain. Specifically, we posit that complex networks are well-suited for both descriptive analysis and predictive modeling tasks. We show that the structural properties of climate networks have useful interpretation within the domain. Further,more » we extract clusters from these networks and demonstrate their predictive power as climate indices. Our experimental results establish that the network clusters are statistically significantly better predictors than clusters derived using a more traditional clustering approach. Using complex networks as data representation thus enables the unique opportunity for descriptive and predictive modeling to inform each other.« less

  16. Learning in Artificial Neural Systems

    NASA Technical Reports Server (NTRS)

    Matheus, Christopher J.; Hohensee, William E.

    1987-01-01

    This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.

  17. Target recognition and scene interpretation in image/video understanding systems based on network-symbolic models

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2004-08-01

    Vision is only a part of a system that converts visual information into knowledge structures. These structures drive the vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, which is an interpretation of visual information in terms of these knowledge models. These mechanisms provide a reliable recognition if the object is occluded or cannot be recognized as a whole. It is hard to split the entire system apart, and reliable solutions to the target recognition problems are possible only within the solution of a more generic Image Understanding Problem. Brain reduces informational and computational complexities, using implicit symbolic coding of features, hierarchical compression, and selective processing of visual information. Biologically inspired Network-Symbolic representation, where both systematic structural/logical methods and neural/statistical methods are parts of a single mechanism, is the most feasible for such models. It converts visual information into relational Network-Symbolic structures, avoiding artificial precise computations of 3-dimensional models. Network-Symbolic Transformations derive abstract structures, which allows for invariant recognition of an object as exemplar of a class. Active vision helps creating consistent models. Attention, separation of figure from ground and perceptual grouping are special kinds of network-symbolic transformations. Such Image/Video Understanding Systems will be reliably recognizing targets.

  18. Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets.

    PubMed

    Liu, Hu-Chen; Liu, Long; Lin, Qing-Lian; Liu, Nan

    2013-06-01

    The two most important issues of expert systems are the acquisition of domain experts' professional knowledge and the representation and reasoning of the knowledge rules that have been identified. First, during expert knowledge acquisition processes, the domain expert panel often demonstrates different experience and knowledge from one another and produces different types of knowledge information such as complete and incomplete, precise and imprecise, and known and unknown because of its cross-functional and multidisciplinary nature. Second, as a promising tool for knowledge representation and reasoning, fuzzy Petri nets (FPNs) still suffer a couple of deficiencies. The parameters in current FPN models could not accurately represent the increasingly complex knowledge-based systems, and the rules in most existing knowledge inference frameworks could not be dynamically adjustable according to propositions' variation as human cognition and thinking. In this paper, we present a knowledge acquisition and representation approach using the fuzzy evidential reasoning approach and dynamic adaptive FPNs to solve the problems mentioned above. As is illustrated by the numerical example, the proposed approach can well capture experts' diversity experience, enhance the knowledge representation power, and reason the rule-based knowledge more intelligently.

  19. Knowledge Organization through Multiple Representations in a Computer-Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Namdar, Bahadir; Shen, Ji

    2018-01-01

    Computer-supported collaborative learning (CSCL) environments provide learners with multiple representational tools for storing, sharing, and constructing knowledge. However, little is known about how learners organize knowledge through multiple representations about complex socioscientific issues. Therefore, the purpose of this study was to…

  20. A knowledge base architecture for distributed knowledge agents

    NASA Technical Reports Server (NTRS)

    Riedesel, Joel; Walls, Bryan

    1990-01-01

    A tuple space based object oriented model for knowledge base representation and interpretation is presented. An architecture for managing distributed knowledge agents is then implemented within the model. The general model is based upon a database implementation of a tuple space. Objects are then defined as an additional layer upon the database. The tuple space may or may not be distributed depending upon the database implementation. A language for representing knowledge and inference strategy is defined whose implementation takes advantage of the tuple space. The general model may then be instantiated in many different forms, each of which may be a distinct knowledge agent. Knowledge agents may communicate using tuple space mechanisms as in the LINDA model as well as using more well known message passing mechanisms. An implementation of the model is presented describing strategies used to keep inference tractable without giving up expressivity. An example applied to a power management and distribution network for Space Station Freedom is given.

  1. Do Knowledge-Component Models Need to Incorporate Representational Competencies?

    ERIC Educational Resources Information Center

    Rau, Martina Angela

    2017-01-01

    Traditional knowledge-component models describe students' content knowledge (e.g., their ability to carry out problem-solving procedures or their ability to reason about a concept). In many STEM domains, instruction uses multiple visual representations such as graphs, figures, and diagrams. The use of visual representations implies a…

  2. Representational Distance Learning for Deep Neural Networks

    PubMed Central

    McClure, Patrick; Kriegeskorte, Nikolaus

    2016-01-01

    Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains. PMID:28082889

  3. Representational Distance Learning for Deep Neural Networks.

    PubMed

    McClure, Patrick; Kriegeskorte, Nikolaus

    2016-01-01

    Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains.

  4. Topic segmentation via community detection in complex networks

    NASA Astrophysics Data System (ADS)

    de Arruda, Henrique F.; Costa, Luciano da F.; Amancio, Diego R.

    2016-06-01

    Many real systems have been modeled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting effects, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such a representation fails in capturing other textual features, such as the organization in topics or subjects. We propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favor the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study the semantical features of texts.

  5. Topic segmentation via community detection in complex networks.

    PubMed

    de Arruda, Henrique F; Costa, Luciano da F; Amancio, Diego R

    2016-06-01

    Many real systems have been modeled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting effects, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such a representation fails in capturing other textual features, such as the organization in topics or subjects. We propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favor the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study the semantical features of texts.

  6. From knowledge presentation to knowledge representation to knowledge construction: Future directions for hypermedia

    NASA Technical Reports Server (NTRS)

    Palumbo, David B.

    1990-01-01

    Relationships between human memory systems and hypermedia systems are discussed with particular emphasis on the underlying importance of associational memory. The distinctions between knowledge presentation, knowledge representation, and knowledge constructions are addressed. Issues involved in actually developing individualizable hypermedia based knowledge construction tools are presented.

  7. Planning Marine Reserve Networks for Both Feature Representation and Demographic Persistence Using Connectivity Patterns

    PubMed Central

    Bode, Michael; Williamson, David H.; Weeks, Rebecca; Jones, Geoff P.; Almany, Glenn R.; Harrison, Hugo B.; Hopf, Jess K.; Pressey, Robert L.

    2016-01-01

    Marine reserve networks must ensure the representation of important conservation features, and also guarantee the persistence of key populations. For many species, designing reserve networks is complicated by the absence or limited availability of spatial and life-history data. This is particularly true for data on larval dispersal, which has only recently become available. However, systematic conservation planning methods currently incorporate demographic processes through unsatisfactory surrogates. There are therefore two key challenges to designing marine reserve networks that achieve feature representation and demographic persistence constraints. First, constructing a method that efficiently incorporates persistence as well as complementary feature representation. Second, incorporating persistence using a mechanistic description of population viability, rather than a proxy such as size or distance. Here we construct a novel systematic conservation planning method that addresses both challenges, and parameterise it to design a hypothetical marine reserve network for fringing coral reefs in the Keppel Islands, Great Barrier Reef, Australia. For this application, we describe how demographic persistence goals can be constructed for an important reef fish species in the region, the bar-cheeked trout (Plectropomus maculatus). We compare reserve networks that are optimally designed for either feature representation or demographic persistence, with a reserve network that achieves both goals simultaneously. As well as being practically applicable, our analyses also provide general insights into marine reserve planning for both representation and demographic persistence. First, persistence constraints for dispersive organisms are likely to be much harder to achieve than representation targets, due to their greater complexity. Second, persistence and representation constraints pull the reserve network design process in divergent directions, making it difficult to efficiently achieve both constraints. Although our method can be readily applied to the data-rich Keppel Islands case study, we finally consider the factors that limit the method’s utility in information-poor contexts common in marine conservation. PMID:27168206

  8. The ventral visual pathway: An expanded neural framework for the processing of object quality

    PubMed Central

    Kravitz, Dwight J.; Saleem, Kadharbatcha S.; Baker, Chris I.; Ungerleider, Leslie G.; Mishkin, Mortimer

    2012-01-01

    Since the original characterization of the ventral visual pathway our knowledge of its neuroanatomy, functional properties, and extrinsic targets has grown considerably. Here we synthesize this recent evidence and propose that the ventral pathway is best understood as a recurrent occipitotemporal network containing neural representations of object quality both utilized and constrained by at least six distinct cortical and subcortical systems. Each system serves its own specialized behavioral, cognitive, or affective function, collectively providing the raison d’etre for the ventral visual pathway. This expanded framework contrasts with the depiction of the ventral visual pathway as a largely serial staged hierarchy that culminates in singular object representations for utilization mainly by ventrolateral prefrontal cortex and, more parsimoniously than this account, incorporates attentional, contextual, and feedback effects. PMID:23265839

  9. A negotiation methodology and its application to cogeneration planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.M.; Liu, C.C.; Luu, S.

    Power system planning has become a complex process in utilities today. This paper presents a methodology for integrated planning with multiple objectives. The methodology uses a graphical representation (Goal-Decision Network) to capture the planning knowledge. The planning process is viewed as a negotiation process that applies three negotiation operators to search for beneficial decisions in a GDN. Also, the negotiation framework is applied to the problem of planning for cogeneration interconnection. The simulation results are presented to illustrate the cogeneration planning process.

  10. Analysis of the English morphology by semantic networks

    NASA Astrophysics Data System (ADS)

    Žáček, Martin; Homola, Dan

    2017-11-01

    The article is devoted to study the morphology of natural language, in this case English language. The research is of the language is from the perspective of knowledge representation, when we look at the word as a concept in the Concept languages. The research is in the relationship of the individual words and their classification in the sentence. For the analysis there are used several methods (syntax, lexical categories, morphology). This article focuses mainly on the word, as the foundation of every natural language (English).

  11. Knowledge representation and management enabling intelligent interoperability - principles and standards.

    PubMed

    Blobel, Bernd

    2013-01-01

    Based on the paradigm changes for health, health services and underlying technologies as well as the need for at best comprehensive and increasingly automated interoperability, the paper addresses the challenge of knowledge representation and management for medical decision support. After introducing related definitions, a system-theoretical, architecture-centric approach to decision support systems (DSSs) and appropriate ways for representing them using systems of ontologies is given. Finally, existing and emerging knowledge representation and management standards are presented. The paper focuses on the knowledge representation and management part of DSSs, excluding the reasoning part from consideration.

  12. Data, knowledge and method bases in chemical sciences. Part IV. Current status in databases.

    PubMed

    Braibanti, Antonio; Rao, Rupenaguntla Sambasiva; Rao, Gollapalli Nagesvara; Ramam, Veluri Anantha; Rao, Sattiraju Veera Venkata Satyanarayana

    2002-01-01

    Computer readable databases have become an integral part of chemical research right from planning data acquisition to interpretation of the information generated. The databases available today are numerical, spectral and bibliographic. Data representation by different schemes--relational, hierarchical and objects--is demonstrated. Quality index (QI) throws light on the quality of data. The objective, prospects and impact of database activity on expert systems are discussed. The number and size of corporate databases available on international networks crossed manageable number leading to databases about their contents. Subsets of corporate or small databases have been developed by groups of chemists. The features and role of knowledge-based or intelligent databases are described.

  13. A novel knowledge-based system for interpreting complex engineering drawings: theory, representation, and implementation.

    PubMed

    Lu, Tong; Tai, Chiew-Lan; Yang, Huafei; Cai, Shijie

    2009-08-01

    We present a novel knowledge-based system to automatically convert real-life engineering drawings to content-oriented high-level descriptions. The proposed method essentially turns the complex interpretation process into two parts: knowledge representation and knowledge-based interpretation. We propose a new hierarchical descriptor-based knowledge representation method to organize the various types of engineering objects and their complex high-level relations. The descriptors are defined using an Extended Backus Naur Form (EBNF), facilitating modification and maintenance. When interpreting a set of related engineering drawings, the knowledge-based interpretation system first constructs an EBNF-tree from the knowledge representation file, then searches for potential engineering objects guided by a depth-first order of the nodes in the EBNF-tree. Experimental results and comparisons with other interpretation systems demonstrate that our knowledge-based system is accurate and robust for high-level interpretation of complex real-life engineering projects.

  14. Conceptual knowledge representation: A cross-section of current research.

    PubMed

    Rogers, Timothy T; Wolmetz, Michael

    2016-01-01

    How is conceptual knowledge encoded in the brain? This special issue of Cognitive Neuropsychology takes stock of current efforts to answer this question through a variety of methods and perspectives. Across this work, three questions recur, each fundamental to knowledge representation in the mind and brain. First, what are the elements of conceptual representation? Second, to what extent are conceptual representations embodied in sensory and motor systems? Third, how are conceptual representations shaped by context, especially linguistic context? In this introductory article we provide relevant background on these themes and introduce how they are addressed by our contributing authors.

  15. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory.

    PubMed

    Durán, Claudio; Daminelli, Simone; Thomas, Josephine M; Haupt, V Joachim; Schroeder, Michael; Cannistraci, Carlo Vittorio

    2017-04-26

    The bipartite network representation of the drug-target interactions (DTIs) in a biosystem enhances understanding of the drugs' multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental testing of DTIs is costly and time-consuming, computational predictors are of great aid. Here, for the first time, state-of-the-art DTI supervised predictors custom-made in network biology were compared-using standard and innovative validation frameworks-with unsupervised pure topological-based models designed for general-purpose link prediction in bipartite networks. Surprisingly, our results show that the bipartite topology alone, if adequately exploited by means of the recently proposed local-community-paradigm (LCP) theory-initially detected in brain-network topological self-organization and afterwards generalized to any complex network-is able to suggest highly reliable predictions, with comparable performance with the state-of-the-art-supervised methods that exploit additional (non-topological, for instance biochemical) DTI knowledge. Furthermore, a detailed analysis of the novel predictions revealed that each class of methods prioritizes distinct true interactions; hence, combining methodologies based on diverse principles represents a promising strategy to improve drug-target discovery. To conclude, this study promotes the power of bio-inspired computing, demonstrating that simple unsupervised rules inspired by principles of topological self-organization and adaptiveness arising during learning in living intelligent systems (like the brain) can efficiently equal perform complicated algorithms based on advanced, supervised and knowledge-based engineering. © The Author 2017. Published by Oxford University Press.

  16. Predicting behavior change from persuasive messages using neural representational similarity and social network analyses.

    PubMed

    Pegors, Teresa K; Tompson, Steven; O'Donnell, Matthew Brook; Falk, Emily B

    2017-08-15

    Neural activity in medial prefrontal cortex (MPFC), identified as engaging in self-related processing, predicts later health behavior change. However, it is unknown to what extent individual differences in neural representation of content and lived experience influence this brain-behavior relationship. We examined whether the strength of content-specific representations during persuasive messaging relates to later behavior change, and whether these relationships change as a function of individuals' social network composition. In our study, smokers viewed anti-smoking messages while undergoing fMRI and we measured changes in their smoking behavior one month later. Using representational similarity analyses, we found that the degree to which message content (i.e. health, social, or valence information) was represented in a self-related processing MPFC region was associated with later smoking behavior, with increased representations of negatively valenced (risk) information corresponding to greater message-consistent behavior change. Furthermore, the relationship between representations and behavior change depended on social network composition: smokers who had proportionally fewer smokers in their network showed increases in smoking behavior when social or health content was strongly represented in MPFC, whereas message-consistent behavior (i.e., less smoking) was more likely for those with proportionally more smokers in their social network who represented social or health consequences more strongly. These results highlight the dynamic relationship between representations in MPFC and key outcomes such as health behavior change; a complete understanding of the role of MPFC in motivation and action should take into account individual differences in neural representation of stimulus attributes and social context variables such as social network composition. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. ChloroKB: A Web Application for the Integration of Knowledge Related to Chloroplast Metabolic Network.

    PubMed

    Gloaguen, Pauline; Bournais, Sylvain; Alban, Claude; Ravanel, Stéphane; Seigneurin-Berny, Daphné; Matringe, Michel; Tardif, Marianne; Kuntz, Marcel; Ferro, Myriam; Bruley, Christophe; Rolland, Norbert; Vandenbrouck, Yves; Curien, Gilles

    2017-06-01

    Higher plants, as autotrophic organisms, are effective sources of molecules. They hold great promise for metabolic engineering, but the behavior of plant metabolism at the network level is still incompletely described. Although structural models (stoichiometry matrices) and pathway databases are extremely useful, they cannot describe the complexity of the metabolic context, and new tools are required to visually represent integrated biocurated knowledge for use by both humans and computers. Here, we describe ChloroKB, a Web application (http://chlorokb.fr/) for visual exploration and analysis of the Arabidopsis ( Arabidopsis thaliana ) metabolic network in the chloroplast and related cellular pathways. The network was manually reconstructed through extensive biocuration to provide transparent traceability of experimental data. Proteins and metabolites were placed in their biological context (spatial distribution within cells, connectivity in the network, participation in supramolecular complexes, and regulatory interactions) using CellDesigner software. The network contains 1,147 reviewed proteins (559 localized exclusively in plastids, 68 in at least one additional compartment, and 520 outside the plastid), 122 proteins awaiting biochemical/genetic characterization, and 228 proteins for which genes have not yet been identified. The visual presentation is intuitive and browsing is fluid, providing instant access to the graphical representation of integrated processes and to a wealth of refined qualitative and quantitative data. ChloroKB will be a significant support for structural and quantitative kinetic modeling, for biological reasoning, when comparing novel data with established knowledge, for computer analyses, and for educational purposes. ChloroKB will be enhanced by continuous updates following contributions from plant researchers. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Visualizing the engram: learning stabilizes odor representations in the olfactory network.

    PubMed

    Shakhawat, Amin M D; Gheidi, Ali; Hou, Qinlong; Dhillon, Sandeep K; Marrone, Diano F; Harley, Carolyn W; Yuan, Qi

    2014-11-12

    The nature of memory is a central issue in neuroscience. How does our representation of the world change with learning and experience? Here we use the transcription of Arc mRNA, which permits probing the neural representations of temporally separated events, to address this in a well characterized odor learning model. Rat pups readily associate odor with maternal care. In pups, the lateralized olfactory networks are independent, permitting separate training and within-subject control. We use multiday training to create an enduring memory of peppermint odor. Training stabilized rewarded, but not nonrewarded, odor representations in both mitral cells and associated granule cells of the olfactory bulb and in the pyramidal cells of the anterior piriform cortex. An enlarged core of stable, likely highly active neurons represent rewarded odor at both stages of the olfactory network. Odor representations in anterior piriform cortex were sparser than typical in adult rat and did not enlarge with learning. This sparser representation of odor is congruent with the maturation of lateral olfactory tract input in rat pups. Cortical representations elsewhere have been shown to be highly variable in electrophysiological experiments, suggesting brains operate normally using dynamic and network-modulated representations. The olfactory cortical representations here are consistent with the generalized associative model of sparse variable cortical representation, as normal responses to repeated odors were highly variable (∼70% of the cells change as indexed by Arc). Learning and memory modified rewarded odor ensembles to increase stability in a core representational component. Copyright © 2014 the authors 0270-6474/14/3415394-08$15.00/0.

  19. Knowledge Representation Of CT Scans Of The Head

    NASA Astrophysics Data System (ADS)

    Ackerman, Laurens V.; Burke, M. W.; Rada, Roy

    1984-06-01

    We have been investigating diagnostic knowledge models which assist in the automatic classification of medical images by combining information extracted from each image with knowledge specific to that class of images. In a more general sense we are trying to integrate verbal and pictorial descriptions of disease via representations of knowledge, study automatic hypothesis generation as related to clinical medicine, evolve new mathematical image measures while integrating them into the total diagnostic process, and investigate ways to augment the knowledge of the physician. Specifically, we have constructed an artificial intelligence knowledge model using the technique of a production system blending pictorial and verbal knowledge about the respective CT scan and patient history. It is an attempt to tie together different sources of knowledge representation, picture feature extraction and hypothesis generation. Our knowledge reasoning and representation system (KRRS) works with data at the conscious reasoning level of the practicing physician while at the visual perceptional level we are building another production system, the picture parameter extractor (PPE). This paper describes KRRS and its relationship to PPE.

  20. Network Analysis of Students' Use of Representations in Problem Solving

    NASA Astrophysics Data System (ADS)

    McPadden, Daryl; Brewe, Eric

    2016-03-01

    We present the preliminary results of a study on student use of representations in problem solving within the Modeling Instruction - Electricity and Magnetism (MI-E&M) course. Representational competence is a critical skill needed for students to develop a sophisticated understanding of college science topics and to succeed in their science courses. In this study, 70 students from the MI-E&M, calculus-based course were given a survey of 25 physics problem statements both pre- and post- instruction, covering both Newtonian Mechanics and Electricity and Magnetism (E&M). For each problem statement, students were asked which representations they would use in that given situation. We analyze the survey results through network analysis, identifying which representations are linked together in which contexts. We also compare the representation networks for those students who had already taken the first-semester Modeling Instruction Mechanics course and those students who had taken a non-Modeling Mechanics course.

  1. Investigating the Implementation of Knowledge Representation in the COMBATXXI System

    DTIC Science & Technology

    2015-06-01

    mechanism. Finally, follow-on research can work towards more cognitive modeling in order to distinguish between manned systems and unmanned systems in...Approved for public release; distribution is unlimited INVESTIGATING THE IMPLEMENTATION OF KNOWLEDGE REPRESENTATION IN THE COMBATXXI SYSTEM by Mongi...INVESTIGATING THE IMPLEMENTATION OF KNOWLEDGE REPRESENTATION IN THE COMBATXXI SYSTEM 5. FUNDING NUMBERS GM10331601, National Institute of General

  2. Progress in knowledge representation research

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1985-01-01

    Brief descriptions are given of research being carried out in the field of knowledge representation. Dynamic simulation and modelling of planning systems with real-time sensor inputs; development of domain-independent knowledge representation tools which can be used in the development of application-specific expert and planning systems; and development of a space-borne very high speed integrated circuit processor are among the projects discussed.

  3. Calibrating Bayesian Network Representations of Social-Behavioral Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, Paul D.; Walsh, Stephen J.

    2010-04-08

    While human behavior has long been studied, recent and ongoing advances in computational modeling present opportunities for recasting research outcomes in human behavior. In this paper we describe how Bayesian networks can represent outcomes of human behavior research. We demonstrate a Bayesian network that represents political radicalization research – and show a corresponding visual representation of aspects of this research outcome. Since Bayesian networks can be quantitatively compared with external observations, the representation can also be used for empirical assessments of the research which the network summarizes. For a political radicalization model based on published research, we show this empiricalmore » comparison with data taken from the Minorities at Risk Organizational Behaviors database.« less

  4. The nature and development of preservice science teachers' conceptions of subject matter and pedagogy

    NASA Astrophysics Data System (ADS)

    Lederman, Norman G.; Gess-Newsome, Julie; Latz, Mark S.

    The purpose of this study was to assess the development and changes in preservice science teachers' subject matter and pedagogy knowledge structures as they proceeded through a professional teacher education program. Twelve secondary preservice science teachers were asked to create representations of their subject matter and pedagogy knowledge structures periodically (four times spanning the entirety of their subject-specific teacher education program) and participate in a videotaped interview concerning the eight knowledge structure representations immediately following student teaching. Qualitative analyses of knowledge structure representations and transcribed interviews within and between subjects were performed by one of the researchers and blindly corroborated by the other two researchers. Initial knowledge structure representations were typically linear and lacked coherence. Both types of knowledge structure representations were highly susceptible to change as a consequence of the act of teaching. Although there was some overlap between subject matter and pedagogy knowledge structures, they were reported to exert separate influences on classroom practice, with the pedagogy knowledge structure having primary influence on instructional decisions. Furthermore, the complexity of one's subject matter structure appeared to be a critical factor in determining whether the structure directly influences classroom practice.Received: 5 February 1993; Revised: 28 July 1993;

  5. Brain grey and white matter predictors of verbal ability traits in older age: The Lothian Birth Cohort 1936.

    PubMed

    Hoffman, Paul; Cox, Simon R; Dykiert, Dominika; Muñoz Maniega, Susana; Valdés Hernández, Maria C; Bastin, Mark E; Wardlaw, Joanna M; Deary, Ian J

    2017-08-01

    Cerebral grey and white matter MRI parameters are related to general intelligence and some specific cognitive abilities. Less is known about how structural brain measures relate specifically to verbal processing abilities. We used multi-modal structural MRI to investigate the grey matter (GM) and white matter (WM) correlates of verbal ability in 556 healthy older adults (mean age = 72.68 years, s.d. = .72 years). Structural equation modelling was used to decompose verbal performance into two latent factors: a storage factor that indexed participants' ability to store representations of verbal knowledge and an executive factor that measured their ability to regulate their access to this information in a flexible and task-appropriate manner. GM volumes and WM fractional anisotropy (FA) for components of the language/semantic network were used as predictors of these verbal ability factors. Volume of the ventral temporal cortices predicted participants' storage scores (β = .12, FDR-adjusted p = .04), consistent with the theory that this region acts as a key substrate of semantic knowledge. This effect was mediated by childhood IQ, suggesting a lifelong association between ventral temporal volume and verbal knowledge, rather than an effect of cognitive decline in later life. Executive ability was predicted by FA fractional anisotropy of the arcuate fasciculus (β = .19, FDR-adjusted p = .001), a major language-related tract implicated in speech production. This result suggests that this tract plays a role in the controlled retrieval of word knowledge during speech. At a more general level, these data highlight a basic distinction between information representation, which relies on the accumulation of tissue in specialised GM regions, and executive control, which depends on long-range WM pathways for efficient communication across distributed cortical networks. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The interaction of representation and reasoning.

    PubMed

    Bundy, Alan

    2013-09-08

    Automated reasoning is an enabling technology for many applications of informatics. These applications include verifying that a computer program meets its specification; enabling a robot to form a plan to achieve a task and answering questions by combining information from diverse sources, e.g. on the Internet, etc. How is automated reasoning possible? Firstly, knowledge of a domain must be stored in a computer, usually in the form of logical formulae. This knowledge might, for instance, have been entered manually, retrieved from the Internet or perceived in the environment via sensors, such as cameras. Secondly, rules of inference are applied to old knowledge to derive new knowledge. Automated reasoning techniques have been adapted from logic, a branch of mathematics that was originally designed to formalize the reasoning of humans, especially mathematicians. My special interest is in the way that representation and reasoning interact. Successful reasoning is dependent on appropriate representation of both knowledge and successful methods of reasoning. Failures of reasoning can suggest changes of representation. This process of representational change can also be automated. We will illustrate the automation of representational change by drawing on recent work in my research group.

  7. Deep graphs—A general framework to represent and analyze heterogeneous complex systems across scales

    NASA Astrophysics Data System (ADS)

    Traxl, Dominik; Boers, Niklas; Kurths, Jürgen

    2016-06-01

    Network theory has proven to be a powerful tool in describing and analyzing systems by modelling the relations between their constituent objects. Particularly in recent years, a great progress has been made by augmenting "traditional" network theory in order to account for the multiplex nature of many networks, multiple types of connections between objects, the time-evolution of networks, networks of networks and other intricacies. However, existing network representations still lack crucial features in order to serve as a general data analysis tool. These include, most importantly, an explicit association of information with possibly heterogeneous types of objects and relations, and a conclusive representation of the properties of groups of nodes as well as the interactions between such groups on different scales. In this paper, we introduce a collection of definitions resulting in a framework that, on the one hand, entails and unifies existing network representations (e.g., network of networks and multilayer networks), and on the other hand, generalizes and extends them by incorporating the above features. To implement these features, we first specify the nodes and edges of a finite graph as sets of properties (which are permitted to be arbitrary mathematical objects). Second, the mathematical concept of partition lattices is transferred to the network theory in order to demonstrate how partitioning the node and edge set of a graph into supernodes and superedges allows us to aggregate, compute, and allocate information on and between arbitrary groups of nodes. The derived partition lattice of a graph, which we denote by deep graph, constitutes a concise, yet comprehensive representation that enables the expression and analysis of heterogeneous properties, relations, and interactions on all scales of a complex system in a self-contained manner. Furthermore, to be able to utilize existing network-based methods and models, we derive different representations of multilayer networks from our framework and demonstrate the advantages of our representation. On the basis of the formal framework described here, we provide a rich, fully scalable (and self-explanatory) software package that integrates into the PyData ecosystem and offers interfaces to popular network packages, making it a powerful, general-purpose data analysis toolkit. We exemplify an application of deep graphs using a real world dataset, comprising 16 years of satellite-derived global precipitation measurements. We deduce a deep graph representation of these measurements in order to track and investigate local formations of spatio-temporal clusters of extreme precipitation events.

  8. Deep graphs-A general framework to represent and analyze heterogeneous complex systems across scales.

    PubMed

    Traxl, Dominik; Boers, Niklas; Kurths, Jürgen

    2016-06-01

    Network theory has proven to be a powerful tool in describing and analyzing systems by modelling the relations between their constituent objects. Particularly in recent years, a great progress has been made by augmenting "traditional" network theory in order to account for the multiplex nature of many networks, multiple types of connections between objects, the time-evolution of networks, networks of networks and other intricacies. However, existing network representations still lack crucial features in order to serve as a general data analysis tool. These include, most importantly, an explicit association of information with possibly heterogeneous types of objects and relations, and a conclusive representation of the properties of groups of nodes as well as the interactions between such groups on different scales. In this paper, we introduce a collection of definitions resulting in a framework that, on the one hand, entails and unifies existing network representations (e.g., network of networks and multilayer networks), and on the other hand, generalizes and extends them by incorporating the above features. To implement these features, we first specify the nodes and edges of a finite graph as sets of properties (which are permitted to be arbitrary mathematical objects). Second, the mathematical concept of partition lattices is transferred to the network theory in order to demonstrate how partitioning the node and edge set of a graph into supernodes and superedges allows us to aggregate, compute, and allocate information on and between arbitrary groups of nodes. The derived partition lattice of a graph, which we denote by deep graph, constitutes a concise, yet comprehensive representation that enables the expression and analysis of heterogeneous properties, relations, and interactions on all scales of a complex system in a self-contained manner. Furthermore, to be able to utilize existing network-based methods and models, we derive different representations of multilayer networks from our framework and demonstrate the advantages of our representation. On the basis of the formal framework described here, we provide a rich, fully scalable (and self-explanatory) software package that integrates into the PyData ecosystem and offers interfaces to popular network packages, making it a powerful, general-purpose data analysis toolkit. We exemplify an application of deep graphs using a real world dataset, comprising 16 years of satellite-derived global precipitation measurements. We deduce a deep graph representation of these measurements in order to track and investigate local formations of spatio-temporal clusters of extreme precipitation events.

