Sample records for network location problems

  1. Location-allocation models and new solution methodologies in telecommunication networks

    NASA Astrophysics Data System (ADS)

    Dinu, S.; Ciucur, V.

    2016-08-01

    When designing a telecommunications network topology, three types of interdependent decisions are combined: location, allocation and routing, which are expressed by the following design considerations: how many interconnection devices - consolidation points/concentrators should be used and where should they be located; how to allocate terminal nodes to concentrators; how should the voice, video or data traffic be routed and what transmission links (capacitated or not) should be built into the network. Including these three components of the decision into a single model generates a problem whose complexity makes it difficult to solve. A first method to address the overall problem is the sequential one, whereby the first step deals with the location-allocation problem and based on this solution the subsequent sub-problem (routing the network traffic) shall be solved. The issue of location and allocation in a telecommunications network, called "The capacitated concentrator location- allocation - CCLA problem" is based on one of the general location models on a network in which clients/demand nodes are the terminals and facilities are the concentrators. Like in a location model, each client node has a demand traffic, which must be served, and the facilities can serve these demands within their capacity limit. In this study, the CCLA problem is modeled as a single-source capacitated location-allocation model whose optimization objective is to determine the minimum network cost consisting of fixed costs for establishing the locations of concentrators, costs for operating concentrators and costs for allocating terminals to concentrators. The problem is known as a difficult combinatorial optimization problem for which powerful algorithms are required. Our approach proposes a Fuzzy Genetic Algorithm combined with a local search procedure to calculate the optimal values of the location and allocation variables. To confirm the efficiency of the proposed algorithm with respect to the quality of solutions, significant size test problems were considered: up to 100 terminal nodes and 50 concentrators on a 100 × 100 square grid. The performance of this hybrid intelligent algorithm was evaluated by measuring the quality of its solutions with respect to the following statistics: the standard deviation and the ratio of the best solution obtained.

  2. Locating an imaging radar in Canada for identifying spaceborne objects

    NASA Astrophysics Data System (ADS)

    Schick, William G.

    1992-12-01

    This research presents a study of the maximal coverage p-median facility location problem as applied to the location of an imaging radar in Canada for imaging spaceborne objects. The classical mathematical formulation of the maximal coverage p-median problem is converted into network-flow with side constraint formulations that are developed using a scaled down version of the imaging radar location problem. Two types of network-flow with side constraint formulations are developed: a network using side constraints that simulates the gains in a generalized network; and a network resembling a multi-commodity flow problem that uses side constraints to force flow along identical arcs. These small formulations are expanded to encompass a case study using 12 candidate radar sites, and 48 satellites divided into three states. SAS/OR PROC NETFLOW was used to solve the network-flow with side constraint formulations. The case study show that potential for both formulations, although the simulated gains formulation encountered singular matrix computational difficulties as a result of the very organized nature of its side constraint matrix. The multi-commodity flow formulation, when combined with equi-distribution of flow constraints, provided solutions for various values of p, the number of facilities to be selected.

  3. Developing a feasible neighbourhood search for solving hub location problem in a communication network

    NASA Astrophysics Data System (ADS)

    Rakhmawati, Fibri; Mawengkang, Herman; Buulolo, F.; Mardiningsih

    2018-01-01

    The hub location with single assignment is the problem of locating hubs and assigning the terminal nodes to hubs in order to minimize the cost of hub installation and the cost of routing the traffic in the network. There may also be capacity restrictions on the amount of traffic that can transit by hubs. This paper discusses how to model the polyhedral properties of the problems and develop a feasible neighbourhood search method to solve the model.

  4. Locating the source of spreading in temporal networks

    NASA Astrophysics Data System (ADS)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Yi, Dongyun

    2017-02-01

    The topological structure of many real networks changes with time. Thus, locating the sources of a temporal network is a creative and challenging problem, as the enormous size of many real networks makes it unfeasible to observe the state of all nodes. In this paper, we propose an algorithm to solve this problem, named the backward temporal diffusion process. The proposed algorithm calculates the shortest temporal distance to locate the transmission source. We assume that the spreading process can be modeled as a simple diffusion process and by consensus dynamics. To improve the location accuracy, we also adopt four strategies to select which nodes should be observed by ranking their importance in the temporal network. Our paper proposes a highly accurate method for locating the source in temporal networks and is, to the best of our knowledge, a frontier work in this field. Moreover, our framework has important significance for controlling the transmission of diseases or rumors and formulating immediate immunization strategies.

  5. Network exploitation using WAMI tracks

    NASA Astrophysics Data System (ADS)

    Rimey, Ray; Record, Jim; Keefe, Dan; Kennedy, Levi; Cramer, Chris

    2011-06-01

    Creating and exploiting network models from wide area motion imagery (WAMI) is an important task for intelligence analysis. Tracks of entities observed moving in the WAMI sensor data are extracted, then large numbers of tracks are studied over long time intervals to determine specific locations that are visited (e.g., buildings in an urban environment), what locations are related to other locations, and the function of each location. This paper describes several parts of the network detection/exploitation problem, and summarizes a solution technique for each: (a) Detecting nodes; (b) Detecting links between known nodes; (c) Node attributes to characterize a node; (d) Link attributes to characterize each link; (e) Link structure inferred from node attributes and vice versa; and (f) Decomposing a detected network into smaller networks. Experimental results are presented for each solution technique, and those are used to discuss issues for each problem part and its solution technique.

  6. Foraging Behaviors and Potential Computational Ability of Problem-Solving in an Amoeba

    NASA Astrophysics Data System (ADS)

    Nakagaki, Toshiyuki

    We study cell behaviors in the complex situations: multiple locations of food were simultaneously given. An amoeba-like organism of true slime mold gathered at the multiple food locations while body shape made of tubular network was totally changed. Then only a few tubes connected all of food locations through a network shape. By taking the network shape of body, the plasmodium could meet its own physiological requirements: as fast absorption of nutrient as possible and sufficient circulation of chemical signals and nutrients through a whole body. Optimality of network shape was evaluated in relation to a combinatorial optimization problem. Here we reviewed the potential computational ability of problem-solving in the amoeba, which was much higher than we'd though. The main message of this article is that we had better to change our stupid opinion that an amoeba is stupid.

  7. Constrained Surface-Level Gateway Placement for Underwater Acoustic Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Li, Deying; Li, Zheng; Ma, Wenkai; Chen, Hong

    One approach to guarantee the performance of underwater acoustic sensor networks is to deploy multiple Surface-level Gateways (SGs) at the surface. This paper addresses the connected (or survivable) Constrained Surface-level Gateway Placement (C-SGP) problem for 3-D underwater acoustic sensor networks. Given a set of candidate locations where SGs can be placed, our objective is to place minimum number of SGs at a subset of candidate locations such that it is connected (or 2-connected) from any USN to the base station. We propose a polynomial time approximation algorithm for the connected C-SGP problem and survivable C-SGP problem, respectively. Simulations are conducted to verify our algorithms' efficiency.

  8. Achieving network level privacy in Wireless Sensor Networks.

    PubMed

    Shaikh, Riaz Ahmed; Jameel, Hassan; d'Auriol, Brian J; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae

    2010-01-01

    Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power), sensor networks (e.g., mobility and topology) and QoS issues (e.g., packet reach-ability and timeliness). In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks.

  9. A model for distribution centers location-routing problem on a multimodal transportation network with a meta-heuristic solving approach

    NASA Astrophysics Data System (ADS)

    Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai

    2017-07-01

    Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.

  10. A model for distribution centers location-routing problem on a multimodal transportation network with a meta-heuristic solving approach

    NASA Astrophysics Data System (ADS)

    Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai

    2018-07-01

    Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.

  11. eqMAXEL: A new automatic earthquake location algorithm implementation for Earthworm

    NASA Astrophysics Data System (ADS)

    Lisowski, S.; Friberg, P. A.; Sheen, D. H.

    2017-12-01

    A common problem with automated earthquake location systems for a local to regional scale seismic network is false triggering and false locations inside the network caused by larger regional to teleseismic distance earthquakes. This false location issue also presents a problem for earthquake early warning systems where societal impacts of false alarms can be very expensive. Towards solving this issue, Sheen et al. (2016) implemented a robust maximum-likelihood earthquake location algorithm known as MAXEL. It was shown with both synthetics and real-data for a small number of arrivals, that large regional events were easily identifiable through metrics in the MAXEL algorithm. In the summer of 2017, we collaboratively implemented the MAXEL algorithm into a fully functional Earthworm module and tested it in regions of the USA where false detections and alarming are observed. We show robust improvement in the ability of the Earthworm system to filter out regional and teleseismic events that would have falsely located inside the network using the traditional Earthworm hypoinverse solution. We also explore using different grid sizes in the implementation of the MAXEL algorithm, which was originally designed with South Korea as the target network size.

  12. Research of future network with multi-layer IP address

    NASA Astrophysics Data System (ADS)

    Li, Guoling; Long, Zhaohua; Wei, Ziqiang

    2018-04-01

    The shortage of IP addresses and the scalability of routing systems [1] are challenges for the Internet. The idea of dividing existing IP addresses between identities and locations is one of the important research directions. This paper proposed a new decimal network architecture based on IPv9 [11], and decimal network IP address from E.164 principle of traditional telecommunication network, the IP address level, which helps to achieve separation and identification and location of IP address, IP address form a multilayer network structure, routing scalability problem in remission at the same time, to solve the problem of IPv4 address depletion. On the basis of IPv9, a new decimal network architecture is proposed, and the IP address of the decimal network draws on the E.164 principle of the traditional telecommunication network, and the IP addresses are hierarchically divided, which helps to realize the identification and location separation of IP addresses, the formation of multi-layer IP address network structure, while easing the scalability of the routing system to find a way out of IPv4 address exhausted. In addition to modifying DNS [10] simply and adding the function of digital domain, a DDNS [12] is formed. At the same time, a gateway device is added, that is, IPV9 gateway. The original backbone network and user network are unchanged.

  13. Sensor Location Problem Optimization for Traffic Network with Different Spatial Distributions of Traffic Information.

    PubMed

    Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian

    2016-10-27

    To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads.

  14. Sensor Location Problem Optimization for Traffic Network with Different Spatial Distributions of Traffic Information

    PubMed Central

    Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian

    2016-01-01

    To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads. PMID:27801794

  15. Solving a bi-objective mathematical model for location-routing problem with time windows in multi-echelon reverse logistics using metaheuristic procedure

    NASA Astrophysics Data System (ADS)

    Ghezavati, V. R.; Beigi, M.

    2016-12-01

    During the last decade, the stringent pressures from environmental and social requirements have spurred an interest in designing a reverse logistics (RL) network. The success of a logistics system may depend on the decisions of the facilities locations and vehicle routings. The location-routing problem (LRP) simultaneously locates the facilities and designs the travel routes for vehicles among established facilities and existing demand points. In this paper, the location-routing problem with time window (LRPTW) and homogeneous fleet type and designing a multi-echelon, and capacitated reverse logistics network, are considered which may arise in many real-life situations in logistics management. Our proposed RL network consists of hybrid collection/inspection centers, recovery centers and disposal centers. Here, we present a new bi-objective mathematical programming (BOMP) for LRPTW in reverse logistic. Since this type of problem is NP-hard, the non-dominated sorting genetic algorithm II (NSGA-II) is proposed to obtain the Pareto frontier for the given problem. Several numerical examples are presented to illustrate the effectiveness of the proposed model and algorithm. Also, the present work is an effort to effectively implement the ɛ-constraint method in GAMS software for producing the Pareto-optimal solutions in a BOMP. The results of the proposed algorithm have been compared with the ɛ-constraint method. The computational results show that the ɛ-constraint method is able to solve small-size instances to optimality within reasonable computing times, and for medium-to-large-sized problems, the proposed NSGA-II works better than the ɛ-constraint.

  16. Achieving Network Level Privacy in Wireless Sensor Networks†

    PubMed Central

    Shaikh, Riaz Ahmed; Jameel, Hassan; d’Auriol, Brian J.; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae

    2010-01-01

    Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power), sensor networks (e.g., mobility and topology) and QoS issues (e.g., packet reach-ability and timeliness). In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks. PMID:22294881

  17. Locating multiple diffusion sources in time varying networks from sparse observations.

    PubMed

    Hu, Zhao-Long; Shen, Zhesi; Cao, Shinan; Podobnik, Boris; Yang, Huijie; Wang, Wen-Xu; Lai, Ying-Cheng

    2018-02-08

    Data based source localization in complex networks has a broad range of applications. Despite recent progress, locating multiple diffusion sources in time varying networks remains to be an outstanding problem. Bridging structural observability and sparse signal reconstruction theories, we develop a general framework to locate diffusion sources in time varying networks based solely on sparse data from a small set of messenger nodes. A general finding is that large degree nodes produce more valuable information than small degree nodes, a result that contrasts that for static networks. Choosing large degree nodes as the messengers, we find that sparse observations from a few such nodes are often sufficient for any number of diffusion sources to be located for a variety of model and empirical networks. Counterintuitively, sources in more rapidly varying networks can be identified more readily with fewer required messenger nodes.

  18. Can We Control Contaminant Transport In Hydrologic Networks? Application Of Control Theory Concepts To Watershed Management

    NASA Astrophysics Data System (ADS)

    Yeghiazarian, L.; Riasi, M. S.

    2016-12-01

    Although controlling the level of contamination everywhere in the surface water network may not be feasible, it is vital to maintain safe water quality levels in specific areas, e.g. recreational waters. The question then is "what is the most efficient way to fully/partially control water quality in surface water networks?". This can be posed as a control problem where the goal is to efficiently drive the system to a desired state by manipulating few input variables. Such problems reduce to (1) finding the best control locations in the network to influence the state of the system; and (2) choosing the time-variant inputs at the control locations to achieve the desired state of the system with minimum effort. We demonstrate that the optimal solution to control the level of contamination in the network can be found through application of control theory concepts to transport in dendritic surface water networks.

  19. An Optimal Algorithm towards Successive Location Privacy in Sensor Networks with Dynamic Programming

    NASA Astrophysics Data System (ADS)

    Zhao, Baokang; Wang, Dan; Shao, Zili; Cao, Jiannong; Chan, Keith C. C.; Su, Jinshu

    In wireless sensor networks, preserving location privacy under successive inference attacks is extremely critical. Although this problem is NP-complete in general cases, we propose a dynamic programming based algorithm and prove it is optimal in special cases where the correlation only exists between p immediate adjacent observations.

  20. Pollution source localization in an urban water supply network based on dynamic water demand.

    PubMed

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  1. Layered Location-Based Security Mechanism for Mobile Sensor Networks: Moving Security Areas.

    PubMed

    Wang, Ze; Zhang, Haijuan; Wu, Luqiang; Zhou, Chang

    2015-09-25

    Network security is one of the most important issues in mobile sensor networks (MSNs). Networks are particularly vulnerable in hostile environments because of many factors, such as uncertain mobility, limitations on computation, and the need for storage in mobile nodes. Though some location-based security mechanisms can resist some malicious attacks, they are only suitable for static networks and may sometimes require large amounts of storage. To solve these problems, using location information, which is one of the most important properties in outdoor wireless networks, a security mechanism called a moving security area (MSA) is proposed to resist malicious attacks by using mobile nodes' dynamic location-based keys. The security mechanism is layered by performing different detection schemes inside or outside the MSA. The location-based private keys will be updated only at the appropriate moments, considering the balance of cost and security performance. By transferring parts of the detection tasks from ordinary nodes to the sink node, the memory requirements are distributed to different entities to save limited energy.

  2. A Lane-Level LBS System for Vehicle Network with High-Precision BDS/GPS Positioning

    PubMed Central

    Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo

    2015-01-01

    In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem. PMID:25755665

  3. Distributed least-squares estimation of a remote chemical source via convex combination in wireless sensor networks.

    PubMed

    Cao, Meng-Li; Meng, Qing-Hao; Zeng, Ming; Sun, Biao; Li, Wei; Ding, Cheng-Jun

    2014-06-27

    This paper investigates the problem of locating a continuous chemical source using the concentration measurements provided by a wireless sensor network (WSN). Such a problem exists in various applications: eliminating explosives or drugs, detecting the leakage of noxious chemicals, etc. The limited power and bandwidth of WSNs have motivated collaborative in-network processing which is the focus of this paper. We propose a novel distributed least-squares estimation (DLSE) method to solve the chemical source localization (CSL) problem using a WSN. The DLSE method is realized by iteratively conducting convex combination of the locally estimated chemical source locations in a distributed manner. Performance assessments of our method are conducted using both simulations and real experiments. In the experiments, we propose a fitting method to identify both the release rate and the eddy diffusivity. The results show that the proposed DLSE method can overcome the negative interference of local minima and saddle points of the objective function, which would hinder the convergence of local search methods, especially in the case of locating a remote chemical source.

  4. Locating the source of diffusion in complex networks by time-reversal backward spreading.

    PubMed

    Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H Eugene

    2016-03-01

    Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.

  5. Locating the source of diffusion in complex networks by time-reversal backward spreading

    NASA Astrophysics Data System (ADS)

    Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H. Eugene

    2016-03-01

    Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.

  6. A range-based predictive localization algorithm for WSID networks

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Chen, Junjie; Li, Gang

    2017-11-01

    Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.

  7. Virtual shelves in a digital library: a framework for access to networked information sources.

    PubMed

    Patrick, T B; Springer, G K; Mitchell, J A; Sievert, M E

    1995-01-01

    Develop a framework for collections-based access to networked information sources that addresses the problem of location-dependent access to information sources. This framework uses a metaphor of a virtual shelf. A virtual shelf is a general-purpose server that is dedicated to a particular information subject class. The identifier of one of these servers identifies its subject class. Location-independent call numbers are assigned to information sources. Call numbers are based on standard vocabulary codes. The call numbers are first mapped to the location-independent identifiers of virtual shelves. When access to an information resource is required, a location directory provides a second mapping of these location-independent server identifiers to actual network locations. The framework has been implemented in two different systems. One system is based on the Open System Foundation/Distributed Computing Environment and the other is based on the World Wide Web. This framework applies in new ways traditional methods of library classification and cataloging. It is compatible with two traditional styles of selecting information searching and browsing. Traditional methods may be combined with new paradigms of information searching that will be able to take advantage of the special properties of digital information. Cooperation between the library-informational science community and the informatics community can provide a means for a continuing application of the knowledge and techniques of library science to the new problems of networked information sources.

  8. Self-organized Anonymous Authentication in Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Freudiger, Julien; Raya, Maxim; Hubaux, Jean-Pierre

    Pervasive communications bring along new privacy challenges, fueled by the capability of mobile devices to communicate with, and thus “sniff on”, each other directly. We design a new mechanism that aims at achieving location privacy in these forthcoming mobile networks, whereby mobile nodes collect the pseudonyms of the nodes they encounter to generate their own privacy cloaks. Thus, privacy emerges from the mobile network and users gain control over the disclosure of their locations. We call this new paradigm self-organized location privacy. In this work, we focus on the problem of self-organized anonymous authentication that is a necessary prerequisite for location privacy. We investigate, using graph theory, the optimality of different cloak constructions and evaluate with simulations the achievable anonymity in various network topologies. We show that peer-to-peer wireless communications and mobility help in the establishment of self-organized anonymous authentication in mobile networks.

  9. Do Branch Lengths Help to Locate a Tree in a Phylogenetic Network?

    PubMed

    Gambette, Philippe; van Iersel, Leo; Kelk, Steven; Pardi, Fabio; Scornavacca, Celine

    2016-09-01

    Phylogenetic networks are increasingly used in evolutionary biology to represent the history of species that have undergone reticulate events such as horizontal gene transfer, hybrid speciation and recombination. One of the most fundamental questions that arise in this context is whether the evolution of a gene with one copy in all species can be explained by a given network. In mathematical terms, this is often translated in the following way: is a given phylogenetic tree contained in a given phylogenetic network? Recently this tree containment problem has been widely investigated from a computational perspective, but most studies have only focused on the topology of the phylogenies, ignoring a piece of information that, in the case of phylogenetic trees, is routinely inferred by evolutionary analyses: branch lengths. These measure the amount of change (e.g., nucleotide substitutions) that has occurred along each branch of the phylogeny. Here, we study a number of versions of the tree containment problem that explicitly account for branch lengths. We show that, although length information has the potential to locate more precisely a tree within a network, the problem is computationally hard in its most general form. On a positive note, for a number of special cases of biological relevance, we provide algorithms that solve this problem efficiently. This includes the case of networks of limited complexity, for which it is possible to recover, among the trees contained by the network with the same topology as the input tree, the closest one in terms of branch lengths.

  10. Reliable Facility Location Problem with Facility Protection

    PubMed Central

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  11. Predicate calculus for an architecture of multiple neural networks

    NASA Astrophysics Data System (ADS)

    Consoli, Robert H.

    1990-08-01

    Future projects with neural networks will require multiple individual network components. Current efforts along these lines are ad hoc. This paper relates the neural network to a classical device and derives a multi-part architecture from that model. Further it provides a Predicate Calculus variant for describing the location and nature of the trainings and suggests Resolution Refutation as a method for determining the performance of the system as well as the location of needed trainings for specific proofs. 2. THE NEURAL NETWORK AND A CLASSICAL DEVICE Recently investigators have been making reports about architectures of multiple neural networksL234. These efforts are appearing at an early stage in neural network investigations they are characterized by architectures suggested directly by the problem space. Touretzky and Hinton suggest an architecture for processing logical statements1 the design of this architecture arises from the syntax of a restricted class of logical expressions and exhibits syntactic limitations. In similar fashion a multiple neural netword arises out of a control problem2 from the sequence learning problem3 and from the domain of machine learning. 4 But a general theory of multiple neural devices is missing. More general attempts to relate single or multiple neural networks to classical computing devices are not common although an attempt is made to relate single neural devices to a Turing machines and Sun et a!. develop a multiple neural architecture that performs pattern classification.

  12. Pickless event detection and location: The waveform correlation event detection system (WCEDS) revisited

    DOE PAGES

    Arrowsmith, Stephen John; Young, Christopher J.; Ballard, Sanford; ...

    2016-01-01

    The standard paradigm for seismic event monitoring breaks the event detection problem down into a series of processing stages that can be categorized at the highest level into station-level processing and network-level processing algorithms (e.g., Le Bras and Wuster (2002)). At the station-level, waveforms are typically processed to detect signals and identify phases, which may subsequently be updated based on network processing. At the network-level, phase picks are associated to form events, which are subsequently located. Furthermore, waveforms are typically directly exploited only at the station-level, while network-level operations rely on earth models to associate and locate the events thatmore » generated the phase picks.« less

  13. Algorithm research for user trajectory matching across social media networks based on paragraph2vec

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Chen, Hongchang; Zhi, Hongxin; Wang, Yanchuan

    2018-04-01

    Identifying users across different social media networks (SMN) is to link accounts of the same user that belong to the same individual across SMNs. The problem is fundamental and important, and its results can benefit many applications such as cross SMN user modeling and recommendation. With the development of GPS technology and mobile communication, more and more social networks provide location services. This provides a new opportunity for cross SMN user identification. In this paper, we solve cross SMN user identification problem in an unsupervised manner by utilizing user trajectory data in SMNs. A paragraph2vec based algorithm is proposed in which location sequence feature of user trajectory is captured in temporal and spatial dimensions. Our experimental results validate the effectiveness and efficiency of our algorithm.

  14. Visualization of Traffic Accidents

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  15. Virtual shelves in a digital library: a framework for access to networked information sources.

    PubMed Central

    Patrick, T B; Springer, G K; Mitchell, J A; Sievert, M E

    1995-01-01

    OBJECTIVE: Develop a framework for collections-based access to networked information sources that addresses the problem of location-dependent access to information sources. DESIGN: This framework uses a metaphor of a virtual shelf. A virtual shelf is a general-purpose server that is dedicated to a particular information subject class. The identifier of one of these servers identifies its subject class. Location-independent call numbers are assigned to information sources. Call numbers are based on standard vocabulary codes. The call numbers are first mapped to the location-independent identifiers of virtual shelves. When access to an information resource is required, a location directory provides a second mapping of these location-independent server identifiers to actual network locations. RESULTS: The framework has been implemented in two different systems. One system is based on the Open System Foundation/Distributed Computing Environment and the other is based on the World Wide Web. CONCLUSIONS: This framework applies in new ways traditional methods of library classification and cataloging. It is compatible with two traditional styles of selecting information searching and browsing. Traditional methods may be combined with new paradigms of information searching that will be able to take advantage of the special properties of digital information. Cooperation between the library-informational science community and the informatics community can provide a means for a continuing application of the knowledge and techniques of library science to the new problems of networked information sources. PMID:8581554

  16. A Large-Scale Multi-Hop Localization Algorithm Based on Regularized Extreme Learning for Wireless Networks.

    PubMed

    Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan

    2017-12-20

    A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrowsmith, Stephen John; Young, Christopher J.; Ballard, Sanford

    The standard paradigm for seismic event monitoring breaks the event detection problem down into a series of processing stages that can be categorized at the highest level into station-level processing and network-level processing algorithms (e.g., Le Bras and Wuster (2002)). At the station-level, waveforms are typically processed to detect signals and identify phases, which may subsequently be updated based on network processing. At the network-level, phase picks are associated to form events, which are subsequently located. Furthermore, waveforms are typically directly exploited only at the station-level, while network-level operations rely on earth models to associate and locate the events thatmore » generated the phase picks.« less

  18. Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint.

    PubMed

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-06

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location-routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.

  19. Sensitivity Analysis of Genetic Algorithm Parameters for Optimal Groundwater Monitoring Network Design

    NASA Astrophysics Data System (ADS)

    Abdeh-Kolahchi, A.; Satish, M.; Datta, B.

    2004-05-01

    A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.

  20. Critical Node Location in De Bruijn Networks

    DTIC Science & Technology

    2016-10-01

    transmitter tower, node 0000. Let us say we broadcast a signal at four discrete and incrementally higher power levels, 1 - 4. After each transmission , we...When deploying a wireless network, some highly desirable properties are (a) many short paths between any two nodes, and (b) relatively few edges. One...minimal. To deal with this problem, we propose the use of a special network structure - de Bruijn networks. When deploying a wireless network, some

  1. On Efficient Deployment of Wireless Sensors for Coverage and Connectivity in Constrained 3D Space.

    PubMed

    Wu, Chase Q; Wang, Li

    2017-10-10

    Sensor networks have been used in a rapidly increasing number of applications in many fields. This work generalizes a sensor deployment problem to place a minimum set of wireless sensors at candidate locations in constrained 3D space to k -cover a given set of target objects. By exhausting the combinations of discreteness/continuousness constraints on either sensor locations or target objects, we formulate four classes of sensor deployment problems in 3D space: deploy sensors at Discrete/Continuous Locations (D/CL) to cover Discrete/Continuous Targets (D/CT). We begin with the design of an approximate algorithm for DLDT and then reduce DLCT, CLDT, and CLCT to DLDT by discretizing continuous sensor locations or target objects into a set of divisions without sacrificing sensing precision. Furthermore, we consider a connected version of each problem where the deployed sensors must form a connected network, and design an approximation algorithm to minimize the number of deployed sensors with connectivity guarantee. For performance comparison, we design and implement an optimal solution and a genetic algorithm (GA)-based approach. Extensive simulation results show that the proposed deployment algorithms consistently outperform the GA-based heuristic and achieve a close-to-optimal performance in small-scale problem instances and a significantly superior overall performance than the theoretical upper bound.

  2. PADF electromagnetic source localization using extremum seeking control

    NASA Astrophysics Data System (ADS)

    Al Issa, Huthaifa A.; Ordóñez, Raúl

    2014-10-01

    Wireless Sensor Networks (WSNs) are a significant technology attracting considerable research interest. Recent advances in wireless communications and electronics have enabled the development of low-cost, low-power and multi-functional sensors that are small in size and communicate over short distances. Most WSN applications require knowing or measuring locations of thousands of sensors accurately. For example, sensing data without knowing the sensor location is often meaningless. Locations of sensor nodes are fundamental to providing location stamps, locating and tracking objects, forming clusters, and facilitating routing. This research focused on the modeling and implementation of distributed, mobile radar sensor networks. In particular, we worked on the problem of Position-Adaptive Direction Finding (PADF), to determine the location of a non- collaborative transmitter, possibly hidden within a structure, by using a team of cooperative intelligent sensor networks. Position-Adaptive radar concepts have been formulated and investigated at the Air Force Research Laboratory (AFRL) within the past few years. In this paper, we present the simulation performance analysis on the application aspect. We apply Extremum Seeking Control (ESC) schemes by using the swarm seeking problem, where the goal is to design a control law for each individual sensor that can minimize the error metric by adapting the sensor positions in real-time, thereby minimizing the unknown estimation error. As a result we achieved source seeking and collision avoidance of the entire group of the sensor positions.

  3. Numerical Leak Detection in a Pipeline Network of Complex Structure with Unsteady Flow

    NASA Astrophysics Data System (ADS)

    Aida-zade, K. R.; Ashrafova, E. R.

    2017-12-01

    An inverse problem for a pipeline network of complex loopback structure is solved numerically. The problem is to determine the locations and amounts of leaks from unsteady flow characteristics measured at some pipeline points. The features of the problem include impulse functions involved in a system of hyperbolic differential equations, the absence of classical initial conditions, and boundary conditions specified as nonseparated relations between the states at the endpoints of adjacent pipeline segments. The problem is reduced to a parametric optimal control problem without initial conditions, but with nonseparated boundary conditions. The latter problem is solved by applying first-order optimization methods. Results of numerical experiments are presented.

  4. Optimal placement of FACTS devices using optimization techniques: A review

    NASA Astrophysics Data System (ADS)

    Gaur, Dipesh; Mathew, Lini

    2018-03-01

    Modern power system is dealt with overloading problem especially transmission network which works on their maximum limit. Today’s power system network tends to become unstable and prone to collapse due to disturbances. Flexible AC Transmission system (FACTS) provides solution to problems like line overloading, voltage stability, losses, power flow etc. FACTS can play important role in improving static and dynamic performance of power system. FACTS devices need high initial investment. Therefore, FACTS location, type and their rating are vital and should be optimized to place in the network for maximum benefit. In this paper, different optimization methods like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) etc. are discussed and compared for optimal location, type and rating of devices. FACTS devices such as Thyristor Controlled Series Compensator (TCSC), Static Var Compensator (SVC) and Static Synchronous Compensator (STATCOM) are considered here. Mentioned FACTS controllers effects on different IEEE bus network parameters like generation cost, active power loss, voltage stability etc. have been analyzed and compared among the devices.

  5. An Efficient Location Verification Scheme for Static Wireless Sensor Networks.

    PubMed

    Kim, In-Hwan; Kim, Bo-Sung; Song, JooSeok

    2017-01-24

    In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors.

  6. An Efficient Location Verification Scheme for Static Wireless Sensor Networks

    PubMed Central

    Kim, In-hwan; Kim, Bo-sung; Song, JooSeok

    2017-01-01

    In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors. PMID:28125007

  7. Location-based social networking media for restaurant promotion and food review using mobile application

    NASA Astrophysics Data System (ADS)

    Luhur, H. S.; Widjaja, N. D.

    2014-03-01

    This paper is focusing on the development of a mobile application for searching restaurants and promotions with location based and social networking features. The main function of the application is to search restaurant information. Other functions are also available in this application such as add restaurant, add promotion, add photo, add food review, and other features including social networking features. The restaurant and promotion searching application will be developed under Android platform. Upon completion of this paper, heuristic evaluation and usability testing have been conducted. The result of both testing shows that the application is highly usable. Even though there are some usability problems discovered, the problems can be eliminated immediately by implementing the recommendations from the expert evaluators and the users as the testers of the application. Further improvement made to the application will ensure that the application can really be beneficial for the users of the application.

  8. Optimal sensor placement for leak location in water distribution networks using genetic algorithms.

    PubMed

    Casillas, Myrna V; Puig, Vicenç; Garza-Castañón, Luis E; Rosich, Albert

    2013-11-04

    This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach.

  9. Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms

    PubMed Central

    Casillas, Myrna V.; Puig, Vicenç; Garza-Castañón, Luis E.; Rosich, Albert

    2013-01-01

    This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach. PMID:24193099

  10. Microearthquake Studies at the Salton Sea Geothermal Field

    DOE Data Explorer

    Templeton, Dennise

    2013-10-01

    The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information when determining the location, orientation and length of underground crack systems for use in reservoir development and management applications. Conventional earthquake location techniques often are employed to locate microearthquakes. However, these techniques require labor-intensive picking of individual seismic phase onsets across a network of sensors. For this project we adapt the Matched Field Processing (MFP) technique to the elastic propagation problem in geothermal reservoirs to identify more and smaller events than traditional methods alone.

  11. Route Prediction on Tracking Data to Location-Based Services

    NASA Astrophysics Data System (ADS)

    Petróczi, Attila István; Gáspár-Papanek, Csaba

    Wireless networks have become so widespread, it is beneficial to determine the ability of cellular networks for localization. This property enables the development of location-based services, providing useful information. These services can be improved by route prediction under the condition of using simple algorithms, because of the limited capabilities of mobile stations. This study gives alternative solutions for this problem of route prediction based on a specific graph model. Our models provide the opportunity to reach our destinations with less effort.

  12. Medium Access Control for Opportunistic Concurrent Transmissions under Shadowing Channels

    PubMed Central

    Son, In Keun; Mao, Shiwen; Hur, Seung Min

    2009-01-01

    We study the problem of how to alleviate the exposed terminal effect in multi-hop wireless networks in the presence of log-normal shadowing channels. Assuming node location information, we propose an extension of the IEEE 802.11 MAC protocol that sched-ules concurrent transmissions in the presence of log-normal shadowing, thus mitigating the exposed terminal problem and improving network throughput and delay performance. We observe considerable improvements in throughput and delay achieved over the IEEE 802.11 MAC under various network topologies and channel conditions in ns-2 simulations, which justify the importance of considering channel randomness in MAC protocol design for multi-hop wireless networks. PMID:22408556

  13. Center for development technology and program in technology and human affairs. [emphasizing technology-based networks

    NASA Technical Reports Server (NTRS)

    Wong, M. D.

    1974-01-01

    The role of technology in nontraditional higher education with particular emphasis on technology-based networks is analyzed nontraditional programs, institutions, and consortia are briefly reviewed. Nontraditional programs which utilize technology are studied. Technology-based networks are surveyed and analyzed with regard to kinds of students, learning locations, technology utilization, interinstitutional relationships, cost aspects, problems, and future outlook.

  14. Performance Analysis of MIMO Relay Network via Propagation Measurement in L-Shaped Corridor Environment

    NASA Astrophysics Data System (ADS)

    Lertwiram, Namzilp; Tran, Gia Khanh; Mizutani, Keiichi; Sakaguchi, Kei; Araki, Kiyomichi

    Setting relays can address the shadowing problem between a transmitter (Tx) and a receiver (Rx). Moreover, the Multiple-Input Multiple-Output (MIMO) technique has been introduced to improve wireless link capacity. The MIMO technique can be applied in relay network to enhance system performance. However, the efficiency of relaying schemes and relay placement have not been well investigated with experiment-based study. This paper provides a propagation measurement campaign of a MIMO two-hop relay network in 5GHz band in an L-shaped corridor environment with various relay locations. Furthermore, this paper proposes a Relay Placement Estimation (RPE) scheme to identify the optimum relay location, i.e. the point at which the network performance is highest. Analysis results of channel capacity show that relaying technique is beneficial over direct transmission in strong shadowing environment while it is ineffective in non-shadowing environment. In addition, the optimum relay location estimated with the RPE scheme also agrees with the location where the network achieves the highest performance as identified by network capacity. Finally, the capacity analysis shows that two-way MIMO relay employing network coding has the best performance while cooperative relaying scheme is not effective due to shadowing effect weakening the signal strength of the direct link.

  15. Study on Network Error Analysis and Locating based on Integrated Information Decision System

    NASA Astrophysics Data System (ADS)

    Yang, F.; Dong, Z. H.

    2017-10-01

    Integrated information decision system (IIDS) integrates multiple sub-system developed by many facilities, including almost hundred kinds of software, which provides with various services, such as email, short messages, drawing and sharing. Because the under-layer protocols are different, user standards are not unified, many errors are occurred during the stages of setup, configuration, and operation, which seriously affect the usage. Because the errors are various, which may be happened in different operation phases, stages, TCP/IP communication protocol layers, sub-system software, it is necessary to design a network error analysis and locating tool for IIDS to solve the above problems. This paper studies on network error analysis and locating based on IIDS, which provides strong theory and technology supports for the running and communicating of IIDS.

  16. Integer Optimization Model for a Logistic System based on Location-Routing Considering Distance and Chosen Route

    NASA Astrophysics Data System (ADS)

    Mulyasari, Joni; Mawengkang, Herman; Efendi, Syahril

    2018-02-01

    In a distribution network it is important to decide the locations of facilities that impacts not only the profitability of an organization but the ability to serve customers.Generally the location-routing problem is to minimize the overall cost by simultaneously selecting a subset of candidate facilities and constructing a set of delivery routes that satisfy some restrictions. In this paper we impose restriction on the route that should be passed for delivery. We use integer programming model to describe the problem. A feasible neighbourhood search is proposed to solve the result model.

  17. Structure-preserving model reduction of large-scale logistics networks. Applications for supply chains

    NASA Astrophysics Data System (ADS)

    Scholz-Reiter, B.; Wirth, F.; Dashkovskiy, S.; Makuschewitz, T.; Schönlein, M.; Kosmykov, M.

    2011-12-01

    We investigate the problem of model reduction with a view to large-scale logistics networks, specifically supply chains. Such networks are modeled by means of graphs, which describe the structure of material flow. An aim of the proposed model reduction procedure is to preserve important features within the network. As a new methodology we introduce the LogRank as a measure for the importance of locations, which is based on the structure of the flows within the network. We argue that these properties reflect relative importance of locations. Based on the LogRank we identify subgraphs of the network that can be neglected or aggregated. The effect of this is discussed for a few motifs. Using this approach we present a meta algorithm for structure-preserving model reduction that can be adapted to different mathematical modeling frameworks. The capabilities of the approach are demonstrated with a test case, where a logistics network is modeled as a Jackson network, i.e., a particular type of queueing network.

  18. Hiding the Source Based on Limited Flooding for Sensor Networks.

    PubMed

    Chen, Juan; Lin, Zhengkui; Hu, Ying; Wang, Bailing

    2015-11-17

    Wireless sensor networks are widely used to monitor valuable objects such as rare animals or armies. Once an object is detected, the source, i.e., the sensor nearest to the object, generates and periodically sends a packet about the object to the base station. Since attackers can capture the object by localizing the source, many protocols have been proposed to protect source location. Instead of transmitting the packet to the base station directly, typical source location protection protocols first transmit packets randomly for a few hops to a phantom location, and then forward the packets to the base station. The problem with these protocols is that the generated phantom locations are usually not only near the true source but also close to each other. As a result, attackers can easily trace a route back to the source from the phantom locations. To address the above problem, we propose a new protocol for source location protection based on limited flooding, named SLP. Compared with existing protocols, SLP can generate phantom locations that are not only far away from the source, but also widely distributed. It improves source location security significantly with low communication cost. We further propose a protocol, namely SLP-E, to protect source location against more powerful attackers with wider fields of vision. The performance of our SLP and SLP-E are validated by both theoretical analysis and simulation results.

  19. Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel

    PubMed Central

    Sakin, Sayef Azad; Alamri, Atif; Tran, Nguyen H.

    2017-01-01

    Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies. PMID:29215591

  20. Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel.

    PubMed

    Sakin, Sayef Azad; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Alamri, Atif; Tran, Nguyen H; Fortino, Giancarlo

    2017-12-07

    Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies.

  1. Geographic location, network patterns and population distribution of rural settlements in Greece

    NASA Astrophysics Data System (ADS)

    Asimakopoulos, Avraam; Mogios, Emmanuel; Xenikos, Dimitrios G.

    2016-10-01

    Our work addresses the problem of how social networks are embedded in space, by studying the spread of human population over complex geomorphological terrain. We focus on villages or small cities up to a few thousand inhabitants located in mountainous areas in Greece. This terrain presents a familiar tree-like structure of valleys and land plateaus. Cities are found more often at lower altitudes and exhibit preference on south orientation. Furthermore, the population generally avoids flat land plateaus and river beds, preferring locations slightly uphill, away from the plateau edge. Despite the location diversity regarding geomorphological parameters, we find certain quantitative norms when we examine location and population distributions relative to the (man-made) transportation network. In particular, settlements at radial distance ℓ away from road network junctions have the same mean altitude, practically independent of ℓ ranging from a few meters to 10 km. Similarly, the distribution of the settlement population at any given ℓ is the same for all ℓ. Finally, the cumulative distribution of the number of rural cities n(ℓ) is fitted to the Weibull distribution, suggesting that human decisions for creating settlements could be paralleled to mechanisms typically attributed to this particular statistical distribution.

  2. Network Analysis of Rat Spatial Cognition: Behaviorally-Established Symmetry in a Physically Asymmetrical Environment

    PubMed Central

    Eilam, David; Portugali, Juval; Blumenfeld-Lieberthal, Efrat

    2012-01-01

    Background We set out to solve two inherent problems in the study of animal spatial cognition (i) What is a “place”?; and (ii) whether behaviors that are not revealed as differing by one methodology could be revealed as different when analyzed using a different approach. Methodology We applied network analysis to scrutinize spatial behavior of rats tested in either a symmetrical or asymmetrical layout of 4, 8, or 12 objects placed along the perimeter of a round arena. We considered locations as the units of the network (nodes), and passes between locations as the links within the network. Principal Findings While there were only minor activity differences between rats tested in the symmetrical or asymmetrical object layouts, network analysis revealed substantial differences. Viewing ‘location’ as a cluster of stopping coordinates, the key locations (large clusters of stopping coordinates) were at the objects in both layouts with 4 objects. However, in the asymmetrical layout with 4 objects, additional key locations were spaced by the rats between the objects, forming symmetry among the key locations. It was as if the rats had behaviorally imposed symmetry on the physically asymmetrical environment. Based on a previous finding that wayfinding is easier in symmetrical environments, we suggest that when the physical attributes of the environment were not symmetrical, the rats established a symmetric layout of key locations, thereby acquiring a more legible environment despite its complex physical structure. Conclusions and Significance The present study adds a behavioral definition for “location”, a term that so far has been mostly discussed according to its physical attributes or neurobiological correlates (e.g. - place and grid neurons). Moreover, network analysis enabled the assessment of the importance of a location, even when that location did not display any distinctive physical properties. PMID:22815808

  3. Collaborative Localization and Location Verification in WSNs

    PubMed Central

    Miao, Chunyu; Dai, Guoyong; Ying, Kezhen; Chen, Qingzhang

    2015-01-01

    Localization is one of the most important technologies in wireless sensor networks. A lightweight distributed node localization scheme is proposed by considering the limited computational capacity of WSNs. The proposed scheme introduces the virtual force model to determine the location by incremental refinement. Aiming at solving the drifting problem and malicious anchor problem, a location verification algorithm based on the virtual force mode is presented. In addition, an anchor promotion algorithm using the localization reliability model is proposed to re-locate the drifted nodes. Extended simulation experiments indicate that the localization algorithm has relatively high precision and the location verification algorithm has relatively high accuracy. The communication overhead of these algorithms is relative low, and the whole set of reliable localization methods is practical as well as comprehensive. PMID:25954948

  4. Designing a capacitated multi-configuration logistics network under disturbances and parameter uncertainty: a real-world case of a drug supply chain

    NASA Astrophysics Data System (ADS)

    Shishebori, Davood; Babadi, Abolghasem Yousefi

    2018-03-01

    This study investigates the reliable multi-configuration capacitated logistics network design problem (RMCLNDP) under system disturbances, which relates to locating facilities, establishing transportation links, and also allocating their limited capacities to the customers conducive to provide their demand on the minimum expected total cost (including locating costs, link constructing costs, and also expected costs in normal and disturbance conditions). In addition, two types of risks are considered; (I) uncertain environment, (II) system disturbances. A two-level mathematical model is proposed for formulating of the mentioned problem. Also, because of the uncertain parameters of the model, an efficacious possibilistic robust optimization approach is utilized. To evaluate the model, a drug supply chain design (SCN) is studied. Finally, an extensive sensitivity analysis was done on the critical parameters. The obtained results show that the efficiency of the proposed approach is suitable and is worthwhile for analyzing the real practical problems.

  5. Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.

    2014-11-01

    minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several cities optimally or connecting all cities with minimum total road length.

  6. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Hezarkhani, Ardeshir

    2012-05-01

    The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.

  7. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation

    PubMed Central

    Tahmasebi, Pejman; Hezarkhani, Ardeshir

    2012-01-01

    The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. PMID:25540468

  8. Scaling the PuNDIT project for wide area deployments

    NASA Astrophysics Data System (ADS)

    McKee, Shawn; Batista, Jorge; Carcassi, Gabriele; Dovrolis, Constantine; Lee, Danny

    2017-10-01

    In today’s world of distributed scientific collaborations, there are many challenges to providing reliable inter-domain network infrastructure. Network operators use a combination of active monitoring and trouble tickets to detect problems, but these are often ineffective at identifying issues that impact wide-area network users. Additionally, these approaches do not scale to wide area inter-domain networks due to unavailability of data from all the domains along typical network paths. The Pythia Network Diagnostic InfrasTructure (PuNDIT) project aims to create a scalable infrastructure for automating the detection and localization of problems across these networks. The project goal is to gather and analyze metrics from existing perfSONAR monitoring infrastructures to identify the signatures of possible problems, locate affected network links, and report them to the user in an intuitive fashion. Simply put, PuNDIT seeks to convert complex network metrics into easily understood diagnoses in an automated manner. We present our progress in creating the PuNDIT system and our status in developing, testing and deploying PuNDIT. We report on the project progress to-date, describe the current implementation architecture and demonstrate some of the various user interfaces it will support. We close by discussing the remaining challenges and next steps and where we see the project going in the future.

  9. Distributed Coordination of Heterogeneous Agents Using a Semantic Overlay Network and a Goal-Directed Graphplan Planner

    PubMed Central

    Lopes, António Luís; Botelho, Luís Miguel

    2013-01-01

    In this paper, we describe a distributed coordination system that allows agents to seamlessly cooperate in problem solving by partially contributing to a problem solution and delegating the subproblems for which they do not have the required skills or knowledge to appropriate agents. The coordination mechanism relies on a dynamically built semantic overlay network that allows the agents to efficiently locate, even in very large unstructured networks, the necessary skills for a specific problem. Each agent performs partial contributions to the problem solution using a new distributed goal-directed version of the Graphplan algorithm. This new goal-directed version of the original Graphplan algorithm provides an efficient solution to the problem of "distraction", which most forward-chaining algorithms suffer from. We also discuss a set of heuristics to be used in the backward-search process of the planning algorithm in order to distribute this process amongst idle agents in an attempt to find a solution in less time. The evaluation results show that our approach is effective in building a scalable and efficient agent society capable of solving complex distributable problems. PMID:23704885

  10. Artificial neural systems for interpretation and inversion of seismic data

    NASA Astrophysics Data System (ADS)

    Calderon-Macias, Carlos

    The goal of this work is to investigate the feasibility of using neural network (NN) models for solving geophysical exploration problems. First, a feedforward neural network (FNN) is used to solve inverse problems. The operational characteristics of a FNN are primarily controlled by a set of weights and a nonlinear function that performs a mapping between two sets of data. In a process known as training, the FNN weights are iteratively adjusted to perform the mapping. After training, the computed weights encode important features of the data that enable one pattern to be distinguished from another. Synthetic data computed from an ensemble of earth models and the corresponding models provide the training data. Two training methods are studied: the backpropagation method which is a gradient scheme, and a global optimization method called very fast simulated annealing (VFSA). A trained network is then used to predict models from new data (e.g., data from a new location) in a one-step procedure. The application of this method to the problems of obtaining formation resistivities and layer thicknesses from resistivity sounding data and 1D velocity models from seismic data shows that trained FNNs produce reasonably accurate earth models when observed data are input to the FNNs. In a second application, a FNN is used for automating the NMO correction process of seismic reflection data. The task of the FNN is to map CMP data at control locations along a seismic line into subsurface velocities. The network is trained while the velocity analyses are performed at the control locations. Once trained, the computed weights are used as an operator that acts on the remaining CMP data as a velocity interpolator, resulting in a fast method for NMO correction. The second part of this dissertation describes the application of a Hopfield neural network (HNN) to the problems of deconvolution and multiple attenuation. In these applications, the unknown parameters (reflection coefficients and source wavelet in the first problem and an operator in the second) are mapped as neurons of the HNN. The proposed deconvolution method attempts to reproduce the data with a limited number of events. The multiple attenuation method resembles the predictive deconvolution method. Results of this method are compared with a multiple elimination method based on estimating the source wavelet from the seismic data.

  11. Problems of Implementing SCORM in an Enterprise Distance Learning Architecture: SCORM Incompatibility across Multiple Web Domains.

    ERIC Educational Resources Information Center

    Engelbrecht, Jeffrey C.

    2003-01-01

    Delivering content to distant users located in dispersed networks, separated by firewalls and different web domains requires extensive customization and integration. This article outlines some of the problems of implementing the Sharable Content Object Reference Model (SCORM) in the Marine Corps' Distance Learning System (MarineNet) and extends…

  12. Modeling and query the uncertainty of network constrained moving objects based on RFID data

    NASA Astrophysics Data System (ADS)

    Han, Liang; Xie, Kunqing; Ma, Xiujun; Song, Guojie

    2007-06-01

    The management of network constrained moving objects is more and more practical, especially in intelligent transportation system. In the past, the location information of moving objects on network is collected by GPS, which cost high and has the problem of frequent update and privacy. The RFID (Radio Frequency IDentification) devices are used more and more widely to collect the location information. They are cheaper and have less update. And they interfere in the privacy less. They detect the id of the object and the time when moving object passed by the node of the network. They don't detect the objects' exact movement in side the edge, which lead to a problem of uncertainty. How to modeling and query the uncertainty of the network constrained moving objects based on RFID data becomes a research issue. In this paper, a model is proposed to describe the uncertainty of network constrained moving objects. A two level index is presented to provide efficient access to the network and the data of movement. The processing of imprecise time-slice query and spatio-temporal range query are studied in this paper. The processing includes four steps: spatial filter, spatial refinement, temporal filter and probability calculation. Finally, some experiments are done based on the simulated data. In the experiments the performance of the index is studied. The precision and recall of the result set are defined. And how the query arguments affect the precision and recall of the result set is also discussed.

  13. Recognizing References to Physical Places Inside Short Texts by Using Patterns as a Sequence of Grammatical Categories

    NASA Astrophysics Data System (ADS)

    Romero, A.; Sol, D.

    2017-09-01

    Collecting data by crowdsourcing is an explored trend to support database population and update. This kind of data is unstructured and comes from text, in particular text in social networks. Geographic database is a particular case of database that can be populated by crowdsourcing which can be done when people report some urban event in a social network by writing a short message. An event can describe an accident or a non-functioning device in the urban area. The authorities then need to read and to interpret the message to provide some help for injured people or to fix a problem in a device installed in the urban area like a light or a problem on road. Our main interest is located on working with short messages organized in a collection. Most of the messages do not have geographical coordinates. The messages can then be classified by text patterns describing a location. In fact, people use a text pattern to describe an urban location. Our work tries to identify patterns inside a short text and to indicate when it describes a location. When a pattern is identified our approach look to describe the place where the event is located. The source messages used are tweets reporting events from several Mexican cities.

  14. Cluster analysis for determining distribution center location

    NASA Astrophysics Data System (ADS)

    Lestari Widaningrum, Dyah; Andika, Aditya; Murphiyanto, Richard Dimas Julian

    2017-12-01

    Determination of distribution facilities is highly important to survive in the high level of competition in today’s business world. Companies can operate multiple distribution centers to mitigate supply chain risk. Thus, new problems arise, namely how many and where the facilities should be provided. This study examines a fast-food restaurant brand, which located in the Greater Jakarta. This brand is included in the category of top 5 fast food restaurant chain based on retail sales. There were three stages in this study, compiling spatial data, cluster analysis, and network analysis. Cluster analysis results are used to consider the location of the additional distribution center. Network analysis results show a more efficient process referring to a shorter distance to the distribution process.

