Latent variable models are network models.
Molenaar, Peter C M
2010-06-01
Cramer et al. present an original and interesting network perspective on comorbidity and contrast this perspective with a more traditional interpretation of comorbidity in terms of latent variable theory. My commentary focuses on the relationship between the two perspectives; that is, it aims to qualify the presumed contrast between interpretations in terms of networks and latent variables.
Issues in PCS interoperability and Internetworking
NASA Technical Reports Server (NTRS)
Dean, Richard A.; Estabrook, Polly
1995-01-01
This paper is an expansion of an earlier paper on Satellite/Terrestrial PCS which addressed issues for interoperability that included Networks, Services, Voice Coders and Mobility/Security. This paper focuses on the narrower topic of Network Reference Models and associated interfaces and protocols. The network reference models are addressed from the perspective of the User, the Cellular Carrier, the PSN Carrier, and the Radio Vendor. Each perspective is presented in the way these systems have evolved. The TIA TR46/GSM reference model will be reviewed. Variations in the use of this model that are prevalent in the industry will be discussed. These are the North American Cellular networks, the GSM networks, and the North American Carriers/Bellcore perspective. The paper concludes with the presentation of issues that develop from looking at merging satellite service into a world of many different networks.
HIA, the next step: Defining models and roles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putters, Kim
If HIA is to be an effective instrument for optimising health interests in the policy making process it has to recognise the different contests in which policy is made and the relevance of both technical rationality and political rationality. Policy making may adopt a rational perspective in which there is a systematic and orderly progression from problem formulation to solution or a network perspective in which there are multiple interdependencies, extensive negotiation and compromise, and the steps from problem to formulation are not followed sequentially or in any particular order. Policy problems may be simple with clear causal pathways andmore » responsibilities or complex with unclear causal pathways and disputed responsibilities. Network analysis is required to show which stakeholders are involved, their support for health issues and the degree of consensus. From this analysis three models of HIA emerge. The first is the phases model which is fitted to simple problems and a rational perspective of policymaking. This model involves following structured steps. The second model is the rounds (Echternach) model that is fitted to complex problems and a network perspective of policymaking. This model is dynamic and concentrates on network solutions taking these steps in no particular order. The final model is the 'garbage can' model fitted to contexts which combine simple and complex problems. In this model HIA functions as a problem solver and signpost keeping all possible solutions and stakeholders in play and allowing solutions to emerge over time. HIA models should be the beginning rather than the conclusion of discussion the worlds of HIA and policymaking.« less
NASA Astrophysics Data System (ADS)
Pusuluri, Sai Teja
Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features. These results show how the static landscape features can be controlled by adjusting the correlations between patterns. Finally, I explore the dynamical features of landscapes generated using neural network models such as the stability of minima and the transition rates between minima. The results from this project show that the stability depends on the correlations between patterns. It is also found that the transition rates between minima strongly depend on the type of bias applied and the correlation between patterns. The results from this part of the dissertation can be useful in engineering an energy landscape without even having the complete information about the associated minima of the landscape.
Modeling online social signed networks
NASA Astrophysics Data System (ADS)
Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru
2018-04-01
People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.
Graduate Employability: The Perspective of Social Network Learning
ERIC Educational Resources Information Center
Chen, Yong
2017-01-01
This study provides a conceptual framework for understanding how the graduate acquire employability through the social network in the Chinese context, using insights from the social network theory. This paper builds a conceptual model of the relationship among social network, social network learning and the graduate employability, and uses…
NASA Astrophysics Data System (ADS)
Bao, Yanli; Hua, Hefeng
2017-03-01
Network capability is the enterprise's capability to set up, manage, maintain and use a variety of relations between enterprises, and to obtain resources for improving competitiveness. Tourism in China is in a transformation period from sightseeing to leisure and vacation. Scenic spots as well as tourist enterprises can learn from some other enterprises in the process of resource development, and build up its own network relations in order to get resources for their survival and development. Through the effective management of network relations, the performance of resource development will be improved. By analyzing literature on network capability and the case analysis of Wuxi Huishan Ancient Town, the role of network capacity in the tourism resource development is explored and resource development path is built from the perspective of network capability. Finally, the tourism resource development process model based on network capacity is proposed. This model mainly includes setting up network vision, resource identification, resource acquisition, resource utilization and tourism project development. In these steps, network construction, network management and improving network center status are key points.
NASA Astrophysics Data System (ADS)
Wang, Guanghui; Wang, Yufei; Liu, Yijun; Chi, Yuxue
2018-05-01
As the transmission of public opinion on the Internet in the “We the Media” era tends to be supraterritorial, concealed and complex, the traditional “point-to-surface” transmission of information has been transformed into “point-to-point” reciprocal transmission. A foundation for studies of the evolution of public opinion and its transmission on the Internet in the “We the Media” era can be laid by converting the massive amounts of fragmented information on public opinion that exists on “We the Media” platforms into structurally complex networks of information. This paper describes studies of structurally complex network-based modeling of public opinion on the Internet in the “We the Media” era from the perspective of the development and evolution of complex networks. The progress that has been made in research projects relevant to the structural modeling of public opinion on the Internet is comprehensively summarized. The review considers aspects such as regular grid-based modeling of the rules that describe the propagation of public opinion on the Internet in the “We the Media” era, social network modeling, dynamic network modeling, and supernetwork modeling. Moreover, an outlook for future studies that address complex network-based modeling of public opinion on the Internet is put forward as a summary from the perspective of modeling conducted using the techniques mentioned above.
Modelling dendritic ecological networks in space: An integrated network perspective
Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger
2013-01-01
Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...
A simple model clarifies the complicated relationships of complex networks
Zheng, Bojin; Wu, Hongrun; Kuang, Li; Qin, Jun; Du, Wenhua; Wang, Jianmin; Li, Deyi
2014-01-01
Real-world networks such as the Internet and WWW have many common traits. Until now, hundreds of models were proposed to characterize these traits for understanding the networks. Because different models used very different mechanisms, it is widely believed that these traits origin from different causes. However, we find that a simple model based on optimisation can produce many traits, including scale-free, small-world, ultra small-world, Delta-distribution, compact, fractal, regular and random networks. Moreover, by revising the proposed model, the community-structure networks are generated. By this model and the revised versions, the complicated relationships of complex networks are illustrated. The model brings a new universal perspective to the understanding of complex networks and provide a universal method to model complex networks from the viewpoint of optimisation. PMID:25160506
Inter-generational Contact From a Network Perspective
Marcum, Christopher Steven; Koehly, Laura M.
2015-01-01
Pathways for resource—or other—exchanges within families have long been known to be dependent on the structure of relations between generations (Silverstein, 2011; Fuller-Thomson et al., 1997; Agree et al., 2005; Treas and Marcum, 2011). Much life course research has theorized models of inter-generational exchange— including, the ‘sandwich generation’ (Miller, 1981) and the ‘skipped generation’ pathways (Chalfie, 1994)—but there is little work relating these theories to relevant network mechanisms such as liaison brokerage (Gould and Fernandez, 1989) and other triadic configurations (Davis and Leinhardt, 1972; Wasserman and Faust, 1994). To address this, a survey of models of resource allocation between members of inter-generational households from a network perspective is introduced in this paper. Exemplary data come from health discussion networks among Mexican-origin multi-generational households. PMID:26047986
Research on the Establishment and Evaluation of End - to - End Service Quality Index System
NASA Astrophysics Data System (ADS)
Wei, Chen; Jing, Tao; Ji, Yutong
2018-01-01
From the perspective of power data networks, put forward the index system model to measure the quality of service, covering user experience, business performance, network capacity support, etc., and gives the establishment and use of each layer index in the model.
Supply network science: Emergence of a new perspective on a classical field
NASA Astrophysics Data System (ADS)
Brintrup, Alexandra; Ledwoch, Anna
2018-03-01
Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research.
Supply network science: Emergence of a new perspective on a classical field.
Brintrup, Alexandra; Ledwoch, Anna
2018-03-01
Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research.
A probabilistic dynamic energy model for ad-hoc wireless sensors network with varying topology
NASA Astrophysics Data System (ADS)
Al-Husseini, Amal
In this dissertation we investigate the behavior of Wireless Sensor Networks (WSNs) from the degree distribution and evolution perspective. In specific, we focus on implementation of a scale-free degree distribution topology for energy efficient WSNs. WSNs is an emerging technology that finds its applications in different areas such as environment monitoring, agricultural crop monitoring, forest fire monitoring, and hazardous chemical monitoring in war zones. This technology allows us to collect data without human presence or intervention. Energy conservation/efficiency is one of the major issues in prolonging the active life WSNs. Recently, many energy aware and fault tolerant topology control algorithms have been presented, but there is dearth of research focused on energy conservation/efficiency of WSNs. Therefore, we study energy efficiency and fault-tolerance in WSNs from the degree distribution and evolution perspective. Self-organization observed in natural and biological systems has been directly linked to their degree distribution. It is widely known that scale-free distribution bestows robustness, fault-tolerance, and access efficiency to system. Fascinated by these properties, we propose two complex network theoretic self-organizing models for adaptive WSNs. In particular, we focus on adopting the Barabasi and Albert scale-free model to fit into the constraints and limitations of WSNs. We developed simulation models to conduct numerical experiments and network analysis. The main objective of studying these models is to find ways to reducing energy usage of each node and balancing the overall network energy disrupted by faulty communication among nodes. The first model constructs the wireless sensor network relative to the degree (connectivity) and remaining energy of every individual node. We observed that it results in a scale-free network structure which has good fault tolerance properties in face of random node failures. The second model considers additional constraints on the maximum degree of each node as well as the energy consumption relative to degree changes. This gives more realistic results from a dynamical network perspective. It results in balanced network-wide energy consumption. The results show that networks constructed using the proposed approach have good properties for different centrality measures. The outcomes of the presented research are beneficial to building WSN control models with greater self-organization properties which leads to optimal energy consumption.
Resting state morphology predicts the effect of theta burst stimulation in false belief reasoning.
Hartwright, Charlotte E; Hardwick, Robert M; Apperly, Ian A; Hansen, Peter C
2016-10-01
When required to represent a perspective that conflicts with one's own, functional magnetic resonance imaging (fMRI) suggests that the right ventrolateral prefrontal cortex (rvlPFC) supports the inhibition of that conflicting self-perspective. The present task dissociated inhibition of self-perspective from other executive control processes by contrasting belief reasoning-a cognitive state where the presence of conflicting perspectives was manipulated-with a conative desire state wherein no systematic conflict existed. Linear modeling was used to examine the effect of continuous theta burst stimulation (cTBS) to rvlPFC on participants' reaction times in belief and desire reasoning. It was anticipated that cTBS applied to rvlPFC would affect belief but not desire reasoning, by modulating activity in the Ventral Attention System (VAS). We further anticipated that this effect would be mediated by functional connectivity within this network, which was identified using resting state fMRI and an unbiased model-free approach. Simple reaction-time analysis failed to detect an effect of cTBS. However, by additionally modeling individual measures from within the stimulated network, the hypothesized effect of cTBS to belief (but, importantly, not desire) reasoning was demonstrated. Structural morphology within the stimulated region, rvlPFC, and right temporoparietal junction were demonstrated to underlie this effect. These data provide evidence that inconsistencies found with cTBS can be mediated by the composition of the functional network that is being stimulated. We suggest that the common claim that this network constitutes the VAS explains the effect of cTBS to this network on false belief reasoning. Hum Brain Mapp 37:3502-3514, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Conceptual Processes for Linking Eutrophication and Network Models
2006-08-01
recommends a general procedure for future endeavors in this area. BACKGROUND: In recent years new ideas for nutrient management to control...network model. Coupling these two models will provide managers a new perspective on how to improve management strategies and help answer questions such...Dorothy H. Tillman, Dr. Carl F. Cerco, and Mr. Mark R. Noel of the Water Quality and Contaminant Modeling Branch, Enviromental Laboratory (EL
Multiple perspective vulnerability analysis of the power network
NASA Astrophysics Data System (ADS)
Wang, Shuliang; Zhang, Jianhua; Duan, Na
2018-02-01
To understand the vulnerability of the power network from multiple perspectives, multi-angle and multi-dimensional vulnerability analysis as well as community based vulnerability analysis are proposed in this paper. Taking into account of central China power grid as an example, correlation analysis of different vulnerability models is discussed. Then, vulnerabilities produced by different vulnerability metrics under the given vulnerability models and failure scenarios are analyzed. At last, applying the community detecting approach, critical areas of central China power grid are identified, Vulnerable and robust communities on both topological and functional perspective are acquired and analyzed. The approach introduced in this paper can be used to help decision makers develop optimal protection strategies. It will be also useful to give a multiple vulnerability analysis of the other infrastructure systems.
Religion and suicide acceptability: a cross-national analysis.
Stack, Steven; Kposowa, Augustine J
2011-01-01
Four perspectives (moral community thesis, religious integration, religious commitment, and social networks) guide the selection of variables in this study. Data are from the combined World Values/European Values Surveys for 2000 (50,547 individuals nested in 56 nations). The results of a multivariate hierarchical linear model support all four perspectives. Persons residing in nations with relatively high levels of religiosity, who are affiliated with one of four major faiths, are religiously committed, and are engaged with a religious network are found to be lower in suicide acceptability. The religious integration perspective, in particular, is empirically supported; affiliation with Islam is associated with low suicide acceptability. The findings provide strong support for an integrated model and demonstrate the usefulness of the moral community thesis in understanding suicide acceptability.
Epidemic Percolation Networks, Epidemic Outcomes, and Interventions
Kenah, Eben; Miller, Joel C.
2011-01-01
Epidemic percolation networks (EPNs) are directed random networks that can be used to analyze stochastic “Susceptible-Infectious-Removed” (SIR) and “Susceptible-Exposed-Infectious-Removed” (SEIR) epidemic models, unifying and generalizing previous uses of networks and branching processes to analyze mass-action and network-based S(E)IR models. This paper explains the fundamental concepts underlying the definition and use of EPNs, using them to build intuition about the final outcomes of epidemics. We then show how EPNs provide a novel and useful perspective on the design of vaccination strategies.