  9. Beyond the FFA: The Role of the Ventral Anterior Temporal Lobes in Face Processing

    PubMed Central

    Collins, Jessica A.; Olson, Ingrid R.

    2014-01-01

    Extensive research has supported the existence of a specialized face-processing network that is distinct from the visual processing areas used for general object recognition. The majority of this work has been aimed at characterizing the response properties of the fusiform face area (FFA) and the occipital face area (OFA), which together are thought to constitute the core network of brain areas responsible for facial identification. Although accruing evidence has shown that face-selective patches in the ventral anterior temporal lobes (vATLs) are interconnected with the FFA and OFA, and that they play a role in facial identification, the relative contribution of these brain areas to the core face-processing network has remained unarticulated. Here we review recent research critically implicating the vATLs in face perception and memory. We propose that current models of face processing should be revised such that the ventral anterior temporal lobes serve a centralized role in the visual face-processing network. We speculate that a hierarchically organized system of face processing areas extends bilaterally from the inferior occipital gyri to the vATLs, with facial representations becoming increasingly complex and abstracted from low-level perceptual features as they move forward along this network. The anterior temporal face areas may serve as the apex of this hierarchy, instantiating the final stages of face recognition. We further argue that the anterior temporal face areas are ideally suited to serve as an interface between face perception and face memory, linking perceptual representations of individual identity with person-specific semantic knowledge. PMID:24937188

  10. Application of bayesian networks to real-time flood risk estimation

    NASA Astrophysics Data System (ADS)

    Garrote, L.; Molina, M.; Blasco, G.

    2003-04-01

    This paper presents the application of a computational paradigm taken from the field of artificial intelligence - the bayesian network - to model the behaviour of hydrologic basins during floods. The final goal of this research is to develop representation techniques for hydrologic simulation models in order to define, develop and validate a mechanism, supported by a software environment, oriented to build decision models for the prediction and management of river floods in real time. The emphasis is placed on providing decision makers with tools to incorporate their knowledge of basin behaviour, usually formulated in terms of rainfall-runoff models, in the process of real-time decision making during floods. A rainfall-runoff model is only a step in the process of decision making. If a reliable rainfall forecast is available and the rainfall-runoff model is well calibrated, decisions can be based mainly on model results. However, in most practical situations, uncertainties in rainfall forecasts or model performance have to be incorporated in the decision process. The computation paradigm adopted for the simulation of hydrologic processes is the bayesian network. A bayesian network is a directed acyclic graph that represents causal influences between linked variables. Under this representation, uncertain qualitative variables are related through causal relations quantified with conditional probabilities. The solution algorithm allows the computation of the expected probability distribution of unknown variables conditioned to the observations. An approach to represent hydrologic processes by bayesian networks with temporal and spatial extensions is presented in this paper, together with a methodology for the development of bayesian models using results produced by deterministic hydrologic simulation models

  11. ISYMOD: a knowledge warehouse for the identification, assembly and analysis of bacterial integrated systems.

    PubMed

    Chabalier, Julie; Capponi, Cécile; Quentin, Yves; Fichant, Gwennaele

    2005-04-01

    Complex biological functions emerge from interactions between proteins in stable supra-molecular assemblies and/or through transitory contacts. Most of the time protein partners of the assemblies are composed of one or several domains which exhibit different biochemical functions. Thus the study of cellular process requires the identification of different functional units and their integration in an interaction network; such complexes are referred to as integrated systems. In order to exploit with optimum efficiency the increased release of data, automated bioinformatics strategies are needed to identify, reconstruct and model such systems. For that purpose, we have developed a knowledge warehouse dedicated to the representation and acquisition of bacterial integrated systems involved in the exchange of the bacterial cell with its environment. ISYMOD is a knowledge warehouse that consistently integrates in the same environment the data and the methods used for their acquisition. This is achieved through the construction of (1) a domain knowledge base (DKB) devoted to the storage of the knowledge about the systems, their functional specificities, their partners and how they are related and (2) a methodological knowledge base (MKB) which depicts the task layout used to identify and reconstruct functional integrated systems. Instantiation of the DKB is obtained by solving the tasks of the MKB, whereas some tasks need instances of the DKB to be solved. AROM, an object-based knowledge representation system, has been used to design the DKB, and its task manager, AROMTasks, for developing the MKB. In this study two integrated systems, ABC transporters and two component systems, both involved in adaptation processes of a bacterial cell to its biotope, have been used to evaluate the feasibility of the approach.

  12. FindPrimaryPairs: An efficient algorithm for predicting element-transferring reactant/product pairs in metabolic networks.

    PubMed

    Steffensen, Jon Lund; Dufault-Thompson, Keith; Zhang, Ying

    2018-01-01

    The metabolism of individual organisms and biological communities can be viewed as a network of metabolites connected to each other through chemical reactions. In metabolic networks, chemical reactions transform reactants into products, thereby transferring elements between these metabolites. Knowledge of how elements are transferred through reactant/product pairs allows for the identification of primary compound connections through a metabolic network. However, such information is not readily available and is often challenging to obtain for large reaction databases or genome-scale metabolic models. In this study, a new algorithm was developed for automatically predicting the element-transferring reactant/product pairs using the limited information available in the standard representation of metabolic networks. The algorithm demonstrated high efficiency in analyzing large datasets and provided accurate predictions when benchmarked with manually curated data. Applying the algorithm to the visualization of metabolic networks highlighted pathways of primary reactant/product connections and provided an organized view of element-transferring biochemical transformations. The algorithm was implemented as a new function in the open source software package PSAMM in the release v0.30 (https://zhanglab.github.io/psamm/).

  13. Characterizing networks formed by P. polycephalum

    NASA Astrophysics Data System (ADS)

    Dirnberger, M.; Mehlhorn, K.

    2017-06-01

    We present a systematic study of the characteristic vein networks formed by the slime mold P. polycephalum. Our study is based on an extensive set of graph representations of slime mold networks. We analyze a total of 1998 graphs capturing growth and network formation of P. polycephalum as observed in 36 independent, identical, wet-lab experiments. Relying on concepts from graph theory such as face cycles and cuts as well as ideas from percolation theory, we establish a broad collection of individual observables taking into account various complementary aspects of P. polycephalum networks. As a whole, the collection is intended to serve as a specialized knowledge-base providing a comprehensive characterization of P. polycephalum networks. To this end, it contains individual as well as cumulative results for all investigated observables across all available data series, down to the level of single P. polycephalum graphs. Furthermore we include the raw numerical data as well as various plotting and analysis tools to ensure reproducibility and increase the usefulness of the collection. All our results are publicly available in an organized fashion in the slime mold graph repository (Smgr).

  14. How Pictorial Knowledge Representations Mediate Collaborative Knowledge Construction in Groups

    ERIC Educational Resources Information Center

    Naykki, Piia; Jarvela, Sanna

    2008-01-01

    This study investigates the process of collaborative knowledge construction when technology and pictorial knowledge representations are used for visualizing individual and groups' shared ideas. The focus of the study is on how teacher-students contribute to the group's collaborative knowledge construction and use each other's ideas and tools as an…

  15. Beyond rules: The next generation of expert systems

    NASA Technical Reports Server (NTRS)

    Ferguson, Jay C.; Wagner, Robert E.

    1987-01-01

    The PARAGON Representation, Management, and Manipulation system is introduced. The concepts of knowledge representation, knowledge management, and knowledge manipulation are combined in a comprehensive system for solving real world problems requiring high levels of expertise in a real time environment. In most applications the complexity of the problem and the representation used to describe the domain knowledge tend to obscure the information from which solutions are derived. This inhibits the acquisition of domain knowledge verification/validation, places severe constraints on the ability to extend and maintain a knowledge base while making generic problem solving strategies difficult to develop. A unique hybrid system was developed to overcome these traditional limitations.

  16. node2vec: Scalable Feature Learning for Networks

    PubMed Central

    Grover, Aditya; Leskovec, Jure

    2016-01-01

    Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node’s network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks. PMID:27853626

  17. Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles

    NASA Astrophysics Data System (ADS)

    Cook, Michelle Patrick

    2006-11-01

    Visual representations are essential for communicating ideas in the science classroom; however, the design of such representations is not always beneficial for learners. This paper presents instructional design considerations providing empirical evidence and integrating theoretical concepts related to cognitive load. Learners have a limited working memory, and instructional representations should be designed with the goal of reducing unnecessary cognitive load. However, cognitive architecture alone is not the only factor to be considered; individual differences, especially prior knowledge, are critical in determining what impact a visual representation will have on learners' cognitive structures and processes. Prior knowledge can determine the ease with which learners can perceive and interpret visual representations in working memory. Although a long tradition of research has compared experts and novices, more research is necessary to fully explore the expert-novice continuum and maximize the potential of visual representations.

  18. EliXR-TIME: A Temporal Knowledge Representation for Clinical Research Eligibility Criteria.

    PubMed

    Boland, Mary Regina; Tu, Samson W; Carini, Simona; Sim, Ida; Weng, Chunhua

    2012-01-01

    Effective clinical text processing requires accurate extraction and representation of temporal expressions. Multiple temporal information extraction models were developed but a similar need for extracting temporal expressions in eligibility criteria (e.g., for eligibility determination) remains. We identified the temporal knowledge representation requirements of eligibility criteria by reviewing 100 temporal criteria. We developed EliXR-TIME, a frame-based representation designed to support semantic annotation for temporal expressions in eligibility criteria by reusing applicable classes from well-known clinical temporal knowledge representations. We used EliXR-TIME to analyze a training set of 50 new temporal eligibility criteria. We evaluated EliXR-TIME using an additional random sample of 20 eligibility criteria with temporal expressions that have no overlap with the training data, yielding 92.7% (76 / 82) inter-coder agreement on sentence chunking and 72% (72 / 100) agreement on semantic annotation. We conclude that this knowledge representation can facilitate semantic annotation of the temporal expressions in eligibility criteria.

  19. Representing Medical Knowledge in a Terminological Language is Difficult1

    PubMed Central

    Haimowits, Ira J.; Patil, Ramesh S.; Szolovits, Peter

    1988-01-01

    We report on an experiment to use a modern knowledge representation language, NIKL, to express the knowledge of a sophisticated medical reasoning program, ABEL. We are attempting to put the development of more capable medical programs on firmer representational grounds by moving from the ad hoc representations typical of current programs toward more principled representation languages now in use or under construction. Our experience with the project reported here suggests caution, however. Attempts at cleanliness and efficiency in the design of representation languages lead to a poverty of expressiveness that makes it difficult if not impossible to say in such languages what needs to be stated to support the application.

  20. Character recognition using a neural network model with fuzzy representation

    NASA Technical Reports Server (NTRS)

    Tavakoli, Nassrin; Seniw, David

    1992-01-01

    The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.

  1. Representation and Exchange of Knowledge as a Basis of Information Processes. Proceedings of the International Research Forum in Information Science (5th, Heidelberg, West Germany, September 5-7, 1983).

    ERIC Educational Resources Information Center

    Dietschmann, Hans, Ed.

    This 22-paper collection addresses a variety of issues related to representation and transfer of knowledge. Individual papers include an explanation of the usefulness of general scientific models versus case-specific approaches and a discussion of different empirical approaches to the general problem of knowledge representation for information…

  2. Teacher spatial skills are linked to differences in geometry instruction.

    PubMed

    Otumfuor, Beryl Ann; Carr, Martha

    2017-12-01

    Spatial skills have been linked to better performance in mathematics. The purpose of this study was to examine the relationship between teacher spatial skills and their instruction, including teacher content and pedagogical knowledge, use of pictorial representations, and use of gestures during geometry instruction. Fifty-six middle school teachers participated in the study. The teachers were administered spatial measures of mental rotations and spatial visualization. Next, a single geometry class was videotaped. Correlational analyses revealed that spatial skills significantly correlate with teacher's use of representational gestures and content and pedagogical knowledge during instruction of geometry. Spatial skills did not independently correlate with the use of pointing gestures or the use of pictorial representations. However, an interaction term between spatial skills and content and pedagogical knowledge did correlate significantly with the use of pictorial representations. Teacher experience as measured by the number of years of teaching and highest degree did not appear to affect the relationships among the variables with the exception of the relationship between spatial skills and teacher content and pedagogical knowledge. Teachers with better spatial skills are also likely to use representational gestures and to show better content and pedagogical knowledge during instruction. Spatial skills predict pictorial representation use only as a function of content and pedagogical knowledge. © 2017 The British Psychological Society.

  3. Computational models of location-invariant orthographic processing

    NASA Astrophysics Data System (ADS)

    Dandurand, Frédéric; Hannagan, Thomas; Grainger, Jonathan

    2013-03-01

    We trained three topologies of backpropagation neural networks to discriminate 2000 words (lexical representations) presented at different positions of a horizontal letter array. The first topology (zero-deck) contains no hidden layer, the second (one-deck) has a single hidden layer, and for the last topology (two-deck), the task is divided in two subtasks implemented as two stacked neural networks, with explicit word-centred letters as intermediate representations. All topologies successfully simulated two key benchmark phenomena observed in skilled human reading: transposed-letter priming and relative-position priming. However, the two-deck topology most accurately simulated the ability to discriminate words from nonwords, while containing the fewest connection weights. We analysed the internal representations after training. Zero-deck networks implement a letter-based scheme with a position bias to differentiate anagrams. One-deck networks implement a holographic overlap coding in which representations are essentially letter-based and words are linear combinations of letters. Two-deck networks also implement holographic-coding.

  4. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System

    PubMed Central

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054

  5. Decision support systems and methods for complex networks

    DOEpatents

    Huang, Zhenyu [Richland, WA; Wong, Pak Chung [Richland, WA; Ma, Jian [Richland, WA; Mackey, Patrick S [Richland, WA; Chen, Yousu [Richland, WA; Schneider, Kevin P [Seattle, WA

    2012-02-28

    Methods and systems for automated decision support in analyzing operation data from a complex network. Embodiments of the present invention utilize these algorithms and techniques not only to characterize the past and present condition of a complex network, but also to predict future conditions to help operators anticipate deteriorating and/or problem situations. In particular, embodiments of the present invention characterize network conditions from operation data using a state estimator. Contingency scenarios can then be generated based on those network conditions. For at least a portion of all of the contingency scenarios, risk indices are determined that describe the potential impact of each of those scenarios. Contingency scenarios with risk indices are presented visually as graphical representations in the context of a visual representation of the complex network. Analysis of the historical risk indices based on the graphical representations can then provide trends that allow for prediction of future network conditions.

  6. Comparative analysis of knowledge representation and reasoning requirements across a range of life sciences textbooks.

    PubMed

    Chaudhri, Vinay K; Elenius, Daniel; Goldenkranz, Andrew; Gong, Allison; Martone, Maryann E; Webb, William; Yorke-Smith, Neil

    2014-01-01

    Using knowledge representation for biomedical projects is now commonplace. In previous work, we represented the knowledge found in a college-level biology textbook in a fashion useful for answering questions. We showed that embedding the knowledge representation and question-answering abilities in an electronic textbook helped to engage student interest and improve learning. A natural question that arises from this success, and this paper's primary focus, is whether a similar approach is applicable across a range of life science textbooks. To answer that question, we considered four different textbooks, ranging from a below-introductory college biology text to an advanced, graduate-level neuroscience textbook. For these textbooks, we investigated the following questions: (1) To what extent is knowledge shared between the different textbooks? (2) To what extent can the same upper ontology be used to represent the knowledge found in different textbooks? (3) To what extent can the questions of interest for a range of textbooks be answered by using the same reasoning mechanisms? Our existing modeling and reasoning methods apply especially well both to a textbook that is comparable in level to the text studied in our previous work (i.e., an introductory-level text) and to a textbook at a lower level, suggesting potential for a high degree of portability. Even for the overlapping knowledge found across the textbooks, the level of detail covered in each textbook was different, which requires that the representations must be customized for each textbook. We also found that for advanced textbooks, representing models and scientific reasoning processes was particularly important. With some additional work, our representation methodology would be applicable to a range of textbooks. The requirements for knowledge representation are common across textbooks, suggesting that a shared semantic infrastructure for the life sciences is feasible. Because our representation overlaps heavily with those already being used for biomedical ontologies, this work suggests a natural pathway to include such representations as part of the life sciences curriculum at different grade levels.

  7. Mental representation of normal subjects about the sources of knowledge in different semantic categories and unique entities.

    PubMed

    Gainotti, Guido; Ciaraffa, Francesca; Silveri, Maria Caterina; Marra, Camillo

    2009-11-01

    According to the "sensory-motor model of semantic knowledge," different categories of knowledge differ for the weight that different "sources of knowledge" have in their representation. Our study aimed to evaluate this model, checking if subjective evaluations given by normal subjects confirm the different weight that various sources of knowledge have in the representation of different biological and artifact categories and of unique entities, such as famous people or monuments. Results showed that the visual properties are considered as the main source of knowledge for all the living and nonliving categories (as well as for unique entities), but that the clustering of these "sources of knowledge" is different for biological and artifacts categories. Visual data are, indeed, mainly associated with other perceptual (auditory, olfactory, gustatory, and tactual) attributes in the mental representation of living beings and unique entities, whereas they are associated with action-related properties and tactile information in the case of artifacts.

  8. Integrating natural language processing and web GIS for interactive knowledge domain visualization

    NASA Astrophysics Data System (ADS)

    Du, Fangming

    Recent years have seen a powerful shift towards data-rich environments throughout society. This has extended to a change in how the artifacts and products of scientific knowledge production can be analyzed and understood. Bottom-up approaches are on the rise that combine access to huge amounts of academic publications with advanced computer graphics and data processing tools, including natural language processing. Knowledge domain visualization is one of those multi-technology approaches, with its aim of turning domain-specific human knowledge into highly visual representations in order to better understand the structure and evolution of domain knowledge. For example, network visualizations built from co-author relations contained in academic publications can provide insight on how scholars collaborate with each other in one or multiple domains, and visualizations built from the text content of articles can help us understand the topical structure of knowledge domains. These knowledge domain visualizations need to support interactive viewing and exploration by users. Such spatialization efforts are increasingly looking to geography and GIS as a source of metaphors and practical technology solutions, even when non-georeferenced information is managed, analyzed, and visualized. When it comes to deploying spatialized representations online, web mapping and web GIS can provide practical technology solutions for interactive viewing of knowledge domain visualizations, from panning and zooming to the overlay of additional information. This thesis presents a novel combination of advanced natural language processing - in the form of topic modeling - with dimensionality reduction through self-organizing maps and the deployment of web mapping/GIS technology towards intuitive, GIS-like, exploration of a knowledge domain visualization. A complete workflow is proposed and implemented that processes any corpus of input text documents into a map form and leverages a web application framework to let users explore knowledge domain maps interactively. This workflow is implemented and demonstrated for a data set of more than 66,000 conference abstracts.

  9. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-01-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703

  10. The interaction of representation and reasoning

    PubMed Central

    Bundy, Alan

    2013-01-01

    Automated reasoning is an enabling technology for many applications of informatics. These applications include verifying that a computer program meets its specification; enabling a robot to form a plan to achieve a task and answering questions by combining information from diverse sources, e.g. on the Internet, etc. How is automated reasoning possible? Firstly, knowledge of a domain must be stored in a computer, usually in the form of logical formulae. This knowledge might, for instance, have been entered manually, retrieved from the Internet or perceived in the environment via sensors, such as cameras. Secondly, rules of inference are applied to old knowledge to derive new knowledge. Automated reasoning techniques have been adapted from logic, a branch of mathematics that was originally designed to formalize the reasoning of humans, especially mathematicians. My special interest is in the way that representation and reasoning interact. Successful reasoning is dependent on appropriate representation of both knowledge and successful methods of reasoning. Failures of reasoning can suggest changes of representation. This process of representational change can also be automated. We will illustrate the automation of representational change by drawing on recent work in my research group. PMID:24062623

  11. Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations.

    PubMed

    Branke, Jürgen; Hildebrandt, Torsten; Scholz-Reiter, Bernd

    2015-01-01

    Dispatching rules are frequently used for real-time, online scheduling in complex manufacturing systems. Design of such rules is usually done by experts in a time consuming trial-and-error process. Recently, evolutionary algorithms have been proposed to automate the design process. There are several possibilities to represent rules for this hyper-heuristic search. Because the representation determines the search neighborhood and the complexity of the rules that can be evolved, a suitable choice of representation is key for a successful evolutionary algorithm. In this paper we empirically compare three different representations, both numeric and symbolic, for automated rule design: A linear combination of attributes, a representation based on artificial neural networks, and a tree representation. Using appropriate evolutionary algorithms (CMA-ES for the neural network and linear representations, genetic programming for the tree representation), we empirically investigate the suitability of each representation in a dynamic stochastic job shop scenario. We also examine the robustness of the evolved dispatching rules against variations in the underlying job shop scenario, and visualize what the rules do, in order to get an intuitive understanding of their inner workings. Results indicate that the tree representation using an improved version of genetic programming gives the best results if many candidate rules can be evaluated, closely followed by the neural network representation that already leads to good results for small to moderate computational budgets. The linear representation is found to be competitive only for extremely small computational budgets.

  12. Knowledge Representation and Ontologies

    NASA Astrophysics Data System (ADS)

    Grimm, Stephan

    Knowledge representation and reasoning aims at designing computer systems that reason about a machine-interpretable representation of the world. Knowledge-based systems have a computational model of some domain of interest in which symbols serve as surrogates for real world domain artefacts, such as physical objects, events, relationships, etc. [1]. The domain of interest can cover any part of the real world or any hypothetical system about which one desires to represent knowledge for com-putational purposes. A knowledge-based system maintains a knowledge base, which stores the symbols of the computational model in the form of statements about the domain, and it performs reasoning by manipulating these symbols. Applications can base their decisions on answers to domain-relevant questions posed to a knowledge base.

  13. Segmentation of medical images using explicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  14. Student Teachers' Knowledge about Chemical Representations

    ERIC Educational Resources Information Center

    Taskin, Vahide; Bernholt, Sascha; Parchmann, Ilka

    2017-01-01

    Chemical representations serve as a communication tool not only in exchanges between scientists but also in chemistry lessons. The goals of the present study were to measure the extent of student teachers' knowledge about chemical representations, focusing on chemical formulae and structures in particular, and to explore which factors related to…

  15. Examining the Task and Knowledge Demands Needed to Teach with Representations

    ERIC Educational Resources Information Center

    Mitchell, Rebecca; Charalambous, Charalambos Y.; Hill, Heather C.

    2014-01-01

    Representations are often used in instruction to highlight key mathematical ideas and support student learning. Despite their centrality in scaffolding teaching and learning, most of our understanding about the tasks involved with using representations in instruction and the knowledge requirements imposed on teachers when using these aids is…

  16. Interleaved Practice with Multiple Representations: Analyses with Knowledge Tracing Based Techniques

    ERIC Educational Resources Information Center

    Rau, Martina A.; Pardos, Zachary A.

    2012-01-01

    The goal of this paper is to use Knowledge Tracing to augment the results obtained from an experiment that investigated the effects of practice schedules using an intelligent tutoring system for fractions. Specifically, this experiment compared different practice schedules of multiple representations of fractions: representations were presented to…

  17. Semantic graphs and associative memories

    NASA Astrophysics Data System (ADS)

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  18. Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations

    PubMed Central

    Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus

    2017-01-01

    Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509

  19. Conceptualizations of Representation Forms and Knowledge Organization of High School Teachers in Finland: "Magnetostatics"

    ERIC Educational Resources Information Center

    Majidi, Sharareh; Emden, Markus

    2013-01-01

    One of the main components of teachers' pedagogical content knowledge refers to their use of representation forms. In a similar vein, organizing concepts logically and meaningfully is an essential element of teachers' subject matter knowledge. Since subject matter and pedagogical content knowledge of teachers are tightly connected as categories…

  20. Consistent maximum entropy representations of pipe flow networks

    NASA Astrophysics Data System (ADS)

    Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael

    2017-06-01

    The maximum entropy method is used to predict flows on water distribution networks. This analysis extends the water distribution network formulation of Waldrip et al. (2016) Journal of Hydraulic Engineering (ASCE), by the use of a continuous relative entropy defined on a reduced parameter set. This reduction in the parameters that the entropy is defined over ensures consistency between different representations of the same network. The performance of the proposed reduced parameter method is demonstrated with a one-loop network case study.

  1. Recent development and biomedical applications of probabilistic Boolean networks

    PubMed Central

    2013-01-01

    Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be considered. A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past few years, with a focus on network inference, network intervention and control. With respect to areas of applications, PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal transduction, metabolic, and also physiological networks. At the same time, a number of computational tools, facilitating the modelling and analysis of PBNs, are continuously developed. A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis of complex biological systems, ranging from molecular to physiological levels. PMID:23815817

  2. Graph analysis of functional brain networks: practical issues in translational neuroscience

    PubMed Central

    De Vico Fallani, Fabrizio; Richiardi, Jonas; Chavez, Mario; Achard, Sophie

    2014-01-01

    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes. PMID:25180301

  3. Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness.

    PubMed

    Naito, Eiichi; Morita, Tomoyo; Amemiya, Kaoru

    2016-03-01

    The human brain can generate a continuously changing postural model of our body. Somatic (proprioceptive) signals from skeletal muscles and joints contribute to the formation of the body representation. Recent neuroimaging studies of proprioceptive bodily illusions have elucidated the importance of three brain systems (motor network, specialized parietal systems, right inferior fronto-parietal network) in the formation of the human body representation. The motor network, especially the primary motor cortex, processes afferent input from skeletal muscles. Such information may contribute to the formation of kinematic/dynamic postural models of limbs, thereby enabling fast online feedback control. Distinct parietal regions appear to play specialized roles in the transformation/integration of information across different coordinate systems, which may subserve the adaptability and flexibility of the body representation. Finally, the right inferior fronto-parietal network, connected by the inferior branch of the superior longitudinal fasciculus, is consistently recruited when an individual experiences various types of bodily illusions and its possible roles relate to corporeal awareness, which is likely elicited through a series of neuronal processes of monitoring and accumulating bodily information and updating the body representation. Because this network is also recruited when identifying one's own features, the network activity could be a neuronal basis for self-consciousness. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  4. EXPECT: Explicit Representations for Flexible Acquisition

    NASA Technical Reports Server (NTRS)

    Swartout, BIll; Gil, Yolanda

    1995-01-01

    To create more powerful knowledge acquisition systems, we not only need better acquisition tools, but we need to change the architecture of the knowledge based systems we create so that their structure will provide better support for acquisition. Current acquisition tools permit users to modify factual knowledge but they provide limited support for modifying problem solving knowledge. In this paper, the authors argue that this limitation (and others) stem from the use of incomplete models of problem-solving knowledge and inflexible specification of the interdependencies between problem-solving and factual knowledge. We describe the EXPECT architecture which addresses these problems by providing an explicit representation for problem-solving knowledge and intent. Using this more explicit representation, EXPECT can automatically derive the interdependencies between problem-solving and factual knowledge. By deriving these interdependencies from the structure of the knowledge-based system itself EXPECT supports more flexible and powerful knowledge acquisition.

  5. Ambient awareness: From random noise to digital closeness in online social networks

    PubMed Central

    Levordashka, Ana; Utz, Sonja

    2016-01-01

    Ambient awareness refers to the awareness social media users develop of their online network in result of being constantly exposed to social information, such as microblogging updates. Although each individual bit of information can seem like random noise, their incessant reception can amass to a coherent representation of social others. Despite its growing popularity and important implications for social media research, ambient awareness on public social media has not been studied empirically. We provide evidence for the occurrence of ambient awareness and examine key questions related to its content and functions. A diverse sample of participants reported experiencing awareness, both as a general feeling towards their network as a whole, and as knowledge of individual members of the network, whom they had not met in real life. Our results indicate that ambient awareness can develop peripherally, from fragmented information and in the relative absence of extensive one-to-one communication. We report the effects of demographics, media use, and network variables and discuss the implications of ambient awareness for relational and informational processes online. PMID:27375343

  6. Ambient awareness: From random noise to digital closeness in online social networks.

    PubMed

    Levordashka, Ana; Utz, Sonja

    2016-07-01

    Ambient awareness refers to the awareness social media users develop of their online network in result of being constantly exposed to social information, such as microblogging updates. Although each individual bit of information can seem like random noise, their incessant reception can amass to a coherent representation of social others. Despite its growing popularity and important implications for social media research, ambient awareness on public social media has not been studied empirically. We provide evidence for the occurrence of ambient awareness and examine key questions related to its content and functions. A diverse sample of participants reported experiencing awareness, both as a general feeling towards their network as a whole, and as knowledge of individual members of the network, whom they had not met in real life. Our results indicate that ambient awareness can develop peripherally, from fragmented information and in the relative absence of extensive one-to-one communication. We report the effects of demographics, media use, and network variables and discuss the implications of ambient awareness for relational and informational processes online.

  7. Inborn and experience-dependent models of categorical brain organization. A position paper

    PubMed Central

    Gainotti, Guido

    2015-01-01

    The present review aims to summarize the debate in contemporary neuroscience between inborn and experience-dependent models of conceptual representations that goes back to the description of category-specific semantic disorders for biological and artifact categories. Experience-dependent models suggest that categorical disorders are the by-product of the differential weighting of different sources of knowledge in the representation of biological and artifact categories. These models maintain that semantic disorders are not really category-specific, because they do not respect the boundaries between different categories. They also argue that the brain structures which are disrupted in a given type of category-specific semantic disorder should correspond to the areas of convergence of the sensory-motor information which play a major role in the construction of that category. Furthermore, they provide a simple interpretation of gender-related categorical effects and are supported by studies assessing the importance of prior experience in the cortical representation of objects On the other hand, inborn models maintain that category-specific semantic disorders reflect the disruption of innate brain networks, which are shaped by natural selection to allow rapid identification of objects that are very relevant for survival. From the empirical point of view, these models are mainly supported by observations of blind subjects, which suggest that visual experience is not necessary for the emergence of category-specificity in the ventral stream of visual processing. The weight of the data supporting experience-dependent and inborn models is thoroughly discussed, stressing the fact observations made in blind subjects are still the subject of intense debate. It is concluded that at the present state of knowledge it is not possible to choose between experience-dependent and inborn models of conceptual representations. PMID:25667570

  8. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge

    PubMed Central

    Hoffman, Paul; Binney, Richard J.; Lambon Ralph, Matthew A.