  15. Influence of trap location on the efficiency of trapping in dendrimers and regular hyperbranched polymers.

    PubMed

    Lin, Yuan; Zhang, Zhongzhi

    2013-03-07

    The trapping process in polymer systems constitutes a fundamental mechanism for various other dynamical processes taking place in these systems. In this paper, we study the trapping problem in two representative polymer networks, Cayley trees and Vicsek fractals, which separately model dendrimers and regular hyperbranched polymers. Our goal is to explore the impact of trap location on the efficiency of trapping in these two important polymer systems, with the efficiency being measured by the average trapping time (ATT) that is the average of source-to-trap mean first-passage time over every staring point in the whole networks. For Cayley trees, we derive an exact analytic formula for the ATT to an arbitrary trap node, based on which we further obtain the explicit expression of ATT for the case that the trap is uniformly distributed. For Vicsek fractals, we provide the closed-form solution for ATT to a peripheral node farthest from the central node, as well as the numerical solutions for the case when the trap is placed on other nodes. Moreover, we derive the exact formula for the ATT corresponding to the trapping problem when the trap has a uniform distribution over all nodes. Our results show that the influence of trap location on the trapping efficiency is completely different for the two polymer networks. In Cayley trees, the leading scaling of ATT increases with the shortest distance between the trap and the central node, implying that trap's position has an essential impact on the trapping efficiency; while in Vicsek fractals, the effect of location of the trap is negligible, since the dominant behavior of ATT is identical, respective of the location where the trap is placed. We also present that for all cases of trapping problems being studied, the trapping process is more efficient in Cayley trees than in Vicsek fractals. We demonstrate that all differences related to trapping in the two polymer systems are rooted in their underlying topological structures.

  16. Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeeva; Kumar, Aditya; Dai, Dan

    2012-12-31

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developedmore » will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve these two formulations were developed and validated. For a given OSP problem the computation efficiency largely depends on the “size” of the problem. Initially a simplified 1-D gasifier model assuming axial and azimuthal symmetry was used to test out various OSP algorithms. Finally these algorithms were used to design the optimal sensor network for condition monitoring of IGCC gasifier refractory wear and RSC fouling. The sensors type and locations obtained as solution to the OSP problem were validated using model based sensing approach. The OSP algorithm has been developed in a modular form and has been packaged as a software tool for OSP design where a designer can explore various OSP design algorithm is a user friendly way. The OSP software tool is implemented in Matlab/Simulink© in-house. The tool also uses few optimization routines that are freely available on World Wide Web. In addition a modular Extended Kalman Filter (EKF) block has also been developed in Matlab/Simulink© which can be utilized for model based sensing of important process variables that are not directly measured through combining the online sensors with model based estimation once the hardware sensor and their locations has been finalized. The OSP algorithm details and the results of applying these algorithms to obtain optimal sensor location for condition monitoring of gasifier refractory wear and RSC fouling profile are summarized in this final report.« less

  17. Inverse problems in 1D hemodynamics on systemic networks: a sequential approach.

    PubMed

    Lombardi, D

    2014-02-01

    In this work, a sequential approach based on the unscented Kalman filter is applied to solve inverse problems in 1D hemodynamics, on a systemic network. For instance, the arterial stiffness is estimated by exploiting cross-sectional area and mean speed observations in several locations of the arteries. The results are compared with those ones obtained by estimating the pulse wave velocity and the Moens-Korteweg formula. In the last section, a perspective concerning the identification of the terminal models parameters and peripheral circulation (modeled by a Windkessel circuit) is presented. Copyright © 2013 John Wiley & Sons, Ltd.

  18. A distributed database view of network tracking systems

    NASA Astrophysics Data System (ADS)

    Yosinski, Jason; Paffenroth, Randy

    2008-04-01

    In distributed tracking systems, multiple non-collocated trackers cooperate to fuse local sensor data into a global track picture. Generating this global track picture at a central location is fairly straightforward, but the single point of failure and excessive bandwidth requirements introduced by centralized processing motivate the development of decentralized methods. In many decentralized tracking systems, trackers communicate with their peers via a lossy, bandwidth-limited network in which dropped, delayed, and out of order packets are typical. Oftentimes the decentralized tracking problem is viewed as a local tracking problem with a networking twist; we believe this view can underestimate the network complexities to be overcome. Indeed, a subsequent 'oversight' layer is often introduced to detect and handle track inconsistencies arising from a lack of robustness to network conditions. We instead pose the decentralized tracking problem as a distributed database problem, enabling us to draw inspiration from the vast extant literature on distributed databases. Using the two-phase commit algorithm, a well known technique for resolving transactions across a lossy network, we describe several ways in which one may build a distributed multiple hypothesis tracking system from the ground up to be robust to typical network intricacies. We pay particular attention to the dissimilar challenges presented by network track initiation vs. maintenance and suggest a hybrid system that balances speed and robustness by utilizing two-phase commit for only track initiation transactions. Finally, we present simulation results contrasting the performance of such a system with that of more traditional decentralized tracking implementations.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jialin Frank; Martínez, Maria Gabriela; Anderson, C Lindsay

    This work presents a preliminary analysis considering impact of a grid-connected microgrid on network transmission of the power system. The locational marginal prices of the power system are used to strategically place the microgrid to avoid congestion problems. In addition, a Monte Carlo simulation approach is implemented to confirm that network congestion can be attenuated if appropriate price-based signals are set to define the import and export dynamic between the two systems.

  20. Zone-Based Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran

    2014-01-01

    Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads. PMID:27437455

  1. Zone-Based Routing Protocol for Wireless Sensor Networks.

    PubMed

    Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran

    2014-01-01

    Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads.

  2. Matrix Completion Optimization for Localization in Wireless Sensor Networks for Intelligent IoT

    PubMed Central

    Nguyen, Thu L. N.; Shin, Yoan

    2016-01-01

    Localization in wireless sensor networks (WSNs) is one of the primary functions of the intelligent Internet of Things (IoT) that offers automatically discoverable services, while the localization accuracy is a key issue to evaluate the quality of those services. In this paper, we develop a framework to solve the Euclidean distance matrix completion problem, which is an important technical problem for distance-based localization in WSNs. The sensor network localization problem is described as a low-rank dimensional Euclidean distance completion problem with known nodes. The task is to find the sensor locations through recovery of missing entries of a squared distance matrix when the dimension of the data is small compared to the number of data points. We solve a relaxation optimization problem using a modification of Newton’s method, where the cost function depends on the squared distance matrix. The solution obtained in our scheme achieves a lower complexity and can perform better if we use it as an initial guess for an interactive local search of other higher precision localization scheme. Simulation results show the effectiveness of our approach. PMID:27213378

  3. A multi-period capacitated school location problem with modular equipment and closest assignment considerations

    NASA Astrophysics Data System (ADS)

    Delmelle, Eric M.; Thill, Jean-Claude; Peeters, Dominique; Thomas, Isabelle

    2014-07-01

    In rapidly growing urban areas, it is deemed vital to expand (or contract) an existing network of public facilities to meet anticipated changes in the level of demand. We present a multi-period capacitated median model for school network facility location planning that minimizes transportation costs, while functional costs are subject to a budget constraint. The proposed Vintage Flexible Capacitated Location Problem (ViFCLP) has the flexibility to account for a minimum school-age closing requirement, while the maximum capacity of each school can be adjusted by the addition of modular units. Non-closest assignments are controlled by the introduction of a parameter penalizing excess travel. The applicability of the ViFCLP is illustrated on a large US school system (Charlotte-Mecklenburg, North Carolina) where high school demand is expected to grow faster with distance to the city center. Higher school capacities and greater penalty on travel impedance parameter reduce the number of non-closest assignments. The proposed model is beneficial to policy makers seeking to improve the provision and efficiency of public services over a multi-period planning horizon.

  4. Developing infrastructure for interconnecting transportation network and electric grid.

    DOT National Transportation Integrated Search

    2011-09-01

    This report is primarily focused on the development of mathematical models that can be used to : support decisions regarding a charging station location and installation problem. The major parts : of developing the models included identification of t...

  5. A New Approach to Predict user Mobility Using Semantic Analysis and Machine Learning.

    PubMed

    Fernandes, Roshan; D'Souza G L, Rio

    2017-10-19

    Mobility prediction is a technique in which the future location of a user is identified in a given network. Mobility prediction provides solutions to many day-to-day life problems. It helps in seamless handovers in wireless networks to provide better location based services and to recalculate paths in Mobile Ad hoc Networks (MANET). In the present study, a framework is presented which predicts user mobility in presence and absence of mobility history. Naïve Bayesian classification algorithm and Markov Model are used to predict user future location when user mobility history is available. An attempt is made to predict user future location by using Short Message Service (SMS) and instantaneous Geological coordinates in the absence of mobility patterns. The proposed technique compares the performance metrics with commonly used Markov Chain model. From the experimental results it is evident that the techniques used in this work gives better results when considering both spatial and temporal information. The proposed method predicts user's future location in the absence of mobility history quite fairly. The proposed work is applied to predict the mobility of medical rescue vehicles and social security systems.

  6. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  7. GPS-Free Localization Algorithm for Wireless Sensor Networks

    PubMed Central

    Wang, Lei; Xu, Qingzheng

    2010-01-01

    Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694

  8. Determination system for solar cell layout in traffic light network using dominating set

    NASA Astrophysics Data System (ADS)

    Eka Yulia Retnani, Windi; Fambudi, Brelyanes Z.; Slamin

    2018-04-01

    Graph Theory is one of the fields in Mathematics that solves discrete problems. In daily life, the applications of Graph Theory are used to solve various problems. One of the topics in the Graph Theory that is used to solve the problem is the dominating set. The concept of dominating set is used, for example, to locate some objects systematically. In this study, the dominating set are used to determine the dominating points for solar panels, where the vertex represents the traffic light point and the edge represents the connection between the points of the traffic light. To search the dominating points for solar panels using the greedy algorithm. This algorithm is used to determine the location of solar panel. This research produced applications that can determine the location of solar panels with optimal results, that is, the minimum dominating points.

  9. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network

    PubMed Central

    Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica

    2016-01-01

    The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone. PMID:27195005

  10. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network.

    PubMed

    Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica

    2016-01-01

    The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone.

  11. Moving target tracking through distributed clustering in directional sensor networks.

    PubMed

    Enayet, Asma; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif

    2014-12-18

    The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works.

  12. Moving Target Tracking through Distributed Clustering in Directional Sensor Networks

    PubMed Central

    Enayet, Asma; Razzaque, Md. Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif

    2014-01-01

    The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works. PMID:25529205

  13. On the Statistical Errors of RADAR Location Sensor Networks with Built-In Wi-Fi Gaussian Linear Fingerprints

    PubMed Central

    Zhou, Mu; Xu, Yu Bin; Ma, Lin; Tian, Shuo

    2012-01-01

    The expected errors of RADAR sensor networks with linear probabilistic location fingerprints inside buildings with varying Wi-Fi Gaussian strength are discussed. As far as we know, the statistical errors of equal and unequal-weighted RADAR networks have been suggested as a better way to evaluate the behavior of different system parameters and the deployment of reference points (RPs). However, up to now, there is still not enough related work on the relations between the statistical errors, system parameters, number and interval of the RPs, let alone calculating the correlated analytical expressions of concern. Therefore, in response to this compelling problem, under a simple linear distribution model, much attention will be paid to the mathematical relations of the linear expected errors, number of neighbors, number and interval of RPs, parameters in logarithmic attenuation model and variations of radio signal strength (RSS) at the test point (TP) with the purpose of constructing more practical and reliable RADAR location sensor networks (RLSNs) and also guaranteeing the accuracy requirements for the location based services in future ubiquitous context-awareness environments. Moreover, the numerical results and some real experimental evaluations of the error theories addressed in this paper will also be presented for our future extended analysis. PMID:22737027

  14. On the statistical errors of RADAR location sensor networks with built-in Wi-Fi Gaussian linear fingerprints.

    PubMed

    Zhou, Mu; Xu, Yu Bin; Ma, Lin; Tian, Shuo

    2012-01-01

    The expected errors of RADAR sensor networks with linear probabilistic location fingerprints inside buildings with varying Wi-Fi Gaussian strength are discussed. As far as we know, the statistical errors of equal and unequal-weighted RADAR networks have been suggested as a better way to evaluate the behavior of different system parameters and the deployment of reference points (RPs). However, up to now, there is still not enough related work on the relations between the statistical errors, system parameters, number and interval of the RPs, let alone calculating the correlated analytical expressions of concern. Therefore, in response to this compelling problem, under a simple linear distribution model, much attention will be paid to the mathematical relations of the linear expected errors, number of neighbors, number and interval of RPs, parameters in logarithmic attenuation model and variations of radio signal strength (RSS) at the test point (TP) with the purpose of constructing more practical and reliable RADAR location sensor networks (RLSNs) and also guaranteeing the accuracy requirements for the location based services in future ubiquitous context-awareness environments. Moreover, the numerical results and some real experimental evaluations of the error theories addressed in this paper will also be presented for our future extended analysis.

  15. A customized MILP approach to the synthesis of heat recovery networks reaching specified topology targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, M.R.; Cerda, J.

    1998-06-01

    A mathematical representation of a heat-exchanger network structure that explicitly accounts for the relative location of heat-transfer units, splitters, and mixers is presented. It is the basis of a mixed-integer linear programming sequential approach to the synthesis of heat-exchanger networks that allows the designer to specify beforehand some desired topology features as further design targets. Such structural information stands for additional problem data to be considered in the problem formulation, thus enhancing the involvement of the design engineer in the synthesis task. The topology constraints are expressed in terms of (1) the equipment items (heat exchangers, splitters, and mixers) thatmore » could be incorporated into the network, (2) the feasible neighbors for every potential unit, and (3) the heat matches, if any, with which a heat exchanger can be accomplished in parallel over any process stream. Moreover, the number and types of splitters being arranged over either a particular stream or the whole network can also be restrained. The new approach has been successfully applied to the solution of five example problems at each of which a wide variety of structural design restrictions were specified.« less

  16. Investigating lightning-to-ionosphere energy coupling based on VLF lightning propagation characterization

    NASA Astrophysics Data System (ADS)

    Lay, Erin Hoffmann

    In this dissertation, the capabilities of the World-Wide Lightning Location Network (WWLLN) are analyzed in order to study the interactions of lightning energy with the lower ionosphere. WWLLN is the first global ground-based lightning location network and the first lightning detection network that continuously monitors lightning around the world in real time. For this reason, a better characterization of the WWLLN could allow many global atmospheric science problems to be addressed, including further investigation into the global electric circuit and global mapping of regions of the lower ionosphere likely to be impacted by strong lightning and transient luminous events. This dissertation characterizes the World-Wide Location Network (WWLLN) in terms of detection efficiency, location and timing accuracy, and lightning type. This investigation finds excellent timing and location accuracy for WWLLN. It provides the first experimentally-determined estimate of relative global detection efficiency that is used to normalize lightning counts based on location. These normalized global lightning data from the WWLLN are used to map intense storm regions around the world with high time and spatial resolution as well as to provide information on energetic emissions known as elves and terrestrial gamma-ray flashes (TGFs). This dissertation also improves WWLLN by developing a procedure to provide the first estimate of relative lightning stroke radiated energy in the 1-24 kHz frequency range by a global lightning detection network. These characterizations and improvements to WWLLN are motivated by the desire to use WWLLN data to address the problem of lightning-to-ionosphere energy coupling. Therefore, WWLLN stroke rates are used as input to a model, developed by Professor Mengu Cho at the Kyushu Institute of Technology in Japan, that describes the non-linear effect of lightning electromagnetic pulses (EMP) on the ionosphere by accumulating electron density changes resulting from the interaction of the EMP of ten successive lightning strokes with the lower ionosphere. Further studies must be completed to narrow uncertainties in the model, but the qualitative ionospheric response to successive EMPs is presented. Results from this study show that the non-linear effect of lightning EMP due to successive lightning strokes must be taken into account, and varies with altitude, such that the most significant electron density enhancement occurs at 88 km altitude.

  17. End-to-End Network QoS via Scheduling of Flexible Resource Reservation Requests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S.; Katramatos, D.; Yu, D.

    2011-11-14

    Modern data-intensive applications move vast amounts of data between multiple locations around the world. To enable predictable and reliable data transfer, next generation networks allow such applications to reserve network resources for exclusive use. In this paper, we solve an important problem (called SMR3) to accommodate multiple and concurrent network reservation requests between a pair of end-sites. Given the varying availability of bandwidth within the network, our goal is to accommodate as many reservation requests as possible while minimizing the total time needed to complete the data transfers. We first prove that SMR3 is an NP-hard problem. Then we solvemore » it by developing a polynomial-time heuristic, called RRA. The RRA algorithm hinges on an efficient mechanism to accommodate large number of requests by minimizing the bandwidth wastage. Finally, via numerical results, we show that RRA constructs schedules that accommodate significantly larger number of requests compared to other, seemingly efficient, heuristics.« less

  18. Fault Location Based on Synchronized Measurements: A Comprehensive Survey

    PubMed Central

    Al-Mohammed, A. H.; Abido, M. A.

    2014-01-01

    This paper presents a comprehensive survey on transmission and distribution fault location algorithms that utilize synchronized measurements. Algorithms based on two-end synchronized measurements and fault location algorithms on three-terminal and multiterminal lines are reviewed. Series capacitors equipped with metal oxide varistors (MOVs), when set on a transmission line, create certain problems for line fault locators and, therefore, fault location on series-compensated lines is discussed. The paper reports the work carried out on adaptive fault location algorithms aiming at achieving better fault location accuracy. Work associated with fault location on power system networks, although limited, is also summarized. Additionally, the nonstandard high-frequency-related fault location techniques based on wavelet transform are discussed. Finally, the paper highlights the area for future research. PMID:24701191

  19. Relay discovery and selection for large-scale P2P streaming

    PubMed Central

    Zhang, Chengwei; Wang, Angela Yunxian

    2017-01-01

    In peer-to-peer networks, application relays have been commonly used to provide various networking services. The service performance often improves significantly if a relay is selected appropriately based on its network location. In this paper, we studied the location-aware relay discovery and selection problem for large-scale P2P streaming networks. In these large-scale and dynamic overlays, it incurs significant communication and computation cost to discover a sufficiently large relay candidate set and further to select one relay with good performance. The network location can be measured directly or indirectly with the tradeoffs between timeliness, overhead and accuracy. Based on a measurement study and the associated error analysis, we demonstrate that indirect measurements, such as King and Internet Coordinate Systems (ICS), can only achieve a coarse estimation of peers’ network location and those methods based on pure indirect measurements cannot lead to a good relay selection. We also demonstrate that there exists significant error amplification of the commonly used “best-out-of-K” selection methodology using three RTT data sets publicly available. We propose a two-phase approach to achieve efficient relay discovery and accurate relay selection. Indirect measurements are used to narrow down a small number of high-quality relay candidates and the final relay selection is refined based on direct probing. This two-phase approach enjoys an efficient implementation using the Distributed-Hash-Table (DHT). When the DHT is constructed, the node keys carry the location information and they are generated scalably using indirect measurements, such as the ICS coordinates. The relay discovery is achieved efficiently utilizing the DHT-based search. We evaluated various aspects of this DHT-based approach, including the DHT indexing procedure, key generation under peer churn and message costs. PMID:28410384

  20. Relay discovery and selection for large-scale P2P streaming.

    PubMed

    Zhang, Chengwei; Wang, Angela Yunxian; Hei, Xiaojun

    2017-01-01

    In peer-to-peer networks, application relays have been commonly used to provide various networking services. The service performance often improves significantly if a relay is selected appropriately based on its network location. In this paper, we studied the location-aware relay discovery and selection problem for large-scale P2P streaming networks. In these large-scale and dynamic overlays, it incurs significant communication and computation cost to discover a sufficiently large relay candidate set and further to select one relay with good performance. The network location can be measured directly or indirectly with the tradeoffs between timeliness, overhead and accuracy. Based on a measurement study and the associated error analysis, we demonstrate that indirect measurements, such as King and Internet Coordinate Systems (ICS), can only achieve a coarse estimation of peers' network location and those methods based on pure indirect measurements cannot lead to a good relay selection. We also demonstrate that there exists significant error amplification of the commonly used "best-out-of-K" selection methodology using three RTT data sets publicly available. We propose a two-phase approach to achieve efficient relay discovery and accurate relay selection. Indirect measurements are used to narrow down a small number of high-quality relay candidates and the final relay selection is refined based on direct probing. This two-phase approach enjoys an efficient implementation using the Distributed-Hash-Table (DHT). When the DHT is constructed, the node keys carry the location information and they are generated scalably using indirect measurements, such as the ICS coordinates. The relay discovery is achieved efficiently utilizing the DHT-based search. We evaluated various aspects of this DHT-based approach, including the DHT indexing procedure, key generation under peer churn and message costs.

  1. [Problems with Using Hospital Quality Reports as a Secondary Data Source for Health Services Research in Germany].

    PubMed

    Kraska, R A; de Cruppe, W; Geraedts, M

    2017-07-01

    Background Since 2005, German hospitals are required by law to publish structured quality reports (QRs). Because of the detailed data basis, the QRs are being increasingly used for secondary data analyses in health services research. Up until now, methodological difficulties that can cause distorted results of the analyses have essentially been overlooked. The aim of this study is to systematically list the methodological problems associated with using QR and to suggest solution strategies. Methods The QRs from 2006-2012 form the basis of the analyses and were aggregated in a database using an individualized data linkage procedure. Thereafter, a correlation analysis between a quality indicator and the staffing of hospitals was conducted, serving as an example for both cross-sectional as well as longitudinal studies. The resulting methodological problems are described qualitatively and quantitatively, and potential solutions are derived from the statistical literature. Results In each reporting year, 2-15% of the hospitals delivered no QR. In 2-16% of the QRs, it is not recognizable whether a report belongs to a hospital network or a single location. In addition, 6-66% of the location reports falsely contain data from the hospital network. 10% of the hospitals changed their institution code (IC), in 5% of the cases, the same "IC-location-number-combination" was used for different hospitals over the years. Therefore, 10-20% of the QRs cannot be linked with the IC as key variable. As a remedy for the linking of QR, the combination of the IC, the address and the number of beds represents a suitable solution. Using this solution, hospital network reports, location reports and missing reports can be identified and considered in an analysis. Conclusions Secondary data analyses with quality reports provide a high potential for error due to the inconsistent data base and the problems of the data linkage procedure. These can distort calculated parameters and limit the validity of results. Only the unequivocal identification of the reporting hospitals guarantees meaningful results. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Design of Tactical Support Strategies in Military Logistics: Trade-offs Between Efficiency and Effectiveness. A Column and Cut Generation Modeling Methods

    DTIC Science & Technology

    2011-12-01

    problems need to be addressed in the design of military logis- tics networks. The design problem includes strategic decisions, such as the location of...military strategic logistics [11–13]. In this study, we focus on the design of tactical logistics strategies, which achieve different optimal balances...is clear that our problem is N P−Hard 1 since it generalizes the CVPR and the BPP . Different solutions to handle the loading and routing of

  3. Development of a method of robust rain gauge network optimization based on intensity-duration-frequency results

    NASA Astrophysics Data System (ADS)

    Chebbi, A.; Bargaoui, Z. K.; da Conceição Cunha, M.

    2013-10-01

    Based on rainfall intensity-duration-frequency (IDF) curves, fitted in several locations of a given area, a robust optimization approach is proposed to identify the best locations to install new rain gauges. The advantage of robust optimization is that the resulting design solutions yield networks which behave acceptably under hydrological variability. Robust optimization can overcome the problem of selecting representative rainfall events when building the optimization process. This paper reports an original approach based on Montana IDF model parameters. The latter are assumed to be geostatistical variables, and their spatial interdependence is taken into account through the adoption of cross-variograms in the kriging process. The problem of optimally locating a fixed number of new monitoring stations based on an existing rain gauge network is addressed. The objective function is based on the mean spatial kriging variance and rainfall variogram structure using a variance-reduction method. Hydrological variability was taken into account by considering and implementing several return periods to define the robust objective function. Variance minimization is performed using a simulated annealing algorithm. In addition, knowledge of the time horizon is needed for the computation of the robust objective function. A short- and a long-term horizon were studied, and optimal networks are identified for each. The method developed is applied to north Tunisia (area = 21 000 km2). Data inputs for the variogram analysis were IDF curves provided by the hydrological bureau and available for 14 tipping bucket type rain gauges. The recording period was from 1962 to 2001, depending on the station. The study concerns an imaginary network augmentation based on the network configuration in 1973, which is a very significant year in Tunisia because there was an exceptional regional flood event in March 1973. This network consisted of 13 stations and did not meet World Meteorological Organization (WMO) recommendations for the minimum spatial density. Therefore, it is proposed to augment it by 25, 50, 100 and 160% virtually, which is the rate that would meet WMO requirements. Results suggest that for a given augmentation robust networks remain stable overall for the two time horizons.

  4. Why are some plant-pollinator networks more nested than others?

    PubMed

    Song, Chuliang; Rohr, Rudolf P; Saavedra, Serguei

    2017-10-01

    Empirical studies have found that the mutualistic interactions forming the structure of plant-pollinator networks are typically more nested than expected by chance alone. Additionally, theoretical studies have shown a positive association between the nested structure of mutualistic networks and community persistence. Yet, it has been shown that some plant-pollinator networks may be more nested than others, raising the interesting question of which factors are responsible for such enhanced nested structure. It has been argued that ordered network structures may increase the persistence of ecological communities under less predictable environments. This suggests that nested structures of plant-pollinator networks could be more advantageous under highly seasonal environments. While several studies have investigated the link between nestedness and various environmental variables, unfortunately, there has been no unified answer to validate these predictions. Here, we move from the problem of describing network structures to the problem of comparing network structures. We develop comparative statistics, and apply them to investigate the association between the nested structure of 59 plant-pollinator networks and the temperature seasonality present in their locations. We demonstrate that higher levels of nestedness are associated with a higher temperature seasonality. We show that the previous lack of agreement came from an extended practice of using standardized measures of nestedness that cannot be compared across different networks. Importantly, our observations complement theory showing that more nested network structures can increase the range of environmental conditions compatible with species coexistence in mutualistic systems, also known as structural stability. This increase in nestedness should be more advantageous and occur more often in locations subject to random environmental perturbations, which could be driven by highly changing or seasonal environments. This synthesis of theory and observations could prove relevant for a better understanding of the ecological processes driving the assembly and persistence of ecological communities. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  5. Detecting network communities beyond assortativity-related attributes

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Murata, Tsuyoshi; Wakita, Ken

    2014-07-01

    In network science, assortativity refers to the tendency of links to exist between nodes with similar attributes. In social networks, for example, links tend to exist between individuals of similar age, nationality, location, race, income, educational level, religious belief, and language. Thus, various attributes jointly affect the network topology. An interesting problem is to detect community structure beyond some specific assortativity-related attributes ρ, i.e., to take out the effect of ρ on network topology and reveal the hidden community structures which are due to other attributes. An approach to this problem is to redefine the null model of the modularity measure, so as to simulate the effect of ρ on network topology. However, a challenge is that we do not know to what extent the network topology is affected by ρ and by other attributes. In this paper, we propose a distance modularity, which allows us to freely choose any suitable function to simulate the effect of ρ. Such freedom can help us probe the effect of ρ and detect the hidden communities which are due to other attributes. We test the effectiveness of distance modularity on synthetic benchmarks and two real-world networks.

  6. Influence of Distributed Residential Energy Storage on Voltage in Rural Distribution Network and Capacity Configuration

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Tong, Yibin; Zhao, Zhigang; Zhang, Xuefen

    2018-03-01

    Large-scale access of distributed residential photovoltaic (PV) in rural areas has solved the voltage problem to a certain extent. However, due to the intermittency of PV and the particularity of rural residents’ power load, the problem of low voltage in the evening peak remains to be resolved. This paper proposes to solve the problem by accessing residential energy storage. Firstly, the influence of access location and capacity of energy storage on voltage distribution in rural distribution network is analyzed. Secondly, the relation between the storage capacity and load capacity is deduced for four typical load and energy storage cases when the voltage deviation meets the demand. Finally, the optimal storage position and capacity are obtained by using PSO and power flow simulation.

  7. Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Izadi, Arman; Kimiagari, Ali mohammad

    2014-01-01

    Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The main feature of this research is solving the model with unknown demand function which is suitable with the real-world problems. To consider the uncertainty, a set of possible scenarios for customer demands is created based on the Monte Carlo simulation. The coefficient of variation of costs is mentioned as a measure of risk and the most stable structure for firm's distribution network is defined based on the concept of robust optimization. The best structure is identified using genetic algorithms and 14% reduction in total supply chain costs is the outcome. Moreover, it imposes the least cost variation created by fluctuation in customer demands (such as epidemic diseases outbreak in some areas of the country) to the logistical system. It is noteworthy that this research is done in one of the largest pharmaceutical distribution firms in Iran.

  8. Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Izadi, Arman; Kimiagari, Ali Mohammad

    2014-05-01

    Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The main feature of this research is solving the model with unknown demand function which is suitable with the real-world problems. To consider the uncertainty, a set of possible scenarios for customer demands is created based on the Monte Carlo simulation. The coefficient of variation of costs is mentioned as a measure of risk and the most stable structure for firm's distribution network is defined based on the concept of robust optimization. The best structure is identified using genetic algorithms and 14 % reduction in total supply chain costs is the outcome. Moreover, it imposes the least cost variation created by fluctuation in customer demands (such as epidemic diseases outbreak in some areas of the country) to the logistical system. It is noteworthy that this research is done in one of the largest pharmaceutical distribution firms in Iran.

  9. Combined Simulated Annealing and Genetic Algorithm Approach to Bus Network Design

    NASA Astrophysics Data System (ADS)

    Liu, Li; Olszewski, Piotr; Goh, Pong-Chai

    A new method - combined simulated annealing (SA) and genetic algorithm (GA) approach is proposed to solve the problem of bus route design and frequency setting for a given road network with fixed bus stop locations and fixed travel demand. The method involves two steps: a set of candidate routes is generated first and then the best subset of these routes is selected by the combined SA and GA procedure. SA is the main process to search for a better solution to minimize the total system cost, comprising user and operator costs. GA is used as a sub-process to generate new solutions. Bus demand assignment on two alternative paths is performed at the solution evaluation stage. The method was implemented on four theoretical grid networks of different size and a benchmark network. Several GA operators (crossover and mutation) were utilized and tested for their effectiveness. The results show that the proposed method can efficiently converge to the optimal solution on a small network but computation time increases significantly with network size. The method can also be used for other transport operation management problems.

  10. On the Impact of Localization and Density Control Algorithms in Target Tracking Applications for Wireless Sensor Networks

    PubMed Central

    Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.

    2012-01-01

    Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329

  11. Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.

    PubMed

    Herrero, David; Martínez, Humberto

    2011-01-01

    This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  12. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization.

    PubMed

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y; Alouini, Mohamed-Slim

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  13. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    PubMed Central

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique. PMID:29278405

  14. Smart intimation and location of faults in distribution system

    NASA Astrophysics Data System (ADS)

    Hari Krishna, K.; Srinivasa Rao, B.

    2018-04-01

    Location of faults in the distribution system is one of the most complicated problems that we are facing today. Identification of fault location and severity of fault within a short time is required to provide continuous power supply but fault identification and information transfer to the operator is the biggest challenge in the distribution network. This paper proposes a fault location method in the distribution system based on Arduino nano and GSM module with flame sensor. The main idea is to locate the fault in the distribution transformer by sensing the arc coming out from the fuse element. The biggest challenge in the distribution network is to identify the location and the severity of faults under different conditions. Well operated transmission and distribution systems will play a key role for uninterrupted power supply. Whenever fault occurs in the distribution system the time taken to locate and eliminate the fault has to be reduced. The proposed design was achieved with flame sensor and GSM module. Under faulty condition, the system will automatically send an alert message to the operator in the distribution system, about the abnormal conditions near the transformer, site code and its exact location for possible power restoration.

  15. Acoustic Sensor Planning for Gunshot Location in National Parks: A Pareto Front Approach

    PubMed Central

    González-Castaño, Francisco Javier; Alonso, Javier Vales; Costa-Montenegro, Enrique; López-Matencio, Pablo; Vicente-Carrasco, Francisco; Parrado-García, Francisco J.; Gil-Castiñeira, Felipe; Costas-Rodríguez, Sergio

    2009-01-01

    In this paper, we propose a solution for gunshot location in national parks. In Spain there are agencies such as SEPRONA that fight against poaching with considerable success. The DiANa project, which is endorsed by Cabaneros National Park and the SEPRONA service, proposes a system to automatically detect and locate gunshots. This work presents its technical aspects related to network design and planning. The system consists of a network of acoustic sensors that locate gunshots by hyperbolic multi-lateration estimation. The differences in sound time arrivals allow the computation of a low error estimator of gunshot location. The accuracy of this method depends on tight sensor clock synchronization, which an ad-hoc time synchronization protocol provides. On the other hand, since the areas under surveillance are wide, and electric power is scarce, it is necessary to maximize detection coverage and minimize system cost at the same time. Therefore, sensor network planning has two targets, i.e., coverage and cost. We model planning as an unconstrained problem with two objective functions. We determine a set of candidate solutions of interest by combining a derivative-free descent method we have recently proposed with a Pareto front approach. The results are clearly superior to random seeding in a realistic simulation scenario. PMID:22303135

  16. Acoustic sensor planning for gunshot location in national parks: a pareto front approach.

    PubMed

    González-Castaño, Francisco Javier; Alonso, Javier Vales; Costa-Montenegro, Enrique; López-Matencio, Pablo; Vicente-Carrasco, Francisco; Parrado-García, Francisco J; Gil-Castiñeira, Felipe; Costas-Rodríguez, Sergio

    2009-01-01

    In this paper, we propose a solution for gunshot location in national parks. In Spain there are agencies such as SEPRONA that fight against poaching with considerable success. The DiANa project, which is endorsed by Cabaneros National Park and the SEPRONA service, proposes a system to automatically detect and locate gunshots. This work presents its technical aspects related to network design and planning. The system consists of a network of acoustic sensors that locate gunshots by hyperbolic multi-lateration estimation. The differences in sound time arrivals allow the computation of a low error estimator of gunshot location. The accuracy of this method depends on tight sensor clock synchronization, which an ad-hoc time synchronization protocol provides. On the other hand, since the areas under surveillance are wide, and electric power is scarce, it is necessary to maximize detection coverage and minimize system cost at the same time. Therefore, sensor network planning has two targets, i.e., coverage and cost. We model planning as an unconstrained problem with two objective functions. We determine a set of candidate solutions of interest by combining a derivative-free descent method we have recently proposed with a Pareto front approach. The results are clearly superior to random seeding in a realistic simulation scenario.

  17. Optimization of a large-scale microseismic monitoring network in northern Switzerland

    NASA Astrophysics Data System (ADS)

    Kraft, Toni; Mignan, Arnaud; Giardini, Domenico

    2013-10-01

    We have developed a network optimization method for regional-scale microseismic monitoring networks and applied it to optimize the densification of the existing seismic network in northeastern Switzerland. The new network will build the backbone of a 10-yr study on the neotectonic activity of this area that will help to better constrain the seismic hazard imposed on nuclear power plants and waste repository sites. This task defined the requirements regarding location precision (0.5 km in epicentre and 2 km in source depth) and detection capability [magnitude of completeness Mc = 1.0 (ML)]. The goal of the optimization was to find the geometry and size of the network that met these requirements. Existing stations in Switzerland, Germany and Austria were considered in the optimization procedure. We based the optimization on the simulated annealing approach proposed by Hardt & Scherbaum, which aims to minimize the volume of the error ellipsoid of the linearized earthquake location problem (D-criterion). We have extended their algorithm to: calculate traveltimes of seismic body waves using a finite difference ray tracer and the 3-D velocity model of Switzerland, calculate seismic body-wave amplitudes at arbitrary stations assuming the Brune source model and using scaling and attenuation relations recently derived for Switzerland, and estimate the noise level at arbitrary locations within Switzerland using a first-order ambient seismic noise model based on 14 land-use classes defined by the EU-project CORINE and open GIS data. We calculated optimized geometries for networks with 10-35 added stations and tested the stability of the optimization result by repeated runs with changing initial conditions. Further, we estimated the attainable magnitude of completeness (Mc) for the different sized optimal networks using the Bayesian Magnitude of Completeness (BMC) method introduced by Mignan et al. The algorithm developed in this study is also applicable to smaller optimization problems, for example, small local monitoring networks. Possible applications are volcano monitoring, the surveillance of induced seismicity associated with geotechnical operations and many more. Our algorithm is especially useful to optimize networks in populated areas with heterogeneous noise conditions and if complex velocity structures or existing stations have to be considered.

  18. Detection, location, and quantification of structural damage by neural-net-processed moiré profilometry

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Hooker, Jeffery A.

    1992-03-01

    The development of efficient high speed techniques to recognize, locate, and quantify damage is vitally important for successful automated inspection systems such as ones used for the inspection of undersea pipelines. Two critical problems must be solved to achieve these goals: the reduction of nonuseful information present in the video image and automatic recognition and quantification of extent and location of damage. Artificial neural network processed moire profilometry appears to be a promising technique to accomplish this. Real time video moire techniques have been developed which clearly distinguish damaged and undamaged areas on structures, thus reducing the amount of extraneous information input into an inspection system. Artificial neural networks have demonstrated advantages for image processing, since they can learn the desired response to a given input and are inherently fast when implemented in hardware due to their parallel computing architecture. Video moire images of pipes with dents of different depths were used to train a neural network, with the desired output being the location and severity of the damage. The system was then successfully tested with a second series of moire images. The techniques employed and the results obtained are discussed.

  19. Finding influential nodes for integration in brain networks using optimal percolation theory.

    PubMed

    Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A

    2018-06-11

    Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.

  20. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone.

    PubMed

    Nguyen, Phong Ha; Arsalan, Muhammad; Koo, Ja Hyung; Naqvi, Rizwan Ali; Truong, Noi Quang; Park, Kang Ryoung

    2018-05-24

    Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement unit, and multiple camera systems. Although these approaches successfully estimate an unmanned aerial vehicle location during landing, many calibration processes are required to achieve good detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS signal should be considered. To overcome these problems, we determined how to safely land a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes a convolutional neural network named lightDenseYOLO to extract trained features from an input image to predict a marker's location by visible light camera sensor on drone. Experimental results show that our method significantly outperforms state-of-the-art object trackers both using and not using convolutional neural network in terms of both accuracy and processing time.

  1. Network-Cognizant Design of Decentralized Volt/VAR Controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri A; Bernstein, Andrey; Zhao, Changhong

    This paper considers the problem of designing decentralized Volt/VAR controllers for distributed energy resources (DERs). The voltage-reactive power characteristics of individual DERs are obtained by solving a convex optimization problem, where given performance objectives (e.g., minimization of the voltage deviations from a given profile) are specified and stability constraints are enforced. The resultant Volt/VAR characteristics are network-cognizant, in the sense that they embed information on the location of the DERs and, consequently, on the effect of reactive-power adjustments on the voltages throughout the feeder. Bounds on the maximum voltage deviation incurred by the controllers are analytically established. Numerical results aremore » reported to corroborate the technical findings.« less

  2. Inferring Plasmodium vivax Transmission Networks from Tempo-Spatial Surveillance Data

    PubMed Central

    Shi, Benyun; Liu, Jiming; Zhou, Xiao-Nong; Yang, Guo-Jing

    2014-01-01

    Background The transmission networks of Plasmodium vivax characterize how the parasite transmits from one location to another, which are informative and insightful for public health policy makers to accurately predict the patterns of its geographical spread. However, such networks are not apparent from surveillance data because P. vivax transmission can be affected by many factors, such as the biological characteristics of mosquitoes and the mobility of human beings. Here, we pay special attention to the problem of how to infer the underlying transmission networks of P. vivax based on available tempo-spatial patterns of reported cases. Methodology We first define a spatial transmission model, which involves representing both the heterogeneous transmission potential of P. vivax at individual locations and the mobility of infected populations among different locations. Based on the proposed transmission model, we further introduce a recurrent neural network model to infer the transmission networks from surveillance data. Specifically, in this model, we take into account multiple real-world factors, including the length of P. vivax incubation period, the impact of malaria control at different locations, and the total number of imported cases. Principal Findings We implement our proposed models by focusing on the P. vivax transmission among 62 towns in Yunnan province, People's Republic China, which have been experiencing high malaria transmission in the past years. By conducting scenario analysis with respect to different numbers of imported cases, we can (i) infer the underlying P. vivax transmission networks, (ii) estimate the number of imported cases for each individual town, and (iii) quantify the roles of individual towns in the geographical spread of P. vivax. Conclusion The demonstrated models have presented a general means for inferring the underlying transmission networks from surveillance data. The inferred networks will offer new insights into how to improve the predictability of P. vivax transmission. PMID:24516684

  3. Field-Based Optimal Placement of Antennas for Body-Worn Wireless Sensors

    PubMed Central

    Januszkiewicz, Łukasz; Di Barba, Paolo; Hausman, Sławomir

    2016-01-01

    We investigate a case of automated energy-budget-aware optimization of the physical position of nodes (sensors) in a Wireless Body Area Network (WBAN). This problem has not been presented in the literature yet, as opposed to antenna and routing optimization, which are relatively well-addressed. In our research, which was inspired by a safety-critical application for firefighters, the sensor network consists of three nodes located on the human body. The nodes communicate over a radio link operating in the 2.4 GHz or 5.8 GHz ISM frequency band. Two sensors have a fixed location: one on the head (earlobe pulse oximetry) and one on the arm (with accelerometers, temperature and humidity sensors, and a GPS receiver), while the position of the third sensor can be adjusted within a predefined region on the wearer’s chest. The path loss between each node pair strongly depends on the location of the nodes and is difficult to predict without performing a full-wave electromagnetic simulation. Our optimization scheme employs evolutionary computing. The novelty of our approach lies not only in the formulation of the problem but also in linking a fully automated optimization procedure with an electromagnetic simulator and a simplified human body model. This combination turns out to be a computationally effective solution, which, depending on the initial placement, has a potential to improve performance of our example sensor network setup by up to about 20 dB with respect to the path loss between selected nodes. PMID:27196911

  4. Adaptive AOA-aided TOA self-positioning for mobile wireless sensor networks.

    PubMed

    Wen, Chih-Yu; Chan, Fu-Kai

    2010-01-01

    Location-awareness is crucial and becoming increasingly important to many applications in wireless sensor networks. This paper presents a network-based positioning system and outlines recent work in which we have developed an efficient principled approach to localize a mobile sensor using time of arrival (TOA) and angle of arrival (AOA) information employing multiple seeds in the line-of-sight scenario. By receiving the periodic broadcasts from the seeds, the mobile target sensors can obtain adequate observations and localize themselves automatically. The proposed positioning scheme performs location estimation in three phases: (I) AOA-aided TOA measurement, (II) Geometrical positioning with particle filter, and (III) Adaptive fuzzy control. Based on the distance measurements and the initial position estimate, adaptive fuzzy control scheme is applied to solve the localization adjustment problem. The simulations show that the proposed approach provides adaptive flexibility and robust improvement in position estimation.

  5. A New Path-Constrained Rendezvous Planning Approach for Large-Scale Event-Driven Wireless Sensor Networks.

    PubMed

    Vajdi, Ahmadreza; Zhang, Gongxuan; Zhou, Junlong; Wei, Tongquan; Wang, Yongli; Wang, Tianshu

    2018-05-04

    We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs) for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs) in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP). Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach.

  6. Supporting performance and configuration management of GTE cellular networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ming; Lafond, C.; Jakobson, G.

    GTE Laboratories, in cooperation with GTE Mobilnet, has developed and deployed PERFFEX (PERFormance Expert), an intelligent system for performance and configuration management of cellular networks. PERFEX assists cellular network performance and radio engineers in the analysis of large volumes of cellular network performance and configuration data. It helps them locate and determine the probable causes of performance problems, and provides intelligent suggestions about how to correct them. The system combines an expert cellular network performance tuning capability with a map-based graphical user interface, data visualization programs, and a set of special cellular engineering tools. PERFEX is in daily use atmore » more than 25 GTE Mobile Switching Centers. Since the first deployment of the system in late 1993, PERFEX has become a major GTE cellular network performance optimization tool.« less

  7. Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.

    2008-05-01

    The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.

  8. Study on Data Clustering and Intelligent Decision Algorithm of Indoor Localization

    NASA Astrophysics Data System (ADS)

    Liu, Zexi

    2018-01-01

    Indoor positioning technology enables the human beings to have the ability of positional perception in architectural space, and there is a shortage of single network coverage and the problem of location data redundancy. So this article puts forward the indoor positioning data clustering algorithm and intelligent decision-making research, design the basic ideas of multi-source indoor positioning technology, analyzes the fingerprint localization algorithm based on distance measurement, position and orientation of inertial device integration. By optimizing the clustering processing of massive indoor location data, the data normalization pretreatment, multi-dimensional controllable clustering center and multi-factor clustering are realized, and the redundancy of locating data is reduced. In addition, the path is proposed based on neural network inference and decision, design the sparse data input layer, the dynamic feedback hidden layer and output layer, low dimensional results improve the intelligent navigation path planning.

  9. A game theory-based obstacle avoidance routing protocol for wireless sensor networks.

    PubMed

    Guan, Xin; Wu, Huayang; Bi, Shujun

    2011-01-01

    The obstacle avoidance problem in geographic forwarding is an important issue for location-based routing in wireless sensor networks. The presence of an obstacle leads to several geographic routing problems such as excessive energy consumption and data congestion. Obstacles are hard to avoid in realistic environments. To bypass obstacles, most routing protocols tend to forward packets along the obstacle boundaries. This leads to a situation where the nodes at the boundaries exhaust their energy rapidly and the obstacle area is diffused. In this paper, we introduce a novel routing algorithm to solve the obstacle problem in wireless sensor networks based on a game-theory model. Our algorithm forms a concave region that cannot forward packets to achieve the aim of improving the transmission success rate and decreasing packet transmission delays. We consider the residual energy, out-degree and forwarding angle to determine the forwarding probability and payoff function of forwarding candidates. This achieves the aim of load balance and reduces network energy consumption. Simulation results show that based on the average delivery delay, energy consumption and packet delivery ratio performances our protocol is superior to other traditional schemes.

  10. Optimal route discovery for soft QOS provisioning in mobile ad hoc multimedia networks

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Pan, Feng

    2007-09-01

    In this paper, we propose an optimal routing discovery algorithm for ad hoc multimedia networks whose resource keeps changing, First, we use stochastic models to measure the network resource availability, based on the information about the location and moving pattern of the nodes, as well as the link conditions between neighboring nodes. Then, for a certain multimedia packet flow to be transmitted from a source to a destination, we formulate the optimal soft-QoS provisioning problem as to find the best route that maximize the probability of satisfying its desired QoS requirements in terms of the maximum delay constraints. Based on the stochastic network resource model, we developed three approaches to solve the formulated problem: A centralized approach serving as the theoretical reference, a distributed approach that is more suitable to practical real-time deployment, and a distributed dynamic approach that utilizes the updated time information to optimize the routing for each individual packet. Examples of numerical results demonstrated that using the route discovered by our distributed algorithm in a changing network environment, multimedia applications could achieve better QoS statistically.

  11. Influence of network topology on cooperative problem-solving systems.

    PubMed

    Fontanari, José F; Rodrigues, Francisco A

    2016-09-01

    The idea of a collective intelligence behind the complex natural structures built by organisms suggests that the organization of social networks is selected so as to optimize problem-solving competence at the group level. Here we study the influence of the social network topology on the performance of a group of agents whose task is to locate the global maxima of NK fitness landscapes. Agents cooperate by broadcasting messages informing on their fitness and use this information to imitate the fittest agent in their influence networks. In the case those messages convey accurate information on the proximity of the solution (i.e., for smooth fitness landscapes), we find that high connectivity as well as centralization boosts the group performance. For rugged landscapes, however, these characteristics are beneficial for small groups only. For large groups, it is advantageous to slow down the information transmission through the network to avoid local maximum traps. Long-range links and modularity have marginal effects on the performance of the group, except for a very narrow region of the model parameters.

  12. Efficiency/Equity Analysis of Water Resources Problems--A Game Theoretic Approach.

    DTIC Science & Technology

    1985-01-01

    contained in the West Coast Regional Water Supply Authority’s master plan for Hillsborough, Pasco, and Pinellas counties in Florida (Ross et al...spanning tree, Networks, 3(4), 289-304, 1973. Converse, A.O., Optimum number and location of treatment plants , Journal of the Water Pollution Control

  13. Stochastic Multi-Commodity Facility Location Based on a New Scenario Generation Technique

    NASA Astrophysics Data System (ADS)

    Mahootchi, M.; Fattahi, M.; Khakbazan, E.

    2011-11-01

    This paper extends two models for stochastic multi-commodity facility location problem. The problem is formulated as two-stage stochastic programming. As a main point of this study, a new algorithm is applied to efficiently generate scenarios for uncertain correlated customers' demands. This algorithm uses Latin Hypercube Sampling (LHS) and a scenario reduction approach. The relation between customer satisfaction level and cost are considered in model I. The risk measure using Conditional Value-at-Risk (CVaR) is embedded into the optimization model II. Here, the structure of the network contains three facility layers including plants, distribution centers, and retailers. The first stage decisions are the number, locations, and the capacity of distribution centers. In the second stage, the decisions are the amount of productions, the volume of transportation between plants and customers.

  14. Classification and Prediction of RF Coupling inside A-320 and A-319 Airplanes using Feed Forward Neural Networks

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha; Ely, Jay; Vahala, Linda

    2006-01-01

    Neural Network Modeling is introduced in this paper to classify and predict Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data and a plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.

  15. Inclusion of tank configurations as a variable in the cost optimization of branched piped-water networks

    NASA Astrophysics Data System (ADS)

    Hooda, Nikhil; Damani, Om

    2017-06-01

    The classic problem of the capital cost optimization of branched piped networks consists of choosing pipe diameters for each pipe in the network from a discrete set of commercially available pipe diameters. Each pipe in the network can consist of multiple segments of differing diameters. Water networks also consist of intermediate tanks that act as buffers between incoming flow from the primary source and the outgoing flow to the demand nodes. The network from the primary source to the tanks is called the primary network, and the network from the tanks to the demand nodes is called the secondary network. During the design stage, the primary and secondary networks are optimized separately, with the tanks acting as demand nodes for the primary network. Typically the choice of tank locations, their elevations, and the set of demand nodes to be served by different tanks is manually made in an ad hoc fashion before any optimization is done. It is desirable therefore to include this tank configuration choice in the cost optimization process itself. In this work, we explain why the choice of tank configuration is important to the design of a network and describe an integer linear program model that integrates the tank configuration to the standard pipe diameter selection problem. In order to aid the designers of piped-water networks, the improved cost optimization formulation is incorporated into our existing network design system called JalTantra.

  16. Lightning Radio Source Retrieval Using Advanced Lightning Direction Finder (ALDF) Networks

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Blakeslee, Richard J.; Bailey, J. C.

    1998-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of lightning radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National Lightning Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).

  17. Recognition of partially occluded threat objects using the annealed Hopefield network

    NASA Technical Reports Server (NTRS)

    Kim, Jung H.; Yoon, Sung H.; Park, Eui H.; Ntuen, Celestine A.

    1992-01-01

    Recognition of partially occluded objects has been an important issue to airport security because occlusion causes significant problems in identifying and locating objects during baggage inspection. The neural network approach is suitable for the problems in the sense that the inherent parallelism of neural networks pursues many hypotheses in parallel resulting in high computation rates. Moreover, they provide a greater degree of robustness or fault tolerance than conventional computers. The annealed Hopfield network which is derived from the mean field annealing (MFA) has been developed to find global solutions of a nonlinear system. In the study, it has been proven that the system temperature of MFA is equivalent to the gain of the sigmoid function of a Hopfield network. In our early work, we developed the hybrid Hopfield network (HHN) for fast and reliable matching. However, HHN doesn't guarantee global solutions and yields false matching under heavily occluded conditions because HHN is dependent on initial states by its nature. In this paper, we present the annealed Hopfield network (AHN) for occluded object matching problems. In AHN, the mean field theory is applied to the hybird Hopfield network in order to improve computational complexity of the annealed Hopfield network and provide reliable matching under heavily occluded conditions. AHN is slower than HHN. However, AHN provides near global solutions without initial restrictions and provides less false matching than HHN. In conclusion, a new algorithm based upon a neural network approach was developed to demonstrate the feasibility of the automated inspection of threat objects from x-ray images. The robustness of the algorithm is proved by identifying occluded target objects with large tolerance of their features.