Epidemic Percolation Networks, Epidemic Outcomes, and Interventions
Kenah, Eben; Miller, Joel C.
2011-01-01
Epidemic percolation networks (EPNs) are directed random networks that can be used to analyze stochastic “Susceptible-Infectious-Removed” (SIR) and “Susceptible-Exposed-Infectious-Removed” (SEIR) epidemic models, unifying and generalizing previous uses of networks and branching processes to analyze mass-action and network-based S(E)IR models. This paper explains the fundamental concepts underlying the definition and use of EPNs, using them to build intuition about the final outcomes of epidemics. We then show how EPNs provide a novel and useful perspective on the design of vaccination strategies. PMID:21437002
Measuring the default risk of sovereign debt from the perspective of network
NASA Astrophysics Data System (ADS)
Chuang, Hongwei; Ho, Hwai-Chung
2013-05-01
Recently, there has been a growing interest in network research, especially in the fields of biology, computer science, and sociology. It is natural to address complex financial issues such as the European sovereign debt crisis from the perspective of network. In this article, we construct a network model according to the debt-credit relations instead of using the conventional methodology to measure the default risk. Based on the model, a risk index is examined using the quarterly report of consolidated foreign claims from the Bank for International Settlements (BIS) and debt/GDP ratios among these reporting countries. The empirical results show that this index can help the regulators and practitioners not only to determine the status of interconnectivity but also to point out the degree of the sovereign debt default risk. Our approach sheds new light on the investigation of quantifying the systemic risk.
Dam, Alieske E H; Boots, Lizzy M M; van Boxtel, Martin P J; Verhey, Frans R J; de Vugt, Marjolein E
2017-06-13
Access to social support contributes to feelings of independence and better social health. This qualitative study aims to investigate multi-informant perspectives on informal social support in dementia care networks. Ten spousal caregivers of people with dementia (PwD) completed an ecogram, a social network card and a semi-structured interview. The ecogram aimed to trigger subjective experiences regarding social support. Subsequently, 17 network members were interviewed. The qualitative analyses identified codes, categories, and themes. Sixth themes emerged: (1) barriers to ask for support; (2) facilitators to ask for support; (3) barriers to offer support; (4) facilitators to offer support; (5) a mismatch between supply and demand of social support; and (6) openness in communication to repair the imbalance. Integrating social network perspectives resulted in a novel model identifying a mismatch between the supply and demand of social support, strengthened by a cognitive bias: caregivers reported to think for other social network members and vice versa. Openness in communication in formal and informal care systems might repair this mismatch.
Perspectives for computational modeling of cell replacement for neurological disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aimone, James B.; Weick, Jason P.
In mathematical modeling of anatomically-constrained neural networks we provide significant insights regarding the response of networks to neurological disorders or injury. Furthermore, a logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons, can impactmore » circuit behavior in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.« less
Perspectives for computational modeling of cell replacement for neurological disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aimone, James B.; Weick, Jason P.
Mathematical modeling of anatomically-constrained neural networks has provided significant insights regarding the response of networks to neurological disorders or injury. A logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons, can impact circuit behaviormore » in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.« less
Spreading dynamics on complex networks: a general stochastic approach.
Noël, Pierre-André; Allard, Antoine; Hébert-Dufresne, Laurent; Marceau, Vincent; Dubé, Louis J
2014-12-01
Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelic, Andjelka; Mitchell, Michael David; Shirah, Donald N.
The National Infrastructure Simulations and Analysis Center (NISAC) has developed a nationwide model of the Internet to study the potential impact of the loss of physical facilities on the network and on other infrastructures that depend on the Internet for services. The model looks at the Internet from the perspective of Internet Service Providers (ISPs) and their connectivity and can be used to determine how the network connectivity could be modified to assist in mitigating an event. In addition the model could be used to explore how portions of the network could be made more resilient to disruptive events.
NASA Astrophysics Data System (ADS)
Shi, Li; Wu, Lun; Chi, Guanghua; Liu, Yu
2016-10-01
Space and place are two fundamental concepts in geography. Geographical factors have long been known as drivers of many aspects of people's social networks. But whether and how space and place affect social networks differently are still unclear. The widespread use of location-aware devices provides a novel source for distinguishing the mechanisms of their impacts on social networks. Using mobile phone data, this paper explores the effects of space and place on social networks. From the perspective of space, we confirm the distance decay effect in social networks, based on a comparison between synthetic social ties generated by a null model and actual social ties derived from real-world data. From the perspective of place, we introduce several measures to evaluate interactions between individuals and inspect the trio relationship including distance, spatio-temporal co-occurrence, and social ties. We found that people's interaction is a more important factor than spatial proximity, indicating that the spatial factor has a stronger impact on social networks in place compared to that in space. Furthermore, we verify the hypothesis that interactions play an important role in strengthening friendships.
A Guide to the Literature on Learning Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Friedland, Peter (Technical Monitor)
1994-01-01
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and more generally, learning probabilistic graphical models. Because many problems in artificial intelligence, statistics and neural networks can be represented as a probabilistic graphical model, this area provides a unifying perspective on learning. This paper organizes the research in this area along methodological lines of increasing complexity.
van Ments, Laila; Roelofsma, Peter; Treur, Jan
2018-01-01
Religion is a central aspect of many individuals' lives around the world, and its influence on human behaviour has been extensively studied from many different perspectives. The current study integrates a number of these perspectives into one adaptive temporal-causal network model describing the mental states involved, their mutual relations, and the adaptation of some of these relations over time due to learning. By first developing a conceptual representation of a network model based on the literature, and then formalizing this model into a numerical representation, simulations can be done for almost any kind of religion and person, showing different behaviours for persons with different religious backgrounds and characters. The focus was mainly on the influence of religion on human empathy and dis-empathy, a topic very relevant today. The developed model could be valuable for many uses, involving support for a better understanding, and even prediction, of the behaviour of religious individuals. It is illustrated for a number of different scenarios based on different characteristics of the persons and of the religion.
Network approaches for expert decisions in sports.
Glöckner, Andreas; Heinen, Thomas; Johnson, Joseph G; Raab, Markus
2012-04-01
This paper focuses on a model comparison to explain choices based on gaze behavior via simulation procedures. We tested two classes of models, a parallel constraint satisfaction (PCS) artificial neuronal network model and an accumulator model in a handball decision-making task from a lab experiment. Both models predict action in an option-generation task in which options can be chosen from the perspective of a playmaker in handball (i.e., passing to another player or shooting at the goal). Model simulations are based on a dataset of generated options together with gaze behavior measurements from 74 expert handball players for 22 pieces of video footage. We implemented both classes of models as deterministic vs. probabilistic models including and excluding fitted parameters. Results indicated that both classes of models can fit and predict participants' initially generated options based on gaze behavior data, and that overall, the classes of models performed about equally well. Early fixations were thereby particularly predictive for choices. We conclude that the analyses of complex environments via network approaches can be successfully applied to the field of experts' decision making in sports and provide perspectives for further theoretical developments. Copyright © 2011 Elsevier B.V. All rights reserved.
Modelling dendritic ecological networks in space: anintegrated network perspective
Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.
2013-01-01
the context of stream ecology. Within this context, we summarise the key innovations of a new family of spatial statistical models that describe spatial relationships in DENs. Finally, we discuss how different network analyses may be combined to address more complex and novel research questions. While our main focus is streams, the taxonomy of network analyses is also relevant anywhere spatial patterns in both network and 2-D space can be used to explore the influence of multi-scale processes on biota and their habitat (e.g. plant morphology and pest infestation, or preferential migration along stream or road corridors).
Structural Preferential Attachment: Network Organization beyond the Link
NASA Astrophysics Data System (ADS)
Hébert-Dufresne, Laurent; Allard, Antoine; Marceau, Vincent; Noël, Pierre-André; Dubé, Louis J.
2011-10-01
We introduce a mechanism which models the emergence of the universal properties of complex networks, such as scale independence, modularity and self-similarity, and unifies them under a scale-free organization beyond the link. This brings a new perspective on network organization where communities, instead of links, are the fundamental building blocks of complex systems. We show how our simple model can reproduce social and information networks by predicting their community structure and more importantly, how their nodes or communities are interconnected, often in a self-similar manner.
ERIC Educational Resources Information Center
Jan, Muhammad Tahir
2017-01-01
Purpose: The purpose of this paper is to investigate those factors that are associated with the adoption of social networking sites from the perspective of Muslim users residing in Malaysia. Design/methodology/approach: A complete self-administered questionnaire was collected from 223 Muslim users of social networking sites in Malaysia. Both…
ERIC Educational Resources Information Center
Naidoo, Vis, Ed.; Ramzy, Heba, Ed.
2004-01-01
This collection of research and case studies provides snapshots of developments in school networking in seven regions of the world, and focuses on the variety of school networking models that have emerged in different regions and the resulting trends and issues that need to be considered in terms of supporting the learning, teaching, management…
Relationships between music training, speech processing, and word learning: a network perspective.
Elmer, Stefan; Jäncke, Lutz
2018-03-15
Numerous studies have documented the behavioral advantages conferred on professional musicians and children undergoing music training in processing speech sounds varying in the spectral and temporal dimensions. These beneficial effects have previously often been associated with local functional and structural changes in the auditory cortex (AC). However, this perspective is oversimplified, in that it does not take into account the intrinsic organization of the human brain, namely, neural networks and oscillatory dynamics. Therefore, we propose a new framework for extending these previous findings to a network perspective by integrating multimodal imaging, electrophysiology, and neural oscillations. In particular, we provide concrete examples of how functional and structural connectivity can be used to model simple neural circuits exerting a modulatory influence on AC activity. In addition, we describe how such a network approach can be used for better comprehending the beneficial effects of music training on more complex speech functions, such as word learning. © 2018 New York Academy of Sciences.
Dynamic Trust Models between Users over Social Networks
2016-03-30
SUPPLEMENTARY NOTES 14. ABSTRACT In this project, by focusing on a number of word -of- mouth communication websites, we attempted to...analyzed evolution of trust networks in social media sites from a perspective of mediators. To this end, we proposed two stochastic models that...focusing on a number of word -of- mouth communication websites, we first attempt to construct dynamic trust models between users that enable to explain trust
Using network biology to bridge pharmacokinetics and pharmacodynamics in oncology.
Kirouac, D C; Onsum, M D
2013-09-04
If mathematical modeling is to be used effectively in cancer drug development, future models must take into account both the mechanistic details of cellular signal transduction networks and the pharmacokinetics (PK) of drugs used to inhibit their oncogenic activity. In this perspective, we present an approach to building multiscale models that capture systems-level architectural features of oncogenic signaling networks, and describe how these models can be used to design combination therapies and identify predictive biomarkers in silico.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e71; doi:10.1038/psp.2013.38; published online 4 September 2013.
Building trusting relationships in online health communities.
Zhao, Jing; Ha, Sejin; Widdows, Richard
2013-09-01
This study investigates consumers' use of online health communities (OHCs) for healthcare from a relationship building perspective based on the commitment-trust theory of relationships. The study proposes that perspective taking, empathic concern, self-efficacy, and network density affect the development of both cognitive and affective trust, which together determine OHC members' membership continuance intention (MCI) and knowledge contribution. Data collected from eight existing OHCs (N=255) were utilized to test the hypothesized model. Results show that perspective taking and self-efficacy can increase cognitive trust and affective trust, respectively. Network density contributes to cognitive and affective trust. Both cognitive trust and affective trust influence MCI, while only affective trust impacts members' knowledge contribution behaviors.
Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S
2013-06-01
A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.
Gao, Xiangyun; Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng
2018-03-01
Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion.
Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng
2018-01-01
Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion. PMID:29657804
Quantitative petri net model of gene regulated metabolic networks in the cell.
Chen, Ming; Hofestädt, Ralf
2011-01-01
A method to exploit hybrid Petri nets (HPN) for quantitatively modeling and simulating gene regulated metabolic networks is demonstrated. A global kinetic modeling strategy and Petri net modeling algorithm are applied to perform the bioprocess functioning and model analysis. With the model, the interrelations between pathway analysis and metabolic control mechanism are outlined. Diagrammatical results of the dynamics of metabolites are simulated and observed by implementing a HPN tool, Visual Object Net ++. An explanation of the observed behavior of the urea cycle is proposed to indicate possibilities for metabolic engineering and medical care. Finally, the perspective of Petri nets on modeling and simulation of metabolic networks is discussed.
A Tri-network Model of Human Semantic Processing
Xu, Yangwen; He, Yong; Bi, Yanchao
2017-01-01
Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266
Jiang, Xiaoye; Yao, Yuan; Liu, Han; Guibas, Leonidas
2014-01-01
Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets. PMID:25620806
Modeling epidemics on adaptively evolving networks: A data-mining perspective.
Kattis, Assimakis A; Holiday, Alexander; Stoica, Ana-Andreea; Kevrekidis, Ioannis G
2016-01-01
The exploration of epidemic dynamics on dynamically evolving ("adaptive") networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few "good observables") that usefully summarize the overall (macroscopic, systems-level) behavior. Obtaining reduced, small size accurate models in terms of these few statistical observables--that is, trying to coarse-grain the full network epidemic model to a small but useful macroscopic one--is even more daunting. Here we describe a data-based approach to solving the first challenge: the detection of a few informative collective observables of the detailed epidemic dynamics. This is accomplished through Diffusion Maps (DMAPS), a recently developed data-mining technique. We illustrate the approach through simulations of a simple mathematical model of epidemics on a network: a model known to exhibit complex temporal dynamics. We discuss potential extensions of the approach, as well as possible shortcomings.
The Social Context of Adolescent Smoking: A Systems Perspective
Hipp, John R.; Timberlake, David S.