    2015-01-01

    Semantic cognition is underpinned by regions involved in representing conceptual knowledge and executive control areas that provide regulation of this information according to current task requirements. Using distortion-corrected fMRI, we investigated the contributions of these two systems to abstract and concrete word comprehension. We contrasted semantic decisions made either with coherent contextual support, which encouraged retrieval of a rich conceptual representation, or with irrelevant contextual information, which instead maximised demands on control processes. Inferior prefrontal cortex was activated more when decisions were made in the presence of irrelevant context, suggesting that this region is crucial for the semantic control functions required to select appropriate aspects of meaning in the face of competing information. It also exhibited greater activation for abstract words, which reflects the fact that abstract words tend to have variable, context-dependent meanings that place higher demands on control processes. In contrast, anterior temporal regions (ATL) were most active when decisions were made with the benefit of a coherent context, suggesting a representational role. There was a graded shift in concreteness effects in this region, with dorsolateral areas particularly active for abstract words and ventromedial areas preferentially activated by concrete words. This supports the idea that concrete concepts are closely associated with visual experience and abstract concepts with auditory-verbal information; and that sub-regions of the ATL display graded specialisation for these two types of knowledge. Between these two extremes, we identified significant activations for both word types in ventrolateral ATL. This area is known to be involved in representing knowledge for concrete concepts; here we established that it is also activated by abstract concepts. These results converge with data from rTMS and neuropsychological investigations in demonstrating that representational content and task demands influence recruitment of different areas in the semantic network. PMID:25303272

  9. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge.

    PubMed

    Hoffman, Paul; Binney, Richard J; Lambon Ralph, Matthew A

    2015-02-01

    Semantic cognition is underpinned by regions involved in representing conceptual knowledge and executive control areas that provide regulation of this information according to current task requirements. Using distortion-corrected fMRI, we investigated the contributions of these two systems to abstract and concrete word comprehension. We contrasted semantic decisions made either with coherent contextual support, which encouraged retrieval of a rich conceptual representation, or with irrelevant contextual information, which instead maximised demands on control processes. Inferior prefrontal cortex was activated more when decisions were made in the presence of irrelevant context, suggesting that this region is crucial for the semantic control functions required to select appropriate aspects of meaning in the face of competing information. It also exhibited greater activation for abstract words, which reflects the fact that abstract words tend to have variable, context-dependent meanings that place higher demands on control processes. In contrast, anterior temporal regions (ATL) were most active when decisions were made with the benefit of a coherent context, suggesting a representational role. There was a graded shift in concreteness effects in this region, with dorsolateral areas particularly active for abstract words and ventromedial areas preferentially activated by concrete words. This supports the idea that concrete concepts are closely associated with visual experience and abstract concepts with auditory-verbal information; and that sub-regions of the ATL display graded specialisation for these two types of knowledge. Between these two extremes, we identified significant activations for both word types in ventrolateral ATL. This area is known to be involved in representing knowledge for concrete concepts; here we established that it is also activated by abstract concepts. These results converge with data from rTMS and neuropsychological investigations in demonstrating that representational content and task demands influence recruitment of different areas in the semantic network. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Beyond Re/Presentation: A Case for Updating the Epistemology of Schooling

    ERIC Educational Resources Information Center

    Biesta, Gert J. J.; Osberg, Deborah

    2007-01-01

    In this paper we wish to argue that despite strong challenges to representational epistemology in the last two centuries, modern schooling is still organised around a representational view of knowledge. This is the case despite teaching practices being modified to accommodate different views of knowledge that have emerged in the last two…

  11. Why Use Multiple Representations in the Mathematics Classroom? Views of English and German Preservice Teachers

    ERIC Educational Resources Information Center

    Dreher, Anika; Kuntze, Sebastian; Lerman, Stephen

    2016-01-01

    Dealing with multiple representations and their connections plays a key role for learners to build up conceptual knowledge in the mathematics classroom. Hence, professional knowledge and views of mathematics teachers regarding the use of multiple representations certainly merit attention. In particular, investigating such views of preservice…

  12. Knowledge-based vision and simple visual machines.

    PubMed Central

    Cliff, D; Noble, J

    1997-01-01

    The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong. PMID:9304684

  13. Representation and matching of knowledge to design digital systems

    NASA Technical Reports Server (NTRS)

    Jones, J. U.; Shiva, S. G.

    1988-01-01

    A knowledge-based expert system is described that provides an approach to solve a problem requiring an expert with considerable domain expertise and facts about available digital hardware building blocks. To design digital hardware systems from their high level VHDL (Very High Speed Integrated Circuit Hardware Description Language) representation to their finished form, a special data representation is required. This data representation as well as the functioning of the overall system is described.

  14. Practice innovation: the need for nimble data platforms to implement precision oncology care.

    PubMed

    Elfiky, Aymen; Zhang, Dongyang; Krishnan Nair, Hari K

    2015-01-01

    Given the drive toward personalized, value-based, and coordinated cancer care delivery, modern knowledge-based practice is being shaped within the context of an increasingly technology-driven healthcare landscape. The ultimate promise of 'precision medicine' is predicated on taking advantage of the range of new capabilities for integrating disease- and individual-specific data to define new taxonomies as part of a systems-based knowledge network. Specifically, with cancer being a constantly evolving complex disease process, proper care of an individual will require the ability to seamlessly integrate multi-dimensional 'omic' and clinical data. Importantly, however, the challenges of curating knowledge from multiple dynamic data sources and translating to practice at the point-of-care highlight parallel needs. As patients, caregivers, and their environments become more proactive in clinical care and management, practical success of precision medicine is equally dependent on the development of proper infrastructures for evolving data integration, platforms for knowledge representation in a clinically-relevant context, and implementation within a provider's work-life and workflow.

  15. Formal ontologies in biomedical knowledge representation.

    PubMed

    Schulz, S; Jansen, L

    2013-01-01

    Medical decision support and other intelligent applications in the life sciences depend on increasing amounts of digital information. Knowledge bases as well as formal ontologies are being used to organize biomedical knowledge and data. However, these two kinds of artefacts are not always clearly distinguished. Whereas the popular RDF(S) standard provides an intuitive triple-based representation, it is semantically weak. Description logics based ontology languages like OWL-DL carry a clear-cut semantics, but they are computationally expensive, and they are often misinterpreted to encode all kinds of statements, including those which are not ontological. We distinguish four kinds of statements needed to comprehensively represent domain knowledge: universal statements, terminological statements, statements about particulars and contingent statements. We argue that the task of formal ontologies is solely to represent universal statements, while the non-ontological kinds of statements can nevertheless be connected with ontological representations. To illustrate these four types of representations, we use a running example from parasitology. We finally formulate recommendations for semantically adequate ontologies that can efficiently be used as a stable framework for more context-dependent biomedical knowledge representation and reasoning applications like clinical decision support systems.

  16. PDA: A coupling of knowledge and memory for case-based reasoning

    NASA Technical Reports Server (NTRS)

    Bharwani, S.; Walls, J.; Blevins, E.

    1988-01-01

    Problem solving in most domains requires reference to past knowledge and experience whether such knowledge is represented as rules, decision trees, networks or any variant of attributed graphs. Regardless of the representational form employed, designers of expert systems rarely make a distinction between the static and dynamic aspects of the system's knowledge base. The current paper clearly distinguishes between knowledge-based and memory-based reasoning where the former in its most pure sense is characterized by a static knowledge based resulting in a relatively brittle expert system while the latter is dynamic and analogous to the functions of human memory which learns from experience. The paper discusses the design of an advisory system which combines a knowledge base consisting of domain vocabulary and default dependencies between concepts with a dynamic conceptual memory which stores experimental knowledge in the form of cases. The case memory organizes past experience in the form of MOPs (memory organization packets) and sub-MOPs. Each MOP consists of a context frame and a set of indices. The context frame contains information about the features (norms) common to all the events and sub-MOPs indexed under it.

  17. Research on knowledge representation, machine learning, and knowledge acquisition

    NASA Technical Reports Server (NTRS)

    Buchanan, Bruce G.

    1987-01-01

    Research in knowledge representation, machine learning, and knowledge acquisition performed at Knowledge Systems Lab. is summarized. The major goal of the research was to develop flexible, effective methods for representing the qualitative knowledge necessary for solving large problems that require symbolic reasoning as well as numerical computation. The research focused on integrating different representation methods to describe different kinds of knowledge more effectively than any one method can alone. In particular, emphasis was placed on representing and using spatial information about three dimensional objects and constraints on the arrangement of these objects in space. Another major theme is the development of robust machine learning programs that can be integrated with a variety of intelligent systems. To achieve this goal, learning methods were designed, implemented and experimented within several different problem solving environments.

  18. Action representation: crosstalk between semantics and pragmatics.

    PubMed

    Prinz, Wolfgang

    2014-03-01

    Marc Jeannerod pioneered a representational approach to movement and action. In his approach, motor representations provide both, declarative knowledge about action and procedural knowledge for action (action semantics and action pragmatics, respectively). Recent evidence from language comprehension and action simulation supports the claim that action pragmatics and action semantics draw on common representational resources, thus challenging the traditional divide between declarative and procedural action knowledge. To account for these observations, three kinds of theoretical frameworks are discussed: (i) semantics is grounded in pragmatics, (ii) pragmatics is anchored in semantics, and (iii) pragmatics is part and parcel of semantics. © 2013 Elsevier Ltd. All rights reserved.

  19. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa.

    PubMed

    Nag, Ambarish; Karpinets, Tatiana V; Chang, Christopher H; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can be directly accessed at http://cricket.ornl.gov:1555/PTR/new-image?object=SUGAR-NUCLEOTIDES.

  20. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa

    PubMed Central

    Nag, Ambarish; Karpinets, Tatiana V.; Chang, Christopher H.; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can be directly accessed at http://cricket.ornl.gov:1555/PTR/new-image?object=SUGAR-NUCLEOTIDES. PMID:22465851

  1. SPIKE – a database, visualization and analysis tool of cellular signaling pathways

    PubMed Central

    Elkon, Ran; Vesterman, Rita; Amit, Nira; Ulitsky, Igor; Zohar, Idan; Weisz, Mali; Mass, Gilad; Orlev, Nir; Sternberg, Giora; Blekhman, Ran; Assa, Jackie; Shiloh, Yosef; Shamir, Ron

    2008-01-01

    Background Biological signaling pathways that govern cellular physiology form an intricate web of tightly regulated interlocking processes. Data on these regulatory networks are accumulating at an unprecedented pace. The assimilation, visualization and interpretation of these data have become a major challenge in biological research, and once met, will greatly boost our ability to understand cell functioning on a systems level. Results To cope with this challenge, we are developing the SPIKE knowledge-base of signaling pathways. SPIKE contains three main software components: 1) A database (DB) of biological signaling pathways. Carefully curated information from the literature and data from large public sources constitute distinct tiers of the DB. 2) A visualization package that allows interactive graphic representations of regulatory interactions stored in the DB and superposition of functional genomic and proteomic data on the maps. 3) An algorithmic inference engine that analyzes the networks for novel functional interplays between network components. SPIKE is designed and implemented as a community tool and therefore provides a user-friendly interface that allows registered users to upload data to SPIKE DB. Our vision is that the DB will be populated by a distributed and highly collaborative effort undertaken by multiple groups in the research community, where each group contributes data in its field of expertise. Conclusion The integrated capabilities of SPIKE make it a powerful platform for the analysis of signaling networks and the integration of knowledge on such networks with omics data. PMID:18289391

  2. An application of object-oriented knowledge representation to engineering expert systems

    NASA Technical Reports Server (NTRS)

    Logie, D. S.; Kamil, H.; Umaretiya, J. R.

    1990-01-01

    The paper describes an object-oriented knowledge representation and its application to engineering expert systems. The object-oriented approach promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects and organized by defining relationships between the objects. An Object Representation Language (ORL) was implemented as a tool for building and manipulating the object base. Rule-based knowledge representation is then used to simulate engineering design reasoning. Using a common object base, very large expert systems can be developed, comprised of small, individually processed, rule sets. The integration of these two schemes makes it easier to develop practical engineering expert systems. The general approach to applying this technology to the domain of the finite element analysis, design, and optimization of aerospace structures is discussed.

  3. Neural network integration during the perception of in-group and out-group members.

    PubMed

    Greven, Inez M; Ramsey, Richard

    2017-11-01

    Group biases guide social interactions by promoting in-group favouritism, but the neural mechanisms underpinning group biases remain unclear. While neuroscience research has shown that distributed brain circuits are associated with seeing in-group and out-group members as "us" and "them", it is less clear how these networks exchange signals. This fMRI study uses functional connectivity analyses to investigate the contribution of functional integration to group bias modulation of person perception. Participants were assigned to an arbitrary group and during scanning they observed bodies of in-group or out-group members that cued the recall of positive or negative social knowledge. The results showed that functional coupling between perceptual and cognitive neural networks is tuned to particular combinations of group membership and social knowledge valence. Specifically, coupling between body perception and theory-of-mind networks is biased towards seeing a person that had previously been paired with information consistent with group bias (positive for in-group and negative for out-group). This demonstrates how brain regions associated with visual analysis of others and belief reasoning exchange and integrate signals when evaluating in-group and out-group members. The results update models of person perception by showing how and when interplay occurs between perceptual and extended systems when developing a representation of another person. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. CLIPS: A tool for corn disease diagnostic system and an aid to neural network for automated knowledge acquisition

    NASA Technical Reports Server (NTRS)

    Wu, Cathy; Taylor, Pam; Whitson, George; Smith, Cathy

    1990-01-01

    This paper describes the building of a corn disease diagnostic expert system using CLIPS, and the development of a neural expert system using the fact representation method of CLIPS for automated knowledge acquisition. The CLIPS corn expert system diagnoses 21 diseases from 52 symptoms and signs with certainty factors. CLIPS has several unique features. It allows the facts in rules to be broken down to object-attribute-value (OAV) triples, allows rule-grouping, and fires rules based on pattern-matching. These features combined with the chained inference engine result to a natural user query system and speedy execution. In order to develop a method for automated knowledge acquisition, an Artificial Neural Expert System (ANES) is developed by a direct mapping from the CLIPS system. The ANES corn expert system uses the same OAV triples in the CLIPS system for its facts. The LHS and RHS facts of the CLIPS rules are mapped into the input and output layers of the ANES, respectively; and the inference engine of the rules is imbedded in the hidden layer. The fact representation by OAC triples gives a natural grouping of the rules. These features allow the ANES system to automate rule-generation, and make it efficient to execute and easy to expand for a large and complex domain.

  5. Unconstrained handwritten numeral recognition based on radial basis competitive and cooperative networks with spatio-temporal feature representation.

    PubMed

    Lee, S; Pan, J J

    1996-01-01

    This paper presents a new approach to representation and recognition of handwritten numerals. The approach first transforms a two-dimensional (2-D) spatial representation of a numeral into a three-dimensional (3-D) spatio-temporal representation by identifying the tracing sequence based on a set of heuristic rules acting as transformation operators. A multiresolution critical-point segmentation method is then proposed to extract local feature points, at varying degrees of scale and coarseness. A new neural network architecture, referred to as radial-basis competitive and cooperative network (RCCN), is presented especially for handwritten numeral recognition. RCCN is a globally competitive and locally cooperative network with the capability of self-organizing hidden units to progressively achieve desired network performance, and functions as a universal approximator of arbitrary input-output mappings. Three types of RCCNs are explored: input-space RCCN (IRCCN), output-space RCCN (ORCCN), and bidirectional RCCN (BRCCN). Experiments against handwritten zip code numerals acquired by the U.S. Postal Service indicated that the proposed method is robust in terms of variations, deformations, transformations, and corruption, achieving about 97% recognition rate.

  6. Mentalizing regions represent distributed, continuous, and abstract dimensions of others' beliefs.

    PubMed

    Koster-Hale, Jorie; Richardson, Hilary; Velez, Natalia; Asaba, Mika; Young, Liane; Saxe, Rebecca

    2017-11-01

    The human capacity to reason about others' minds includes making causal inferences about intentions, beliefs, values, and goals. Previous fMRI research has suggested that a network of brain regions, including bilateral temporo-parietal junction (TPJ), superior temporal sulcus (STS), and medial prefrontal-cortex (MPFC), are reliably recruited for mental state reasoning. Here, in two fMRI experiments, we investigate the representational content of these regions. Building on existing computational and neural evidence, we hypothesized that social brain regions contain at least two functionally and spatially distinct components: one that represents information related to others' motivations and values, and another that represents information about others' beliefs and knowledge. Using multi-voxel pattern analysis, we find evidence that motivational versus epistemic features are independently represented by theory of mind (ToM) regions: RTPJ contains information about the justification of the belief, bilateral TPJ represents the modality of the source of knowledge, and VMPFC represents the valence of the resulting emotion. These representations are found only in regions implicated in social cognition and predict behavioral responses at the level of single items. We argue that cortical regions implicated in mental state inference contain complementary, but distinct, representations of epistemic and motivational features of others' beliefs, and that, mirroring the processes observed in sensory systems, social stimuli are represented in distinct and distributed formats across the human brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A New Data Representation Based on Training Data Characteristics to Extract Drug Name Entity in Medical Text

    PubMed Central

    Basaruddin, T.

    2016-01-01

    One essential task in information extraction from the medical corpus is drug name recognition. Compared with text sources come from other domains, the medical text mining poses more challenges, for example, more unstructured text, the fast growing of new terms addition, a wide range of name variation for the same drug, the lack of labeled dataset sources and external knowledge, and the multiple token representations for a single drug name. Although many approaches have been proposed to overwhelm the task, some problems remained with poor F-score performance (less than 0.75). This paper presents a new treatment in data representation techniques to overcome some of those challenges. We propose three data representation techniques based on the characteristics of word distribution and word similarities as a result of word embedding training. The first technique is evaluated with the standard NN model, that is, MLP. The second technique involves two deep network classifiers, that is, DBN and SAE. The third technique represents the sentence as a sequence that is evaluated with a recurrent NN model, that is, LSTM. In extracting the drug name entities, the third technique gives the best F-score performance compared to the state of the art, with its average F-score being 0.8645. PMID:27843447

  8. A knowledge base of the chemical compounds of intermediary metabolism.

    PubMed

    Karp, P D

    1992-08-01

    This paper describes a publicly available knowledge base of the chemical compounds involved in intermediary metabolism. We consider the motivations for constructing a knowledge base of metabolic compounds, the methodology by which it was constructed, and the information that it currently contains. Currently the knowledge base describes 981 compounds, listing for each: synonyms for its name, a systematic name, CAS registry number, chemical formula, molecular weight, chemical structure and two-dimensional display coordinates for the structure. The Compound Knowledge Base (CompoundKB) illustrates several methodological principles that should guide the development of biological knowledge bases. I argue that biological datasets should be made available in multiple representations to increase their accessibility to end users, and I present multiple representations of the CompoundKB (knowledge base, relational data base and ASN. 1 representations). I also analyze the general characteristics of these representations to provide an understanding of their relative advantages and disadvantages. Another principle is that the error rate of biological data bases should be estimated and documented-this analysis is performed for the CompoundKB.

  9. Semantic representation of CDC-PHIN vocabulary using Simple Knowledge Organization System.

    PubMed

    Zhu, Min; Mirhaji, Parsa

    2008-11-06

    PHIN Vocabulary Access and Distribution System (VADS) promotes the use of standards based vocabulary within CDC information systems. However, the current PHIN vocabulary representation hinders its wide adoption. Simple Knowledge Organization System (SKOS) is a W3C draft specification to support the formal representation of Knowledge Organization Systems (KOS) within the framework of the Semantic Web. We present a method of adopting SKOS to represent PHIN vocabulary in order to enable automated information sharing and integration.

  10. Boolean network representation of contagion dynamics during a financial crisis

    NASA Astrophysics Data System (ADS)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-01-01

    This work presents a network model for representation of the evolution of certain patterns of economic behavior. More specifically, after representing the agents as points in a space in which each dimension associated to a relevant economic variable, their relative "motions" that can be either stationary or discordant, are coded into a boolean network. Patterns with stationary averages indicate the maintenance of status quo, whereas discordant patterns represent aggregation of new agent into the cluster or departure from the former policies. The changing patterns can be embedded into a network representation, particularly using the concept of autocatalytic boolean networks. As a case study, the economic tendencies of the BRIC countries + Argentina were studied. Although Argentina is not included in the cluster formed by BRIC countries, it tends to follow the BRIC members because of strong commercial ties.

  11. Deep Residual Network Predicts Cortical Representation and Organization of Visual Features for Rapid Categorization.

    PubMed

    Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming

    2018-02-28

    The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.

  12. Natural language acquisition in large scale neural semantic networks

    NASA Astrophysics Data System (ADS)

    Ealey, Douglas

    This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.

  13. Acquisition and Neural Network Prediction of 3D Deformable Object Shape Using a Kinect and a Force-Torque Sensor.

    PubMed

    Tawbe, Bilal; Cretu, Ana-Maria

    2017-05-11

    The realistic representation of deformations is still an active area of research, especially for deformable objects whose behavior cannot be simply described in terms of elasticity parameters. This paper proposes a data-driven neural-network-based approach for capturing implicitly and predicting the deformations of an object subject to external forces. Visual data, in the form of 3D point clouds gathered by a Kinect sensor, is collected over an object while forces are exerted by means of the probing tip of a force-torque sensor. A novel approach based on neural gas fitting is proposed to describe the particularities of a deformation over the selectively simplified 3D surface of the object, without requiring knowledge of the object material. An alignment procedure, a distance-based clustering, and inspiration from stratified sampling support this process. The resulting representation is denser in the region of the deformation (an average of 96.6% perceptual similarity with the collected data in the deformed area), while still preserving the object's overall shape (86% similarity over the entire surface) and only using on average of 40% of the number of vertices in the mesh. A series of feedforward neural networks is then trained to predict the mapping between the force parameters characterizing the interaction with the object and the change in the object shape, as captured by the fitted neural gas nodes. This series of networks allows for the prediction of the deformation of an object when subject to unknown interactions.

  14. Examining the Influences of Epistemic Beliefs and Knowledge Representations on Cognitive Processing and Conceptual Change When Learning Physics

    ERIC Educational Resources Information Center

    Franco, Gina M.; Muis, Krista R.; Kendeou, Panayiota; Ranellucci, John; Sampasivam, Lavanya; Wang, Xihui

    2012-01-01

    The purpose of this study was to investigate the role of epistemic beliefs and knowledge representations in cognitive and metacognitive processing when learning about physics concepts through text. Specifically, we manipulated the representation of physics concepts in texts about Newtonian mechanics and explored how these texts interacted with…

  15. Students and Teacher Academic Evaluation Perceptions: Methodology to Construct a Representation Based on Actionable Knowledge Discovery Framework

    ERIC Educational Resources Information Center

    Molina, Otilia Alejandro; Ratté, Sylvie

    2017-01-01

    This research introduces a method to construct a unified representation of teachers and students perspectives based on the actionable knowledge discovery (AKD) and delivery framework. The representation is constructed using two models: one obtained from student evaluations and the other obtained from teachers' reflections about their teaching…

  16. Mobile Knowledge, Karma Points and Digital Peers: The Tacit Epistemology and Linguistic Representation of MOOCs

    ERIC Educational Resources Information Center

    Portmess, Lisa

    2013-01-01

    Media representations of massive open online courses (MOOCs) such as those offered by Coursera, edX and Udacity reflect tension and ambiguity in their bold promise of democratized education and global knowledge sharing. An approach to MOOCs that emphasizes the tacit epistemology of such representations suggests a richer account of the ambiguities…

  17. The Effects of Idealized and Grounded Materials on Learning, Transfer, and Interest: An Organizing Framework for Categorizing External Knowledge Representations

    ERIC Educational Resources Information Center

    Belenky, Daniel M.; Schalk, Lennart

    2014-01-01

    Research in both cognitive and educational psychology has explored the effect of different types of external knowledge representations (e.g., manipulatives, graphical/pictorial representations, texts) on a variety of important outcome measures. We place this large and multifaceted research literature into an organizing framework, classifying three…

  18. Making Connections among Multiple Visual Representations: How Do Sense-Making Skills and Perceptual Fluency Relate to Learning of Chemistry Knowledge?

    ERIC Educational Resources Information Center

    Rau, Martina A.

    2018-01-01

    To learn content knowledge in science, technology, engineering, and math domains, students need to make connections among visual representations. This article considers two kinds of connection-making skills: (1) "sense-making skills" that allow students to verbally explain mappings among representations and (2) "perceptual…

  19. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks.

    PubMed

    Martin Cichy, Radoslaw; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-06-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Neural Network of Body Representation Differs between Transsexuals and Cissexuals

    PubMed Central

    Lin, Chia-Shu; Ku, Hsiao-Lun; Chao, Hsiang-Tai; Tu, Pei-Chi; Li, Cheng-Ta; Cheng, Chou-Ming; Su, Tung-Ping; Lee, Ying-Chiao; Hsieh, Jen-Chuen

    2014-01-01

    Body image is the internal representation of an individual’s own physical appearance. Individuals with gender identity disorder (GID), commonly referred to as transsexuals (TXs), are unable to form a satisfactory body image due to the dissonance between their biological sex and gender identity. We reasoned that changes in the resting-state functional connectivity (rsFC) network would neurologically reflect such experiential incongruence in TXs. Using graph theory-based network analysis, we investigated the regional changes of the degree centrality of the rsFC network. The degree centrality is an index of the functional importance of a node in a neural network. We hypothesized that three key regions of the body representation network, i.e., the primary somatosensory cortex, the superior parietal lobule and the insula, would show a higher degree centrality in TXs. Twenty-three pre-treatment TXs (11 male-to-female and 12 female-to-male TXs) as one psychosocial group and 23 age-matched healthy cissexual control subjects (CISs, 11 males and 12 females) were recruited. Resting-state functional magnetic resonance imaging was performed, and binarized rsFC networks were constructed. The TXs demonstrated a significantly higher degree centrality in the bilateral superior parietal lobule and the primary somatosensory cortex. In addition, the connectivity between the right insula and the bilateral primary somatosensory cortices was negatively correlated with the selfness rating of their desired genders. These data indicate that the key components of body representation manifest in TXs as critical function hubs in the rsFC network. The negative association may imply a coping mechanism that dissociates bodily emotion from body image. The changes in the functional connectome may serve as representational markers for the dysphoric bodily self of TXs. PMID:24465785

  1. Knowledge representation by connection matrices: A method for the on-board implementation of large expert systems

    NASA Technical Reports Server (NTRS)

    Kellner, A.

    1987-01-01

    Extremely large knowledge sources and efficient knowledge access characterizing future real-life artificial intelligence applications represent crucial requirements for on-board artificial intelligence systems due to obvious computer time and storage constraints on spacecraft. A type of knowledge representation and corresponding reasoning mechanism is proposed which is particularly suited for the efficient processing of such large knowledge bases in expert systems.

  2. Review On Applications Of Neural Network To Computer Vision

    NASA Astrophysics Data System (ADS)

    Li, Wei; Nasrabadi, Nasser M.

    1989-03-01

    Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.

  3. Visual Representations of Microcosm in Textbooks of Chemistry: Constructing a Systemic Network for Their Main Conceptual Framework

    ERIC Educational Resources Information Center

    Papageorgiou, George; Amariotakis, Vasilios; Spiliotopoulou, Vasiliki

    2017-01-01

    The main objective of this work is to analyse the visual representations (VRs) of the microcosm depicted in nine Greek secondary chemistry school textbooks of the last three decades in order to construct a systemic network for their main conceptual framework and to evaluate the contribution of each one of the resulting categories to the network.…

  4. Social Network Analysis: A New Methodology for Counseling Research.

    ERIC Educational Resources Information Center

    Koehly, Laura M.; Shivy, Victoria A.

    1998-01-01

    Social network analysis (SNA) uses indices of relatedness among individuals to produce representations of social structures and positions inherent in dyads or groups. SNA methods provide quantitative representations of ongoing transactional patterns in a given social environment. Methodological issues, applications and resources are discussed…

  5. MedRapid--medical community & business intelligence system.

    PubMed

    Finkeissen, E; Fuchs, H; Jakob, T; Wetter, T

    2002-01-01

    currently, it takes at least 6 months for researchers to communicate their results. This delay is caused (a) by partial lacks of machine support for both representation as well as communication and (b) by media breaks during the communication process. To make an integrated communication between researchers and practitioners possible, a general structure for medical content representation has been set up. The procedure for data entry and quality management has been generalized and implemented in a web-based authoring system. The MedRapid-system supports the medical experts in entering their knowledge into a database. Here, the level of detail is still below that of current medical guidelines representation. However, the symmetric structure for an area-wide medical knowledge representation is highly retrievable and thus can quickly be communicated into daily routine for the improvement of the treatment quality. In addition, other sources like journal articles and medical guidelines can be references within the MedRapid-system and thus be communicated into daily routine. The fundamental system for the representation of medical reference knowledge (from reference works/books) itself is not sufficient for the friction-less communication amongst medical staff. Rather, the process of (a) representing medical knowledge, (b) refereeing the represented knowledge, (c) communicating the represented knowledge, and (d) retrieving the represented knowledge has to be unified. MedRapid will soon support the whole process on one server system.

  6. Knowledge management for systems biology a general and visually driven framework applied to translational medicine.

    PubMed

    Maier, Dieter; Kalus, Wenzel; Wolff, Martin; Kalko, Susana G; Roca, Josep; Marin de Mas, Igor; Turan, Nil; Cascante, Marta; Falciani, Francesco; Hernandez, Miguel; Villà-Freixa, Jordi; Losko, Sascha

    2011-03-05

    To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype-phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene--disease and gene--compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.

  7. Knowledge management for systems biology a general and visually driven framework applied to translational medicine

    PubMed Central

    2011-01-01

    Background To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development. PMID:21375767

  8. Towards a category theory approach to analogy: Analyzing re-representation and acquisition of numerical knowledge.

    PubMed

    Navarrete, Jairo A; Dartnell, Pablo

    2017-08-01

    Category Theory, a branch of mathematics, has shown promise as a modeling framework for higher-level cognition. We introduce an algebraic model for analogy that uses the language of category theory to explore analogy-related cognitive phenomena. To illustrate the potential of this approach, we use this model to explore three objects of study in cognitive literature. First, (a) we use commutative diagrams to analyze an effect of playing particular educational board games on the learning of numbers. Second, (b) we employ a notion called coequalizer as a formal model of re-representation that explains a property of computational models of analogy called "flexibility" whereby non-similar representational elements are considered matches and placed in structural correspondence. Finally, (c) we build a formal learning model which shows that re-representation, language processing and analogy making can explain the acquisition of knowledge of rational numbers. These objects of study provide a picture of acquisition of numerical knowledge that is compatible with empirical evidence and offers insights on possible connections between notions such as relational knowledge, analogy, learning, conceptual knowledge, re-representation and procedural knowledge. This suggests that the approach presented here facilitates mathematical modeling of cognition and provides novel ways to think about analogy-related cognitive phenomena.