  18. Self Navigating Wheelchair - The Future Of Mobility

    NASA Astrophysics Data System (ADS)

    Nayak, M.

    2017-12-01

    In a hospital environment, about 10% of the patients use wheelchairs, and among all of those people there is one common problem: How can they be independent while in a wheelchair? The goal of this project is to develop the overall system to autonomously navigate a wheelchair from one location in a hospital to another. I have designed a navigation system which will not only determine the location of the wheelchair, but also determine the destination location and then autonomously move the wheelchair to the destination. The design consists of a system of Bluetooth Low Energy Beacon (BLEB) network that allows a BLEB reader to determine its location in the hospital. BLE beacons transmit the signal. The network was designed to consist of a minimum of 4 BLEBs. The four BLEBs were in a quadrilateral arrangement with one BLEB at each corner. BLEBs were placed at or near wheelchair height which is 45 inches to minimize signal loss due to distance between BLEB and BLEB reader. A microcontroller based robot is used as a wheelchair prototype which was placed in the center position. The navigation system used this BLEB network to map out a course from one location to a second location in a hospital. The system is based on the Raspberry Pi as the central device that reads the signals from the BLEBs in the network. Raspberry Pi software interprets signal and changes it into a pair of coordinates. Each location in the hospital is in the form of a coordinates. Upon reading the signals, it deciphered and recognized each BELB by its unique address value and determined the RSSI signal strength from each BLELB in its vicinity to determine the distance from each BLEB. Then the user could interact with the central device to input the location desired for navigation. Upon obtaining the user input, the central device was able to determine its location and the signal strength with respect to the network of BLEBs. Wheels and motors can be controlled through the application. It then determined the direction it needed to move to reach the destination. The central device was able to control the motors to move itself to the desired location, and then halt after it arrived. I was able to design an innovative and cost effective solution using the blue tooth subsystem to determine the location and the most effective route for the wheelchair

  19. New strong motion network in Georgia: basis for specifying seismic hazard

    NASA Astrophysics Data System (ADS)

    Kvavadze, N.; Tsereteli, N. S.

    2017-12-01

    Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented with strong motion sensors and possible earthquake precursors will be studied using complex methods of observation and data analysis.

  20. Locating Local Earthquakes Using Single 3-Component Broadband Seismological Data

    NASA Astrophysics Data System (ADS)

    Das, S. B.; Mitra, S.

    2015-12-01

    We devised a technique to locate local earthquakes using single 3-component broadband seismograph and analyze the factors governing the accuracy of our result. The need for devising such a technique arises in regions of sparse seismic network. In state-of-the-art location algorithms, a minimum of three station recordings are required for obtaining well resolved locations. However, the problem arises when an event is recorded by less than three stations. This may be because of the following reasons: (a) down time of stations in a sparse network; (b) geographically isolated regions with limited logistic support to setup large network; (c) regions of insufficient economy for financing multi-station network and (d) poor signal-to-noise ratio for smaller events at most stations, except the one in its closest vicinity. Our technique provides a workable solution to the above problematic scenarios. However, our methodology is strongly dependent on the velocity model of the region. Our method uses a three step processing: (a) ascertain the back-azimuth of the event from the P-wave particle motion recorded on the horizontal components; (b) estimate the hypocentral distance using the S-P time; and (c) ascertain the emergent angle from the vertical and radial components. Once this is obtained, one can ray-trace through the 1-D velocity model to estimate the hypocentral location. We test our method on synthetic data, which produces results with 99% precision. With observed data, the accuracy of our results are very encouraging. The precision of our results depend on the signal-to-noise ratio (SNR) and choice of the right band-pass filter to isolate the P-wave signal. We used our method on minor aftershocks (3 < mb < 4) of the 2011 Sikkim earthquake using data from the Sikkim Himalayan network. Location of these events highlight the transverse strike-slip structure within the Indian plate, which was observed from source mechanism study of the mainshock and larger aftershocks.

  1. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks.

    PubMed

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-03-18

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  2. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    PubMed Central

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-01-01

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628

  3. A neural network for controlling the configuration of frame structure with elastic members

    NASA Technical Reports Server (NTRS)

    Tsutsumi, Kazuyoshi

    1989-01-01

    A neural network for controlling the configuration of frame structure with elastic members is proposed. In the present network, the structure is modeled not by using the relative angles of the members but by using the distances between the joint locations alone. The relationship between the environment and the joints is also defined by their mutual distances. The analog neural network attains the reaching motion of the manipulator as a minimization problem of the energy constructed by the distances between the joints, the target, and the obstacles. The network can generate not only the final but also the transient configurations and the trajectory. This framework with flexibility and parallelism is very suitable for controlling the Space Telerobotic systems with many degrees of freedom.

  4. Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.

    PubMed

    Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric

    2018-03-01

    Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.

  5. A bounding-based solution approach for the continuous arc covering problem

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Murray, Alan T.; Batta, Rajan

    2014-04-01

    Road segments, telecommunication wiring, water and sewer pipelines, canals and the like are important features of the urban environment. They are often conceived of and represented as network-based arcs. As a result of the usefulness and significance of arc-based features, there is a need to site facilities along arcs to serve demand. Examples of such facilities include surveillance equipment, cellular towers, refueling centers and emergency response stations, with the intent of being economically efficient as well as providing good service along the arcs. While this amounts to a continuous location problem by nature, various discretizations are generally relied upon to solve such problems. The result is potential for representation errors that negatively impact analysis and decision making. This paper develops a solution approach for the continuous arc covering problem that theoretically eliminates representation errors. The developed approach is applied to optimally place acoustic sensors and cellular base stations along a road network. The results demonstrate the effectiveness of this approach for ameliorating any error and uncertainty in the modeling process.

  6. Ab initio nanostructure determination

    NASA Astrophysics Data System (ADS)

    Gujarathi, Saurabh

    Reconstruction of complex structures is an inverse problem arising in virtually all areas of science and technology, from protein structure determination to bulk heterostructure solar cells and the structure of nanoparticles. This problem is cast as a complex network problem where the edges in a network have weights equal to the Euclidean distance between their endpoints. A method, called Tribond, for the reconstruction of the locations of the nodes of the network given only the edge weights of the Euclidean network is presented. The timing results indicate that the algorithm is a low order polynomial in the number of nodes in the network in two dimensions. Reconstruction of Euclidean networks in two dimensions of about one thousand nodes in approximately twenty four hours on a desktop computer using this implementation is done. In three dimensions, the computational cost for the reconstruction is a higher order polynomial in the number of nodes and reconstruction of small Euclidean networks in three dimensions is shown. If a starting network of size five is assumed to be given, then for a network of size 100, the remaining reconstruction can be done in about two hours on a desktop computer. In situations when we have less precise data, modifications of the method may be necessary and are discussed. A related problem in one dimension known as the Optimal Golomb ruler (OGR) is also studied. A statistical physics Hamiltonian to describe the OGR problem is introduced and the first order phase transition from a symmetric low constraint phase to a complex symmetry broken phase at high constraint is studied. Despite the fact that the Hamiltonian is not disordered, the asymmetric phase is highly irregular with geometric frustration. The phase diagram is obtained and it is seen that even at a very low temperature T there is a phase transition at finite and non-zero value of the constraint parameter gamma/mu. Analytic calculations for the scaling of the density and free energy of the ruler are done and they are compared with those from the mean field approach. A scaling law is also derived for the length of OGR, which is consistent with Erdos conjecture and with numerical results.

  7. An Energy-Efficient Mobile Sink-Based Unequal Clustering Mechanism for WSNs.

    PubMed

    Gharaei, Niayesh; Abu Bakar, Kamalrulnizam; Mohd Hashim, Siti Zaiton; Hosseingholi Pourasl, Ali; Siraj, Mohammad; Darwish, Tasneem

    2017-08-11

    Network lifetime and energy efficiency are crucial performance metrics used to evaluate wireless sensor networks (WSNs). Decreasing and balancing the energy consumption of nodes can be employed to increase network lifetime. In cluster-based WSNs, one objective of applying clustering is to decrease the energy consumption of the network. In fact, the clustering technique will be considered effective if the energy consumed by sensor nodes decreases after applying clustering, however, this aim will not be achieved if the cluster size is not properly chosen. Therefore, in this paper, the energy consumption of nodes, before clustering, is considered to determine the optimal cluster size. A two-stage Genetic Algorithm (GA) is employed to determine the optimal interval of cluster size and derive the exact value from the interval. Furthermore, the energy hole is an inherent problem which leads to a remarkable decrease in the network's lifespan. This problem stems from the asynchronous energy depletion of nodes located in different layers of the network. For this reason, we propose Circular Motion of Mobile-Sink with Varied Velocity Algorithm (CM2SV2) to balance the energy consumption ratio of cluster heads (CH). According to the results, these strategies could largely increase the network's lifetime by decreasing the energy consumption of sensors and balancing the energy consumption among CHs.

  8. End-User Searching in a Large Library Network: A Case Study of Patent Attorneys.

    ERIC Educational Resources Information Center

    Vollaro, Alice J.; Hawkins, Donald T.

    1986-01-01

    Reports results of study of a group of end users (patent attorneys) doing their own online searching at AT&T Bell Laboratories. Highlights include DIALOG databases used by the attorneys, locations and searching modes, characteristics of patent attorney searchers, and problem areas. Questionnaire is appended. (5 references) (EJS)

  9. Location and Routing of the Defense Courier Service Aerial Network

    DTIC Science & Technology

    1991-03-01

    12 Coefficient Determinatior .................... . .15 Heuristic Solution Techniques ................... 16 Space Filling Curves ...178 V List of Figures Figure Page I. Space Filling Curves ............................. 2. The Sweep Heuristic...frequency associated with the most served site within a given depot’s route system (18). Approach to the Problem The research involves several phases . In

  10. An Effective Massive Sensor Network Data Access Scheme Based on Topology Control for the Internet of Things.

    PubMed

    Yi, Meng; Chen, Qingkui; Xiong, Neal N

    2016-11-03

    This paper considers the distributed access and control problem of massive wireless sensor networks' data access center for the Internet of Things, which is an extension of wireless sensor networks and an element of its topology structure. In the context of the arrival of massive service access requests at a virtual data center, this paper designs a massive sensing data access and control mechanism to improve the access efficiency of service requests and makes full use of the available resources at the data access center for the Internet of things. Firstly, this paper proposes a synergistically distributed buffer access model, which separates the information of resource and location. Secondly, the paper divides the service access requests into multiple virtual groups based on their characteristics and locations using an optimized self-organizing feature map neural network. Furthermore, this paper designs an optimal scheduling algorithm of group migration based on the combination scheme between the artificial bee colony algorithm and chaos searching theory. Finally, the experimental results demonstrate that this mechanism outperforms the existing schemes in terms of enhancing the accessibility of service requests effectively, reducing network delay, and has higher load balancing capacity and higher resource utility rate.

  11. Leveraging socially networked mobile ICT platforms for the last-mile delivery problem.

    PubMed

    Suh, Kyo; Smith, Timothy; Linhoff, Michelle

    2012-09-04

    Increasing numbers of people are managing their social networks on mobile information and communication technology (ICT) platforms. This study materializes these social relationships by leveraging spatial and networked information for sharing excess capacity to reduce the environmental impacts associated with "last-mile" package delivery systems from online purchases, particularly in low population density settings. Alternative package pickup location systems (PLS), such as a kiosk on a public transit platform or in a grocery store, have been suggested as effective strategies for reducing package travel miles and greenhouse gas emissions, compared to current door-to-door delivery models (CDS). However, our results suggest that a pickup location delivery system operating in a suburban setting may actually increase travel miles and emissions. Only once a social network is employed to assist in package pickup (SPLS) are significant reductions in the last-mile delivery distance and carbon emissions observed across both urban and suburban settings. Implications for logistics management's decades-long focus on improving efficiencies of dedicated distribution systems through specialization, as well as for public policy targeting carbon emissions of the transport sector are discussed.

  12. Joint location, inventory, and preservation decisions for non-instantaneous deterioration items under delay in payments

    NASA Astrophysics Data System (ADS)

    Tsao, Yu-Chung

    2016-02-01

    This study models a joint location, inventory and preservation decision-making problem for non-instantaneous deteriorating items under delay in payments. An outside supplier provides a credit period to the wholesaler which has a distribution system with distribution centres (DCs). The non-instantaneous deteriorating means no deterioration occurs in the earlier stage, which is very useful for items such as fresh food and fruits. This paper also considers that the deteriorating rate will decrease and the reservation cost will increase as the preservation effort increases. Therefore, how much preservation effort should be made is a crucial decision. The objective of this paper is to determine the optimal locations and number of DCs, the optimal replenishment cycle time at DCs, and the optimal preservation effort simultaneously such that the total network profit is maximised. The problem is formulated as piecewise nonlinear functions and has three different cases. Algorithms based on piecewise nonlinear optimisation are provided to solve the joint location and inventory problem for all cases. Computational analysis illustrates the solution procedures and the impacts of the related parameters on decisions and profits. The results of this study can serve as references for business managers or administrators.

  13. Using Grid Cells for Navigation

    PubMed Central

    Bush, Daniel; Barry, Caswell; Manson, Daniel; Burgess, Neil

    2015-01-01

    Summary Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this “vector navigation” relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. PMID:26247860

  14. Social network and census tract-level influences on substance use among emerging adult males: An activity spaces approach

    PubMed Central

    Gibson, Crystal; Perley, Lauren; Bailey, Jonathan; Barbour, Russell; Kershaw, Trace

    2015-01-01

    Social network and area level characteristics have been linked to substance use. We used snowball sampling to recruit 90 predominantly African American emerging adult men who provided typical locations visited (n=510). We used generalized estimating equations to examine social network and area level predictors of substance use. Lower social network quality was associated with days of marijuana use (B=-0.0037, p<0.0001) and problem alcohol use (B=-0.0050, p=0.0181). The influence of area characteristics on substance use differed between risky and non-risky spaces. Peer and area influences are important for substance use among men, and may differ for high and low risk places. PMID:26176810

  15. Moving multiple sinks through wireless sensor networks for lifetime maximization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrioli, Chiara; Carosi, Alessio; Basagni, Stefano

    2008-01-01

    Unattended sensor networks typically watch for some phenomena such as volcanic events, forest fires, pollution, or movements in animal populations. Sensors report to a collection point periodically or when they observe reportable events. When sensors are too far from the collection point to communicate directly, other sensors relay messages for them. If the collection point location is static, sensor nodes that are closer to the collection point relay far more messages than those on the periphery. Assuming all sensor nodes have roughly the same capabilities, those with high relay burden experience battery failure much faster than the rest of themore » network. However, since their death disconnects the live nodes from the collection point, the whole network is then dead. We consider the problem of moving a set of collectors (sinks) through a wireless sensor network to balance the energy used for relaying messages, maximizing the lifetime of the network. We show how to compute an upper bound on the lifetime for any instance using linear and integer programming. We present a centralized heuristic that produces sink movement schedules that produce network lifetimes within 1.4% of the upper bound for realistic settings. We also present a distributed heuristic that produces lifetimes at most 25:3% below the upper bound. More specifically, we formulate a linear program (LP) that is a relaxation of the scheduling problem. The variables are naturally continuous, but the LP relaxes some constraints. The LP has an exponential number of constraints, but we can satisfy them all by enforcing only a polynomial number using a separation algorithm. This separation algorithm is a p-median facility location problem, which we can solve efficiently in practice for huge instances using integer programming technology. This LP selects a set of good sensor configurations. Given the solution to the LP, we can find a feasible schedule by selecting a subset of these configurations, ordering them via a traveling salesman heuristic, and computing feasible transitions using matching algorithms. This algorithm assumes sinks can get a schedule from a central server or a leader sink. If the network owner prefers the sinks make independent decisions, they can use our distributed heuristic. In this heuristic, sinks maintain estimates of the energy distribution in the network and move greedily (with some coordination) based on local search. This application uses the new SUCASA (Solver Utility for Customization with Automatic Symbol Access) facility within the PICO (Parallel Integer and Combinatorial Optimizer) integer programming solver system. SUCASA allows rapid development of customized math programming (search-based) solvers using a problem's natural multidimensional representation. In this case, SUCASA also significantly improves runtime compared to implementations in the ampl math programming language or in perl.« less

  16. A Bayesian Approach to Real-Time Earthquake Phase Association

    NASA Astrophysics Data System (ADS)

    Benz, H.; Johnson, C. E.; Earle, P. S.; Patton, J. M.

    2014-12-01

    Real-time location of seismic events requires a robust and extremely efficient means of associating and identifying seismic phases with hypothetical sources. An association algorithm converts a series of phase arrival times into a catalog of earthquake hypocenters. The classical approach based on time-space stacking of the locus of possible hypocenters for each phase arrival using the principal of acoustic reciprocity has been in use now for many years. One of the most significant problems that has emerged over time with this approach is related to the extreme variations in seismic station density throughout the global seismic network. To address this problem we have developed a novel, Bayesian association algorithm, which looks at the association problem as a dynamically evolving complex system of "many to many relationships". While the end result must be an array of one to many relations (one earthquake, many phases), during the association process the situation is quite different. Both the evolving possible hypocenters and the relationships between phases and all nascent hypocenters is many to many (many earthquakes, many phases). The computational framework we are using to address this is a responsive, NoSQL graph database where the earthquake-phase associations are represented as intersecting Bayesian Learning Networks. The approach directly addresses the network inhomogeneity issue while at the same time allowing the inclusion of other kinds of data (e.g., seismic beams, station noise characteristics, priors on estimated location of the seismic source) by representing the locus of intersecting hypothetical loci for a given datum as joint probability density functions.

  17. A Time-constrained Network Voronoi Construction and Accessibility Analysis in Location-based Service Technology

    NASA Astrophysics Data System (ADS)

    Yu, W.; Ai, T.

    2014-11-01

    Accessibility analysis usually requires special models of spatial location analysis based on some geometric constructions, such as Voronoi diagram (abbreviated to VD). There are many achievements in classic Voronoi model research, however suffering from the following limitations for location-based services (LBS) applications. (1) It is difficult to objectively reflect the actual service areas of facilities by using traditional planar VDs, because human activities in LBS are usually constrained only to the network portion of the planar space. (2) Although some researchers have adopted network distance to construct VDs, their approaches are used in a static environment, where unrealistic measures of shortest path distance based on assumptions about constant travel speeds through the network were often used. (3) Due to the computational complexity of the shortest-path distance calculating, previous researches tend to be very time consuming, especially for large datasets and if multiple runs are required. To solve the above problems, a novel algorithm is developed in this paper. We apply network-based quadrat system and 1-D sequential expansion to find the corresponding subnetwork for each focus. The idea is inspired by the natural phenomenon that water flow extends along certain linear channels until meets others or arrives at the end of route. In order to accommodate the changes in traffic conditions, the length of network-quadrat is set upon the traffic condition of the corresponding street. The method has the advantage over Dijkstra's algorithm in that the time cost is avoided, and replaced with a linear time operation.

  18. A New Path-Constrained Rendezvous Planning Approach for Large-Scale Event-Driven Wireless Sensor Networks

    PubMed Central

    Zhang, Gongxuan; Wang, Yongli; Wang, Tianshu

    2018-01-01

    We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs) for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs) in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP). Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach. PMID:29734718

  19. A Descriptive Study of the Prevalence and Typology of Alcohol-Related Posts in an Online Social Network for Smoking Cessation.

    PubMed

    Cohn, Amy M; Zhao, Kang; Cha, Sarah; Wang, Xi; Amato, Michael S; Pearson, Jennifer L; Papandonatos, George D; Graham, Amanda L

    2017-09-01

    Alcohol use and problem drinking are associated with smoking relapse and poor smoking-cessation success. User-generated content in online social networks for smoking cessation provides an opportunity to understand the challenges and treatment needs of smokers. This study used machine-learning text classification to identify the prevalence, sentiment, and social network correlates of alcohol-related content in the social network of a large online smoking-cessation program, BecomeAnEX.org. Data were analyzed from 814,258 posts (January 2012 to May 2015). Posts containing alcohol keywords were coded via supervised machine-learning text classification for information about the user's personal experience with drinking, whether the user self-identified as a problem drinker or indicated problem drinking, and negative sentiment about drinking in the context of a quit attempt (i.e., alcohol should be avoided during a quit attempt). Less than 1% of posts were related to alcohol, contributed by 13% of users. Roughly a third of alcohol posts described a personal experience with drinking; very few (3%) indicated "problem drinking." The majority (70%) of alcohol posts did not express negative sentiment about drinking alcohol during a quit attempt. Users who did express negative sentiment about drinking were more centrally located within the network compared with those who did not. Discussion of alcohol was rare, and most posts did not signal the need to quit or abstain from drinking during a quit attempt. Featuring expert information or highlighting discussions that are consistent with treatment guidelines may be important steps to ensure smokers are educated about drinking risks.

  20. Connectivity Restoration in Wireless Sensor Networks via Space Network Coding.

    PubMed

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing

    2017-04-20

    The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments.

  1. MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control

    NASA Astrophysics Data System (ADS)

    Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming

    2017-09-01

    Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.

  2. Location Management in a Transport Layer Mobility Architecture

    NASA Technical Reports Server (NTRS)

    Eddy, Wesley M.; Ishac, Joseph

    2005-01-01

    Mobility architectures that place complexity in end nodes rather than in the network interior have many advantageous properties and are becoming popular research topics. Such architectures typically push mobility support into higher layers of the protocol stack than network layer approaches like Mobile IP. The literature is ripe with proposals to provide mobility services in the transport, session, and application layers. In this paper, we focus on a mobility architecture that makes the most significant changes to the transport layer. A common problem amongst all mobility protocols at various layers is location management, which entails translating some form of static identifier into a mobile node's dynamic location. Location management is required for mobile nodes to be able to provide globally-reachable services on-demand to other hosts. In this paper, we describe the challenges of location management in a transport layer mobility architecture, and discuss the advantages and disadvantages of various solutions proposed in the literature. Our conclusion is that, in principle, secure dynamic DNS is most desirable, although it may have current operational limitations. We note that this topic has room for further exploration, and we present this paper largely as a starting point for comparing possible solutions.

  3. Integrated data lookup and replication scheme in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Nahrstedt, Klara

    2001-11-01

    Accessing remote data is a challenging task in mobile ad hoc networks. Two problems have to be solved: (1) how to learn about available data in the network; and (2) how to access desired data even when the original copy of the data is unreachable. In this paper, we develop an integrated data lookup and replication scheme to solve these problems. In our scheme, a group of mobile nodes collectively host a set of data to improve data accessibility for all members of the group. They exchange data availability information by broadcasting advertising (ad) messages to the group using an adaptive sending rate policy. The ad messages are used by other nodes to derive a local data lookup table, and to reduce data redundancy within a connected group. Our data replication scheme predicts group partitioning based on each node's current location and movement patterns, and replicates data to other partitions before partitioning occurs. Our simulations show that data availability information can quickly propagate throughout the network, and that the successful data access ratio of each node is significantly improved.

  4. Conditional random field modelling of interactions between findings in mammography

    NASA Astrophysics Data System (ADS)

    Kooi, Thijs; Mordang, Jan-Jurre; Karssemeijer, Nico

    2017-03-01

    Recent breakthroughs in training deep neural network architectures, in particular deep Convolutional Neural Networks (CNNs), made a big impact on vision research and are increasingly responsible for advances in Computer Aided Diagnosis (CAD). Since many natural scenes and medical images vary in size and are too large to feed to the networks as a whole, two stage systems are typically employed, where in the first stage, small regions of interest in the image are located and presented to the network as training and test data. These systems allow us to harness accurate region based annotations, making the problem easier to learn. However, information is processed purely locally and context is not taken into account. In this paper, we present preliminary work on the employment of a Conditional Random Field (CRF) that is trained on top the CNN to model contextual interactions such as the presence of other suspicious regions, for mammography CAD. The model can easily be extended to incorporate other sources of information, such as symmetry, temporal change and various patient covariates and is general in the sense that it can have application in other CAD problems.

  5. Trapping in scale-free networks with hierarchical organization of modularity.

    PubMed

    Zhang, Zhongzhi; Lin, Yuan; Gao, Shuyang; Zhou, Shuigeng; Guan, Jihong; Li, Mo

    2009-11-01

    A wide variety of real-life networks share two remarkable generic topological properties: scale-free behavior and modular organization, and it is natural and important to study how these two features affect the dynamical processes taking place on such networks. In this paper, we investigate a simple stochastic process--trapping problem, a random walk with a perfect trap fixed at a given location, performed on a family of hierarchical networks that exhibit simultaneously striking scale-free and modular structure. We focus on a particular case with the immobile trap positioned at the hub node having the largest degree. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping problem, which is the mean of the node-to-trap first-passage time over the entire network. The exact expression for the MFPT is calculated through the recurrence relations derived from the special construction of the hierarchical networks. The obtained rigorous formula corroborated by extensive direct numerical calculations exhibits that the MFPT grows algebraically with the network order. Concretely, the MFPT increases as a power-law function of the number of nodes with the exponent much less than 1. We demonstrate that the hierarchical networks under consideration have more efficient structure for transport by diffusion in contrast with other analytically soluble media including some previously studied scale-free networks. We argue that the scale-free and modular topologies are responsible for the high efficiency of the trapping process on the hierarchical networks.

  6. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model

    PubMed Central

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-01-01

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called “anchor” nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network. PMID:26134104

  7. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model.

    PubMed

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-06-30

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called "anchor" nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network.

  8. Design of an advanced flight planning system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1985-01-01

    The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).

  9. Mobile Voting Tools for Creating Collaboration Environment and a New Educational Design of the University Lecture

    ERIC Educational Resources Information Center

    Titova, Svetlana

    2014-01-01

    Mobile devices can enhance learning experience in many ways: provide instant feedback and better diagnosis of learning problems; enhance learner autonomy; create mobile networking collaboration; help design enquiry-based activities based on augmented reality, geo-location awareness and video-capture. One of the main objectives of the international…

  10. Breast tumor segmentation in DCE-MRI using fully convolutional networks with an application in radiogenomics

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.

    2018-02-01

    Breast tumor segmentation based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) remains an active as well as a challenging problem. Previous studies often rely on manual annotation for tumor regions, which is not only time-consuming but also error-prone. Recent studies have shown high promise of deep learning-based methods in various segmentation problems. However, these methods are usually faced with the challenge of limited number (e.g., tens or hundreds) of medical images for training, leading to sub-optimal segmentation performance. Also, previous methods cannot efficiently deal with prevalent class-imbalance problems in tumor segmentation, where the number of voxels in tumor regions is much lower than that in the background area. To address these issues, in this study, we propose a mask-guided hierarchical learning (MHL) framework for breast tumor segmentation via fully convolutional networks (FCN). Our strategy is first decomposing the original difficult problem into several sub-problems and then solving these relatively simpler sub-problems in a hierarchical manner. To precisely identify locations of tumors that underwent a biopsy, we further propose an FCN model to detect two landmarks defined on nipples. Finally, based on both segmentation probability maps and our identified landmarks, we proposed to select biopsied tumors from all detected tumors via a tumor selection strategy using the pathology location. We validate our MHL method using data for 272 patients, and achieve a mean Dice similarity coefficient (DSC) of 0.72 in breast tumor segmentation. Finally, in a radiogenomic analysis, we show that a previously developed image features show a comparable performance for identifying luminal A subtype when applied to the automatic segmentation and a semi-manual segmentation demonstrating a high promise for fully automated radiogenomic analysis in breast cancer.

  11. Estimation of distributed Fermat-point location for wireless sensor networking.

    PubMed

    Huang, Po-Hsian; Chen, Jiann-Liang; Larosa, Yanuarius Teofilus; Chiang, Tsui-Lien

    2011-01-01

    This work presents a localization scheme for use in wireless sensor networks (WSNs) that is based on a proposed connectivity-based RF localization strategy called the distributed Fermat-point location estimation algorithm (DFPLE). DFPLE applies triangle area of location estimation formed by intersections of three neighboring beacon nodes. The Fermat point is determined as the shortest path from three vertices of the triangle. The area of estimated location then refined using Fermat point to achieve minimum error in estimating sensor nodes location. DFPLE solves problems of large errors and poor performance encountered by localization schemes that are based on a bounding box algorithm. Performance analysis of a 200-node development environment reveals that, when the number of sensor nodes is below 150, the mean error decreases rapidly as the node density increases, and when the number of sensor nodes exceeds 170, the mean error remains below 1% as the node density increases. Second, when the number of beacon nodes is less than 60, normal nodes lack sufficient beacon nodes to enable their locations to be estimated. However, the mean error changes slightly as the number of beacon nodes increases above 60. Simulation results revealed that the proposed algorithm for estimating sensor positions is more accurate than existing algorithms, and improves upon conventional bounding box strategies.

  12. A Modified Artificial Bee Colony Algorithm for p-Center Problems

    PubMed Central

    Yurtkuran, Alkın

    2014-01-01

    The objective of the p-center problem is to locate p-centers on a network such that the maximum of the distances from each node to its nearest center is minimized. The artificial bee colony algorithm is a swarm-based meta-heuristic algorithm that mimics the foraging behavior of honey bee colonies. This study proposes a modified ABC algorithm that benefits from a variety of search strategies to balance exploration and exploitation. Moreover, random key-based coding schemes are used to solve the p-center problem effectively. The proposed algorithm is compared to state-of-the-art techniques using different benchmark problems, and computational results reveal that the proposed approach is very efficient. PMID:24616648

  13. Detection of rotor imbalance, including root cause, severity and location

    NASA Astrophysics Data System (ADS)

    Cacciola, S.; Munduate Agud, I.; Bottasso, C. L.

    2016-09-01

    This paper presents a new way of detecting imbalances on wind turbine rotors, by using a harmonic analysis of the rotor response in the fixed frame. The method is capable of distinguishing among different root causes of the imbalance. In addition, the imbalance severity and location, i.e. the affected blade, can be identified. The automatic classification of the imbalance problem is obtained by using a neural network. The performance of the method is illustrated with the help of different fault scenarios, within a high-fidelity simulation environment.

  14. Super-Resolution Algorithm in Cumulative Virtual Blanking

    NASA Astrophysics Data System (ADS)

    Montillet, J. P.; Meng, X.; Roberts, G. W.; Woolfson, M. S.

    2008-11-01

    The proliferation of mobile devices and the emergence of wireless location-based services have generated consumer demand for precise location. In this paper, the MUSIC super-resolution algorithm is applied to time delay estimation for positioning purposes in cellular networks. The goal is to position a Mobile Station with UMTS technology. The problem of Base-Stations herability is solved using Cumulative Virtual Blanking. A simple simulator is presented using DS-SS signal. The results show that MUSIC algorithm improves the time delay estimation in both the cases whether or not Cumulative Virtual Blanking was carried out.

  15. Multiple-predators-based capture process on complex networks

    NASA Astrophysics Data System (ADS)

    Ramiz Sharafat, Rajput; Pu, Cunlai; Li, Jie; Chen, Rongbin; Xu, Zhongqi

    2017-03-01

    The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter $\\alpha$. We derive the distribution of the lamb's lifetime and the expected lifetime $\\left\\langle T\\right\\rangle $. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. We also study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than large-degree nodes to prolong the lifetime of the lamb. Moreover, dense or homogeneous network structures are against the survival of the lamb.

  16. Link prediction in multiplex online social networks

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž

    2017-02-01

    Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.

  17. Link prediction in multiplex online social networks.

    PubMed

    Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž

    2017-02-01

    Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.

  18. Recognition of an obstacle in a flow using artificial neural networks.

    PubMed

    Carrillo, Mauricio; Que, Ulices; González, José A; López, Carlos

    2017-08-01

    In this work a series of artificial neural networks (ANNs) has been developed with the capacity to estimate the size and location of an obstacle obstructing the flow in a pipe. The ANNs learn the size and location of the obstacle by reading the profiles of the dynamic pressure q or the x component of the velocity v_{x} of the fluid at a certain distance from the obstacle. Data to train the ANN were generated using numerical simulations with a two-dimensional lattice Boltzmann code. We analyzed various cases varying both the diameter and the position of the obstacle on the y axis, obtaining good estimations using the R^{2} coefficient for the cases under study. Although the ANN showed problems with the classification of very small obstacles, the general results show a very good capacity for prediction.

  19. Relative location prediction in CT scan images using convolutional neural networks.

    PubMed

    Guo, Jiajia; Du, Hongwei; Zhu, Jianyue; Yan, Ting; Qiu, Bensheng

    2018-07-01

    Relative location prediction in computed tomography (CT) scan images is a challenging problem. Many traditional machine learning methods have been applied in attempts to alleviate this problem. However, the accuracy and speed of these methods cannot meet the requirement of medical scenario. In this paper, we propose a regression model based on one-dimensional convolutional neural networks (CNN) to determine the relative location of a CT scan image both quickly and precisely. In contrast to other common CNN models that use a two-dimensional image as an input, the input of this CNN model is a feature vector extracted by a shape context algorithm with spatial correlation. Normalization via z-score is first applied as a pre-processing step. Then, in order to prevent overfitting and improve model's performance, 20% of the elements of the feature vectors are randomly set to zero. This CNN model consists primarily of three one-dimensional convolutional layers, three dropout layers and two fully-connected layers with appropriate loss functions. A public dataset is employed to validate the performance of the proposed model using a 5-fold cross validation. Experimental results demonstrate an excellent performance of the proposed model when compared with contemporary techniques, achieving a median absolute error of 1.04 cm and mean absolute error of 1.69 cm. The time taken for each relative location prediction is approximately 2 ms. Results indicate that the proposed CNN method can contribute to a quick and accurate relative location prediction in CT scan images, which can improve efficiency of the medical picture archiving and communication system in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Optimizing Placement of Weather Stations: Exploring Objective Functions of Meaningful Combinations of Multiple Weather Variables

    NASA Astrophysics Data System (ADS)

    Snyder, A.; Dietterich, T.; Selker, J. S.

    2017-12-01

    Many regions of the world lack ground-based weather data due to inadequate or unreliable weather station networks. For example, most countries in Sub-Saharan Africa have unreliable, sparse networks of weather stations. The absence of these data can have consequences on weather forecasting, prediction of severe weather events, agricultural planning, and climate change monitoring. The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to place weather stations within each country. We should consider how we can create accurate spatio-temporal maps of weather data and how to balance the desired accuracy of each weather variable of interest (precipitation, temperature, relative humidity, etc.). We can express this problem as a joint optimization of multiple weather variables, given a fixed number of weather stations. We use reanalysis data as the best representation of the "true" weather patterns that occur in the region of interest. For each possible combination of sites, we interpolate the reanalysis data between selected locations and calculate the mean average error between the reanalysis ("true") data and the interpolated data. In order to formulate our multi-variate optimization problem, we explore different methods of weighting each weather variable in our objective function. These methods include systematic variation of weights to determine which weather variables have the strongest influence on the network design, as well as combinations targeted for specific purposes. For example, we can use computed evapotranspiration as a metric that combines many weather variables in a way that is meaningful for agricultural and hydrological applications. We compare the errors of the weather station networks produced by each optimization problem formulation. We also compare these errors to those of manually designed weather station networks in West Africa, planned by the respective host-country's meteorological agency.

  1. Location Privacy Protection on Social Networks

    NASA Astrophysics Data System (ADS)

    Zhan, Justin; Fang, Xing

    Location information is considered as private in many scenarios. Protecting location information on mobile ad-hoc networks has attracted much research in past years. However, location information protection on social networks has not been paid much attention. In this paper, we present a novel location privacy protection approach on the basis of user messages in social networks. Our approach grants flexibility to users by offering them multiple protecting options. To the best of our knowledge, this is the first attempt to protect social network users' location information via text messages. We propose five algorithms for location privacy protection on social networks.

  2. An Energy Efficient Simultaneous-Node Repositioning Algorithm for Mobile Sensor Networks

    PubMed Central

    Hasbullah, Halabi; Nazir, Babar; Khan, Imran Ali

    2014-01-01

    Recently, wireless sensor network (WSN) applications have seen an increase in interest. In search and rescue, battlefield reconnaissance, and some other such applications, so that a survey of the area of interest can be made collectively, a set of mobile nodes is deployed. Keeping the network nodes connected is vital for WSNs to be effective. The provision of connectivity can be made at the time of startup and can be maintained by carefully coordinating the nodes when they move. However, if a node suddenly fails, the network could be partitioned to cause communication problems. Recently, several methods that use the relocation of nodes for connectivity restoration have been proposed. However, these methods have the tendency to not consider the potential coverage loss in some locations. This paper addresses the concerns of both connectivity and coverage in an integrated way so that this gap can be filled. A novel algorithm for simultaneous-node repositioning is introduced. In this approach, each neighbour of the failed node, one by one, moves in for a certain amount of time to take the place of the failed node, after which it returns to its original location in the network. The effectiveness of this algorithm has been verified by the simulation results. PMID:25152924

  3. Planning and management of cloud computing networks

    NASA Astrophysics Data System (ADS)

    Larumbe, Federico

    The evolution of the Internet has a great impact on a big part of the population. People use it to communicate, query information, receive news, work, and as entertainment. Its extraordinary usefulness as a communication media made the number of applications and technological resources explode. However, that network expansion comes at the cost of an important power consumption. If the power consumption of telecommunication networks and data centers is considered as the power consumption of a country, it would rank at the 5 th place in the world. Furthermore, the number of servers in the world is expected to grow by a factor of 10 between 2013 and 2020. This context motivates us to study techniques and methods to allocate cloud computing resources in an optimal way with respect to cost, quality of service (QoS), power consumption, and environmental impact. The results we obtained from our test cases show that besides minimizing capital expenditures (CAPEX) and operational expenditures (OPEX), the response time can be reduced up to 6 times, power consumption by 30%, and CO2 emissions by a factor of 60. Cloud computing provides dynamic access to IT resources as a service. In this paradigm, programs are executed in servers connected to the Internet that users access from their computers and mobile devices. The first advantage of this architecture is to reduce the time of application deployment and interoperability, because a new user only needs a web browser and does not need to install software on local computers with specific operating systems. Second, applications and information are available from everywhere and with any device with an Internet access. Also, servers and IT resources can be dynamically allocated depending on the number of users and workload, a feature called elasticity. This thesis studies the resource management of cloud computing networks and is divided in three main stages. We start by analyzing the planning of cloud computing networks to get a comprehensive vision. The first question to be solved is what are the optimal data center locations. We found that the location of each data center has a big impact on cost, QoS, power consumption, and greenhouse gas emissions. An optimization problem with a multi-criteria objective function is proposed to decide jointly the optimal location of data centers and software components, link capacities, and information routing. Once the network planning has been analyzed, the problem of dynamic resource provisioning in real time is addressed. In this context, virtualization is a key technique in cloud computing because each server can be shared by multiple Virtual Machines (VMs) and the total power consumption can be reduced. In the same line of location problems, we propose a Green Cloud Broker that optimizes VM placement across multiple data centers. In fact, when multiple data centers are considered, response time can be reduced by placing VMs close to users, cost can be minimized, power consumption can be optimized by using energy efficient data centers, and CO2 emissions can be decreased by choosing data centers provided with renewable energy sources. The third stage of the analysis is the short-term management of a cloud data center. In particular, a method is proposed to assign VMs to servers by considering communication traffic among VMs. Cloud data centers receive new applications over time and these applications need on-demand resource provisioning. Each application is composed of multiple types of VMs that interact among themselves. A program called scheduler must place each new VM in a server and that impacts the QoS and power consumption. Our method places VMs that communicate among themselves in servers that are close to each other in the network topology, thus reducing communication delay and increasing the throughput available among VMs. Furthermore, the power consumption of each type of server is considered and the most efficient ones are chosen to place the VMs. The number of VMs of each application can be dynamically changed to match the workload and servers not needed in a particular period can be suspended to save energy. The methodology developed is based on Mixed Integer Programming (MIP) models to formalize the problems and use state of the art optimization solvers. Then, heuristics are developed to solve cases with more than 1,000 potential data center locations for the planning problem, 1,000 nodes for the cloud broker, and 128,000 servers for the VM placement problem. Solutions with very short optimality gaps, between 0% and 1.95%, are obtained, and execution time in the order of minutes for the planning problem and less than a second for real time cases. We consider that this thesis on resource provisioning of cloud computing networks includes important contributions on this research area, and innovative commercial applications based on the proposed methods have promising future.

  4. Drainage network optimization for inundation mitigation case study of ITS Surabaya

    NASA Astrophysics Data System (ADS)

    Savitri, Yang Ratri; Lasminto, Umboro

    2017-06-01

    Institut Teknologi Sepuluh Nopember (ITS) Surabaya is one of engineering campus in Surabaya with an area of ± 187 ha, which consists of building and campus facilities. The campus is supported by drainage system planned according to the ITS Master Plan on 2002. The drainage system is planned with numbers of retention and detention pond based on the city concept of Zero Delta Q concept. However, in the rainy season, it frequently has inundation problems in several locations. The problems could be identified from two major sources, namely the internal campus facilities and external condition connected with the city drainage system. This paper described the capabilities of drainage network optimization to mitigate local urban drainage problem. The hydrology-hydraulic investigation was done by utilizing the Storm Water Management Model (SWMM) developed by US Environmental Protection Agency (EPA). The mitigation is based on several alternative that based on the existing condition and regarding the social problem. The study results showed that the management of the flow from external source could reduce final stored volume of the campus main channel by 31.75 %.

  5. Advanced diagnostic system for piston slap faults in IC engines, based on the non-stationary characteristics of the vibration signals

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Randall, Robert Bond; Peeters, Bart

    2016-06-01

    Artificial Neural Networks (ANNs) have the potential to solve the problem of automated diagnostics of piston slap faults, but the critical issue for the successful application of ANN is the training of the network by a large amount of data in various engine conditions (different speed/load conditions in normal condition, and with different locations/levels of faults). On the other hand, the latest simulation technology provides a useful alternative in that the effect of clearance changes may readily be explored without recourse to cutting metal, in order to create enough training data for the ANNs. In this paper, based on some existing simplified models of piston slap, an advanced multi-body dynamic simulation software was used to simulate piston slap faults with different speeds/loads and clearance conditions. Meanwhile, the simulation models were validated and updated by a series of experiments. Three-stage network systems are proposed to diagnose piston faults: fault detection, fault localisation and fault severity identification. Multi Layer Perceptron (MLP) networks were used in the detection stage and severity/prognosis stage and a Probabilistic Neural Network (PNN) was used to identify which cylinder has faults. Finally, it was demonstrated that the networks trained purely on simulated data can efficiently detect piston slap faults in real tests and identify the location and severity of the faults as well.

  6. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    NASA Technical Reports Server (NTRS)

    Rash, James

    2014-01-01

    NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial-optimization problems that encompasses, among many others, the problem of generating optimal space-data communications schedules.

  7. Never Use the Complete Search Space: a Concept to Enhance the Optimization Procedure for Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Bode, F.; Reuschen, S.; Nowak, W.

    2015-12-01

    Drinking-water well catchments include many potential sources of contaminations like gas stations or agriculture. Finding optimal positions of early-warning monitoring wells is challenging because there are various parameters (and their uncertainties) that influence the reliability and optimality of any suggested monitoring location or monitoring network.The overall goal of this project is to develop and establish a concept to assess, design and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: a high detection probability, which can be reached by maximizing the "field of vision" of the monitoring network, a long early-warning time such that there is enough time left to install counter measures after first detection, and the overall operating costs of the monitoring network, which should ideally be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, scenario analyses for real data, respectively, wrapped up within the framework of formal multi-objective optimization using a genetic algorithm.In order to speed up the optimization process and to better explore the Pareto-front, we developed a concept that forces the algorithm to search only in regions of the search space where promising solutions can be expected. We are going to show how to define these regions beforehand, using knowledge of the optimization problem, but also how to define them independently of problem attributes. With that, our method can be used with and/or without detailed knowledge of the objective functions.In summary, our study helps to improve optimization results in less optimization time by meaningful restrictions of the search space. These restrictions can be done independently of the optimization problem, but also in a problem-specific manner.

  8. Development of a method of robust rain gauge network optimization based on intensity-duration-frequency results

    NASA Astrophysics Data System (ADS)

    Chebbi, A.; Bargaoui, Z. K.; da Conceição Cunha, M.

    2012-12-01

    Based on rainfall intensity-duration-frequency (IDF) curves, a robust optimization approach is proposed to identify the best locations to install new rain gauges. The advantage of robust optimization is that the resulting design solutions yield networks which behave acceptably under hydrological variability. Robust optimisation can overcome the problem of selecting representative rainfall events when building the optimization process. This paper reports an original approach based on Montana IDF model parameters. The latter are assumed to be geostatistical variables and their spatial interdependence is taken into account through the adoption of cross-variograms in the kriging process. The problem of optimally locating a fixed number of new monitoring stations based on an existing rain gauge network is addressed. The objective function is based on the mean spatial kriging variance and rainfall variogram structure using a variance-reduction method. Hydrological variability was taken into account by considering and implementing several return periods to define the robust objective function. Variance minimization is performed using a simulated annealing algorithm. In addition, knowledge of the time horizon is needed for the computation of the robust objective function. A short and a long term horizon were studied, and optimal networks are identified for each. The method developed is applied to north Tunisia (area = 21 000 km2). Data inputs for the variogram analysis were IDF curves provided by the hydrological bureau and available for 14 tipping bucket type rain gauges. The recording period was from 1962 to 2001, depending on the station. The study concerns an imaginary network augmentation based on the network configuration in 1973, which is a very significant year in Tunisia because there was an exceptional regional flood event in March 1973. This network consisted of 13 stations and did not meet World Meteorological Organization (WMO) recommendations for the minimum spatial density. So, it is proposed to virtually augment it by 25, 50, 100 and 160% which is the rate that would meet WMO requirements. Results suggest that for a given augmentation robust networks remain stable overall for the two time horizons.

  9. Integrated forward and reverse supply chain: A tire case study.

    PubMed

    Pedram, Ali; Yusoff, Nukman Bin; Udoncy, Olugu Ezutah; Mahat, Abu Bakar; Pedram, Payam; Babalola, Ayo

    2017-02-01

    This paper attempts to integrate both a forward and reverse supply chain to design a closed-loop supply chain network (CLSC). The problem in the design of a CLSC network is uncertainty in demand, return products and the quality of return products. Scenario analyses are generated to overcome this uncertainty. In contrast to the existing supply chain network design models, a new application of a CLSC network was studied in this paper to reduce waste. A multi-product, multi-tier mixed integer linear model is developed for a CLSC network design. The main objective is to maximize profit and provide waste management decision support in order to minimize pollution. The result shows applicability of the model in the tire industry. The model determines the number and the locations of facilities and the material flows between these facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhao, Changhong; Guggilam, Swaroop

    Power networks have to withstand a variety of disturbances that affect system frequency, and the problem is compounded with the increasing integration of intermittent renewable generation. Following a large-signal generation or load disturbance, system frequency is arrested leveraging primary frequency control provided by governor action in synchronous generators. In this work, we propose a framework for distributed energy resources (DERs) deployed in distribution networks to provide (supplemental) primary frequency response. Particularly, we demonstrate how power-frequency droop slopes for individual DERs can be designed so that the distribution feeder presents a guaranteed frequency-regulation characteristic at the feeder head. Furthermore, the droopmore » slopes are engineered such that injections of individual DERs conform to a well-defined fairness objective that does not penalize them for their location on the distribution feeder. Time-domain simulations for an illustrative network composed of a combined transmission network and distribution network with frequency-responsive DERs are provided to validate the approach.« less

  11. Constrained Low-Interference Relay Node Deployment for Underwater Acoustic Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Li, Deying; Li, Zheng; Ma, Wenkai; Chen, Wenping

    An Underwater Acoustic Wireless Sensor Network (UA-WSN) consists of many resource-constrained Underwater Sensor Nodes (USNs), which are deployed to perform collaborative monitoring tasks over a given region. One way to preserve network connectivity while guaranteing other network QoS is to deploy some Relay Nodes (RNs) in the networks, in which RNs' function is more powerful than USNs and their cost is more expensive. This paper addresses Constrained Low-interference Relay Node Deployment (C-LRND) problem for 3-D UA-WSNs in which the RNs are placed at a subset of candidate locations to ensure connectivity between the USNs, under both the number of RNs deployed and the value of total incremental interference constraints. We first prove that it is NP-hard, then present a general approximation algorithm framework and get two polynomial time O(1)-approximation algorithms.

  12. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  13. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    PubMed Central

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  14. Data Acquisition System for Russian Arctic Magnetometer Network

    NASA Astrophysics Data System (ADS)

    Janzhura, A.; Troshichev, O. A.; Takahashi, K.

    2010-12-01

    Monitoring of magnetic activity in the auroral zone is very essential for space weather problem. The big part of northern auroral zone lies in the Russian sector of Arctica. The Russian auroral zone stations are located far from the proper infrastructure and communications, and getting the data from the stations is complicated and nontrivial task. To resolve this problem a new acquisition system for magnetometers was implemented and developed in last few years, with the magnetic data transmission in real time that is important for many forecasting purpose. The system, based on microprocessor modules, is very reliable in hush climatic conditions. The information from the magnetic sensors transmits to AARI data center by satellite communication system and is presented at AARI web pages. This equipment upgrading of Russian polar magnetometer network is supported by the international RapidMag program.

  15. Identifying an influential spreader from a single seed in complex networks via a message-passing approach

    NASA Astrophysics Data System (ADS)

    Min, Byungjoon

    2018-01-01

    Identifying the most influential spreaders is one of outstanding problems in physics of complex systems. So far, many approaches have attempted to rank the influence of nodes but there is still the lack of accuracy to single out influential spreaders. Here, we directly tackle the problem of finding important spreaders by solving analytically the expected size of epidemic outbreaks when spreading originates from a single seed. We derive and validate a theory for calculating the size of epidemic outbreaks with a single seed using a message-passing approach. In addition, we find that the probability to occur epidemic outbreaks is highly dependent on the location of the seed but the size of epidemic outbreaks once it occurs is insensitive to the seed. We also show that our approach can be successfully adapted into weighted networks.

  16. Interference Path Loss Prediction in A319/320 Airplanes Using Modulated Fuzzy Logic and Neural Networks

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda L.

    2007-01-01

    In this paper, neural network (NN) modeling is combined with fuzzy logic to estimate Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data. Combining fuzzy logic and NN modeling is shown to improve estimates of measured data over estimates obtained with NN alone. A plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.

  17. Using Grid Cells for Navigation.

    PubMed

    Bush, Daniel; Barry, Caswell; Manson, Daniel; Burgess, Neil

    2015-08-05

    Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this "vector navigation" relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Considering the dynamic refueling behavior in locating electric vehicle charging stations

    NASA Astrophysics Data System (ADS)

    Liu, K.; Sun, X. H.

    2014-11-01

    Electric vehicles (EVs) will certainly play an important role in addressing the energy and environmental challenges at current situation. However, location problem of EV charging stations was realized as one of the key issues of EVs launching strategy. While for the case of locating EV charging stations, more influence factors and constraints need to be considered since the EVs have some special attributes. The minimum requested charging time for EVs is usually more than 30minutes, therefore the possible delay time due to waiting or looking for an available station is one of the most important influence factors. In addition, the intention to purchase and use of EVs that also affects the location of EV charging stations is distributed unevenly among regions and should be considered when modelling. Unfortunately, these kinds of time-spatial constraints were always ignored in previous models. Based on the related research of refuelling behaviours and refuelling demands, this paper developed a new concept with dual objectives of minimum waiting time and maximum service accessibility for locating EV charging stations - named as Time-Spatial Location Model (TSLM). The proposed model and the traditional flow-capturing location model are applied on an example network respectively and the results are compared. Results demonstrate that time constraint has great effects on the location of EV charging stations. The proposed model has some obvious advantages and will help energy providers to make a viable plan for the network of EV charging stations.