2010-01-01
We used a systems science perspective to examine adolescents' personal networks, school networks, and neighborhoods as a system through which emotional support and peer influence flow, and we sought to determine whether these flows affected past-month smoking at 2 time points, 1994–1995 and 1996. To test relationships, we employed structural equation modeling and used public-use data from the National Longitudinal Study of Adolescent Health (n = 6504). Personal network properties affected past-month smoking at both time points via the flow of emotional support. We observed a feedback loop from personal network properties to emotional support and then to past-month smoking. Past-month smoking at time 1 fed back to positively affect in-degree centrality (i.e., popularity). Findings suggest that networks and neighborhoods in this system positively affected past-month smoking via flows of emotional support. PMID:20466966
Model of community emergence in weighted social networks
NASA Astrophysics Data System (ADS)
Kumpula, J. M.; Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K.
2009-04-01
Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes.
Making a Connection between Computational Modeling and Educational Research.
ERIC Educational Resources Information Center
Carbonaro, Michael
2003-01-01
Bruner, Goodnow, and Austin's (1956) research on concept development is reexamined from a connectionist perspective. A neural network was constructed which associates positive and negative instances of a concept with corresponding attribute values. Results suggest the simultaneous learning of attributes guided the network in constructing a faster…
Causal networks clarify productivity-richness interrelations, bivariate plots do not
Grace, James B.; Adler, Peter B.; Harpole, W. Stanley; Borer, Elizabeth T.; Seabloom, Eric W.
2014-01-01
We urge ecologists to consider productivity–richness relationships through the lens of causal networks to advance our understanding beyond bivariate analysis. Further, we emphasize that models based on a causal network conceptualization can also provide more meaningful guidance for conservation management than can a bivariate perspective. Measuring only two variables does not permit the evaluation of complex ideas nor resolve debates about underlying mechanisms.
Spectrum Sharing Based on a Bertrand Game in Cognitive Radio Sensor Networks
Zeng, Biqing; Zhang, Chi; Hu, Pianpian; Wang, Shengyu
2017-01-01
In the study of power control and allocation based on pricing, the utility of secondary users is usually studied from the perspective of the signal to noise ratio. The study of secondary user utility from the perspective of communication demand can not only promote the secondary users to meet the maximum communication needs, but also to maximize the utilization of spectrum resources, however, research in this area is lacking, so from the viewpoint of meeting the demand of network communication, this paper designs a two stage model to solve spectrum leasing and allocation problem in cognitive radio sensor networks (CRSNs). In the first stage, the secondary base station collects the secondary network communication requirements, and rents spectrum resources from several primary base stations using the Bertrand game to model the transaction behavior of the primary base station and secondary base station. The second stage, the subcarriers and power allocation problem of secondary base stations is defined as a nonlinear programming problem to be solved based on Nash bargaining. The simulation results show that the proposed model can satisfy the communication requirements of each user in a fair and efficient way compared to other spectrum sharing schemes. PMID:28067850
Strategy on energy saving reconstruction of distribution networks based on life cycle cost
NASA Astrophysics Data System (ADS)
Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng
2017-08-01
Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.
Wireless Networks under a Backoff Attack: A Game Theoretical Perspective.
Parras, Juan; Zazo, Santiago
2018-01-30
We study a wireless sensor network using CSMA/CA in the MAC layer under a backoff attack: some of the sensors of the network are malicious and deviate from the defined contention mechanism. We use Bianchi's network model to study the impact of the malicious sensors on the total network throughput, showing that it causes the throughput to be unfairly distributed among sensors. We model this conflict using game theory tools, where each sensor is a player. We obtain analytical solutions and propose an algorithm, based on Regret Matching, to learn the equilibrium of the game with an arbitrary number of players. Our approach is validated via simulations, showing that our theoretical predictions adjust to reality.
Towards a Multiscale Approach to Cybersecurity Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie A.; Hui, Peter SY; Choudhury, Sutanay
2013-11-12
We propose a multiscale approach to modeling cyber networks, with the goal of capturing a view of the network and overall situational awareness with respect to a few key properties--- connectivity, distance, and centrality--- for a system under an active attack. We focus on theoretical and algorithmic foundations of multiscale graphs, coming from an algorithmic perspective, with the goal of modeling cyber system defense as a specific use case scenario. We first define a notion of \\emph{multiscale} graphs, in contrast with their well-studied single-scale counterparts. We develop multiscale analogs of paths and distance metrics. As a simple, motivating example ofmore » a common metric, we present a multiscale analog of the all-pairs shortest-path problem, along with a multiscale analog of a well-known algorithm which solves it. From a cyber defense perspective, this metric might be used to model the distance from an attacker's position in the network to a sensitive machine. In addition, we investigate probabilistic models of connectivity. These models exploit the hierarchy to quantify the likelihood that sensitive targets might be reachable from compromised nodes. We believe that our novel multiscale approach to modeling cyber-physical systems will advance several aspects of cyber defense, specifically allowing for a more efficient and agile approach to defending these systems.« less
Hardening Software Defined Networks
2014-07-01
networks [2, 35] and electrical systems [28, 37, 25]. Effects of cascading have also been modeled in the study of communication networks such as the AS...is necessary to examine both potential failures of the system , and the risks inherent in success. A true end-to-end perspective includes the complete... potential herd immunity) or only local benefit. Club goods theories provide a strong theoretical foundation for determining the importance and risks of
Friendship Dissolution Within Social Networks Modeled Through Multilevel Event History Analysis
Dean, Danielle O.; Bauer, Daniel J.; Prinstein, Mitchell J.
2018-01-01
A social network perspective can bring important insight into the processes that shape human behavior. Longitudinal social network data, measuring relations between individuals over time, has become increasingly common—as have the methods available to analyze such data. A friendship duration model utilizing discrete-time multilevel survival analysis with a multiple membership random effect structure is developed and applied here to study the processes leading to undirected friendship dissolution within a larger social network. While the modeling framework is introduced in terms of understanding friendship dissolution, it can be used to understand microlevel dynamics of a social network more generally. These models can be fit with standard generalized linear mixed-model software, after transforming the data to a pair-period data set. An empirical example highlights how the model can be applied to understand the processes leading to friendship dissolution between high school students, and a simulation study is used to test the use of the modeling framework under representative conditions that would be found in social network data. Advantages of the modeling framework are highlighted, and potential limitations and future directions are discussed. PMID:28463022
Haueis, Philipp; Slaby, Jan
2017-01-01
The term "connectome" is commonly taken to describe a complete map of neural connections in a nervous system of a given species. This chapter provides a critical perspective on the role of connectomes in neuroscientific practice and asks how the connectomic approach fits into a larger context in which network thinking permeates technology, infrastructure, social life, and the economy. In the first part of this chapter, we argue that, seen from the perspective of ongoing research, the notion of connectomes as "complete descriptions" is misguided. Our argument combines Rachel Ankeny's analysis of neuroanatomical wiring diagrams as "descriptive models" with Hans-Jörg Rheinberger's notion of "epistemic objects," i.e., targets of research that are still partially unknown. Combining these aspects we conclude that connectomes are constitutively epistemic objects: there just is no way to turn them into permanent and complete technical standards because the possibilities to map connection properties under different modeling assumptions are potentially inexhaustible. In the second part of the chapter, we use this understanding of connectomes as constitutively epistemic objects in order to critically assess the historical and political dimensions of current neuroscientific research. We argue that connectomics shows how the notion of the "brain as a network" has become the dominant metaphor of contemporary brain research. We further point out that this metaphor shares (potentially problematic) affinities to the form of contemporary "network societies." We close by pointing out how the relation between connectomes and networks in society could be used in a more fruitful manner. © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahmanita, E.; Widyaningrum, V. T.; Kustiyahningsih, Y.; Purnama, J.
2018-04-01
SMEs have a very important role in the development of the economy in Indonesia. SMEs assist the government in terms of creating new jobs and can support household income. The number of SMEs in Madura and the number of measurement indicators in the SME mapping so that it requires a method.This research uses Fuzzy Analytic Network Process (FANP) method for performance measurement SME. The FANP method can handle data that contains uncertainty. There is consistency index in determining decisions. Performance measurement in this study is based on a perspective of the Balanced Scorecard. This research approach integrated internal business perspective, learning, and growth perspective and fuzzy Analytic Network Process (FANP). The results of this research areframework a priority weighting of assessment indicators SME.
A Risk Stratification Model for Lung Cancer Based on Gene Coexpression Network and Deep Learning
2018-01-01
Risk stratification model for lung cancer with gene expression profile is of great interest. Instead of previous models based on individual prognostic genes, we aimed to develop a novel system-level risk stratification model for lung adenocarcinoma based on gene coexpression network. Using multiple microarray, gene coexpression network analysis was performed to identify survival-related networks. A deep learning based risk stratification model was constructed with representative genes of these networks. The model was validated in two test sets. Survival analysis was performed using the output of the model to evaluate whether it could predict patients' survival independent of clinicopathological variables. Five networks were significantly associated with patients' survival. Considering prognostic significance and representativeness, genes of the two survival-related networks were selected for input of the model. The output of the model was significantly associated with patients' survival in two test sets and training set (p < 0.00001, p < 0.0001 and p = 0.02 for training and test sets 1 and 2, resp.). In multivariate analyses, the model was associated with patients' prognosis independent of other clinicopathological features. Our study presents a new perspective on incorporating gene coexpression networks into the gene expression signature and clinical application of deep learning in genomic data science for prognosis prediction. PMID:29581968
[Design of a communicative model from a social perspective oriented toward physical activity].
Prieto-Rodríguez, Adriana; Moreno-Angarita, Marisol; Cardozo-Vásquez, Yency S
2006-12-01
A communication model was designed and put into practice, in the form of a Network throughout three regions in Colombia; Bogotá, Antioquia and Quindío. Based on a macro-intentional model, this network was aimed at strengthening understanding around the subject of physical activity among those people affected by the issue, from a multidimensional perspective. The test population was defined and working groups were formed around three strategies: social production, transmission and democratization, during a three-month period. RESULTS Messages were developed based around the ideas of the community producers themselves; the initial concepts were widened to include the body, self care, physical activity and health. Communication models related to health, aimed at developing personal skills including the ability to communicate and build shared experience, can be assimilated and incorporated into broadcasts on health issues. This model serves as a communication strategy which strengthens the building of shared broadcasts on health issues. This kind of focus requires the development of local activity and capacity-building within the community.
A Complex Network Perspective on Clinical Science
Hofmann, Stefan G.; Curtiss, Joshua; McNally, Richard J.
2016-01-01
Contemporary classification systems for mental disorders assume that abnormal behaviors are expressions of latent disease entities. An alternative to the latent disease model is the complex network approach. Instead of assuming that symptoms arise from an underlying disease entity, the complex network approach holds that disorders exist as systems of interrelated elements of a network. This approach also provides a framework for the understanding of therapeutic change. Depending on the structure of the network, change can occur abruptly once the network reaches a critical threshold (the tipping point). Homogeneous and highly connected networks often recover more slowly from local perturbations when the network approaches the tipping point, allowing for the possibility to predict treatment change, relapse, and recovery. In this article we discuss the complex network approach as an alternative to the latent disease model, and we discuss its implications for classification, therapy, relapse, and recovery. PMID:27694457
Robustness of networks with assortative dependence groups
NASA Astrophysics Data System (ADS)
Wang, Hui; Li, Ming; Deng, Lin; Wang, Bing-Hong
2018-07-01
Assortativity is one of the important characteristics in real networks. To study the effects of this characteristic on the robustness of networks, we propose a percolation model on networks with assortative dependence group. The assortativity in this model means that the nodes with the same or similar degrees form dependence groups, for which one node fails, other nodes in the same group are very likely to fail. We find that the assortativity makes the nodes with large degrees easier to survive from the cascading failure. In this way, such networks are more robust than that with random dependence group, which also proves the assortative network is robust in another perspective. Furthermore, we also present exact solutions to the size of the giant component and the critical point, which are in agreement with the simulation results well.
Wireless Networks under a Backoff Attack: A Game Theoretical Perspective
Zazo, Santiago
2018-01-01
We study a wireless sensor network using CSMA/CA in the MAC layer under a backoff attack: some of the sensors of the network are malicious and deviate from the defined contention mechanism. We use Bianchi’s network model to study the impact of the malicious sensors on the total network throughput, showing that it causes the throughput to be unfairly distributed among sensors. We model this conflict using game theory tools, where each sensor is a player. We obtain analytical solutions and propose an algorithm, based on Regret Matching, to learn the equilibrium of the game with an arbitrary number of players. Our approach is validated via simulations, showing that our theoretical predictions adjust to reality. PMID:29385752
Data-driven integration of genome-scale regulatory and metabolic network models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Data-driven integration of genome-scale regulatory and metabolic network models
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.; ...
2015-05-05
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Mixed Transportation Network Design under a Sustainable Development Perspective
Qin, Jin; Ni, Ling-lin; Shi, Feng
2013-01-01
A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%. PMID:23476142
Mixed transportation network design under a sustainable development perspective.
Qin, Jin; Ni, Ling-lin; Shi, Feng
2013-01-01
A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%.
Complex Network for a Crisis Contagion on AN Interbank System
NASA Astrophysics Data System (ADS)
Tirado, Mariano
2012-09-01
The main focus of this research is the contagion of a financial crisis on an interbank debt network. In order to simulate the crisis propagation a weighted community complex network based on growth strategy has been created. The contagion is described by a new way of disease propagation perspective based on the concept of a financial virus. The model reproduces the existence of TBTF banks and shows the impact that an initial TBTF bank crash produces in the interbank network depending on the magnitude of the initial crash and on the resistance that the network offers against the contagion propagation.