  9. Towards a category theory approach to analogy: Analyzing re-representation and acquisition of numerical knowledge

    PubMed Central

    2017-01-01

    Category Theory, a branch of mathematics, has shown promise as a modeling framework for higher-level cognition. We introduce an algebraic model for analogy that uses the language of category theory to explore analogy-related cognitive phenomena. To illustrate the potential of this approach, we use this model to explore three objects of study in cognitive literature. First, (a) we use commutative diagrams to analyze an effect of playing particular educational board games on the learning of numbers. Second, (b) we employ a notion called coequalizer as a formal model of re-representation that explains a property of computational models of analogy called “flexibility” whereby non-similar representational elements are considered matches and placed in structural correspondence. Finally, (c) we build a formal learning model which shows that re-representation, language processing and analogy making can explain the acquisition of knowledge of rational numbers. These objects of study provide a picture of acquisition of numerical knowledge that is compatible with empirical evidence and offers insights on possible connections between notions such as relational knowledge, analogy, learning, conceptual knowledge, re-representation and procedural knowledge. This suggests that the approach presented here facilitates mathematical modeling of cognition and provides novel ways to think about analogy-related cognitive phenomena. PMID:28841643

  10. Representation and presentation of requirements knowledge

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.; Feather, Martin S.; Harris, David R.

    1992-01-01

    An approach to representation and presentation of knowledge used in the ARIES, an experimental requirements/specification environment, is described. The approach applies the notion of a representation architecture to the domain of software engineering and incorporates a strong coupling to a transformation system. It is characterized by a single highly expressive underlying representation, interfaced simultaneously to multiple presentations, each with notations of differing degrees of expressivity. This enables analysts to use multiple languages for describing systems and have these descriptions yield a single consistent model of the system.

  11. Influence of the Digital Anatomist Foundational Model on traditional representations of anatomical concepts.

    PubMed

    Agoncillo, A V; Mejino, J L; Rosse, C

    1999-01-01

    A principled and logical representation of the structure of the human body has led to conflicts with traditional representations of the same knowledge by anatomy textbooks. The examples which illustrate resolution of these conflicts suggest that stricter requirements must be met for semantic consistency, expressivity and specificity by knowledge sources intended to support inference than by textbooks and term lists. These next-generation resources should influence traditional concept representation, rather than be constrained by convention.

  12. How to Make a Good Animation: A Grounded Cognition Model of How Visual Representation Design Affects the Construction of Abstract Physics Knowledge

    ERIC Educational Resources Information Center

    Chen, Zhongzhou; Gladding, Gary

    2014-01-01

    Visual representations play a critical role in teaching physics. However, since we do not have a satisfactory understanding of how visual perception impacts the construction of abstract knowledge, most visual representations used in instructions are either created based on existing conventions or designed according to the instructor's intuition,…

  13. Knowledge representation and management: transforming textual information into useful knowledge.

    PubMed

    Rassinoux, A-M

    2010-01-01

    To summarize current outstanding research in the field of knowledge representation and management. Synopsis of the articles selected for the IMIA Yearbook 2010. Four interesting papers, dealing with structured knowledge, have been selected for the section knowledge representation and management. Combining the newest techniques in computational linguistics and natural language processing with the latest methods in statistical data analysis, machine learning and text mining has proved to be efficient for turning unstructured textual information into meaningful knowledge. Three of the four selected papers for the section knowledge representation and management corroborate this approach and depict various experiments conducted to .extract meaningful knowledge from unstructured free texts such as extracting cancer disease characteristics from pathology reports, or extracting protein-protein interactions from biomedical papers, as well as extracting knowledge for the support of hypothesis generation in molecular biology from the Medline literature. Finally, the last paper addresses the level of formally representing and structuring information within clinical terminologies in order to render such information easily available and shareable among the health informatics community. Delivering common powerful tools able to automatically extract meaningful information from the huge amount of electronically unstructured free texts is an essential step towards promoting sharing and reusability across applications, domains, and institutions thus contributing to building capacities worldwide.

  14. The Representation of Object-Directed Action and Function Knowledge in the Human Brain

    PubMed Central

    Chen, Quanjing; Garcea, Frank E.; Mahon, Bradford Z.

    2016-01-01

    The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. PMID:25595179

  15. Modeling a flexible representation machinery of human concept learning.

    PubMed

    Matsuka, Toshihiko; Sakamoto, Yasuaki; Chouchourelou, Arieta

    2008-01-01

    It is widely acknowledged that categorically organized abstract knowledge plays a significant role in high-order human cognition. Yet, there are many unknown issues about the nature of how categories are internally represented in our mind. Traditionally, it has been considered that there is a single innate internal representation system for categorical knowledge, such as Exemplars, Prototypes, or Rules. However, results of recent empirical and computational studies collectively suggest that the human internal representation system is apparently capable of exhibiting behaviors consistent with various types of internal representation schemes. We, then, hypothesized that humans' representational system as a dynamic mechanism, capable of selecting a representation scheme that meets situational characteristics, including complexities of category structure. The present paper introduces a framework for a cognitive model that integrates robust and flexible internal representation machinery. Three simulation studies were conducted. The results showed that SUPERSET, our new model, successfully exhibited cognitive behaviors that are consistent with three main theories of the human internal representation system. Furthermore, a simulation study on social cognitive behaviors showed that the model was capable of acquiring knowledge with high commonality, even for a category structure with numerous valid conceptualizations.

  16. Representation of Ecological Systems within the Protected Areas Network of the Continental United States

    PubMed Central

    Aycrigg, Jocelyn L.; Davidson, Anne; Svancara, Leona K.; Gergely, Kevin J.; McKerrow, Alexa; Scott, J. Michael

    2013-01-01

    If conservation of biodiversity is the goal, then the protected areas network of the continental US may be one of our best conservation tools for safeguarding ecological systems (i.e., vegetation communities). We evaluated representation of ecological systems in the current protected areas network and found insufficient representation at three vegetation community levels within lower elevations and moderate to high productivity soils. We used national-level data for ecological systems and a protected areas database to explore alternative ways we might be able to increase representation of ecological systems within the continental US. By following one or more of these alternatives it may be possible to increase the representation of ecological systems in the protected areas network both quantitatively (from 10% up to 39%) and geographically and come closer to meeting the suggested Convention on Biological Diversity target of 17% for terrestrial areas. We used the Landscape Conservation Cooperative framework for regional analysis and found that increased conservation on some private and public lands may be important to the conservation of ecological systems in Western US, while increased public-private partnerships may be important in the conservation of ecological systems in Eastern US. We have not assessed the pros and cons of following the national or regional alternatives, but rather present them as possibilities that may be considered and evaluated as decisions are made to increase the representation of ecological systems in the protected areas network across their range of ecological, geographical, and geophysical occurrence in the continental US into the future. PMID:23372754

  17. Representation of ecological systems within the protected areas network of the continental United States

    USGS Publications Warehouse

    Aycrigg, Jocelyn L.; Davidson, Anne; Svancara, Leona K.; Gergely, Kevin J.; McKerrow, Alexa; Scott, J. Michael

    2013-01-01

    If conservation of biodiversity is the goal, then the protected areas network of the continental US may be one of our best conservation tools for safeguarding ecological systems (i.e., vegetation communities). We evaluated representation of ecological systems in the current protected areas network and found insufficient representation at three vegetation community levels within lower elevations and moderate to high productivity soils. We used national-level data for ecological systems and a protected areas database to explore alternative ways we might be able to increase representation of ecological systems within the continental US. By following one or more of these alternatives it may be possible to increase the representation of ecological systems in the protected areas network both quantitatively (from 10% up to 39%) and geographically and come closer to meeting the suggested Convention on Biological Diversity target of 17% for terrestrial areas. We used the Landscape Conservation Cooperative framework for regional analysis and found that increased conservation on some private and public lands may be important to the conservation of ecological systems in Western US, while increased public-private partnerships may be important in the conservation of ecological systems in Eastern US. We have not assessed the pros and cons of following the national or regional alternatives, but rather present them as possibilities that may be considered and evaluated as decisions are made to increase the representation of ecological systems in the protected areas network across their range of ecological, geographical, and geophysical occurrence in the continental US into the future.

  18. 32 CFR 776.20 - Competence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and prompt representation to a client. Competent representation requires the legal knowledge, skill, access to evidence, thoroughness, and expeditious preparation reasonably necessary for representation...

  19. 32 CFR 776.20 - Competence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and prompt representation to a client. Competent representation requires the legal knowledge, skill, access to evidence, thoroughness, and expeditious preparation reasonably necessary for representation...

  20. 32 CFR 776.20 - Competence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and prompt representation to a client. Competent representation requires the legal knowledge, skill, access to evidence, thoroughness, and expeditious preparation reasonably necessary for representation...

  1. 32 CFR 776.20 - Competence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and prompt representation to a client. Competent representation requires the legal knowledge, skill, access to evidence, thoroughness, and expeditious preparation reasonably necessary for representation...

  2. A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base

    NASA Technical Reports Server (NTRS)

    Kautzmann, Frank N., III

    1988-01-01

    Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.

  3. Visual Representation in Mathematics: Special Education Teachers' Knowledge and Emphasis for Instruction

    ERIC Educational Resources Information Center

    van Garderen, Delinda; Scheuermann, Amy; Poch, Apryl; Murray, Mary M.

    2018-01-01

    The use of visual representations (VRs) in mathematics is a strongly recommended practice in special education. Although recommended, little is known about special educators' knowledge of and instructional emphasis about VRs. Therefore, in this study, the authors examined special educators' own knowledge of and their instructional emphasis with…

  4. Knowledge representation issues for explaining plans

    NASA Technical Reports Server (NTRS)

    Prince, Mary Ellen; Johannes, James D.

    1988-01-01

    Explanations are recognized as an important facet of intelligent behavior. Unfortunately, expert systems are currently limited in their ability to provide useful, intelligent justifications of their results. We are currently investigating the issues involved in providing explanation facilities for expert planning systems. This investigation addresses three issues: knowledge content, knowledge representation, and explanation structure.

  5. What Does Knowledge Look Like? Drawing as a Means of Knowledge Representation and Knowledge Construction

    ERIC Educational Resources Information Center

    Bowen, Tracey; Evans, M. Max

    2015-01-01

    The most common tools individuals use to articulate complex and abstract concepts are writing and spoken language, long privileged as primary forms of communication. However, our, explanations of these concepts may be more aptly communicated through visual means, such as drawings. Interpreting and analyzing abstract graphic representations is…

  6. The representation of semantic knowledge in a child with Williams syndrome.

    PubMed

    Robinson, Sally J; Temple, Christine M

    2009-05-01

    This study investigated whether there are distinct types of semantic knowledge with distinct representational bases during development. The representation of semantic knowledge in a teenage child (S.T.) with Williams syndrome was explored for the categories of animals, fruit, and vegetables, manipulable objects, and nonmanipulable objects. S.T.'s lexical stores were of a normal size but the volume of "sensory feature" semantic knowledge she generated in oral descriptions was reduced. In visual recognition decisions, S.T. made more false positives to nonitems than did controls. Although overall naming of pictures was unimpaired, S.T. exhibited a category-specific anomia for nonmanipulable objects and impaired naming of visual-feature descriptions of animals. S.T.'s performance was interpreted as reflecting the impaired integration of distinctive features from perceptual input, which may impact upon nonmanipulable objects to a greater extent than the other knowledge categories. Performance was used to inform adult-based models of semantic representation, with category structure proposed to emerge due to differing degrees of dependency upon underlying knowledge types, feature correlations, and the acquisition of information from modality-specific processing modules.

  7. Learning multisensory representations for auditory-visual transfer of sequence category knowledge: a probabilistic language of thought approach.

    PubMed

    Yildirim, Ilker; Jacobs, Robert A

    2015-06-01

    If a person is trained to recognize or categorize objects or events using one sensory modality, the person can often recognize or categorize those same (or similar) objects and events via a novel modality. This phenomenon is an instance of cross-modal transfer of knowledge. Here, we study the Multisensory Hypothesis which states that people extract the intrinsic, modality-independent properties of objects and events, and represent these properties in multisensory representations. These representations underlie cross-modal transfer of knowledge. We conducted an experiment evaluating whether people transfer sequence category knowledge across auditory and visual domains. Our experimental data clearly indicate that we do. We also developed a computational model accounting for our experimental results. Consistent with the probabilistic language of thought approach to cognitive modeling, our model formalizes multisensory representations as symbolic "computer programs" and uses Bayesian inference to learn these representations. Because the model demonstrates how the acquisition and use of amodal, multisensory representations can underlie cross-modal transfer of knowledge, and because the model accounts for subjects' experimental performances, our work lends credence to the Multisensory Hypothesis. Overall, our work suggests that people automatically extract and represent objects' and events' intrinsic properties, and use these properties to process and understand the same (and similar) objects and events when they are perceived through novel sensory modalities.

  8. The connection-set algebra--a novel formalism for the representation of connectivity structure in neuronal network models.

    PubMed

    Djurfeldt, Mikael

    2012-07-01

    The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.

  9. 37 CFR 11.101 - Competence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... competent representation to a client. Competent representation requires the legal, scientific, and technical knowledge, skill, thoroughness and preparation reasonably necessary for the representation. ... COMMERCE REPRESENTATION OF OTHERS BEFORE THE UNITED STATES PATENT AND TRADEMARK OFFICE USPTO Rules of...

  10. 37 CFR 11.101 - Competence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... competent representation to a client. Competent representation requires the legal, scientific, and technical knowledge, skill, thoroughness and preparation reasonably necessary for the representation. ... COMMERCE REPRESENTATION OF OTHERS BEFORE THE UNITED STATES PATENT AND TRADEMARK OFFICE USPTO Rules of...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, B

    This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.

  12. Shared knowledge or shared affordances? Insights from an ecological dynamics approach to team coordination in sports.

    PubMed

    Silva, Pedro; Garganta, Júlio; Araújo, Duarte; Davids, Keith; Aguiar, Paulo

    2013-09-01

    Previous research has proposed that team coordination is based on shared knowledge of the performance context, responsible for linking teammates' mental representations for collective, internalized action solutions. However, this representational approach raises many questions including: how do individual schemata of team members become reformulated together? How much time does it take for this collective cognitive process to occur? How do different cues perceived by different individuals sustain a general shared mental representation? This representational approach is challenged by an ecological dynamics perspective of shared knowledge in team coordination. We argue that the traditional shared knowledge assumption is predicated on 'knowledge about' the environment, which can be used to share knowledge and influence intentions of others prior to competition. Rather, during competitive performance, the control of action by perceiving surrounding informational constraints is expressed in 'knowledge of' the environment. This crucial distinction emphasizes perception of shared affordances (for others and of others) as the main communication channel between team members during team coordination tasks. From this perspective, the emergence of coordinated behaviours in sports teams is based on the formation of interpersonal synergies between players resulting from collective actions predicated on shared affordances.

  13. Associations of Postural Knowledge and Basic Motor Skill with Dyspraxia in Autism: Implication for Abnormalities in Distributed Connectivity and Motor Learning

    PubMed Central

    Dowell, Lauren R.; Mahone, E. Mark; Mostofsky, Stewart H.

    2009-01-01

    Children with autism often have difficulty performing skilled movements. Praxis performance requires basic motor skill, knowledge of representations of the movement (mediated by parietal regions), and transcoding of these representations into movement plans (mediated by premotor circuits). The goals of this study were: (a) to determine whether dyspraxia in autism is associated with impaired representational (“postural”) knowledge, and (b) to examine the contributions of postural knowledge and basic motor skill to dyspraxia in autism. Thirty-seven children with autism spectrum disorder (ASD) and 50 typically developing (TD) children, ages 8–13, completed: (a) an examination of basic motor skills, (b) a postural knowledge test assessing praxis discrimination, and (c) a praxis examination. Children with ASD showed worse basic motor skill and postural knowledge than controls. The ASD group continued to show significantly poorer praxis than controls after accounting for age, IQ, basic motor skill, and postural knowledge. Dyspraxia in autism appears to be associated with impaired formation of spatial representations, as well as transcoding and execution. Distributed abnormality across parietal, premotor, and motor circuitry, as well as anomalous connectivity may be implicated. PMID:19702410

  14. Randomizing bipartite networks: the case of the World Trade Web.

    PubMed

    Saracco, Fabio; Di Clemente, Riccardo; Gabrielli, Andrea; Squartini, Tiziano

    2015-06-01

    Within the last fifteen years, network theory has been successfully applied both to natural sciences and to socioeconomic disciplines. In particular, bipartite networks have been recognized to provide a particularly insightful representation of many systems, ranging from mutualistic networks in ecology to trade networks in economy, whence the need of a pattern detection-oriented analysis in order to identify statistically-significant structural properties. Such an analysis rests upon the definition of suitable null models, i.e. upon the choice of the portion of network structure to be preserved while randomizing everything else. However, quite surprisingly, little work has been done so far to define null models for real bipartite networks. The aim of the present work is to fill this gap, extending a recently-proposed method to randomize monopartite networks to bipartite networks. While the proposed formalism is perfectly general, we apply our method to the binary, undirected, bipartite representation of the World Trade Web, comparing the observed values of a number of structural quantities of interest with the expected ones, calculated via our randomization procedure. Interestingly, the behavior of the World Trade Web in this new representation is strongly different from the monopartite analogue, showing highly non-trivial patterns of self-organization.

  15. Neural basis for dynamic updating of object representation in visual working memory.

    PubMed

    Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun

    2010-02-15

    In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Computational neural networks in chemistry: Model free mapping devices for predicting chemical reactivity from molecular structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.W.

    1992-01-01

    Computational neural networks (CNNs) are a computational paradigm inspired by the brain's massively parallel network of highly interconnected neurons. The power of computational neural networks derives not so much from their ability to model the brain as from their ability to learn by example and to map highly complex, nonlinear functions, without the need to explicitly specify the functional relationship. Two central questions about CNNs were investigated in the context of predicting chemical reactions: (1) the mapping properties of neural networks and (2) the representation of chemical information for use in CNNs. Chemical reactivity is here considered an example ofmore » a complex, nonlinear function of molecular structure. CNN's were trained using modifications of the back propagation learning rule to map a three dimensional response surface similar to those typically observed in quantitative structure-activity and structure-property relationships. The computational neural network's mapping of the response surface was found to be robust to the effects of training sample size, noisy data and intercorrelated input variables. The investigation of chemical structure representation led to the development of a molecular structure-based connection-table representation suitable for neural network training. An extension of this work led to a BE-matrix structure representation that was found to be general for several classes of reactions. The CNN prediction of chemical reactivity and regiochemistry was investigated for electrophilic aromatic substitution reactions, Markovnikov addition to alkenes, Saytzeff elimination from haloalkanes, Diels-Alder cycloaddition, and retro Diels-Alder ring opening reactions using these connectivity-matrix derived representations. The reaction predictions made by the CNNs were more accurate than those of an expert system and were comparable to predictions made by chemists.« less

  17. Scaling and correlations in three bus-transport networks of China

    NASA Astrophysics Data System (ADS)

    Xu, Xinping; Hu, Junhui; Liu, Feng; Liu, Lianshou

    2007-01-01

    We report the statistical properties of three bus-transport networks (BTN) in three different cities of China. These networks are composed of a set of bus lines and stations serviced by these. Network properties, including the degree distribution, clustering and average path length are studied in different definitions of network topology. We explore scaling laws and correlations that may govern intrinsic features of such networks. Besides, we create a weighted network representation for BTN with lines mapped to nodes and number of common stations to weights between lines. In such a representation, the distributions of degree, strength and weight are investigated. A linear behavior between strength and degree s(k)∼k is also observed.

  18. Operator assistant systems - An experimental approach using a telerobotics application

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; Mathe, Nathalie

    1993-01-01

    This article presents a knowledge-based system methodology for developing operator assistant (OA) systems in dynamic and interactive environments. This is a problem both of training and design, which is the subject of this article. Design includes both design of the system to be controlled and design of procedures for operating this system. A specific knowledge representation is proposed for representing the corresponding system and operational knowledge. This representation is based on the situation recognition and analytical reasoning paradigm. It tries to make explicit common factors involved in both human and machine intelligence, including perception and reasoning. An OA system based on this representation has been developed for space telerobotics. Simulations have been carried out with astronauts and the resulting protocols have been analyzed. Results show the relevance of the approach and have been used for improving the knowledge representation and the OA architecture.

  19. Knowledge inhibition and N400: a study with words that look like common words.

    PubMed

    Debruille, J B

    1998-04-01

    In addition to their own representations, low frequency words, such as BRIBE, can covertly activate the representations of higher frequency words they look like (e.g., BRIDE). Hence, look-alike words can activate knowledge that is incompatible with the knowledge corresponding to accurate representations. Comparatively, eccentric words, that is, low frequency words that do not look as much like higher frequency words, are less likely to activate incompatible knowledge. This study focuses on the hypothesis that the N400 component of the event-related potential reflects the inhibition of incompatible knowledge. This hypothesis predicts that look-alike words elicit N400s of greater amplitudes than eccentric words in conditions where incompatible knowledge is inhibited. Results from a single item lexical decision experiment are reported which support the inhibition hypothesis. Copyright 1998 Academic Press.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes inmore » the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis.« less

  1. VISIONET: intuitive visualisation of overlapping transcription factor networks, with applications in cardiogenic gene discovery.

    PubMed

    Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Rosenthal, Nadia A; Kitano, Hiroaki; Boyd, Sarah E

    2015-05-01

    Existing de novo software platforms have largely overlooked a valuable resource, the expertise of the intended biologist users. Typical data representations such as long gene lists, or highly dense and overlapping transcription factor networks often hinder biologists from relating these results to their expertise. VISIONET, a streamlined visualisation tool built from experimental needs, enables biologists to transform large and dense overlapping transcription factor networks into sparse human-readable graphs via numerically filtering. The VISIONET interface allows users without a computing background to interactively explore and filter their data, and empowers them to apply their specialist knowledge on far more complex and substantial data sets than is currently possible. Applying VISIONET to the Tbx20-Gata4 transcription factor network led to the discovery and validation of Aldh1a2, an essential developmental gene associated with various important cardiac disorders, as a healthy adult cardiac fibroblast gene co-regulated by cardiogenic transcription factors Gata4 and Tbx20. We demonstrate with experimental validations the utility of VISIONET for expertise-driven gene discovery that opens new experimental directions that would not otherwise have been identified.

  2. Origins of Secure Base Script Knowledge and the Developmental Construction of Attachment Representations

    PubMed Central

    Waters, Theodore E. A.; Ruiz, Sarah K.; Roisman, Glenn I.

    2016-01-01

    Increasing evidence suggests that attachment representations take at least two forms—a secure base script and an autobiographical narrative of childhood caregiving experiences. This study presents data from the first 26 years of the Minnesota Longitudinal Study of Risk and Adaptation (N = 169), examining the developmental origins of secure base script knowledge in a high-risk sample, and testing alternative models of the developmental sequencing of the construction of attachment representations. Results demonstrated that secure base script knowledge was predicted by observations of maternal sensitivity across childhood and adolescence. Further, findings suggest that the construction of a secure base script supports the development of a coherent autobiographical representation of childhood attachment experiences with primary caregivers by early adulthood. PMID:27302650

  3. A Bayesian network coding scheme for annotating biomedical information presented to genetic counseling clients.

    PubMed

    Green, Nancy

    2005-04-01

    We developed a Bayesian network coding scheme for annotating biomedical content in layperson-oriented clinical genetics documents. The coding scheme supports the representation of probabilistic and causal relationships among concepts in this domain, at a high enough level of abstraction to capture commonalities among genetic processes and their relationship to health. We are using the coding scheme to annotate a corpus of genetic counseling patient letters as part of the requirements analysis and knowledge acquisition phase of a natural language generation project. This paper describes the coding scheme and presents an evaluation of intercoder reliability for its tag set. In addition to giving examples of use of the coding scheme for analysis of discourse and linguistic features in this genre, we suggest other uses for it in analysis of layperson-oriented text and dialogue in medical communication.

  4. The hierarchical brain network for face recognition.

    PubMed

    Zhen, Zonglei; Fang, Huizhen; Liu, Jia

    2013-01-01

    Numerous functional magnetic resonance imaging (fMRI) studies have identified multiple cortical regions that are involved in face processing in the human brain. However, few studies have characterized the face-processing network as a functioning whole. In this study, we used fMRI to identify face-selective regions in the entire brain and then explore the hierarchical structure of the face-processing network by analyzing functional connectivity among these regions. We identified twenty-five regions mainly in the occipital, temporal and frontal cortex that showed a reliable response selective to faces (versus objects) across participants and across scan sessions. Furthermore, these regions were clustered into three relatively independent sub-networks in a face-recognition task on the basis of the strength of functional connectivity among them. The functionality of the sub-networks likely corresponds to the recognition of individual identity, retrieval of semantic knowledge and representation of emotional information. Interestingly, when the task was switched to object recognition from face recognition, the functional connectivity between the inferior occipital gyrus and the rest of the face-selective regions were significantly reduced, suggesting that this region may serve as an entry node in the face-processing network. In sum, our study provides empirical evidence for cognitive and neural models of face recognition and helps elucidate the neural mechanisms underlying face recognition at the network level.

  5. Automated generation of patient-tailored electronic care pathways by translating computer-interpretable guidelines into hierarchical task networks.

    PubMed

    González-Ferrer, Arturo; ten Teije, Annette; Fdez-Olivares, Juan; Milian, Krystyna

    2013-02-01

    This paper describes a methodology which enables computer-aided support for the planning, visualization and execution of personalized patient treatments in a specific healthcare process, taking into account complex temporal constraints and the allocation of institutional resources. To this end, a translation from a time-annotated computer-interpretable guideline (CIG) model of a clinical protocol into a temporal hierarchical task network (HTN) planning domain is presented. The proposed method uses a knowledge-driven reasoning process to translate knowledge previously described in a CIG into a corresponding HTN Planning and Scheduling domain, taking advantage of HTNs known ability to (i) dynamically cope with temporal and resource constraints, and (ii) automatically generate customized plans. The proposed method, focusing on the representation of temporal knowledge and based on the identification of workflow and temporal patterns in a CIG, makes it possible to automatically generate time-annotated and resource-based care pathways tailored to the needs of any possible patient profile. The proposed translation is illustrated through a case study based on a 70 pages long clinical protocol to manage Hodgkin's disease, developed by the Spanish Society of Pediatric Oncology. We show that an HTN planning domain can be generated from the corresponding specification of the protocol in the Asbru language, providing a running example of this translation. Furthermore, the correctness of the translation is checked and also the management of ten different types of temporal patterns represented in the protocol. By interpreting the automatically generated domain with a state-of-art HTN planner, a time-annotated care pathway is automatically obtained, customized for the patient's and institutional needs. The generated care pathway can then be used by clinicians to plan and manage the patients long-term care. The described methodology makes it possible to automatically generate patient-tailored care pathways, leveraging an incremental knowledge-driven engineering process that starts from the expert knowledge of medical professionals. The presented approach makes the most of the strengths inherent in both CIG languages and HTN planning and scheduling techniques: for the former, knowledge acquisition and representation of the original clinical protocol, and for the latter, knowledge reasoning capabilities and an ability to deal with complex temporal and resource constraints. Moreover, the proposed approach provides immediate access to technologies such as business process management (BPM) tools, which are increasingly being used to support healthcare processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Density-based clustering: A 'landscape view' of multi-channel neural data for inference and dynamic complexity analysis.

    PubMed

    Baglietto, Gabriel; Gigante, Guido; Del Giudice, Paolo

    2017-01-01

    Two, partially interwoven, hot topics in the analysis and statistical modeling of neural data, are the development of efficient and informative representations of the time series derived from multiple neural recordings, and the extraction of information about the connectivity structure of the underlying neural network from the recorded neural activities. In the present paper we show that state-space clustering can provide an easy and effective option for reducing the dimensionality of multiple neural time series, that it can improve inference of synaptic couplings from neural activities, and that it can also allow the construction of a compact representation of the multi-dimensional dynamics, that easily lends itself to complexity measures. We apply a variant of the 'mean-shift' algorithm to perform state-space clustering, and validate it on an Hopfield network in the glassy phase, in which metastable states are largely uncorrelated from memories embedded in the synaptic matrix. In this context, we show that the neural states identified as clusters' centroids offer a parsimonious parametrization of the synaptic matrix, which allows a significant improvement in inferring the synaptic couplings from the neural activities. Moving to the more realistic case of a multi-modular spiking network, with spike-frequency adaptation inducing history-dependent effects, we propose a procedure inspired by Boltzmann learning, but extending its domain of application, to learn inter-module synaptic couplings so that the spiking network reproduces a prescribed pattern of spatial correlations; we then illustrate, in the spiking network, how clustering is effective in extracting relevant features of the network's state-space landscape. Finally, we show that the knowledge of the cluster structure allows casting the multi-dimensional neural dynamics in the form of a symbolic dynamics of transitions between clusters; as an illustration of the potential of such reduction, we define and analyze a measure of complexity of the neural time series.

  7. An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition.

    PubMed

    Lozano-Diez, Alicia; Zazo, Ruben; Toledano, Doroteo T; Gonzalez-Rodriguez, Joaquin

    2017-01-01

    Language recognition systems based on bottleneck features have recently become the state-of-the-art in this research field, showing its success in the last Language Recognition Evaluation (LRE 2015) organized by NIST (U.S. National Institute of Standards and Technology). This type of system is based on a deep neural network (DNN) trained to discriminate between phonetic units, i.e. trained for the task of automatic speech recognition (ASR). This DNN aims to compress information in one of its layers, known as bottleneck (BN) layer, which is used to obtain a new frame representation of the audio signal. This representation has been proven to be useful for the task of language identification (LID). Thus, bottleneck features are used as input to the language recognition system, instead of a classical parameterization of the signal based on cepstral feature vectors such as MFCCs (Mel Frequency Cepstral Coefficients). Despite the success of this approach in language recognition, there is a lack of studies analyzing in a systematic way how the topology of the DNN influences the performance of bottleneck feature-based language recognition systems. In this work, we try to fill-in this gap, analyzing language recognition results with different topologies for the DNN used to extract the bottleneck features, comparing them and against a reference system based on a more classical cepstral representation of the input signal with a total variability model. This way, we obtain useful knowledge about how the DNN configuration influences bottleneck feature-based language recognition systems performance.

  8. Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research.

    PubMed

    He, Yongqun

    2016-06-01

    Compared with controlled terminologies ( e.g. , MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network ( i.e. , OneNet). A new "OneNet effectiveness" tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research.