  19. Cortical Transformation of Spatial Processing for Solving the Cocktail Party Problem: A Computational Model123

    PubMed Central

    Dong, Junzi; Colburn, H. Steven

    2016-01-01

    In multisource, “cocktail party” sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem. PMID:26866056

  20. Cortical Transformation of Spatial Processing for Solving the Cocktail Party Problem: A Computational Model(1,2,3).

    PubMed

    Dong, Junzi; Colburn, H Steven; Sen, Kamal

    2016-01-01

    In multisource, "cocktail party" sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem.

  1. The driving regulators of the connectivity protein network of brain malignancies

    NASA Astrophysics Data System (ADS)

    Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Wildburger, Norelle C.; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke

    2017-05-01

    An important problem in modern therapeutics at the proteomic level remains to identify therapeutic targets in a plentitude of high-throughput data from experiments relevant to a variety of diseases. This paper presents the application of novel modern control concepts, such as pinning controllability and observability applied to the glioma cancer stem cells (GSCs) protein graph network with known and novel association to glioblastoma (GBM). The theoretical frameworks provides us with the minimal number of "driver nodes", which are necessary, and their location to determine the full control over the obtained graph network in order to provide a change in the network's dynamics from an initial state (disease) to a desired state (non-disease). The achieved results will provide biochemists with techniques to identify more metabolic regions and biological pathways for complex diseases, to design and test novel therapeutic solutions.

  2. Data Retrieval Algorithms for Validating the Optical Transient Detector and the Lightning Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Blakeslee, R. J.; Bailey, J. C.

    2000-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing, and arrival time of lightning radio emissions. Solutions for the plane (i.e., no earth curvature) are provided that implement all of these measurements. The accuracy of the retrieval method is tested using computer-simulated datasets, and the relative influence of bearing and arrival time data an the outcome of the final solution is formally demonstrated. The algorithm is sufficiently accurate to validate NASA:s Optical Transient Detector and Lightning Imaging Sensor. A quadratic planar solution that is useful when only three arrival time measurements are available is also introduced. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in sc)iirce location, Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. For arbitrary noncollinear network geometries and in the absence of measurement errors, it is shown that the two quadratic roots are equivalent (no source location ambiguity) on the outer sensor baselines. The accuracy of the quadratic planar method is tested with computer-generated datasets, and the results are generally better than those obtained from the three-station linear planar method when bearing errors are about 2 deg.

  3. Serving by local consensus in the public service location game.

    PubMed

    Sun, Yi-Fan; Zhou, Hai-Jun

    2016-09-02

    We discuss the issue of distributed and cooperative decision-making in a network game of public service location. Each node of the network can decide to host a certain public service incurring in a construction cost and serving all the neighboring nodes and itself. A pure consumer node has to pay a tax, and the collected tax is evenly distributed to all the hosting nodes to remedy their construction costs. If all nodes make individual best-response decisions, the system gets trapped in an inefficient situation of high tax level. Here we introduce a decentralized local-consensus selection mechanism which requires nodes to recommend their neighbors of highest local impact as candidate servers, and a node may become a server only if all its non-server neighbors give their assent. We demonstrate that although this mechanism involves only information exchange among neighboring nodes, it leads to socially efficient solutions with tax level approaching the lowest possible value. Our results may help in understanding and improving collective problem-solving in various networked social and robotic systems.

  4. Serving by local consensus in the public service location game

    PubMed Central

    Sun, Yi-Fan; Zhou, Hai-Jun

    2016-01-01

    We discuss the issue of distributed and cooperative decision-making in a network game of public service location. Each node of the network can decide to host a certain public service incurring in a construction cost and serving all the neighboring nodes and itself. A pure consumer node has to pay a tax, and the collected tax is evenly distributed to all the hosting nodes to remedy their construction costs. If all nodes make individual best-response decisions, the system gets trapped in an inefficient situation of high tax level. Here we introduce a decentralized local-consensus selection mechanism which requires nodes to recommend their neighbors of highest local impact as candidate servers, and a node may become a server only if all its non-server neighbors give their assent. We demonstrate that although this mechanism involves only information exchange among neighboring nodes, it leads to socially efficient solutions with tax level approaching the lowest possible value. Our results may help in understanding and improving collective problem-solving in various networked social and robotic systems. PMID:27586793

  5. Spreading dynamics in complex networks

    NASA Astrophysics Data System (ADS)

    Pei, Sen; Makse, Hernán A.

    2013-12-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.

  6. Serving by local consensus in the public service location game

    NASA Astrophysics Data System (ADS)

    Sun, Yi-Fan; Zhou, Hai-Jun

    2016-09-01

    We discuss the issue of distributed and cooperative decision-making in a network game of public service location. Each node of the network can decide to host a certain public service incurring in a construction cost and serving all the neighboring nodes and itself. A pure consumer node has to pay a tax, and the collected tax is evenly distributed to all the hosting nodes to remedy their construction costs. If all nodes make individual best-response decisions, the system gets trapped in an inefficient situation of high tax level. Here we introduce a decentralized local-consensus selection mechanism which requires nodes to recommend their neighbors of highest local impact as candidate servers, and a node may become a server only if all its non-server neighbors give their assent. We demonstrate that although this mechanism involves only information exchange among neighboring nodes, it leads to socially efficient solutions with tax level approaching the lowest possible value. Our results may help in understanding and improving collective problem-solving in various networked social and robotic systems.

  7. Real-time source deformation modeling through GNSS permanent stations at Merapi volcano (Indonesia

    NASA Astrophysics Data System (ADS)

    Beauducel, F.; Nurnaning, A.; Iguchi, M.; Fahmi, A. A.; Nandaka, M. A.; Sumarti, S.; Subandriyo, S.; Metaxian, J. P.

    2014-12-01

    Mt. Merapi (Java, Indonesia) is one of the most active and dangerous volcano in the world. A first GPS repetition network was setup and periodically measured since 1993, allowing detecting a deep magma reservoir, quantifying magma flux in conduit and identifying shallow discontinuities around the former crater (Beauducel and Cornet, 1999;Beauducel et al., 2000, 2006). After the 2010 centennial eruption, when this network was almost completely destroyed, Indonesian and Japanese teams installed a new continuous GPS network for monitoring purpose (Iguchi et al., 2011), consisting of 3 stations located at the volcano flanks, plus a reference station at the Yogyakarta Observatory (BPPTKG).In the framework of DOMERAPI project (2013-2016) we have completed this network with 5 additional stations, which are located on the summit area and volcano surrounding. The new stations are 1-Hz sampling, GNSS (GPS + GLONASS) receivers, and near real-time data streaming to the Observatory. An automatic processing has been developed and included in the WEBOBS system (Beauducel et al., 2010) based on GIPSY software computing precise daily moving solutions every hour, and for different time scales (2 months, 1 and 5 years), time series and velocity vectors. A real-time source modeling estimation has also been implemented. It uses the depth-varying point source solution (Mogi, 1958; Williams and Wadge, 1998) in a systematic inverse problem model exploration that displays location, volume variation and 3-D probability map.The operational system should be able to better detect and estimate the location and volume variations of possible magma sources, and to follow magma transfer towards the surface. This should help monitoring and contribute to decision making during future unrest or eruption.

  8. Automatic building identification under bomb damage conditions

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Noll, Warren; Barker, Joseph; Wunsch, Donald C., II

    2009-05-01

    Given the vast amount of image intelligence utilized in support of planning and executing military operations, a passive automated image processing capability for target identification is urgently required. Furthermore, transmitting large image streams from remote locations would quickly use available band width (BW) precipitating the need for processing to occur at the sensor location. This paper addresses the problem of automatic target recognition for battle damage assessment (BDA). We utilize an Adaptive Resonance Theory approach to cluster templates of target buildings. The results show that the network successfully classifies targets from non-targets in a virtual test bed environment.

  9. Identifying influential user communities on the social network

    NASA Astrophysics Data System (ADS)

    Hu, Weishu; Gong, Zhiguo; Hou U, Leong; Guo, Jingzhi

    2015-10-01

    Nowadays social network services have been popularly used in electronic commerce systems. Users on the social network can develop different relationships based on their common interests and activities. In order to promote the business, it is interesting to explore hidden relationships among users developed on the social network. Such knowledge can be used to locate target users for different advertisements and to provide effective product recommendations. In this paper, we define and study a novel community detection problem that is to discover the hidden community structure in large social networks based on their common interests. We observe that the users typically pay more attention to those users who share similar interests, which enable a way to partition the users into different communities according to their common interests. We propose two algorithms to detect influential communities using common interests in large social networks efficiently and effectively. We conduct our experimental evaluation using a data set from Epinions, which demonstrates that our method achieves 4-11.8% accuracy improvement over the state-of-the-art method.

  10. Physical Attractiveness, Social Network Location, and Performance in the Military

    DTIC Science & Technology

    2008-03-01

    PHYSICAL ATTRACTIVESS, SOCIAL NETWORK LOCATION, AND PERPORMANCE IN THE MILITARY THESIS...PHYSICAL ATTRACTIVESS, SOCIAL NETWORK LOCATION, AND PERFORMANCE IN THE MILITARY THESIS Presented to the Faculty Department of...PHYSICAL ATTRACTIVESS, SOCIAL NETWORK LOCATION, AND PERFORMANCE IN THE MILITARY Janell M. Lott, BS Second Lieutenant, USAF

  11. A theoretical study on the bottlenecks of GPS phase ambiguity resolution in a CORS RTK Network

    NASA Astrophysics Data System (ADS)

    Odijk, D.; Teunissen, P.

    2011-01-01

    Crucial to the performance of GPS Network RTK positioning is that a user receives and applies correction information from a CORS Network. These corrections are necessary for the user to account for the atmospheric (ionospheric and tropospheric) delays and possibly orbit errors between his approximate location and the locations of the CORS Network stations. In order to provide the most precise corrections to users, the CORS Network processing should be based on integer resolution of the carrier phase ambiguities between the network's CORS stations. One of the main challenges is to reduce the convergence time, thus being able to quickly resolve the integer carrier phase ambiguities between the network's reference stations. Ideally, the network ambiguity resolution should be conducted within one single observation epoch, thus truly in real time. Unfortunately, single-epoch CORS Network RTK ambiguity resolution is currently not feasible and in the present contribution we study the bottlenecks preventing this. For current dual-frequency GPS the primary cause of these CORS Network integer ambiguity initialization times is the lack of a sufficiently large number of visible satellites. Although an increase in satellite number shortens the ambiguity convergence times, instantaneous CORS Network RTK ambiguity resolution is not feasible even with 14 satellites. It is further shown that increasing the number of stations within the CORS Network itself does not help ambiguity resolution much, since every new station introduces new ambiguities. The problem with CORS Network RTK ambiguity resolution is the presence of the atmospheric (mainly ionospheric) delays themselves and the fact that there are no external corrections that are sufficiently precise. We also show that external satellite clock corrections hardly contribute to CORS Network RTK ambiguity resolution, despite their quality, since the network satellite clock parameters and the ambiguities are almost completely uncorrelated. One positive is that the foreseen modernized GPS will have a very beneficial effect on CORS ambiguity resolution, because of an additional frequency with improved code precision.

  12. The Malvinas War from the Argentinian Viewpoint

    DTIC Science & Technology

    1988-05-01

    commercial concern is The Falkland Islands Company. This company owns 80 per cent of the total economic product. Communications are a considerable problem...krill also exists. Additionally, the islands’ strategic position is critical to control of the South Atlantic, with many commercial lines of communication ...the traditional 18 rivalry between services, and the poor communications network to receive orders from the decision centers located on the conti

  13. Optimal actuator location within a morphing wing scissor mechanism configuration

    NASA Astrophysics Data System (ADS)

    Joo, James J.; Sanders, Brian; Johnson, Terrence; Frecker, Mary I.

    2006-03-01

    In this paper, the optimal location of a distributed network of actuators within a scissor wing mechanism is investigated. The analysis begins by developing a mechanical understanding of a single cell representation of the mechanism. This cell contains four linkages connected by pin joints, a single actuator, two springs to represent the bidirectional behavior of a flexible skin, and an external load. Equilibrium equations are developed using static analysis and the principle of virtual work equations. An objective function is developed to maximize the efficiency of the unit cell model. It is defined as useful work over input work. There are two constraints imposed on this problem. The first is placed on force transferred from the external source to the actuator. It should be less than the blocked actuator force. The other is to require the ratio of output displacement over input displacement, i.e., geometrical advantage (GA), of the cell to be larger than a prescribed value. Sequential quadratic programming is used to solve the optimization problem. This process suggests a systematic approach to identify an optimum location of an actuator and to avoid the selection of location by trial and error. Preliminary results show that optimum locations of an actuator can be selected out of feasible regions according to the requirements of the problem such as a higher GA, a higher efficiency, or a smaller transferred force from external force. Results include analysis of single and multiple cell wing structures and some experimental comparisons.

  14. a Comparison of Simulated Annealing, Genetic Algorithm and Particle Swarm Optimization in Optimal First-Order Design of Indoor Tls Networks

    NASA Astrophysics Data System (ADS)

    Jia, F.; Lichti, D.

    2017-09-01

    The optimal network design problem has been well addressed in geodesy and photogrammetry but has not received the same attention for terrestrial laser scanner (TLS) networks. The goal of this research is to develop a complete design system that can automatically provide an optimal plan for high-accuracy, large-volume scanning networks. The aim in this paper is to use three heuristic optimization methods, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO), to solve the first-order design (FOD) problem for a small-volume indoor network and make a comparison of their performances. The room is simplified as discretized wall segments and possible viewpoints. Each possible viewpoint is evaluated with a score table representing the wall segments visible from each viewpoint based on scanning geometry constraints. The goal is to find a minimum number of viewpoints that can obtain complete coverage of all wall segments with a minimal sum of incidence angles. The different methods have been implemented and compared in terms of the quality of the solutions, runtime and repeatability. The experiment environment was simulated from a room located on University of Calgary campus where multiple scans are required due to occlusions from interior walls. The results obtained in this research show that PSO and GA provide similar solutions while SA doesn't guarantee an optimal solution within limited iterations. Overall, GA is considered as the best choice for this problem based on its capability of providing an optimal solution and fewer parameters to tune.

  15. Reservoir characterization using core, well log, and seismic data and intelligent software

    NASA Astrophysics Data System (ADS)

    Soto Becerra, Rodolfo

    We have developed intelligent software, Oilfield Intelligence (OI), as an engineering tool to improve the characterization of oil and gas reservoirs. OI integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphics design, and inference engine modules. More than 1,200 lines of programming code as M-files using the language MATLAB been written. The degree of success of many oil and gas drilling, completion, and production activities depends upon the accuracy of the models used in a reservoir description. Neural networks have been applied for identification of nonlinear systems in almost all scientific fields of humankind. Solving reservoir characterization problems is no exception. Neural networks have a number of attractive features that can help to extract and recognize underlying patterns, structures, and relationships among data. However, before developing a neural network model, we must solve the problem of dimensionality such as determining dominant and irrelevant variables. We can apply principal components and factor analysis to reduce the dimensionality and help the neural networks formulate more realistic models. We validated OI by obtaining confident models in three different oil field problems: (1) A neural network in-situ stress model using lithology and gamma ray logs for the Travis Peak formation of east Texas, (2) A neural network permeability model using porosity and gamma ray and a neural network pseudo-gamma ray log model using 3D seismic attributes for the reservoir VLE 196 Lamar field located in Block V of south-central Lake Maracaibo (Venezuela), and (3) Neural network primary ultimate oil recovery (PRUR), initial waterflooding ultimate oil recovery (IWUR), and infill drilling ultimate oil recovery (IDUR) models using reservoir parameters for San Andres and Clearfork carbonate formations in west Texas. In all cases, we compared the results from the neural network models with the results from regression statistical and non-parametric approach models. The results show that it is possible to obtain the highest cross-correlation coefficient between predicted and actual target variables, and the lowest average absolute errors using the integrated techniques of multivariate statistical analysis and neural networks in our intelligent software.

  16. Bayesian Network Structure Learning for Urban Land Use Classification from Landsat ETM+ and Ancillary Data

    NASA Astrophysics Data System (ADS)

    Park, M.; Stenstrom, M. K.

    2004-12-01

    Recognizing urban information from the satellite imagery is problematic due to the diverse features and dynamic changes of urban landuse. The use of Landsat imagery for urban land use classification involves inherent uncertainty due to its spatial resolution and the low separability among land uses. To resolve the uncertainty problem, we investigated the performance of Bayesian networks to classify urban land use since Bayesian networks provide a quantitative way of handling uncertainty and have been successfully used in many areas. In this study, we developed the optimized networks for urban land use classification from Landsat ETM+ images of Marina del Rey area based on USGS land cover/use classification level III. The networks started from a tree structure based on mutual information between variables and added the links to improve accuracy. This methodology offers several advantages: (1) The network structure shows the dependency relationships between variables. The class node value can be predicted even with particular band information missing due to sensor system error. The missing information can be inferred from other dependent bands. (2) The network structure provides information of variables that are important for the classification, which is not available from conventional classification methods such as neural networks and maximum likelihood classification. In our case, for example, bands 1, 5 and 6 are the most important inputs in determining the land use of each pixel. (3) The networks can be reduced with those input variables important for classification. This minimizes the problem without considering all possible variables. We also examined the effect of incorporating ancillary data: geospatial information such as X and Y coordinate values of each pixel and DEM data, and vegetation indices such as NDVI and Tasseled Cap transformation. The results showed that the locational information improved overall accuracy (81%) and kappa coefficient (76%), and lowered the omission and commission errors compared with using only spectral data (accuracy 71%, kappa coefficient 62%). Incorporating DEM data did not significantly improve overall accuracy (74%) and kappa coefficient (66%) but lowered the omission and commission errors. Incorporating NDVI did not much improve the overall accuracy (72%) and k coefficient (65%). Including Tasseled Cap transformation reduced the accuracy (accuracy 70%, kappa 61%). Therefore, additional information from the DEM and vegetation indices was not useful as locational ancillary data.

  17. A multi-objective optimization model for hub network design under uncertainty: An inexact rough-interval fuzzy approach

    NASA Astrophysics Data System (ADS)

    Niakan, F.; Vahdani, B.; Mohammadi, M.

    2015-12-01

    This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.

  18. Eigencentrality based on dissimilarity measures reveals central nodes in complex networks

    PubMed Central

    Alvarez-Socorro, A. J.; Herrera-Almarza, G. C.; González-Díaz, L. A.

    2015-01-01

    One of the most important problems in complex network’s theory is the location of the entities that are essential or have a main role within the network. For this purpose, the use of dissimilarity measures (specific to theory of classification and data mining) to enrich the centrality measures in complex networks is proposed. The centrality method used is the eigencentrality which is based on the heuristic that the centrality of a node depends on how central are the nodes in the immediate neighbourhood (like rich get richer phenomenon). This can be described by an eigenvalues problem, however the information of the neighbourhood and the connections between neighbours is not taken in account, neglecting their relevance when is one evaluates the centrality/importance/influence of a node. The contribution calculated by the dissimilarity measure is parameter independent, making the proposed method is also parameter independent. Finally, we perform a comparative study of our method versus other methods reported in the literature, obtaining more accurate and less expensive computational results in most cases. PMID:26603652

  19. Localization of an Underwater Control Network Based on Quasi-Stable Adjustment.

    PubMed

    Zhao, Jianhu; Chen, Xinhua; Zhang, Hongmei; Feng, Jie

    2018-03-23

    There exists a common problem in the localization of underwater control networks that the precision of the absolute coordinates of known points obtained by marine absolute measurement is poor, and it seriously affects the precision of the whole network in traditional constraint adjustment. Therefore, considering that the precision of underwater baselines is good, we use it to carry out quasi-stable adjustment to amend known points before constraint adjustment so that the points fit the network shape better. In addition, we add unconstrained adjustment for quality control of underwater baselines, the observations of quasi-stable adjustment and constrained adjustment, to eliminate the unqualified baselines and improve the results' accuracy of the two adjustments. Finally, the modified method is applied to a practical LBL (Long Baseline) experiment and obtains a mean point location precision of 0.08 m, which improves by 38% compared with the traditional method.

  20. Localization of an Underwater Control Network Based on Quasi-Stable Adjustment

    PubMed Central

    Chen, Xinhua; Zhang, Hongmei; Feng, Jie

    2018-01-01

    There exists a common problem in the localization of underwater control networks that the precision of the absolute coordinates of known points obtained by marine absolute measurement is poor, and it seriously affects the precision of the whole network in traditional constraint adjustment. Therefore, considering that the precision of underwater baselines is good, we use it to carry out quasi-stable adjustment to amend known points before constraint adjustment so that the points fit the network shape better. In addition, we add unconstrained adjustment for quality control of underwater baselines, the observations of quasi-stable adjustment and constrained adjustment, to eliminate the unqualified baselines and improve the results’ accuracy of the two adjustments. Finally, the modified method is applied to a practical LBL (Long Baseline) experiment and obtains a mean point location precision of 0.08 m, which improves by 38% compared with the traditional method. PMID:29570627

  1. An Effective Massive Sensor Network Data Access Scheme Based on Topology Control for the Internet of Things

    PubMed Central

    Yi, Meng; Chen, Qingkui; Xiong, Neal N.

    2016-01-01

    This paper considers the distributed access and control problem of massive wireless sensor networks’ data access center for the Internet of Things, which is an extension of wireless sensor networks and an element of its topology structure. In the context of the arrival of massive service access requests at a virtual data center, this paper designs a massive sensing data access and control mechanism to improve the access efficiency of service requests and makes full use of the available resources at the data access center for the Internet of things. Firstly, this paper proposes a synergistically distributed buffer access model, which separates the information of resource and location. Secondly, the paper divides the service access requests into multiple virtual groups based on their characteristics and locations using an optimized self-organizing feature map neural network. Furthermore, this paper designs an optimal scheduling algorithm of group migration based on the combination scheme between the artificial bee colony algorithm and chaos searching theory. Finally, the experimental results demonstrate that this mechanism outperforms the existing schemes in terms of enhancing the accessibility of service requests effectively, reducing network delay, and has higher load balancing capacity and higher resource utility rate. PMID:27827878

  2. A heuristic method for consumable resource allocation in multi-class dynamic PERT networks

    NASA Astrophysics Data System (ADS)

    Yaghoubi, Saeed; Noori, Siamak; Mazdeh, Mohammad Mahdavi

    2013-06-01

    This investigation presents a heuristic method for consumable resource allocation problem in multi-class dynamic Project Evaluation and Review Technique (PERT) networks, where new projects from different classes (types) arrive to system according to independent Poisson processes with different arrival rates. Each activity of any project is operated at a devoted service station located in a node of the network with exponential distribution according to its class. Indeed, each project arrives to the first service station and continues its routing according to precedence network of its class. Such system can be represented as a queuing network, while the discipline of queues is first come, first served. On the basis of presented method, a multi-class system is decomposed into several single-class dynamic PERT networks, whereas each class is considered separately as a minisystem. In modeling of single-class dynamic PERT network, we use Markov process and a multi-objective model investigated by Azaron and Tavakkoli-Moghaddam in 2007. Then, after obtaining the resources allocated to service stations in every minisystem, the final resources allocated to activities are calculated by the proposed method.

  3. Metro Optical Networks for Homeland Security

    NASA Astrophysics Data System (ADS)

    Bechtel, James H.

    Metro optical networks provide an enticing opportunity for strengthening homeland security. Many existing and emerging fiber-optic networks can be adapted for enhanced security applications. Applications include airports, theme parks, sports venues, and border surveillance systems. Here real-time high-quality video and captured images can be collected, transported, processed, and stored for security applications. Video and data collection are important also at correctional facilities, courts, infrastructure (e.g., dams, bridges, railroads, reservoirs, power stations), and at military and other government locations. The scaling of DWDM-based networks allows vast amounts of data to be collected and transported including biometric features of individuals at security check points. Here applications will be discussed along with potential solutions and challenges. Examples of solutions to these problems are given. This includes a discussion of metropolitan aggregation platforms for voice, video, and data that are SONET compliant for use in SONET networks and the use of DWDM technology for scaling and transporting a variety of protocols. Element management software allows not only network status monitoring, but also provides optimized allocation of network resources through the use of optical switches or electrical cross connects.

  4. Detection performance of three different lightning location networks in Beijing area based on accurate fast antenna records

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Tian, Y.; Wang, D.; Yuan, S.; Chen, Z.; Sun, Z.; Qie, X.

    2016-12-01

    Scientists have developed the regional and worldwide lightning location network to study the lightning physics and locating the lightning stroke. One of the key issue in all the networks; to recognize the performance of the network. The performance of each network would be different based on the regional geographic conditions and the instrumental limitation. To improve the performance of the network. it is necessary to know the ground truth of the network and to discuss about the detection efficiency (DE) and location accuracy (LA). A comparative study has been discussed among World Wide Lightning Location Network (WWLLN), ADvanced TOA and Direction system (ADTD) and Beijing Lightning NETwork (BLNET) lightning detection network in Beijing area. WWLLN locate the cloud to ground (CG) and strong inter cloud (IC) globally without demonstrating any differences. ADTD locate the CG strokes in the entire China as regional. Both these networks are long range detection system that does not provide the focused details of a thunderstorm. BLNET can locate the CG and IC and is focused on thunderstorm detection. The waveform of fast antenna checked manually and the relative DE among the three networks has been obtained based on the CG strokes. The relative LA has been obtained using the matched flashes among these networks as well as LA obtained using the strike on the tower. The relative DE of BLNET is much higher than the ADTD and WWLLN as these networks has approximately similar relative DE. The relative LA of WWLLN and ADTD location is eastward and northward respectively from the BLNET. The LA based on tower observation is relatively high-quality in favor of BLNET. The ground truth of WWLLN, ADTD and BLNET has been obtained and found the performance of BLNET network is much better. This study is helpful to improve the performance of the networks and to provide a belief of LA that can follow the thunderstorm path with the prediction and forecasting of thunderstorm and lightning.

  5. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks

    PubMed Central

    Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-01-01

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid “particle degeneracy” problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network. PMID:29267252

  6. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks.

    PubMed

    Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-12-21

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.

  7. Optimal location of emergency stations in underground mine networks using a multiobjective mathematical model.

    PubMed

    Lotfian, Reza; Najafi, Mehdi

    2018-02-26

    Background Every year, many mining accidents occur in underground mines all over the world resulting in the death and maiming of many miners and heavy financial losses to mining companies. Underground mining accounts for an increasing share of these events due to their special circumstances and the risks of working therein. Thus, the optimal location of emergency stations within the network of an underground mine in order to provide medical first aid and transport injured people at the right time, plays an essential role in reducing deaths and disabilities caused by accidents Objective The main objective of this study is to determine the location of emergency stations (ES) within the network of an underground coal mine in order to minimize the outreach time for the injured. Methods A three-objective mathematical model is presented for placement of ES facility location selection and allocation of facilities to the injured in various stopes. Results Taking into account the radius of influence for each ES, the proposed model is capable to reduce the maximum time for provision of emergency services in the event of accident for each stope. In addition, the coverage or lack of coverage of each stope by any of the emergency facility is determined by means of Floyd-Warshall algorithm and graph. To solve the problem, a global criterion method using GAMS software is used to evaluate the accuracy and efficiency of the model. Conclusions 7 locations were selected from among 46 candidates for the establishment of emergency facilities in Tabas underground coal mine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Ontological security and connectivity provided by pets: a study in the self-management of the everyday lives of people diagnosed with a long-term mental health condition.

    PubMed

    Brooks, Helen; Rushton, Kelly; Walker, Sandra; Lovell, Karina; Rogers, Anne

    2016-12-09

    Despite evidence that connecting people to relevant wellbeing-related resources brings therapeutic benefit, there is limited understanding, in the context of mental health recovery, of the potential value and contribution of pet ownership to personal support networks for self-management. This study aimed to explore the role of pets in the support and management activities in the personal networks of people with long-term mental health problems. Semi-structured interviews centred on 'ego' network mapping were conducted in two locations (in the North West and in the South of England) with 54 participants with a diagnosis of a long-term mental health problem. Interviews explored the day-to-day experience of living with a mental illness, informed by the notion of illness work undertaken by social network members within personal networks. Narratives were elicited that explored the relationship, value, utility and meaning of pets in the context of the provision of social support and management provided by other network members. Interviews were recorded, then transcribed verbatim before being analysed using a framework analysis. The majority of pets were placed in the central, most valued circle of support within the network diagrams. Pets were implicated in relational work through the provision of secure and intimate relationships not available elsewhere. Pets constituted a valuable source of illness work in managing feelings through distraction from symptoms and upsetting experiences, and provided a form of encouragement for activity. Pets were of enhanced salience where relationships with other network members were limited or difficult. Despite these benefits, pets were unanimously neither considered nor incorporated into individual mental health care plans. Drawing on a conceptual framework built on Corbin and Strauss's notion of illness 'work' and notions of a personal workforce of support undertaken within whole networks of individuals, this study contributes to our understanding of the role of pets in the daily management of long-term mental health problems. Pets should be considered a main rather than a marginal source of support in the management of long-term mental health problems, and this has implications for the planning and delivery of mental health services.

  9. Model-Free Stochastic Localization of CBRN Releases

    DTIC Science & Technology

    2013-01-01

    Ioannis Ch. Paschalidis,‡ Senior Member, IEEE Abstract—We present a novel two-stage methodology for locating a Chemical, Biological, Radiological, or...Nuclear (CBRN) source in an urban area using a network of sensors. In contrast to earlier work, our approach does not solve an inverse dispersion problem...but relies on data obtained from a simulation of the CBRN dispersion to obtain probabilistic descriptors of sensor measurements under a variety of CBRN

  10. Methods and means used in programming intelligent searches of technical documents

    NASA Technical Reports Server (NTRS)

    Gross, David L.

    1993-01-01

    In order to meet the data research requirements of the Safety, Reliability & Quality Assurance activities at Kennedy Space Center (KSC), a new computer search method for technical data documents was developed. By their very nature, technical documents are partially encrypted because of the author's use of acronyms, abbreviations, and shortcut notations. This problem of computerized searching is compounded at KSC by the volume of documentation that is produced during normal Space Shuttle operations. The Centralized Document Database (CDD) is designed to solve this problem. It provides a common interface to an unlimited number of files of various sizes, with the capability to perform any diversified types and levels of data searches. The heart of the CDD is the nature and capability of its search algorithms. The most complex form of search that the program uses is with the use of a domain-specific database of acronyms, abbreviations, synonyms, and word frequency tables. This database, along with basic sentence parsing, is used to convert a request for information into a relational network. This network is used as a filter on the original document file to determine the most likely locations for the data requested. This type of search will locate information that traditional techniques, (i.e., Boolean structured key-word searching), would not find.

  11. Implementation of fast handover for proxy mobile IPv6: Resolving out-of-order packets

    PubMed Central

    Anh, Khuong Quoc; Choo, Hyunseung

    2017-01-01

    Mobile IP allows for location-independent routing of IP datagrams on the Internet. Mobile IP specifies how a mobile node (MN) registers with its home agent and how the home agent routes datagrams to the MN through the tunnel. Current Mobile IP protocols have difficulties meeting the stringent handover delay requirements of future wireless networks. Fast handover for Proxy Mobile IPv6 (FPMIPv6) is used to resolve handover latency and packet loss problems that occur in the Proxy Mobile IPv6 (PMIPv6) protocol. However, while implementing the FPMIPv6 scheme in a testbed, we encounter the out-of-order packet (OoOP) problem. The cause of this problem is the existence of two paths for data transmitted from a correspondent node (CN) to an MN. Since the problem affects the quality of service (QoS) of the network and the performance of the MN, we propose a new scheme using the last packet marker and packet buffering to solve this problem in FPMIPv6. The new Mobile Access Gateway (MAG) can control and deliver the data transmitted via the old path or the new path to an MN in order, using the last packet marker to notify the end of the data delivery in the old path and the packet buffering for holding the data delivered in the new path. We implement both the proposed scheme and FPMIPv6 in a testbed as a real network environment to demonstrate the correctness, cost effectiveness, and performance of the proposed scheme. A performance evaluation reveals that the proposed scheme can handle the OoOP problem efficiently. PMID:28968450

  12. Implementation of fast handover for proxy mobile IPv6: Resolving out-of-order packets.

    PubMed

    Kang, Byungseok; Anh, Khuong Quoc; Choo, Hyunseung

    2017-01-01

    Mobile IP allows for location-independent routing of IP datagrams on the Internet. Mobile IP specifies how a mobile node (MN) registers with its home agent and how the home agent routes datagrams to the MN through the tunnel. Current Mobile IP protocols have difficulties meeting the stringent handover delay requirements of future wireless networks. Fast handover for Proxy Mobile IPv6 (FPMIPv6) is used to resolve handover latency and packet loss problems that occur in the Proxy Mobile IPv6 (PMIPv6) protocol. However, while implementing the FPMIPv6 scheme in a testbed, we encounter the out-of-order packet (OoOP) problem. The cause of this problem is the existence of two paths for data transmitted from a correspondent node (CN) to an MN. Since the problem affects the quality of service (QoS) of the network and the performance of the MN, we propose a new scheme using the last packet marker and packet buffering to solve this problem in FPMIPv6. The new Mobile Access Gateway (MAG) can control and deliver the data transmitted via the old path or the new path to an MN in order, using the last packet marker to notify the end of the data delivery in the old path and the packet buffering for holding the data delivered in the new path. We implement both the proposed scheme and FPMIPv6 in a testbed as a real network environment to demonstrate the correctness, cost effectiveness, and performance of the proposed scheme. A performance evaluation reveals that the proposed scheme can handle the OoOP problem efficiently.

  13. Primary Frequency Response with Aggregated DERs: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guggilam, Swaroop S.; Dhople, Sairaj V.; Zhao, Changhong

    2017-03-03

    Power networks have to withstand a variety of disturbances that affect system frequency, and the problem is compounded with the increasing integration of intermittent renewable generation. Following a large-signal generation or load disturbance, system frequency is arrested leveraging primary frequency control provided by governor action in synchronous generators. In this work, we propose a framework for distributed energy resources (DERs) deployed in distribution networks to provide (supplemental) primary frequency response. Particularly, we demonstrate how power-frequency droop slopes for individual DERs can be designed so that the distribution feeder presents a guaranteed frequency-regulation characteristic at the feeder head. Furthermore, the droopmore » slopes are engineered such that injections of individual DERs conform to a well-defined fairness objective that does not penalize them for their location on the distribution feeder. Time-domain simulations for an illustrative network composed of a combined transmission network and distribution network with frequency-responsive DERs are provided to validate the approach.« less

  14. Pre-Scheduled and Self Organized Sleep-Scheduling Algorithms for Efficient K-Coverage in Wireless Sensor Networks

    PubMed Central

    Hwang, I-Shyan

    2017-01-01

    The K-coverage configuration that guarantees coverage of each location by at least K sensors is highly popular and is extensively used to monitor diversified applications in wireless sensor networks. Long network lifetime and high detection quality are the essentials of such K-covered sleep-scheduling algorithms. However, the existing sleep-scheduling algorithms either cause high cost or cannot preserve the detection quality effectively. In this paper, the Pre-Scheduling-based K-coverage Group Scheduling (PSKGS) and Self-Organized K-coverage Scheduling (SKS) algorithms are proposed to settle the problems in the existing sleep-scheduling algorithms. Simulation results show that our pre-scheduled-based KGS approach enhances the detection quality and network lifetime, whereas the self-organized-based SKS algorithm minimizes the computation and communication cost of the nodes and thereby is energy efficient. Besides, SKS outperforms PSKGS in terms of network lifetime and detection quality as it is self-organized. PMID:29257078

  15. On Deployment of Multiple Base Stations for Energy-Efficient Communication in Wireless Sensor Networks

    DOE PAGES

    Lin, Yunyue; Wu, Qishi; Cai, Xiaoshan; ...

    2010-01-01

    Data transmission from sensor nodes to a base station or a sink node often incurs significant energy consumption, which critically affects network lifetime. We generalize and solve the problem of deploying multiple base stations to maximize network lifetime in terms of two different metrics under one-hop and multihop communication models. In the one-hop communication model, the sensors far away from base stations always deplete their energy much faster than others. We propose an optimal solution and a heuristic approach based on the minimal enclosing circle algorithm to deploy a base station at the geometric center of each cluster. In themore » multihop communication model, both base station location and data routing mechanism need to be considered in maximizing network lifetime. We propose an iterative algorithm based on rigorous mathematical derivations and use linear programming to compute the optimal routing paths for data transmission. Simulation results show the distinguished performance of the proposed deployment algorithms in maximizing network lifetime.« less

  16. Classification of Reactor Facility Operational State Using SPRT Methods with Radiation Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez Aviles, Camila A.; Rao, Nageswara S.

    We consider the problem of inferring the operational state of a reactor facility by using measurements from a radiation sensor network, which is deployed around the facility’s ventilation stack. The radiation emissions from the stack decay with distance, and the corresponding measurements are inherently random with parameters determined by radiation intensity levels at the sensor locations. We fuse measurements from network sensors to estimate the intensity at the stack, and use this estimate in a one-sided Sequential Probability Ratio Test (SPRT) to infer the on/off state of the reactor facility. We demonstrate the superior performance of this method over conventionalmore » majority vote fusers and individual sensors using (i) test measurements from a network of NaI sensors, and (ii) emulated measurements using radioactive effluents collected at a reactor facility stack. We analytically quantify the performance improvements of individual sensors and their networks with adaptive thresholds over those with fixed ones, by using the packing number of the radiation intensity space.« less

  17. Multistability of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde

    2015-11-01

    The problem of coexistence and dynamical behaviors of multiple equilibrium points is addressed for a class of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. By virtue of the fixed point theorem, nonsmooth analysis theory and other analytical tools, some sufficient conditions are established to guarantee that such n-dimensional memristive Cohen-Grossberg neural networks can have 5(n) equilibrium points, among which 3(n) equilibrium points are locally exponentially stable. It is shown that greater storage capacity can be achieved by neural networks with the non-monotonic activation functions introduced herein than the ones with Mexican-hat-type activation function. In addition, unlike most existing multistability results of neural networks with monotonic activation functions, those obtained 3(n) locally stable equilibrium points are located both in saturated regions and unsaturated regions. The theoretical findings are verified by an illustrative example with computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A Fault Tolerance Mechanism for On-Road Sensor Networks

    PubMed Central

    Feng, Lei; Guo, Shaoyong; Sun, Jialu; Yu, Peng; Li, Wenjing

    2016-01-01

    On-Road Sensor Networks (ORSNs) play an important role in capturing traffic flow data for predicting short-term traffic patterns, driving assistance and self-driving vehicles. However, this kind of network is prone to large-scale communication failure if a few sensors physically fail. In this paper, to ensure that the network works normally, an effective fault-tolerance mechanism for ORSNs which mainly consists of backup on-road sensor deployment, redundant cluster head deployment and an adaptive failure detection and recovery method is proposed. Firstly, based on the N − x principle and the sensors’ failure rate, this paper formulates the backup sensor deployment problem in the form of a two-objective optimization, which explains the trade-off between the cost and fault resumption. In consideration of improving the network resilience further, this paper introduces a redundant cluster head deployment model according to the coverage constraint. Then a common solving method combining integer-continuing and sequential quadratic programming is explored to determine the optimal location of these two deployment problems. Moreover, an Adaptive Detection and Resume (ADR) protocol is deigned to recover the system communication through route and cluster adjustment if there is a backup on-road sensor mismatch. The final experiments show that our proposed mechanism can achieve an average 90% recovery rate and reduce the average number of failed sensors at most by 35.7%. PMID:27918483

  19. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint

    PubMed Central

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-01

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network. PMID:29316639

  20. ALDF Data Retrieval Algorithms for Validating the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS)

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Blakeslee, R. J.; Bailey, J. C.

    1997-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from in Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing, and arrival time of lightning radio emissions and solutions for the plane (i.e.. no Earth curvature) are provided that implement all of these measurements. The accuracy of the retrieval method is tested using computer-simulated data sets and the relative influence of bearing and arrival time data on the outcome of the final solution is formally demonstrated. The algorithm is sufficiently accurate to validate NASA's Optical Transient Detector (OTD) and Lightning Imaging System (LIS). We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. For arbitrary noncollinear network geometries and in the absence of measurement errors, it is shown that the two quadratic roots are equivalent (no source location ambiguity) on the outer sensor baselines. The accuracy of the quadratic planar method is tested with computer-generated data sets and the results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 degrees.

  1. Neural Modularity Helps Organisms Evolve to Learn New Skills without Forgetting Old Skills

    PubMed Central

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-01-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to alleviate the problem of catastrophic forgetting. PMID:25837826

  2. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.

    PubMed

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-04-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to alleviate the problem of catastrophic forgetting.

  3. Identification of unique repeated patterns, location of mutation in DNA finger printing using artificial intelligence technique.

    PubMed

    Mukunthan, B; Nagaveni, N

    2014-01-01

    In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.

  4. Incorporating location, routing, and inventory decisions in a bi-objective supply chain design problem with risk-pooling

    NASA Astrophysics Data System (ADS)

    Tavakkoli-Moghaddam, Reza; Forouzanfar, Fateme; Ebrahimnejad, Sadoullah

    2013-07-01

    This paper considers a single-sourcing network design problem for a three-level supply chain. For the first time, a novel mathematical model is presented considering risk-pooling, the inventory existence at distribution centers (DCs) under demand uncertainty, the existence of several alternatives to transport the product between facilities, and routing of vehicles from distribution centers to customer in a stochastic supply chain system, simultaneously. This problem is formulated as a bi-objective stochastic mixed-integer nonlinear programming model. The aim of this model is to determine the number of located distribution centers, their locations, and capacity levels, and allocating customers to distribution centers and distribution centers to suppliers. It also determines the inventory control decisions on the amount of ordered products and the amount of safety stocks at each opened DC, selecting a type of vehicle for transportation. Moreover, it determines routing decisions, such as determination of vehicles' routes starting from an opened distribution center to serve its allocated customers and returning to that distribution center. All are done in a way that the total system cost and the total transportation time are minimized. The Lingo software is used to solve the presented model. The computational results are illustrated in this paper.

  5. Wireless Sensor Networks - Node Localization for Various Industry Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derr, Kurt; Manic, Milos

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less

  6. Wireless Sensor Networks - Node Localization for Various Industry Problems

    DOE PAGES

    Derr, Kurt; Manic, Milos

    2015-06-01

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less

  7. Tracking the visual focus of attention for a varying number of wandering people.

    PubMed

    Smith, Kevin; Ba, Sileye O; Odobez, Jean-Marc; Gatica-Perez, Daniel

    2008-07-01

    We define and address the problem of finding the visual focus of attention for a varying number of wandering people (VFOA-W), determining where the people's movement is unconstrained. VFOA-W estimation is a new and important problem with mplications for behavior understanding and cognitive science, as well as real-world applications. One such application, which we present in this article, monitors the attention passers-by pay to an outdoor advertisement. Our approach to the VFOA-W problem proposes a multi-person tracking solution based on a dynamic Bayesian network that simultaneously infers the (variable) number of people in a scene, their body locations, their head locations, and their head pose. For efficient inference in the resulting large variable-dimensional state-space we propose a Reversible Jump Markov Chain Monte Carlo (RJMCMC) sampling scheme, as well as a novel global observation model which determines the number of people in the scene and localizes them. We propose a Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM)-based VFOA-W model which use head pose and location information to determine people's focus state. Our models are evaluated for tracking performance and ability to recognize people looking at an outdoor advertisement, with results indicating good performance on sequences where a moderate number of people pass in front of an advertisement.

  8. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br; Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br; Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering themore » recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes.« less

  9. A novel method for identifying a graph-based representation of 3-D microvascular networks from fluorescence microscopy image stacks.

    PubMed

    Almasi, Sepideh; Xu, Xiaoyin; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L

    2015-02-01

    A novel approach to determine the global topological structure of a microvasculature network from noisy and low-resolution fluorescence microscopy data that does not require the detailed segmentation of the vessel structure is proposed here. The method is most appropriate for problems where the tortuosity of the network is relatively low and proceeds by directly computing a piecewise linear approximation to the vasculature skeleton through the construction of a graph in three dimensions whose edges represent the skeletal approximation and vertices are located at Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations of relatively large curvature along the centerline of a vessel. Our method consists of two phases. First, we provide a CP detection technique that, for junctions in particular, does not require any a priori geometric information such as direction or degree. Second, connectivity between detected nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine whether a potential edge between nodes is or is not included in the final graph. The utility function in this problem reflects both intensity-based and structural information along the path connecting the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this method. This approach provides a mean of correctly capturing the connectivity patterns in vessels that are missed by more traditional segmentation and binarization schemes because of imperfections in the images which manifest as dim or broken vessels. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Generating Seismograms with Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Krischer, L.; Fichtner, A.

    2017-12-01

    The recent surge of successful uses of deep neural networks in computer vision, speech recognition, and natural language processing, mainly enabled by the availability of fast GPUs and extremely large data sets, is starting to see many applications across all natural sciences. In seismology these are largely confined to classification and discrimination tasks. In this contribution we explore the use of deep neural networks for another class of problems: so called generative models.Generative modelling is a branch of statistics concerned with generating new observed data samples, usually by drawing from some underlying probability distribution. Samples with specific attributes can be generated by conditioning on input variables. In this work we condition on seismic source (mechanism and location) and receiver (location) parameters to generate multi-component seismograms.The deep neural networks are trained on synthetic data calculated with Instaseis (http://instaseis.net, van Driel et al. (2015)) and waveforms from the global ShakeMovie project (http://global.shakemovie.princeton.edu, Tromp et al. (2010)). The underlying radially symmetric or smoothly three dimensional Earth structures result in comparatively small waveform differences from similar events or at close receivers and the networks learn to interpolate between training data samples.Of particular importance is the chosen misfit functional. Generative adversarial networks (Goodfellow et al. (2014)) implement a system in which two networks compete: the generator network creates samples and the discriminator network distinguishes these from the true training examples. Both are trained in an adversarial fashion until the discriminator can no longer distinguish between generated and real samples. We show how this can be applied to seismograms and in particular how it compares to networks trained with more conventional misfit metrics. Last but not least we attempt to shed some light on the black-box nature of neural networks by estimating the quality and uncertainties of the generated seismograms.

  11. An optimization model for the US Air-Traffic System

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.

    1986-01-01

    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.

  12. Fast and accurate detection of spread source in large complex networks.

    PubMed

    Paluch, Robert; Lu, Xiaoyan; Suchecki, Krzysztof; Szymański, Bolesław K; Hołyst, Janusz A

    2018-02-06

    Spread over complex networks is a ubiquitous process with increasingly wide applications. Locating spread sources is often important, e.g. finding the patient one in epidemics, or source of rumor spreading in social network. Pinto, Thiran and Vetterli introduced an algorithm (PTVA) to solve the important case of this problem in which a limited set of nodes act as observers and report times at which the spread reached them. PTVA uses all observers to find a solution. Here we propose a new approach in which observers with low quality information (i.e. with large spread encounter times) are ignored and potential sources are selected based on the likelihood gradient from high quality observers. The original complexity of PTVA is O(N α ), where α ∈ (3,4) depends on the network topology and number of observers (N denotes the number of nodes in the network). Our Gradient Maximum Likelihood Algorithm (GMLA) reduces this complexity to O (N 2 log (N)). Extensive numerical tests performed on synthetic networks and real Gnutella network with limitation that id's of spreaders are unknown to observers demonstrate that for scale-free networks with such limitation GMLA yields higher quality localization results than PTVA does.

  13. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies

    PubMed Central

    Liu, Guangming; Wang, Yiwei; Zhao, Pengyao; Zhu, Yizhun; Yang, Xiaohan; Zheng, Tiezheng; Zhou, Xuezhong; Jin, Weilin; Sun, Changkai

    2017-01-01

    Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE). Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI) network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., “presynaptic nicotinic acetylcholine receptors”, “signaling by insulin receptor”). Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1) located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy. PMID:28388656

  14. Megamap: flexible representation of a large space embedded with nonspatial information by a hippocampal attractor network

    PubMed Central

    Zhang, Kechen

    2016-01-01

    The problem of how the hippocampus encodes both spatial and nonspatial information at the cellular network level remains largely unresolved. Spatial memory is widely modeled through the theoretical framework of attractor networks, but standard computational models can only represent spaces that are much smaller than the natural habitat of an animal. We propose that hippocampal networks are built on a basic unit called a “megamap,” or a cognitive attractor map in which place cells are flexibly recombined to represent a large space. Its inherent flexibility gives the megamap a huge representational capacity and enables the hippocampus to simultaneously represent multiple learned memories and naturally carry nonspatial information at no additional cost. On the other hand, the megamap is dynamically stable, because the underlying network of place cells robustly encodes any location in a large environment given a weak or incomplete input signal from the upstream entorhinal cortex. Our results suggest a general computational strategy by which a hippocampal network enjoys the stability of attractor dynamics without sacrificing the flexibility needed to represent a complex, changing world. PMID:27193320

  15. Interface Message Processors for the ARPA Computer Network

    DTIC Science & Technology

    1976-07-01

    and then clear the location) as its primitive locking facility (i.e., as the necessary multiprocessor lock equivalent to Dijkstra semaphores )[37]. To...of the extra storage required for the redundant copies. There is the problem of maintaining synchronization of multiple copy data bases in the presence...through any of the data base sites. I Update synchronization . Races between conflicting, "concurrent" update requests are resolved in a manner that j

  16. Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.

    PubMed

    Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan

    2018-02-02

    One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.

  17. Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management

    PubMed Central

    2018-01-01

    One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network. PMID:29393884

  18. DOE`s nation-wide system for access control can solve problems for the federal government

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, S.; Tomes, D.; Davis, G.

    1996-07-01

    The U.S. Department of Energy`s (DOE`s) ongoing efforts to improve its physical and personnel security systems while reducing its costs, provide a model for federal government visitor processing. Through the careful use of standardized badges, computer databases, and networks of automated access control systems, the DOE is increasing the security associated with travel throughout the DOE complex, and at the same time, eliminating paperwork, special badging, and visitor delays. The DOE is also improving badge accountability, personnel identification assurance, and access authorization timeliness and accuracy. Like the federal government, the DOE has dozens of geographically dispersed locations run by manymore » different contractors operating a wide range of security systems. The DOE has overcome these obstacles by providing data format standards, a complex-wide virtual network for security, the adoption of a standard high security system, and an open-systems-compatible link for any automated access control system. If the location`s level of security requires it, positive visitor identification is accomplished by personal identification number (PIN) and/or by biometrics. At sites with automated access control systems, this positive identification is integrated into the portals.« less

  19. Augmented Lagrange Programming Neural Network for Localization Using Time-Difference-of-Arrival Measurements.

    PubMed

    Han, Zifa; Leung, Chi Sing; So, Hing Cheung; Constantinides, Anthony George

    2017-08-15

    A commonly used measurement model for locating a mobile source is time-difference-of-arrival (TDOA). As each TDOA measurement defines a hyperbola, it is not straightforward to compute the mobile source position due to the nonlinear relationship in the measurements. This brief exploits the Lagrange programming neural network (LPNN), which provides a general framework to solve nonlinear constrained optimization problems, for the TDOA-based localization. The local stability of the proposed LPNN solution is also analyzed. Simulation results are included to evaluate the localization accuracy of the LPNN scheme by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.

  20. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement.

    PubMed

    Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos

    2015-06-01

    This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Study on Dissemination Patterns in Location-Aware Gossiping Networks

    NASA Astrophysics Data System (ADS)

    Kami, Nobuharu; Baba, Teruyuki; Yoshikawa, Takashi; Morikawa, Hiroyuki

    We study the properties of information dissemination over location-aware gossiping networks leveraging location-based real-time communication applications. Gossiping is a promising method for quickly disseminating messages in a large-scale system, but in its application to information dissemination for location-aware applications, it is important to consider the network topology and patterns of spatial dissemination over the network in order to achieve effective delivery of messages to potentially interested users. To this end, we propose a continuous-space network model extended from Kleinberg's small-world model applicable to actual location-based applications. Analytical and simulation-based study shows that the proposed network achieves high dissemination efficiency resulting from geographically neutral dissemination patterns as well as selective dissemination to proximate users. We have designed a highly scalable location management method capable of promptly updating the network topology in response to node movement and have implemented a distributed simulator to perform dynamic target pursuit experiments as one example of applications that are the most sensitive to message forwarding delay. The experimental results show that the proposed network surpasses other types of networks in pursuit efficiency and achieves the desirable dissemination patterns.