Network Virtualization - Opportunities and Challenges for Operators
NASA Astrophysics Data System (ADS)
Carapinha, Jorge; Feil, Peter; Weissmann, Paul; Thorsteinsson, Saemundur E.; Etemoğlu, Çağrı; Ingþórsson, Ólafur; Çiftçi, Selami; Melo, Márcio
In the last few years, the concept of network virtualization has gained a lot of attention both from industry and research projects. This paper evaluates the potential of network virtualization from an operator's perspective, with the short-term goal of optimizing service delivery and rollout, and on a longer term as an enabler of technology integration and migration. Based on possible scenarios for implementing and using network virtualization, new business roles and models are examined. Open issues and topics for further evaluation are identified. In summary, the objective is to identify the challenges but also new opportunities for telecom operators raised by network virtualization.
Hybrid modeling and empirical analysis of automobile supply chain network
NASA Astrophysics Data System (ADS)
Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying
2017-05-01
Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.
Gray matter alterations in chronic pain: A network-oriented meta-analytic approach
Cauda, Franco; Palermo, Sara; Costa, Tommaso; Torta, Riccardo; Duca, Sergio; Vercelli, Ugo; Geminiani, Giuliano; Torta, Diana M.E.
2014-01-01
Several studies have attempted to characterize morphological brain changes due to chronic pain. Although it has repeatedly been suggested that longstanding pain induces gray matter modifications, there is still some controversy surrounding the direction of the change (increase or decrease in gray matter) and the role of psychological and psychiatric comorbidities. In this study, we propose a novel, network-oriented, meta-analytic approach to characterize morphological changes in chronic pain. We used network decomposition to investigate whether different kinds of chronic pain are associated with a common or specific set of altered networks. Representational similarity techniques, network decomposition and model-based clustering were employed: i) to verify the presence of a core set of brain areas commonly modified by chronic pain; ii) to investigate the involvement of these areas in a large-scale network perspective; iii) to study the relationship between altered networks and; iv) to find out whether chronic pain targets clusters of areas. Our results showed that chronic pain causes both core and pathology-specific gray matter alterations in large-scale networks. Common alterations were observed in the prefrontal regions, in the anterior insula, cingulate cortex, basal ganglia, thalamus, periaqueductal gray, post- and pre-central gyri and inferior parietal lobule. We observed that the salience and attentional networks were targeted in a very similar way by different chronic pain pathologies. Conversely, alterations in the sensorimotor and attention circuits were differentially targeted by chronic pain pathologies. Moreover, model-based clustering revealed that chronic pain, in line with some neurodegenerative diseases, selectively targets some large-scale brain networks. Altogether these findings indicate that chronic pain can be better conceived and studied in a network perspective. PMID:24936419
Spatial price dynamics: From complex network perspective
NASA Astrophysics Data System (ADS)
Li, Y. L.; Bi, J. T.; Sun, H. J.
2008-10-01
The spatial price problem means that if the supply price plus the transportation cost is less than the demand price, there exists a trade. Thus, after an amount of exchange, the demand price will decrease. This process is continuous until an equilibrium state is obtained. However, how the trade network structure affects this process has received little attention. In this paper, we give a evolving model to describe the levels of spatial price on different complex network structures. The simulation results show that the network with shorter path length is sensitive to the variation of prices.
Modeling microcirculatory blood flow: current state and future perspectives.
Gompper, Gerhard; Fedosov, Dmitry A
2016-01-01
Microvascular blood flow determines a number of important physiological processes of an organism in health and disease. Therefore, a detailed understanding of microvascular blood flow would significantly advance biophysical and biomedical research and its applications. Current developments in modeling of microcirculatory blood flow already allow to go beyond available experimental measurements and have a large potential to elucidate blood flow behavior in normal and diseased microvascular networks. There exist detailed models of blood flow on a single cell level as well as simplified models of the flow through microcirculatory networks, which are reviewed and discussed here. The combination of these models provides promising prospects for better understanding of blood flow behavior and transport properties locally as well as globally within large microvascular networks. © 2015 Wiley Periodicals, Inc.
A Network-Individual-Resource Model for HIV Prevention
Johnson, Blair T.; Redding, Colleen A.; DiClemente, Ralph J.; Mustanski, Brian S.; Dodge, Brian M.; Sheeran, Paschal; Warren, Michelle R.; Zimmerman, Rick S.; Fisher, William A.; Conner, Mark T.; Carey, Michael P.; Fisher, Jeffrey D.; Stall, Ronald D.; Fishbein, Martin
2014-01-01
HIV is transmitted through dyadic exchanges of individuals linked in transitory or permanent networks of varying sizes. To optimize prevention efficacy, a complementary theoretical perspective that bridges key individual level elements with important network elements can be a foundation for developing and implementing HIV interventions with outcomes that are more sustainable over time and have greater dissemination potential. Toward that end, we introduce a Network-Individual-Resource (NIR) model for HIV prevention that recognizes how exchanges of resources between individuals and their networks underlies and sustains HIV-risk behaviors. Individual behavior change for HIV prevention, then, may be dependent on increasing the supportiveness of that individual's relevant networks for such change. Among other implications, an NIR model predicts that the success of prevention efforts depends on whether the prevention efforts (1) prompt behavior changes that can be sustained by the resources the individual or their networks possess; (2) meet individual and network needs and are consistent with the individual's current situation/developmental stage; (3) are trusted and valued; and (4) target high HIV-prevalence networks. PMID:20862606
ERIC Educational Resources Information Center
Arnold, Nike; Paulus, Trena
2010-01-01
With social networking sites playing an increasingly important role in today's society, educators are exploring how they can be used as a teaching and learning tool. This article reports the findings of a qualitative case study about the integration of "Ning" into a blended course. The study draws on the perspectives of the students, the…
Interplay of ICP and IXP over the Internet with power-law features
NASA Astrophysics Data System (ADS)
Fan, Zhongyan; Tang, Wallace Kit-Sang
The Internet is the largest artificial network consisting of billions of IP devices, managed by tens of thousands of autonomous systems (ASes). Due to its importance, the Internet has received much attention and its topological features, mainly in AS-level, have been widely explored from the complex network perspective. However, most of the previous studies assume a homogeneous model in which nodes are indistinguishable in nature. It may be good for a general study of topological structure, but unfortunately it fails to reflect the functionality. The Internet ecology is in fact heterogeneous and highly complex. It consists of various elements such as Internet Exchange Points (IXPs), Internet Content Providers (ICPs), and normal Autonomous System (ASes), realizing different roles in the Internet. In this paper, we propose level-structured network models for investigating how ICP performs under the AS-topology with power-law features and how IXP enhances its performance from a complex network perspective. Based on real data, our results reveal that the power-law nature of the Internet facilitates content delivery not only in efficiency but also in path redundancy. Moreover, the proposed multi-level framework is able to clearly illustrate the significant benefits gained by ICP from IXP peerings.
International migration network: Topology and modeling
NASA Astrophysics Data System (ADS)
Fagiolo, Giorgio; Mastrorillo, Marina
2013-07-01
This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.
International migration network: topology and modeling.
Fagiolo, Giorgio; Mastrorillo, Marina
2013-07-01
This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.
Advances on plant-pathogen interactions from molecular toward systems biology perspectives.
Peyraud, Rémi; Dubiella, Ullrich; Barbacci, Adelin; Genin, Stéphane; Raffaele, Sylvain; Roby, Dominique
2017-05-01
In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future. © 2016 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2018-03-01
I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.
Realistic modeling of neurons and networks: towards brain simulation.
D'Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca
2013-01-01
Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field.
Realistic modeling of neurons and networks: towards brain simulation
D’Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca
Summary Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field. PMID:24139652
Agerskov, Claus
2016-04-01
A neural network model is presented of novelty detection in the CA1 subdomain of the hippocampal formation from the perspective of information flow. This computational model is restricted on several levels by both anatomical information about hippocampal circuitry and behavioral data from studies done in rats. Several studies report that the CA1 area broadcasts a generalized novelty signal in response to changes in the environment. Using the neural engineering framework developed by Eliasmith et al., a spiking neural network architecture is created that is able to compare high-dimensional vectors, symbolizing semantic information, according to the semantic pointer hypothesis. This model then computes the similarity between the vectors, as both direct inputs and a recalled memory from a long-term memory network by performing the dot-product operation in a novelty neural network architecture. The developed CA1 model agrees with available neuroanatomical data, as well as the presented behavioral data, and so it is a biologically realistic model of novelty detection in the hippocampus, which can provide a feasible explanation for experimentally observed dynamics.
Framework for cascade size calculations on random networks
NASA Astrophysics Data System (ADS)
Burkholz, Rebekka; Schweitzer, Frank
2018-04-01
We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.
Analyzing the causation of a railway accident based on a complex network
NASA Astrophysics Data System (ADS)
Ma, Xin; Li, Ke-Ping; Luo, Zi-Yan; Zhou, Jin
2014-02-01
In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the “7.23” China—Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents.
Network-based Modeling of Mesoscale Catchments - The Hydrology Perspective of Glowa-danube
NASA Astrophysics Data System (ADS)
Ludwig, R.; Escher-Vetter, H.; Hennicker, R.; Mauser, W.; Niemeyer, S.; Reichstein, M.; Tenhunen, J.
Within the GLOWA initiative of the German Ministry for Research and Educa- tion (BMBF), the project GLOWA-Danube is funded to establish a transdisciplinary network-based decision support tool for water related issues in the Upper Danube wa- tershed. It aims to develop and validate integration techniques, integrated models and integrated monitoring procedures and to implement them in the network-based De- cision Support System DANUBIA. An accurate description of processes involved in energy, water and matter fluxes and turnovers requires an intense collaboration and exchange of water related expertise of different scientific disciplines. DANUBIA is conceived as a distributed expert network and is developed on the basis of re-useable, refineable, and documented sub-models. In order to synthesize a common understand- ing between the project partners, a standardized notation of parameters and functions and a platform-independent structure of computational methods and interfaces has been established using the Unified Modeling Language UML. DANUBIA is object- oriented, spatially distributed and raster-based at its core. It applies the concept of "proxels" (Process Pixel) as its basic object, which has different dimensions depend- ing on the viewing scale and connects to its environment through fluxes. The presented study excerpts the hydrological view point of GLOWA-Danube, its approach of model coupling and network based communication (using the Remote Method Invocation RMI), the object-oriented technology to simulate physical processes and interactions at the land surface and the methodology to treat the issue of spatial and temporal scal- ing in large, heterogeneous catchments. The mechanisms applied to communicate data and model parameters across the typical discipline borders will be demonstrated from the perspective of a land-surface object, which comprises the capabilities of interde- pendent expert models for snowmelt, soil water movement, runoff formation, plant growth and radiation balance in a distributed JAVA-based modeling environment. The coupling to the adjacent physical objects of atmosphere, groundwater and river net- work will also be addressed.
Hamilton, J. Paul; Chen, Michael C.; Gotlib, Ian H.
2012-01-01
Recent research detailing the intrinsic functional organization of the brain provides a unique and useful framework to gain a better understanding of the neural bases of Major Depressive Disorder (MDD). In this review, we first present a brief history of neuroimaging research that has increased our understanding of the functional macro-architecture of the brain. From this macro-architectural perspective, we examine the extant body of functional neuroimaging research assessing MDD with a specific emphasis on the contributions of default-mode, executive, and salience networks in this debilitating disorder. Next, we describe recent investigations conducted in our laboratory in which we explicitly adopt a neural-systems perspective in examining the relations among these networks in MDD. Finally, we offer directions for future research that we believe will facilitate the development of more detailed and integrative models of neural dysfunction in depression. PMID:23477309
Review On Applications Of Neural Network To Computer Vision
NASA Astrophysics Data System (ADS)
Li, Wei; Nasrabadi, Nasser M.
1989-03-01
Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.
Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective.
Chen, Chen; Tong, Hanghang; Xie, Lei; Ying, Lei; He, Qing
2017-08-01
The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model-multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm Fascinate that can reveal unobserved dependencies with linear complexity. Moreover, we derive Fascinate-ZERO, an online variant of Fascinate that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.
NASA Astrophysics Data System (ADS)
Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen
2015-11-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.
Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio
2014-06-30
Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems.
Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio
2014-01-01
Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems. PMID:24976386
A Multilayer perspective for the analysis of urban transportation systems
Aleta, Alberto; Meloni, Sandro; Moreno, Yamir
2017-01-01
Public urban mobility systems are composed by several transportation modes connected together. Most studies in urban mobility and planning often ignore the multi-layer nature of transportation systems considering only aggregated versions of this complex scenario. In this work we present a model for the representation of the transportation system of an entire city as a multiplex network. Using two different perspectives, one in which each line is a layer and one in which lines of the same transportation mode are grouped together, we study the interconnected structure of 9 different cities in Europe raging from small towns to mega-cities like London and Berlin highlighting their vulnerabilities and possible improvements. Finally, for the city of Zaragoza in Spain, we also consider data about service schedule and waiting times, which allow us to create a simple yet realistic model for urban mobility able to reproduce real-world facts and to test for network improvements. PMID:28295015
A Multilayer perspective for the analysis of urban transportation systems.
Aleta, Alberto; Meloni, Sandro; Moreno, Yamir
2017-03-15
Public urban mobility systems are composed by several transportation modes connected together. Most studies in urban mobility and planning often ignore the multi-layer nature of transportation systems considering only aggregated versions of this complex scenario. In this work we present a model for the representation of the transportation system of an entire city as a multiplex network. Using two different perspectives, one in which each line is a layer and one in which lines of the same transportation mode are grouped together, we study the interconnected structure of 9 different cities in Europe raging from small towns to mega-cities like London and Berlin highlighting their vulnerabilities and possible improvements. Finally, for the city of Zaragoza in Spain, we also consider data about service schedule and waiting times, which allow us to create a simple yet realistic model for urban mobility able to reproduce real-world facts and to test for network improvements.
Sparse dictionary learning of resting state fMRI networks.
Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C
2012-07-02
Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.
The game of go as a complex network
NASA Astrophysics Data System (ADS)
Georgeot, B.; Giraud, O.