  9. Organization and integration of biomedical knowledge with concept maps for key peroxisomal pathways.

    PubMed

    Willemsen, A M; Jansen, G A; Komen, J C; van Hooff, S; Waterham, H R; Brites, P M T; Wanders, R J A; van Kampen, A H C

    2008-08-15

    One important area of clinical genomics research involves the elucidation of molecular mechanisms underlying (complex) disorders which eventually may lead to new diagnostic or drug targets. To further advance this area of clinical genomics one of the main challenges is the acquisition and integration of data, information and expert knowledge for specific biomedical domains and diseases. Currently the required information is not very well organized but scattered over biological and biomedical databases, basic text books, scientific literature and experts' minds and may be highly specific, heterogeneous, complex and voluminous. We present a new framework to construct knowledge bases with concept maps for presentation of information and the web ontology language OWL for the representation of information. We demonstrate this framework through the construction of a peroxisomal knowledge base, which focuses on four key peroxisomal pathways and several related genetic disorders. All 155 concept maps in our knowledge base are linked to at least one other concept map, which allows the visualization of one big network of related pieces of information. The peroxisome knowledge base is available from www.bioinformaticslaboratory.nl (Support-->Web applications). Supplementary data is available from www.bioinformaticslaboratory.nl (Research-->Output--> Publications--> KB_SuppInfo)

  10. Approaching an Understanding of Omniscience from the Preschool Years to Early Adulthood

    ERIC Educational Resources Information Center

    Lane, Jonathan D.; Wellman, Henry M.; Evans, E. Margaret

    2014-01-01

    Individuals in many cultures believe in omniscient (all-knowing) beings, but everyday representations of omniscience have rarely been studied. To understand the nature of such representations requires knowing how they develop. Two studies examined the breadth of knowledge (i.e., types of knowledge) and depth of knowledge (i.e., amount of knowledge…

  11. Preservice Secondary Mathematics Teachers' Development of Mathematical Knowledge for Teaching and Their Use of Knowledge in Their Instruction

    ERIC Educational Resources Information Center

    Moon, Kyunghee

    2013-01-01

    This study examined how preservice secondary mathematics teachers developed mathematical knowledge for teaching (MKT) around representations and big ideas through mathematics and mathematics education courses. The importance of big ideas and representations in mathematics has been emphasized in national standards as well as in literature. Yet,…

  12. An Overview of OWL, a Language for Knowledge Representation.

    ERIC Educational Resources Information Center

    Szolovits, Peter; And Others

    This is a description of the motivation and overall organization of the OWL language for knowledge representation. OWL consists of a linguistic memory system (LMS), a memory of concepts in terms of which all English phrases and all knowledge of an application domain are represented; a theory of English grammar which tells how to map English…

  13. [Social and cultural representations in epilepsy awareness].

    PubMed

    Arborio, Sophie

    2015-01-01

    Representations relating to epilepsy have evolved over the centuries, but the manifestations of epilepsy awaken archaic images linked to death, violence and disgust. Indeed, the generalised epileptic seizure symbolises a rupture with the surrounding environment, "informs it", through the loss of social codes which it causes. The social and cultural context, as well as medical knowledge, influences the representations of the disease. As a result, popular knowledge is founded on the social and cultural representations of a given era, in a given society. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. A network of spiking neurons for computing sparse representations in an energy efficient way

    PubMed Central

    Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B.

    2013-01-01

    Computing sparse redundant representations is an important problem both in applied mathematics and neuroscience. In many applications, this problem must be solved in an energy efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating via low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, such operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We compare the numerical performance of HDA with existing algorithms and show that in the asymptotic regime the representation error of HDA decays with time, t, as 1/t. We show that HDA is stable against time-varying noise, specifically, the representation error decays as 1/t for Gaussian white noise. PMID:22920853

  15. A network of spiking neurons for computing sparse representations in an energy-efficient way.

    PubMed

    Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B

    2012-11-01

    Computing sparse redundant representations is an important problem in both applied mathematics and neuroscience. In many applications, this problem must be solved in an energy-efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating by low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, the operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We show that the numerical performance of HDA is on par with existing algorithms. In the asymptotic regime, the representation error of HDA decays with time, t, as 1/t. HDA is stable against time-varying noise; specifically, the representation error decays as 1/√t for gaussian white noise.

  16. Problem-Oriented Corporate Knowledge Base Models on the Case-Based Reasoning Approach Basis

    NASA Astrophysics Data System (ADS)

    Gluhih, I. N.; Akhmadulin, R. K.

    2017-07-01

    One of the urgent directions of efficiency enhancement of production processes and enterprises activities management is creation and use of corporate knowledge bases. The article suggests a concept of problem-oriented corporate knowledge bases (PO CKB), in which knowledge is arranged around possible problem situations and represents a tool for making and implementing decisions in such situations. For knowledge representation in PO CKB a case-based reasoning approach is encouraged to use. Under this approach, the content of a case as a knowledge base component has been defined; based on the situation tree a PO CKB knowledge model has been developed, in which the knowledge about typical situations as well as specific examples of situations and solutions have been represented. A generalized problem-oriented corporate knowledge base structural chart and possible modes of its operation have been suggested. The obtained models allow creating and using corporate knowledge bases for support of decision making and implementing, training, staff skill upgrading and analysis of the decisions taken. The universal interpretation of terms “situation” and “solution” adopted in the work allows using the suggested models to develop problem-oriented corporate knowledge bases in different subject domains. It has been suggested to use the developed models for making corporate knowledge bases of the enterprises that operate engineer systems and networks at large production facilities.

  17. Using texts in science education: cognitive processes and knowledge representation.

    PubMed

    van den Broek, Paul

    2010-04-23

    Texts form a powerful tool in teaching concepts and principles in science. How do readers extract information from a text, and what are the limitations in this process? Central to comprehension of and learning from a text is the construction of a coherent mental representation that integrates the textual information and relevant background knowledge. This representation engenders learning if it expands the reader's existing knowledge base or if it corrects misconceptions in this knowledge base. The Landscape Model captures the reading process and the influences of reader characteristics (such as working-memory capacity, reading goal, prior knowledge, and inferential skills) and text characteristics (such as content/structure of presented information, processing demands, and textual cues). The model suggests factors that can optimize--or jeopardize--learning science from text.

  18. Representation in Memory.

    ERIC Educational Resources Information Center

    Rumelhart, David E.; Norman, Donald A.

    This paper reviews work on the representation of knowledge from within psychology and artificial intelligence. The work covers the nature of representation, the distinction between the represented world and the representing world, and significant issues concerned with propositional, analogical, and superpositional representations. Specific topics…

  19. Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms.

    PubMed

    Ferentinos, Konstantinos P

    2005-09-01

    Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.

  20. Multimodal Literacies in Science: Currency, Coherence and Focus

    NASA Astrophysics Data System (ADS)

    Klein, Perry D.; Kirkpatrick, Lori C.

    2010-01-01

    Since the 1990s, researchers have increasingly drawn attention to the multiplicity of representations used in science. This issue of RISE advances this line of research by placing such representations at the centre of science teaching and learning. The authors show that representations do not simply transmit scientific information; they are integral to reasoning about scientific phenomena. This focus on thinking with representations mediates between well-resolved representations and formal reasoning of disciplinary science, and the capacity-limited, perceptually-driven nature of human cognition. The teaching practices described here build on three key principles: Each representation is interpreted through others; natural language is a sign system that is used to interpret a variety of other kinds of representations; and this chain of signs or representations is ultimately grounded in bodily experiences of perception and action. In these papers, the researchers provide examples and analysis of teachers scaffolding students in using representations to construct new knowledge, and in constructing new representations to express and develop their knowledge. The result is a new delineation of the power and the challenges of teaching science with multiple representations.

  1. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    ERIC Educational Resources Information Center

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  2. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    ERIC Educational Resources Information Center

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified…

  3. Forming Tool Use Representations: A Neurophysiological Investigation into Tool Exposure

    ERIC Educational Resources Information Center

    Mizelle, John Christopher; Tang, Teresa; Pirouz, Nikta; Wheaton, Lewis A.

    2011-01-01

    Prior work has identified a common left parietofrontal network for storage of tool-related information for various tasks. How these representations become established within this network on the basis of different modes of exposure is unclear. Here, healthy subjects engaged in physical practice (direct exposure) with familiar and unfamiliar tools.…

  4. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms.

    PubMed

    Terfve, Camille; Cokelaer, Thomas; Henriques, David; MacNamara, Aidan; Goncalves, Emanuel; Morris, Melody K; van Iersel, Martijn; Lauffenburger, Douglas A; Saez-Rodriguez, Julio

    2012-10-18

    Cells process signals using complex and dynamic networks. Studying how this is performed in a context and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but formalisms that can take advantage of these features to build models of signaling are still comparatively scarce. Here we present CellNOptR, an open-source R software package for building predictive logic models of signaling networks by training networks derived from prior knowledge to signaling (typically phosphoproteomic) data. CellNOptR features different logic formalisms, from Boolean models to differential equations, in a common framework. These different logic model representations accommodate state and time values with increasing levels of detail. We provide in addition an interface via Cytoscape (CytoCopteR) to facilitate use and integration with Cytoscape network-based capabilities. Models generated with this pipeline have two key features. First, they are constrained by prior knowledge about the network but trained to data. They are therefore context and cell line specific, which results in enhanced predictive and mechanistic insights. Second, they can be built using different logic formalisms depending on the richness of the available data. Models built with CellNOptR are useful tools to understand how signals are processed by cells and how this is altered in disease. They can be used to predict the effect of perturbations (individual or in combinations), and potentially to engineer therapies that have differential effects/side effects depending on the cell type or context.

  5. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms

    PubMed Central

    2012-01-01

    Background Cells process signals using complex and dynamic networks. Studying how this is performed in a context and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but formalisms that can take advantage of these features to build models of signaling are still comparatively scarce. Results Here we present CellNOptR, an open-source R software package for building predictive logic models of signaling networks by training networks derived from prior knowledge to signaling (typically phosphoproteomic) data. CellNOptR features different logic formalisms, from Boolean models to differential equations, in a common framework. These different logic model representations accommodate state and time values with increasing levels of detail. We provide in addition an interface via Cytoscape (CytoCopteR) to facilitate use and integration with Cytoscape network-based capabilities. Conclusions Models generated with this pipeline have two key features. First, they are constrained by prior knowledge about the network but trained to data. They are therefore context and cell line specific, which results in enhanced predictive and mechanistic insights. Second, they can be built using different logic formalisms depending on the richness of the available data. Models built with CellNOptR are useful tools to understand how signals are processed by cells and how this is altered in disease. They can be used to predict the effect of perturbations (individual or in combinations), and potentially to engineer therapies that have differential effects/side effects depending on the cell type or context. PMID:23079107

  6. The Representation of Object-Directed Action and Function Knowledge in the Human Brain.

    PubMed

    Chen, Quanjing; Garcea, Frank E; Mahon, Bradford Z

    2016-04-01

    The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Theoretical foundations for information representation and constraint specification

    NASA Technical Reports Server (NTRS)

    Menzel, Christopher P.; Mayer, Richard J.

    1991-01-01

    Research accomplished at the Knowledge Based Systems Laboratory of the Department of Industrial Engineering at Texas A&M University is described. Outlined here are the theoretical foundations necessary to construct a Neutral Information Representation Scheme (NIRS), which will allow for automated data transfer and translation between model languages, procedural programming languages, database languages, transaction and process languages, and knowledge representation and reasoning control languages for information system specification.

  8. Interplay of hippocampus and prefrontal cortex in memory

    PubMed Central

    Preston, Alison R.; Eichenbaum, Howard

    2013-01-01

    Recent studies on the hippocampus and the prefrontal cortex have considerably advanced our understanding of the distinct roles of these brain areas in the encoding and retrieval of memories, and of how they interact in the prolonged process by which new memories are consolidated into our permanent storehouse of knowledge. These studies have led to a new model of how the hippocampus forms and replays memories and how the prefrontal cortex engages representations of the meaningful contexts in which related memories occur, as well as how these areas interact during memory retrieval. Furthermore, they have provided new insights into how interactions between the hippocampus and prefrontal cortex support the assimilation of new memories into pre-existing networks of knowledge, called schemas, and how schemas are modified in this process as the foundation of memory consolidation. PMID:24028960

  9. A development framework for distributed artificial intelligence

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1989-01-01

    The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.

  10. Functional and anatomical dissociation between the orthographic lexicon and the orthographic buffer revealed in reading and writing Chinese characters by fMRI.

    PubMed

    Chen, Hsiang-Yu; Chang, Erik C; Chen, Sinead H Y; Lin, Yi-Chen; Wu, Denise H

    2016-04-01

    The contribution of orthographic representations to reading and writing has been intensively investigated in the literature. However, the distinction between neuronal correlates of the orthographic lexicon and the orthographic (graphemic) buffer has rarely been examined in alphabetic languages and never been explored in non-alphabetic languages. To determine whether the neural networks associated with the orthographic lexicon and buffer of logographic materials are comparable to those reported in the literature, the present fMRI experiment manipulated frequency and the stroke number of Chinese characters in the tasks of form judgment and stroke judgment, which emphasized the processing of character recognition and writing, respectively. It was found that the left fusiform gyrus exhibited higher activation when encountering low-frequency than high-frequency characters in both tasks, which suggested this region to be the locus of the orthographic lexicon that represents the knowledge of character forms. On the other hand, the activations in the posterior part of the left middle frontal gyrus and in the left angular gyrus were parametrically modulated by the stroke number of target characters only in the stroke judgment task, which suggested these regions to be the locus of the orthographic buffer that represents the processing of stroke sequence in writing. These results provide the first evidence for the functional and anatomical dissociation between the orthographic lexicon and buffer in reading and writing Chinese characters. They also demonstrate the critical roles of the left fusiform area and the frontoparietal network to the long-term and short-term representations of orthographic knowledge, respectively, across different orthographies. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Semantic knowledge fractionations: verbal propositions vs. perceptual input? Evidence from a child with Klinefelter syndrome.

    PubMed

    Robinson, Sally J; Temple, Christine M

    2013-04-01

    This paper addresses the relative independence of different types of lexical- and factually-based semantic knowledge in JM, a 9-year-old boy with Klinefelter syndrome (KS). JM was matched to typically developing (TD) controls on the basis of chronological age. Lexical-semantic knowledge was investigated for common noun (CN) and mathematical vocabulary items (MV). Factually-based semantic knowledge was investigated for general and number facts. For CN items, JM's lexical stores were of a normal size but the volume of correct 'sensory feature' semantic knowledge he generated within verbal item descriptions was significantly reduced. He was also significantly impaired at naming item descriptions and pictures, particularly for fruit and vegetables. There was also weak object decision for fruit and vegetables. In contrast, for MV items, JM's lexical stores were elevated, with no significant difference in the amount and type of correct semantic knowledge generated within verbal item descriptions and normal naming. JM's fact retrieval accuracy was normal for all types of factual knowledge. JM's performance indicated a dissociation between the representation of CN and MV vocabulary items during development. JM's preserved semantic knowledge of facts in the face of impaired semantic knowledge of vocabulary also suggests that factually-based semantic knowledge representation is not dependent on normal lexical-semantic knowledge during development. These findings are discussed in relation to the emergence of distinct semantic knowledge representations during development, due to differing degrees of dependency upon the acquisition and representation of semantic knowledge from verbal propositions and perceptual input.

  12. An algebra-based method for inferring gene regulatory networks.

    PubMed

    Vera-Licona, Paola; Jarrah, Abdul; Garcia-Puente, Luis David; McGee, John; Laubenbacher, Reinhard

    2014-03-26

    The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network. Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html.

  13. Rigor in electronic health record knowledge representation: Lessons learned from a SNOMED CT clinical content encoding exercise.

    PubMed

    Monsen, Karen A; Finn, Robert S; Fleming, Thea E; Garner, Erin J; LaValla, Amy J; Riemer, Judith G

    2016-01-01

    Rigor in clinical knowledge representation is necessary foundation for meaningful interoperability, exchange and reuse of electronic health record (EHR) data. It is critical for clinicians to understand principles and implications of using clinical standards for knowledge representation within EHRs. To educate clinicians and students about knowledge representation and to evaluate their success of applying the manual lookups method for assigning Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) concept identifiers using formally mapped concepts from the Omaha System interface terminology. Clinicians who were students in a doctoral nursing program conducted 21 lookups for Omaha System terms in publicly available SNOMED CT browsers. Lookups were deemed successful if results matched exactly with the corresponding code from the January 2013 SNOMED CT-Omaha System terminology cross-map. Of the 21 manual lookups attempted, 12 (57.1%) were successful. Errors were due to semantic gaps differences in granularity and synonymy or partial term matching. Achieving rigor in clinical knowledge representation across settings, vendors and health systems is a globally recognized challenge. Cross-maps have potential to improve rigor in SNOMED CT encoding of clinical data. Further research is needed to evaluate outcomes of using of terminology cross-maps to encode clinical terms with SNOMED CT concept identifiers based on interface terminologies.

  14. Dynamic updating of hippocampal object representations reflects new conceptual knowledge

    PubMed Central

    Mack, Michael L.; Love, Bradley C.; Preston, Alison R.

    2016-01-01

    Concepts organize the relationship among individual stimuli or events by highlighting shared features. Often, new goals require updating conceptual knowledge to reflect relationships based on different goal-relevant features. Here, our aim is to determine how hippocampal (HPC) object representations are organized and updated to reflect changing conceptual knowledge. Participants learned two classification tasks in which successful learning required attention to different stimulus features, thus providing a means to index how representations of individual stimuli are reorganized according to changing task goals. We used a computational learning model to capture how people attended to goal-relevant features and organized object representations based on those features during learning. Using representational similarity analyses of functional magnetic resonance imaging data, we demonstrate that neural representations in left anterior HPC correspond with model predictions of concept organization. Moreover, we show that during early learning, when concept updating is most consequential, HPC is functionally coupled with prefrontal regions. Based on these findings, we propose that when task goals change, object representations in HPC can be organized in new ways, resulting in updated concepts that highlight the features most critical to the new goal. PMID:27803320

  15. User-based representation of time-resolved multimodal public transportation networks.

    PubMed

    Alessandretti, Laura; Karsai, Márton; Gauvin, Laetitia

    2016-07-01

    Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments.

  16. User-based representation of time-resolved multimodal public transportation networks

    PubMed Central

    Alessandretti, Laura; Gauvin, Laetitia

    2016-01-01

    Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments. PMID:27493773

  17. Forced to remember: when memory is biased by salient information.

    PubMed

    Santangelo, Valerio

    2015-04-15

    The last decades have seen a rapid growing in the attempt to understand the key factors involved in the internal memory representation of the external world. Visual salience have been found to provide a major contribution in predicting the probability for an item/object embedded in a complex setting (i.e., a natural scene) to be encoded and then remembered later on. Here I review the existing literature highlighting the impact of perceptual- (based on low-level sensory features) and semantics-related salience (based on high-level knowledge) on short-term memory representation, along with the neural mechanisms underpinning the interplay between these factors. The available evidence reveal that both perceptual- and semantics-related factors affect attention selection mechanisms during the encoding of natural scenes. Biasing internal memory representation, both perceptual and semantics factors increase the probability to remember high- to the detriment of low-saliency items. The available evidence also highlight an interplay between these factors, with a reduced impact of perceptual-related salience in biasing memory representation as a function of the increasing availability of semantics-related salient information. The neural mechanisms underpinning this interplay involve the activation of different portions of the frontoparietal attention control network. Ventral regions support the assignment of selection/encoding priorities based on high-level semantics, while the involvement of dorsal regions reflects priorities assignment based on low-level sensory features. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Optimizing Functional Network Representation of Multivariate Time Series

    NASA Astrophysics Data System (ADS)

    Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco Del; Menasalvas, Ernestina; Boccaletti, Stefano

    2012-09-01

    By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.

  19. Optimizing Functional Network Representation of Multivariate Time Series

    PubMed Central

    Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco del; Menasalvas, Ernestina; Boccaletti, Stefano

    2012-01-01

    By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks. PMID:22953051

  20. Dynamic information processing states revealed through neurocognitive models of object semantics

    PubMed Central

    Clarke, Alex

    2015-01-01

    Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632

  1. Dynamic Uncertain Causality Graph for Knowledge Representation and Probabilistic Reasoning: Directed Cyclic Graph and Joint Probability Distribution.

    PubMed

    Zhang, Qin

    2015-07-01

    Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology.

  2. The Effect of Concept Mapping with Different Levels of Generativity and Learners' Self-Regulated Learning Skills on Knowledge Acquisition and Representation

    ERIC Educational Resources Information Center

    Lim, Kyu Yon

    2008-01-01

    The purpose of this study was to investigate the effectiveness of concept mapping strategies with different levels of generativity in terms of knowledge acquisition and knowledge representation. Also, it examined whether or not learners' self-regulated learning (SRL) skills influenced the effectiveness of concept mapping strategies with different…

  3. Theorizing "Difficult Knowledge" in the Aftermath of the "Affective Turn": Implications for Curriculum and Pedagogy in Handling Traumatic Representations

    ERIC Educational Resources Information Center

    Zembylas, Michalinos

    2014-01-01

    This essay draws on the concept of "difficult knowledge" to think with some of the interventions and arguments of affect theory and discusses the implications for curriculum and pedagogy in handling traumatic representations. The author makes an argument that affect theory enables the theorization of difficult knowledge as an…

  4. Knowledge Representation and Self-Regulatory Experiences of Expert and Novice Certified Athletic Trainers in College and University Settings

    ERIC Educational Resources Information Center

    Gardin, Fredrick Anthony

    2009-01-01

    The purpose of this study was to describe how male, collegiate, certified athletic trainers (AT's) represent knowledge during 5 injury evaluation scenarios. A second purpose of the study was to identify what self-regulatory behaviors participants engaged in to improve or maintain their skills. Knowledge representation was studied as cue selection…

  5. Representations and evolutionary operators for the scheduling of pump operations in water distribution networks.

    PubMed

    López-Ibáñez, Manuel; Prasad, T Devi; Paechter, Ben

    2011-01-01

    Reducing the energy consumption of water distribution networks has never had more significance. The greatest energy savings can be obtained by carefully scheduling the operations of pumps. Schedules can be defined either implicitly, in terms of other elements of the network such as tank levels; or explicitly, by specifying the time during which each pump is on/off. The traditional representation of explicit schedules is a string of binary values with each bit representing pump on/off status during a particular time interval. In this paper, we formally define and analyze two new explicit representations based on time-controlled triggers, where the maximum number of pump switches is established beforehand and the schedule may contain fewer than the maximum number of switches. In these representations, a pump schedule is divided into a series of integers with each integer representing the number of hours for which a pump is active/inactive. This reduces the number of potential schedules compared to the binary representation, and allows the algorithm to operate on the feasible region of the search space. We propose evolutionary operators for these two new representations. The new representations and their corresponding operations are compared with the two most-used representations in pump scheduling, namely, binary representation and level-controlled triggers. A detailed statistical analysis of the results indicates which parameters have the greatest effect on the performance of evolutionary algorithms. The empirical results show that an evolutionary algorithm using the proposed representations is an improvement over the results obtained by a recent state of the art hybrid genetic algorithm for pump scheduling using level-controlled triggers.

  6. AI and simulation: What can they learn from each other

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.

    1988-01-01

    Simulation and Artificial Intelligence share a fertile common ground both from a practical and from a conceptual point of view. Strengths and weaknesses of both Knowledge Based System and Modeling and Simulation are examined and three types of systems that combine the strengths of both technologies are discussed. These types of systems are a practical starting point, however, the real strengths of both technologies will be exploited only when they are combined in a common knowledge representation paradigm. From an even deeper conceptual point of view, one might even argue that the ability to reason from a set of facts (i.e., Expert System) is less representative of human reasoning than the ability to make a model of the world, change it as required, and derive conclusions about the expected behavior of world entities. This is a fundamental problem in AI, and Modeling Theory can contribute to its solution. The application of Knowledge Engineering technology to a Distributed Processing Network Simulator (DPNS) is discussed.

  7. Decision Support Systems for Launch and Range Operations Using Jess

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar

    2007-01-01

    The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.

  8. When one model is not enough: combining epistemic tools in systems biology.

    PubMed

    Green, Sara

    2013-06-01

    In recent years, the philosophical focus of the modeling literature has shifted from descriptions of general properties of models to an interest in different model functions. It has been argued that the diversity of models and their correspondingly different epistemic goals are important for developing intelligible scientific theories (Leonelli, 2007; Levins, 2006). However, more knowledge is needed on how a combination of different epistemic means can generate and stabilize new entities in science. This paper will draw on Rheinberger's practice-oriented account of knowledge production. The conceptual repertoire of Rheinberger's historical epistemology offers important insights for an analysis of the modelling practice. I illustrate this with a case study on network modeling in systems biology where engineering approaches are applied to the study of biological systems. I shall argue that the use of multiple representational means is an essential part of the dynamic of knowledge generation. It is because of-rather than in spite of-the diversity of constraints of different models that the interlocking use of different epistemic means creates a potential for knowledge production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The Digital Anatomist Distributed Framework and Its Applications to Knowledge-based Medical Imaging

    PubMed Central

    Brinkley, James F.; Rosse, Cornelius

    1997-01-01

    Abstract The domain of medical imaging is anatomy. Therefore, anatomic knowledge should be a rational basis for organizing and analyzing images. The goals of the Digital Anatomist Program at the University of Washington include the development of an anatomically based software framework for organizing, analyzing, visualizing and utilizing biomedical information. The framework is based on representations for both spatial and symbolic anatomic knowledge, and is being implemented in a distributed architecture in which multiple client programs on the Internet are used to update and access an expanding set of anatomical information resources. The development of this framework is driven by several practical applications, including symbolic anatomic reasoning, knowledge based image segmentation, anatomy information retrieval, and functional brain mapping. Since each of these areas involves many difficult image processing issues, our research strategy is an evolutionary one, in which applications are developed somewhat independently, and partial solutions are integrated in a piecemeal fashion, using the network as the substrate. This approach assumes that networks of interacting components can synergistically work together to solve problems larger than either could solve on its own. Each of the individual projects is described, along with evaluations that show that the individual components are solving the problems they were designed for, and are beginning to interact with each other in a synergistic manner. We argue that this synergy will increase, not only within our own group, but also among groups as the Internet matures, and that an anatomic knowledge base will be a useful means for fostering these interactions. PMID:9147337

  10. Use of model calibration to achieve high accuracy in analysis of computer networks

    DOEpatents

    Frogner, Bjorn; Guarro, Sergio; Scharf, Guy

    2004-05-11

    A system and method are provided for creating a network performance prediction model, and calibrating the prediction model, through application of network load statistical analyses. The method includes characterizing the measured load on the network, which may include background load data obtained over time, and may further include directed load data representative of a transaction-level event. Probabilistic representations of load data are derived to characterize the statistical persistence of the network performance variability and to determine delays throughout the network. The probabilistic representations are applied to the network performance prediction model to adapt the model for accurate prediction of network performance. Certain embodiments of the method and system may be used for analysis of the performance of a distributed application characterized as data packet streams.

  11. Translational systems biology using an agent-based approach for dynamic knowledge representation: An evolutionary paradigm for biomedical research.

    PubMed

    An, Gary C

    2010-01-01

    The greatest challenge facing the biomedical research community is the effective translation of basic mechanistic knowledge into clinically effective therapeutics. This challenge is most evident in attempts to understand and modulate "systems" processes/disorders, such as sepsis, cancer, and wound healing. Formulating an investigatory strategy for these issues requires the recognition that these are dynamic processes. Representation of the dynamic behavior of biological systems can aid in the investigation of complex pathophysiological processes by augmenting existing discovery procedures by integrating disparate information sources and knowledge. This approach is termed Translational Systems Biology. Focusing on the development of computational models capturing the behavior of mechanistic hypotheses provides a tool that bridges gaps in the understanding of a disease process by visualizing "thought experiments" to fill those gaps. Agent-based modeling is a computational method particularly well suited to the translation of mechanistic knowledge into a computational framework. Utilizing agent-based models as a means of dynamic hypothesis representation will be a vital means of describing, communicating, and integrating community-wide knowledge. The transparent representation of hypotheses in this dynamic fashion can form the basis of "knowledge ecologies," where selection between competing hypotheses will apply an evolutionary paradigm to the development of community knowledge.

  12. Structural Representations in Knowledge Acquisition.

    ERIC Educational Resources Information Center

    Gonzalvo, Pilar; And Others

    1994-01-01

    Multidimensional scaling (MDS) and Pathfinder techniques for assessing changes in the structural representation of a knowledge domain were studied with relatedness ratings collected from 72 Spanish college students. Comparison of student and expert similarity measures indicate that MDS and graph theoretic approaches are valid techniques. (SLD)

  13. Social Representations of Hero and Everyday Hero: A Network Study from Representative Samples

    PubMed Central

    Keczer, Zsolt; File, Bálint; Orosz, Gábor; Zimbardo, Philip G.

    2016-01-01

    The psychological investigation of heroism is relatively new. At this stage, inductive methods can shed light on its main aspects. Therefore, we examined the social representations of Hero and Everyday Hero by collecting word associations from two separate representative samples in Hungary. We constructed two networks from these word associations. The results show that the social representation of Hero is more centralized and it cannot be divided into smaller units. The network of Everyday Hero is divided into five units and the significance moves from abstract hero characteristics to concrete social roles and occupations exhibiting pro-social values. We also created networks from the common associations of Hero and Everyday Hero. The structures of these networks show a moderate similarity and the connections are more balanced in case of Everyday Hero. While heroism in general can be the source of inspiration, the promotion of everyday heroism can be more successful in encouraging ordinary people to recognize their own potential for heroic behavior. PMID:27525418

  14. Vector-based navigation using grid-like representations in artificial agents.

    PubMed

    Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan

    2018-05-01

    Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go 1,2 . Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning 3-5 failing to rival the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the entorhinal cortex 6 . Grid cells are thought to provide a multi-scale periodic representation that functions as a metric for coding space 7,8 and is critical for integrating self-motion (path integration) 6,7,9 and planning direct trajectories to goals (vector-based navigation) 7,10,11 . Here we set out to leverage the computational functions of grid cells to develop a deep reinforcement learning agent with mammal-like navigational abilities. We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types 12 . We then showed that this representation provided an effective basis for an agent to locate goals in challenging, unfamiliar, and changeable environments-optimizing the primary objective of navigation through deep reinforcement learning. The performance of agents endowed with grid-like representations surpassed that of an expert human and comparison agents, with the metric quantities necessary for vector-based navigation derived from grid-like units within the network. Furthermore, grid-like representations enabled agents to conduct shortcut behaviours reminiscent of those performed by mammals. Our findings show that emergent grid-like representations furnish agents with a Euclidean spatial metric and associated vector operations, providing a foundation for proficient navigation. As such, our results support neuroscientific theories that see grid cells as critical for vector-based navigation 7,10,11 , demonstrating that the latter can be combined with path-based strategies to support navigation in challenging environments.

  15. Methods for calculating Protection Equality for conservation planning

    PubMed Central

    Kuempel, Caitlin D.; McGowan, Jennifer; Beger, Maria; Possingham, Hugh P.