  2. Optimal Sampling to Provide User-Specific Climate Information.

    NASA Astrophysics Data System (ADS)

    Panturat, Suwanna

    The types of weather-related world problems which are of socio-economic importance selected in this study as representative of three different levels of user groups include: (i) a regional problem concerned with air pollution plumes which lead to acid rain in the north eastern United States, (ii) a state-level problem in the form of winter wheat production in Oklahoma, and (iii) an individual-level problem involving reservoir management given errors in rainfall estimation at Lake Ellsworth, upstream from Lawton, Oklahoma. The study is aimed at designing optimal sampling networks which are based on customer value systems and also abstracting from data sets that information which is most cost-effective in reducing the climate-sensitive aspects of a given user problem. Three process models being used in this study to interpret climate variability in terms of the variables of importance to the user comprise: (i) the HEFFTER-SAMSON diffusion model as the climate transfer function for acid rain, (ii) the CERES-MAIZE plant process model for winter wheat production and (iii) the AGEHYD streamflow model selected as "a black box" for reservoir management. A state-of-the-art Non Linear Program (NLP) algorithm for minimizing an objective function is employed to determine the optimal number and location of various sensors. Statistical quantities considered in determining sensor locations including Bayes Risk, the chi-squared value, the probability of the Type I error (alpha) and the probability of the Type II error (beta) and the noncentrality parameter delta^2. Moreover, the number of years required to detect a climate change resulting in a given bushel per acre change in mean wheat production is determined; the number of seasons of observations required to reduce the standard deviation of the error variance of the ambient sulfur dioxide to less than a certain percent of the mean is found; and finally the policy of maintaining pre-storm flood pools at selected levels is examined given information from the optimal sampling network as defined by the study.

  3. Deep generative learning of location-invariant visual word recognition.

    PubMed

    Di Bono, Maria Grazia; Zorzi, Marco

    2013-01-01

    It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters) from their eye-centered (i.e., retinal) locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity) was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Word-tuning and location-invariance were found at the level of single neurons, but there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words-which was the model's learning objective-is largely based on letter-level information.

  4. Transportation Network Analysis and Decomposition Methods

    DOT National Transportation Integrated Search

    1978-03-01

    The report outlines research in transportation network analysis using decomposition techniques as a basis for problem solutions. Two transportation network problems were considered in detail: a freight network flow problem and a scheduling problem fo...

  5. Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhay; Tian, Ye; Qie, Xiushu; Wang, Dongfang; Sun, Zhuling; Yuan, Shanfeng; Wang, Yu; Chen, Zhixiong; Xu, Wenjing; Zhang, Hongbo; Jiang, Rubin; Su, Debin

    2017-11-01

    The performances of Beijing Lightning Network (BLNET) operated in Beijing-Tianjin-Hebei urban cluster area have been evaluated in terms of detection efficiency and relative location accuracy. A self-reference method has been used to show the detection efficiency of BLNET, for which fast antenna waveforms have been manually examined. Based on the fast antenna verification, the average detection efficiency of BLNET is 97.4% for intracloud (IC) flashes, 73.9% for cloud-to-ground (CG) flashes and 93.2% for the total flashes. Result suggests the CG detection of regional dense network is highly precise when the thunderstorm passes over the network; however it changes day to day when the thunderstorms are outside the network. Further, the CG stroke data from three different lightning location networks across Beijing are compared. The relative detection efficiency of World Wide Lightning Location Network (WWLLN) and Chinese Meteorology Administration - Lightning Detection Network (CMA-LDN, also known as ADTD) are approximately 12.4% (16.8%) and 36.5% (49.4%), respectively, comparing with fast antenna (BLNET). The location of BLNET is in middle, while WWLLN and CMA-LDN average locations are southeast and northwest, respectively. Finally, the IC pulses and CG return stroke pulses have been compared with the S-band Doppler radar. This type of study is useful to know the approximate situation in a region and improve the performance of lightning location networks in the absence of ground truth. Two lightning flashes occurred on tower in the coverage of BLNET show that the horizontal location error was 52.9 m and 250 m, respectively.

  6. Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks

    PubMed Central

    Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng

    2014-01-01

    Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408

  7. A Network Coverage Information-Based Sensor Registry System for IoT Environments

    PubMed Central

    Jung, Hyunjun; Jeong, Dongwon; Lee, Sukhoon; On, Byung-Won; Baik, Doo-Kwon

    2016-01-01

    The Internet of Things (IoT) is expected to provide better services through the interaction of physical objects via the Internet. However, its limitations cause an interoperability problem when the sensed data are exchanged between the sensor nodes in wireless sensor networks (WSNs), which constitute the core infrastructure of the IoT. To address this problem, a Sensor Registry System (SRS) is used. By using a SRS, the information of the heterogeneous sensed data remains pure. If users move along a road, their mobile devices predict their next positions and obtain the sensed data for that position from the SRS. If the WSNs in the location in which the users move are unstable, the sensed data will be lost. Consider a situation where the user passes through dangerous areas. If the user’s mobile device cannot receive information, they cannot be warned about the dangerous situation. To avoid this, two novel SRSs that use network coverage information have been proposed: one uses OpenSignal and the other uses the probabilistic distribution of the users accessing SRS. The empirical study showed that the proposed method can seamlessly provide services related to sensing data under any abnormal circumstance. PMID:27463717

  8. A Network Coverage Information-Based Sensor Registry System for IoT Environments.

    PubMed

    Jung, Hyunjun; Jeong, Dongwon; Lee, Sukhoon; On, Byung-Won; Baik, Doo-Kwon

    2016-07-25

    The Internet of Things (IoT) is expected to provide better services through the interaction of physical objects via the Internet. However, its limitations cause an interoperability problem when the sensed data are exchanged between the sensor nodes in wireless sensor networks (WSNs), which constitute the core infrastructure of the IoT. To address this problem, a Sensor Registry System (SRS) is used. By using a SRS, the information of the heterogeneous sensed data remains pure. If users move along a road, their mobile devices predict their next positions and obtain the sensed data for that position from the SRS. If the WSNs in the location in which the users move are unstable, the sensed data will be lost. Consider a situation where the user passes through dangerous areas. If the user's mobile device cannot receive information, they cannot be warned about the dangerous situation. To avoid this, two novel SRSs that use network coverage information have been proposed: one uses OpenSignal and the other uses the probabilistic distribution of the users accessing SRS. The empirical study showed that the proposed method can seamlessly provide services related to sensing data under any abnormal circumstance.

  9. Network planning under uncertainties

    NASA Astrophysics Data System (ADS)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2008-11-01

    One of the main focuses for network planning is on the optimization of network resources required to build a network under certain traffic demand projection. Traditionally, the inputs to this type of network planning problems are treated as deterministic. In reality, the varying traffic requirements and fluctuations in network resources can cause uncertainties in the decision models. The failure to include the uncertainties in the network design process can severely affect the feasibility and economics of the network. Therefore, it is essential to find a solution that can be insensitive to the uncertain conditions during the network planning process. As early as in the 1960's, a network planning problem with varying traffic requirements over time had been studied. Up to now, this kind of network planning problems is still being active researched, especially for the VPN network design. Another kind of network planning problems under uncertainties that has been studied actively in the past decade addresses the fluctuations in network resources. One such hotly pursued research topic is survivable network planning. It considers the design of a network under uncertainties brought by the fluctuations in topology to meet the requirement that the network remains intact up to a certain number of faults occurring anywhere in the network. Recently, the authors proposed a new planning methodology called Generalized Survivable Network that tackles the network design problem under both varying traffic requirements and fluctuations of topology. Although all the above network planning problems handle various kinds of uncertainties, it is hard to find a generic framework under more general uncertainty conditions that allows a more systematic way to solve the problems. With a unified framework, the seemingly diverse models and algorithms can be intimately related and possibly more insights and improvements can be brought out for solving the problem. This motivates us to seek a generic framework for solving the network planning problem under uncertainties. In addition to reviewing the various network planning problems involving uncertainties, we also propose that a unified framework based on robust optimization can be used to solve a rather large segment of network planning problem under uncertainties. Robust optimization is first introduced in the operations research literature and is a framework that incorporates information about the uncertainty sets for the parameters in the optimization model. Even though robust optimization is originated from tackling the uncertainty in the optimization process, it can serve as a comprehensive and suitable framework for tackling generic network planning problems under uncertainties. In this paper, we begin by explaining the main ideas behind the robust optimization approach. Then we demonstrate the capabilities of the proposed framework by giving out some examples of how the robust optimization framework can be applied to the current common network planning problems under uncertain environments. Next, we list some practical considerations for solving the network planning problem under uncertainties with the proposed framework. Finally, we conclude this article with some thoughts on the future directions for applying this framework to solve other network planning problems.

  10. GNSS Wristwatch Device for Networked Operations Supporting Location Based Services

    DTIC Science & Technology

    2008-09-01

    Coordinates, Volume 4, Issue 9, Sep 2008 GNSS WRISTWATCH DEVICE FOR NETWORKED OPERATIONS SUPPORTING LOCATION BASED SERVICES Alison Brown...TITLE AND SUBTITLE GNSS Wristwatch Device for Networked Operations Supporting Location Based Services 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...LocatorNet Portal also supports Location Based Services (LBS) based on the TIDGET solution data using an Oracle Mapping Server with an open architecture

  11. Putting Man in the Machine: Exploiting Expertise to Enhance Multiobjective Design of Water Supply Monitoring Network

    NASA Astrophysics Data System (ADS)

    Bode, F.; Nowak, W.; Reed, P. M.; Reuschen, S.

    2016-12-01

    Drinking-water well catchments need effective early-warning monitoring networks. Groundwater water supply wells in complex urban environments are in close proximity to a myriad of potential industrial pollutant sources that could irreversibly damage their source aquifers. These urban environments pose fiscal and physical challenges to designing monitoring networks. Ideal early-warning monitoring networks would satisfy three objectives: to detect (1) all potential contaminations within the catchment (2) as early as possible before they reach the pumping wells, (3) while minimizing costs. Obviously, the ideal case is nonexistent, so we search for tradeoffs using multiobjective optimization. The challenge of this optimization problem is the high number of potential monitoring-well positions (the search space) and the non-linearity of the underlying groundwater flow-and-transport problem. This study evaluates (1) different ways to effectively restrict the search space in an efficient way, with and without expert knowledge, (2) different methods to represent the search space during the optimization and (3) the influence of incremental increases in uncertainty in the system. Conductivity, regional flow direction and potential source locations are explored as key uncertainties. We show the need and the benefit of our methods by comparing optimized monitoring networks for different uncertainty levels with networks that seek to effectively exploit expert knowledge. The study's main contributions are the different approaches restricting and representing the search space. The restriction algorithms are based on a point-wise comparison of decision elements of the search space. The representation of the search space can be either binary or continuous. For both cases, the search space must be adjusted properly. Our results show the benefits and drawbacks of binary versus continuous search space representations and the high potential of automated search space restriction algorithms for high-dimensional, highly non-linear optimization problems.

  12. Urban Mobility and Location-Based Social Networks: Social, Economic and Environmental Incentives

    ERIC Educational Resources Information Center

    Zhang, Ke

    2016-01-01

    Location-based social networks (LBSNs) have recently attracted the interest of millions of users who can now not only connect and interact with their friends--as it also happens in traditional online social networks--but can also voluntarily share their whereabouts in real time. A location database is the backbone of a location-based social…

  13. Multimodal Logistics Network Design over Planning Horizon through a Hybrid Meta-Heuristic Approach

    NASA Astrophysics Data System (ADS)

    Shimizu, Yoshiaki; Yamazaki, Yoshihiro; Wada, Takeshi

    Logistics has been acknowledged increasingly as a key issue of supply chain management to improve business efficiency under global competition and diversified customer demands. This study aims at improving a quality of strategic decision making associated with dynamic natures in logistics network optimization. Especially, noticing an importance to concern with a multimodal logistics under multiterms, we have extended a previous approach termed hybrid tabu search (HybTS). The attempt intends to deploy a strategic planning more concretely so that the strategic plan can link to an operational decision making. The idea refers to a smart extension of the HybTS to solve a dynamic mixed integer programming problem. It is a two-level iterative method composed of a sophisticated tabu search for the location problem at the upper level and a graph algorithm for the route selection at the lower level. To keep efficiency while coping with the resulting extremely large-scale problem, we invented a systematic procedure to transform the original linear program at the lower-level into a minimum cost flow problem solvable by the graph algorithm. Through numerical experiments, we verified the proposed method outperformed the commercial software. The results indicate the proposed approach can make the conventional strategic decision much more practical and is promising for real world applications.

  14. Remote Operations of the Deep Space Network Radio Science Subsystem

    NASA Astrophysics Data System (ADS)

    Caetta, J.; Asmar, S.; Abbate, S.; Connally, M.; Goltz, G.

    1998-04-01

    The capability for scientists to remotely control systems located at the Deep Space Network facilities only recently has been incorporated in the design and implementation of new equipment. However, time lines for the implementation, distribution, and operational readiness of such systems can extend much farther into the future than the users can wait. The Radio Science Systems Group was faced with just that circumstance; new hardware was not scheduled to become operational for several years, but the increasing number of experiments and configurations for Cassini, Galileo, Mars missions, and other flight projects made that time frame impractical because of the associated increasing risk of not acquiring critical data. Therefore, a method of interfacing with the current radio science subsystem has been developed and used with a high degree of success, although with occasional problems due to this capability not having been originally designed into the system. This article discusses both the method and the problems involved in integrating this new (remote) method of control with a legacy system.

  15. Usability Evaluation of a Private Social Network on Mental Health for Relatives.

    PubMed

    Toribio-Guzmán, José Miguel; García-Holgado, Alicia; Soto Pérez, Felipe; García-Peñalvo, Francisco J; Franco Martín, Manuel

    2017-09-01

    Usability is one of the most prominent criteria that must be fulfilled by a software product. This study aims to evaluate the usability of SocialNet, a private social network for monitoring the daily progress of patients by their relatives, using a mixed usability approach: heuristic evaluation conducted by experts and user testing. A double heuristic evaluation with one expert evaluator identified the issues related to consistency, design, and privacy. User testing was conducted on 20 users and one evaluator using observation techniques and questionnaires. The main usability problems were found to be related to the structure of SocialNet, and the users presented some difficulties in locating the buttons or links. The results show a high level of usability and satisfaction with the product. This evaluation provides data on the usability of SocialNet based on the difficulties experienced by the users and the expert. The results help in redesigning the tool to resolve the identified problems as part of an iterative process.

  16. Cournot games with network effects for electric power markets

    NASA Astrophysics Data System (ADS)

    Spezia, Carl John

    The electric utility industry is moving from regulated monopolies with protected service areas to an open market with many wholesale suppliers competing for consumer load. This market is typically modeled by a Cournot game oligopoly where suppliers compete by selecting profit maximizing quantities. The classical Cournot model can produce multiple solutions when the problem includes typical power system constraints. This work presents a mathematical programming formulation of oligopoly that produces unique solutions when constraints limit the supplier outputs. The formulation casts the game as a supply maximization problem with power system physical limits and supplier incremental profit functions as constraints. The formulation gives Cournot solutions identical to other commonly used algorithms when suppliers operate within the constraints. Numerical examples demonstrate the feasibility of the theory. The results show that the maximization formulation will give system operators more transmission capacity when compared to the actions of suppliers in a classical constrained Cournot game. The results also show that the profitability of suppliers in constrained networks depends on their location relative to the consumers' load concentration.

  17. Automated Help System For A Supercomputer

    NASA Technical Reports Server (NTRS)

    Callas, George P.; Schulbach, Catherine H.; Younkin, Michael

    1994-01-01

    Expert-system software developed to provide automated system of user-helping displays in supercomputer system at Ames Research Center Advanced Computer Facility. Users located at remote computer terminals connected to supercomputer and each other via gateway computers, local-area networks, telephone lines, and satellite links. Automated help system answers routine user inquiries about how to use services of computer system. Available 24 hours per day and reduces burden on human experts, freeing them to concentrate on helping users with complicated problems.

  18. Predicting the distribution of bed material accumulation using river network sediment budgets

    NASA Astrophysics Data System (ADS)

    Wilkinson, Scott N.; Prosser, Ian P.; Hughes, Andrew O.

    2006-10-01

    Assessing the spatial distribution of bed material accumulation in river networks is important for determining the impacts of erosion on downstream channel form and habitat and for planning erosion and sediment management. A model that constructs spatially distributed budgets of bed material sediment is developed to predict the locations of accumulation following land use change. For each link in the river network, GIS algorithms are used to predict bed material supply from gullies, river banks, and upstream tributaries and to compare total supply with transport capacity. The model is tested in the 29,000 km2 Murrumbidgee River catchment in southeast Australia. It correctly predicts the presence or absence of accumulation in 71% of river links, which is significantly better performance than previous models, which do not account for spatial variability in sediment supply and transport capacity. Representing transient sediment storage is important for predicting smaller accumulations. Bed material accumulation is predicted in 25% of the river network, indicating its importance as an environmental problem in Australia.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Ramirez Aviles, Camila A.

    We consider the problem of inferring the operational status of a reactor facility using measurements from a radiation sensor network deployed around the facility’s ventilation off-gas stack. The intensity of stack emissions decays with distance, and the sensor counts or measurements are inherently random with parameters determined by the intensity at the sensor’s location. We utilize the measurements to estimate the intensity at the stack, and use it in a one-sided Sequential Probability Ratio Test (SPRT) to infer on/off status of the reactor. We demonstrate the superior performance of this method over conventional majority fusers and individual sensors using (i)more » test measurements from a network of 21 NaI detectors, and (ii) effluence measurements collected at the stack of a reactor facility. We also analytically establish the superior detection performance of the network over individual sensors with fixed and adaptive thresholds by utilizing the Poisson distribution of the counts. We quantify the performance improvements of the network detection over individual sensors using the packing number of the intensity space.« less

  20. Locating Groundwater Pollution Source using Breakthrough Curve Characteristics and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Jain, A.; Srivastava, R.

    2005-12-01

    The identification of pollution sources in aquifers is an important area of research not only for the hydrologists but also for the local and Federal agencies and defense organizations. Once the data in terms of pollutant concentration measurements at observation wells become known, it is important to identify the polluting industry in order to implement punitive or remedial measures. Traditionally, hydrologists have relied on the conceptual methods for the identification of groundwater pollution sources. The problem of identification of groundwater pollution sources using the conceptual methods requires a thorough understanding of the groundwater flow and contaminant transport processes and inverse modeling procedures that are highly complex and difficult to implement. Recently, the soft computing techniques, such as artificial neural networks (ANNs) and genetic algorithms, have provided an attractive and easy to implement alternative to solve complex problems efficiently. Some researchers have used ANNs for the identification of pollution sources in aquifers. A major problem with most previous studies using ANNs has been the large size of the neural networks that are needed to model the inverse problem. The breakthrough curves at an observation well may consist of hundreds of concentration measurements, and presenting all of them to the input layer of an ANN not only results in humongous networks but also requires large amount of training and testing data sets to develop the ANN models. This paper presents the results of a study aimed at using certain characteristics of the breakthrough curves and ANNs for determining the distance of the pollution source from a given observation well. Two different neural network models are developed that differ in the manner of characterizing the breakthrough curves. The first ANN model uses five parameters, similar to the synthetic unit hydrograph parameters, to characterize the breakthrough curves. The five parameters employed are peak concentration, time to peak concentration, the widths of the breakthrough curves at 50% and 75% of the peak concentration, and the time base of the breakthrough curve. The second ANN model employs only the first four parameters leaving out the time base. The measurement of breakthrough curve at an observation well involves very high costs in sample collection at suitable time intervals and analysis for various contaminants. The receding portions of the breakthrough curves are normally very long and excluding the time base from modeling would result in considerable cost savings. The feed-forward multi-layer perceptron (MLP) type neural networks trained using the back-propagation algorithm, are employed in this study. The ANN models for the two approaches were developed using simulated data generated for conservative pollutant transport through a homogeneous aquifer. A new approach for ANN training using back-propagation is employed that considers two different error statistics to prevent over-training and under-training of the ANNs. The preliminary results indicate that the ANNs are able to identify the location of the pollution source very efficiently from both the methods of the breakthrough curves characterization.

  1. The research of a solution on locating optimally a station for seismic disasters rescue in a city

    NASA Astrophysics Data System (ADS)

    Yao, Qing-Lin

    1995-02-01

    When the stations for seismic disasters rescue in future or the similars are designed on a network of communication line, the general absolute center of a graph needs to be solved to reduce the requirements in the number of stations and running parameters and to establish an optimal station in a sense distribution of the rescue arrival time by the way of locating optimally the stations. The existing solution on this problem was proposed by Edward (1978) in which, however, there is serious deviation. In this article, the work of Edward (1978) is developed in both formula and figure, more correct solution is proposed and proved. Then the result from the newer solution is contrasted with that from the older one in a instance about locating optimally the station for seismic disasters rescue.

  2. Neural networks application to divergence-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1992-01-01

    The purpose of this report is to summarize the state of knowledge and outline the planned work in divergence-based/neural networks approach to the problem of passive ranging derived from optical flow. Work in this and closely related areas is reviewed in order to provide the necessary background for further developments. New ideas about devising a monocular passive-ranging system are then introduced. It is shown that image-plan divergence is independent of image-plan location with respect to the focus of expansion and of camera maneuvers because it directly measures the object's expansion which, in turn, is related to the time-to-collision. Thus, a divergence-based method has the potential of providing a reliable range complementing other monocular passive-ranging methods which encounter difficulties in image areas close to the focus of expansion. Image-plan divergence can be thought of as some spatial/temporal pattern. A neural network realization was chosen for this task because neural networks have generally performed well in various other pattern recognition applications. The main goal of this work is to teach a neural network to derive the divergence from the imagery.

  3. Network Extender for MIL-STD-1553 Bus

    NASA Technical Reports Server (NTRS)

    Marcus, Julius; Hanson, T. David

    2003-01-01

    An extender system for MIL-STD-1553 buses transparently couples bus components at multiple developer sites. The bus network extender is a relatively inexpensive system that minimizes the time and cost of integration of avionic systems by providing a convenient mechanism for early testing without the need to transport the usual test equipment and personnel to an integration facility. This bus network extender can thus alleviate overloading of the test facility while enabling the detection of interface problems that can occur during the integration of avionic systems. With this bus extender in place, developers can correct and adjust their own hardware and software before products leave a development site. Currently resident at Johnson Space Center, the bus network extender is used to test the functionality of equipment that, although remotely located, is connected through a MILSTD- 1553 bus. Inasmuch as the standard bus protocol for avionic equipment is that of MIL-STD-1553, companies that supply MIL-STD-1553-compliant equipment to government or industry and that need long-distance communication support might benefit from this network bus extender

  4. Dynamic modeling and optimization for space logistics using time-expanded networks

    NASA Astrophysics Data System (ADS)

    Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert

    2014-12-01

    This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.

  5. Analysis Of Using Firewall And Single Honeypot In Training Attack On Wireless Network

    NASA Astrophysics Data System (ADS)

    Mohd. Diansyah, Tengku.; Faisal, Ilham; Perdana, Adidtya; Octaviani Sembiring, Boni; Hidayati Sinaga, Tantri

    2017-12-01

    Security issues become one of the important aspects of a network, especially a network security on the server. These problems underlie the need to build a system that can detect threats from parties who do not have access rights (hackers) that are by building a security system honeypot. A Honeypot is a diversion of intruders' attention, in order for intruders to think that it has managed to break down and retrieve data from a network, when in fact the data is not important and the location is isolated. A way to trap or deny unauthorized use of effort in an information system. One type of honeypot is honeyd. Honeyd is a low interaction honeypot that has a smaller risk compared to high interaction types because the interaction with the honeypot does not directly involve the real system. The purpose of the implementation of honeypot and firewall, firewall is used on Mikrotik. Can be used as an administrative tool to view reports of Honeyd generated activity and administrators can also view reports that are stored in the logs in order to assist in determining network security policies.

  6. Multistability of neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing

    2015-05-01

    This paper is concerned with the problem of coexistence and dynamical behaviors of multiple equilibrium points for neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays. The fixed point theorem and other analytical tools are used to develop certain sufficient conditions that ensure that the n-dimensional discontinuous neural networks with time-varying delays can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable. The importance of the derived results is that it reveals that the discontinuous neural networks can have greater storage capacity than the continuous ones. Moreover, different from the existing results on multistability of neural networks with discontinuous activation functions, the 3(n) locally stable equilibrium points obtained in this paper are located in not only saturated regions, but also unsaturated regions, due to the non-monotonic structure of discontinuous activation functions. A numerical simulation study is conducted to illustrate and support the derived theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Astronomy, Data and the Problem of Large File Transfers

    NASA Astrophysics Data System (ADS)

    Bryant, J.; Sutorius, E.; Bunclark, P. S.

    2008-08-01

    During the lifetime of a survey a considerable amount of data are produced, this data needs to be moved between processing centres quickly and efficiently. Over time there has been a jostling as to which method of transferring data from one location to another is best: tape, disk or network, as they say ``Never underestimate the bandwidth of a station wagon full of tapes hurtling down the highway." With the VDFS the most painless solution seems to have been using network transfers. We started by using JANET to transfer our data but the rising monetary cost and unreliable transfer speeds when dealing with terabyte scale data volumes led us to investigate alternatives. Here we describe our work on connecting to the UKLight network, run by UKERNA, alongside JANET. This network provided us with a dedicated 1Gbit/s dark fibre for our sole use that allows us to transfer astronomical data between CASU and WFAU at speeds that are limited more by end server hardware than by the network (so maybe we can beat that station wagon.)

  8. Real time coarse orientation detection in MR scans using multi-planar deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Bhatia, Parmeet S.; Reda, Fitsum; Harder, Martin; Zhan, Yiqiang; Zhou, Xiang Sean

    2017-02-01

    Automatically detecting anatomy orientation is an important task in medical image analysis. Specifically, the ability to automatically detect coarse orientation of structures is useful to minimize the effort of fine/accurate orientation detection algorithms, to initialize non-rigid deformable registration algorithms or to align models to target structures in model-based segmentation algorithms. In this work, we present a deep convolution neural network (DCNN)-based method for fast and robust detection of the coarse structure orientation, i.e., the hemi-sphere where the principal axis of a structure lies. That is, our algorithm predicts whether the principal orientation of a structure is in the northern hemisphere or southern hemisphere, which we will refer to as UP and DOWN, respectively, in the remainder of this manuscript. The only assumption of our method is that the entire structure is located within the scan's field-of-view (FOV). To efficiently solve the problem in 3D space, we formulated it as a multi-planar 2D deep learning problem. In the training stage, a large number coronal-sagittal slice pairs are constructed as 2-channel images to train a DCNN to classify whether a scan is UP or DOWN. During testing, we randomly sample a small number of coronal-sagittal 2-channel images and pass them through our trained network. Finally, coarse structure orientation is determined using majority voting. We tested our method on 114 Elbow MR Scans. Experimental results suggest that only five 2-channel images are sufficient to achieve a high success rate of 97.39%. Our method is also extremely fast and takes approximately 50 milliseconds per 3D MR scan. Our method is insensitive to the location of the structure in the FOV.

  9. Neural network for intelligent query of an FBI forensic database

    NASA Astrophysics Data System (ADS)

    Uvanni, Lee A.; Rainey, Timothy G.; Balasubramanian, Uma; Brettle, Dean W.; Weingard, Fred; Sibert, Robert W.; Birnbaum, Eric

    1997-02-01

    Examiner is an automated fired cartridge case identification system utilizing a dual-use neural network pattern recognition technology, called the statistical-multiple object detection and location system (S-MODALS) developed by Booz(DOT)Allen & Hamilton, Inc. in conjunction with Rome Laboratory. S-MODALS was originally designed for automatic target recognition (ATR) of tactical and strategic military targets using multisensor fusion [electro-optical (EO), infrared (IR), and synthetic aperture radar (SAR)] sensors. Since S-MODALS is a learning system readily adaptable to problem domains other than automatic target recognition, the pattern matching problem of microscopic marks for firearms evidence was analyzed using S-MODALS. The physics; phenomenology; discrimination and search strategies; robustness requirements; error level and confidence level propagation that apply to the pattern matching problem of military targets were found to be applicable to the ballistic domain as well. The Examiner system uses S-MODALS to rank a set of queried cartridge case images from the most similar to the least similar image in reference to an investigative fired cartridge case image. The paper presents three independent tests and evaluation studies of the Examiner system utilizing the S-MODALS technology for the Federal Bureau of Investigation.

  10. Sustainable Improvement of Urban River Network Water Quality and Flood Control Capacity by a Hydrodynamic Control Approach-Case Study of Changshu City

    NASA Astrophysics Data System (ADS)

    Xie, Chen; Yang, Fan; Liu, Guoqing; Liu, Yang; Wang, Long; Fan, Ziwu

    2017-01-01

    Water environment of urban rivers suffers degradation with the impacts of urban expansion, especially in Yangtze River Delta. The water area in cites decreased sharply, and some rivers were cut off because of estate development, which brings the problems of urban flooding, flow stagnation and water deterioration. The approach aims to enhance flood control capability and improve the urban river water quality by planning gate-pump stations surrounding the cities and optimizing the locations and functions of the pumps, sluice gates, weirs in the urban river network. These gate-pump stations together with the sluice gates and weirs guarantee the ability to control the water level in the rivers and creating hydraulic gradient artificially according to mathematical model. Therefore the flow velocity increases, which increases the rate of water exchange, the DO concentration and water body self-purification ability. By site survey and prototype measurement, the river problems are evaluated and basic data are collected. The hydrodynamic model of the river network is established and calibrated to simulate the scenarios. The schemes of water quality improvement, including optimizing layout of the water distribution projects, improvement of the flow discharge in the river network and planning the drainage capacity are decided by comprehensive Analysis. Finally the paper introduces the case study of the approach in Changshu City, where the approach is successfully implemented.

  11. Continuum Modeling and Control of Large Nonuniform Wireless Networks via Nonlinear Partial Differential Equations

    DOE PAGES

    Zhang, Yang; Chong, Edwin K. P.; Hannig, Jan; ...

    2013-01-01

    We inmore » troduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs). This method is based on the convergence of a sequence of underlying Markov chains of the network indexed by N , the number of nodes in the network. As N goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.« less

  12. NASA Astrophysics Data System (ADS)

    Knosp, B.; Neely, S.; Zimdars, P.; Mills, B.; Vance, N.

    2007-12-01

    The Microwave Limb Sounder (MLS) Science Computing Facility (SCF) stores over 50 terabytes of data, has over 240 computer processing hosts, and 64 users from around the world. These resources are spread over three primary geographical locations - the Jet Propulsion Laboratory (JPL), Raytheon RIS, and New Mexico Institute of Mining and Technology (NMT). A need for a grid network system was identified and defined to solve the problem of users competing for finite, and increasingly scarce, MLS SCF computing resources. Using Sun's Grid Engine software, a grid network was successfully created in a development environment that connected the JPL and Raytheon sites, established master and slave hosts, and demonstrated that transfer queues for jobs can work among multiple clusters in the same grid network. This poster will first describe MLS SCF resources and the lessons that were learned in the design and development phase of this project. It will then go on to discuss the test environment and plans for deployment by highlighting benchmarks and user experiences.

  13. Location-Based Services in Vehicular Networks

    ERIC Educational Resources Information Center

    Wu, Di

    2013-01-01

    Location-based services have been identified as a promising communication paradigm in highly mobile and dynamic vehicular networks. However, existing mobile ad hoc networking cannot be directly applied to vehicular networking due to differences in traffic conditions, mobility models and network topologies. On the other hand, hybrid architectures…

  14. Efficient large-scale graph data optimization for intelligent video surveillance

    NASA Astrophysics Data System (ADS)

    Shang, Quanhong; Zhang, Shujun; Wang, Yanbo; Sun, Chen; Wang, Zepeng; Zhang, Luming

    2017-08-01

    Society is rapidly accepting the use of a wide variety of cameras Location and applications: site traffic monitoring, parking Lot surveillance, car and smart space. These ones here the camera provides data every day in an analysis Effective way. Recent advances in sensor technology Manufacturing, communications and computing are stimulating.The development of new applications that can change the traditional Vision system incorporating universal smart camera network. This Analysis of visual cues in multi camera networks makes wide Applications ranging from smart home and office automation to large area surveillance and traffic surveillance. In addition, dense Camera networks, most of which have large overlapping areas of cameras. In the view of good research, we focus on sparse camera networks. One Sparse camera network using large area surveillance. As few cameras as possible, most cameras do not overlap Each other’s field of vision. This task is challenging Lack of knowledge of topology Network, the specific changes in appearance and movement Track different opinions of the target, as well as difficulties Understanding complex events in a network. In this review in this paper, we present a comprehensive survey of recent studies Results to solve the problem of topology learning, Object appearance modeling and global activity understanding sparse camera network. In addition, some of the current open Research issues are discussed.

  15. Feasibility study of transportation management strategies in the Poplar Corridor, Memphis, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siniard, D.

    1990-02-01

    This report documents the development and implementation of various transportation management strategies aimed at alleviating traffic congestion problems in the Poplar Corridor, a major transportation corridor located in a rapidly growing suburban area of Memphis, Tennessee. The project provided the opportunity for local governments to work with the private sector in a joint venture to address traffic congestion problems and to promote more efficient use of the area's transportation network. The project was carried out by the staff of Memphis Area Rideshare, a joint city/county agency which provides transit information and free carpool/vanpool computer matching services to area commuters. Publicmore » sector participants in the planning process included transportation and land use planners from the Office of Planning and Development, city traffic engineers, and representatives from the Memphis Area Transit Authority (MATA). Private sector input came from major developers and employers in the Poplar Corridor and from officials of schools located in the area.« less

  16. Assessment of topographic and drainage network controls on debris-flow travel distance along the west coast of the United States

    USGS Publications Warehouse

    Coe, Jeffrey A.; Reid, Mark E.; Brien, Dainne L.; Michael, John A.

    2011-01-01

    To better understand controls on debris-flow entrainment and travel distance, we examined topographic and drainage network characteristics of initiation locations in two separate debris-flow prone areas located 700 km apart along the west coast of the U.S. One area was located in northern California, the other in southern Oregon. In both areas, debris flows mobilized from slides during large storms, but, when stratified by number of contributing initiation locations, median debris-flow travel distances in Oregon were 5 to 8 times longer than median distances in California. Debris flows in Oregon readily entrained channel material; entrainment in California was minimal. To elucidate this difference, we registered initiation locations to high-resolution airborne LiDAR, and then examined travel distances with respect to values of slope, upslope contributing area, planform curvature, distance from initiation locations to the drainage network, and number of initiation areas that contributed to flows. Results show distinct differences in the topographic and drainage network characteristics of debris-flow initiation locations between the two study areas. Slope and planform curvature of initiation locations (landslide headscarps), commonly used to predict landslide-prone areas, were not useful for predicting debris-flow travel distances. However, a positive, power-law relation exists between median debris-flow travel distance and the number of contributing debris-flow initiation locations. Moreover, contributing area and the proximity of the initiation locations to the drainage network both influenced travel distances, but proximity to the drainage network was the better predictor of travel distance. In both study areas, flows that interacted with the drainage network flowed significantly farther than those that did not. In California, initiation sites within 60 m of the network were likely to reach the network and generate longtraveled flows; in Oregon, the threshold was 80 m.

  17. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  18. Location, Location, Location: Where Do Location-Based Services Fit into Your Institution's Social Media Mix?

    ERIC Educational Resources Information Center

    Nekritz, Tim

    2011-01-01

    Foursquare is a location-based social networking service that allows users to share their location with friends. Some college administrators have been thinking about whether and how to take the leap into location-based services, which are also known as geosocial networking services. These platforms, which often incorporate gaming elements like…

  19. Optimal distribution of medical backpacks and health surveillance assistants in Malawi.

    PubMed

    Kunkel, Amber G; Van Itallie, Elizabeth S; Wu, Duo

    2014-09-01

    Despite recent progress, Malawi continues to perform poorly on key health indicators such as child mortality and life expectancy. These problems are exacerbated by a severe lack of access to health care. Health Surveillance Assistants (HSAs) help bridge this gap by providing community-level access to basic health care services. However, the success of these HSAs is limited by a lack of supplies and long distances between HSAs and patients. To address this issue, we used large-scale weighted p-median and capacitated facility location problems to create a scalable, three-tiered plan for optimal allocation of HSAs, HSA designated medical backpacks, and backpack resupply centers. Our analysis uses real data on the location and characteristics of hospitals, health centers, and the general population. In addition to offering specific recommendations for HSA, backpack, and resupply center locations, it provides general insights into the scope of the proposed HSA backpack program scale-up. In particular, it demonstrates the importance of local health centers to the resupply network. The proposed assignments are robust to changes in the underlying population structure, and could significantly improve access to medical supplies for both HSAs and patients.

  20. An investigation into the feasibility of locating portable medical devices using radio frequency identification devices and technology.

    PubMed

    Britton, J

    2007-01-01

    Portable medical devices represent an important resource for assisting healthcare delivery. The movement of portable devices often results in them being unavailable when needed. Tracking equipment using radiofrequency identification technology/devices (RFID) may provide a promising solution to the problems encountered in locating portable equipment. An RFID technology trial was undertaken at Royal Alexandra Hospital, Paisley. This involved the temporary installation of three active readers and attaching actively transmitting radio frequency tags to different portable medical devices. The active readers and computer system were linked using a bespoke data network. Tags and readers from two separate manufacturers were tested. Reliability difficulties were encountered when testing the technology from the first manufacturer, probably due to the casing of the medical device interfering with the signal from the tag. Improved results were obtained when using equipment from the second manufacturer with an overall error rate of 12.3%. Tags from this manufacturer were specifically designed to overcome problems observed with the first system tested. Findings from this proof of concept trial suggest that RFID technology could be used to track the location of equipment in a hospital.

  1. Learning a detection map for a network of unattended ground sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hung D.; Koch, Mark William

    2010-03-01

    We have developed algorithms to automatically learn a detection map of a deployed sensor field for a virtual presence and extended defense (VPED) system without apriori knowledge of the local terrain. The VPED system is an unattended network of sensor pods, with each pod containing acoustic and seismic sensors. Each pod has the ability to detect and classify moving targets at a limited range. By using a network of pods we can form a virtual perimeter with each pod responsible for a certain section of the perimeter. The site's geography and soil conditions can affect the detection performance of themore » pods. Thus, a network in the field may not have the same performance as a network designed in the lab. To solve this problem we automatically estimate a network's detection performance as it is being installed at a site by a mobile deployment unit (MDU). The MDU will wear a GPS unit, so the system not only knows when it can detect the MDU, but also the MDU's location. In this paper, we demonstrate how to handle anisotropic sensor-configurations, geography, and soil conditions.« less

  2. Setting Access Permission through Transitive Relationship in Web-based Social Networks

    NASA Astrophysics Data System (ADS)

    Hong, Dan; Shen, Vincent Y.

    The rising popularity of various social networking websites has created a huge problem on Internet privacy. Although it is easy to post photos, comments, opinions on some events, etc. on the Web, some of these data (such as a person’s location at a particular time, criticisms of a politician, etc.) are private and should not be accessed by unauthorized users. Although social networks facilitate sharing, the fear of sending sensitive data to a third party without knowledge or permission of the data owners discourages people from taking full advantage of some social networking applications. We exploit the existing relationships on social networks and build a ‘‘trust network’’ with transitive relationship to allow controlled data sharing so that the privacy and preferences of data owners are respected. The trust network linking private data owners, private data requesters, and intermediary users is a directed weighted graph. The permission value for each private data requester can be automatically assigned in this network based on the transitive relationship. Experiments were conducted to confirm the feasibility of constructing the trust network from existing social networks, and to assess the validity of permission value assignments in the query process. Since the data owners only need to define the access rights of their closest contacts once, this privacy scheme can make private data sharing easily manageable by social network participants.

  3. Developing a Procedure for Segmenting Meshed Heat Networks of Heat Supply Systems without Outflows

    NASA Astrophysics Data System (ADS)

    Tokarev, V. V.

    2018-06-01

    The heat supply systems of cities have, as a rule, a ring structure with the possibility of redistributing the flows. Despite the fact that a ring structure is more reliable than a radial one, the operators of heat networks prefer to use them in normal modes according to the scheme without overflows of the heat carrier between the heat mains. With such a scheme, it is easier to adjust the networks and to detect and locate faults in them. The article proposes a formulation of the heat network segmenting problem. The problem is set in terms of optimization with the heat supply system's excessive hydraulic power used as the optimization criterion. The heat supply system computer model has a hierarchically interconnected multilevel structure. Since iterative calculations are only carried out for the level of trunk heat networks, decomposing the entire system into levels allows the dimensionality of the solved subproblems to be reduced by an order of magnitude. An attempt to solve the problem by fully enumerating possible segmentation versions does not seem to be feasible for systems of really existing sizes. The article suggests a procedure for searching rational segmentation of heat supply networks with limiting the search to versions of dividing the system into segments near the flow convergence nodes with subsequent refining of the solution. The refinement is performed in two stages according to the total excess hydraulic power criterion. At the first stage, the loads are redistributed among the sources. After that, the heat networks are divided into independent fragments, and the possibility of increasing the excess hydraulic power in the obtained fragments is checked by shifting the division places inside a fragment. The proposed procedure has been approbated taking as an example a municipal heat supply system involving six heat mains fed from a common source, 24 loops within the feeding mains plane, and more than 5000 consumers. Application of the proposed segmentation procedure made it possible to find a version with required hydraulic power in the heat supply system on 3% less than the one found using the simultaneous segmentation method.

  4. Optimal placement of multiple types of communicating sensors with availability and coverage redundancy constraints

    NASA Astrophysics Data System (ADS)

    Vecherin, Sergey N.; Wilson, D. Keith; Pettit, Chris L.

    2010-04-01

    Determination of an optimal configuration (numbers, types, and locations) of a sensor network is an important practical problem. In most applications, complex signal propagation effects and inhomogeneous coverage preferences lead to an optimal solution that is highly irregular and nonintuitive. The general optimization problem can be strictly formulated as a binary linear programming problem. Due to the combinatorial nature of this problem, however, its strict solution requires significant computational resources (NP-complete class of complexity) and is unobtainable for large spatial grids of candidate sensor locations. For this reason, a greedy algorithm for approximate solution was recently introduced [S. N. Vecherin, D. K. Wilson, and C. L. Pettit, "Optimal sensor placement with terrain-based constraints and signal propagation effects," Unattended Ground, Sea, and Air Sensor Technologies and Applications XI, SPIE Proc. Vol. 7333, paper 73330S (2009)]. Here further extensions to the developed algorithm are presented to include such practical needs and constraints as sensor availability, coverage by multiple sensors, and wireless communication of the sensor information. Both communication and detection are considered in a probabilistic framework. Communication signal and signature propagation effects are taken into account when calculating probabilities of communication and detection. Comparison of approximate and strict solutions on reduced-size problems suggests that the approximate algorithm yields quick and good solutions, which thus justifies using that algorithm for full-size problems. Examples of three-dimensional outdoor sensor placement are provided using a terrain-based software analysis tool.

  5. Collaborative learning in networks.

    PubMed

    Mason, Winter; Watts, Duncan J

    2012-01-17

    Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions.

  6. Collaborative learning in networks

    PubMed Central

    Mason, Winter; Watts, Duncan J.

    2012-01-01

    Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions. PMID:22184216

  7. Fault gouge evolution during rupture and healing: Continual active-seismic observations across laboratory-scale fault zones

    NASA Astrophysics Data System (ADS)

    Krysta, M.; Kusmierczyk-Michulec, J.; Nikkinen, M.; Carter, J. A.

    2011-12-01

    In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of, respectively, seismic, infrasound, hydroacoustic sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. One of the aspects of associating detections with emitters is the problem of inferring the sources of radionuclides from the detections made at CTBTO radionuclide network stations. This task is particularly challenging because the average transport distance between a release point and detectors is large. Complex processes of turbulent diffusion are responsible for efficient mixing and consequently for decreasing the information content of detections with an increasing distance from the source. The problem is generally addressed in a two-step process. In the first step, an atmospheric transport model establishes a link between the detections and the regions of possible source location. In the second step this link is inverted to infer source information from the detections. In this presentation, we will discuss enhancements of the presently used regression-based inversion algorithm to reconstruct a source of radionuclides. To this aim, modern inversion algorithms accounting for prior information and appropriately regularizing an under-determined reconstruction problem will be briefly introduced. Emphasis will be on the CTBTO context and the choice of inversion methods. An illustration of the first tests will be provided using a framework of twin experiments, i.e. fictitious detections in the CTBTO radionuclide network generated with an atmospheric transport model.

  8. The Impact of The Fractal Paradigm on Geography

    NASA Astrophysics Data System (ADS)

    De Cola, L.

    2001-12-01

    Being itself somewhat fractal, Benoit Mandelbrot's magnum opus THE FRACTAL GEOMETRY OF NATURE may be deconstructed in many ways, including geometrically, systematically, and epistemologically. Viewed as a work of geography it may be used to organize the major topics of interest to scientists preoccupied with the understanding of real-world space in astronomy, geology, meteorology, hydrology, and biology. We shall use it to highlight such recent geographic accomplishments as automated feature detection, understanding urban growth, and modeling the spread of disease in space and time. However, several key challenges remain unsolved, among them: 1. It is still not possible to move continuously from one map scale to another so that objects change their dimension smoothly. I.e. as a viewer zooms in on a map the zero-dimensional location of a city should gradually become a 2-dimensional polygon, then a network of 1-dimensional streets, then 3-dimensional buildings, etc. 2. Spatial autocorrelation continues to be regarded more as an econometric challenge than as a problem of scaling. Similarities of values among closely-spaced observation is not so much a problem to be overcome as a source of information about spatial structure. 3. Although the fractal paradigm is a powerful model for data analysis, its ideas and techniques need to be brought to bear on the problems of understanding such hierarchies as ecosystems (the flow networks of energy and matter), taxonomies (biological classification), and knowledge (hierarchies of bureaucratic information, networks of linked data, etc).

  9. Efficient Convex Optimization for Energy-Based Acoustic Sensor Self-Localization and Source Localization in Sensor Networks.

    PubMed

    Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan

    2018-05-21

    The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods.

  10. Efficient Convex Optimization for Energy-Based Acoustic Sensor Self-Localization and Source Localization in Sensor Networks

    PubMed Central

    Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan

    2018-01-01

    The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods. PMID:29883410

  11. Providing Location Security in Vehicular Ad Hoc Networks

    ERIC Educational Resources Information Center

    Yan, Gongjun

    2010-01-01

    Location is fundamental information in Vehicular Ad-hoc Networks (VANETs). Almost all VANET applications rely on location information. Therefore it is of importance to ensure location information integrity, meaning that location information is original (from the generator), correct (not bogus or fabricated) and unmodified (value not changed). We…

  12. Airplane detection based on fusion framework by combining saliency model with Deep Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Dou, Hao; Sun, Xiao; Li, Bin; Deng, Qianqian; Yang, Xubo; Liu, Di; Tian, Jinwen

    2018-03-01

    Aircraft detection from very high resolution remote sensing images, has gained more increasing interest in recent years due to the successful civil and military applications. However, several problems still exist: 1) how to extract the high-level features of aircraft; 2) locating objects within such a large image is difficult and time consuming; 3) A common problem of multiple resolutions of satellite images still exists. In this paper, inspirited by biological visual mechanism, the fusion detection framework is proposed, which fusing the top-down visual mechanism (deep CNN model) and bottom-up visual mechanism (GBVS) to detect aircraft. Besides, we use multi-scale training method for deep CNN model to solve the problem of multiple resolutions. Experimental results demonstrate that our method can achieve a better detection result than the other methods.

  13. Modeling relief demands in an emergency supply chain system under large-scale disasters based on a queuing network.

    PubMed

    He, Xinhua; Hu, Wenfa

    2014-01-01

    This paper presents a multiple-rescue model for an emergency supply chain system under uncertainties in large-scale affected area of disasters. The proposed methodology takes into consideration that the rescue demands caused by a large-scale disaster are scattered in several locations; the servers are arranged in multiple echelons (resource depots, distribution centers, and rescue center sites) located in different places but are coordinated within one emergency supply chain system; depending on the types of rescue demands, one or more distinct servers dispatch emergency resources in different vehicle routes, and emergency rescue services queue in multiple rescue-demand locations. This emergency system is modeled as a minimal queuing response time model of location and allocation. A solution to this complex mathematical problem is developed based on genetic algorithm. Finally, a case study of an emergency supply chain system operating in Shanghai is discussed. The results demonstrate the robustness and applicability of the proposed model.

  14. Modeling Relief Demands in an Emergency Supply Chain System under Large-Scale Disasters Based on a Queuing Network

    PubMed Central

    He, Xinhua

    2014-01-01

    This paper presents a multiple-rescue model for an emergency supply chain system under uncertainties in large-scale affected area of disasters. The proposed methodology takes into consideration that the rescue demands caused by a large-scale disaster are scattered in several locations; the servers are arranged in multiple echelons (resource depots, distribution centers, and rescue center sites) located in different places but are coordinated within one emergency supply chain system; depending on the types of rescue demands, one or more distinct servers dispatch emergency resources in different vehicle routes, and emergency rescue services queue in multiple rescue-demand locations. This emergency system is modeled as a minimal queuing response time model of location and allocation. A solution to this complex mathematical problem is developed based on genetic algorithm. Finally, a case study of an emergency supply chain system operating in Shanghai is discussed. The results demonstrate the robustness and applicability of the proposed model. PMID:24688367

  15. Event Recognition Based on Deep Learning in Chinese Texts

    PubMed Central

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%. PMID:27501231

  16. a Web Api and Web Application Development for Dissemination of Air Quality Information

    NASA Astrophysics Data System (ADS)

    Şahin, K.; Işıkdağ, U.

    2017-11-01

    Various studies have been carried out since 2005 under the leadership of Ministry of Environment and Urbanism of Turkey, in order to observe the quality of air in Turkey, to develop new policies and to develop a sustainable air quality management strategy. For this reason, a national air quality monitoring network has been developed providing air quality indices. By this network, the quality of the air has been continuously monitored and an important information system has been constructed in order to take precautions for preventing a dangerous situation. The biggest handicap in the network is the data access problem for instant and time series data acquisition and processing because of its proprietary structure. Currently, there is no service offered by the current air quality monitoring system for exchanging information with third party applications. Within the context of this work, a web service has been developed to enable location based querying of the current/past air quality data in Turkey. This web service is equipped with up-todate and widely preferred technologies. In other words, an architecture is chosen in which applications can easily integrate. In the second phase of the study, a web-based application was developed to test the developed web service and this testing application can perform location based acquisition of air-quality data. This makes it possible to easily carry out operations such as screening and examination of the area in the given time-frame which cannot be done with the national monitoring network.

  17. A neural network based artificial vision system for licence plate recognition.

    PubMed

    Draghici, S

    1997-02-01

    This paper presents a neural network based artificial vision system able to analyze the image of a car given by a camera, locate the registration plate and recognize the registration number of the car. The paper describes in detail various practical problems encountered in implementing this particular application and the solutions used to solve them. The main features of the system presented are: controlled stability-plasticity behavior, controlled reliability threshold, both off-line and on-line learning, self assessment of the output reliability and high reliability based on high level multiple feedback. The system has been designed using a modular approach. Sub-modules can be upgraded and/or substituted independently, thus making the system potentially suitable in a large variety of vision applications. The OCR engine was designed as an interchangeable plug-in module. This allows the user to choose an OCR engine which is suited to the particular application and to upgrade it easily in the future. At present, there are several versions of this OCR engine. One of them is based on a fully connected feedforward artificial neural network with sigmoidal activation functions. This network can be trained with various training algorithms such as error backpropagation. An alternative OCR engine is based on the constraint based decomposition (CBD) training architecture. The system has showed the following performances (on average) on real-world data: successful plate location and segmentation about 99%, successful character recognition about 98% and successful recognition of complete registration plates about 80%.

  18. Event Recognition Based on Deep Learning in Chinese Texts.

    PubMed

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  19. A low-complexity geometric bilateration method for localization in Wireless Sensor Networks and its comparison with Least-Squares methods.