2012-03-01
We study the game of go from a complex network perspective. We construct a directed network using a suitable definition of tactical moves including local patterns, and study this network for different datasets of professional and amateur games. The move distribution follows Zipf's law and the network is scale free, with statistical peculiarities different from other real directed networks, such as, e.g., the World Wide Web. These specificities reflect in the outcome of ranking algorithms applied to it. The fine study of the eigenvalues and eigenvectors of matrices used by the ranking algorithms singles out certain strategic situations. Our results should pave the way to a better modelization of board games and other types of human strategic scheming.
Optimal Micropatterns in 2D Transport Networks and Their Relation to Image Inpainting
NASA Astrophysics Data System (ADS)
Brancolini, Alessio; Rossmanith, Carolin; Wirth, Benedikt
2018-04-01
We consider two different variational models of transport networks: the so-called branched transport problem and the urban planning problem. Based on a novel relation to Mumford-Shah image inpainting and techniques developed in that field, we show for a two-dimensional situation that both highly non-convex network optimization tasks can be transformed into a convex variational problem, which may be very useful from analytical and numerical perspectives. As applications of the convex formulation, we use it to perform numerical simulations (to our knowledge this is the first numerical treatment of urban planning), and we prove a lower bound for the network cost that matches a known upper bound (in terms of how the cost scales in the model parameters) which helps better understand optimal networks and their minimal costs.
System architecture for an advanced Canadian communications satellite demonstration mission
NASA Astrophysics Data System (ADS)
Takats, P.; Irani, S.
1992-03-01
An advanced communications satellite system that provides single hop interconnectivity and interworking for both a personal communications network and an advanced private business network in the Ka and Ku bands respectively, is presented. An overall network perspective is discussed that studies the interface of such an advanced satellite communication system to the terrestrial network in the context of the Open Systems Interconnection model. It is shown that this proposed satellite system can dynamically establish links and efficiently allocate the satellite resource amongst the user terminal population for a mix of data and voice traffic.
NASA Astrophysics Data System (ADS)
Chen, Shaopei; Tan, Jianjun; Ray, C.; Claramunt, C.; Sun, Qinqin
2008-10-01
Diversity is one of the main characteristics of transportation data collected from multiple sources or formats, which can be extremely complex and disparate. Moreover, these multimodal transportation data are usually characterised by spatial and temporal properties. Multimodal transportation network data modelling involves both an engineering and research domain that has attracted the design of a number of spatio-temporal data models in the geographic information system (GIS). However, the application of these specific models to multimodal transportation network is still a challenging task. This research addresses this challenge from both integrated multimodal data organization and object-oriented modelling perspectives, that is, how a complex urban transportation network should be organized, represented and modeled appropriately when considering a multimodal point of view, and using object-oriented modelling method. We proposed an integrated GIS-based data model for multimodal urban transportation network that lays a foundation to enhance the multimodal transportation network analysis and management. This modelling method organizes and integrates multimodal transit network data, and supports multiple representations for spatio-temporal objects and relationship as both visual and graphic views. The data model is expressed by using a spatio-temporal object-oriented modelling method, i.e., the unified modelling language (UML) extended to spatial and temporal plug-in for visual languages (PVLs), which provides an essential support to the spatio-temporal data modelling for transportation GIS.
The architecture of dynamic reservoir in the echo state network
NASA Astrophysics Data System (ADS)
Cui, Hongyan; Liu, Xiang; Li, Lixiang
2012-09-01
Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.
Chaos in neurons and its application: perspective of chaos engineering.
Hirata, Yoshito; Oku, Makito; Aihara, Kazuyuki
2012-12-01
We review our recent work on chaos in neurons and its application to neural networks from perspective of chaos engineering. Especially, we analyze a dataset of a squid giant axon by newly combining our previous work of identifying Devaney's chaos with surrogate data analysis, and show that an axon can behave chaotically. Based on this knowledge, we use a chaotic neuron model to investigate possible information processing in the brain.
Scale-Free Networks and Commercial Air Carrier Transportation in the United States
NASA Technical Reports Server (NTRS)
Conway, Sheila R.
2004-01-01
Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.
Interplanetary Supply Chain Risk Management
NASA Technical Reports Server (NTRS)
Galluzzi, Michael C.
2018-01-01
Emphasis on KSC ground processing operations, reduced spares up-mass lift requirements and campaign-level flexible path perspective for space systems support as Regolith-based ISM is achieved by; Network modeling for sequencing space logistics and in-space logistics nodal positioning to include feedstock. Economic modeling to assess ISM 3D printing adaption and supply chain risk.
ERIC Educational Resources Information Center
Smangs, Mattias
2010-01-01
This article explores the plausibility of the conflicting theoretical assumptions underlying the main criminological perspectives on juvenile delinquents, their peer relations and social skills: the social ability model, represented by Sutherland's theory of differential associations, and the social disability model, represented by Hirschi's…
The stability of the international oil trade network from short-term and long-term perspectives
NASA Astrophysics Data System (ADS)
Sun, Qingru; Gao, Xiangyun; Zhong, Weiqiong; Liu, Nairong
2017-09-01
To examine the stability of the international oil trade network and explore the influence of countries and trade relationships on the trade stability, we construct weighted and unweighted international oil trade networks based on complex network theory using oil trading data between countries from 1996 to 2014. We analyze the stability of international oil trade network (IOTN) from short-term and long-term aspects. From the short-term perspective, we find that the trade volumes play an important role on the stability. Moreover, the weighted IOTN is stable; however, the unweighted networks can better reflect the actual evolution of IOTN. From the long-term perspective, we identify trade relationships that are maintained during the whole sample period to reveal the situation of the whole international oil trade. We provide a way to quantitatively measure the stability of complex network from short-term and long-term perspectives, which can be applied to measure and analyze trade stability of other goods or services.
ERIC Educational Resources Information Center
Cao, Yu
2017-01-01
With the rapid development of online communities of practice (CoPs), how to identify key knowledge spreader (KKS) in online CoPs has grown up to be a hot issue. In this paper, we construct a network with variable clustering based on Holme-Kim model to represent CoPs, a simple dynamics of knowledge sharing is considered. Kendall's Tau coefficient…
Engineering Devices to Treat Epilepsy: A Clinical Perspective
2001-10-25
Research over the next three decades reinforced the idea that seizures likely spread through discrete, functional neuronal networks [2]. Over the last...15 years, researchers have demonstrated that it is possible to modulate the activity of functional neuronal networks in animal models of epilepsy by...hypothalamus [5], mamillary bodies [6], cerebellum [7], basal ganglia [8], locus ceruleus [9] and the substantia nigra [10]. At the same time some
NASA Astrophysics Data System (ADS)
Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin
As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.
A network dynamics approach to chemical reaction networks
NASA Astrophysics Data System (ADS)
van der Schaft, A. J.; Rao, S.; Jayawardhana, B.
2016-04-01
A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.
NASA Astrophysics Data System (ADS)
Baatz, Roland; Sullivan, Pamela L.; Li, Li; Weintraub, Samantha R.; Loescher, Henry W.; Mirtl, Michael; Groffman, Peter M.; Wall, Diana H.; Young, Michael; White, Tim; Wen, Hang; Zacharias, Steffen; Kühn, Ingolf; Tang, Jianwu; Gaillardet, Jérôme; Braud, Isabelle; Flores, Alejandro N.; Kumar, Praveen; Lin, Henry; Ghezzehei, Teamrat; Jones, Julia; Gholz, Henry L.; Vereecken, Harry; Van Looy, Kris
2018-05-01
Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.
The Changing Nature of Suicide Attacks: A Social Network Perspective
ERIC Educational Resources Information Center
Pedahzur, Ami; Perliger, Arie
2006-01-01
To comprehend the developments underlying the suicide attacks of recent years, we suggest that the organizational approach, which until recently was used to explain this phenomenon, should be complemented with a social network perspective. By employing a social network analysis of Palestinian suicide networks, the authors found that, in contrast…
Measuring Road Network Vulnerability with Sensitivity Analysis
Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin
2017-01-01
This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706
Optimization of cascading failure on complex network based on NNIA
NASA Astrophysics Data System (ADS)
Zhu, Qian; Zhu, Zhiliang; Qi, Yi; Yu, Hai; Xu, Yanjie
2018-07-01
Recently, the robustness of networks under cascading failure has attracted extensive attention. Different from previous studies, we concentrate on how to improve the robustness of the networks from the perspective of intelligent optimization. We establish two multi-objective optimization models that comprehensively consider the operational cost of the edges in the networks and the robustness of the networks. The NNIA (Non-dominated Neighbor Immune Algorithm) is applied to solve the optimization models. We finished simulations of the Barabási-Albert (BA) network and Erdös-Rényi (ER) network. In the solutions, we find the edges that can facilitate the propagation of cascading failure and the edges that can suppress the propagation of cascading failure. From the conclusions, we take optimal protection measures to weaken the damage caused by cascading failures. We also consider actual situations of operational cost feasibility of the edges. People can make a more practical choice based on the operational cost. Our work will be helpful in the design of highly robust networks or improvement of the robustness of networks in the future.
mIoT Slice for 5G Systems: Design and Performance Evaluation
Condoluci, Massimo; An, Xueli
2018-01-01
Network slicing is a key feature of the upcoming 5G networks allowing the design and deployment of customized communication systems to integrate services provided by vertical industries. In this context, massive Internet of Things (mIoT) is regarded as a compelling use case, both for its relevance from business perspective, and for the technical challenges it poses to network design. With their envisaged massive deployment of devices requiring sporadic connectivity and small data transmission, yet Quality of Service (QoS) constrained, mIoT services will need an ad-hoc end-to-end (E2E) slice, i.e., both access and core network with enhanced Control and User planes (CP/UP). After revising the key requirements of mIoT and identifying major shortcomings of previous generation networks, this paper presents and evaluates an E2E mIoT network slicing solution, featuring a new connectivity model overcoming the load limitations of legacy systems. Unique in its kind, this paper addresses mIoT requirements from an end-to-end perspective highlighting and solving, unlike most prior related work, the connectivity challenges posed to the core network. Results demonstrate that the proposed solution, reducing CP signaling and optimizing UP resource utilization, is a suitable candidate for next generation network standards to efficiently handle massive device deployment. PMID:29466311
mIoT Slice for 5G Systems: Design and Performance Evaluation.
Trivisonno, Riccardo; Condoluci, Massimo; An, Xueli; Mahmoodi, Toktam
2018-02-21
Network slicing is a key feature of the upcoming 5G networks allowing the design and deployment of customized communication systems to integrate services provided by vertical industries. In this context, massive Internet of Things (mIoT) is regarded as a compelling use case, both for its relevance from business perspective, and for the technical challenges it poses to network design. With their envisaged massive deployment of devices requiring sporadic connectivity and small data transmission, yet Quality of Service (QoS) constrained, mIoT services will need an ad-hoc end-to-end (E2E) slice, i.e., both access and core network with enhanced Control and User planes (CP/UP). After revising the key requirements of mIoT and identifying major shortcomings of previous generation networks, this paper presents and evaluates an E2E mIoT network slicing solution, featuring a new connectivity model overcoming the load limitations of legacy systems. Unique in its kind, this paper addresses mIoT requirements from an end-to-end perspective highlighting and solving, unlike most prior related work, the connectivity challenges posed to the core network. Results demonstrate that the proposed solution, reducing CP signaling and optimizing UP resource utilization, is a suitable candidate for next generation network standards to efficiently handle massive device deployment.
Cellular-based modeling of oscillatory dynamics in brain networks.
Skinner, Frances K
2012-08-01
Oscillatory, population activities have long been known to occur in our brains during different behavioral states. We know that many different cell types exist and that they contribute in distinct ways to the generation of these activities. I review recent papers that involve cellular-based models of brain networks, most of which include theta, gamma and sharp wave-ripple activities. To help organize the modeling work, I present it from a perspective of three different types of cellular-based modeling: 'Generic', 'Biophysical' and 'Linking'. Cellular-based modeling is taken to encompass the four features of experiment, model development, theory/analyses, and model usage/computation. The three modeling types are shown to include these features and interactions in different ways. Copyright © 2012 Elsevier Ltd. All rights reserved.
Congestion control for a fair packet delivery in WSN: from a complex system perspective.
Aguirre-Guerrero, Daniela; Marcelín-Jiménez, Ricardo; Rodriguez-Colina, Enrique; Pascoe-Chalke, Michael
2014-01-01
In this work, we propose that packets travelling across a wireless sensor network (WSN) can be seen as the active agents that make up a complex system, just like a bird flock or a fish school, for instance. From this perspective, the tools and models that have been developed to study this kind of systems have been applied. This is in order to create a distributed congestion control based on a set of simple rules programmed at the nodes of the WSN. Our results show that it is possible to adapt the carried traffic to the network capacity, even under stressing conditions. Also, the network performance shows a smooth degradation when the traffic goes beyond a threshold which is settled by the proposed self-organized control. In contrast, without any control, the network collapses before this threshold. The use of the proposed solution provides an effective strategy to address some of the common problems found in WSN deployment by providing a fair packet delivery. In addition, the network congestion is mitigated using adaptive traffic mechanisms based on a satisfaction parameter assessed by each packet which has impact on the global satisfaction of the traffic carried by the WSN.
Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography
Liu, Yaou; Duan, Yunyun; Li, Kuncheng
2015-01-01
The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535
Enabling large-scale viscoelastic calculations via neural network acceleration
NASA Astrophysics Data System (ADS)
Robinson DeVries, P.; Thompson, T. B.; Meade, B. J.