    2017-01-01

    Protected Areas (PAs) are a central part of biodiversity conservation strategies around the world. Today, PAs cover c15% of the Earth’s land mass and c3% of the global oceans. These numbers are expected to grow rapidly to meet the Convention on Biological Diversity’s Aichi Biodiversity target 11, which aims to see 17% and 10% of terrestrial and marine biomes protected, respectively, by 2020. This target also requires countries to ensure that PAs protect an “ecologically representative” sample of their biodiversity. At present, there is no clear definition of what desirable ecological representation looks like, or guidelines of how to standardize its assessment as the PA estate grows. We propose a systematic approach to measure ecological representation in PA networks using the Protection Equality (PE) metric, which measures how equally ecological features, such as habitats, within a country’s borders are protected. We present an R package and two Protection Equality (PE) measures; proportional to area PE, and fixed area PE, which measure the representativeness of a country’s PA network. We illustrate the PE metrics with two case studies: coral reef protection across countries and ecoregions in the Coral Triangle, and representation of ecoregions of six of the largest countries in the world. Our results provide repeatable transparency to the issue of representation in PA networks and provide a starting point for further discussion, evaluation and testing of representation metrics. They also highlight clear shortcomings in current PA networks, particularly where they are biased towards certain assemblage types or habitats. Our proposed metrics should be used to report on measuring progress towards the representation component of Aichi Target 11. The PE metrics can be used to measure the representation of any kind of ecological feature including: species, ecoregions, processes or habitats. PMID:28199341

  16. Methods for calculating Protection Equality for conservation planning.

    PubMed

    Chauvenet, Alienor L M; Kuempel, Caitlin D; McGowan, Jennifer; Beger, Maria; Possingham, Hugh P

    2017-01-01

    Protected Areas (PAs) are a central part of biodiversity conservation strategies around the world. Today, PAs cover c15% of the Earth's land mass and c3% of the global oceans. These numbers are expected to grow rapidly to meet the Convention on Biological Diversity's Aichi Biodiversity target 11, which aims to see 17% and 10% of terrestrial and marine biomes protected, respectively, by 2020. This target also requires countries to ensure that PAs protect an "ecologically representative" sample of their biodiversity. At present, there is no clear definition of what desirable ecological representation looks like, or guidelines of how to standardize its assessment as the PA estate grows. We propose a systematic approach to measure ecological representation in PA networks using the Protection Equality (PE) metric, which measures how equally ecological features, such as habitats, within a country's borders are protected. We present an R package and two Protection Equality (PE) measures; proportional to area PE, and fixed area PE, which measure the representativeness of a country's PA network. We illustrate the PE metrics with two case studies: coral reef protection across countries and ecoregions in the Coral Triangle, and representation of ecoregions of six of the largest countries in the world. Our results provide repeatable transparency to the issue of representation in PA networks and provide a starting point for further discussion, evaluation and testing of representation metrics. They also highlight clear shortcomings in current PA networks, particularly where they are biased towards certain assemblage types or habitats. Our proposed metrics should be used to report on measuring progress towards the representation component of Aichi Target 11. The PE metrics can be used to measure the representation of any kind of ecological feature including: species, ecoregions, processes or habitats.

  17. An exploration of alternative visualisations of the basic helix-loop-helix protein interaction network

    PubMed Central

    Holden, Brian J; Pinney, John W; Lovell, Simon C; Amoutzias, Grigoris D; Robertson, David L

    2007-01-01

    Background Alternative representations of biochemical networks emphasise different aspects of the data and contribute to the understanding of complex biological systems. In this study we present a variety of automated methods for visualisation of a protein-protein interaction network, using the basic helix-loop-helix (bHLH) family of transcription factors as an example. Results Network representations that arrange nodes (proteins) according to either continuous or discrete information are investigated, revealing the existence of protein sub-families and the retention of interactions following gene duplication events. Methods of network visualisation in conjunction with a phylogenetic tree are presented, highlighting the evolutionary relationships between proteins, and clarifying the context of network hubs and interaction clusters. Finally, an optimisation technique is used to create a three-dimensional layout of the phylogenetic tree upon which the protein-protein interactions may be projected. Conclusion We show that by incorporating secondary genomic, functional or phylogenetic information into network visualisation, it is possible to move beyond simple layout algorithms based on network topology towards more biologically meaningful representations. These new visualisations can give structure to complex networks and will greatly help in interpreting their evolutionary origins and functional implications. Three open source software packages (InterView, TVi and OptiMage) implementing our methods are available. PMID:17683601

  18. Acquisition, representation and rule generation for procedural knowledge

    NASA Technical Reports Server (NTRS)

    Ortiz, Chris; Saito, Tim; Mithal, Sachin; Loftin, R. Bowen

    1991-01-01

    Current research into the design and continuing development of a system for the acquisition of procedural knowledge, its representation in useful forms, and proposed methods for automated C Language Integrated Production System (CLIPS) rule generation is discussed. The Task Analysis and Rule Generation Tool (TARGET) is intended to permit experts, individually or collectively, to visually describe and refine procedural tasks. The system is designed to represent the acquired knowledge in the form of graphical objects with the capacity for generating production rules in CLIPS. The generated rules can then be integrated into applications such as NASA's Intelligent Computer Aided Training (ICAT) architecture. Also described are proposed methods for use in translating the graphical and intermediate knowledge representations into CLIPS rules.

  19. Knowledge representation in fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lotfi A.

    1989-01-01

    The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.

  20. Lexical is as lexical does: computational approaches to lexical representation

    PubMed Central

    Woollams, Anna M.

    2015-01-01

    In much of neuroimaging and neuropsychology, regions of the brain have been associated with ‘lexical representation’, with little consideration as to what this cognitive construct actually denotes. Within current computational models of word recognition, there are a number of different approaches to the representation of lexical knowledge. Structural lexical representations, found in original theories of word recognition, have been instantiated in modern localist models. However, such a representational scheme lacks neural plausibility in terms of economy and flexibility. Connectionist models have therefore adopted distributed representations of form and meaning. Semantic representations in connectionist models necessarily encode lexical knowledge. Yet when equipped with recurrent connections, connectionist models can also develop attractors for familiar forms that function as lexical representations. Current behavioural, neuropsychological and neuroimaging evidence shows a clear role for semantic information, but also suggests some modality- and task-specific lexical representations. A variety of connectionist architectures could implement these distributed functional representations, and further experimental and simulation work is required to discriminate between these alternatives. Future conceptualisations of lexical representations will therefore emerge from a synergy between modelling and neuroscience. PMID:25893204

  1. 38 CFR 14.632 - Standards of conduct for persons providing representation before the Department

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...

  2. 38 CFR 14.632 - Standards of conduct for persons providing representation before the Department

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...

  3. 38 CFR 14.632 - Standards of conduct for persons providing representation before the Department

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...

  4. 38 CFR 14.632 - Standards of conduct for persons providing representation before the Department

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...

  5. 38 CFR 14.632 - Standards of conduct for persons providing representation before the Department

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the knowledge, skill, thoroughness, and preparation necessary for the representation. This includes... persons providing representation before the Department 14.632 Section 14.632 Pensions, Bonuses, and... Representation of Department of Veterans Affairs Claimants; Recognition of Organizations, Accredited...

  6. Knowledge acquisition in the fuzzy knowledge representation framework of a medical consultation system.

    PubMed

    Boegl, Karl; Adlassnig, Klaus-Peter; Hayashi, Yoichi; Rothenfluh, Thomas E; Leitich, Harald

    2004-01-01

    This paper describes the fuzzy knowledge representation framework of the medical computer consultation system MedFrame/CADIAG-IV as well as the specific knowledge acquisition techniques that have been developed to support the definition of knowledge concepts and inference rules. As in its predecessor system CADIAG-II, fuzzy medical knowledge bases are used to model the uncertainty and the vagueness of medical concepts and fuzzy logic reasoning mechanisms provide the basic inference processes. The elicitation and acquisition of medical knowledge from domain experts has often been described as the most difficult and time-consuming task in knowledge-based system development in medicine. It comes as no surprise that this is even more so when unfamiliar representations like fuzzy membership functions are to be acquired. From previous projects we have learned that a user-centered approach is mandatory in complex and ill-defined knowledge domains such as internal medicine. This paper describes the knowledge acquisition framework that has been developed in order to make easier and more accessible the three main tasks of: (a) defining medical concepts; (b) providing appropriate interpretations for patient data; and (c) constructing inferential knowledge in a fuzzy knowledge representation framework. Special emphasis is laid on the motivations for some system design and data modeling decisions. The theoretical framework has been implemented in a software package, the Knowledge Base Builder Toolkit. The conception and the design of this system reflect the need for a user-centered, intuitive, and easy-to-handle tool. First results gained from pilot studies have shown that our approach can be successfully implemented in the context of a complex fuzzy theoretical framework. As a result, this critical aspect of knowledge-based system development can be accomplished more easily.

  7. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance.

    PubMed

    Króliczak, Gregory; Piper, Brian J; Frey, Scott H

    2016-12-01

    Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., "pounding") or intransitive (e.g. "waving") action words. In linguistic control trials, cues denoted non-physical actions (e.g., "believing"). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one's motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations-the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely on dissociable mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance

    PubMed Central

    Króliczak, Gregory; Piper, Brian J.; Frey, Scott H.

    2016-01-01

    Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., “pounding”) or intransitive (e.g. “waving”) action words. In linguistic control trials, cues denoted non-physical actions (e.g., “believing”). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one’s motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations—the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely on dissociable mechanisms. PMID:27020138

  9. An Ontology for Representing Geoscience Theories and Related Knowledge

    NASA Astrophysics Data System (ADS)

    Brodaric, B.

    2009-12-01

    Online scientific research, or e-science, is increasingly reliant on machine-readable representations of scientific data and knowledge. At present, much of the knowledge is represented in ontologies, which typically contain geoscience categories such as ‘water body’, ‘aquifer’, ‘granite’, ‘temperature’, ‘density’, ‘Co2’. While extremely useful for many e-science activities, such categorical representations constitute only a fragment of geoscience knowledge. Also needed are online representations of elements such as geoscience theories, to enable geoscientists to pose and evaluate hypotheses online. To address this need, the Science Knowledge Infrastructure ontology (SKIo) specializes the DOLCE foundational ontology with basic science knowledge primitives such as theory, model, observation, and prediction. Discussed will be SKIo as well as its implementation in the geosciences, including case studies from marine science, environmental science, and geologic mapping. These case studies demonstrate SKIo’s ability to represent a wide spectrum of geoscience knowledge types, to help fuel next generation e-science.

  10. Reserve networks based on richness hotspots and representation vary with scale.

    PubMed

    Shriner, Susan A; Wilson, Kenneth R; Flather, Curtis H

    2006-10-01

    While the importance of spatial scale in ecology is well established, few studies have investigated the impact of data grain on conservation planning outcomes. In this study, we compared species richness hotspot and representation networks developed at five grain sizes. We used species distribution maps for mammals and birds developed by the Arizona and New Mexico Gap Analysis Programs (GAP) to produce 1-km2, 100-kmn2, 625-km2, 2500-km2, and 10,000-km2 grid cell resolution distribution maps. We used these distribution maps to generate species richness and hotspot (95th quantile) maps for each taxon in each state. Species composition information at each grain size was used to develop two types of representation networks using the reserve selection software MARXAN. Reserve selection analyses were restricted to Arizona birds due to considerable computation requirements. We used MARXAN to create best reserve networks based on the minimum area required to represent each species at least once and equal area networks based on irreplaceability values. We also measured the median area of each species' distribution included in hotspot (mammals and birds of Arizona and New Mexico) and irreplaceability (Arizona birds) networks across all species. Mean area overlap between richness hotspot reserves identified at the five grain sizes was 29% (grand mean for four within-taxon/state comparisons), mean overlap for irreplaceability reserve networks was 32%, and mean overlap for best reserve networks was 53%. Hotspots for mammals and birds showed low overlap with a mean of 30%. Comparison of hotspots and irreplaceability networks showed very low overlap with a mean of 13%. For hotspots, median species distribution area protected within reserves declined monotonically from a high of 11% for 1-km2 networks down to 6% for 10,000-km2 networks. Irreplaceability networks showed a similar, but more variable, pattern of decline. This work clearly shows that map resolution has a profound effect on conservation planning outcomes and that hotspot and representation outcomes may be strikingly dissimilar. Thus, conservation planning is scale dependent, such that reserves developed using coarse-grained data do not subsume fine-grained reserves. Moreover, preserving both full species representation and species rich areas may require combined reserve design strategies.

  11. Rubber airplane: Constraint-based component-modeling for knowledge representation in computer-aided conceptual design

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1990-01-01

    Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.

  12. Translation between representation languages

    NASA Technical Reports Server (NTRS)

    Vanbaalen, Jeffrey

    1994-01-01

    A capability for translating between representation languages is critical for effective knowledge base reuse. A translation technology for knowledge representation languages based on the use of an interlingua for communicating knowledge is described. The interlingua-based translation process consists of three major steps: translation from the source language into a subset of the interlingua, translation between subsets of the interlingua, and translation from a subset of the interlingua into the target language. The first translation step into the interlingua can typically be specified in the form of a grammar that describes how each top-level form in the source language translates into the interlingua. In cases where the source language does not have a declarative semantics, such a grammar is also a specification of a declarative semantics for the language. A methodology for building translators that is currently under development is described. A 'translator shell' based on this methodology is also under development. The shell has been used to build translators for multiple representation languages and those translators have successfully translated nontrivial knowledge bases.

  13. Temporal and Motor Representation of Rhythm in Fronto-Parietal Cortical Areas: An fMRI Study

    PubMed Central

    Konoike, Naho; Kotozaki, Yuka; Jeong, Hyeonjeong; Miyazaki, Atsuko; Sakaki, Kohei; Shinada, Takamitsu; Sugiura, Motoaki; Kawashima, Ryuta; Nakamura, Katsuki

    2015-01-01

    When sounds occur with temporally structured patterns, we can feel a rhythm. To memorize a rhythm, perception of its temporal patterns and organization of them into a hierarchically structured sequence are necessary. On the other hand, rhythm perception can often cause unintentional body movements. Thus, we hypothesized that rhythm information can be manifested in two different ways; temporal and motor representations. The motor representation depends on effectors, such as the finger or foot, whereas the temporal representation is effector-independent. We tested our hypothesis with a working memory paradigm to elucidate neuronal correlates of temporal or motor representation of rhythm and to reveal the neural networks associated with these representations. We measured brain activity by fMRI while participants memorized rhythms and reproduced them by tapping with the right finger, left finger, or foot, or by articulation. The right inferior frontal gyrus and the inferior parietal lobule exhibited significant effector-independent activations during encoding and retrieval of rhythm information, whereas the left inferior parietal lobule and supplementary motor area (SMA) showed effector-dependent activations during retrieval. These results suggest that temporal sequences of rhythm are probably represented in the right fronto-parietal network, whereas motor sequences of rhythm can be represented in the SMA-parietal network. PMID:26076024

  14. Coordinating complex decision support activities across distributed applications

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1994-01-01

    Knowledge-based technologies have been applied successfully to automate planning and scheduling in many problem domains. Automation of decision support can be increased further by integrating task-specific applications with supporting database systems, and by coordinating interactions between such tools to facilitate collaborative activities. Unfortunately, the technical obstacles that must be overcome to achieve this vision of transparent, cooperative problem-solving are daunting. Intelligent decision support tools are typically developed for standalone use, rely on incompatible, task-specific representational models and application programming interfaces (API's), and run on heterogeneous computing platforms. Getting such applications to interact freely calls for platform independent capabilities for distributed communication, as well as tools for mapping information across disparate representations. Symbiotics is developing a layered set of software tools (called NetWorks! for integrating and coordinating heterogeneous distributed applications. he top layer of tools consists of an extensible set of generic, programmable coordination services. Developers access these services via high-level API's to implement the desired interactions between distributed applications.

  15. Modeling biochemical pathways in the gene ontology

    DOE PAGES

    Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.; ...

    2016-09-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes inmore » the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis.« less

  16. Representation of Biomedical Expertise in Ontologies: a Case Study about Knowledge Acquisition on HTLV viruses and their clinical manifestations.

    PubMed

    Cardoso Coelho, Kátia; Barcellos Almeida, Maurício

    2015-01-01

    In this paper, we introduce a set of methodological steps for knowledge acquisition applied to the organization of biomedical information through ontologies. Those steps are tested in a real case involving Human T Cell Lymphotropic Virus (HTLV), which causes myriad infectious diseases. We hope to contribute to providing suitable knowledge representation of scientific domains.

  17. Knowledge representation for fuzzy inference aided medical image interpretation.

    PubMed

    Gal, Norbert; Stoicu-Tivadar, Vasile

    2012-01-01

    Knowledge defines how an automated system transforms data into information. This paper suggests a representation method of medical imaging knowledge using fuzzy inference systems coded in XML files. The imaging knowledge incorporates features of the investigated objects in linguistic form and inference rules that can transform the linguistic data into information about a possible diagnosis. A fuzzy inference system is used to model the vagueness of the linguistic medical imaging terms. XML files are used to facilitate easy manipulation and deployment of the knowledge into the imaging software. Preliminary results are presented.

  18. On the acquisition and representation of procedural knowledge

    NASA Technical Reports Server (NTRS)

    Saito, T.; Ortiz, C.; Loftin, R. B.

    1992-01-01

    Historically knowledge acquisition has proven to be one of the greatest barriers to the development of intelligent systems. Current practice generally requires lengthy interactions between the expert whose knowledge is to be captured and the knowledge engineer whose responsibility is to acquire and represent knowledge in a useful form. Although much research has been devoted to the development of methodologies and computer software to aid in the capture and representation of some of some types of knowledge, little attention has been devoted to procedural knowledge. NASA personnel frequently perform tasks that are primarily procedural in nature. Previous work is reviewed in the field of knowledge acquisition and then focus on knowledge acquisition for procedural tasks with special attention devoted to the Navy's VISTA tool. The design and development is described of a system for the acquisition and representation of procedural knowledge-TARGET (Task Analysis and Rule Generation Tool). TARGET is intended as a tool that permits experts to visually describe procedural tasks and as a common medium for knowledge refinement by the expert and knowledge engineer. The system is designed to represent the acquired knowledge in the form of production rules. Systems such as TARGET have the potential to profoundly reduce the time, difficulties, and costs of developing knowledge-based systems for the performance of procedural tasks.

  19. Functional Analysis of Metabolomics Data.

    PubMed

    Chagoyen, Mónica; López-Ibáñez, Javier; Pazos, Florencio

    2016-01-01

    Metabolomics aims at characterizing the repertory of small chemical compounds in a biological sample. As it becomes more massive and larger sets of compounds are detected, a functional analysis is required to convert these raw lists of compounds into biological knowledge. The most common way of performing such analysis is "annotation enrichment analysis," also used in transcriptomics and proteomics. This approach extracts the annotations overrepresented in the set of chemical compounds arisen in a given experiment. Here, we describe the protocols for performing such analysis as well as for visualizing a set of compounds in different representations of the metabolic networks, in both cases using free accessible web tools.

  20. Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle

    NASA Astrophysics Data System (ADS)

    Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen

    2017-04-01

    Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.

  1. Knowledge Representation and Management. From Ontology to Annotation. Findings from the Yearbook 2015 Section on Knowledge Representation and Management.

    PubMed

    Charlet, J; Darmoni, S J

    2015-08-13

    To summarize the best papers in the field of Knowledge Representation and Management (KRM). A comprehensive review of medical informatics literature was performed to select some of the most interesting papers of KRM published in 2014. Four articles were selected, two focused on annotation and information retrieval using an ontology. The two others focused mainly on ontologies, one dealing with the usage of a temporal ontology in order to analyze the content of narrative document, one describing a methodology for building multilingual ontologies. Semantic models began to show their efficiency, coupled with annotation tools.

  2. Sentiments analysis at conceptual level making use of the Narrative Knowledge Representation Language.

    PubMed

    Zarri, Gian Piero

    2014-10-01

    This paper illustrates some of the knowledge representation structures and inference procedures proper to a high-level, fully implemented conceptual language, NKRL (Narrative Knowledge Representation Language). The aim is to show how these tools can be used to deal, in a sentiment analysis/opinion mining context, with some common types of human (and non-human) "behaviors". These behaviors correspond, in particular, to the concrete, mutual relationships among human and non-human characters that can be expressed under the form of non-fictional and real-time "narratives" (i.e., as logically and temporally structured sequences of "elementary events"). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Origins of Secure Base Script Knowledge and the Developmental Construction of Attachment Representations.

    PubMed

    Waters, Theodore E A; Ruiz, Sarah K; Roisman, Glenn I

    2017-01-01

    Increasing evidence suggests that attachment representations take at least two forms: a secure base script and an autobiographical narrative of childhood caregiving experiences. This study presents data from the first 26 years of the Minnesota Longitudinal Study of Risk and Adaptation (N = 169), examining the developmental origins of secure base script knowledge in a high-risk sample and testing alternative models of the developmental sequencing of the construction of attachment representations. Results demonstrated that secure base script knowledge was predicted by observations of maternal sensitivity across childhood and adolescence. Furthermore, findings suggest that the construction of a secure base script supports the development of a coherent autobiographical representation of childhood attachment experiences with primary caregivers by early adulthood. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  4. The neural representation of social networks.

    PubMed

    Weaverdyck, Miriam E; Parkinson, Carolyn

    2018-05-24

    The computational demands associated with navigating large, complexly bonded social groups are thought to have significantly shaped human brain evolution. Yet, research on social network representation and cognitive neuroscience have progressed largely independently. Thus, little is known about how the human brain encodes the structure of the social networks in which it is embedded. This review highlights recent work seeking to bridge this gap in understanding. While the majority of research linking social network analysis and neuroimaging has focused on relating neuroanatomy to social network size, researchers have begun to define the neural architecture that encodes social network structure, cognitive and behavioral consequences of encoding this information, and individual differences in how people represent the structure of their social world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Thalamus and Language: What do we know from vascular and degenerative pathologies.

    PubMed

    Moretti, Rita; Caruso, Paola; Crisman, Elena; Gazzin, Silvia

    2018-01-01

    Language is a complex cognitive task that is essential in our daily life. For decades, researchers have tried to understand the different role of cortical and subcortical areas in cerebral language representations and language processing. Language-related cortical zones are richly interconnected with other cortical regions (particularly via myelinated fibre tracts), but they also participate in subcortical feedback loops within the basal ganglia (caudate nucleus and putamen) and thalamus. The most relevant thalamic functions are the control and adaptation of cortico-cortical connectivity and bandwidth for information exchange. Despite having the knowledge of thalamic and basal ganglionic involvement in linguistic operations, the specific functions of these subcortical structures remain rather controversial. The aim of this study is to better understand the role of thalamus in language network, exploring the functional configuration of basal network components. The language specificity of subcortical supporting activity and the associated clinical features in thalamic involvement are also highlighted.

  6. Artificial neural networks for document analysis and recognition.

    PubMed

    Marinai, Simone; Gori, Marco; Soda, Giovanni; Society, Computer

    2005-01-01

    Artificial neural networks have been extensively applied to document analysis and recognition. Most efforts have been devoted to the recognition of isolated handwritten and printed characters with widely recognized successful results. However, many other document processing tasks, like preprocessing, layout analysis, character segmentation, word recognition, and signature verification, have been effectively faced with very promising results. This paper surveys the most significant problems in the area of offline document image processing, where connectionist-based approaches have been applied. Similarities and differences between approaches belonging to different categories are discussed. A particular emphasis is given on the crucial role of prior knowledge for the conception of both appropriate architectures and learning algorithms. Finally, the paper provides a critical analysis on the reviewed approaches and depicts the most promising research guidelines in the field. In particular, a second generation of connectionist-based models are foreseen which are based on appropriate graphical representations of the learning environment.

  7. Ontology-based topic clustering for online discussion data

    NASA Astrophysics Data System (ADS)

    Wang, Yongheng; Cao, Kening; Zhang, Xiaoming

    2013-03-01

    With the rapid development of online communities, mining and extracting quality knowledge from online discussions becomes very important for the industrial and marketing sector, as well as for e-commerce applications and government. Most of the existing techniques model a discussion as a social network of users represented by a user-based graph without considering the content of the discussion. In this paper we propose a new multilayered mode to analysis online discussions. The user-based and message-based representation is combined in this model. A novel frequent concept sets based clustering method is used to cluster the original online discussion network into topic space. Domain ontology is used to improve the clustering accuracy. Parallel methods are also used to make the algorithms scalable to very large data sets. Our experimental study shows that the model and algorithms are effective when analyzing large scale online discussion data.

  8. Evaluation of an Intelligent Tutoring System in Pathology: Effects of External Representation on Performance Gains, Metacognition, and Acceptance

    PubMed Central

    Crowley, Rebecca S.; Legowski, Elizabeth; Medvedeva, Olga; Tseytlin, Eugene; Roh, Ellen; Jukic, Drazen

    2007-01-01

    Objective Determine effects of computer-based tutoring on diagnostic performance gains, meta-cognition, and acceptance using two different problem representations. Describe impact of tutoring on spectrum of diagnostic skills required for task performance. Identify key features of student-tutor interaction contributing to learning gains. Design Prospective, between-subjects study, controlled for participant level of training. Resident physicians in two academic pathology programs spent four hours using one of two interfaces which differed mainly in external problem representation. The case-focused representation provided an open-learning environment in which students were free to explore evidence-hypothesis relationships within a case, but could not visualize the entire diagnostic space. The knowledge-focused representation provided an interactive representation of the entire diagnostic space, which more tightly constrained student actions. Measurements Metrics included results of pretest, post-test and retention-test for multiple choice and case diagnosis tests, ratios of performance to student reported certainty, results of participant survey, learning curves, and interaction behaviors during tutoring. Results Students had highly significant learning gains after one tutoring session. Learning was retained at one week. There were no differences between the two interfaces in learning gains on post-test or retention test. Only students in the knowledge-focused interface exhibited significant metacognitive gains from pretest to post-test and pretest to retention test. Students rated the knowledge-focused interface significantly higher than the case-focused interface. Conclusions Cognitive tutoring is associated with improved diagnostic performance in a complex medical domain. The effect is retained at one-week post-training. Knowledge-focused external problem representation shows an advantage over case-focused representation for metacognitive effects and user acceptance. PMID:17213494

  9. Evaluation of an intelligent tutoring system in pathology: effects of external representation on performance gains, metacognition, and acceptance.

    PubMed

    Crowley, Rebecca S; Legowski, Elizabeth; Medvedeva, Olga; Tseytlin, Eugene; Roh, Ellen; Jukic, Drazen

    2007-01-01

    Determine effects of computer-based tutoring on diagnostic performance gains, meta-cognition, and acceptance using two different problem representations. Describe impact of tutoring on spectrum of diagnostic skills required for task performance. Identify key features of student-tutor interaction contributing to learning gains. Prospective, between-subjects study, controlled for participant level of training. Resident physicians in two academic pathology programs spent four hours using one of two interfaces which differed mainly in external problem representation. The case-focused representation provided an open-learning environment in which students were free to explore evidence-hypothesis relationships within a case, but could not visualize the entire diagnostic space. The knowledge-focused representation provided an interactive representation of the entire diagnostic space, which more tightly constrained student actions. Metrics included results of pretest, post-test and retention-test for multiple choice and case diagnosis tests, ratios of performance to student reported certainty, results of participant survey, learning curves, and interaction behaviors during tutoring. Students had highly significant learning gains after one tutoring session. Learning was retained at one week. There were no differences between the two interfaces in learning gains on post-test or retention test. Only students in the knowledge-focused interface exhibited significant metacognitive gains from pretest to post-test and pretest to retention test. Students rated the knowledge-focused interface significantly higher than the case-focused interface. Cognitive tutoring is associated with improved diagnostic performance in a complex medical domain. The effect is retained at one-week post-training. Knowledge-focused external problem representation shows an advantage over case-focused representation for metacognitive effects and user acceptance.

  10. Spatial analysis of bus transport networks using network theory

    NASA Astrophysics Data System (ADS)

    Shanmukhappa, Tanuja; Ho, Ivan Wang-Hei; Tse, Chi Kong

    2018-07-01

    In this paper, we analyze the bus transport network (BTN) structure considering the spatial embedding of the network for three cities, namely, Hong Kong (HK), London (LD), and Bengaluru (BL). We propose a novel approach called supernode graph structuring for modeling the bus transport network. A static demand estimation procedure is proposed to assign the node weights by considering the points of interests (POIs) and the population distribution in the city over various localized zones. In addition, the end-to-end delay is proposed as a parameter to measure the topological efficiency of the bus networks instead of the shortest distance measure used in previous works. With the aid of supernode graph representation, important network parameters are analyzed for the directed, weighted and geo-referenced bus transport networks. It is observed that the supernode concept has significant advantage in analyzing the inherent topological behavior. For instance, the scale-free and small-world behavior becomes evident with supernode representation as compared to conventional or regular graph representation for the Hong Kong network. Significant improvement in clustering, reduction in path length, and increase in centrality values are observed in all the three networks with supernode representation. The correlation between topologically central nodes and the geographically central nodes reveals the interesting fact that the proposed static demand estimation method for assigning node weights aids in better identifying the geographically significant nodes in the network. The impact of these geographically significant nodes on the local traffic behavior is demonstrated by simulation using the SUMO (Simulation of Urban Mobility) tool which is also supported by real-world empirical data, and our results indicate that the traffic speed around a particular bus stop can reach a jammed state from a free flow state due to the presence of these geographically important nodes. A comparison of the simulation and the empirical data provides useful information on how bus operators can better plan their routes and deploy stops considering the geographically significant nodes.

  11. Centrality in earthquake multiplex networks

    NASA Astrophysics Data System (ADS)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  12. Identifying group discriminative and age regressive sub-networks from DTI-based connectivity via a unified framework of non-negative matrix factorization and graph embedding

    PubMed Central

    Ghanbari, Yasser; Smith, Alex R.; Schultz, Robert T.; Verma, Ragini

    2014-01-01

    Diffusion tensor imaging (DTI) offers rich insights into the physical characteristics of white matter (WM) fiber tracts and their development in the brain, facilitating a network representation of brain’s traffic pathways. Such a network representation of brain connectivity has provided a novel means of investigating brain changes arising from pathology, development or aging. The high dimensionality of these connectivity networks necessitates the development of methods that identify the connectivity building blocks or sub-network components that characterize the underlying variation in the population. In addition, the projection of the subject networks into the basis set provides a low dimensional representation of it, that teases apart different sources of variation in the sample, facilitating variation-specific statistical analysis. We propose a unified framework of non-negative matrix factorization and graph embedding for learning sub-network patterns of connectivity by their projective non-negative decomposition into a reconstructive basis set, as well as, additional basis sets representing variational sources in the population like age and pathology. The proposed framework is applied to a study of diffusion-based connectivity in subjects with autism that shows localized sparse sub-networks which mostly capture the changes related to pathology and developmental variations. PMID:25037933

  13. 48 CFR 2052.209-71 - Contractor organizational conflicts of interest (representation).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... conflicts of interest (representation). 2052.209-71 Section 2052.209-71 Federal Acquisition Regulations... of Provisions and Clauses 2052.209-71 Contractor organizational conflicts of interest (representation... Organizational Conflicts of Interest Representation (OCT 1999) I represent to the best of my knowledge and belief...