    PubMed

    Cota-Ruiz, Juan; Rosiles, Jose-Gerardo; Sifuentes, Ernesto; Rivas-Perea, Pablo

    2012-01-01

    This research presents a distributed and formula-based bilateration algorithm that can be used to provide initial set of locations. In this scheme each node uses distance estimates to anchors to solve a set of circle-circle intersection (CCI) problems, solved through a purely geometric formulation. The resulting CCIs are processed to pick those that cluster together and then take the average to produce an initial node location. The algorithm is compared in terms of accuracy and computational complexity with a Least-Squares localization algorithm, based on the Levenberg-Marquardt methodology. Results in accuracy vs. computational performance show that the bilateration algorithm is competitive compared with well known optimized localization algorithms.

  20. Brain Network Theory Can Predict Whether Neuropsychological Outcomes Will Differ from Clinical Expectations.

    PubMed

    Warren, David E; Denburg, Natalie L; Power, Jonathan D; Bruss, Joel; Waldron, Eric J; Sun, Haoxin; Petersen, Steve E; Tranel, Daniel

    2017-02-01

    Theories of brain-network organization based on neuroimaging data have burgeoned in recent years, but the predictive power of such theories for cognition and behavior has only rarely been examined. Here, predictions from clinical neuropsychologists about the cognitive profiles of patients with focal brain lesions were used to evaluate a brain-network theory (Warren et al., 2014). Neuropsychologists made predictions regarding the neuropsychological profiles of a neurological patient sample (N = 30) based on lesion location. The neuropsychologists then rated the congruence of their predictions with observed neuropsychological outcomes, in regard to the "severity" of neuropsychological deficits and the "focality" of neuropsychological deficits. Based on the network theory, two types of lesion locations were identified: "target" locations (putative hubs in a brain-wide network) and "control" locations (hypothesized to play limited roles in network function). We found that patients with lesions of target locations (N = 19) had deficits of greater than expected severity that were more widespread than expected, whereas patients with lesions of control locations (N = 11) showed milder, circumscribed deficits that were more congruent with expectations. The findings for the target brain locations suggest that prevailing views of brain-behavior relationships may be sharpened and refined by integrating recently proposed network-oriented perspectives. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Dispersion of a Passive Scalar Within and Above an Urban Street Network

    NASA Astrophysics Data System (ADS)

    Goulart, E. V.; Coceal, O.; Belcher, S. E.

    2018-03-01

    The transport of a passive scalar from a continuous point-source release in an urban street network is studied using direct numerical simulation (DNS). Dispersion through the network is characterized by evaluating horizontal fluxes of scalar within and above the urban canopy and vertical exchange fluxes through the canopy top. The relative magnitude and balance of these fluxes are used to distinguish three different regions relative to the source location: a near-field region, a transition region and a far-field region. The partitioning of each of these fluxes into mean and turbulent parts is computed. It is shown that within the canopy the horizontal turbulent flux in the street network is small, whereas above the canopy it comprises a significant fraction of the total flux. Vertical fluxes through the canopy top are predominantly turbulent. The mean and turbulent fluxes are respectively parametrized in terms of an advection velocity and a detrainment velocity and the parametrization incorporated into a simple box-network model. The model treats the coupled dispersion problem within and above the street network in a unified way and predictions of mean concentrations compare well with the DNS data. This demonstrates the usefulness of the box-network approach for process studies and interpretation of results from more detailed numerical simulations.

  2. Node Redeployment Algorithm Based on Stratified Connected Tree for Underwater Sensor Networks

    PubMed Central

    Liu, Jun; Jiang, Peng; Wu, Feng; Yu, Shanen; Song, Chunyue

    2016-01-01

    During the underwater sensor networks (UWSNs) operation, node drift with water environment causes network topology changes. Periodic node location examination and adjustment are needed to maintain good network monitoring quality as long as possible. In this paper, a node redeployment algorithm based on stratified connected tree for UWSNs is proposed. At every network adjustment moment, self-examination and adjustment on node locations are performed firstly. If a node is outside the monitored space, it returns to the last location recorded in its memory along straight line. Later, the network topology is stratified into a connected tree that takes the sink node as the root node by broadcasting ready information level by level, which can improve the network connectivity rate. Finally, with synthetically considering network coverage and connectivity rates, and node movement distance, the sink node performs centralized optimization on locations of leaf nodes in the stratified connected tree. Simulation results show that the proposed redeployment algorithm can not only keep the number of nodes in the monitored space as much as possible and maintain good network coverage and connectivity rates during network operation, but also reduce node movement distance during node redeployment and prolong the network lifetime. PMID:28029124

  3. Networked high-speed auroral observations combined with radar measurements for multi-scale insights

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Semeter, J. L.

    2015-12-01

    Networks of ground-based instruments to study terrestrial aurora for the purpose of analyzing particle precipitation characteristics driving the aurora have been established. Additional funding is pouring into future ground-based auroral observation networks consisting of combinations of tossable, portable, and fixed installation ground-based legacy equipment. Our approach to this problem using the High Speed Tomography (HiST) system combines tightly-synchronized filtered auroral optical observations capturing temporal features of order 10 ms with supporting measurements from incoherent scatter radar (ISR). ISR provides a broader spatial context up to order 100 km laterally on one minute time scales, while our camera field of view (FOV) is chosen to be order 10 km at auroral altitudes in order to capture 100 m scale lateral auroral features. The dual-scale observations of ISR and HiST fine-scale optical observations may be coupled through a physical model using linear basis functions to estimate important ionospheric quantities such as electron number density in 3-D (time, perpendicular and parallel to the geomagnetic field).Field measurements and analysis using HiST and PFISR are presented from experiments conducted at the Poker Flat Research Range in central Alaska. Other multiscale configuration candidates include supplementing networks of all-sky cameras such as THEMIS with co-locations of HiST-like instruments to fuse wide FOV measurements with the fine-scale HiST precipitation characteristic estimates. Candidate models for this coupling include GLOW and TRANSCAR. Future extensions of this work may include incorporating line of sight total electron count estimates from ground-based networks of GPS receivers in a sensor fusion problem.

  4. Energy optimization in mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, Shengwei

    Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.

  5. "Repeating Events" as Estimator of Location Precision: The China National Seismograph Network

    NASA Astrophysics Data System (ADS)

    Jiang, Changsheng; Wu, Zhongliang; Li, Yutong; Ma, Tengfei

    2014-03-01

    "Repeating earthquakes" identified by waveform cross-correlation, with inter-event separation of no more than 1 km, can be used for assessment of location precision. Assuming that the network-measured apparent inter-epicenter distance X of the "repeating doublets" indicates the location precision, we estimated the regionalized location quality of the China National Seismograph Network by comparing the "repeating events" in and around China by S chaff and R ichards (Science 303: 1176-1178, 2004; J Geophys Res 116: B03309, 2011) and the monthly catalogue of the China Earthquake Networks Center. The comparison shows that the average X value of the China National Seismograph Network is approximately 10 km. The mis-location is larger for the Tibetan Plateau, west and north of Xinjiang, and east of Inner Mongolia, as indicated by larger X values. Mis-location is correlated with the completeness magnitude of the earthquake catalogue. Using the data from the Beijing Capital Circle Region, the dependence of the mis-location on the distribution of seismic stations can be further confirmed.

  6. A Computational Framework for Quantifying and Optimizing the Performance of Observational Networks in 4D-Var Data Assimilation

    NASA Astrophysics Data System (ADS)

    Cioaca, Alexandru

    A deep scientific understanding of complex physical systems, such as the atmosphere, can be achieved neither by direct measurements nor by numerical simulations alone. Data assimila- tion is a rigorous procedure to fuse information from a priori knowledge of the system state, the physical laws governing the evolution of the system, and real measurements, all with associated error statistics. Data assimilation produces best (a posteriori) estimates of model states and parameter values, and results in considerably improved computer simulations. The acquisition and use of observations in data assimilation raises several important scientific questions related to optimal sensor network design, quantification of data impact, pruning redundant data, and identifying the most beneficial additional observations. These questions originate in operational data assimilation practice, and have started to attract considerable interest in the recent past. This dissertation advances the state of knowledge in four dimensional variational (4D-Var) data assimilation by developing, implementing, and validating a novel computational framework for estimating observation impact and for optimizing sensor networks. The framework builds on the powerful methodologies of second-order adjoint modeling and the 4D-Var sensitivity equations. Efficient computational approaches for quantifying the observation impact include matrix free linear algebra algorithms and low-rank approximations of the sensitivities to observations. The sensor network configuration problem is formulated as a meta-optimization problem. Best values for parameters such as sensor location are obtained by optimizing a performance criterion, subject to the constraint posed by the 4D-Var optimization. Tractable computational solutions to this "optimization-constrained" optimization problem are provided. The results of this work can be directly applied to the deployment of intelligent sensors and adaptive observations, as well as to reducing the operating costs of measuring networks, while preserving their ability to capture the essential features of the system under consideration.

  7. A stochastic flow-capturing model to optimize the location of fast-charging stations with uncertain electric vehicle flows

    DOE PAGES

    Wu, Fei; Sioshansi, Ramteen

    2017-05-04

    Here, we develop a model to optimize the location of public fast charging stations for electric vehicles (EVs). A difficulty in planning the placement of charging stations is uncertainty in where EV charging demands appear. For this reason, we use a stochastic flow-capturing location model (SFCLM). A sample-average approximation method and an averaged two-replication procedure are used to solve the problem and estimate the solution quality. We demonstrate the use of the SFCLM using a Central-Ohio based case study. We find that most of the stations built are concentrated around the urban core of the region. As the number ofmore » stations built increases, some appear on the outskirts of the region to provide an extended charging network. We find that the sets of optimal charging station locations as a function of the number of stations built are approximately nested. We demonstrate the benefits of the charging-station network in terms of how many EVs are able to complete their daily trips by charging midday—six public charging stations allow at least 60% of EVs that would otherwise not be able to complete their daily tours without the stations to do so. We finally compare the SFCLM to a deterministic model, in which EV flows are set equal to their expected values. We show that if a limited number of charging stations are to be built, the SFCLM outperforms the deterministic model. As the number of stations to be built increases, the SFCLM and deterministic model select very similar station locations.« less

  8. Self-organization and solution of shortest-path optimization problems with memristive networks

    NASA Astrophysics Data System (ADS)

    Pershin, Yuriy V.; Di Ventra, Massimiliano

    2013-07-01

    We show that memristive networks, namely networks of resistors with memory, can efficiently solve shortest-path optimization problems. Indeed, the presence of memory (time nonlocality) promotes self organization of the network into the shortest possible path(s). We introduce a network entropy function to characterize the self-organized evolution, show the solution of the shortest-path problem and demonstrate the healing property of the solution path. Finally, we provide an algorithm to solve the traveling salesman problem. Similar considerations apply to networks of memcapacitors and meminductors, and networks with memory in various dimensions.

  9. Mental Health, School Problems, and Social Networks: Modeling Urban Adolescent Substance Use

    ERIC Educational Resources Information Center

    Mason, Michael J.

    2010-01-01

    This study tested a mediation model of the relationship with school problems, social network quality, and substance use with a primary care sample of 301 urban adolescents. It was theorized that social network quality (level of risk or protection in network) would mediate the effects of school problems, accounting for internalizing problems and…

  10. Algorithms for Data Sharing, Coordination, and Communication in Dynamic Network Settings

    DTIC Science & Technology

    2007-12-03

    problems in dynamic networks, focusing on mobile networks with wireless communication. Problems studied include data management, time synchronization ...The discovery of a fundamental limitation in capabilities for time synchronization in large networks. (2) The identification and development of the...Problems studied include data management, time synchronization , communication problems (broadcast, geocast, and point-to-point routing), distributed

  11. Intrusion-Tolerant Location Information Services in Intelligent Vehicular Networks

    NASA Astrophysics Data System (ADS)

    Yan, Gongjun; Yang, Weiming; Shaner, Earl F.; Rawat, Danda B.

    Intelligent Vehicular Networks, known as Vehicle-to-Vehicle and Vehicle-to-Roadside wireless communications (also called Vehicular Ad hoc Networks), are revolutionizing our daily driving with better safety and more infortainment. Most, if not all, applications will depend on accurate location information. Thus, it is of importance to provide intrusion-tolerant location information services. In this paper, we describe an adaptive algorithm that detects and filters the false location information injected by intruders. Given a noisy environment of mobile vehicles, the algorithm estimates the high resolution location of a vehicle by refining low resolution location input. We also investigate results of simulations and evaluate the quality of the intrusion-tolerant location service.

  12. A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks.

    PubMed

    Luo, Junhai; Fan, Liying

    2017-03-30

    Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization.

  13. Location identification for indoor instantaneous point contaminant source by probability-based inverse Computational Fluid Dynamics modeling.

    PubMed

    Liu, X; Zhai, Z

    2008-02-01

    Indoor pollutions jeopardize human health and welfare and may even cause serious morbidity and mortality under extreme conditions. To effectively control and improve indoor environment quality requires immediate interpretation of pollutant sensor readings and accurate identification of indoor pollution history and source characteristics (e.g. source location and release time). This procedure is complicated by non-uniform and dynamic contaminant indoor dispersion behaviors as well as diverse sensor network distributions. This paper introduces a probability concept based inverse modeling method that is able to identify the source location for an instantaneous point source placed in an enclosed environment with known source release time. The study presents the mathematical models that address three different sensing scenarios: sensors without concentration readings, sensors with spatial concentration readings, and sensors with temporal concentration readings. The paper demonstrates the inverse modeling method and algorithm with two case studies: air pollution in an office space and in an aircraft cabin. The predictions were successfully verified against the forward simulation settings, indicating good capability of the method in finding indoor pollutant sources. The research lays a solid ground for further study of the method for more complicated indoor contamination problems. The method developed can help track indoor contaminant source location with limited sensor outputs. This will ensure an effective and prompt execution of building control strategies and thus achieve a healthy and safe indoor environment. The method can also assist the design of optimal sensor networks.

  14. A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks

    PubMed Central

    Luo, Junhai; Fan, Liying

    2017-01-01

    Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization. PMID:28358342

  15. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

    PubMed

    Li, Shuai; Li, Yangming; Wang, Zheng

    2013-03-01

    This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Contribution of the Surface and Down-Hole Seismic Networks to the Location of Earthquakes at the Soultz-sous-Forêts Geothermal Site (France)

    NASA Astrophysics Data System (ADS)

    Kinnaert, X.; Gaucher, E.; Kohl, T.; Achauer, U.

    2018-03-01

    Seismicity induced in geo-reservoirs can be a valuable observation to image fractured reservoirs, to characterize hydrological properties, or to mitigate seismic hazard. However, this requires accurate location of the seismicity, which is nowadays an important seismological task in reservoir engineering. The earthquake location (determination of the hypocentres) depends on the model used to represent the medium in which the seismic waves propagate and on the seismic monitoring network. In this work, location uncertainties and location inaccuracies are modeled to investigate the impact of several parameters on the determination of the hypocentres: the picking uncertainty, the numerical precision of picked arrival times, a velocity perturbation and the seismic network configuration. The method is applied to the geothermal site of Soultz-sous-Forêts, which is located in the Upper Rhine Graben (France) and which was subject to detailed scientific investigations. We focus on a massive water injection performed in the year 2000 to enhance the productivity of the well GPK2 in the granitic basement, at approximately 5 km depth, and which induced more than 7000 earthquakes recorded by down-hole and surface seismic networks. We compare the location errors obtained from the joint or the separate use of the down-hole and surface networks. Besides the quantification of location uncertainties caused by picking uncertainties, the impact of the numerical precision of the picked arrival times as provided in a reference catalogue is investigated. The velocity model is also modified to mimic possible effects of a massive water injection and to evaluate its impact on earthquake hypocentres. It is shown that the use of the down-hole network in addition to the surface network provides smaller location uncertainties but can also lead to larger inaccuracies. Hence, location uncertainties would not be well representative of the location errors and interpretation of the seismicity distribution possibly biased. This result also emphasizes that it is still necessary to properly describe the seismic propagation medium even though the addition of down-hole sensors increases the coverage of a surface network.

  17. Self-organization in neural networks - Applications in structural optimization

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat; Fu, B.; Berke, Laszlo

    1993-01-01

    The present paper discusses the applicability of ART (Adaptive Resonance Theory) networks, and the Hopfield and Elastic networks, in problems of structural analysis and design. A characteristic of these network architectures is the ability to classify patterns presented as inputs into specific categories. The categories may themselves represent distinct procedural solution strategies. The paper shows how this property can be adapted in the structural analysis and design problem. A second application is the use of Hopfield and Elastic networks in optimization problems. Of particular interest are problems characterized by the presence of discrete and integer design variables. The parallel computing architecture that is typical of neural networks is shown to be effective in such problems. Results of preliminary implementations in structural design problems are also included in the paper.

  18. Spatial reasoning to determine stream network from LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Wang, S.; Elliott, D. B.

    1983-01-01

    In LANDSAT imagery, spectral and spatial information can be used to detect the drainage network as well as the relative elevation model in mountainous terrain. To do this, mixed information of material reflectance in the original LANDSAT imagery must be separated. From the material reflectance information, big visible rivers can be detected. From the topographic modulation information, ridges and valleys can be detected and assigned relative elevations. A complete elevation model can be generated by interpolating values for nonridge and non-valley pixels. The small streams not detectable from material reflectance information can be located in the valleys with flow direction known from the elevation model. Finally, the flow directions of big visible rivers can be inferred by solving a consistent labeling problem based on a set of spatial reasoning constraints.

  19. A flood lamination strategy based on transportation network with time delay.

    PubMed

    Nouasse, H; Chiron, P; Archimède, B

    2013-01-01

    Over the last few years, the frequency and intensity of floods has become more marked due to the influence of climate change. The engendered problems are related to the safety of goods and persons. These considerations require predictive management that will limit water height downstream. In the literature, numerous works have described flow modeling and management. The work presented in this paper is interested in quantitative management by means of flood expansion areas placed along the river and for which we have size and location. The performance of the management system depends on the time and height of gate opening, which will influence wave mitigation. The proposed management method is based on use of a transportation network with time delay from which the volume of water to be stored is calculated.

  20. A Gender Identification System for Customers in a Shop Using Infrared Area Scanners

    NASA Astrophysics Data System (ADS)

    Tajima, Takuya; Kimura, Haruhiko; Abe, Takehiko; Abe, Koji; Nakamoto, Yoshinori

    Information about customers in shops plays an important role in marketing analysis. Currently, in convenience stores and supermarkets, the identification of customer's gender is examined by clerks. On the other hand, gender identification systems using camera images are investigated. However, these systems have a problem of invading human privacies in identifying attributes of customers. The proposed system identifies gender by using infrared area scanners and Bayesian network. In the proposed system, since infrared area scanners do not take customers' images directly, invasion of privacies are not occurred. The proposed method uses three parameters of height, walking speed and pace for humans. In general, it is shown that these parameters have factors of sexual distinction in humans, and Bayesian network is designed with these three parameters. The proposed method resolves the existent problems of restricting the locations where the systems are set and invading human privacies. Experimental results using data obtained from 450 people show that the identification rate for the proposed method was 91.3% on the average of both of male and female identifications.

  1. Cyber-Physical Trade-Offs in Distributed Detection Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Yao, David K. Y.; Chin, J. C.

    2010-01-01

    We consider a network of sensors that measure the scalar intensity due to the background or a source combined with background, inside a two-dimensional monitoring area. The sensor measurements may be random due to the underlying nature of the source and background or due to sensor errors or both. The detection problem is infer the presence of a source of unknown intensity and location based on sensor measurements. In the conventional approach, detection decisions are made at the individual sensors, which are then combined at the fusion center, for example using the majority rule. With increased communication and computation costs,more » we show that a more complex fusion algorithm based on measurements achieves better detection performance under smooth and non-smooth source intensity functions, Lipschitz conditions on probability ratios and a minimum packing number for the state-space. We show that these conditions for trade-offs between the cyber costs and physical detection performance are applicable for two detection problems: (i) point radiation sources amidst background radiation, and (ii) sources and background with Gaussian distributions.« less

  2. A system for distributed intrusion detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snapp, S.R.; Brentano, J.; Dias, G.V.

    1991-01-01

    The study of providing security in computer networks is a rapidly growing area of interest because the network is the medium over which most attacks or intrusions on computer systems are launched. One approach to solving this problem is the intrusion-detection concept, whose basic premise is that not only abandoning the existing and huge infrastructure of possibly-insecure computer and network systems is impossible, but also replacing them by totally-secure systems may not be feasible or cost effective. Previous work on intrusion-detection systems were performed on stand-alone hosts and on a broadcast local area network (LAN) environment. The focus of ourmore » present research is to extend our network intrusion-detection concept from the LAN environment to arbitarily wider areas with the network topology being arbitrary as well. The generalized distributed environment is heterogeneous, i.e., the network nodes can be hosts or servers from different vendors, or some of them could be LAN managers, like our previous work, a network security monitor (NSM), as well. The proposed architecture for this distributed intrusion-detection system consists of the following components: a host manager in each host; a LAN manager for monitoring each LAN in the system; and a central manager which is placed at a single secure location and which receives reports from various host and LAN managers to process these reports, correlate them, and detect intrusions. 11 refs., 2 figs.« less

  3. Reliable design of a closed loop supply chain network under uncertainty: An interval fuzzy possibilistic chance-constrained model

    NASA Astrophysics Data System (ADS)

    Vahdani, Behnam; Tavakkoli-Moghaddam, Reza; Jolai, Fariborz; Baboli, Arman

    2013-06-01

    This article seeks to offer a systematic approach to establishing a reliable network of facilities in closed loop supply chains (CLSCs) under uncertainties. Facilities that are located in this article concurrently satisfy both traditional objective functions and reliability considerations in CLSC network designs. To attack this problem, a novel mathematical model is developed that integrates the network design decisions in both forward and reverse supply chain networks. The model also utilizes an effective reliability approach to find a robust network design. In order to make the results of this article more realistic, a CLSC for a case study in the iron and steel industry has been explored. The considered CLSC is multi-echelon, multi-facility, multi-product and multi-supplier. Furthermore, multiple facilities exist in the reverse logistics network leading to high complexities. Since the collection centres play an important role in this network, the reliability concept of these facilities is taken into consideration. To solve the proposed model, a novel interactive hybrid solution methodology is developed by combining a number of efficient solution approaches from the recent literature. The proposed solution methodology is a bi-objective interval fuzzy possibilistic chance-constraint mixed integer linear programming (BOIFPCCMILP). Finally, computational experiments are provided to demonstrate the applicability and suitability of the proposed model in a supply chain environment and to help decision makers facilitate their analyses.

  4. Hopfield networks for solving Tower of Hanoi problems

    NASA Astrophysics Data System (ADS)

    Kaplan, G. B.; Güzeliş, Cüneyt

    2001-08-01

    In this paper, Hopfield neural networks have been considered in solving the Tower of Hanoi test which is used in the determining of deficit of planning capability of the human prefrontal cortex. The main difference between this paper and the ones in the literature which use neural networks is that the Tower of Hanoi problem has been formulated here as a special shortest-path problem. In the literature, some Hopfield networks are developed for solving the shortest path problem which is a combinatorial optimization problem having a diverse field of application. The approach given in this paper gives the possibility of solving the Tower of Hanoi problem using these Hopfield networks. Also, the paper proposes new Hopfield network models for the shortest path and hence the Tower of Hanoi problems and compares them to the available ones in terms of the memory and time (number of steps) needed in the simulations.

  5. A Trust-Based Adaptive Probability Marking and Storage Traceback Scheme for WSNs

    PubMed Central

    Liu, Anfeng; Liu, Xiao; Long, Jun

    2016-01-01

    Security is a pivotal issue for wireless sensor networks (WSNs), which are emerging as a promising platform that enables a wide range of military, scientific, industrial and commercial applications. Traceback, a key cyber-forensics technology, can play an important role in tracing and locating a malicious source to guarantee cybersecurity. In this work a trust-based adaptive probability marking and storage (TAPMS) traceback scheme is proposed to enhance security for WSNs. In a TAPMS scheme, the marking probability is adaptively adjusted according to the security requirements of the network and can substantially reduce the number of marking tuples and improve network lifetime. More importantly, a high trust node is selected to store marking tuples, which can avoid the problem of marking information being lost. Experimental results show that the total number of marking tuples can be reduced in a TAPMS scheme, thus improving network lifetime. At the same time, since the marking tuples are stored in high trust nodes, storage reliability can be guaranteed, and the traceback time can be reduced by more than 80%. PMID:27043566

  6. A spatial model for a stream networks of Citarik River with the environmental variables: potential of hydrogen (PH) and temperature

    NASA Astrophysics Data System (ADS)

    Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.

    2018-03-01

    Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly

  7. Transfer-Efficient Face Routing Using the Planar Graphs of Neighbors in High Density WSNs

    PubMed Central

    Kim, Sang-Ha

    2017-01-01

    Face routing has been adopted in wireless sensor networks (WSNs) where topological changes occur frequently or maintaining full network information is difficult. For message forwarding in networks, a planar graph is used to prevent looping, and because long edges are removed by planarization and the resulting planar graph is composed of short edges, and messages are forwarded along multiple nodes connected by them even though they can be forwarded directly. To solve this, face routing using information on all nodes within 2-hop range was adopted to forward messages directly to the farthest node within radio range. However, as the density of the nodes increases, network performance plunges because message transfer nodes receive and process increased node information. To deal with this problem, we propose a new face routing using the planar graphs of neighboring nodes to improve transfer efficiency. It forwards a message directly to the farthest neighbor and reduces loads and processing time by distributing network graph construction and planarization to the neighbors. It also decreases the amount of location information to be transmitted by sending information on the planar graph nodes rather than on all neighboring nodes. Simulation results show that it significantly improves transfer efficiency. PMID:29053623

  8. The Right Network for the Right Problem

    ERIC Educational Resources Information Center

    Gomez, Louis M.; Russell, Jennifer L.; Bryk, Anthony S.; LeMahieu, Paul G.; Mejia, Eva M.

    2016-01-01

    Educators are realizing that individuals working in isolation can't adequately address the teaching and learning problems that face us today. Collective action networks are needed. Sharing networks use collective energy to support individual action and agency, whereas execution networks typically address complex problems that require sustained…

  9. THE IMPACT OF KINSHIP NETWORKS ON OLD-AGE VULNERABILITY IN INDONESIA

    PubMed Central

    Schröder-Butterfill, Elisabeth

    2007-01-01

    SUMMARY This article examines the problem of care provision for elderly people in Java, a contemporary developing society characterised by lack of formal welfare services, nuclear family organisation and high levels of childlessness. A similar socio-demographic, cultural and economic regime existed in historical Northwest Europe, where it has been seen as having contributed to the early emergence of community based old-age care and low involvement of wider kin networks. Here the role of kin in providing old-age care in a nuclear family system is re-examined by drawing on longitudinal data of elderly people's life histories and support networks in a village in East Java. The central argument is that the identification of elders most vulnerable to a lack of care and support in old age requires understanding the nature and functioning of kin networks over time. The paper discusses three key aspects of networks—network membership, exchanges within networks and network dynamics—and arrives at a characterisation of different kin networks on the basis of size, composition, location and social status. By focusing on the effects of a specific crisis, namely the loss of a wife, on care outcomes in old age, it is possible to determine what kinds of kin networks are best able to adjust to a sudden change in older people's circumstances and protect them from declines in welfare. This reveals the importance, especially for childless elderly people, of extended, heterogeneous and well-connected kin networks. PMID:23750056

  10. Group Colocation Behavior in Technological Social Networks

    PubMed Central

    Brown, Chloë; Lathia, Neal; Mascolo, Cecilia; Noulas, Anastasios; Blondel, Vincent

    2014-01-01

    We analyze two large datasets from technological networks with location and social data: user location records from an online location-based social networking service, and anonymized telecommunications data from a European cellphone operator, in order to investigate the differences between individual and group behavior with respect to physical location. We discover agreements between the two datasets: firstly, that individuals are more likely to meet with one friend at a place they have not visited before, but tend to meet at familiar locations when with a larger group. We also find that groups of individuals are more likely to meet at places that their other friends have visited, and that the type of a place strongly affects the propensity for groups to meet there. These differences between group and solo mobility has potential technological applications, for example, in venue recommendation in location-based social networks. PMID:25148037

  11. Achieve Location Privacy-Preserving Range Query in Vehicular Sensing

    PubMed Central

    Lu, Rongxing; Ma, Maode; Bao, Haiyong

    2017-01-01

    Modern vehicles are equipped with a plethora of on-board sensors and large on-board storage, which enables them to gather and store various local-relevant data. However, the wide application of vehicular sensing has its own challenges, among which location-privacy preservation and data query accuracy are two critical problems. In this paper, we propose a novel range query scheme, which helps the data requester to accurately retrieve the sensed data from the distributive on-board storage in vehicular ad hoc networks (VANETs) with location privacy preservation. The proposed scheme exploits structured scalars to denote the locations of data requesters and vehicles, and achieves the privacy-preserving location matching with the homomorphic Paillier cryptosystem technique. Detailed security analysis shows that the proposed range query scheme can successfully preserve the location privacy of the involved data requesters and vehicles, and protect the confidentiality of the sensed data. In addition, performance evaluations are conducted to show the efficiency of the proposed scheme, in terms of computation delay and communication overhead. Specifically, the computation delay and communication overhead are not dependent on the length of the scalar, and they are only proportional to the number of vehicles. PMID:28786943

  12. Achieve Location Privacy-Preserving Range Query in Vehicular Sensing.

    PubMed

    Kong, Qinglei; Lu, Rongxing; Ma, Maode; Bao, Haiyong

    2017-08-08

    Modern vehicles are equipped with a plethora of on-board sensors and large on-board storage, which enables them to gather and store various local-relevant data. However, the wide application of vehicular sensing has its own challenges, among which location-privacy preservation and data query accuracy are two critical problems. In this paper, we propose a novel range query scheme, which helps the data requester to accurately retrieve the sensed data from the distributive on-board storage in vehicular ad hoc networks (VANETs) with location privacy preservation. The proposed scheme exploits structured scalars to denote the locations of data requesters and vehicles, and achieves the privacy-preserving location matching with the homomorphic Paillier cryptosystem technique. Detailed security analysis shows that the proposed range query scheme can successfully preserve the location privacy of the involved data requesters and vehicles, and protect the confidentiality of the sensed data. In addition, performance evaluations are conducted to show the efficiency of the proposed scheme, in terms of computation delay and communication overhead. Specifically, the computation delay and communication overhead are not dependent on the length of the scalar, and they are only proportional to the number of vehicles.

  13. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities

    PubMed Central

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior. PMID:29535614

  14. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities.

    PubMed

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior.

  15. Recent research in network problems with applications

    NASA Technical Reports Server (NTRS)

    Thompson, G. L.

    1980-01-01

    The capabilities of network codes and their extensions are surveyed in regard to specially structured integer programming problems which are solved by using the solutions of a series of ordinary network problems.

  16. High-resolution seismicity catalog of Italian peninsula in the period 1981-2015

    NASA Astrophysics Data System (ADS)

    Michele, M.; Latorre, D.; Castello, B.; Di Stefano, R.; Chiaraluce, L.

    2017-12-01

    In order to provide an updated reference catalog of Italian seismicity, the absolute location of the last 35 years (1981-2015) of seismic activity was computed with a three-dimensional VP and VS velocity model covering the whole Italian territory. The NonLinLoc code (Lomax et al., 2000), which is based on a probabilistic approach, was used to provide a complete and robust description of the uncertainties associated to the locations corresponding to the hypocentral solutions with the highest probability density. Moreover, the code using a finite difference approximation of the eikonal equation (Podvin and Lecomte, 1991), allows to manage very contrasted velocity models in the arrival time computation. To optimize the earthquakes location, we included the station corrections in the inverse problem. For each year, the number of available earthquakes depends on both the network detection capability and the occurrence of major seismic sequences. The starting earthquakes catalog was based on 2.6 million P and 1.9 million S arrival time picks for 278.607 selected earthquakes, recorded at least by 3 seismic stations of the Italian seismic network. The new catalog compared to the previous ones consisting of hypocentral locations retrieved with linearized location methods, shows a very good improvement as testified by the location parameters assessing the quality of the solution (i.e., RMS, azimuthal gap, formal error on horizontal and vertical components). In addition, we used the distance between the expected and the maximum likelihood hypocenter location to establish the unimodal (high-resolved location) or multimodal (poor-resolved location) character of the probability distribution. We used these parameters to classify the resulting locations in four classes (A, B, C and D) considering the simultaneous goodness of the previous parameters. The upper classes (A and B) include the 65% of the relocated earthquake, while the lowest class (D) only includes the 7% of the seismicity. We present the new catalog, consisting of 272.847 events, showing some example of earthquakes location related to the background as well as small to large seismic sequences occurred in Italy the last 35 years.

  17. Analog Processor To Solve Optimization Problems

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.

    1993-01-01

    Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.

  18. A brief historical introduction to Euler's formula for polyhedra, topology, graph theory and networks

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2010-09-01

    This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Königsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real physical systems are included. We also mention some important and modern applications of graph theory or network problems from transportation to telecommunications. Graphs or networks are effectively used as powerful tools in industrial, electrical and civil engineering, communication networks in the planning of business and industry. Graph theory and combinatorics can be used to understand the changes that occur in many large and complex scientific, technical and medical systems. With the advent of fast large computers and the ubiquitous Internet consisting of a very large network of computers, large-scale complex optimization problems can be modelled in terms of graphs or networks and then solved by algorithms available in graph theory. Many large and more complex combinatorial problems dealing with the possible arrangements of situations of various kinds, and computing the number and properties of such arrangements can be formulated in terms of networks. The Knight's tour problem, Hamilton's tour problem, problem of magic squares, the Euler Graeco-Latin squares problem and their modern developments in the twentieth century are also included.

  19. Displacement back analysis for a high slope of the Dagangshan Hydroelectric Power Station based on BP neural network and particle swarm optimization.

    PubMed

    Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui

    2014-01-01

    The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes.

  20. Displacement Back Analysis for a High Slope of the Dagangshan Hydroelectric Power Station Based on BP Neural Network and Particle Swarm Optimization

    PubMed Central

    Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui

    2014-01-01

    The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes. PMID:25140345

  1. Combining GOES-16 Geostationary Lightning Mapper with the ground based Earth Networks Total Lightning Network

    NASA Astrophysics Data System (ADS)

    Stock, M.; Lapierre, J. L.; Zhu, Y.

    2017-12-01

    Recently, the Geostationary Lightning Mapper (GLM) began collecting optical data to locate lightning events and flashes over the North and South American continents. This new instrument promises uniformly high detection efficiency (DE) over its entire field of view, with location accuracy on the order of 10 km. In comparison, Earth Networks Total Lightning Networks (ENTLN) has a less uniform coverage, with higher DE in regions with dense sensor coverage, and lower DE with sparse sensor coverage. ENTLN also offers better location accuracy, lightning classification, and peak current estimation for their lightning locations. It is desirable to produce an integrated dataset, combining the strong points of GLM and ENTLN. The easiest way to achieve this is to simply match located lightning processes from each system using time and distance criteria. This simple method will be limited in scope by the uneven coverage of the ground based network. Instead, we will use GLM group locations to look up the electric field change data recorded by ground sensors near each GLM group, vastly increasing the coverage of the ground network. The ground waveforms can then be used for: improvements to differentiation between glint and lightning for GLM, higher precision lighting location, current estimation, and lightning process classification. Presented is an initial implementation of this type of integration using preliminary GLM data, and waveforms from ENTLN.

  2. Ecology in the information age: Patterns of use and attrition rates of internet-based citations in ESA journals, 1997–2005

    USGS Publications Warehouse

    Duda, Jeffrey J.; Camp, Richard J.

    2008-01-01

    As the amount of information available on the internet has increased, so too has the number of citations to network-accessible information in scholarly research. We searched all papers in four Ecological Society of America journals from 1997 to 2005 for articles containing a citation to material on the internet. We then tested the links to determine whether the information cited in the paper was still accessible. We identified 877 articles that contained at least one link to information on the internet and a total of 2100 unique links. The majority of these citations were based on an object's location (Uniform Resource Locator; 77%), whereas the rest were based on an object's identity (eg Digital Object Identifier, GenBank Accession number). We found that 19–30% of the location-based links were unavailable and that there was a positive relationship between the age of an article and the probability of the link being inactive. Using an internet search engine, we recovered 72–84% of the lost information, leaving a total of 6.2% of the total citations unavailable. Our results highlight the problem of persistence of information stored on the world wide web and we include recommendations for minimizing this problem.

  3. A PC based time domain reflectometer for space station cable fault isolation

    NASA Technical Reports Server (NTRS)

    Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken

    1994-01-01

    Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).

  4. Network Design for Reliability and Resilience to Attack

    DTIC Science & Technology

    2014-03-01

    attacker can destroy n arcs in the network SPNI Shortest-Path Network-Interdiction problem TSP Traveling Salesman Problem UB upper bound UKR Ukraine...elimination from the traveling salesman problem (TSP). Literature calls a walk that does not contain a cycle a path [19]. The objective function in...arc lengths as random variables with known probability distributions. The m-median problem seeks to design a network with minimum average travel cost

  5. A Bloom Filter-Powered Technique Supporting Scalable Semantic Discovery in Data Service Networks

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Shi, R.; Bao, Q.; Lee, T. J.; Ramachandran, R.

    2016-12-01

    More and more Earth data analytics software products are published onto the Internet as a service, in the format of either heavyweight WSDL service or lightweight RESTful API. Such reusable data analytics services form a data service network, which allows Earth scientists to compose (mashup) services into value-added ones. Therefore, it is important to have a technique that is capable of helping Earth scientists quickly identify appropriate candidate datasets and services in the global data service network. Most existing services discovery techniques, however, mainly rely on syntax or semantics-based service matchmaking between service requests and available services. Since the scale of the data service network is increasing rapidly, the run-time computational cost will soon become a bottleneck. To address this issue, this project presents a way of applying network routing mechanism to facilitate data service discovery in a service network, featuring scalability and performance. Earth data services are automatically annotated in Web Ontology Language for Services (OWL-S) based on their metadata, semantic information, and usage history. Deterministic Annealing (DA) technique is applied to dynamically organize annotated data services into a hierarchical network, where virtual routers are created to represent semantic local network featuring leading terms. Afterwards Bloom Filters are generated over virtual routers. A data service search request is transformed into a network routing problem in order to quickly locate candidate services through network hierarchy. A neural network-powered technique is applied to assure network address encoding and routing performance. A series of empirical study has been conducted to evaluate the applicability and effectiveness of the proposed approach.

  6. Sensor Authentication in Collaborating Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bielefeldt, Jake Uriah

    2014-11-01

    In this thesis, we address a new security problem in the realm of collaborating sensor networks. By collaborating sensor networks, we refer to the networks of sensor networks collaborating on a mission, with each sensor network is independently owned and operated by separate entities. Such networks are practical where a number of independent entities can deploy their own sensor networks in multi-national, commercial, and environmental scenarios, and some of these networks will integrate complementary functionalities for a mission. In the scenario, we address an authentication problem wherein the goal is for the Operator O i of Sensor Network S imore » to correctly determine the number of active sensors in Network Si. Such a problem is challenging in collaborating sensor networks where other sensor networks, despite showing an intent to collaborate, may not be completely trustworthy and could compromise the authentication process. We propose two authentication protocols to address this problem. Our protocols rely on Physically Unclonable Functions, which are a hardware based authentication primitive exploiting inherent randomness in circuit fabrication. Our protocols are light-weight, energy efficient, and highly secure against a number of attacks. To the best of our knowledge, ours is the first to addresses a practical security problem in collaborating sensor networks.« less

  7. Optimal design and operation of booster chlorination stations layout in water distribution systems.

    PubMed

    Ohar, Ziv; Ostfeld, Avi

    2014-07-01

    This study describes a new methodology for the disinfection booster design, placement, and operation problem in water distribution systems. Disinfectant residuals, which are in most cases chlorine residuals, are assumed to be sufficient to prevent growth of pathogenic bacteria, yet low enough to avoid taste and odor problems. Commonly, large quantities of disinfectants are released at the sources outlets for preserving minimum residual disinfectant concentrations throughout the network. Such an approach can cause taste and odor problems near the disinfectant injection locations, but more important hazardous excessive disinfectant by-product formations (DBPs) at the far network ends, of which some may be carcinogenic. To cope with these deficiencies booster chlorination stations were suggested to be placed at the distribution system itself and not just at the sources, motivating considerable research in recent years on placement, design, and operation of booster chlorination stations in water distribution systems. The model formulated and solved herein is aimed at setting the required chlorination dose of the boosters for delivering water at acceptable residual chlorine and TTHM concentrations for minimizing the overall cost of booster placement, construction, and operation under extended period hydraulic simulation conditions through utilizing a multi-species approach. The developed methodology links a genetic algorithm with EPANET-MSX, and is demonstrated through base runs and sensitivity analyses on a network example application. Two approaches are suggested for dealing with water quality initial conditions and species periodicity: (1) repetitive cyclical simulation (RCS), and (2) cyclical constrained species (CCS). RCS was found to be more robust but with longer computational time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Study on networking issues of medium earth orbit satellite communications systems

    NASA Technical Reports Server (NTRS)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  9. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow

    NASA Astrophysics Data System (ADS)

    Nœtinger, B.

    2015-02-01

    Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.

  10. Wireless Sensor Network for Radiometric Detection and Assessment of Partial Discharge in High-Voltage Equipment

    NASA Astrophysics Data System (ADS)

    Upton, D. W.; Saeed, B. I.; Mather, P. J.; Lazaridis, P. I.; Vieira, M. F. Q.; Atkinson, R. C.; Tachtatzis, C.; Garcia, M. S.; Judd, M. D.; Glover, I. A.

    2018-03-01

    Monitoring of partial discharge (PD) activity within high-voltage electrical environments is increasingly used for the assessment of insulation condition. Traditional measurement techniques employ technologies that either require off-line installation or have high power consumption and are hence costly. A wireless sensor network is proposed that utilizes only received signal strength to locate areas of PD activity within a high-voltage electricity substation. The network comprises low-power and low-cost radiometric sensor nodes which receive the radiation propagated from a source of PD. Results are reported from several empirical tests performed within a large indoor environment and a substation environment using a network of nine sensor nodes. A portable PD source emulator was placed at multiple locations within the network. Signal strength measured by the nodes is reported via WirelessHART to a data collection hub where it is processed using a location algorithm. The results obtained place the measured location within 2 m of the actual source location.

  11. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    NASA Astrophysics Data System (ADS)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  12. Achieving Fair Throughput among TCP Flows in Multi-Hop Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Hou, Ting-Chao; Hsu, Chih-Wei

    Previous research shows that the IEEE 802.11 DCF channel contention mechanism is not capable of providing throughput fairness among nodes in different locations of the wireless mesh network. The node nearest the gateway will always strive for the chance to transmit data, causing fewer transmission opportunities for the nodes farther from the gateway, resulting in starvation. Prior studies modify the DCF mechanism to address the fairness problem. This paper focuses on the fairness study when TCP flows are carried over wireless mesh networks. By not modifying lower layer protocols, the current work identifies TCP parameters that impact throughput fairness and proposes adjusting those parameters to reduce frame collisions and improve throughput fairness. With the aid of mathematical formulation and ns2 simulations, this study finds that frame transmission from each node can be effectively controlled by properly controlling the delayed ACK timer and using a suitable advertised window. The proposed method reduces frame collisions and greatly improves TCP throughput fairness.

  13. Performance Analysis of Classification Methods for Indoor Localization in Vlc Networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Rodríguez, D.; Alonso-González, I.; Sánchez-Medina, J.; Ley-Bosch, C.; Díaz-Vilariño, L.

    2017-09-01

    Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.

  14. Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks.

    PubMed

    Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid

    2017-10-09

    The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms.

  15. Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks

    PubMed Central

    Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid

    2017-01-01

    The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms. PMID:28991200

  16. I-MAC: an incorporation MAC for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jumin; Li, Yikun; Li, Dengao; Lin, Xiaojie

    2017-11-01

    This paper proposes an innovative MAC protocol called I-MAC. Protocol for wireless sensor networks, which combines the advantages of collision tolerance and collision cancellation. The protocol increases the number of antenna in wireless sensor nodes. The purpose is to monitor the occurrence of packet collisions by increasing the number of antenna in real time. The built-in identity structure is used in the frame structure in order to help the sending node to identify the location of the receiving node after a data packet collision is detected. Packets can be recovered from where the conflict occurred. In this way, we can monitor the conflict for a fixed period of time. It can improve the channel utilisation through changing the transmission probability of collision nodes and solve the problem of hidden terminal through collision feedback mechanism. We have evaluated our protocol. Our results show that the throughput of I-MAC is 5 percentage points higher than that of carrier sense multiple access/collision notification. The network utilisation of I-MAC is more than 92%.

  17. A program to compute the soft Robinson-Foulds distance between phylogenetic networks.

    PubMed

    Lu, Bingxin; Zhang, Louxin; Leong, Hon Wai

    2017-03-14

    Over the past two decades, phylogenetic networks have been studied to model reticulate evolutionary events. The relationships among phylogenetic networks, phylogenetic trees and clusters serve as the basis for reconstruction and comparison of phylogenetic networks. To understand these relationships, two problems are raised: the tree containment problem, which asks whether a phylogenetic tree is displayed in a phylogenetic network, and the cluster containment problem, which asks whether a cluster is represented at a node in a phylogenetic network. Both the problems are NP-complete. A fast exponential-time algorithm for the cluster containment problem on arbitrary networks is developed and implemented in C. The resulting program is further extended into a computer program for fast computation of the Soft Robinson-Foulds distance between phylogenetic networks. Two computer programs are developed for facilitating reconstruction and validation of phylogenetic network models in evolutionary and comparative genomics. Our simulation tests indicated that they are fast enough for use in practice. Additionally, the distribution of the Soft Robinson-Foulds distance between phylogenetic networks is demonstrated to be unlikely normal by our simulation data.

  18. In Silico Enhancing M. tuberculosis Protein Interaction Networks in STRING To Predict Drug-Resistance Pathways and Pharmacological Risks.

    PubMed

    Mei, Suyu

    2018-05-04

    Bacterial protein-protein interaction (PPI) networks are significant to reveal the machinery of signal transduction and drug resistance within bacterial cells. The database STRING has collected a large number of bacterial pathogen PPI networks, but most of the data are of low quality without being experimentally or computationally validated, thus restricting its further biomedical applications. We exploit the experimental data via four solutions to enhance the quality of M. tuberculosis H37Rv (MTB) PPI networks in STRING. Computational results show that the experimental data derived jointly by two-hybrid and copurification approaches are the most reliable to train an L 2 -regularized logistic regression model for MTB PPI network validation. On the basis of the validated MTB PPI networks, we further study the three problems via breadth-first graph search algorithm: (1) discovery of MTB drug-resistance pathways through searching for the paths between known drug-target genes and drug-resistance genes, (2) choosing potential cotarget genes via searching for the critical genes located on multiple pathways, and (3) choosing essential drug-target genes via analysis of network degree distribution. In addition, we further combine the validated MTB PPI networks with human PPI networks to analyze the potential pharmacological risks of known and candidate drug-target genes from the point of view of system pharmacology. The evidence from protein structure alignment demonstrates that the drugs that act on MTB target genes could also adversely act on human signaling pathways.

  19. NSI operations center

    NASA Technical Reports Server (NTRS)

    Zanley, Nancy L.

    1991-01-01

    The NASA Science Internet (NSI) Network Operations Staff is responsible for providing reliable communication connectivity for the NASA science community. As the NSI user community expands, so does the demand for greater interoperability with users and resources on other networks (e.g., NSFnet, ESnet), both nationally and internationally. Coupled with the science community's demand for greater access to other resources is the demand for more reliable communication connectivity. Recognizing this, the NASA Science Internet Project Office (NSIPO) expands its Operations activities. By January 1990, Network Operations was equipped with a telephone hotline, and its staff was expanded to six Network Operations Analysts. These six analysts provide 24-hour-a-day, 7-day-a-week coverage to assist site managers with problem determination and resolution. The NSI Operations staff monitors network circuits and their associated routers. In most instances, NSI Operations diagnoses and reports problems before users realize a problem exists. Monitoring of the NSI TCP/IP Network is currently being done with Proteon's Overview monitoring system. The Overview monitoring system displays a map of the NSI network utilizing various colors to indicate the conditions of the components being monitored. Each node or site is polled via the Simple Network Monitoring Protocol (SNMP). If a circuit goes down, Overview alerts the Network Operations staff with an audible alarm and changes the color of the component. When an alert is received, Network Operations personnel immediately verify and diagnose the problem, coordinate repair with other networking service groups, track problems, and document problem and resolution into a trouble ticket data base. NSI Operations offers the NSI science community reliable connectivity by exercising prompt assessment and resolution of network problems.

  20. Enabling Functional Neural Circuit Simulations with Distributed Computing of Neuromodulated Plasticity

    PubMed Central

    Potjans, Wiebke; Morrison, Abigail; Diesmann, Markus

    2010-01-01

    A major puzzle in the field of computational neuroscience is how to relate system-level learning in higher organisms to synaptic plasticity. Recently, plasticity rules depending not only on pre- and post-synaptic activity but also on a third, non-local neuromodulatory signal have emerged as key candidates to bridge the gap between the macroscopic and the microscopic level of learning. Crucial insights into this topic are expected to be gained from simulations of neural systems, as these allow the simultaneous study of the multiple spatial and temporal scales that are involved in the problem. In particular, synaptic plasticity can be studied during the whole learning process, i.e., on a time scale of minutes to hours and across multiple brain areas. Implementing neuromodulated plasticity in large-scale network simulations where the neuromodulatory signal is dynamically generated by the network itself is challenging, because the network structure is commonly defined purely by the connectivity graph without explicit reference to the embedding of the nodes in physical space. Furthermore, the simulation of networks with realistic connectivity entails the use of distributed computing. A neuromodulated synapse must therefore be informed in an efficient way about the neuromodulatory signal, which is typically generated by a population of neurons located on different machines than either the pre- or post-synaptic neuron. Here, we develop a general framework to solve the problem of implementing neuromodulated plasticity in a time-driven distributed simulation, without reference to a particular implementation language, neuromodulator, or neuromodulated plasticity mechanism. We implement our framework in the simulator NEST and demonstrate excellent scaling up to 1024 processors for simulations of a recurrent network incorporating neuromodulated spike-timing dependent plasticity. PMID:21151370

  1. Good Features to Correlate for Visual Tracking

    NASA Astrophysics Data System (ADS)

    Gundogdu, Erhan; Alatan, A. Aydin

    2018-05-01

    During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.

  2. Analysis of Issues for Project Scheduling by Multiple, Dispersed Schedulers (distributed Scheduling) and Requirements for Manual Protocols and Computer-based Support

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.

    1991-01-01

    Although computerized operations have significant gains realized in many areas, one area, scheduling, has enjoyed few benefits from automation. The traditional methods of industrial engineering and operations research have not proven robust enough to handle the complexities associated with the scheduling of realistic problems. To address this need, NASA has developed the computer-aided scheduling system (COMPASS), a sophisticated, interactive scheduling tool that is in wide-spread use within NASA and the contractor community. Therefore, COMPASS provides no explicit support for the large class of problems in which several people, perhaps at various locations, build separate schedules that share a common pool of resources. This research examines the issue of distributing scheduling, as applied to application domains characterized by the partial ordering of tasks, limited resources, and time restrictions. The focus of this research is on identifying issues related to distributed scheduling, locating applicable problem domains within NASA, and suggesting areas for ongoing research. The issues that this research identifies are goals, rescheduling requirements, database support, the need for communication and coordination among individual schedulers, the potential for expert system support for scheduling, and the possibility of integrating artificially intelligent schedulers into a network of human schedulers.

  3. Target identification using Zernike moments and neural networks

    NASA Astrophysics Data System (ADS)

    Azimi-Sadjadi, Mahmood R.; Jamshidi, Arta A.; Nevis, Andrew J.