2017-12-01
One of the most significant challenges involved in efforts to understand the effects of repeated earthquake cycle activity are the computational costs of large-scale viscoelastic earthquake cycle models. Deep artificial neural networks (ANNs) can be used to discover new, compact, and accurate computational representations of viscoelastic physics. Once found, these efficient ANN representations may replace computationally intensive viscoelastic codes and accelerate large-scale viscoelastic calculations by more than 50,000%. This magnitude of acceleration enables the modeling of geometrically complex faults over thousands of earthquake cycles across wider ranges of model parameters and at larger spatial and temporal scales than have been previously possible. Perhaps most interestingly from a scientific perspective, ANN representations of viscoelastic physics may lead to basic advances in the understanding of the underlying model phenomenology. We demonstrate the potential of artificial neural networks to illuminate fundamental physical insights with specific examples.
Oscillatory networks of high-level mental alignment: A perspective-taking MEG study.
Seymour, R A; Wang, H; Rippon, G; Kessler, K
2018-08-15
Mentally imagining another's perspective is a high-level social process, reliant on manipulating internal representations of the self in an embodied manner. Recently Wang et al. (2016) showed that theta-band (3-7 Hz) brain oscillations within the right temporo-parietal junction (rTPJ) and brain regions coding for motor/body schema contribute to the process of perspective-taking. Using a similar paradigm, we set out to unravel the extended functional brain network in detail. Increasing the angle between self and other perspective was accompanied by longer reaction times and increases in theta power within rTPJ, right lateral prefrontal cortex (PFC) and right anterior cingulate cortex (ACC). Using Granger-causality, we showed that lateral PFC and ACC exert top-down influence over rTPJ, indicative of executive control processes required for managing conflicts between self and other perspectives. Finally, we quantified patterns of whole-brain phase coupling in relation to the rTPJ. Results suggest that rTPJ increases its theta-band phase synchrony with brain regions involved in mentalizing and regions coding for motor/body schema; whilst decreasing synchrony to visual regions. Implications for neurocognitive models are discussed, and it is proposed that rTPJ acts as a 'hub' to route bottom-up visual information to internal representations of the self during perspective-taking, co-ordinated by theta-band oscillations. Copyright © 2018 Elsevier Inc. All rights reserved.
Competition between Homophily and Information Entropy Maximization in Social Networks
Zhao, Jichang; Liang, Xiao; Xu, Ke
2015-01-01
In social networks, it is conventionally thought that two individuals with more overlapped friends tend to establish a new friendship, which could be stated as homophily breeding new connections. While the recent hypothesis of maximum information entropy is presented as the possible origin of effective navigation in small-world networks. We find there exists a competition between information entropy maximization and homophily in local structure through both theoretical and experimental analysis. This competition suggests that a newly built relationship between two individuals with more common friends would lead to less information entropy gain for them. We demonstrate that in the evolution of the social network, both of the two assumptions coexist. The rule of maximum information entropy produces weak ties in the network, while the law of homophily makes the network highly clustered locally and the individuals would obtain strong and trust ties. A toy model is also presented to demonstrate the competition and evaluate the roles of different rules in the evolution of real networks. Our findings could shed light on the social network modeling from a new perspective. PMID:26334994
Inverse problems in 1D hemodynamics on systemic networks: a sequential approach.
Lombardi, D
2014-02-01
In this work, a sequential approach based on the unscented Kalman filter is applied to solve inverse problems in 1D hemodynamics, on a systemic network. For instance, the arterial stiffness is estimated by exploiting cross-sectional area and mean speed observations in several locations of the arteries. The results are compared with those ones obtained by estimating the pulse wave velocity and the Moens-Korteweg formula. In the last section, a perspective concerning the identification of the terminal models parameters and peripheral circulation (modeled by a Windkessel circuit) is presented. Copyright © 2013 John Wiley & Sons, Ltd.
A new model of the spinal locomotor networks of a salamander and its properties.
Liu, Qiang; Yang, Huizhen; Zhang, Jinxue; Wang, Jingzhuo
2018-05-22
A salamander is an ideal animal for studying the spinal locomotor network mechanism of vertebrates from an evolutionary perspective since it represents the transition from an aquatic to a terrestrial animal. However, little is known about the spinal locomotor network of a salamander. A spinal locomotor network model is a useful tool for exploring the working mechanism of the spinal networks of salamanders. A new spinal locomotor network model for a salamander is built for a three-dimensional (3D) biomechanical model of the salamander using a novel locomotion-controlled neural network model. Based on recent experimental data on the spinal circuitry and observational results of gaits of vertebrates, we assume that different interneuron sets recruited for mediating the frequency of spinal circuits are also related to the generation of different gaits. The spinal locomotor networks of salamanders are divided into low-frequency networks for walking and high-frequency networks for swimming. Additionally, a new topological structure between the body networks and limb networks is built, which only uses the body networks to coordinate the motion of limbs. There are no direct synaptic connections among limb networks. These techniques differ from existing salamander spinal locomotor network models. A simulation is performed and analyzed to validate the properties of the new spinal locomotor networks of salamanders. The simulation results show that the new spinal locomotor networks can generate a forward walking gait, a backward walking gait, a swimming gait, and a turning gait during swimming and walking. These gaits can be switched smoothly by changing external inputs from the brainstem. These properties are consistent with those of a real salamander. However, it is still difficult for the new spinal locomotor networks to generate highly efficient turning during walking, 3D swimming, nonrhythmic movements, and so on. New experimental data are required for further validation.
Transfer of Training: Adding Insight through Social Network Analysis
ERIC Educational Resources Information Center
Van den Bossche, Piet; Segers, Mien
2013-01-01
This article reviews studies which apply a social network perspective to examine transfer of training. The theory behind social networks focuses on the interpersonal mechanisms and social structures that exist among interacting units such as people within an organization. A premise of this perspective is that individual's behaviors and outcomes…
A novel approach for pilot error detection using Dynamic Bayesian Networks.
Saada, Mohamad; Meng, Qinggang; Huang, Tingwen
2014-06-01
In the last decade Dynamic Bayesian Networks (DBNs) have become one type of the most attractive probabilistic modelling framework extensions of Bayesian Networks (BNs) for working under uncertainties from a temporal perspective. Despite this popularity not many researchers have attempted to study the use of these networks in anomaly detection or the implications of data anomalies on the outcome of such models. An abnormal change in the modelled environment's data at a given time, will cause a trailing chain effect on data of all related environment variables in current and consecutive time slices. Albeit this effect fades with time, it still can have an ill effect on the outcome of such models. In this paper we propose an algorithm for pilot error detection, using DBNs as the modelling framework for learning and detecting anomalous data. We base our experiments on the actions of an aircraft pilot, and a flight simulator is created for running the experiments. The proposed anomaly detection algorithm has achieved good results in detecting pilot errors and effects on the whole system.
Community, Collective or Movement? Evaluating Theoretical Perspectives on Network Building
NASA Astrophysics Data System (ADS)
Spitzer, W.
2015-12-01
Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. NNOCCI enables teams of informal science interpreters across the country to serve as "communication strategists" - beyond merely conveying information they can influence public perceptions, given their high level of commitment, knowledge, public trust, social networks, and visitor contact. We provide in-depth training as well as an alumni network for ongoing learning, implementation support, leadership development, and coalition building. Our goals are to achieve a systemic national impact, embed our work within multiple ongoing regional and national climate change education networks, and leave an enduring legacy. What is the most useful theoretical model for conceptualizing the work of the NNOCCI community? This presentation will examine the pros and cons of three perspectives -- community of practice, collective impact, and social movements. The community of practice approach emphasizes use of common tools, support for practice, social learning, and organic development of leadership. A collective impact model focuses on defining common outcomes, aligning activities toward a common goal, structured collaboration. A social movement emphasizes building group identity and creating a sense of group efficacy. This presentation will address how these models compare in terms of their utility in program planning and evaluation, their fit with the unique characteristics of the NNOCCI community, and their relevance to our program goals.
Beyond the Labor Market Paradigm: A Social Network Perspective on Teacher Recruitment and Retention
ERIC Educational Resources Information Center
Baker-Doyle, Kira
2010-01-01
This article identifies limits of the dominant labor market perspective (LMP) in research on teacher recruitment and retention and describes how research that incorporates a social network perspective (SNP) can contribute to the knowledge base and development of teacher education, staffing, and professional development approaches. A discussion of…
Bassett, Danielle S; Sporns, Olaf
2017-01-01
Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system. PMID:28230844
Construction of road network vulnerability evaluation index based on general travel cost
NASA Astrophysics Data System (ADS)
Leng, Jun-qiang; Zhai, Jing; Li, Qian-wen; Zhao, Lin
2018-03-01
With the development of China's economy and the continuous improvement of her urban road network, the vulnerability of the urban road network has attracted increasing attention. Based on general travel cost, this work constructs the vulnerability evaluation index for the urban road network, and evaluates the vulnerability of the urban road network from the perspective of user generalised travel cost. Firstly, the generalised travel cost model is constructed based on vehicle cost, travel time, and traveller comfort. Then, the network efficiency index is selected as an evaluation index of vulnerability: the network efficiency index is composed of the traffic volume and the generalised travel cost, which are obtained from the equilibrium state of the network. In addition, the research analyses the influence of traffic capacity decrease, road section attribute value, and location of road section, on vulnerability. Finally, the vulnerability index is used to analyse the local area network of Harbin and verify its applicability.
MODELING NITRATE CONCENTRATION IN NATURAL STREAMS BY USING ARTIFICIAL NEURAL NETWORKS. (R827451)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison
NASA Astrophysics Data System (ADS)
De Domenico, Manlio; Biamonte, Jacob
2016-10-01
Any physical system can be viewed from the perspective that information is implicitly represented in its state. However, the quantification of this information when it comes to complex networks has remained largely elusive. In this work, we use techniques inspired by quantum statistical mechanics to define an entropy measure for complex networks and to develop a set of information-theoretic tools, based on network spectral properties, such as Rényi q entropy, generalized Kullback-Leibler and Jensen-Shannon divergences, the latter allowing us to define a natural distance measure between complex networks. First, we show that by minimizing the Kullback-Leibler divergence between an observed network and a parametric network model, inference of model parameter(s) by means of maximum-likelihood estimation can be achieved and model selection can be performed with appropriate information criteria. Second, we show that the information-theoretic metric quantifies the distance between pairs of networks and we can use it, for instance, to cluster the layers of a multilayer system. By applying this framework to networks corresponding to sites of the human microbiome, we perform hierarchical cluster analysis and recover with high accuracy existing community-based associations. Our results imply that spectral-based statistical inference in complex networks results in demonstrably superior performance as well as a conceptual backbone, filling a gap towards a network information theory.
Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio
2017-11-01
The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Teletón Centers Of Child Rehabilitation Mexico: 'El amor y la ciencia al servicio del hombre'.
Carbajal, Alejandro Parodi
2008-07-01
This paper describes the foundation and distribution of the Teleton and Oritel networks of rehabilitation. An essential component of the Pan-American network, as reported by Dr. Jorge Hernandez Franco, Teleton follows a humanistic perspective in offering a comprehensive biopsychosocial model of therapy and care. Public engagement is central to the success of Teleton and highlights the importance of increasing public understanding of rehabilitation needs and service delivery.
Network news: innovations in 21st century systems biology.
Arkin, Adam P; Schaffer, David V
2011-03-18
A decade ago, seminal perspectives and papers set a strong vision for the field of systems biology, and a number of these themes have flourished. Here, we describe key technologies and insights that have elucidated the evolution, architecture, and function of cellular networks, ultimately leading to the first predictive genome-scale regulatory and metabolic models of organisms. Can systems approaches bridge the gap between correlative analysis and mechanistic insights? Copyright © 2011 Elsevier Inc. All rights reserved.
USGS perspectives on an integrated approach to watershed and coastal management
Larsen, Matthew C.; Hamilton, Pixie A.; Haines, John W.; Mason, Jr., Robert R.
2010-01-01
The writers discuss three critically important steps necessary for achieving the goal for improved integrated approaches on watershed and coastal protection and management. These steps involve modernization of monitoring networks, creation of common data and web services infrastructures, and development of modeling, assessment, and research tools. Long-term monitoring is needed for tracking the effectiveness approaches for controlling land-based sources of nutrients, contaminants, and invasive species. The integration of mapping and monitoring with conceptual and mathematical models, and multidisciplinary assessments is important in making well-informed decisions. Moreover, a better integrated data network is essential for mapping, statistical, and modeling applications, and timely dissemination of data and information products to a broad community of users.
["Hope Dies Last …" - Cross-Sectoral Cooperation in Integrated Care].
Ruppert, Daniel; Stegbauer, Constanze; Bramesfeld, Anke; Bestmann, Beate; Szecsenyi, Joachim; Götz, Katja
2017-04-01
Objective Multiple models of Integrated Care (IC) have been implemented in German mental health services in the last decade in order to improve cross-sectoral, interdisciplinary cooperation. This study investigates an IC network model providing home treatment, case management and a 24/7 hotline. The aim of the study was to explore how health professionals working in this service model perceive both cooperation within their facilities and with external stakeholders. Methods 5 focus groups with 39 health professionals working in an IC mental health network were conducted and analyzed with qualitative content analysis. Results Focus groups participants reported on excellent cooperation within their facilities. The cooperation with external stakeholders, i. e. physicians, psychotherapists and psychiatric clinics, leaves room for improvement. Conclusions Until now little consideration has been given to the perspectives of health professionals. Cooperation within IC mental health networks seems to be effective. Cooperation with stakeholders outside the networks needs to be enhanced. © Georg Thieme Verlag KG Stuttgart · New York.
A study of the spreading scheme for viral marketing based on a complex network model
NASA Astrophysics Data System (ADS)
Yang, Jianmei; Yao, Canzhong; Ma, Weicheng; Chen, Guanrong
2010-02-01
Buzzword-based viral marketing, known also as digital word-of-mouth marketing, is a marketing mode attached to some carriers on the Internet, which can rapidly copy marketing information at a low cost. Viral marketing actually uses a pre-existing social network where, however, the scale of the pre-existing network is believed to be so large and so random, so that its theoretical analysis is intractable and unmanageable. There are very few reports in the literature on how to design a spreading scheme for viral marketing on real social networks according to the traditional marketing theory or the relatively new network marketing theory. Complex network theory provides a new model for the study of large-scale complex systems, using the latest developments of graph theory and computing techniques. From this perspective, the present paper extends the complex network theory and modeling into the research of general viral marketing and develops a specific spreading scheme for viral marking and an approach to design the scheme based on a real complex network on the QQ instant messaging system. This approach is shown to be rather universal and can be further extended to the design of various spreading schemes for viral marketing based on different instant messaging systems.