  14. A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective

    PubMed Central

    Ekstrom, Arne D.; Arnold, Aiden E. G. F.; Iaria, Giuseppe

    2014-01-01

    While the widely studied allocentric spatial representation holds a special status in neuroscience research, its exact nature and neural underpinnings continue to be the topic of debate, particularly in humans. Here, based on a review of human behavioral research, we argue that allocentric representations do not provide the kind of map-like, metric representation one might expect based on past theoretical work. Instead, we suggest that almost all tasks used in past studies involve a combination of egocentric and allocentric representation, complicating both the investigation of the cognitive basis of an allocentric representation and the task of identifying a brain region specifically dedicated to it. Indeed, as we discuss in detail, past studies suggest numerous brain regions important to allocentric spatial memory in addition to the hippocampus, including parahippocampal, retrosplenial, and prefrontal cortices. We thus argue that although allocentric computations will often require the hippocampus, particularly those involving extracting details across temporally specific routes, the hippocampus is not necessary for all allocentric computations. We instead suggest that a non-aggregate network process involving multiple interacting brain areas, including hippocampus and extra-hippocampal areas such as parahippocampal, retrosplenial, prefrontal, and parietal cortices, better characterizes the neural basis of spatial representation during navigation. According to this model, an allocentric representation does not emerge from the computations of a single brain region (i.e., hippocampus) nor is it readily decomposable into additive computations performed by separate brain regions. Instead, an allocentric representation emerges from computations partially shared across numerous interacting brain regions. We discuss our non-aggregate network model in light of existing data and provide several key predictions for future experiments. PMID:25346679

  15. God-mother-baby: what children think they know.

    PubMed

    Kiessling, Florian; Perner, Josef

    2014-01-01

    This study tested one hundred and nine 3- to 6-year-old children on a knowledge-ignorance task about knowledge in humans (mother, baby) and God. In their responses, participants not reliably grasping that seeing leads to knowing in humans (pre-representational) were significantly influenced by own knowledge and marginally by question format. Moreover, knowledge was attributed significantly more often to mother than baby and explained by agent-based characteristics. Of participants mastering the task for humans (representational), God was largely conceived as ignorant "man in the sky" by younger and increasingly as "supernatural agent in the sky" by older children. Evidence for egocentrism and for anthropomorphizing God lends support to an anthropomorphism hypothesis. First-time evidence for an agent-based conception of others' knowledge in pre-representational children is presented. © 2013 The Authors. Child Development © 2013 Society for Research in Child Development, Inc.

  16. Reserve networks based on richness hotspots and representation vary with scale

    Treesearch

    Susan A. Shriner; Kenneth R. Wilson; Curtis H. Flather

    2006-01-01

    While the importance of spatial scale in ecology is well established, few studies have investigated the impact of data grain on conservation planning outcomes. In this study, we compared species richness hotspot and representation networks developed at five grain sizes. We used species distribution maps for mammals and birds developed by the Arizona and New Mexico Gap...

  17. Profile of High School Students’ Propositional Network Representation when Interpreting Convention Diagrams

    NASA Astrophysics Data System (ADS)

    Fatiha, M.; Rahmat, A.; Solihat, R.

    2017-09-01

    The delivery of concepts in studying Biology often represented through a diagram to easily makes student understand about Biology material. One way to knowing the students’ understanding about diagram can be seen from causal relationship that is constructed by student in the propositional network representation form. This research reveal the trend of students’ propositional network representation patterns when confronted with convention diagram. This descriptive research involved 32 students at one of senior high school in Bandung. The research data was acquired by worksheet that was filled by diagram and it was developed according on information processing standards. The result of this research revealed three propositional network representation patterns are linear relationship, simple reciprocal relationship, and complex reciprocal relationship. The dominating pattern is linear form that is simply connect some information components in diagram by 59,4% students, the reciprocal relationship form with medium level by 28,1% students while the complex reciprocal relationship by only 3,1% and the rest was students who failed to connect information components by 9,4%. Based on results, most of student only able to connect information components on the picture in linear form and a few student constructing reciprocal relationship between information components on convention diagram.

  18. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling.

    PubMed

    Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J

    2014-01-01

    Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic-semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory-semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.

  19. Investigating Trigonometric Representations in the Transition to College Mathematics

    ERIC Educational Resources Information Center

    Byers, Patricia

    2010-01-01

    This Ontario-based qualitative study examined secondary school and college textbooks' treatment of trigonometric representations in order to identify potential sources of student difficulties in the transition from secondary school to college mathematics. Analysis of networks, comprised of trigonometric representations, identified numerous issues…

  20. Some Problems and Proposals for Knowledge Representation.

    DTIC Science & Technology

    1984-01-01

    BROTHER(BiI, AI ) and FATHER( AI ,John) According to Woods, these both denote the fact that Bill is the uncle of John. However, we now must have two...34knowledge representation language being developed at the Berkeley Artificial Inteligience Research Project. KODIAK is an attempt to redress the above

  1. Knowledge Representation in a Physics Tutor. COINS Technical Report 86-37.

    ERIC Educational Resources Information Center

    Murray, Tom; Woolf, Beverly

    This paper is based on the idea that designing a knowledge representation for an intelligent physics computer tutoring system depends, in part, on the target behavior anticipated from the student. In addition, the document distinguishes between qualitative and quantitative competence in physics. These competencies are illustrated through questions…

  2. Descriptive Analysis of the Graphic Representations of Science Textbooks

    ERIC Educational Resources Information Center

    Khine, Myint Swe; Liu, Yang

    2017-01-01

    Textbooks are primary teaching aids, sources from which students obtain knowledge of science domain. Due to this fact, curriculum developers in the field emphasize the crucial role of analysing the contents of science textbooks in improving science education. Scientific domain knowledge relies on graphical representations for the manifestation of…

  3. Enhancing Conceptual Knowledge of Energy in Biology with Incorrect Representations

    ERIC Educational Resources Information Center

    Wernecke, Ulrike; Schütte, Kerstin; Schwanewedel, Julia; Harms, Ute

    2018-01-01

    Energy is an important concept in all natural sciences, and a challenging one for school science education. Students' conceptual knowledge of energy is often low, and they entertain misconceptions. Educational research in science and mathematics suggests that learning through depictive representations and learning from errors, based on the theory…

  4. Semantics vs. World Knowledge in Prefrontal Cortex

    ERIC Educational Resources Information Center

    Pylkkanen, Liina; Oliveri, Bridget; Smart, Andrew J.

    2009-01-01

    Humans have knowledge about the properties of their native language at various levels of representation; sound, structure, and meaning computation constitute the core components of any linguistic theory. Although the brain sciences have engaged with representational theories of sound and syntactic structure, the study of the neural bases of…

  5. An individual differences approach to semantic cognition: Divergent effects of age on representation, retrieval and selection.

    PubMed

    Hoffman, Paul

    2018-05-25

    Semantic cognition refers to the appropriate use of acquired knowledge about the world. This requires representation of knowledge as well as control processes which ensure that currently-relevant aspects of knowledge are retrieved and selected. Although these abilities can be impaired selectively following brain damage, the relationship between them in healthy individuals is unclear. It is also commonly assumed that semantic cognition is preserved in later life, because older people have greater reserves of knowledge. However, this claim overlooks the possibility of decline in semantic control processes. Here, semantic cognition was assessed in 100 young and older adults. Despite having a broader knowledge base, older people showed specific impairments in semantic control, performing more poorly than young people when selecting among competing semantic representations. Conversely, they showed preserved controlled retrieval of less salient information from the semantic store. Breadth of semantic knowledge was positively correlated with controlled retrieval but was unrelated to semantic selection ability, which was instead correlated with non-semantic executive function. These findings indicate that three distinct elements contribute to semantic cognition: semantic representations that accumulate throughout the lifespan, processes for controlled retrieval of less salient semantic information, which appear age-invariant, and mechanisms for selecting task-relevant aspects of semantic knowledge, which decline with age and may relate more closely to domain-general executive control.

  6. Making Connections: Elementary Teachers' Construction of Division Word Problems and Representations

    ERIC Educational Resources Information Center

    Timmerman, Maria A.

    2014-01-01

    If teachers make few connections among multiple representations of division, supporting students in using representations to develop operation sense demanded by national standards will not occur. Studies have investigated how prospective and practicing teachers use representations to develop knowledge of fraction division. However, few studies…

  7. Playing Linear Number Board Games Improves Children's Mathematical Knowledge

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Ramani, Geetha

    2009-01-01

    The present study focused on two main goals. One was to test the "representational mapping hypothesis": The greater the transparency of the mapping between physical materials and desired internal representations, the greater the learning of the desired internal representation. The implication of the representational mapping hypothesis in the…

  8. Designing a training tool for imaging mental models

    NASA Technical Reports Server (NTRS)

    Dede, Christopher J.; Jayaram, Geetha

    1990-01-01

    The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network.

  9. The Hierarchical Brain Network for Face Recognition

    PubMed Central

    Zhen, Zonglei; Fang, Huizhen; Liu, Jia

    2013-01-01

    Numerous functional magnetic resonance imaging (fMRI) studies have identified multiple cortical regions that are involved in face processing in the human brain. However, few studies have characterized the face-processing network as a functioning whole. In this study, we used fMRI to identify face-selective regions in the entire brain and then explore the hierarchical structure of the face-processing network by analyzing functional connectivity among these regions. We identified twenty-five regions mainly in the occipital, temporal and frontal cortex that showed a reliable response selective to faces (versus objects) across participants and across scan sessions. Furthermore, these regions were clustered into three relatively independent sub-networks in a face-recognition task on the basis of the strength of functional connectivity among them. The functionality of the sub-networks likely corresponds to the recognition of individual identity, retrieval of semantic knowledge and representation of emotional information. Interestingly, when the task was switched to object recognition from face recognition, the functional connectivity between the inferior occipital gyrus and the rest of the face-selective regions were significantly reduced, suggesting that this region may serve as an entry node in the face-processing network. In sum, our study provides empirical evidence for cognitive and neural models of face recognition and helps elucidate the neural mechanisms underlying face recognition at the network level. PMID:23527282

  10. From Data to Knowledge through Concept-oriented Terminologies

    PubMed Central

    Cimino, James J.

    2000-01-01

    Knowledge representation involves enumeration of conceptual symbols and arrangement of these symbols into some meaningful structure. Medical knowledge representation has traditionally focused more on the structure than the symbols. Several significant efforts are under way, at local, national, and international levels, to address the representation of the symbols though the creation of high-quality terminologies that are themselves knowledge based. This paper reviews these efforts, including the Medical Entities Dictionary (MED) in use at Columbia University and the New York Presbyterian Hospital. A decade's experience with the MED is summarized to serve as a proof-of-concept that knowledge-based terminologies can support the use of coded patient data for a variety of knowledge-based activities, including the improved understanding of patient data, the access of information sources relevant to specific patient care problems, the application of expert systems directly to the care of patients, and the discovery of new medical knowledge. The terminological knowledge in the MED has also been used successfully to support clinical application development and maintenance, including that of the MED itself. On the basis of this experience, current efforts to create standard knowledge-based terminologies appear to be justified. PMID:10833166

  11. From data to knowledge through concept-oriented terminologies: experience with the Medical Entities Dictionary.

    PubMed

    Cimino, J J

    2000-01-01

    Knowledge representation involves enumeration of conceptual symbols and arrangement of these symbols into some meaningful structure. Medical knowledge representation has traditionally focused more on the structure than the symbols. Several significant efforts are under way, at local, national, and international levels, to address the representation of the symbols though the creation of high-quality terminologies that are themselves knowledge based. This paper reviews these efforts, including the Medical Entities Dictionary (MED) in use at Columbia University and the New York Presbyterian Hospital. A decade's experience with the MED is summarized to serve as a proof-of-concept that knowledge-based terminologies can support the use of coded patient data for a variety of knowledge-based activities, including the improved understanding of patient data, the access of information sources relevant to specific patient care problems, the application of expert systems directly to the care of patients, and the discovery of new medical knowledge. The terminological knowledge in the MED has also been used successfully to support clinical application development and maintenance, including that of the MED itself. On the basis of this experience, current efforts to create standard knowledge-based terminologies appear to be justified.

  12. Inter-level Scaffolding and Sequences of Representational Activities in Teaching a Chemical System with Graphical Simulations

    NASA Astrophysics Data System (ADS)

    Li, Na; Black, John B.

    2016-10-01

    Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences of representational activities produced different student learning outcomes in learning a chemistry topic. A sample of 129 seventh graders participated in this study. In a simulation-based environment, participants completed three representational activities to learn several ideal gas law concepts. We conducted a 2 × 3 factorial design experiment. We compared two scaffolding conditions: (1) the inter- level scaffolding condition in which participants received inter-level questions and experienced the dynamic link function in the simulation-based environment and (2) the intra- level scaffolding condition in which participants received intra-level questions and did not experience the dynamic link function. We also compared three different sequences of representational activities: macro-symbolic-micro, micro-symbolic-macro and symbolic-micro-macro. For the scaffolding variable, we found that the inter- level scaffolding condition produced significantly better performance in both knowledge comprehension and application, compared to the intra- level scaffolding condition. For the sequence variable, we found that the macro-symbolic-micro sequence produced significantly better knowledge comprehension performance than the other two sequences; however, it did not benefit knowledge application performance. There was a trend that the treatment group who experienced inter- level scaffolding and the micro-symbolic-macro sequence achieved the best knowledge application performance.

  13. Knowledge representation in space flight operations

    NASA Technical Reports Server (NTRS)

    Busse, Carl

    1989-01-01

    In space flight operations rapid understanding of the state of the space vehicle is essential. Representation of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft operations environment. This has led to the development of several advanced mission systems which incorporate enhanced graphics capabilities. These systems include: (1) Spacecraft Health Automated Reasoning Prototype (SHARP); (2) Spacecraft Monitoring Environment (SME); (3) Electrical Power Data Monitor (EPDM); (4) Generic Payload Operations Control Center (GPOCC); and (5) Telemetry System Monitor Prototype (TSM). Knowledge representation in these systems provides a direct representation of the intrinsic images associated with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes easily interpreted contextual graphic displays. These interactive video displays contain multiple display screens with pop-up windows and intelligent, high resolution graphics linked through context and mouse-sensitive icons and text.

  14. Secure Base Narrative Representations and Intimate Partner Violence: A Dyadic Perspective

    PubMed Central

    Karakurt, Gunnur; Silver, Kristin E.; Keiley, Margaret K.

    2015-01-01

    This study aimed to understand the relationship between secure base phenomena and dating violence among couples. Within a relationship, a secure base can be defined as a balancing act of proximity-seeking and exploration at various times and contexts with the assurance of a caregiver’s availability and responsiveness in emotionally distressing situations. Participants were 87 heterosexual couples. The Actor-Partner Interdependence Model was used to examine the relationship between each partner’s scores on secure base representational knowledge and intimate partner violence. Findings demonstrated that women’s secure base representational knowledge had a significant direct negative effect on the victimization of both men and women, while men’s secure base representational knowledge did not have any significant partner or actor effects. Therefore, findings suggest that women with insecure attachments may be more vulnerable to being both the victims and the perpetrators of PMID:27445432

  15. Probabilistic representation of gene regulatory networks.

    PubMed

    Mao, Linyong; Resat, Haluk

    2004-09-22

    Recent experiments have established unambiguously that biological systems can have significant cell-to-cell variations in gene expression levels even in isogenic populations. Computational approaches to studying gene expression in cellular systems should capture such biological variations for a more realistic representation. In this paper, we present a new fully probabilistic approach to the modeling of gene regulatory networks that allows for fluctuations in the gene expression levels. The new algorithm uses a very simple representation for the genes, and accounts for the repression or induction of the genes and for the biological variations among isogenic populations simultaneously. Because of its simplicity, introduced algorithm is a very promising approach to model large-scale gene regulatory networks. We have tested the new algorithm on the synthetic gene network library bioengineered recently. The good agreement between the computed and the experimental results for this library of networks, and additional tests, demonstrate that the new algorithm is robust and very successful in explaining the experimental data. The simulation software is available upon request. Supplementary material will be made available on the OUP server.

  16. Virtual terrain: a security-based representation of a computer network

    NASA Astrophysics Data System (ADS)

    Holsopple, Jared; Yang, Shanchieh; Argauer, Brian

    2008-03-01

    Much research has been put forth towards detection, correlating, and prediction of cyber attacks in recent years. As this set of research progresses, there is an increasing need for contextual information of a computer network to provide an accurate situational assessment. Typical approaches adopt contextual information as needed; yet such ad hoc effort may lead to unnecessary or even conflicting features. The concept of virtual terrain is, therefore, developed and investigated in this work. Virtual terrain is a common representation of crucial information about network vulnerabilities, accessibilities, and criticalities. A virtual terrain model encompasses operating systems, firewall rules, running services, missions, user accounts, and network connectivity. It is defined as connected graphs with arc attributes defining dynamic relationships among vertices modeling network entities, such as services, users, and machines. The virtual terrain representation is designed to allow feasible development and maintenance of the model, as well as efficacy in terms of the use of the model. This paper will describe the considerations in developing the virtual terrain schema, exemplary virtual terrain models, and algorithms utilizing the virtual terrain model for situation and threat assessment.

  17. Neuro-fuzzy controller to navigate an unmanned vehicle.

    PubMed

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  18. Computational neuroanatomy: ontology-based representation of neural components and connectivity.

    PubMed

    Rubin, Daniel L; Talos, Ion-Florin; Halle, Michael; Musen, Mark A; Kikinis, Ron

    2009-02-05

    A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future.

  19. Understanding Deep Representations Learned in Modeling Users Likes.

    PubMed

    Guntuku, Sharath Chandra; Zhou, Joey Tianyi; Roy, Sujoy; Lin, Weisi; Tsang, Ivor W

    2016-08-01

    Automatically understanding and discriminating different users' liking for an image is a challenging problem. This is because the relationship between image features (even semantic ones extracted by existing tools, viz., faces, objects, and so on) and users' likes is non-linear, influenced by several subtle factors. This paper presents a deep bi-modal knowledge representation of images based on their visual content and associated tags (text). A mapping step between the different levels of visual and textual representations allows for the transfer of semantic knowledge between the two modalities. Feature selection is applied before learning deep representation to identify the important features for a user to like an image. The proposed representation is shown to be effective in discriminating users based on images they like and also in recommending images that a given user likes, outperforming the state-of-the-art feature representations by  ∼ 15 %-20%. Beyond this test-set performance, an attempt is made to qualitatively understand the representations learned by the deep architecture used to model user likes.

  20. Dynamic speech representations in the human temporal lobe.

    PubMed

    Leonard, Matthew K; Chang, Edward F

    2014-09-01

    Speech perception requires rapid integration of acoustic input with context-dependent knowledge. Recent methodological advances have allowed researchers to identify underlying information representations in primary and secondary auditory cortex and to examine how context modulates these representations. We review recent studies that focus on contextual modulations of neural activity in the superior temporal gyrus (STG), a major hub for spectrotemporal encoding. Recent findings suggest a highly interactive flow of information processing through the auditory ventral stream, including influences of higher-level linguistic and metalinguistic knowledge, even within individual areas. Such mechanisms may give rise to more abstract representations, such as those for words. We discuss the importance of characterizing representations of context-dependent and dynamic patterns of neural activity in the approach to speech perception research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Graph-Theoretic Properties of Networks Based on Word Association Norms: Implications for Models of Lexical Semantic Memory.

    PubMed

    Gruenenfelder, Thomas M; Recchia, Gabriel; Rubin, Tim; Jones, Michael N

    2016-08-01

    We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network properties. All three contextual models over-predicted clustering in the norms, whereas the associative model under-predicted clustering. Only a hybrid model that assumed that some of the responses were based on a contextual model and others on an associative network (POC) successfully predicted all of the network properties and predicted a word's top five associates as well as or better than the better of the two constituent models. The results suggest that participants switch between a contextual representation and an associative network when generating free associations. We discuss the role that each of these representations may play in lexical semantic memory. Concordant with recent multicomponent theories of semantic memory, the associative network may encode coordinate relations between concepts (e.g., the relation between pea and bean, or between sparrow and robin), and contextual representations may be used to process information about more abstract concepts. Copyright © 2015 Cognitive Science Society, Inc.

  2. Model validation of simple-graph representations of metabolism

    PubMed Central

    Holme, Petter

    2009-01-01

    The large-scale properties of chemical reaction systems, such as metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information, lists of chemical reactions, available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure—network modularity (the propensity for edges to be clustered into dense groups that are sparsely connected between each other). To achieve this goal, we design a model of reaction systems where network modularity can be controlled and measure how well the reduction to simple graphs captures the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate–product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreates correlations between degree and mass of the molecules. PMID:19158012

  3. Multidimensional Analysis of Linguistic Networks

    NASA Astrophysics Data System (ADS)

    Araújo, Tanya; Banisch, Sven

    Network-based approaches play an increasingly important role in the analysis of data even in systems in which a network representation is not immediately apparent. This is particularly true for linguistic networks, which use to be induced from a linguistic data set for which a network perspective is only one out of several options for representation. Here we introduce a multidimensional framework for network construction and analysis with special focus on linguistic networks. Such a framework is used to show that the higher is the abstraction level of network induction, the harder is the interpretation of the topological indicators used in network analysis. Several examples are provided allowing for the comparison of different linguistic networks as well as to networks in other fields of application of network theory. The computation and the intelligibility of some statistical indicators frequently used in linguistic networks are discussed. It suggests that the field of linguistic networks, by applying statistical tools inspired by network studies in other domains, may, in its current state, have only a limited contribution to the development of linguistic theory.

  4. Improving the learning of clinical reasoning through computer-based cognitive representation.

    PubMed

    Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A

    2014-01-01

    Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.

  5. Improving the learning of clinical reasoning through computer-based cognitive representation

    PubMed Central

    Wu, Bian; Wang, Minhong; Johnson, Janice M.; Grotzer, Tina A.

    2014-01-01

    Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students’ learning products from the beginning to the end of the study, consistent with students’ report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction. PMID:25518871

  6. Improving the learning of clinical reasoning through computer-based cognitive representation.

    PubMed

    Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A

    2014-01-01

    Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.

  7. The effect of training methodology on knowledge representation in categorization.

    PubMed

    Hélie, Sébastien; Shamloo, Farzin; Ell, Shawn W

    2017-01-01

    Category representations can be broadly classified as containing within-category information or between-category information. Although such representational differences can have a profound impact on decision-making, relatively little is known about the factors contributing to the development and generalizability of different types of category representations. These issues are addressed by investigating the impact of training methodology and category structures using a traditional empirical approach as well as the novel adaptation of computational modeling techniques from the machine learning literature. Experiment 1 focused on rule-based (RB) category structures thought to promote between-category representations. Participants learned two sets of two categories during training and were subsequently tested on a novel categorization problem using the training categories. Classification training resulted in a bias toward between-category representations whereas concept training resulted in a bias toward within-category representations. Experiment 2 focused on information-integration (II) category structures thought to promote within-category representations. With II structures, there was a bias toward within-category representations regardless of training methodology. Furthermore, in both experiments, computational modeling suggests that only within-category representations could support generalization during the test phase. These data suggest that within-category representations may be dominant and more robust for supporting the reconfiguration of current knowledge to support generalization.

  8. The effect of training methodology on knowledge representation in categorization

    PubMed Central

    Shamloo, Farzin; Ell, Shawn W.

    2017-01-01

    Category representations can be broadly classified as containing within–category information or between–category information. Although such representational differences can have a profound impact on decision–making, relatively little is known about the factors contributing to the development and generalizability of different types of category representations. These issues are addressed by investigating the impact of training methodology and category structures using a traditional empirical approach as well as the novel adaptation of computational modeling techniques from the machine learning literature. Experiment 1 focused on rule–based (RB) category structures thought to promote between–category representations. Participants learned two sets of two categories during training and were subsequently tested on a novel categorization problem using the training categories. Classification training resulted in a bias toward between–category representations whereas concept training resulted in a bias toward within–category representations. Experiment 2 focused on information-integration (II) category structures thought to promote within–category representations. With II structures, there was a bias toward within–category representations regardless of training methodology. Furthermore, in both experiments, computational modeling suggests that only within–category representations could support generalization during the test phase. These data suggest that within–category representations may be dominant and more robust for supporting the reconfiguration of current knowledge to support generalization. PMID:28846732

  9. 29 CFR 2570.34 - Information to be included in every exemption application.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... knowledge and belief, the representations made in such statement are true and correct. (c) An application... with the matters discussed in this application and, to the best of my knowledge and belief, the representations made in this application are true and correct. (ii) This declaration must be dated and signed by...

  10. On the Roles of External Knowledge Representations in Assessment Design

    ERIC Educational Resources Information Center

    Mislevy, Robert J.; Behrens, John T.; Bennett, Randy E.; Demark, Sarah F.; Frezzo, Dennis C.; Levy, Roy; Robinson, Daniel H.; Rutstein, Daisy Wise; Shute, Valerie J.; Stanley, Ken; Winters, Fielding I.

    2010-01-01

    People use external knowledge representations (KRs) to identify, depict, transform, store, share, and archive information. Learning how to work with KRs is central to be-coming proficient in virtually every discipline. As such, KRs play central roles in curriculum, instruction, and assessment. We describe five key roles of KRs in assessment: (1)…

  11. "BioONT": Improving Knowledge Organization and Representation in the Domain of Biometric Authentication

    ERIC Educational Resources Information Center

    Buerle, Stephen

    2017-01-01

    This dissertation explores some of the fundamental challenges facing the information assurance community as it relates to knowledge categorization, organization and representation within the field of information security and more specifically within the domain of biometric authentication. A primary objective of this research is the development of…

  12. The Influence of Textbooks on Teachers' Knowledge of Chemical Bonding Representations Relative to Students' Difficulties Understanding

    ERIC Educational Resources Information Center

    Bergqvist, Anna; Chang Rundgren, Shu-Nu

    2017-01-01

    Background: Textbooks are integral tools for teachers' lessons. Several researchers observed that school teachers rely heavily on textbooks as informational sources when planning lessons. Moreover, textbooks are an important resource for developing students' knowledge as they contain various representations that influence students' learning.…

  13. On the Roles of External Knowledge Representations in Assessment Design. CSE Report 722

    ERIC Educational Resources Information Center

    Mislevy, Robert J.; Behrens, John T.; Bennett, Randy E.; Demark, Sarah F.; Frezzo, Dennis C.; Levy, Roy; Robinson, Daniel H.; Rutstein, Daisy Wise; Shute, Valerie J.; Stanley, Ken; Winters, Fielding I.

    2007-01-01

    People use external knowledge representations (EKRs) to identify, depict, transform, store, share, and archive information. Learning how to work with EKRs is central to becoming proficient in virtually every discipline. As such, EKRs play central roles in curriculum, instruction, and assessment. Five key roles of EKRs in educational assessment are…

  14. Disciplinary Representation on Institutional Websites: Changing Knowledge, Changing Power?

    ERIC Educational Resources Information Center

    O'Connor, Kate; Yates, Lyn

    2014-01-01

    This paper analyses shifts in the representation of history and physics as named organisational units on Australian university websites over the last 15 years in the context of broader questions about the production of knowledge in contemporary times. It derives from a broader project concerned with disciplinarity, changing university contexts and…

  15. Inter-Level Scaffolding and Sequences of Representational Activities in Teaching a Chemical System with Graphical Simulations

    ERIC Educational Resources Information Center

    Li, Na; Black, John B.

    2016-01-01

    Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences…

  16. Decision support system for nursing management control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, C.J.

    A knowledge representation approach for expert systems supporting decision processes in business is proposed. A description of a knowledge representation schema using a logic programming metalanguage is described, then the role of such a schema in a management expert system is demonstrated through the problem of nursing management control in hospitals. 18 references.

  17. Developing Explanations and Developing Understanding: Students Explain the Phases of the Moon Using Visual Representations

    ERIC Educational Resources Information Center

    Parnafes, Orit

    2012-01-01

    This article presents a theoretical model of the process by which students construct and elaborate explanations of scientific phenomena using visual representations. The model describes progress in the underlying conceptual processes in students' explanations as a reorganization of fine-grained knowledge elements based on the Knowledge in Pieces…

  18. Emerging Standards for Medical Logic

    PubMed Central

    Clayton, Paul D.; Hripcsak, George; Pryor, T. Allan

    1990-01-01

    Sharing medical logic has traditionally occurred in the form of lectures, conversations, books and journals. As knowledge based computer systems have demonstrated their utility in the health care arena, individuals have pondered the best way to transfer knowledge in a computer based representation (1). A simple representation which allows the knowledge to be shared can be constructed when the knowledge base is modular. Within this representation, units have been named Medical Logic Modules (MLM's) and a syntax has emerged which would allow multiple users to create, criticize, and share those types of medical logic which can be represented in this format. In this paper we talk about why standards exist and why they emerge in some areas and not in others. The appropriateness of using the proposed standards for medical logic modules is then examined against this broader context.

  19. Students' Understanding of External Representations of the Potassium Ion Channel Protein Part II: Structure-Function Relationships and Fragmented Knowledge

    ERIC Educational Resources Information Center

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…

  20. Neural Representations of Belief Concepts: A Representational Similarity Approach to Social Semantics

    PubMed Central

    Leshinskaya, Anna; Contreras, Juan Manuel; Caramazza, Alfonso; Mitchell, Jason P.