    2001-10-01

    The development of an underwater target identification algorithm capable of identifying various types of underwater targets, such as mines, under different environmental conditions pose many technical problems. Some of the contributing factors are: targets have diverse sizes, shapes and reflectivity properties. Target emplacement environment is variable; targets may be proud or partially buried. Environmental properties vary significantly from one location to another. Bottom features such as sand, rocks, corals, and vegetation can conceal a target whether it is partially buried or proud. Competing clutter with responses that closely resemble those of the targets may lead to false positives. All the problems mentioned above contribute to overly difficult and challenging conditions that could lead to unreliable algorithm performance with existing methods. In this paper, we developed and tested a shape-dependent feature extraction scheme that provides features invariant to rotation, size scaling and translation; properties that are extremely useful for any target classification problem. The developed schemes were tested on an electro-optical imagery data set collected under different environmental conditions with variable background, range and target types. The electro-optic data set was collected using a Laser Line Scan (LLS) sensor by the Coastal Systems Station (CSS), located in Panama City, Florida. The performance of the developed scheme and its robustness to distortion, rotation, scaling and translation was also studied.

  4. Cluster based architecture and network maintenance protocol for medical priority aware cognitive radio based hospital.

    PubMed

    Al Mamoon, Ishtiak; Muzahidul Islam, A K M; Baharun, Sabariah; Ahmed, Ashir; Komaki, Shozo

    2016-08-01

    Due to the rapid growth of wireless medical devices in near future, wireless healthcare services may face some inescapable issue such as medical spectrum scarcity, electromagnetic interference (EMI), bandwidth constraint, security and finally medical data communication model. To mitigate these issues, cognitive radio (CR) or opportunistic radio network enabled wireless technology is suitable for the upcoming wireless healthcare system. The up-to-date research on CR based healthcare has exposed some developments on EMI and spectrum problems. However, the investigation recommendation on system design and network model for CR enabled hospital is rare. Thus, this research designs a hierarchy based hybrid network architecture and network maintenance protocols for previously proposed CR hospital system, known as CogMed. In the previous study, the detail architecture of CogMed and its maintenance protocols were not present. The proposed architecture includes clustering concepts for cognitive base stations and non-medical devices. Two cluster head (CH selector equations are formulated based on priority of location, device, mobility rate of devices and number of accessible channels. In order to maintain the integrity of the proposed network model, node joining and node leaving protocols are also proposed. Finally, the simulation results show that the proposed network maintenance time is very low for emergency medical devices (average maintenance period 9.5 ms) and the re-clustering effects for different mobility enabled non-medical devices are also balanced.

  5. Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks

    PubMed Central

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2014-01-01

    Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels of hierarchy using internal cluster quality metrics on 7 real-life networks. PMID:24949877

  6. Geographically Modified PageRank Algorithms: Identifying the Spatial Concentration of Human Movement in a Geospatial Network.

    PubMed

    Chin, Wei-Chien-Benny; Wen, Tzai-Hung

    2015-01-01

    A network approach, which simplifies geographic settings as a form of nodes and links, emphasizes the connectivity and relationships of spatial features. Topological networks of spatial features are used to explore geographical connectivity and structures. The PageRank algorithm, a network metric, is often used to help identify important locations where people or automobiles concentrate in the geographical literature. However, geographic considerations, including proximity and location attractiveness, are ignored in most network metrics. The objective of the present study is to propose two geographically modified PageRank algorithms-Distance-Decay PageRank (DDPR) and Geographical PageRank (GPR)-that incorporate geographic considerations into PageRank algorithms to identify the spatial concentration of human movement in a geospatial network. Our findings indicate that in both intercity and within-city settings the proposed algorithms more effectively capture the spatial locations where people reside than traditional commonly-used network metrics. In comparing location attractiveness and distance decay, we conclude that the concentration of human movement is largely determined by the distance decay. This implies that geographic proximity remains a key factor in human mobility.

  7. Neural networks applications to control and computations

    NASA Technical Reports Server (NTRS)

    Luxemburg, Leon A.

    1994-01-01

    Several interrelated problems in the area of neural network computations are described. First an interpolation problem is considered, then a control problem is reduced to a problem of interpolation by a neural network via Lyapunov function approach, and finally a new, faster method of learning as compared with the gradient descent method, was introduced.

  8. Learning in stochastic neural networks for constraint satisfaction problems

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Adorf, Hans-Martin

    1989-01-01

    Researchers describe a newly-developed artificial neural network algorithm for solving constraint satisfaction problems (CSPs) which includes a learning component that can significantly improve the performance of the network from run to run. The network, referred to as the Guarded Discrete Stochastic (GDS) network, is based on the discrete Hopfield network but differs from it primarily in that auxiliary networks (guards) are asymmetrically coupled to the main network to enforce certain types of constraints. Although the presence of asymmetric connections implies that the network may not converge, it was found that, for certain classes of problems, the network often quickly converges to find satisfactory solutions when they exist. The network can run efficiently on serial machines and can find solutions to very large problems (e.g., N-queens for N as large as 1024). One advantage of the network architecture is that network connection strengths need not be instantiated when the network is established: they are needed only when a participating neural element transitions from off to on. They have exploited this feature to devise a learning algorithm, based on consistency techniques for discrete CSPs, that updates the network biases and connection strengths and thus improves the network performance.

  9. Steady state analysis of Boolean molecular network models via model reduction and computational algebra.

    PubMed

    Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard

    2014-06-26

    A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.

  10. Steady state analysis of Boolean molecular network models via model reduction and computational algebra

    PubMed Central

    2014-01-01

    Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem. PMID:24965213

  11. Logistics Distribution Center Location Evaluation Based on Genetic Algorithm and Fuzzy Neural Network

    NASA Astrophysics Data System (ADS)

    Shao, Yuxiang; Chen, Qing; Wei, Zhenhua

    Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.

  12. Discrete-time neural network for fast solving large linear L1 estimation problems and its application to image restoration.

    PubMed

    Xia, Youshen; Sun, Changyin; Zheng, Wei Xing

    2012-05-01

    There is growing interest in solving linear L1 estimation problems for sparsity of the solution and robustness against non-Gaussian noise. This paper proposes a discrete-time neural network which can calculate large linear L1 estimation problems fast. The proposed neural network has a fixed computational step length and is proved to be globally convergent to an optimal solution. Then, the proposed neural network is efficiently applied to image restoration. Numerical results show that the proposed neural network is not only efficient in solving degenerate problems resulting from the nonunique solutions of the linear L1 estimation problems but also needs much less computational time than the related algorithms in solving both linear L1 estimation and image restoration problems.

  13. A new neural network model for solving random interval linear programming problems.

    PubMed

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Energy-Efficient Cognitive Radio Sensor Networks: Parametric and Convex Transformations

    PubMed Central

    Naeem, Muhammad; Illanko, Kandasamy; Karmokar, Ashok; Anpalagan, Alagan; Jaseemuddin, Muhammad

    2013-01-01

    Designing energy-efficient cognitive radio sensor networks is important to intelligently use battery energy and to maximize the sensor network life. In this paper, the problem of determining the power allocation that maximizes the energy-efficiency of cognitive radio-based wireless sensor networks is formed as a constrained optimization problem, where the objective function is the ratio of network throughput and the network power. The proposed constrained optimization problem belongs to a class of nonlinear fractional programming problems. Charnes-Cooper Transformation is used to transform the nonlinear fractional problem into an equivalent concave optimization problem. The structure of the power allocation policy for the transformed concave problem is found to be of a water-filling type. The problem is also transformed into a parametric form for which a ε-optimal iterative solution exists. The convergence of the iterative algorithms is proven, and numerical solutions are presented. The iterative solutions are compared with the optimal solution obtained from the transformed concave problem, and the effects of different system parameters (interference threshold level, the number of primary users and secondary sensor nodes) on the performance of the proposed algorithms are investigated. PMID:23966194

  15. Optimal percolation on multiplex networks.

    PubMed

    Osat, Saeed; Faqeeh, Ali; Radicchi, Filippo

    2017-11-16

    Optimal percolation is the problem of finding the minimal set of nodes whose removal from a network fragments the system into non-extensive disconnected clusters. The solution to this problem is important for strategies of immunization in disease spreading, and influence maximization in opinion dynamics. Optimal percolation has received considerable attention in the context of isolated networks. However, its generalization to multiplex networks has not yet been considered. Here we show that approximating the solution of the optimal percolation problem on a multiplex network with solutions valid for single-layer networks extracted from the multiplex may have serious consequences in the characterization of the true robustness of the system. We reach this conclusion by extending many of the methods for finding approximate solutions of the optimal percolation problem from single-layer to multiplex networks, and performing a systematic analysis on synthetic and real-world multiplex networks.

  16. LPTA: Location Predictive and Time Adaptive Data Gathering Scheme with Mobile Sink for Wireless Sensor Networks

    PubMed Central

    Rodrigues, Joel J. P. C.

    2014-01-01

    This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes. PMID:25302327

  17. Locating AED Enabled Medical Drones to Enhance Cardiac Arrest Response Times.

    PubMed

    Pulver, Aaron; Wei, Ran; Mann, Clay

    2016-01-01

    Out-of-hospital cardiac arrest (OOHCA) is prevalent in the United States. Each year between 180,000 and 400,000 people die due to cardiac arrest. The automated external defibrillator (AED) has greatly enhanced survival rates for OOHCA. However, one of the important components of successful cardiac arrest treatment is emergency medical services (EMS) response time (i.e., the time from EMS "wheels rolling" until arrival at the OOHCA scene). Unmanned Aerial Vehicles (UAV) have regularly been used for remote sensing and aerial imagery collection, but there are new opportunities to use drones for medical emergencies. The purpose of this study is to develop a geographic approach to the placement of a network of medical drones, equipped with an automated external defibrillator, designed to minimize travel time to victims of out-of-hospital cardiac arrest. Our goal was to have one drone on scene within one minute for at least 90% of demand for AED shock therapy, while minimizing implementation costs. In our study, the current estimated travel times were evaluated in Salt Lake County using geographical information systems (GIS) and compared to the estimated travel times of a network of AED enabled medical drones. We employed a location model, the Maximum Coverage Location Problem (MCLP), to determine the best configuration of drones to increase service coverage within one minute. We found that, using traditional vehicles, only 4.3% of the demand can be reached (travel time) within one minute utilizing current EMS agency locations, while 96.4% of demand can be reached within five minutes using current EMS vehicles and facility locations. Analyses show that using existing EMS stations to launch drones resulted in 80.1% of cardiac arrest demand being reached within one minute Allowing new sites to launch drones resulted in 90.3% of demand being reached within one minute. Finally, using existing EMS and new sites resulted in 90.3% of demand being reached while greatly reducing estimated overall costs. Although there are still many factors to consider, drone networks show potential to greatly reduce life-saving equipment travel times for victims of cardiac arrest.

  18. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks

    PubMed Central

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-01-01

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches. PMID:26690162

  19. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks.

    PubMed

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-12-04

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.

  20. Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities.

    PubMed

    Ghafoorian, Mohsen; Karssemeijer, Nico; Heskes, Tom; van Uden, Inge W M; Sanchez, Clara I; Litjens, Geert; de Leeuw, Frank-Erik; van Ginneken, Bram; Marchiori, Elena; Platel, Bram

    2017-07-11

    The anatomical location of imaging features is of crucial importance for accurate diagnosis in many medical tasks. Convolutional neural networks (CNN) have had huge successes in computer vision, but they lack the natural ability to incorporate the anatomical location in their decision making process, hindering success in some medical image analysis tasks. In this paper, to integrate the anatomical location information into the network, we propose several deep CNN architectures that consider multi-scale patches or take explicit location features while training. We apply and compare the proposed architectures for segmentation of white matter hyperintensities in brain MR images on a large dataset. As a result, we observe that the CNNs that incorporate location information substantially outperform a conventional segmentation method with handcrafted features as well as CNNs that do not integrate location information. On a test set of 50 scans, the best configuration of our networks obtained a Dice score of 0.792, compared to 0.805 for an independent human observer. Performance levels of the machine and the independent human observer were not statistically significantly different (p-value = 0.06).

  1. A Multi-agent Based Cooperative Voltage and Reactive Power Control

    NASA Astrophysics Data System (ADS)

    Ishida, Masato; Nagata, Takeshi; Saiki, Hiroshi; Shimada, Ikuhiko; Hatano, Ryousuke

    In order to maintain system voltage within the optimal range and prevent voltage instability phenomena before they occur, a variety of phase modifying equipment is installed in optimal locations throughout the power system network and a variety of methods of voltage reactive control are employed. The proposed system divided the traditional method to control voltage and reactive power into two sub problems; “voltage control” to adjust the secondary bus voltage of substations, and “reactive power control” to adjust the primary bus voltage. In this system, two types of agents are installed in substations in order to cooperate “voltage control” and “reactive power control”. In order to verify the performance of the proposed method, it has been applied to the model network system. The results confirm that our proposed method is able to control violent fluctuations in load.

  2. A study of the remote neighborhood office center concept

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The substitution of communications for commuting to work is examined from several aspects. Attention is focused on the possibility of certain groups of white collar workers conducting their business affairs through a network of Remote Neighborhood Office Centers (RNOC's) located near their homes. Typically, employees would communicate with their headquarters organizations by means of voice and digital circuits. Although current technology is readily able to support such an RNOC network, the main problems confronting would-be implementers center around the need for demonstrating that a sufficient number of business operations can be carried out in such a decentralized configuration as efficiently as they are under more conventional circumstances. The description of a pilot program is presented which is intended to identify pacing issues that must be settled before firm conclusions can be reached on whether the concept is operationally viable.

  3. NASA Worldwide Emergency Medical Assistance

    NASA Technical Reports Server (NTRS)

    Martin, George A.; Tipton, David A.; Long, Irene D.

    1997-01-01

    In an effort to maintain employee health and welfare, ensure customer satisfaction, and to deliver high quality emergency medical care when necessary to employees located overseas, NASA has instituted a new contract with International SOS Assistance INC. International SOS Assistance INC. will provide civil servants and contractors engaged in official NASA business with many services upon request during a medical or personal emergency. Through the years, International SOS Assistance INC. has developed the expertise necessary to provide medical service in all remote areas of the world. One phone call connects you to the SOS network of multilingual staff trained to help resolve travel, medical, legal, and security problems. The SOS network of critical care and aeromedical specialists operates 24 hours a day, 365 days a year from SOS Alarm Centers around the world. This exhibit illustrates the details of the NASA-International SOS Assistance INC. agreement.

  4. Optimizing congestion and emissions via tradable credit charge and reward scheme without initial credit allocations

    NASA Astrophysics Data System (ADS)

    Zhu, Wenlong; Ma, Shoufeng; Tian, Junfang

    2017-01-01

    This paper investigates the revenue-neutral tradable credit charge and reward scheme without initial credit allocations that can reassign network traffic flow patterns to optimize congestion and emissions. First, we prove the existence of the proposed schemes and further decentralize the minimum emission flow pattern to user equilibrium. Moreover, we design the solving method of the proposed credit scheme for minimum emission problem. Second, we investigate the revenue-neutral tradable credit charge and reward scheme without initial credit allocations for bi-objectives to obtain the Pareto system optimum flow patterns of congestion and emissions; and present the corresponding solutions are located in the polyhedron constituted by some inequalities and equalities system. Last, numerical example based on a simple traffic network is adopted to obtain the proposed credit schemes and verify they are revenue-neutral.

  5. Network problem threshold

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra, R.

    1992-01-01

    Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.

  6. Polarity related influence maximization in signed social networks.

    PubMed

    Li, Dong; Xu, Zhi-Ming; Chakraborty, Nilanjan; Gupta, Anika; Sycara, Katia; Li, Sheng

    2014-01-01

    Influence maximization in social networks has been widely studied motivated by applications like spread of ideas or innovations in a network and viral marketing of products. Current studies focus almost exclusively on unsigned social networks containing only positive relationships (e.g. friend or trust) between users. Influence maximization in signed social networks containing both positive relationships and negative relationships (e.g. foe or distrust) between users is still a challenging problem that has not been studied. Thus, in this paper, we propose the polarity-related influence maximization (PRIM) problem which aims to find the seed node set with maximum positive influence or maximum negative influence in signed social networks. To address the PRIM problem, we first extend the standard Independent Cascade (IC) model to the signed social networks and propose a Polarity-related Independent Cascade (named IC-P) diffusion model. We prove that the influence function of the PRIM problem under the IC-P model is monotonic and submodular Thus, a greedy algorithm can be used to achieve an approximation ratio of 1-1/e for solving the PRIM problem in signed social networks. Experimental results on two signed social network datasets, Epinions and Slashdot, validate that our approximation algorithm for solving the PRIM problem outperforms state-of-the-art methods.

  7. Polarity Related Influence Maximization in Signed Social Networks

    PubMed Central

    Li, Dong; Xu, Zhi-Ming; Chakraborty, Nilanjan; Gupta, Anika; Sycara, Katia; Li, Sheng

    2014-01-01

    Influence maximization in social networks has been widely studied motivated by applications like spread of ideas or innovations in a network and viral marketing of products. Current studies focus almost exclusively on unsigned social networks containing only positive relationships (e.g. friend or trust) between users. Influence maximization in signed social networks containing both positive relationships and negative relationships (e.g. foe or distrust) between users is still a challenging problem that has not been studied. Thus, in this paper, we propose the polarity-related influence maximization (PRIM) problem which aims to find the seed node set with maximum positive influence or maximum negative influence in signed social networks. To address the PRIM problem, we first extend the standard Independent Cascade (IC) model to the signed social networks and propose a Polarity-related Independent Cascade (named IC-P) diffusion model. We prove that the influence function of the PRIM problem under the IC-P model is monotonic and submodular Thus, a greedy algorithm can be used to achieve an approximation ratio of 1-1/e for solving the PRIM problem in signed social networks. Experimental results on two signed social network datasets, Epinions and Slashdot, validate that our approximation algorithm for solving the PRIM problem outperforms state-of-the-art methods. PMID:25061986

  8. Perspectives on the developing common experiment across the 18 sites within the long term agroecosystem research network

    Treesearch

    Kris Havstad

    2016-01-01

    The USDA Agricultural Research Service (ARS) established a Long Term Agroecosystem Research Network (LTAR) across 10 of its research locations, including some of its large watershed facilities, in 2012 and expanded that network to 18 locations in 2014.

  9. Control of Multilayer Networks

    PubMed Central

    Menichetti, Giulia; Dall’Asta, Luca; Bianconi, Ginestra

    2016-01-01

    The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable. PMID:26869210

  10. Walking tree heuristics for biological string alignment, gene location, and phylogenies

    NASA Astrophysics Data System (ADS)

    Cull, P.; Holloway, J. L.; Cavener, J. D.

    1999-03-01

    Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.

  11. Structural Controllability of Temporal Networks with a Single Switching Controller

    PubMed Central

    Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang

    2017-01-01

    Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance. PMID:28107538

  12. Incorporation of spatial interactions in location networks to identify critical geo-referenced routes for assessing disease control measures on a large-scale campus.

    PubMed

    Wen, Tzai-Hung; Chin, Wei Chien Benny

    2015-04-14

    Respiratory diseases mainly spread through interpersonal contact. Class suspension is the most direct strategy to prevent the spread of disease through elementary or secondary schools by blocking the contact network. However, as university students usually attend courses in different buildings, the daily contact patterns on a university campus are complicated, and once disease clusters have occurred, suspending classes is far from an efficient strategy to control disease spread. The purpose of this study is to propose a methodological framework for generating campus location networks from a routine administration database, analyzing the community structure of the network, and identifying the critical links and nodes for blocking respiratory disease transmission. The data comes from the student enrollment records of a major comprehensive university in Taiwan. We combined the social network analysis and spatial interaction model to establish a geo-referenced community structure among the classroom buildings. We also identified the critical links among the communities that were acting as contact bridges and explored the changes in the location network after the sequential removal of the high-risk buildings. Instead of conducting a questionnaire survey, the study established a standard procedure for constructing a location network on a large-scale campus from a routine curriculum database. We also present how a location network structure at a campus could function to target the high-risk buildings as the bridges connecting communities for blocking disease transmission.

  13. The Study of Development Strategy for Bank Distribution Network through the Analysis of Inter-regional Financial Transaction Network

    NASA Astrophysics Data System (ADS)

    Hong, Jae Weon; Hong, Won Eui; Kwak, Yoon Sik

    This study attempts to shed light on the factors that influence the locations of bank branches in establishing a bank's distribution network from the angle of the network analysis. Whereas the previous studies analyzed the locations of bank branches on the basis of their geographical characteristics and image, the significance of this study rests upon the fact that it endeavors to explore the location factors from a new perspective of the movement path of financial customers. For this analysis, the network between administrative districts, which form the fundamental unit of a location, was analyzed based on the financial transactional data. The important findings of this study are as follows. First, in conformity with the previous studies, the income level, the spending level, the number of businesses, and the size of workforce in the pertinent region were all found to influence the size of a bank's market. Second, the centrality index extracted from the analysis of the network was found to have a significant effect on the locations of bank branches. In particular, the degree centrality was revealed to have a greater influence on the size of a bank's market than does the closeness centrality. Such results of this study clearly suggest the needs for a new approach from the perspective of network in furtherance of other factors that have been considered important in the previous studies of the distribution network strategies.

  14. Analysis of PV Advanced Inverter Functions and Setpoints under Time Series Simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuss, John; Reno, Matthew J.; Broderick, Robert Joseph

    Utilities are increasingly concerned about the potential negative impacts distributed PV may have on the operational integrity of their distribution feeders. Some have proposed novel methods for controlling a PV system's grid - tie inverter to mitigate poten tial PV - induced problems. This report investigates the effectiveness of several of these PV advanced inverter controls on improving distribution feeder operational metrics. The controls are simulated on a large PV system interconnected at several locations within two realistic distribution feeder models. Due to the time - domain nature of the advanced inverter controls, quasi - static time series simulations aremore » performed under one week of representative variable irradiance and load data for each feeder. A para metric study is performed on each control type to determine how well certain measurable network metrics improve as a function of the control parameters. This methodology is used to determine appropriate advanced inverter settings for each location on the f eeder and overall for any interconnection location on the feeder.« less

  15. Fiber fault location utilizing traffic signal in optical network.

    PubMed

    Zhao, Tong; Wang, Anbang; Wang, Yuncai; Zhang, Mingjiang; Chang, Xiaoming; Xiong, Lijuan; Hao, Yi

    2013-10-07

    We propose and experimentally demonstrate a method for fault location in optical communication network. This method utilizes the traffic signal transmitted across the network as probe signal, and then locates the fault by correlation technique. Compared with conventional techniques, our method has a simple structure and low operation expenditure, because no additional device is used, such as light source, modulator and signal generator. The correlation detection in this method overcomes the tradeoff between spatial resolution and measurement range in pulse ranging technique. Moreover, signal extraction process can improve the location result considerably. Experimental results show that we achieve a spatial resolution of 8 cm and detection range of over 23 km with -8-dBm mean launched power in optical network based on synchronous digital hierarchy protocols.

  16. Detection of Wildfires with Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Umphlett, B.; Leeman, J.; Morrissey, M. L.

    2011-12-01

    Currently fire detection for the National Oceanic and Atmospheric Administration (NOAA) using satellite data is accomplished with algorithms and error checking human analysts. Artificial neural networks (ANNs) have been shown to be more accurate than algorithms or statistical methods for applications dealing with multiple datasets of complex observed data in the natural sciences. ANNs also deal well with multiple data sources that are not all equally reliable or equally informative to the problem. An ANN was tested to evaluate its accuracy in detecting wildfires utilizing polar orbiter numerical data from the Advanced Very High Resolution Radiometer (AVHRR). Datasets containing locations of known fires were gathered from the NOAA's polar orbiting satellites via the Comprehensive Large Array-data Stewardship System (CLASS). The data was then calibrated and navigation corrected using the Environment for Visualizing Images (ENVI). Fires were located with the aid of shapefiles generated via ArcGIS. Afterwards, several smaller ten pixel by ten pixel datasets were created for each fire (using the ENVI corrected data). Several datasets were created for each fire in order to vary fire position and avoid training the ANN to look only at fires in the center of an image. Datasets containing no fires were also created. A basic pattern recognition neural network was established with the MATLAB neural network toolbox. The datasets were then randomly separated into categories used to train, validate, and test the ANN. To prevent over fitting of the data, the mean squared error (MSE) of the network was monitored and training was stopped when the MSE began to rise. Networks were tested using each channel of the AVHRR data independently, channels 3a and 3b combined, and all six channels. The number of hidden neurons for each input set was also varied between 5-350 in steps of 5 neurons. Each configuration was run 10 times, totaling about 4,200 individual network evaluations. Thirty network parameters were recorded to characterize performance. These parameters were plotted with various data display techniques to determine which network configuration was not only most accurate in fire classification, but also the most computationally efficient. The most accurate fire classification network used all six channels of AVHRR data to achieve an accuracy ranging from 73-90%.

  17. Supply network configuration—A benchmarking problem

    NASA Astrophysics Data System (ADS)

    Brandenburg, Marcus

    2018-03-01

    Managing supply networks is a highly relevant task that strongly influences the competitiveness of firms from various industries. Designing supply networks is a strategic process that considerably affects the structure of the whole network. In contrast, supply networks for new products are configured without major adaptations of the existing structure, but the network has to be configured before the new product is actually launched in the marketplace. Due to dynamics and uncertainties, the resulting planning problem is highly complex. However, formal models and solution approaches that support supply network configuration decisions for new products are scant. The paper at hand aims at stimulating related model-based research. To formulate mathematical models and solution procedures, a benchmarking problem is introduced which is derived from a case study of a cosmetics manufacturer. Tasks, objectives, and constraints of the problem are described in great detail and numerical values and ranges of all problem parameters are given. In addition, several directions for future research are suggested.

  18. NMESys: An expert system for network fault detection

    NASA Technical Reports Server (NTRS)

    Nelson, Peter C.; Warpinski, Janet

    1991-01-01

    The problem of network management is becoming an increasingly difficult and challenging task. It is very common today to find heterogeneous networks consisting of many different types of computers, operating systems, and protocols. The complexity of implementing a network with this many components is difficult enough, while the maintenance of such a network is an even larger problem. A prototype network management expert system, NMESys, implemented in the C Language Integrated Production System (CLIPS). NMESys concentrates on solving some of the critical problems encountered in managing a large network. The major goal of NMESys is to provide a network operator with an expert system tool to quickly and accurately detect hard failures, potential failures, and to minimize or eliminate user down time in a large network.

  19. Inverse kinematics problem in robotics using neural networks

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Lawrence, Charles

    1992-01-01

    In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods.

  20. Embedded Efficiency: A Social Networks Approach to Popular Support and Dark Network Structure

    DTIC Science & Technology

    2016-03-01

    Raab in “Dark networks as problems ,” (2003) where dark refers to illegal and, covert and bright refers to legal and overt. Throughout this report these...Milward, Jörg Raab, “Dark Networks as Organizational Problems : Elements of a Theory,” International Public Management Journal 9, no.3 ( 2006): 333–360...Emirbayer and Jeff Goodwin, “Network Analysis, Culture and the Problem of Agency,” American Journal of Sociology Vol. 99, No. 6 (May 1994): 1436. 35 Ibid

  1. Geographically Modified PageRank Algorithms: Identifying the Spatial Concentration of Human Movement in a Geospatial Network

    PubMed Central

    2015-01-01

    A network approach, which simplifies geographic settings as a form of nodes and links, emphasizes the connectivity and relationships of spatial features. Topological networks of spatial features are used to explore geographical connectivity and structures. The PageRank algorithm, a network metric, is often used to help identify important locations where people or automobiles concentrate in the geographical literature. However, geographic considerations, including proximity and location attractiveness, are ignored in most network metrics. The objective of the present study is to propose two geographically modified PageRank algorithms—Distance-Decay PageRank (DDPR) and Geographical PageRank (GPR)—that incorporate geographic considerations into PageRank algorithms to identify the spatial concentration of human movement in a geospatial network. Our findings indicate that in both intercity and within-city settings the proposed algorithms more effectively capture the spatial locations where people reside than traditional commonly-used network metrics. In comparing location attractiveness and distance decay, we conclude that the concentration of human movement is largely determined by the distance decay. This implies that geographic proximity remains a key factor in human mobility. PMID:26437000

  2. Predator-prey-subsidy population dynamics on stepping-stone domains.

    PubMed

    Shen, Lulan; Van Gorder, Robert A

    2017-05-07

    Predator-prey-subsidy dynamics on stepping-stone domains are examined using a variety of network configurations. Our problem is motivated by the interactions between arctic foxes (predator) and lemmings (prey) in the presence of seal carrion (subsidy) provided by polar bears. We use the n-Patch Model, which considers space explicitly as a "Stepping Stone" system. We consider the role that the carrying capacity, predator migration rate, input subsidy rate, predator mortality rate, and proportion of predators surviving migration play in the predator-prey-subsidy population dynamics. We find that for certain types of networks, added mobility will help predator populations, allowing them to survive or coexist when they would otherwise go extinct if confined to one location, while in other situations (such as when sparsely distributed nodes in the network have few resources available) the added mobility will hurt the predator population. We also find that a combination of favourable conditions for the prey and subsidy can lead to the formation of limit cycles (boom and bust dynamic) from stable equilibrium states. These modifications to the dynamics vary depending on the specific network structure employed, highlighting the fact that network structure can strongly influence the predator-prey-subsidy dynamics in stepping-stone domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Distributed Large Data-Object Environments: End-to-End Performance Analysis of High Speed Distributed Storage Systems in Wide Area ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary

    1996-01-01

    We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.

  4. An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization.

    PubMed

    García-Pedrajas, Nicolás; Ortiz-Boyer, Domingo; Hervás-Martínez, César

    2006-05-01

    In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary computation. One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem occurs due to the fact that the same network can be represented in a genetic coding by many different codifications. Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network. This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks obtained are much smaller than those obtained with classical crossover operator.

  5. Protecting Privacy and Securing the Gathering of Location Proofs - The Secure Location Verification Proof Gathering Protocol

    NASA Astrophysics Data System (ADS)

    Graham, Michelle; Gray, David

    As wireless networks become increasingly ubiquitous, the demand for a method of locating a device has increased dramatically. Location Based Services are now commonplace but there are few methods of verifying or guaranteeing a location provided by a user without some specialised hardware, especially in larger scale networks. We propose a system for the verification of location claims, using proof gathered from neighbouring devices. In this paper we introduce a protocol to protect this proof gathering process, protecting the privacy of all involved parties and securing it from intruders and malicious claiming devices. We present the protocol in stages, extending the security of this protocol to allow for flexibility within its application. The Secure Location Verification Proof Gathering Protocol (SLVPGP) has been designed to function within the area of Vehicular Networks, although its application could be extended to any device with wireless & cryptographic capabilities.

  6. Robust scalable stabilisability conditions for large-scale heterogeneous multi-agent systems with uncertain nonlinear interactions: towards a distributed computing architecture

    NASA Astrophysics Data System (ADS)

    Manfredi, Sabato

    2016-06-01

    Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network size. Finally, a numerical example shows the applicability of the proposed method and its advantage in terms of computational complexity when compared with the existing approaches.

  7. Peru Subduction Zone Seismic Experiment (PeruSZE): Preliminary Results From a Seismic Network Between Mollendo and Lake Titicaca, Peru.

    NASA Astrophysics Data System (ADS)

    Guy, R.; Stubailo, I.; Skinner, S.; Phillips, K.; Foote, E.; Lukac, M.; Aguilar, V.; Tavera, H.; Audin, L.; Husker, A.; Clayton, R.; Davis, P. M.

    2008-12-01

    This work describes preliminary results from a 50 station broadband seismic network recently installed from the coast to the high Andes in Peru. UCLA's Center for Embedded Network Sensing (CENS) and Caltech's Tectonic Observatory are collaborating with the IRD (French L'Institut de Recherche pour le Developpement) and the Institute of Geophysics, in Lima Peru in a broadband seismic experiment that will study the transition from steep to shallow slab subduction. The currently installed line has stations located above the steep subduction zone at a spacing of about 6 km. In 2009 we plan to install a line of 50 stations north from this line along the crest of the Andes, crossing the transition from steep to shallow subduction. A further line from the end of that line back to the coast, completing a U shaped array, is in the planning phase. The network is wirelessly linked using multi-hop network software designed by computer scientists in CENS in which data is transmitted from station to station, and collected at Internet drops, from where it is transmitted over the Internet to CENS each night. The instrument installation in Peru is almost finished and we have been receiving data daily from 10 stations (out of total 50) since June 2008. The rest are recording on-site while the RF network is being completed. The software system provides dynamic link quality based routing, reliable data delivery, and a disruption tolerant shell interface for managing the system from UCLA without the need to travel to Peru. The near real-time data delivery also allows immediate detection of any problems at the sites. We are building a seismic data and GPS quality control toolset that would greatly minimize the station's downtime by alerting the users of any possible problems.

  8. An Expert System And Simulation Approach For Sensor Management & Control In A Distributed Surveillance Network

    NASA Astrophysics Data System (ADS)

    Leon, Barbara D.; Heller, Paul R.

    1987-05-01

    A surveillance network is a group of multiplatform sensors cooperating to improve network performance. Network control is distributed as a measure to decrease vulnerability to enemy threat. The network may contain diverse sensor types such as radar, ESM (Electronic Support Measures), IRST (Infrared search and track) and E-0 (Electro-Optical). Each platform may contain a single sensor or suite of sensors. In a surveillance network it is desirable to control sensors to make the overall system more effective. This problem has come to be known as sensor management and control (SM&C). Two major facets of network performance are surveillance and survivability. In a netted environment, surveillance can be enhanced if information from all sensors is combined and sensor operating conditions are controlled to provide a synergistic effect. In contrast, when survivability is the main concern for the network, the best operating status for all sensors would be passive or off. Of course, improving survivability tends to degrade surveillance. Hence, the objective of SM&C is to optimize surveillance and survivability of the network. Too voluminous data of various formats and the quick response time are two characteristics of this problem which make it an ideal application for Artificial Intelligence. A solution to the SM&C problem, presented as a computer simulation, will be presented in this paper. The simulation is a hybrid production written in LISP and FORTRAN. It combines the latest conventional computer programming methods with Artificial Intelligence techniques to produce a flexible state-of-the-art tool to evaluate network performance. The event-driven simulation contains environment models coupled with an expert system. These environment models include sensor (track-while-scan and agile beam) and target models, local tracking, and system tracking. These models are used to generate the environment for the sensor management and control expert system. The expert system, driven by a forward chaining inference engine, makes decisions based on the global database. The global database contains current track and sensor information supplied by the simulation. At present, the rule base emphasizes the surveillance features with rules grouped into three main categories: maintenance and enhancing track on prioritized targets; filling coverage holes and countering jamming; and evaluating sensor status. The paper will describe the architecture used for the expert system and the reasons for selecting the chosen methods. The SM&C simulation produces a graphical representation of sensors and their associated tracks such that the benefits of the sensor management and control expert system are evident. Jammer locations are also part of the display. The paper will describe results from several scenarios that best illustrate the sensor management and control concepts.

  9. An Obstacle-Tolerant Path Planning Algorithm for Mobile-Anchor-Node-Assisted Localization

    PubMed Central

    Tsai, Rong-Guei

    2018-01-01

    The location information obtained using a sensor is a critical requirement in wireless sensor networks. Numerous localization schemes have been proposed, among which mobile-anchor-node-assisted localization (MANAL) can reduce costs and overcome environmental constraints. A mobile anchor node (MAN) provides its own location information to assist the localization of sensor nodes. Numerous path planning schemes have been proposed for MANAL, but most scenarios assume the absence of obstacles in the environment. However, in a realistic environment, sensor nodes cannot be located because the obstacles block the path traversed by the MAN, thereby rendering the sensor incapable of receiving sufficient three location information from the MAN. This study proposes the obstacle-tolerant path planning (OTPP) approach to solve the sensor location problem owing to obstacle blockage. OTPP can approximate the optimum beacon point number and path planning, thereby ensuring that all the unknown nodes can receive the three location information from the MAN and reduce the number of MAN broadcast packet times. Experimental results demonstrate that OTPP performs better than Z-curves because it reduces the total number of beacon points utilized and is thus more suitable in an obstacle-present environment. Compared to the Z-curve, OTPP can reduce localization error and improve localization coverage. PMID:29547582

  10. Co-location and Self-Similar Topologies of Urban Infrastructure Networks

    NASA Astrophysics Data System (ADS)

    Klinkhamer, Christopher; Zhan, Xianyuan; Ukkusuri, Satish; Elisabeth, Krueger; Paik, Kyungrock; Rao, Suresh

    2016-04-01

    The co-location of urban infrastructure is too obvious to be easily ignored. For reasons of practicality, reliability, and eminent domain, the spatial locations of many urban infrastructure networks, including drainage, sanitary sewers, and road networks, are well correlated. However, important questions dealing with correlations in the network topologies of differing infrastructure types remain unanswered. Here, we have extracted randomly distributed, nested subnets from the urban drainage, sanitary sewer, and road networks in two distinctly different cities: Amman, Jordan; and Indianapolis, USA. Network analyses were performed for each randomly chosen subnet (location and size), using a dual-mapping approach (Hierarchical Intersection Continuity Negotiation). Topological metrics for each infrastructure type were calculated and compared for all subnets in a given city. Despite large differences in the climate, governance, and populace of the two cities, and functional properties of the different infrastructure types, these infrastructure networks are shown to be highly spatially homogenous. Furthermore, strong correlations are found between topological metrics of differing types of surface and subsurface infrastructure networks. Also, the network topologies of each infrastructure type for both cities are shown to exhibit self-similar characteristics (i.e., power law node-degree distributions, [p(k) = ak-γ]. These findings can be used to assist city planners and engineers either expanding or retrofitting existing infrastructure, or in the case of developing countries, building new cities from the ground up. In addition, the self-similar nature of these infrastructure networks holds significant implications for the vulnerability of these critical infrastructure networks to external hazards and ways in which network resilience can be improved.

  11. Bluetooth-Assisted Context-Awareness in Educational Data Networks

    ERIC Educational Resources Information Center

    Gonzalez-Castano, F. J.; Garcia-Reinoso, J.; Gil-Castineira, F.; Costa-Montenegro, E.; Pousada-Carballo, J. M.

    2005-01-01

    In this paper, we propose an auxiliary "location network", to support user-independent context-awareness in educational data networks; for example, to help visitors in a museum. We assume that, in such scenarios, there exist "service servers" that need to be aware of user location in real-time. Specifically, we propose the implementation of a…

  12. Preserving Source Location Privacy for Energy Harvesting WSNs.

    PubMed

    Huang, Changqin; Ma, Ming; Liu, Yuxin; Liu, Anfeng

    2017-03-30

    Fog (From cOre to edGe) computing employs a huge number of wireless embedded devices to enable end users with anywhere-anytime-to-anything connectivity. Due to their operating nature, wireless sensor nodes often work unattended, and hence are exposed to a variety of attacks. Preserving source-location privacy plays a key role in some wireless sensor network (WSN) applications. In this paper, a redundancy branch convergence-based preserved source location privacy scheme (RBCPSLP) is proposed for energy harvesting sensor networks, with the following advantages: numerous routing branches are created in non-hotspot areas with abundant energy, and those routing branches can merge into a few routing paths before they reach the hotspot areas. The generation time, the duration of routing, and the number of routing branches are then decided independently based on the amount of energy obtained, so as to maximize network energy utilization, greatly enhance privacy protection, and provide long network lifetimes. Theoretical analysis and experimental results show that the RBCPSLP scheme allows a several-fold improvement of the network energy utilization as well as the source location privacy preservation, while maximizing network lifetimes.

  13. Preserving Source Location Privacy for Energy Harvesting WSNs

    PubMed Central

    Huang, Changqin; Ma, Ming; Liu, Yuxin; Liu, Anfeng

    2017-01-01

    Fog (From cOre to edGe) computing employs a huge number of wireless embedded devices to enable end users with anywhere-anytime-to-anything connectivity. Due to their operating nature, wireless sensor nodes often work unattended, and hence are exposed to a variety of attacks. Preserving source-location privacy plays a key role in some wireless sensor network (WSN) applications. In this paper, a redundancy branch convergence-based preserved source location privacy scheme (RBCPSLP) is proposed for energy harvesting sensor networks, with the following advantages: numerous routing branches are created in non-hotspot areas with abundant energy, and those routing branches can merge into a few routing paths before they reach the hotspot areas. The generation time, the duration of routing, and the number of routing branches are then decided independently based on the amount of energy obtained, so as to maximize network energy utilization, greatly enhance privacy protection, and provide long network lifetimes. Theoretical analysis and experimental results show that the RBCPSLP scheme allows a several-fold improvement of the network energy utilization as well as the source location privacy preservation, while maximizing network lifetimes. PMID:28358341

  14. Hazards, Disasters, and The National Map

    USGS Publications Warehouse

    ,

    2003-01-01

    Governments depend on base geographic information that describes the Earth's surface and locates features. They use this information for economic and community development, land and natural resource management, delivery of health services, and ensuring public safety. It is also the foundation for studying and solving geographically based problems. Geographic information underpins an increasingly large part of the Nation's economy. It is an important part of our national infrastructure in the same way that the Interstate Highway System is an essential element of our transportation network. Federal, State, and local response and management personnel must have current, reliable, and easily accessible geographic information and maps to prepare for, respond to, or recover from emergency situations. In life-threatening events, such as earthquakes, floods, or wildland fires, geographic information is essential for locating critical infrastructure and carrying out evacuation and rescue operations.

  15. Dynamics of an SAITS alcoholism model on unweighted and weighted networks

    NASA Astrophysics Data System (ADS)

    Huo, Hai-Feng; Cui, Fang-Fang; Xiang, Hong

    2018-04-01

    A novel SAITS alcoholism model on networks is introduced, in which alcoholics are divided into light problem alcoholics and heavy problem alcoholics. Susceptible individuals can enter into the compartment of heavy problem alcoholics directly by contacting with light problem alcoholics or heavy problem alcoholics and the heavy problem alcoholics who receive treatment can relapse into the compartment of heavy problem alcoholics are also considered. First, the dynamics of our model on unweighted networks, including the basic reproduction number, existence and stability of equilibria are studied. Second, the models with fixed weighted and adaptive weighted networks are introduced and investigated. At last, some simulations are presented to illustrate and extend our results. Our results show that it is very important to treat alcoholics to quit the drinking.

  16. A cooperative positioning with Kalman filters and handover mechanism for indoor microcellular visible light communication network

    NASA Astrophysics Data System (ADS)

    Xiong, Jieqing; Huang, Zhitong; Zhuang, Kaiyu; Ji, Yuefeng

    2016-08-01

    We propose a novel handover scheme for indoor microcellular visible light communication (VLC) network. With such a scheme, the room, which is fully coverage by light, is divided into several microcells according to the layout of light-emitting diodes (LEDs). However, the directionality of light arises new challenges in keeping the connectivity between the mobile devices and light source under the mobile circumstances. The simplest solution is that all LEDs broadcast data of every user simultaneously, but it wastes too much bandwidth resource, especially when the amount of users increases. To solve this key problem, we utilize the optical positioning assisting handover procedure in this paper. In the positioning stage, the network manager obtains the location information of user device via downlink and uplink signal strength information, which is white light and infrared, respectively. After that, a Kalman filter is utilized for improving the tracking performance of a mobile device. Then, the network manager decides how to initiate the handover process by the previous information. Results show that the proposed scheme can achieve low-cost, seamless data communication, and a high probability of successful handover.

  17. Hybrid swarm intelligence optimization approach for optimal data storage position identification in wireless sensor networks.

    PubMed

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.

  18. Network Performance Measurements for NASA's Earth Observation System

    NASA Technical Reports Server (NTRS)

    Loiacono, Joe; Gormain, Andy; Smith, Jeff

    2004-01-01

    NASA's Earth Observation System (EOS) Project studies all aspects of planet Earth from space, including climate change, and ocean, ice, land, and vegetation characteristics. It consists of about 20 satellite missions over a period of about a decade. Extensive collaboration is used, both with other US. agencies (e.g., National Oceanic and Atmospheric Administration (NOA), United States Geological Survey (USGS), Department of Defense (DoD), and international agencies (e.g., European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA)), to improve cost effectiveness and obtain otherwise unavailable data. Scientific researchers are located at research institutions worldwide, primarily government research facilities and research universities. The EOS project makes extensive use of networks to support data acquisition, data production, and data distribution. Many of these functions impose requirements on the networks, including throughput and availability. In order to verify that these requirements are being met, and be pro-active in recognizing problems, NASA conducts on-going performance measurements. The purpose of this paper is to examine techniques used by NASA to measure the performance of the networks used by EOSDIS (EOS Data and Information System) and to indicate how this performance information is used.

  19. Data fusion for target tracking and classification with wireless sensor network

    NASA Astrophysics Data System (ADS)

    Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2016-10-01

    In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  20. New spatial clustering-based models for optimal urban facility location considering geographical obstacles

    NASA Astrophysics Data System (ADS)

    Javadi, Maryam; Shahrabi, Jamal

    2014-03-01

    The problems of facility location and the allocation of demand points to facilities are crucial research issues in spatial data analysis and urban planning. It is very important for an organization or governments to best locate its resources and facilities and efficiently manage resources to ensure that all demand points are covered and all the needs are met. Most of the recent studies, which focused on solving facility location problems by performing spatial clustering, have used the Euclidean distance between two points as the dissimilarity function. Natural obstacles, such as mountains and rivers, can have drastic impacts on the distance that needs to be traveled between two geographical locations. While calculating the distance between various supply chain entities (including facilities and demand points), it is necessary to take such obstacles into account to obtain better and more realistic results regarding location-allocation. In this article, new models were presented for location of urban facilities while considering geographical obstacles at the same time. In these models, three new distance functions were proposed. The first function was based on the analysis of shortest path in linear network, which was called SPD function. The other two functions, namely PD and P2D, were based on the algorithms that deal with robot geometry and route-based robot navigation in the presence of obstacles. The models were implemented in ArcGIS Desktop 9.2 software using the visual basic programming language. These models were evaluated using synthetic and real data sets. The overall performance was evaluated based on the sum of distance from demand points to their corresponding facilities. Because of the distance between the demand points and facilities becoming more realistic in the proposed functions, results indicated desired quality of the proposed models in terms of quality of allocating points to centers and logistic cost. Obtained results show promising improvements of the allocation, the logistics costs and the response time. It can also be inferred from this study that the P2D-based model and the SPD-based model yield similar results in terms of the facility location and the demand allocation. It is noted that the P2D-based model showed better execution time than the SPD-based model. Considering logistic costs, facility location and response time, the P2D-based model was appropriate choice for urban facility location problem considering the geographical obstacles.

  1. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    NASA Astrophysics Data System (ADS)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  2. Adaptive threshold determination for efficient channel sensing in cognitive radio network using mobile sensors

    NASA Astrophysics Data System (ADS)

    Morshed, M. N.; Khatun, S.; Kamarudin, L. M.; Aljunid, S. A.; Ahmad, R. B.; Zakaria, A.; Fakir, M. M.

    2017-03-01

    Spectrum saturation problem is a major issue in wireless communication systems all over the world. Huge number of users is joining each day to the existing fixed band frequency but the bandwidth is not increasing. These requirements demand for efficient and intelligent use of spectrum. To solve this issue, the Cognitive Radio (CR) is the best choice. Spectrum sensing of a wireless heterogeneous network is a fundamental issue to detect the presence of primary users' signals in CR networks. In order to protect primary users (PUs) from harmful interference, the spectrum sensing scheme is required to perform well even in low signal-to-noise ratio (SNR) environments. Meanwhile, the sensing period is usually required to be short enough so that secondary (unlicensed) users (SUs) can fully utilize the available spectrum. CR networks can be designed to manage the radio spectrum more efficiently by utilizing the spectrum holes in primary user's licensed frequency bands. In this paper, we have proposed an adaptive threshold detection method to detect presence of PU signal using free space path loss (FSPL) model in 2.4 GHz WLAN network. The model is designed for mobile sensors embedded in smartphones. The mobile sensors acts as SU while the existing WLAN network (channels) works as PU. The theoretical results show that the desired threshold range detection of mobile sensors mainly depends on the noise floor level of the location in consideration.

  3. Application of machine learning methods for traffic signs recognition

    NASA Astrophysics Data System (ADS)

    Filatov, D. V.; Ignatev, K. V.; Deviatkin, A. V.; Serykh, E. V.

    2018-02-01

    This paper focuses on solving a relevant and pressing safety issue on intercity roads. Two approaches were considered for solving the problem of traffic signs recognition; the approaches involved neural networks to analyze images obtained from a camera in the real-time mode. The first approach is based on a sequential image processing. At the initial stage, with the help of color filters and morphological operations (dilatation and erosion), the area containing the traffic sign is located on the image, then the selected and scaled fragment of the image is analyzed using a feedforward neural network to determine the meaning of the found traffic sign. Learning of the neural network in this approach is carried out using a backpropagation method. The second approach involves convolution neural networks at both stages, i.e. when searching and selecting the area of the image containing the traffic sign, and when determining its meaning. Learning of the neural network in the second approach is carried out using the intersection over union function and a loss function. For neural networks to learn and the proposed algorithms to be tested, a series of videos from a dash cam were used that were shot under various weather and illumination conditions. As a result, the proposed approaches for traffic signs recognition were analyzed and compared by key indicators such as recognition rate percentage and the complexity of neural networks’ learning process.

  4. The simulation of cropping pattern to improve the performance of irrigation network in Cau irrigation area

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, Retno; Rintis Hadiani, RR; Sobriyah

    2017-01-01

    Cau irrigation area located in Madiun district, East Java Province, irrigates 1.232 Ha of land which covers Cau primary channel irrigation network, Wungu Secondary channel irrigation network, and Grape secondary channel irrigation network. The problems in Cau irrigation area are limited availability of water especially during the dry season (planting season II and III) and non-compliance to cropping patterns. The evaluation of irrigation system performance of Cau irrigation area needs to be done in order to know how far the irrigation system performance is, especially based on planting productivity aspect. The improvement of irrigation network performance through cropping pattern optimization is based on the increase of water necessity fulfillment (k factor), the realization of planting area and rice productivity. The research method of irrigation system performance is by analyzing the secondary data based on the Regulation of Ministry of Public Work and State Minister for Public Housing Number: 12/PRT/M/2015. The analysis of water necessity fulfillment (k factor) uses Public Work Plan Criteria Method. The performance level of planting productivity aspect in existing condition is 87.10%, alternative 1 is 93.90% dan alternative 2 is 96.90%. It means that the performance of the irrigation network from productivity aspect increases 6.80% for alternative 1 and 9.80% for alternative 2.

  5. Problem Solving Interactions on Electronic Networks.

    ERIC Educational Resources Information Center

    Waugh, Michael; And Others

    Arguing that electronic networking provides a medium which is qualitatively superior to the traditional classroom for conducting certain types of problem solving exercises, this paper details the Water Problem Solving Project, which was conducted on the InterCultural Learning Network in 1985 and 1986 with students from the United States, Mexico,…

  6. Common quandaries and their practical solutions in Bayesian network modeling

    Treesearch

    Bruce G. Marcot

    2017-01-01

    Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many common problems remain. Here, I summarize key problems in BN model construction and interpretation,along with suggested practical solutions. Problems in BN model construction include parameterizing probability values, variable definition, complex network structures,...