Mapping eQTL Networks with Mixed Graphical Markov Models
Tur, Inma; Roverato, Alberto; Castelo, Robert
2014-01-01
Expression quantitative trait loci (eQTL) mapping constitutes a challenging problem due to, among other reasons, the high-dimensional multivariate nature of gene-expression traits. Next to the expression heterogeneity produced by confounding factors and other sources of unwanted variation, indirect effects spread throughout genes as a result of genetic, molecular, and environmental perturbations. From a multivariate perspective one would like to adjust for the effect of all of these factors to end up with a network of direct associations connecting the path from genotype to phenotype. In this article we approach this challenge with mixed graphical Markov models, higher-order conditional independences, and q-order correlation graphs. These models show that additive genetic effects propagate through the network as function of gene–gene correlations. Our estimation of the eQTL network underlying a well-studied yeast data set leads to a sparse structure with more direct genetic and regulatory associations that enable a straightforward comparison of the genetic control of gene expression across chromosomes. Interestingly, it also reveals that eQTLs explain most of the expression variability of network hub genes. PMID:25271303
Feature to prototype transition in neural networks
NASA Astrophysics Data System (ADS)
Krotov, Dmitry; Hopfield, John
Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.
Conditions for duality between fluxes and concentrations in biochemical networks
Fleming, Ronan M.T.; Vlassis, Nikos; Thiele, Ines; Saunders, Michael A.
2016-01-01
Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes. PMID:27345817
Conditions for duality between fluxes and concentrations in biochemical networks
Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines; ...
2016-06-23
Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less
Conditions for duality between fluxes and concentrations in biochemical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines
Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less
Random walks and diffusion on networks
NASA Astrophysics Data System (ADS)
Masuda, Naoki; Porter, Mason A.; Lambiotte, Renaud
2017-11-01
Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.
Wang, Xiang; Öngür, Dost; Auerbach, Randy P.; Yao, Shuqiao
2016-01-01
Abstract Although it is generally accepted that cognitive factors contribute to the pathogenesis of major depressive disorder (MDD), there are missing links between behavioral and biological models of depression. Nevertheless, research employing neuroimaging technologies has elucidated some of the neurobiological mechanisms related to cognitive-vulnerability factors, especially from a whole-brain, dynamic perspective. In this review, we integrate well-established cognitive-vulnerability factors for MDD and corresponding neural mechanisms in intrinsic networks using a dual-process framework. We propose that the dynamic alteration and imbalance among the intrinsic networks, both in the resting-state and the rest-task transition stages, contribute to the development of cognitive vulnerability and MDD. Specifically, we propose that abnormally increased resting-state default mode network (DMN) activity and connectivity (mainly in anterior DMN regions) contribute to the development of cognitive vulnerability. Furthermore, when subjects confront negative stimuli in the period of rest-to-task transition, the following three kinds of aberrant network interactions have been identified as facilitators of vulnerability and dysphoric mood, each through a different cognitive mechanism: DMN dominance over the central executive network (CEN), an impaired salience network–mediated switching between the DMN and CEN, and ineffective CEN modulation of the DMN. This focus on interrelated networks and brain-activity changes between rest and task states provides a neural-system perspective for future research on cognitive vulnerability and resilience, and may potentially guide the development of new intervention strategies for MDD. PMID:27148911
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Current-flow efficiency of networks
NASA Astrophysics Data System (ADS)
Liu, Kai; Yan, Xiaoyong
2018-02-01
Many real-world networks, from infrastructure networks to social and communication networks, can be formulated as flow networks. How to realistically measure the transport efficiency of these networks is of fundamental importance. The shortest-path-based efficiency measurement has limitations, as it assumes that flow travels only along those shortest paths. Here, we propose a new metric named current-flow efficiency, in which we calculate the average reciprocal effective resistance between all pairs of nodes in the network. This metric takes the multipath effect into consideration and is more suitable for measuring the efficiency of many real-world flow equilibrium networks. Moreover, this metric can handle a disconnected graph and can thus be used to identify critical nodes and edges from the efficiency-loss perspective. We further analyze how the topological structure affects the current-flow efficiency of networks based on some model and real-world networks. Our results enable a better understanding of flow networks and shed light on the design and improvement of such networks with higher transport efficiency.
A performance study of unmanned aerial vehicle-based sensor networks under cyber attack
NASA Astrophysics Data System (ADS)
Puchaty, Ethan M.
In UAV-based sensor networks, an emerging area of interest is the performance of these networks under cyber attack. This study seeks to evaluate the performance trade-offs from a System-of-Systems (SoS) perspective between various UAV communications architecture options in the context two missions: tracking ballistic missiles and tracking insurgents. An agent-based discrete event simulation is used to model a sensor communication network consisting of UAVs, military communications satellites, ground relay stations, and a mission control center. Network susceptibility to cyber attack is modeled with probabilistic failures and induced data variability, with performance metrics focusing on information availability, latency, and trustworthiness. Results demonstrated that using UAVs as routers increased network availability with a minimal latency penalty and communications satellite networks were best for long distance operations. Redundancy in the number of links between communication nodes helped mitigate cyber-caused link failures and add robustness in cases of induced data variability by an adversary. However, when failures were not independent, redundancy and UAV routing were detrimental in some cases to network performance. Sensitivity studies indicated that long cyber-caused downtimes and increasing failure dependencies resulted in build-ups of failures and caused significant degradations in network performance.
A physical sciences network characterization of non-tumorigenic and metastatic cells
Agus, David B.; Alexander, Jenolyn F.; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E.; Austin, Robert H.; Backman, Vadim; Bethel, Kelly J.; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C.; Curley, Steven A.; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C. W.; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I.; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A.; Geng, Yue; Gerecht, Sharon; Gillies, Robert J.; Godin, Biana; Grady, William M.; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L.; Hielscher, Abigail; Hillis, W. Daniel; Holland, Eric C.; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H.; Joo, Ahyoung; Katz, Jonathan E.; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R.; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M.; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N.; Lambert, Guillaume; Liao, David; Licht, Jonathan D.; Liphardt, Jan T.; Liu, Liyu; Lloyd, Mark C.; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J. T.; Meldrum, Deirdre R.; Michor, Franziska; Mumenthaler, Shannon M.; Nandakumar, Vivek; O’Halloran, Thomas V.; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J.; Philips, Kevin G.; Poultney, Christopher S.; Rana, Kuldeepsinh; Reinhart-King, Cynthia A.; Ros, Robert; Semenza, Gregg L.; Senechal, Patti; Shuler, Michael L.; Srinivasan, Srimeenakshi; Staunton, Jack R.; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D.; Tormoen, Garth W.; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S.; Wan, Jenny C.; Weaver, Valerie M.; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun
2013-01-01
To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences–Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis. PMID:23618955
A physical sciences network characterization of non-tumorigenic and metastatic cells.
Agus, David B; Alexander, Jenolyn F; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E; Austin, Robert H; Backman, Vadim; Bethel, Kelly J; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C; Curley, Steven A; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C W; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A; Geng, Yue; Gerecht, Sharon; Gillies, Robert J; Godin, Biana; Grady, William M; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L; Hielscher, Abigail; Hillis, W Daniel; Holland, Eric C; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H; Joo, Ahyoung; Katz, Jonathan E; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N; Lambert, Guillaume; Liao, David; Licht, Jonathan D; Liphardt, Jan T; Liu, Liyu; Lloyd, Mark C; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J T; Meldrum, Deirdre R; Michor, Franziska; Mumenthaler, Shannon M; Nandakumar, Vivek; O'Halloran, Thomas V; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J; Philips, Kevin G; Poultney, Christopher S; Rana, Kuldeepsinh; Reinhart-King, Cynthia A; Ros, Robert; Semenza, Gregg L; Senechal, Patti; Shuler, Michael L; Srinivasan, Srimeenakshi; Staunton, Jack R; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D; Tormoen, Garth W; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S; Wan, Jenny C; Weaver, Valerie M; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun
2013-01-01
To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.
A physical sciences network characterization of non-tumorigenic and metastatic cells
NASA Astrophysics Data System (ADS)
Physical Sciences-Oncology Centers Network; Agus, David B.; Alexander, Jenolyn F.; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E.; Austin, Robert H.; Backman, Vadim; Bethel, Kelly J.; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C.; Curley, Steven A.; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C. W.; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I.; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A.; Geng, Yue; Gerecht, Sharon; Gillies, Robert J.; Godin, Biana; Grady, William M.; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L.; Hielscher, Abigail; Hillis, W. Daniel; Holland, Eric C.; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H.; Joo, Ahyoung; Katz, Jonathan E.; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R.; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M.; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N.; Lambert, Guillaume; Liao, David; Licht, Jonathan D.; Liphardt, Jan T.; Liu, Liyu; Lloyd, Mark C.; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J. T.; Meldrum, Deirdre R.; Michor, Franziska; Mumenthaler, Shannon M.; Nandakumar, Vivek; O'Halloran, Thomas V.; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J.; Philips, Kevin G.; Poultney, Christopher S.; Rana, Kuldeepsinh; Reinhart-King, Cynthia A.; Ros, Robert; Semenza, Gregg L.; Senechal, Patti; Shuler, Michael L.; Srinivasan, Srimeenakshi; Staunton, Jack R.; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D.; Tormoen, Garth W.; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S.; Wan, Jenny C.; Weaver, Valerie M.; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun
2013-04-01
To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
Efficient Control of Epidemics Spreading on Networks: Balance between Treatment and Recovery
Oleś, Katarzyna; Gudowska-Nowak, Ewa; Kleczkowski, Adam
2013-01-01
We analyse two models describing disease transmission and control on regular and small-world networks. We use simulations to find a control strategy that minimizes the total cost of an outbreak, thus balancing the costs of disease against that of the preventive treatment. The models are similar in their epidemiological part, but differ in how the removed/recovered individuals are treated. The differences in models affect choice of the strategy only for very cheap treatment and slow spreading disease. However for the combinations of parameters that are important from the epidemiological perspective (high infectiousness and expensive treatment) the models give similar results. Moreover, even where the choice of the strategy is different, the total cost spent on controlling the epidemic is very similar for both models. PMID:23750205
Efficient control of epidemics spreading on networks: balance between treatment and recovery.
Oleś, Katarzyna; Gudowska-Nowak, Ewa; Kleczkowski, Adam
2013-01-01
We analyse two models describing disease transmission and control on regular and small-world networks. We use simulations to find a control strategy that minimizes the total cost of an outbreak, thus balancing the costs of disease against that of the preventive treatment. The models are similar in their epidemiological part, but differ in how the removed/recovered individuals are treated. The differences in models affect choice of the strategy only for very cheap treatment and slow spreading disease. However for the combinations of parameters that are important from the epidemiological perspective (high infectiousness and expensive treatment) the models give similar results. Moreover, even where the choice of the strategy is different, the total cost spent on controlling the epidemic is very similar for both models.
Cabral, Joana; Kringelbach, Morten L; Deco, Gustavo
2017-10-15
Over the last decade, we have observed a revolution in brain structural and functional Connectomics. On one hand, we have an ever-more detailed characterization of the brain's white matter structural connectome. On the other, we have a repertoire of consistent functional networks that form and dissipate over time during rest. Despite the evident spatial similarities between structural and functional connectivity, understanding how different time-evolving functional networks spontaneously emerge from a single structural network requires analyzing the problem from the perspective of complex network dynamics and dynamical system's theory. In that direction, bottom-up computational models are useful tools to test theoretical scenarios and depict the mechanisms at the genesis of resting-state activity. Here, we provide an overview of the different mechanistic scenarios proposed over the last decade via computational models. Importantly, we highlight the need of incorporating additional model constraints considering the properties observed at finer temporal scales with MEG and the dynamical properties of FC in order to refresh the list of candidate scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.
Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective.
Gilson, Matthieu
2018-04-01
Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input-output mapping-determined by EC-for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data-movie viewing versus resting state-illustrates that changes in local variability and changes in brain coordination go hand in hand.
NASA Astrophysics Data System (ADS)
Cauda, Franco; Costa, Tommaso; Tamietto, Marco
2014-09-01
Recent evidence in cognitive neuroscience lends support to the idea that network models of brain architecture provide a privileged access to the understanding of the relation between brain organization and cognitive processes [1]. The core perspective holds that cognitive processes depend on the interactions among distributed neuronal populations and brain structures, and that the impact of a given region on behavior largely depends on its pattern of anatomical and functional connectivity [2,3].
Traffic off-balancing algorithm for energy efficient networks
NASA Astrophysics Data System (ADS)
Kim, Junhyuk; Lee, Chankyun; Rhee, June-Koo Kevin
2011-12-01
Physical layer of high-end network system uses multiple interface arrays. Under the load-balancing perspective, light load can be distributed to multiple interfaces. However, it can cause energy inefficiency in terms of the number of poor utilization interfaces. To tackle this energy inefficiency, traffic off-balancing algorithm for traffic adaptive interface sleep/awake is investigated. As a reference model, 40G/100G Ethernet is investigated. We report that suggested algorithm can achieve energy efficiency while satisfying traffic transmission requirement.