    2017-01-01

    Abstract The present experiment identified neural regions that represent a class of concepts that are independent of perceptual or sensory attributes. During functional magnetic resonance imaging scanning, participants viewed names of social groups (e.g. Atheists, Evangelicals, and Economists) and performed a one-back similarity judgment according to 1 of 2 dimensions of belief attributes: political orientation (Liberal to Conservative) or spiritualism (Spiritualist to Materialist). By generalizing across a wide variety of social groups that possess these beliefs, these attribute concepts did not coincide with any specific sensory quality, allowing us to target conceptual, rather than perceptual, representations. Multi-voxel pattern searchlight analysis was used to identify regions in which activation patterns distinguished the 2 ends of both dimensions: Conservative from Liberal social groups when participants focused on the political orientation dimension, and spiritual from Materialist groups when participants focused on the spiritualism dimension. A cluster in right precuneus exhibited such a pattern, indicating that it carries information about belief-attribute concepts and forms part of semantic memory—perhaps a component particularly concerned with psychological traits. This region did not overlap with the theory of mind network, which engaged nearby, but distinct, parts of precuneus. These findings have implications for the neural organization of conceptual knowledge, especially the understanding of social groups. PMID:28108495

  1. Consumer language, patient language, and thesauri: a review of the literature

    PubMed Central

    Smith, Catherine A

    2011-01-01

    Objective: Online social networking sites are web services in which users create public or semipublic profiles and connect to build online communities, finding likeminded people through self-labeled personal attributes including ethnicity, leisure interests, political beliefs, and, increasingly, health status. Thirty-nine percent of patients in the United States identified themselves as users of social networks in a recent survey. “Tags,” user-generated descriptors functioning as labels for user-generated content, are increasingly important to social networking, and the language used by patients is thus becoming important for knowledge representation in these systems. However, patient language poses considerable challenges for health communication and networking. How have information systems traditionally incorporated these languages in their controlled vocabularies and thesauri? How do system builders know what consumers and patients say? Methods: This comprehensive review of the literature of health care (PubMed MEDLINE, CINAHL), library science, and information science (Library and Information Science and Technology Abstracts, Library and Information Science Abstracts, and Library Literature) examines the research domains in which consumer and patient language has been explored. Results: Consumer contributions to controlled vocabulary appear to be seriously under-researched inside and outside of health care. Conclusion: The author reflects on the implications of these findings for online social networks devoted to patients and the patient experience. PMID:21464851

  2. Consumer language, patient language, and thesauri: a review of the literature.

    PubMed

    Smith, Catherine A

    2011-04-01

    Online social networking sites are web services in which users create public or semipublic profiles and connect to build online communities, finding like-minded people through self-labeled personal attributes including ethnicity, leisure interests, political beliefs, and, increasingly, health status. Thirty-nine percent of patients in the United States identified themselves as users of social networks in a recent survey. "Tags," user-generated descriptors functioning as labels for user-generated content, are increasingly important to social networking, and the language used by patients is thus becoming important for knowledge representation in these systems. However, patient language poses considerable challenges for health communication and networking. How have information systems traditionally incorporated these languages in their controlled vocabularies and thesauri? How do system builders know what consumers and patients say? This comprehensive review of the literature of health care (PubMed MEDLINE, CINAHL), library science, and information science (Library and Information Science and Technology Abstracts, Library and Information Science Abstracts, and Library Literature) examines the research domains in which consumer and patient language has been explored. Consumer contributions to controlled vocabulary appear to be seriously under-researched inside and outside of health care. The author reflects on the implications of these findings for online social networks devoted to patients and the patient experience.

  3. Seismic Hazard Analysis on a Complex, Interconnected Fault Network

    NASA Astrophysics Data System (ADS)

    Page, M. T.; Field, E. H.; Milner, K. R.

    2017-12-01

    In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.

  4. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model

    PubMed Central

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A.; Borst, Jelmer P.; Li, Kuncheng

    2016-01-01

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network. PMID:27193284

  5. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model.

    PubMed

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-05-19

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.

  6. Liberal Entity Extraction: Rapid Construction of Fine-Grained Entity Typing Systems.

    PubMed

    Huang, Lifu; May, Jonathan; Pan, Xiaoman; Ji, Heng; Ren, Xiang; Han, Jiawei; Zhao, Lin; Hendler, James A

    2017-03-01

    The ability of automatically recognizing and typing entities in natural language without prior knowledge (e.g., predefined entity types) is a major challenge in processing such data. Most existing entity typing systems are limited to certain domains, genres, and languages. In this article, we propose a novel unsupervised entity-typing framework by combining symbolic and distributional semantics. We start from learning three types of representations for each entity mention: general semantic representation, specific context representation, and knowledge representation based on knowledge bases. Then we develop a novel joint hierarchical clustering and linking algorithm to type all mentions using these representations. This framework does not rely on any annotated data, predefined typing schema, or handcrafted features; therefore, it can be quickly adapted to a new domain, genre, and/or language. Experiments on genres (news and discussion forum) show comparable performance with state-of-the-art supervised typing systems trained from a large amount of labeled data. Results on various languages (English, Chinese, Japanese, Hausa, and Yoruba) and domains (general and biomedical) demonstrate the portability of our framework.

  7. Implementation of a frame-based representation in CLIPS

    NASA Technical Reports Server (NTRS)

    Assal, Hisham; Myers, Leonard

    1990-01-01

    Knowledge representation is one of the major concerns in expert systems. The representation of domain-specific knowledge should agree with the nature of the domain entities and their use in the real world. For example, architectural applications deal with objects and entities such as spaces, walls, and windows. A natural way of representing these architectural entities is provided by frames. This research explores the potential of using the expert system shell CLIPS, developed by NASA, to implement a frame-based representation that can accommodate architectural knowledge. These frames are similar but quite different from the 'template' construct in version 4.3 of CLIPS. Templates support only the grouping of related information and the assignment of default values to template fields. In addition to these features frames provide other capabilities including definition of classes, inheritance between classes and subclasses, relation of objects of different classes with 'has-a', association of methods (demons) of different types (standard and user-defined) to fields (slots), and creation of new fields at run-time. This frame-based representation is implemented completely in CLIPS. No change to the source code is necessary.

  8. Liberal Entity Extraction: Rapid Construction of Fine-Grained Entity Typing Systems

    PubMed Central

    Huang, Lifu; May, Jonathan; Pan, Xiaoman; Ji, Heng; Ren, Xiang; Han, Jiawei; Zhao, Lin; Hendler, James A.

    2017-01-01

    Abstract The ability of automatically recognizing and typing entities in natural language without prior knowledge (e.g., predefined entity types) is a major challenge in processing such data. Most existing entity typing systems are limited to certain domains, genres, and languages. In this article, we propose a novel unsupervised entity-typing framework by combining symbolic and distributional semantics. We start from learning three types of representations for each entity mention: general semantic representation, specific context representation, and knowledge representation based on knowledge bases. Then we develop a novel joint hierarchical clustering and linking algorithm to type all mentions using these representations. This framework does not rely on any annotated data, predefined typing schema, or handcrafted features; therefore, it can be quickly adapted to a new domain, genre, and/or language. Experiments on genres (news and discussion forum) show comparable performance with state-of-the-art supervised typing systems trained from a large amount of labeled data. Results on various languages (English, Chinese, Japanese, Hausa, and Yoruba) and domains (general and biomedical) demonstrate the portability of our framework. PMID:28328252

  9. Observability and Controllability of Networks: Symmetry in Representations of Brains and Controllers for Epidemics

    NASA Astrophysics Data System (ADS)

    Schiff, Steven

    Observability and controllability are essential concepts to the design of predictive observer models and feedback controllers of networked systems. We present a numerical and group representational framework, to quantify the observability and controllability of nonlinear networks with explicit symmetries that shows the connection between symmetries and nonlinear measures of observability and controllability. In addition to the topology of brain networks, we have advanced our ability to represent network nodes within the brain using conservation principles and more accurate biophysics that unifies the dynamics of spikes, seizures, and spreading depression. Lastly, we show how symmetries in controller design can be applied to infectious disease epidemics. NIH Grants 1R01EB014641, 1DP1HD086071.

  10. Complexity of the heart rhythm after heart transplantation by entropy of transition network for RR-increments of RR time intervals between heartbeats.

    PubMed

    Makowiec, Danuta; Struzik, Zbigniew; Graff, Beata; Wdowczyk-Szulc, Joanna; Zarczynska-Buchnowiecka, Marta; Gruchala, Marcin; Rynkiewicz, Andrzej

    2013-01-01

    Network models have been used to capture, represent and analyse characteristics of living organisms and general properties of complex systems. The use of network representations in the characterization of time series complexity is a relatively new but quickly developing branch of time series analysis. In particular, beat-to-beat heart rate variability can be mapped out in a network of RR-increments, which is a directed and weighted graph with vertices representing RR-increments and the edges of which correspond to subsequent increments. We evaluate entropy measures selected from these network representations in records of healthy subjects and heart transplant patients, and provide an interpretation of the results.

  11. A Tri-network Model of Human Semantic Processing

    PubMed Central

    Xu, Yangwen; He, Yong; Bi, Yanchao

    2017-01-01

    Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266

  12. Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research

    PubMed Central

    He, Yongqun

    2016-01-01

    Compared with controlled terminologies (e.g., MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network (i.e., OneNet). A new “OneNet effectiveness” tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research. PMID:27458549

  13. Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory.

    PubMed

    Irlbacher, Kerstin; Kraft, Antje; Kehrer, Stefanie; Brandt, Stephan A

    2014-10-01

    Cognitive control can be reactive or proactive in nature. Reactive control mechanisms, which support the resolution of interference, start after its onset. Conversely, proactive control involves the anticipation and prevention of interference prior to its occurrence. The interrelation of both types of cognitive control is currently under debate: Are they mediated by different neuronal networks? Or are there neuronal structures that have the potential to act in a proactive as well as in a reactive manner? This review illustrates the way in which integrating knowledge gathered from behavioral studies, functional imaging, and human electroencephalography proves useful in answering these questions. We focus on studies that investigate interference resolution at the level of working memory representations. In summary, different mechanisms are instrumental in supporting reactive and proactive control. Distinct neuronal networks are involved, though some brain regions, especially pre-SMA, possess functions that are relevant to both control modes. Therefore, activation of these brain areas could be observed in reactive, as well as proactive control, but at different times during information processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A framework to find the logic backbone of a biological network.

    PubMed

    Maheshwari, Parul; Albert, Réka

    2017-12-06

    Cellular behaviors are governed by interaction networks among biomolecules, for example gene regulatory and signal transduction networks. An often used dynamic modeling framework for these networks, Boolean modeling, can obtain their attractors (which correspond to cell types and behaviors) and their trajectories from an initial state (e.g. a resting state) to the attractors, for example in response to an external signal. The existing methods however do not elucidate the causal relationships between distant nodes in the network. In this work, we propose a simple logic framework, based on categorizing causal relationships as sufficient or necessary, as a complement to Boolean networks. We identify and explore the properties of complex subnetworks that are distillable into a single logic relationship. We also identify cyclic subnetworks that ensure the stabilization of the state of participating nodes regardless of the rest of the network. We identify the logic backbone of biomolecular networks, consisting of external signals, self-sustaining cyclic subnetworks (stable motifs), and output nodes. Furthermore, we use the logic framework to identify crucial nodes whose override can drive the system from one steady state to another. We apply these techniques to two biological networks: the epithelial-to-mesenchymal transition network corresponding to a developmental process exploited in tumor invasion, and the network of abscisic acid induced stomatal closure in plants. We find interesting subnetworks with logical implications in these networks. Using these subgraphs and motifs, we efficiently reduce both networks to succinct backbone structures. The logic representation identifies the causal relationships between distant nodes and subnetworks. This knowledge can form the basis of network control or used in the reverse engineering of networks.

  15. Identifying knowledge activism in worker health and safety representation: A cluster analysis.

    PubMed

    Hall, Alan; Oudyk, John; King, Andrew; Naqvi, Syed; Lewchuk, Wayne

    2016-01-01

    Although worker representation in OHS has been widely recognized as contributing to health and safety improvements at work, few studies have examined the role that worker representatives play in this process. Using a large quantitative sample, this paper seeks to confirm findings from an earlier exploratory qualitative study that worker representatives can be differentiated by the knowledge intensive tactics and strategies that they use to achieve changes in their workplace. Just under 900 worker health and safety representatives in Ontario completed surveys which asked them to report on the amount of time they devoted to different types of representation activities (i.e., technical activities such as inspections and report writing vs. political activities such as mobilizing workers to build support), the kinds of conditions or hazards they tried to address through their representation (e.g., housekeeping vs. modifications in ventilation systems), and their reported success in making positive improvements. A cluster analysis was used to determine whether the worker representatives could be distinguished in terms of the relative time devoted to different activities and the clusters were then compared with reference to types of intervention efforts and outcomes. The cluster analysis identified three distinct groupings of representatives with significant differences in reported types of interventions and in their level of reported impact. Two of the clusters were consistent with the findings in the exploratory study, identified as knowledge activism for greater emphasis on knowledge based political activity and technical-legal representation for greater emphasis on formalized technical oriented procedures and legal regulations. Knowledge activists were more likely to take on challenging interventions and they reported more impact across the full range of interventions. This paper provides further support for the concepts of knowledge activism and technical-legal representation when differentiating the strategic orientations and impact of worker health and safety representatives, with important implications for education, political support and recruitment. © 2015 Wiley Periodicals, Inc.

  16. [Social representations on HIV/AIDS among adolescentes: implications for nursing care].

    PubMed

    Thiengo, Maria Aparecida; de Oliveira, Denize Cristina; Rodrigues, Benedita Maria Rêgo Deusdará

    2005-03-01

    With the objective of discussing the implications of the social representations of HIV/AIDS for the interpersonal relations and the practices for protection among adolescents, 15 semidirective interviews were carried out with adolescents, both with and without HIV, assisted at a Hospital School in Rio de Janeiro. The software ALCESTE 4.5 was used for the data analysis. It was observed that the social representation of AIDS is structured around cognitions connected to prevention, revealing a contradiction between the knowledge and the practices reported by the group. It is suggested that the nursing practices should be directed towards the reduction of the distance between practices, representations and scientific knowledge.

  17. Discrete Logic Modelling Optimization to Contextualize Prior Knowledge Networks Using PRUNET

    PubMed Central

    Androsova, Ganna; del Sol, Antonio

    2015-01-01

    High-throughput technologies have led to the generation of an increasing amount of data in different areas of biology. Datasets capturing the cell’s response to its intra- and extra-cellular microenvironment allows such data to be incorporated as signed and directed graphs or influence networks. These prior knowledge networks (PKNs) represent our current knowledge of the causality of cellular signal transduction. New signalling data is often examined and interpreted in conjunction with PKNs. However, different biological contexts, such as cell type or disease states, may have distinct variants of signalling pathways, resulting in the misinterpretation of new data. The identification of inconsistencies between measured data and signalling topologies, as well as the training of PKNs using context specific datasets (PKN contextualization), are necessary conditions to construct reliable, predictive models, which are current challenges in the systems biology of cell signalling. Here we present PRUNET, a user-friendly software tool designed to address the contextualization of a PKNs to specific experimental conditions. As the input, the algorithm takes a PKN and the expression profile of two given stable steady states or cellular phenotypes. The PKN is iteratively pruned using an evolutionary algorithm to perform an optimization process. This optimization rests in a match between predicted attractors in a discrete logic model (Boolean) and a Booleanized representation of the phenotypes, within a population of alternative subnetworks that evolves iteratively. We validated the algorithm applying PRUNET to four biological examples and using the resulting contextualized networks to predict missing expression values and to simulate well-characterized perturbations. PRUNET constitutes a tool for the automatic curation of a PKN to make it suitable for describing biological processes under particular experimental conditions. The general applicability of the implemented algorithm makes PRUNET suitable for a variety of biological processes, for instance cellular reprogramming or transitions between healthy and disease states. PMID:26058016

  18. The Warfighter Associate: decision-support software agent for the management of intelligence, surveillance, and reconnaissance (ISR) assets

    NASA Astrophysics Data System (ADS)

    Buchler, Norbou; Marusich, Laura R.; Sokoloff, Stacey

    2014-06-01

    A unique and promising intelligent agent plug-in technology for Mission Command Systems— the Warfighter Associate (WA)— is described that enables individuals and teams to respond more effectively to the cognitive challenges of Mission Command, such as managing limited intelligence, surveillance, and reconnaissance (ISR) assets and information sharing in a networked environment. The WA uses a doctrinally-based knowledge representation to model role-specific workflows and continuously monitors the state of the operational environment to enable decision-support, delivering the right information to the right person at the right time. Capabilities include: (1) analyzing combat events reported in chat rooms and other sources for relevance based on role, order-of-battle, time, and geographic location, (2) combining seemingly disparate pieces of data into meaningful information, (3) driving displays to provide users with map based and textual descriptions of the current tactical situation, and (4) recommending courses of action with respect to necessary staff collaborations, execution of battle-drills, re-tasking of ISR assets, and required reporting. The results of a scenario-based human-in-the-loop experiment are reported. The underlying WA knowledge-graph representation serves as state traces, measuring aspects of Soldier decision-making performance (e.g. improved efficiency in allocating limited ISR assets) across runtime as dynamic events unfold on a simulated battlefield.

  19. Designing Intelligent Computer Aided Instruction Systems with Integrated Knowledge Representation Schemes

    DTIC Science & Technology

    1990-06-01

    the form of structured objects was first pioneered by Marvin Minsky . In his seminal article " A Framework for Representing Knowl- edge" he introduced... Minsky felt that the existing methods of knowledge representation were too finely grained and he proposed that knowledge is more than just a...not work" in realistic, complex domains. ( Minsky , 1981, pp. 95-128) According to Minsky "A frame is a data-structure for representing a stereo- typed

  20. An algebra-based method for inferring gene regulatory networks

    PubMed Central

    2014-01-01

    Background The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. Results This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network. Conclusions Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html. PMID:24669835

  1. Dynamic knowledge representation using agent-based modeling: ontology instantiation and verification of conceptual models.

    PubMed

    An, Gary

    2009-01-01

    The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to "know what they know." Despite increasing emphasis on "data-driven" research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often "break" conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.

  2. Structure and Evolution of the Foreign Exchange Networks

    NASA Astrophysics Data System (ADS)

    Kwapień, J.; Gworek, S.; Drożdż, S.

    2009-01-01

    We investigate topology and temporal evolution of the foreign currency exchange market viewed from a weighted network perspective. Based on exchange rates for a set of 46 currencies (including precious metals), we construct different representations of the FX network depending on a choice of the base currency. Our results show that the network structure is not stable in time, but there are main clusters of currencies, which persist for a long period of time despite the fact that their size and content are variable. We find a long-term trend in the network's evolution which affects the USD and EUR nodes. In all the network representations, the USD node gradually loses its centrality, while, on contrary, the EUR node has become slightly more central than it used to be in its early years. Despite this directional trend, the overall evolution of the network is noisy.

  3. Der Aufbau mentaler Modelle durch bildliche Darstellungen: Eine experimentalle Studie uber die Bedeutung der Merkmalsdimensionen Elaboriertheit und Strukturierheit im Sachunterricht der Grundschule (The Development of Mental Processes through Graphic Representation with Diverging Degrees of Elaboration and Structurization: An Experimental Study Carried Out in Elementary Science Instruction in Primary School).

    ERIC Educational Resources Information Center

    Martschinke, Sabine

    1996-01-01

    Examines types of graphical representation as to their suitability for knowledge acquisition in primary grades. Uses the concept of mental models to clarify the relationship between external presentation and internal representation of knowledge. Finds that students who learned with highly elaborated and highly structured pictures displayed the…

  4. Functional Connectivity in Islets of Langerhans from Mouse Pancreas Tissue Slices

    PubMed Central

    Stožer, Andraž; Gosak, Marko; Dolenšek, Jurij; Perc, Matjaž; Marhl, Marko; Rupnik, Marjan Slak; Korošak, Dean

    2013-01-01

    We propose a network representation of electrically coupled beta cells in islets of Langerhans. Beta cells are functionally connected on the basis of correlations between calcium dynamics of individual cells, obtained by means of confocal laser-scanning calcium imaging in islets from acute mouse pancreas tissue slices. Obtained functional networks are analyzed in the light of known structural and physiological properties of islets. Focusing on the temporal evolution of the network under stimulation with glucose, we show that the dynamics are more correlated under stimulation than under non-stimulated conditions and that the highest overall correlation, largely independent of Euclidean distances between cells, is observed in the activation and deactivation phases when cells are driven by the external stimulus. Moreover, we find that the range of interactions in networks during activity shows a clear dependence on the Euclidean distance, lending support to previous observations that beta cells are synchronized via calcium waves spreading throughout islets. Most interestingly, the functional connectivity patterns between beta cells exhibit small-world properties, suggesting that beta cells do not form a homogeneous geometric network but are connected in a functionally more efficient way. Presented results provide support for the existing knowledge of beta cell physiology from a network perspective and shed important new light on the functional organization of beta cell syncitia whose structural topology is probably not as trivial as believed so far. PMID:23468610

  5. Enhancing students’ mathematical representation and selfefficacy through situation-based learning assisted by geometer’s sketchpad program

    NASA Astrophysics Data System (ADS)

    Sowanto; Kusumah, Y. S.

    2018-05-01

    This research was conducted based on the problem of a lack of students’ mathematical representation ability as well as self-efficacy in accomplishing mathematical tasks. To overcome this problem, this research used situation-based learning (SBL) assisted by geometer’s sketchpad program (GSP). This research investigated students’ improvement of mathematical representation ability who were taught under situation-based learning (SBL) assisted by geometer’s sketchpad program (GSP) and regular method that viewed from the whole students’ prior knowledge (high, average, and low level). In addition, this research investigated the difference of students’ self-efficacy after learning was given. This research belongs to quasi experiment research using non-equivalent control group design with purposive sampling. The result of this research showed that students’ enhancement in their mathematical representation ability taught under SBL assisted by GSP was better than the regular method. Also, there was no interaction between learning methods and students prior knowledge in student’ enhancement of mathematical representation ability. There was significant difference of students’ enhancement of mathematical representation ability taught under SBL assisted by GSP viewed from students’ prior knowledge. Furthermore, there was no significant difference in terms of self-efficacy between those who were taught by SBL assisted by GSP with the regular method.

  6. Thermodynamic characterization of networks using graph polynomials

    NASA Astrophysics Data System (ADS)

    Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.

    2015-09-01

    In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.

  7. COM3/369: Knowledge-based Information Systems: A new approach for the representation and retrieval of medical information

    PubMed Central

    Mann, G; Birkmann, C; Schmidt, T; Schaeffler, V

    1999-01-01

    Introduction Present solutions for the representation and retrieval of medical information from online sources are not very satisfying. Either the retrieval process lacks of precision and completeness the representation does not support the update and maintenance of the represented information. Most efforts are currently put into improving the combination of search engines and HTML based documents. However, due to the current shortcomings of methods for natural language understanding there are clear limitations to this approach. Furthermore, this approach does not solve the maintenance problem. At least medical information exceeding a certain complexity seems to afford approaches that rely on structured knowledge representation and corresponding retrieval mechanisms. Methods Knowledge-based information systems are based on the following fundamental ideas. The representation of information is based on ontologies that define the structure of the domain's concepts and their relations. Views on domain models are defined and represented as retrieval schemata. Retrieval schemata can be interpreted as canonical query types focussing on specific aspects of the provided information (e.g. diagnosis or therapy centred views). Based on these retrieval schemata it can be decided which parts of the information in the domain model must be represented explicitly and formalised to support the retrieval process. As representation language propositional logic is used. All other information can be represented in a structured but informal way using text, images etc. Layout schemata are used to assign layout information to retrieved domain concepts. Depending on the target environment HTML or XML can be used. Results Based on this approach two knowledge-based information systems have been developed. The 'Ophthalmologic Knowledge-based Information System for Diabetic Retinopathy' (OKIS-DR) provides information on diagnoses, findings, examinations, guidelines, and reference images related to diabetic retinopathy. OKIS-DR uses combinations of findings to specify the information that must be retrieved. The second system focuses on nutrition related allergies and intolerances. Information on allergies and intolerances of a patient are used to retrieve general information on the specified combination of allergies and intolerances. As a special feature the system generates tables showing food types and products that are tolerated or not tolerated by patients. Evaluation by external experts and user groups showed that the described approach of knowledge-based information systems increases the precision and completeness of knowledge retrieval. Due to the structured and non-redundant representation of information the maintenance and update of the information can be simplified. Both systems are available as WWW based online knowledge bases and CD-ROMs (cf. http://mta.gsf.de topic: products).

  8. Dialect Variation and Phonological Knowledge: Phonological Representations and Metalinguistic Awareness among Beginning Readers who Speak Nonmainstream American English

    ERIC Educational Resources Information Center

    Terry, Nicole Patton

    2014-01-01

    Children's spoken nonmainstream American English (NMAE) dialect use and their knowledge about phonological representations of word pronunciations were assessed in a sample of 105 children in kindergarten through second grade. Children were given expressive and receptive tasks with dialect-sensitive stimuli. Students who produced many NMAE…

  9. Meta-Representation in an Algebra I Classroom

    ERIC Educational Resources Information Center

    Izsak, Andrew; Caglayan, Gunhan; Olive, John

    2009-01-01

    We describe how 1 Algebra I teacher and her 8th-grade students used meta-representational knowledge when generating and evaluating equations to solve word problems. Analyzing data from a sequence of 4 lessons, we found that the teacher and her students used criteria for evaluating equations, in addition to other types of knowledge (e.g., different…

  10. Exploring the Progression in Preservice Chemistry Teachers' Pedagogical Content Knowledge Representations: The Case of "Behavior of Gases"

    ERIC Educational Resources Information Center

    Adadan, Emine; Oner, Diler

    2014-01-01

    This multiple case study investigated how two preservice chemistry teachers' pedagogical content knowledge (PCK) representations of behavior of gases progressed in the context of a semester-long chemistry teaching methods course. The change in the participants' PCK components was interpreted with respect to the theoretical PCK learning…

  11. Relative Expertise in an Everyday Reasoning Task: Epistemic Understanding, Problem Representation, and Reasoning Competence

    ERIC Educational Resources Information Center

    Weinstock, Michael

    2009-01-01

    Experts in cognitive domains differ from non-experts in how they represent problems and knowledge, and in their epistemic understandings of tasks in their domain of expertise. This study investigates whether task-specific epistemic understanding also underlies the representation of knowledge on an everyday reasoning task on which the competent…

  12. An Investigation of Pattern Problems Posed by Middle School Mathematics Preservice Teachers Using Multiple Representation

    ERIC Educational Resources Information Center

    Yilmaz, Yasemin; Durmus, Soner; Yaman, Hakan

    2018-01-01

    This study investigated the pattern problems posed by middle school mathematics preservice teachers using multiple representations to determine both their pattern knowledge levels and their abilities to transfer this knowledge to students. The design of the study is the survey method, one of the quantitative research methods. The study group was…

  13. Representations of the Nature of Scientific Knowledge in Turkish Biology Textbooks

    ERIC Educational Resources Information Center

    Irez, Serhat

    2016-01-01

    Considering the impact of textbooks on learning, this study set out to assess representations of the nature of scientific knowledge in Turkish 9th grade biology textbooks. To this end, the ten most commonly used 9th grade biology textbooks were analyzed. A qualitative research approach was utilized and the textbooks were analyzed using…

  14. Advantages of Thesaurus Representation Using the Simple Knowledge Organization System (SKOS) Compared with Proposed Alternatives

    ERIC Educational Resources Information Center

    Pastor-Sanchez, Juan-Antonio; Martinez Mendez, Francisco Javier; Rodriguez-Munoz, Jose Vicente

    2009-01-01

    Introduction: This paper presents an analysis of the Simple Knowledge Organization System (SKOS) compared with other alternatives for thesaurus representation in the Semantic Web. Method: Based on functional and structural changes of thesauri, provides an overview of the current context in which lexical paradigm is abandoned in favour of the…

  15. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis.

    PubMed

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2014-11-01

    For the last decade, it has been shown that neuroimaging can be a potential tool for the diagnosis of Alzheimer's Disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), and also fusion of different modalities can further provide the complementary information to enhance diagnostic accuracy. Here, we focus on the problems of both feature representation and fusion of multimodal information from Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). To our best knowledge, the previous methods in the literature mostly used hand-crafted features such as cortical thickness, gray matter densities from MRI, or voxel intensities from PET, and then combined these multimodal features by simply concatenating into a long vector or transforming into a higher-dimensional kernel space. In this paper, we propose a novel method for a high-level latent and shared feature representation from neuroimaging modalities via deep learning. Specifically, we use Deep Boltzmann Machine (DBM)(2), a deep network with a restricted Boltzmann machine as a building block, to find a latent hierarchical feature representation from a 3D patch, and then devise a systematic method for a joint feature representation from the paired patches of MRI and PET with a multimodal DBM. To validate the effectiveness of the proposed method, we performed experiments on ADNI dataset and compared with the state-of-the-art methods. In three binary classification problems of AD vs. healthy Normal Control (NC), MCI vs. NC, and MCI converter vs. MCI non-converter, we obtained the maximal accuracies of 95.35%, 85.67%, and 74.58%, respectively, outperforming the competing methods. By visual inspection of the trained model, we observed that the proposed method could hierarchically discover the complex latent patterns inherent in both MRI and PET. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Hierarchical Feature Representation and Multimodal Fusion with Deep Learning for AD/MCI Diagnosis

    PubMed Central

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2014-01-01

    For the last decade, it has been shown that neuroimaging can be a potential tool for the diagnosis of Alzheimer’s Disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), and also fusion of different modalities can further provide the complementary information to enhance diagnostic accuracy. Here, we focus on the problems of both feature representation and fusion of multimodal information from Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). To our best knowledge, the previous methods in the literature mostly used hand-crafted features such as cortical thickness, gray matter densities from MRI, or voxel intensities from PET, and then combined these multimodal features by simply concatenating into a long vector or transforming into a higher-dimensional kernel space. In this paper, we propose a novel method for a high-level latent and shared feature representation from neuroimaging modalities via deep learning. Specifically, we use Deep Boltzmann Machine (DBM)1, a deep network with a restricted Boltzmann machine as a building block, to find a latent hierarchical feature representation from a 3D patch, and then devise a systematic method for a joint feature representation from the paired patches of MRI and PET with a multimodal DBM. To validate the effectiveness of the proposed method, we performed experiments on ADNI dataset and compared with the state-of-the-art methods. In three binary classification problems of AD vs. healthy Normal Control (NC), MCI vs. NC, and MCI converter vs. MCI non-converter, we obtained the maximal accuracies of 95.35%, 85.67%, and 74.58%, respectively, outperforming the competing methods. By visual inspection of the trained model, we observed that the proposed method could hierarchically discover the complex latent patterns inherent in both MRI and PET. PMID:25042445

  17. 24 CFR 4001.116 - Representations and prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Representations and prohibitions... Eligibility Requirements and Underwriting Procedures § 4001.116 Representations and prohibitions. (a... actual knowledge furnished material information known to be false for the purpose of obtaining the...

  18. 24 CFR 4001.116 - Representations and prohibitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Representations and prohibitions... Eligibility Requirements and Underwriting Procedures § 4001.116 Representations and prohibitions. (a... actual knowledge furnished material information known to be false for the purpose of obtaining the...

  19. 24 CFR 4001.116 - Representations and prohibitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Representations and prohibitions... Eligibility Requirements and Underwriting Procedures § 4001.116 Representations and prohibitions. (a... actual knowledge furnished material information known to be false for the purpose of obtaining the...

  20. Modelling dendritic ecological networks in space: An integrated network perspective

    Treesearch

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

Top