  7. A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network

    PubMed Central

    Gardner, Toby A.; Ferreira, Joice; Barlow, Jos; Lees, Alexander C.; Parry, Luke; Vieira, Ima Célia Guimarães; Berenguer, Erika; Abramovay, Ricardo; Aleixo, Alexandre; Andretti, Christian; Aragão, Luiz E. O. C.; Araújo, Ivanei; de Ávila, Williams Souza; Bardgett, Richard D.; Batistella, Mateus; Begotti, Rodrigo Anzolin; Beldini, Troy; de Blas, Driss Ezzine; Braga, Rodrigo Fagundes; Braga, Danielle de Lima; de Brito, Janaína Gomes; de Camargo, Plínio Barbosa; Campos dos Santos, Fabiane; de Oliveira, Vívian Campos; Cordeiro, Amanda Cardoso Nunes; Cardoso, Thiago Moreira; de Carvalho, Déborah Reis; Castelani, Sergio André; Chaul, Júlio Cézar Mário; Cerri, Carlos Eduardo; Costa, Francisco de Assis; da Costa, Carla Daniele Furtado; Coudel, Emilie; Coutinho, Alexandre Camargo; Cunha, Dênis; D'Antona, Álvaro; Dezincourt, Joelma; Dias-Silva, Karina; Durigan, Mariana; Esquerdo, Júlio César Dalla Mora; Feres, José; Ferraz, Silvio Frosini de Barros; Ferreira, Amanda Estefânia de Melo; Fiorini, Ana Carolina; da Silva, Lenise Vargas Flores; Frazão, Fábio Soares; Garrett, Rachel; Gomes, Alessandra dos Santos; Gonçalves, Karoline da Silva; Guerrero, José Benito; Hamada, Neusa; Hughes, Robert M.; Igliori, Danilo Carmago; Jesus, Ederson da Conceição; Juen, Leandro; Junior, Miércio; Junior, José Max Barbosa de Oliveira; Junior, Raimundo Cosme de Oliveira; Junior, Carlos Souza; Kaufmann, Phil; Korasaki, Vanesca; Leal, Cecília Gontijo; Leitão, Rafael; Lima, Natália; Almeida, Maria de Fátima Lopes; Lourival, Reinaldo; Louzada, Júlio; Nally, Ralph Mac; Marchand, Sébastien; Maués, Márcia Motta; Moreira, Fátima M. S.; Morsello, Carla; Moura, Nárgila; Nessimian, Jorge; Nunes, Sâmia; Oliveira, Victor Hugo Fonseca; Pardini, Renata; Pereira, Heloisa Correia; Pompeu, Paulo Santos; Ribas, Carla Rodrigues; Rossetti, Felipe; Schmidt, Fernando Augusto; da Silva, Rodrigo; da Silva, Regina Célia Viana Martins; da Silva, Thiago Fonseca Morello Ramalho; Silveira, Juliana; Siqueira, João Victor; de Carvalho, Teotônio Soares; Solar, Ricardo R. C.; Tancredi, Nicola Savério Holanda; Thomson, James R.; Torres, Patrícia Carignano; Vaz-de-Mello, Fernando Zagury; Veiga, Ruan Carlo Stulpen; Venturieri, Adriano; Viana, Cecília; Weinhold, Diana; Zanetti, Ronald; Zuanon, Jansen

    2013-01-01

    Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network (Rede Amazônia Sustentável, RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far. PMID:23610172

  8. Exploring the future with anticipatory networks

    NASA Astrophysics Data System (ADS)

    Skulimowski, A. M. J.

    2013-01-01

    This paper presents a theory of anticipatory networks that originates from anticipatory models of consequences in multicriteria decision problems. When making a decision, the decision maker takes into account the anticipated outcomes of each future decision problem linked by the causal relations with the present one. In a network of linked decision problems, the causal relations are defined between time-ordered nodes. The scenarios of future consequences of each decision are modeled by multiple vertices starting from an appropriate node. The network is supplemented by one or more relations of anticipation, or future feedback, which describe a situation where decision makers take into account the anticipated results of some future optimization problems while making their choice. So arises a multigraph of decision problems linked causally and by one or more anticipation relation, termed here the anticipatory network. We will present the properties of anticipatory networks and propose a method of reducing, transforming and using them to solve current decision problems. Furthermore, it will be shown that most anticipatory networks can be regarded as superanticipatory systems, i.e. systems that are anticipatory in the Rosen sense and contain a future model of at least one other anticipatory system. The anticipatory networks can also be applied to filter the set of future scenarios in a foresight exercise.

  9. Bicriteria Network Optimization Problem using Priority-based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Lin, Lin; Cheng, Runwei

    Network optimization is being an increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. In many applications, however, there are several criteria associated with traversing each edge of a network. For example, cost and flow measures are both important in the networks. As a result, there has been recent interest in solving Bicriteria Network Optimization Problem. The Bicriteria Network Optimization Problem is known a NP-hard. The efficient set of paths may be very large, possibly exponential in size. Thus the computational effort required to solve it can increase exponentially with the problem size in the worst case. In this paper, we propose a genetic algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including maximum flow (MXF) model and minimum cost flow (MCF) model. The objective is to find the set of Pareto optimal solutions that give possible maximum flow with minimum cost. This paper also combines Adaptive Weight Approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. Computer simulations show the several numerical experiments by using some difficult-to-solve network design problems, and show the effectiveness of the proposed method.

  10. Coupling a Neural Network with Atmospheric Flow Simulations to Locate and Quantify CH4 Emissions at Well Pads

    NASA Astrophysics Data System (ADS)

    Travis, B. J.; Sauer, J.; Dubey, M. K.

    2017-12-01

    Methane (CH4) leaks from oil and gas production fields are a potentially significant source of atmospheric methane. US DOE's ARPA-E office is supporting research to locate methane emissions at 10 m size well pads to within 1 m. A team led by Aeris Technologies, and that includes LANL, Planetary Science Institute and Rice University has developed an autonomous leak detection system (LDS) employing a compact laser absorption methane sensor, a sonic anemometer and multiport sampling. The LDS system analyzes monitoring data using a convolutional neural network (cNN) to locate and quantify CH4 emissions. The cNN was trained using three sources: (1) ultra-high-resolution simulations of methane transport provided by LANL's coupled atmospheric transport model HIGRAD, for numerous controlled methane release scenarios and methane sampling configurations under variable atmospheric conditions, (2) Field tests at the METEC site in Ft. Collins, CO., and (3) Field data from other sites where point-source surface methane releases were monitored downwind. A cNN learning algorithm is well suited to problems in which the training and observed data are noisy, or correspond to complex sensor data as is typical of meteorological and sensor data over a well pad. Recent studies with our cNN emphasize the importance of tracking wind speeds and directions at fine resolution ( 1 second), and accounting for variations in background CH4 levels. A few cases illustrate the importance of sufficiently long monitoring; short monitoring may not provide enough information to determine accurately a leak location or strength, mainly because of short-term unfavorable wind directions and choice of sampling configuration. Length of multiport duty cycle sampling and sample line flush time as well as number and placement of monitoring sensors can significantly impact ability to locate and quantify leaks. Source location error at less than 10% requires about 30 or more training cases.

  11. The space physics analysis network

    NASA Astrophysics Data System (ADS)

    Green, James L.

    1988-04-01

    The Space Physics Analysis Network, or SPAN, is emerging as a viable method for solving an immediate communication problem for space and Earth scientists and has been operational for nearly 7 years. SPAN and its extension into Europe, utilizes computer-to-computer communications allowing mail, binary and text file transfer, and remote logon capability to over 1000 space science computer systems. The network has been used to successfully transfer real-time data to remote researchers for rapid data analysis but its primary function is for non-real-time applications. One of the major advantages for using SPAN is its spacecraft mission independence. Space science researchers using SPAN are located in universities, industries and government institutions all across the United States and Europe. These researchers are in such fields as magnetospheric physics, astrophysics, ionosperic physics, atmospheric physics, climatology, meteorology, oceanography, planetary physics and solar physics. SPAN users have access to space and Earth science data bases, mission planning and information systems, and computational facilities for the purposes of facilitating correlative space data exchange, data analysis and space research. For example, the National Space Science Data Center (NSSDC), which manages the network, is providing facilities on SPAN such as the Network Information Center (SPAN NIC). SPAN has interconnections with several national and international networks such as HEPNET and TEXNET forming a transparent DECnet network. The combined total number of computers now reachable over these combined networks is about 2000. In addition, SPAN supports full function capabilities over the international public packet switched networks (e.g. TELENET) and has mail gateways to ARPANET, BITNET and JANET.

  12. Automatic data processing and analysis system for monitoring region around a planned nuclear power plant

    NASA Astrophysics Data System (ADS)

    Kortström, Jari; Tiira, Timo; Kaisko, Outi

    2016-03-01

    The Institute of Seismology of University of Helsinki is building a new local seismic network, called OBF network, around planned nuclear power plant in Northern Ostrobothnia, Finland. The network will consist of nine new stations and one existing station. The network should be dense enough to provide azimuthal coverage better than 180° and automatic detection capability down to ML -0.1 within a radius of 25 km from the site.The network construction work began in 2012 and the first four stations started operation at the end of May 2013. We applied an automatic seismic signal detection and event location system to a network of 13 stations consisting of the four new stations and the nearest stations of Finnish and Swedish national seismic networks. Between the end of May and December 2013 the network detected 214 events inside the predefined area of 50 km radius surrounding the planned nuclear power plant site. Of those detections, 120 were identified as spurious events. A total of 74 events were associated with known quarries and mining areas. The average location error, calculated as a difference between the announced location from environment authorities and companies and the automatic location, was 2.9 km. During the same time period eight earthquakes between magnitude range 0.1-1.0 occurred within the area. Of these seven could be automatically detected. The results from the phase 1 stations of the OBF network indicates that the planned network can achieve its goals.

  13. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    NASA Astrophysics Data System (ADS)

    Govoni, Aladino; Margheriti, Lucia; Moretti, Milena; Lauciani, Valentino; Sensale, Gianpaolo; Bucci, Augusto; Criscuoli, Fabio

    2015-04-01

    The benefits of portable real-time seismic networks are several and well known. During the management of a temporary experiment from the real-time data it is possible to detect and fix rapidly problems with power supply, time synchronization, disk failures and, most important, seismic signal quality degradation due to unexpected noise sources or sensor alignment/tampering. This usually minimizes field maintenance trips and maximizes both the quantity and the quality of the acquired data. When the area of the temporary experiment is not well monitored by the local permanent network, the real-time data from the temporary experiment can be fed to the permanent network monitoring system improving greatly both the real-time hypocentral locations and the final revised bulletin. All these benefits apply also in case of seismic crises when rapid deployment stations can significantly contribute to the aftershock analysis. Nowadays data transmission using meshed radio networks or satellite systems is not a big technological problem for a permanent seismic network where each site is optimized for the device power consumption and is usually installed by properly specialized technicians that can configure transmission devices and align antennas. This is not usually practical for temporary networks and especially for rapid response networks where the installation time is the main concern. These difficulties are substantially lowered using the now widespread UMTS technology for data transmission. A small (but sometimes power hungry) properly configured device with an omnidirectional antenna must be added to the station assembly. All setups are usually configured before deployment and this allows for an easy installation also by untrained personnel. We describe here the implementation of a UMTS based portable seismic network for both temporary experiments and rapid response applications developed at INGV. The first field experimentation of this approach dates back to the 2009 L'Aquila aftershock sequence and since then it has been customized and refined to overcome most reliability and security issues using an industry standard VPN architecture that allows to avoid UMTS provider firewall problems and does not expose to the Internet the usually weak and attack prone data acquisition ports. With this approach all the devices are protected inside a local network and the only exposed port is the VPN server one. This solution improves both the security and the bandwidth available to data transmission. While most of the experimentation has been carried out using the RefTek units of the INGV Mobile Network this solution applies equally well to most seismic data loggers available on the market. Overall the UMTS data transmission has been used in most temporary seismic experiments and in all seismic emergencies happened in Italy since 2010 and has proved to be a very cost effective approach with real-time data acquisition rates usually greater than 97% and all the benefits that result from the fast integration of the temporary data in the National Network monitoring system and in the EIDA data bank.

  14. Automatic Railway Traffic Object Detection System Using Feature Fusion Refine Neural Network under Shunting Mode.

    PubMed

    Ye, Tao; Wang, Baocheng; Song, Ping; Li, Juan

    2018-06-12

    Many accidents happen under shunting mode when the speed of a train is below 45 km/h. In this mode, train attendants observe the railway condition ahead using the traditional manual method and tell the observation results to the driver in order to avoid danger. To address this problem, an automatic object detection system based on convolutional neural network (CNN) is proposed to detect objects ahead in shunting mode, which is called Feature Fusion Refine neural network (FR-Net). It consists of three connected modules, i.e., the depthwise-pointwise convolution, the coarse detection module, and the object detection module. Depth-wise-pointwise convolutions are used to improve the detection in real time. The coarse detection module coarsely refine the locations and sizes of prior anchors to provide better initialization for the subsequent module and also reduces search space for the classification, whereas the object detection module aims to regress accurate object locations and predict the class labels for the prior anchors. The experimental results on the railway traffic dataset show that FR-Net achieves 0.8953 mAP with 72.3 FPS performance on a machine with a GeForce GTX1080Ti with the input size of 320 × 320 pixels. The results imply that FR-Net takes a good tradeoff both on effectiveness and real time performance. The proposed method can meet the needs of practical application in shunting mode.

  15. Models, solution, methods and their applicability of dynamic location problems (DLPs) (a gap analysis for further research)

    NASA Astrophysics Data System (ADS)

    Seyedhosseini, Seyed Mohammad; Makui, Ahmad; Shahanaghi, Kamran; Torkestani, Sara Sadat

    2016-09-01

    Determining the best location to be profitable for the facility's lifetime is the important decision of public and private firms, so this is why discussion about dynamic location problems (DLPs) is a critical significance. This paper presented a comprehensive review from 1968 up to most recent on published researches about DLPs and classified them into two parts. First, mathematical models developed based on different characteristics: type of parameters (deterministic, probabilistic or stochastic), number and type of objective function, numbers of commodity and modes, relocation time, number of relocation and relocating facilities, time horizon, budget and capacity constraints and their applicability. In second part, It have been also presented solution algorithms, main specification, applications and some real-world case studies of DLPs. At the ends, we concluded that in the current literature of DLPs, distribution systems and production-distribution systems with simple assumption of the tackle to the complexity of these models studied more than any other fields, as well as the concept of variety of services (hierarchical network), reliability, sustainability, relief management, waiting time for services (queuing theory) and risk of facility disruption need for further investigation. All of the available categories based on different criteria, solution methods and applicability of them, gaps and analysis which have been done in this paper suggest the ways for future research.

  16. An Adaptive Cross-Architecture Combination Method for Graph Traversal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Song, Shuaiwen; Kerbyson, Darren J.

    2014-06-18

    Breadth-First Search (BFS) is widely used in many real-world applications including computational biology, social networks, and electronic design automation. The combination method, using both top-down and bottom-up techniques, is the most effective BFS approach. However, current combination methods rely on trial-and-error and exhaustive search to locate the optimal switching point, which may cause significant runtime overhead. To solve this problem, we design an adaptive method based on regression analysis to predict an optimal switching point for the combination method at runtime within less than 0.1% of the BFS execution time.

  17. Effects of Natural Disaster Trends: A Case Study for Expanding the Pre-Positioning Network of CARE International

    PubMed Central

    Bozkurt, Melda; Duran, Serhan

    2012-01-01

    The increasing number of natural disasters in the last decade necessitates the increase in capacity and agility while delivering humanitarian relief. A common logistics strategy used by humanitarian organizations to respond this need is the establishment of pre-positioning warehouse networks. In the pre-positioning strategy, critical relief inventories are located near the regions at which they will be needed in advance of the onset of the disaster. Therefore, pre-positioning reduces the response time by totally or partially eliminating the procurement phase and increasing the availability of relief items just after the disaster strikes. Once the pre-positioning warehouse locations are decided and warehouses on those locations become operational, they will be in use for a long time. Therefore, the chosen locations should be robust enough to enable extensions, and to cope with changing trends in disaster types, locations and magnitudes. In this study, we analyze the effects of natural disaster trends on the expansion plan of pre-positioning warehouse network implemented by CARE International. We utilize a facility location model to identify the additional warehouse location(s) for relief items to be stored as an extension of the current warehouse network operated by CARE International, considering changing natural disaster trends observed over the past three decades. PMID:23066402

  18. Effects of natural disaster trends: a case study for expanding the pre-positioning network of CARE International.

    PubMed

    Bozkurt, Melda; Duran, Serhan

    2012-08-01

    The increasing number of natural disasters in the last decade necessitates the increase in capacity and agility while delivering humanitarian relief. A common logistics strategy used by humanitarian organizations to respond this need is the establishment of pre-positioning warehouse networks. In the pre-positioning strategy, critical relief inventories are located near the regions at which they will be needed in advance of the onset of the disaster. Therefore, pre-positioning reduces the response time by totally or partially eliminating the procurement phase and increasing the availability of relief items just after the disaster strikes. Once the pre-positioning warehouse locations are decided and warehouses on those locations become operational, they will be in use for a long time. Therefore, the chosen locations should be robust enough to enable extensions, and to cope with changing trends in disaster types, locations and magnitudes. In this study, we analyze the effects of natural disaster trends on the expansion plan of pre-positioning warehouse network implemented by CARE International. We utilize a facility location model to identify the additional warehouse location(s) for relief items to be stored as an extension of the current warehouse network operated by CARE International, considering changing natural disaster trends observed over the past three decades.

  19. Inferring personal economic status from social network location

    NASA Astrophysics Data System (ADS)

    Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A.

    2017-05-01

    It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.

  20. Inferring personal economic status from social network location.

    PubMed

    Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A

    2017-05-16

    It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.

  1. Ozonometer M-124 calibration for the Ukrainian network: method and results

    NASA Astrophysics Data System (ADS)

    Grytsai, A.; Milinevsky, G.; Evtushevsky, O.; Sosonkin, M.; Kravchenko, V.; Danylevsky, V.

    2016-12-01

    M-124 filter ozonometers are used for total ozone measuring in Ukraine since 1970s. Recently the need to calibrate several M-124 instruments of the Ukrainian filter ozonometer network is raised to continue ozone observations. The calibration became possible owing to the accurate ozone measurements by Dobson spectrophotometer started in 2010 at the Kyiv-Goloseyev WMO station located at the Main Astronomical Observatory of National Academy of Sciences of Ukraine. For calibration purposes the simultaneous M-124 and Dobson Direct Sun measurements were carried out during the 2013-2016 period by researchers from Taras Shevchenko National University of Kyiv and Main Astronomical Observatory. The M-124 instrument has two spectral channels: first is 305 nm and second is 325 nm. Outgoing signal from M-124 is determined by transparency of the terrestrial atmosphere and filter characteristics. Theoretical description of the solar radiation propagation through the atmosphere is determined by the Bouguer-Lambert-Beer law taking into account ozone absorption, Rayleigh and aerosol scattering. Parameters of the aerosol scattering have been determined from observations with the CIMEL sunphotometer of Aerosol Robotic Network which is also located at the Kyiv-Goloseyev station. The ozonometers optical characteristics were studied after M-124 refurbishment and modernization at the Central Geophysical Observatory of Ukraine that includes a significant part of the whole calibration work. Knowing the spectral dependence of each filter is necessary to calculate signal ratios in two channels. This information allowed solving the inverse problem of determining total ozone content in the terrestrial atmosphere. Comparison of these results with Dobson spectrophotometer data shows their good quality even without an additional correction. These results open a possibility to calibrate M-124 filter ozonometers for future ozone measurements at the observation sites of the Ukraine ozonometer network.

  2. Interpolation of Water Quality Along Stream Networks from Synoptic Data

    NASA Astrophysics Data System (ADS)

    Lyon, S. W.; Seibert, J.; Lembo, A. J.; Walter, M. T.; Gburek, W. J.; Thongs, D.; Schneiderman, E.; Steenhuis, T. S.

    2005-12-01

    Effective catchment management requires water quality monitoring that identifies major pollutant sources and transport and transformation processes. While traditional monitoring schemes involve regular sampling at fixed locations in the stream, there is an interest synoptic or `snapshot' sampling to quantify water quality throughout a catchment. This type of sampling enables insights to biogeochemical behavior throughout a stream network at low flow conditions. Since baseflow concentrations are temporally persistence, they are indicative of the health of the ecosystems. A major problem with snapshot sampling is the lack of analytical techniques to represent the spatially distributed data in a manner that is 1) easily understood, 2) representative of the stream network, and 3) capable of being used to develop land management scenarios. This study presents a kriging application using the landscape composition of the contributing area along a stream network to define a new distance metric. This allows for locations that are more `similar' to stay spatially close together while less similar locations `move' further apart. We analyze a snapshot sampling campaign consisting of 125 manually collected grab samples during a summer recession flow period in the Townbrook Research Watershed. The watershed is located in the Catskill region of New York State and represents the mixed forest-agriculture land uses of the region. Our initial analysis indicated that stream nutrients (nitrogen and phosphorus) and chemical (major cations and anions) concentrations are controlled by the composition of landscape characteristics (landuse classes and soil types) surrounding the stream. Based on these relationships, an intuitively defined distance metric is developed by combining the traditional distance between observations and the relative difference in composition of contributing area. This metric is used to interpolate between the sampling locations with traditional geostatistic techniques (semivariograms and ordinary kriging). The resulting interpolations provide continuous stream nutrient and chemical concentrations with reduced kriging RMSE (i.e., the interpolation fits the actual data better) performed without path restriction to the stream channel (i.e., the current default for most geostatistical packages) or performed with an in-channel, Euclidean distance metric (i.e., `as the fish swims' distance). In addition to being quantifiably better, the new metric also produces maps of stream concentrations that match expected continuous stream concentrations based on expert knowledge of the watershed. This analysis and its resulting stream concentration maps provide a representation of spatially distributed synoptic data that can be used to quantify water quality for more effective catchment management that focuses on pollutant sources and transport and transformation processes.

  3. Decomposition method for zonal resource allocation problems in telecommunication networks

    NASA Astrophysics Data System (ADS)

    Konnov, I. V.; Kashuba, A. Yu

    2016-11-01

    We consider problems of optimal resource allocation in telecommunication networks. We first give an optimization formulation for the case where the network manager aims to distribute some homogeneous resource (bandwidth) among users of one region with quadratic charge and fee functions and present simple and efficient solution methods. Next, we consider a more general problem for a provider of a wireless communication network divided into zones (clusters) with common capacity constraints. We obtain a convex quadratic optimization problem involving capacity and balance constraints. By using the dual Lagrangian method with respect to the capacity constraint, we suggest to reduce the initial problem to a single-dimensional optimization problem, but calculation of the cost function value leads to independent solution of zonal problems, which coincide with the above single region problem. Some results of computational experiments confirm the applicability of the new methods.

  4. A Pervasive Social Networking Application: I-NFC enabled Florist Smart Advisor

    NASA Astrophysics Data System (ADS)

    Swee Wen, Khoo; Mahinderjit Singh, Manmeet

    2016-11-01

    Location based service is an information and entertainment service, accessible with mobile devices through the mobile network and utilizing the ability to make use of the geographical position of the mobile device. NFC location based service is using one of the modes of NFC such as peer-to-peer, reader/writer, and card emulation to obtain the information of the object and then get the location of the object. In this paper, the proposed solution is I- NFC-enabled Pervasive Social Networking apps for florists. It combines the NFC location based service with Online Social Network (OSN). In addition, a smart advisor in the system to provide output in making their own decision while purchasing products.The development of the system demonstrates that a designed commerce site is provided which enable a communication between NFC-enabled smartphone, NFC-enabled application and OSN. GPS functionalities also implemented to provide map and location of business services. Smart advisor also designed to provide information for users who do not have ideas what to purchase.

  5. WWLLN and Earth Networks new combined Global Lightning Network: First Look

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H., II; Brundell, J. B.; Sloop, C.; Heckman, S.; Rodger, C. J.

    2016-12-01

    Lightning VLF sferic waveforms detected around the world by WWLLN (World Wide Lightning Location Network) and by Earth Networks WTLN receivers are being analyzed in real time to calculate the time of group arrival (TOGA) of the sferic wave packet at each station. These times (TOGAs) are then used for time-of-arrival analysis to determine the source lightning location. Beginning in 2016 we have successfully implemented the operational software to allow the incorporation of waveforms from hundreds of Earth Networks sensors into the normal WWLLN TOGA processing, resulting in a new global lightning distribution which has over twice as many stroke locations as the WWLLN-only data set. The combined global lightning network shows marked improvement over the WWLLN-only data set in regions such as central and southern Africa, and over the Indian subcontinent. As of July 2016 the new data set is typically running at about 230% of WWLLN-only in terms of total strokes, and some days over 250%, using data from 65 to 70 WWLLN stations, combined with the VLF channel from about 160 Earth Networks stations. The Earth Networks lightning network includes nearly 1000 receiving stations, so it is anticipated we will be able to further increase the total stations being used for the new combined network while still maintaining a relatively smooth global distribution of the sensors. Detailed comparisons of the new data set with WWLLN-only data, as well as with independent lightning location networks including WTLN in the CONUS and NZLDN in New Zealand will be presented.

  6. Spatial-Temporal Dynamics of High-Resolution Animal Networks: What Can We Learn from Domestic Animals?

    PubMed

    Chen, Shi; Ilany, Amiyaal; White, Brad J; Sanderson, Michael W; Lanzas, Cristina

    2015-01-01

    Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS) to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density), subgroup clustering (modularity), triadic property (transitivity), and dyadic interactions (correlation coefficient from a quadratic assignment procedure) at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level) or temporal (aggregated at daily level) resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc.) also changed substantially at different time and locations. There were certain time (feeding) and location (hay) that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect) disease transmission pathways.

  7. Analysis of an algorithm for distributed recognition and accountability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, C.; Frincke, D.A.; Goan, T. Jr.

    1993-08-01

    Computer and network systems are available to attacks. Abandoning the existing huge infrastructure of possibly-insecure computer and network systems is impossible, and replacing them by totally secure systems may not be feasible or cost effective. A common element in many attacks is that a single user will often attempt to intrude upon multiple resources throughout a network. Detecting the attack can become significantly easier by compiling and integrating evidence of such intrusion attempts across the network rather than attempting to assess the situation from the vantage point of only a single host. To solve this problem, we suggest an approachmore » for distributed recognition and accountability (DRA), which consists of algorithms which ``process,`` at a central location, distributed and asynchronous ``reports`` generated by computers (or a subset thereof) throughout the network. Our highest-priority objectives are to observe ways by which an individual moves around in a network of computers, including changing user names to possibly hide his/her true identity, and to associate all activities of multiple instance of the same individual to the same network-wide user. We present the DRA algorithm and a sketch of its proof under an initial set of simplifying albeit realistic assumptions. Later, we relax these assumptions to accommodate pragmatic aspects such as missing or delayed ``reports,`` clock slew, tampered ``reports,`` etc. We believe that such algorithms will have widespread applications in the future, particularly in intrusion-detection system.« less

  8. Social networks and substance use among at-risk emerging adults living in disadvantaged urban areas in the southern United States: a cross-sectional naturalistic study.

    PubMed

    Tucker, Jalie A; Cheong, JeeWon; Chandler, Susan D; Crawford, Scott M; Simpson, Cathy A

    2015-09-01

    Substance use and risk-taking are common during emerging adulthood, a transitional period when peer influences often increase and family influences decrease. Investigating relationships between social network features and substance use can inform community-based prevention programs. This study investigated whether substance use among emerging adults living in disadvantaged urban areas was influenced by peer and family social network messages that variously encouraged and discouraged substance use. Cross-sectional, naturalistic field study. Lower-income neighborhoods in Birmingham, Alabama, USA with 344 participants (110 males, 234 females, ages 15-25 years; mean = 18.86 years), recruited via respondent-driven sampling. During structured interviews conducted in community locations, the Alcohol, Smoking and Substance Involvement Screening Test assessed substance use and related problems. Predictor variables were network characteristics, including presence of substance-using peers, messages from friends and family members about substance use and network sources for health information. Higher substance involvement was associated with friend and family encouragement of use and having close peer network members who used substances (Ps < 0.001). Peer discouragement of substance use was associated with reduced risk (b = - 1.46, P < 0.05), whereas family discouragement had no protective association. Social networks appear to be important in both promoting and preventing substance use in disadvantaged young adults in the United States. © 2015 Society for the Study of Addiction.

  9. Diffusion in Colocation Contact Networks: The Impact of Nodal Spatiotemporal Dynamics.

    PubMed

    Thomas, Bryce; Jurdak, Raja; Zhao, Kun; Atkinson, Ian

    2016-01-01

    Temporal contact networks are studied to understand dynamic spreading phenomena such as communicable diseases or information dissemination. To establish how spatiotemporal dynamics of nodes impact spreading potential in colocation contact networks, we propose "inducement-shuffling" null models which break one or more correlations between times, locations and nodes. By reconfiguring the time and/or location of each node's presence in the network, these models induce alternative sets of colocation events giving rise to contact networks with varying spreading potential. This enables second-order causal reasoning about how correlations in nodes' spatiotemporal preferences not only lead to a given contact network but ultimately influence the network's spreading potential. We find the correlation between nodes and times to be the greatest impediment to spreading, while the correlation between times and locations slightly catalyzes spreading. Under each of the presented null models we measure both the number of contacts and infection prevalence as a function of time, with the surprising finding that the two have no direct causality.

  10. Digital Networked Information Society and Public Health: Problems and Promises of Networked Health Communication of Lay Publics.

    PubMed

    Kim, Jeong-Nam

    2018-01-01

    This special issue of Health Communication compiles 10 articles to laud the promise and yet confront the problems in the digital networked information society related to public health. We present this anthology of symphony and cacophony of lay individuals' communicative actions in a digital networked information society. The collection of problems and promise of the new digital world may be a cornerstone joining two worlds-pre- and postdigital network society-and we hope this special issue will help better shape our future states of public health.

  11. The Strength of the Strongest Ties in Collaborative Problem Solving

    NASA Astrophysics Data System (ADS)

    de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune

    2014-06-01

    Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.

  12. The strength of the strongest ties in collaborative problem solving.

    PubMed

    de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune

    2014-06-20

    Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.

  13. Tracking fin whales in the northeast Pacific Ocean with a seafloor seismic network.

    PubMed

    Wilcock, William S D

    2012-10-01

    Ocean bottom seismometer (OBS) networks represent a tool of opportunity to study fin and blue whales. A small OBS network on the Juan de Fuca Ridge in the northeast Pacific Ocean in ~2.3 km of water recorded an extensive data set of 20-Hz fin whale calls. An automated method has been developed to identify arrival times based on instantaneous frequency and amplitude and to locate calls using a grid search even in the presence of a few bad arrival times. When only one whale is calling near the network, tracks can generally be obtained up to distances of ~15 km from the network. When the calls from multiple whales overlap, user supervision is required to identify tracks. The absolute and relative amplitudes of arrivals and their three-component particle motions provide additional constraints on call location but are not useful for extending the distance to which calls can be located. The double-difference method inverts for changes in relative call locations using differences in residuals for pairs of nearby calls recorded on a common station. The method significantly reduces the unsystematic component of the location error, especially when inconsistencies in arrival time observations are minimized by cross-correlation.

  14. Predicting Human Protein Subcellular Locations by the Ensemble of Multiple Predictors via Protein-Protein Interaction Network with Edge Clustering Coefficients

    PubMed Central

    Du, Pufeng; Wang, Lusheng

    2014-01-01

    One of the fundamental tasks in biology is to identify the functions of all proteins to reveal the primary machinery of a cell. Knowledge of the subcellular locations of proteins will provide key hints to reveal their functions and to understand the intricate pathways that regulate biological processes at the cellular level. Protein subcellular location prediction has been extensively studied in the past two decades. A lot of methods have been developed based on protein primary sequences as well as protein-protein interaction network. In this paper, we propose to use the protein-protein interaction network as an infrastructure to integrate existing sequence based predictors. When predicting the subcellular locations of a given protein, not only the protein itself, but also all its interacting partners were considered. Unlike existing methods, our method requires neither the comprehensive knowledge of the protein-protein interaction network nor the experimentally annotated subcellular locations of most proteins in the protein-protein interaction network. Besides, our method can be used as a framework to integrate multiple predictors. Our method achieved 56% on human proteome in absolute-true rate, which is higher than the state-of-the-art methods. PMID:24466278

  15. Multicast backup reprovisioning problem for Hamiltonian cycle-based protection on WDM networks

    NASA Astrophysics Data System (ADS)

    Din, Der-Rong; Huang, Jen-Shen

    2014-03-01

    As networks grow in size and complexity, the chance and the impact of failures increase dramatically. The pre-allocated backup resources cannot provide 100% protection guarantee when continuous failures occur in a network. In this paper, the multicast backup re-provisioning problem (MBRP) for Hamiltonian cycle (HC)-based protection on WDM networks for the link-failure case is studied. We focus on how to recover the protecting capabilities of Hamiltonian cycle against the subsequent link-failures on WDM networks for multicast transmissions, after recovering the multicast trees affected by the previous link-failure. Since this problem is a hard problem, an algorithm, which consists of several heuristics and a genetic algorithm (GA), is proposed to solve it. The simulation results of the proposed method are also given. Experimental results indicate that the proposed algorithm can solve this problem efficiently.

  16. Research on application of GIS and GPS in inspection and management of city gas pipeline network

    NASA Astrophysics Data System (ADS)

    Zhou, Jin; Meng, Xiangyin; Tao, Tao; Zhang, Fengpei

    2018-01-01

    To solve the problems existing in the current Gas Company patrol management, such as inaccurate attendance, whether or not the patrol personnel exceed the scope of patrol inspection. This paper Proposed that we apply the SuperMap iDeskTop 8C plug-in desktop GIS application and development platform, the positioning function of GPS and the data transmission function of 3G/4G/GPRS/Ethernet to develop a gas pipeline inspection management system. We build association between real-time data, pipe network information, patrol data, map information, spatial data and so on to realize the bottom data fusion, use the mobile location system and patrol management client to achieve real-time interaction between the client and the mobile terminal. Practical application shows that the system has completed the standardized management of patrol tasks, the reasonable evaluation of patrol work and the maximum utilization of patrol resources.

  17. Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data

    USGS Publications Warehouse

    Wikle, C.K.; Royle, J. Andrew

    2005-01-01

    Many ecological processes exhibit spatial structure that changes over time in a coherent, dynamical fashion. This dynamical component is often ignored in the design of spatial monitoring networks. Furthermore, ecological variables related to processes such as habitat are often non-Gaussian (e.g. Poisson or log-normal). We demonstrate that a simulation-based design approach can be used in settings where the data distribution is from a spatio-temporal exponential family. The key random component in the conditional mean function from this distribution is then a spatio-temporal dynamic process. Given the computational burden of estimating the expected utility of various designs in this setting, we utilize an extended Kalman filter approximation to facilitate implementation. The approach is motivated by, and demonstrated on, the problem of selecting sampling locations to estimate July brood counts in the prairie pothole region of the U.S.

  18. Content-aware network storage system supporting metadata retrieval

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Qin, Leihua; Zhou, Jingli; Nie, Xuejun

    2008-12-01

    Nowadays, content-based network storage has become the hot research spot of academy and corporation[1]. In order to solve the problem of hit rate decline causing by migration and achieve the content-based query, we exploit a new content-aware storage system which supports metadata retrieval to improve the query performance. Firstly, we extend the SCSI command descriptor block to enable system understand those self-defined query requests. Secondly, the extracted metadata is encoded by extensible markup language to improve the universality. Thirdly, according to the demand of information lifecycle management (ILM), we store those data in different storage level and use corresponding query strategy to retrieval them. Fourthly, as the file content identifier plays an important role in locating data and calculating block correlation, we use it to fetch files and sort query results through friendly user interface. Finally, the experiments indicate that the retrieval strategy and sort algorithm have enhanced the retrieval efficiency and precision.

  19. Comparison of optimized algorithms in facility location allocation problems with different distance measures

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Chandrawat, Rajesh Kumar; Garg, B. P.; Joshi, Varun

    2017-07-01

    Opening the new firm or branch with desired execution is very relevant to facility location problem. Along the lines to locate the new ambulances and firehouses, the government desires to minimize average response time for emergencies from all residents of cities. So finding the best location is biggest challenge in day to day life. These type of problems were named as facility location problems. A lot of algorithms have been developed to handle these problems. In this paper, we review five algorithms that were applied to facility location problems. The significance of clustering in facility location problems is also presented. First we compare Fuzzy c-means clustering (FCM) algorithm with alternating heuristic (AH) algorithm, then with Particle Swarm Optimization (PSO) algorithms using different type of distance function. The data was clustered with the help of FCM and then we apply median model and min-max problem model on that data. After finding optimized locations using these algorithms we find the distance from optimized location point to the demanded point with different distance techniques and compare the results. At last, we design a general example to validate the feasibility of the five algorithms for facilities location optimization, and authenticate the advantages and drawbacks of them.

  20. Master plan for REIS implementation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knobloch, P.C.

    1974-08-01

    Implementation requirements of the regional energy information system (REIS) and provision of a brief cost/benefit analysis of the proposed system are discussed. Divided into four sectors (problems, requirements, the present system, and the proposed implementation of REIS), the development of a demonstration data base, its implementation and that of the regional input-output model as a tool for decision makers are subjects of the report. The accounting subsystem and energy flow network model are two main components; the need to identify specific problems, to gather information on source, energy type, location, use, time with cross classification, the structure of REIS withmore » parameter subsystem, and a description of the study area (N. E. Minnesota) are included. Five energy-producing and 76 energy-using sectors are specified, with energy classification and forms included. (GRA)« less

  1. The Antecedents, Objects, and Consequents of User Trust in Location-Based Social Networks

    ERIC Educational Resources Information Center

    Russo, Paul

    2012-01-01

    Online social networks provide rich opportunities to interact with friends and other online community members. At the same time, the addition of emerging location-sharing technologies--which broadcast a user's location online, including who they are with and what is happening nearby--is creating new dimensions to the types of interactions…

  2. A multi-pattern hash-binary hybrid algorithm for URL matching in the HTTP protocol.

    PubMed

    Zeng, Ping; Tan, Qingping; Meng, Xiankai; Shao, Zeming; Xie, Qinzheng; Yan, Ying; Cao, Wei; Xu, Jianjun

    2017-01-01

    In this paper, based on our previous multi-pattern uniform resource locator (URL) binary-matching algorithm called HEM, we propose an improved multi-pattern matching algorithm called MH that is based on hash tables and binary tables. The MH algorithm can be applied to the fields of network security, data analysis, load balancing, cloud robotic communications, and so on-all of which require string matching from a fixed starting position. Our approach effectively solves the performance problems of the classical multi-pattern matching algorithms. This paper explores ways to improve string matching performance under the HTTP protocol by using a hash method combined with a binary method that transforms the symbol-space matching problem into a digital-space numerical-size comparison and hashing problem. The MH approach has a fast matching speed, requires little memory, performs better than both the classical algorithms and HEM for matching fields in an HTTP stream, and it has great promise for use in real-world applications.

  3. A multi-pattern hash-binary hybrid algorithm for URL matching in the HTTP protocol

    PubMed Central

    Tan, Qingping; Meng, Xiankai; Shao, Zeming; Xie, Qinzheng; Yan, Ying; Cao, Wei; Xu, Jianjun

    2017-01-01

    In this paper, based on our previous multi-pattern uniform resource locator (URL) binary-matching algorithm called HEM, we propose an improved multi-pattern matching algorithm called MH that is based on hash tables and binary tables. The MH algorithm can be applied to the fields of network security, data analysis, load balancing, cloud robotic communications, and so on—all of which require string matching from a fixed starting position. Our approach effectively solves the performance problems of the classical multi-pattern matching algorithms. This paper explores ways to improve string matching performance under the HTTP protocol by using a hash method combined with a binary method that transforms the symbol-space matching problem into a digital-space numerical-size comparison and hashing problem. The MH approach has a fast matching speed, requires little memory, performs better than both the classical algorithms and HEM for matching fields in an HTTP stream, and it has great promise for use in real-world applications. PMID:28399157

  4. Experimental Design for Estimating Unknown Hydraulic Conductivity in a Confined Aquifer using a Genetic Algorithm and a Reduced Order Model

    NASA Astrophysics Data System (ADS)

    Ushijima, T.; Yeh, W.

    2013-12-01

    An optimal experimental design algorithm is developed to select locations for a network of observation wells that provides the maximum information about unknown hydraulic conductivity in a confined, anisotropic aquifer. The design employs a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. Because that the formulated problem is non-convex and contains integer variables (necessitating a combinatorial search), for a realistically-scaled model, the problem may be difficult, if not impossible, to solve through traditional mathematical programming techniques. Genetic Algorithms (GAs) are designed to search out the global optimum; however because a GA requires a large number of calls to a groundwater model, the formulated optimization problem may still be infeasible to solve. To overcome this, Proper Orthogonal Decomposition (POD) is applied to the groundwater model to reduce its dimension. The information matrix in the full model space can then be searched without solving the full model.

  5. Multiple indicator cokriging with application to optimal sampling for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, Eulogio; Dowd, Peter A.

    2005-02-01

    A probabilistic solution to the problem of spatial interpolation of a variable at an unsampled location consists of estimating the local cumulative distribution function (cdf) of the variable at that location from values measured at neighbouring locations. As this distribution is conditional to the data available at neighbouring locations it incorporates the uncertainty of the value of the variable at the unsampled location. Geostatistics provides a non-parametric solution to such problems via the various forms of indicator kriging. In a least squares sense indicator cokriging is theoretically the best estimator but in practice its use has been inhibited by problems such as an increased number of violations of order relations constraints when compared with simpler forms of indicator kriging. In this paper, we describe a methodology and an accompanying computer program for estimating a vector of indicators by simple indicator cokriging, i.e. simultaneous estimation of the cdf for K different thresholds, {F(u,zk),k=1,…,K}, by solving a unique cokriging system for each location at which an estimate is required. This approach produces a variance-covariance matrix of the estimated vector of indicators which is used to fit a model to the estimated local cdf by logistic regression. This model is used to correct any violations of order relations and automatically ensures that all order relations are satisfied, i.e. the estimated cumulative distribution function, F^(u,zk), is such that: F^(u,zk)∈[0,1],∀zk,andF^(u,zk)⩽F^(u,z)forzk

  6. Conic section function neural network circuitry for offline signature recognition.

    PubMed

    Erkmen, Burcu; Kahraman, Nihan; Vural, Revna A; Yildirim, Tulay

    2010-04-01

    In this brief, conic section function neural network (CSFNN) circuitry was designed for offline signature recognition. CSFNN is a unified framework for multilayer perceptron (MLP) and radial basis function (RBF) networks to make simultaneous use of advantages of both. The CSFNN circuitry architecture was developed using a mixed mode circuit implementation. The designed circuit system is problem independent. Hence, the general purpose neural network circuit system could be applied to various pattern recognition problems with different network sizes on condition with the maximum network size of 16-16-8. In this brief, CSFNN circuitry system has been applied to two different signature recognition problems. CSFNN circuitry was trained with chip-in-the-loop learning technique in order to compensate typical analog process variations. CSFNN hardware achieved highly comparable computational performances with CSFNN software for nonlinear signature recognition problems.

  7. Competitive Facility Location with Random Demands

    NASA Astrophysics Data System (ADS)

    Uno, Takeshi; Katagiri, Hideki; Kato, Kosuke

    2009-10-01

    This paper proposes a new location problem of competitive facilities, e.g. shops and stores, with uncertain demands in the plane. By representing the demands for facilities as random variables, the location problem is formulated to a stochastic programming problem, and for finding its solution, three deterministic programming problems: expectation maximizing problem, probability maximizing problem, and satisfying level maximizing problem are considered. After showing that one of their optimal solutions can be found by solving 0-1 programming problems, their solution method is proposed by improving the tabu search algorithm with strategic vibration. Efficiency of the solution method is shown by applying to numerical examples of the facility location problems.

  8. Path integration of head direction: updating a packet of neural activity at the correct speed using neuronal time constants.

    PubMed

    Walters, D M; Stringer, S M

    2010-07-01

    A key question in understanding the neural basis of path integration is how individual, spatially responsive, neurons may self-organize into networks that can, through learning, integrate velocity signals to update a continuous representation of location within an environment. It is of vital importance that this internal representation of position is updated at the correct speed, and in real time, to accurately reflect the motion of the animal. In this article, we present a biologically plausible model of velocity path integration of head direction that can solve this problem using neuronal time constants to effect natural time delays, over which associations can be learned through associative Hebbian learning rules. The model comprises a linked continuous attractor network and competitive network. In simulation, we show that the same model is able to learn two different speeds of rotation when implemented with two different values for the time constant, and without the need to alter any other model parameters. The proposed model could be extended to path integration of place in the environment, and path integration of spatial view.

  9. A Greedy Scanning Data Collection Strategy for Large-Scale Wireless Sensor Networks with a Mobile Sink.

    PubMed

    Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J P C

    2016-09-06

    Mobile sink is widely used for data collection in wireless sensor networks. It can avoid 'hot spot' problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios.

  10. A Greedy Scanning Data Collection Strategy for Large-Scale Wireless Sensor Networks with a Mobile Sink

    PubMed Central

    Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J. P. C.

    2016-01-01

    Mobile sink is widely used for data collection in wireless sensor networks. It can avoid ‘hot spot’ problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios. PMID:27608022

  11. Autonomous solutions for powering wireless sensor nodes in rivers

    NASA Astrophysics Data System (ADS)

    Kamenar, E.; Maćešić, S.; Gregov, G.; Blažević, D.; Zelenika, S.; Marković, K.; Glažar, V.

    2015-05-01

    There is an evident need for monitoring pollutants and/or other conditions in river flows via wireless sensor networks. In a typical wireless sensor network topography, a series of sensor nodes is to be deployed in the environment, all wirelessly connected to each other and/or their gateways. Each sensor node is composed of active electronic devices that have to be constantly powered. In general, batteries can be used for this purpose, but problems may occur when they have to be replaced. In the case of large networks, when sensor nodes can be placed in hardly accessible locations, energy harvesting can thus be a viable powering solution. The possibility to use three different small-scale river flow energy harvesting principles is hence thoroughly studied in this work: a miniaturized underwater turbine, a so-called `piezoelectric eel' and a hybrid turbine solution coupled with a rigid piezoelectric beam. The first two concepts are then validated experimentally in laboratory as well as in real river conditions. The concept of the miniaturised hydro-generator is finally embedded into the actual wireless sensor node system and its functionality is confirmed.

  12. Structural factoring approach for analyzing stochastic networks

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Shier, Douglas R.

    1991-01-01

    The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.

  13. Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    PubMed Central

    Lange, Stefan; Donges, Jonathan F.; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system. Three types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed. PMID:25856374

  14. Local difference measures between complex networks for dynamical system model evaluation.

    PubMed

    Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed.

  15. Flight control with adaptive critic neural network

    NASA Astrophysics Data System (ADS)

    Han, Dongchen

    2001-10-01

    In this dissertation, the adaptive critic neural network technique is applied to solve complex nonlinear system control problems. Based on dynamic programming, the adaptive critic neural network can embed the optimal solution into a neural network. Though trained off-line, the neural network forms a real-time feedback controller. Because of its general interpolation properties, the neurocontroller has inherit robustness. The problems solved here are an agile missile control for U.S. Air Force and a midcourse guidance law for U.S. Navy. In the first three papers, the neural network was used to control an air-to-air agile missile to implement a minimum-time heading-reverse in a vertical plane corresponding to following conditions: a system without constraint, a system with control inequality constraint, and a system with state inequality constraint. While the agile missile is a one-dimensional problem, the midcourse guidance law is the first test-bed for multiple-dimensional problem. In the fourth paper, the neurocontroller is synthesized to guide a surface-to-air missile to a fixed final condition, and to a flexible final condition from a variable initial condition. In order to evaluate the adaptive critic neural network approach, the numerical solutions for these cases are also obtained by solving two-point boundary value problem with a shooting method. All of the results showed that the adaptive critic neural network could solve complex nonlinear system control problems.

  16. Localization of diffusion sources in complex networks with sparse observations

    NASA Astrophysics Data System (ADS)

    Hu, Zhao-Long; Shen, Zhesi; Tang, Chang-Bing; Xie, Bin-Bin; Lu, Jian-Feng

    2018-04-01

    Locating sources in a large network is of paramount importance to reduce the spreading of disruptive behavior. Based on the backward diffusion-based method and integer programming, we propose an efficient approach to locate sources in complex networks with limited observers. The results on model networks and empirical networks demonstrate that, for a certain fraction of observers, the accuracy of our method for source localization will improve as the increase of network size. Besides, compared with the previous method (the maximum-minimum method), the performance of our method is much better with a small fraction of observers, especially in heterogeneous networks. Furthermore, our method is more robust against noise environments and strategies of choosing observers.

  17. Water Security Toolkit User Manual: Version 1.3 | Science ...

    EPA Pesticide Factsheets

    User manual: Data Product/Software The Water Security Toolkit (WST) is a suite of tools that help provide the information necessary to make good decisions resulting in the minimization of further human exposure to contaminants, and the maximization of the effectiveness of intervention strategies. WST assists in the evaluation of multiple response actions in order to select the most beneficial consequence management strategy. It includes hydraulic and water quality modeling software and optimization methodologies to identify: (1) sensor locations to detect contamination, (2) locations in the network in which the contamination was introduced, (3) hydrants to remove contaminated water from the distribution system, (4) locations in the network to inject decontamination agents to inactivate, remove or destroy contaminants, (5) locations in the network to take grab sample to confirm contamination or cleanup and (6) valves to close in order to isolate contaminated areas of the network.

  18. Optimization and resilience of complex supply-demand networks

    NASA Astrophysics Data System (ADS)

    Zhang, Si-Ping; Huang, Zi-Gang; Dong, Jia-Qi; Eisenberg, Daniel; Seager, Thomas P.; Lai, Ying-Cheng

    2015-06-01

    Supply-demand processes take place on a large variety of real-world networked systems ranging from power grids and the internet to social networking and urban systems. In a modern infrastructure, supply-demand systems are constantly expanding, leading to constant increase in load requirement for resources and consequently, to problems such as low efficiency, resource scarcity, and partial system failures. Under certain conditions global catastrophe on the scale of the whole system can occur through the dynamical process of cascading failures. We investigate optimization and resilience of time-varying supply-demand systems by constructing network models of such systems, where resources are transported from the supplier sites to users through various links. Here by optimization we mean minimization of the maximum load on links, and system resilience can be characterized using the cascading failure size of users who fail to connect with suppliers. We consider two representative classes of supply schemes: load driven supply and fix fraction supply. Our findings are: (1) optimized systems are more robust since relatively smaller cascading failures occur when triggered by external perturbation to the links; (2) a large fraction of links can be free of load if resources are directed to transport through the shortest paths; (3) redundant links in the performance of the system can help to reroute the traffic but may undesirably transmit and enlarge the failure size of the system; (4) the patterns of cascading failures depend strongly upon the capacity of links; (5) the specific location of the trigger determines the specific route of cascading failure, but has little effect on the final cascading size; (6) system expansion typically reduces the efficiency; and (7) when the locations of the suppliers are optimized over a long expanding period, fewer suppliers are required. These results hold for heterogeneous networks in general, providing insights into designing optimal and resilient complex supply-demand systems that expand constantly in time.

  19. Childhood Physical and Sexual Abuse and Social Network Patterns on Social Media: Associations With Alcohol Use and Problems Among Young Adult Women

    PubMed Central

    Oshri, Assaf; Himelboim, Itai; Kwon, Josephine A.; Sutton, Tara E.; Mackillop, James

    2015-01-01

    Objective: The aim of the present study was to examine the links between severities of child abuse (physical vs. sexual), and alcohol use versus problems via social media (Facebook) peer connection structures. Method: A total of 318 undergraduate female students at a public university in the United States reported severity of child abuse experiences and current alcohol use and problems. Social network data were obtained directly from the individuals’ Facebook network. Results: Severity of childhood physical abuse was positively linked to alcohol use and problems via eigenvector centrality, whereas severity of childhood sexual abuse was negatively linked to alcohol use and problems via clustering coefficient. Conclusions: Childhood physical and sexual abuse were linked positively and negatively, respectively, to online social network patterns associated with alcohol use and problems. The study suggests the potential utility of these online network patterns as risk indices and ultimately using social media as a platform for targeted preventive interventions. PMID:26562592

  20. Childhood Physical and Sexual Abuse and Social Network Patterns on Social Media: Associations With Alcohol Use and Problems Among Young Adult Women.

    PubMed

    Oshri, Assaf; Himelboim, Itai; Kwon, Josephine A; Sutton, Tara E; Mackillop, James

    2015-11-01

    The aim of the present study was to examine the links between severities of child abuse (physical vs. sexual), and alcohol use versus problems via social media (Facebook) peer connection structures. A total of 318 undergraduate female students at a public university in the United States reported severity of child abuse experiences and current alcohol use and problems. Social network data were obtained directly from the individuals' Facebook network. Severity of childhood physical abuse was positively linked to alcohol use and problems via eigenvector centrality, whereas severity of childhood sexual abuse was negatively linked to alcohol use and problems via clustering coefficient. Childhood physical and sexual abuse were linked positively and negatively, respectively, to online social network patterns associated with alcohol use and problems. The study suggests the potential utility of these online network patterns as risk indices and ultimately using social media as a platform for targeted preventive interventions.

Top