Mechanical response of biopolymer double networks
NASA Astrophysics Data System (ADS)
Carroll, Joshua; Das, Moumita
We investigate a double network model of articular cartilage (AC) and characterize its equilibrium mechanical response. AC has very few cells and the extracellular matrix mainly determines its mechanical response. This matrix can be thought of as a double polymer network made of collagen and aggrecan. The collagen fibers are stiff and resist tension and compression forces, while aggrecans are flexible and control swelling and hydration. We construct a microscopic model made of two interconnected disordered polymer networks, with fiber elasticity chosen to qualitatively mimic the experimental system. We study the collective mechanical response of this double network as a function of the concentration and stiffness of the individual components as well as the strength of the connection between them using rigidity percolation theory. Our results may provide a better understanding of mechanisms underlying the mechanical resilience of AC, and more broadly may also lead to new perspectives on the mechanical response of multicomponent soft materials. This work was partially supported by a Cottrell College Science Award.
Ormoneit, D
1999-12-01
We consider the training of neural networks in cases where the nonlinear relationship of interest gradually changes over time. One possibility to deal with this problem is by regularization where a variation penalty is added to the usual mean squared error criterion. To learn the regularized network weights we suggest the Iterative Extended Kalman Filter (IEKF) as a learning rule, which may be derived from a Bayesian perspective on the regularization problem. A primary application of our algorithm is in financial derivatives pricing, where neural networks may be used to model the dependency of the derivatives' price on one or several underlying assets. After giving a brief introduction to the problem of derivatives pricing we present experiments with German stock index options data showing that a regularized neural network trained with the IEKF outperforms several benchmark models and alternative learning procedures. In particular, the performance may be greatly improved using a newly designed neural network architecture that accounts for no-arbitrage pricing restrictions.
A network perspective on comorbid depression in adolescents with obsessive-compulsive disorder.
Jones, Payton J; Mair, Patrick; Riemann, Bradley C; Mugno, Beth L; McNally, Richard J
2018-01-01
People with obsessive-compulsive disorder [OCD] frequently suffer from depression, a comorbidity associated with greater symptom severity and suicide risk. We examined the associations between OCD and depression symptoms in 87 adolescents with primary OCD. We computed an association network, a graphical LASSO, and a directed acyclic graph (DAG) to model symptom interactions. Models showed OCD and depression as separate syndromes linked by bridge symptoms. Bridges between the two disorders emerged between obsessional problems in the OCD syndrome, and guilt, concentration problems, and sadness in the depression syndrome. A directed network indicated that OCD symptoms directionally precede depression symptoms. Concentration impairment emerged as a highly central node that may be distinctive to adolescents. We conclude that the network approach to mental disorders provides a new way to understand the etiology and maintenance of comorbid OCD-depression. Network analysis can improve research and treatment of mental disorder comorbidities by generating hypotheses concerning potential causal symptom structures and by identifying symptoms that may bridge disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Simovska, V.
2004-01-01
The paper addresses the issue of student participation from the perspective of the health-promoting schools initiative. It draws on experience from the Macedonian Network of Health-Promoting Schools and its collaboration with the Danish as well as other country networks within the European Network of Health-Promoting Schools. Student participation…
Slow synaptic dynamics in a network: From exponential to power-law forgetting
NASA Astrophysics Data System (ADS)
Luck, J. M.; Mehta, A.
2014-09-01
We investigate a mean-field model of interacting synapses on a directed neural network. Our interest lies in the slow adaptive dynamics of synapses, which are driven by the fast dynamics of the neurons they connect. Cooperation is modeled from the usual Hebbian perspective, while competition is modeled by an original polarity-driven rule. The emergence of a critical manifold culminating in a tricritical point is crucially dependent on the presence of synaptic competition. This leads to a universal 1/t power-law relaxation of the mean synaptic strength along the critical manifold and an equally universal 1/√t relaxation at the tricritical point, to be contrasted with the exponential relaxation that is otherwise generic. In turn, this leads to the natural emergence of long- and short-term memory from different parts of parameter space in a synaptic network, which is the most original and important result of our present investigations.
Public–nonprofit partnership performance in a disaster context: the case of Haiti.
Nolte, Isabella M; Boenigk, Silke
2011-01-01
During disasters, partnerships between public and nonprofit organizations are vital to provide fast relief to affected communities. In this article, we develop a process model to support a performance evaluation of such intersectoral partnerships. The model includes input factors, organizational structures, outputs and the long-term outcomes of public–nonprofit partnerships. These factors derive from theory and a systematic literature review of emergency, public, nonprofit, and network research. To adapt the model to a disaster context, we conducted a case study that examines public and nonprofit organizations that partnered during the 2010 Haiti earthquake. The case study results show that communication, trust, and experience are the most important partnership inputs; the most prevalent governance structure of public–nonprofit partnerships is a lead organization network. Time and quality measures should be considered to assess partnership outputs, and community, network, and organizational actor perspectives must be taken into account when evaluating partnership outcomes.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
ERIC Educational Resources Information Center
Pardellas Santiago, Miguel; Meira Cartea, Pablo; Iglesias da Cunha, Lucía
2017-01-01
Purpose: This paper deals with the experiences of three European universities that have implemented transition initiatives, using the Transition Network's methodology to promote their sustainability plans. The Transition Communities' model for change is presented from a socio-educational perspective as an effective methodology for encouraging…
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Computational foundations of the visual number sense.
Stoianov, Ivilin Peev; Zorzi, Marco
2017-01-01
We provide an emergentist perspective on the computational mechanism underlying numerosity perception, its development, and the role of inhibition, based on our deep neural network model. We argue that the influence of continuous visual properties does not challenge the notion of number sense, but reveals limit conditions for the computation that yields invariance in numerosity perception. Alternative accounts should be formalized in a computational model.
While the vast majority of operational air-pollution networks across the world are designed to measure relevant metrics at the surface, the air pollution problem is a three-dimensional phenomenon. The lack of adequate observations aloft to routinely characterize the nature of ai...
Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Ma, Xuefei; Song, Houbing
2017-07-12
Underwater wireless sensor networks (UWSNs) have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL) has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM) for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM) is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM) for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs.
Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Ma, Xuefei
2017-01-01
Underwater wireless sensor networks (UWSNs) have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL) has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM) for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM) is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM) for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs. PMID:28704959
NASA Astrophysics Data System (ADS)
Zhang, Lin; Lu, Jian; Zhou, Jialin; Zhu, Jinqing; Li, Yunxuan; Wan, Qian
2018-03-01
Didi Dache is the most popular taxi order mobile app in China, which provides online taxi-hailing service. The obtained big database from this app could be used to analyze the complexities’ day-to-day dynamic evolution of Didi taxi trip network (DTTN) from the level of complex network dynamics. First, this paper proposes the data cleaning and modeling methods for expressing Nanjing’s DTTN as a complex network. Second, the three consecutive weeks’ data are cleaned to establish 21 DTTNs based on the proposed big data processing technology. Then, multiple topology measures that characterize the complexities’ day-to-day dynamic evolution of these networks are provided. Third, these measures of 21 DTTNs are calculated and subsequently explained with actual implications. They are used as a training set for modeling the BP neural network which is designed for predicting DTTN complexities evolution. Finally, the reliability of the designed BP neural network is verified by comparing with the actual data and the results obtained from ARIMA method simultaneously. Because network complexities are the basis for modeling cascading failures and conducting link prediction in complex system, this proposed research framework not only provides a novel perspective for analyzing DTTN from the level of system aggregated behavior, but can also be used to improve the DTTN management level.
NASA Astrophysics Data System (ADS)
Amancio, Diego Raphael
2014-12-01
Concepts and methods of complex networks have been applied to probe the properties of a myriad of real systems [1]. The finding that written texts modeled as graphs share several properties of other completely different real systems has inspired the study of language as a complex system [2]. Actually, language can be represented as a complex network in its several levels of complexity. As a consequence, morphological, syntactical and semantical properties have been employed in the construction of linguistic networks [3]. Even the character level has been useful to unfold particular patterns [4,5]. In the review by Cong and Liu [6], the authors emphasize the need to use the topological information of complex networks modeling the various spheres of the language to better understand its origins, evolution and organization. In addition, the authors cite the use of networks in applications aiming at holistic typology and stylistic variations. In this context, I will discuss some possible directions that could be followed in future research directed towards the understanding of language via topological characterization of complex linguistic networks. In addition, I will comment the use of network models for language processing applications. Additional prospects for future practical research lines will also be discussed in this comment.
NASA Astrophysics Data System (ADS)
Duane, Gregory S.; Grabow, Carsten; Selten, Frank; Ghil, Michael
2017-12-01
The synchronization of loosely coupled chaotic systems has increasingly found applications to large networks of differential equations and to models of continuous media. These applications are at the core of the present Focus Issue. Synchronization between a system and its model, based on limited observations, gives a new perspective on data assimilation. Synchronization among different models of the same system defines a supermodel that can achieve partial consensus among models that otherwise disagree in several respects. Finally, novel methods of time series analysis permit a better description of synchronization in a system that is only observed partially and for a relatively short time. This Focus Issue discusses synchronization in extended systems or in components thereof, with particular attention to data assimilation, supermodeling, and their applications to various areas, from climate modeling to macroeconomics.
Duane, Gregory S; Grabow, Carsten; Selten, Frank; Ghil, Michael
2017-12-01
The synchronization of loosely coupled chaotic systems has increasingly found applications to large networks of differential equations and to models of continuous media. These applications are at the core of the present Focus Issue. Synchronization between a system and its model, based on limited observations, gives a new perspective on data assimilation. Synchronization among different models of the same system defines a supermodel that can achieve partial consensus among models that otherwise disagree in several respects. Finally, novel methods of time series analysis permit a better description of synchronization in a system that is only observed partially and for a relatively short time. This Focus Issue discusses synchronization in extended systems or in components thereof, with particular attention to data assimilation, supermodeling, and their applications to various areas, from climate modeling to macroeconomics.
Control of autonomous robot using neural networks
NASA Astrophysics Data System (ADS)
Barton, Adam; Volna, Eva
2017-07-01
The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.
Network Analysis: Applications for the Developing Brain
Chu-Shore, Catherine J.; Kramer, Mark A.; Bianchi, Matt T.; Caviness, Verne S.; Cash, Sydney S.
2011-01-01
Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The application of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain networks. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in disease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is already substantial evidence that the application of network models and analysis to understanding normal and abnormal human neural development holds tremendous promise for future discovery. PMID:21303762
Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui
2017-01-01
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli, and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs. PMID:29113310
Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui
2017-10-06
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.
Similarity-based Regularized Latent Feature Model for Link Prediction in Bipartite Networks.
Wang, Wenjun; Chen, Xue; Jiao, Pengfei; Jin, Di
2017-12-05
Link prediction is an attractive research topic in the field of data mining and has significant applications in improving performance of recommendation system and exploring evolving mechanisms of the complex networks. A variety of complex systems in real world should be abstractly represented as bipartite networks, in which there are two types of nodes and no links connect nodes of the same type. In this paper, we propose a framework for link prediction in bipartite networks by combining the similarity based structure and the latent feature model from a new perspective. The framework is called Similarity Regularized Nonnegative Matrix Factorization (SRNMF), which explicitly takes the local characteristics into consideration and encodes the geometrical information of the networks by constructing a similarity based matrix. We also develop an iterative scheme to solve the objective function based on gradient descent. Extensive experiments on a variety of real world bipartite networks show that the proposed framework of link prediction has a more competitive, preferable and stable performance in comparison with the state-of-art methods.
Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems
Stover, Lori J.; Nair, Niketh S.; Faeder, James R.
2014-01-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. PMID:24699269
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R
2014-04-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.
ERIC Educational Resources Information Center
Jorgensen, Mary; Fichten, Catherine; King, Laura; Havel, Alice
2018-01-01
The purpose of these conference proceedings is to provide an in-depth understanding of what was presented and discussed at the Ed-ICT International Network Montreal Symposium: Stakeholder Perspectives. The focus of the Ed-ICT International Network is to explore the role that information and communication technologies (ICTs)--including computers,…
ERIC Educational Resources Information Center
Blickle, Gerhard; Witzki, Alexander H.; Schneider, Paula B.
2009-01-01
Career success of early employees was analyzed from a power perspective and a developmental network perspective. In a predictive field study with 112 employees mentoring support and mentors' power were assessed in the first wave, employees' networking was assessed after two years, and career success (i.e. income and hierarchical position) and…
Understanding brain networks and brain organization
Pessoa, Luiz
2014-01-01
What is the relationship between brain and behavior? The answer to this question necessitates characterizing the mapping between structure and function. The aim of this paper is to discuss broad issues surrounding the link between structure and function in the brain that will motivate a network perspective to understanding this question. As others in the past, I argue that a network perspective should supplant the common strategy of understanding the brain in terms of individual regions. Whereas this perspective is needed for a fuller characterization of the mind-brain, it should not be viewed as panacea. For one, the challenges posed by the many-to-many mapping between regions and functions is not dissolved by the network perspective. Although the problem is ameliorated, one should not anticipate a one-to-one mapping when the network approach is adopted. Furthermore, decomposition of the brain network in terms of meaningful clusters of regions, such as the ones generated by community-finding algorithms, does not by itself reveal “true” subnetworks. Given the hierarchical and multi-relational relationship between regions, multiple decompositions will offer different “slices” of a broader landscape of networks within the brain. Finally, I described how the function of brain regions can be characterized in a multidimensional manner via the idea of diversity profiles. The concept can also be used to describe the way different brain regions participate in networks. PMID:24819881
Analytical Computation of the Epidemic Threshold on Temporal Networks
NASA Astrophysics Data System (ADS)
Valdano, Eugenio; Ferreri, Luca; Poletto, Chiara; Colizza, Vittoria
2015-04-01
The time variation of contacts in a networked system may fundamentally alter the properties of spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic threshold. Despite the great interest in the problem for the physics, applied mathematics, computer science, and epidemiology communities, a full theoretical understanding is still missing and currently limited to the cases where the time-scale separation holds between spreading and network dynamics or to specific temporal network models. We consider a Markov chain description of the susceptible-infectious-susceptible process on an arbitrary temporal network. By adopting a multilayer perspective, we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is confirmed on a set of temporal models and empirical networks and against numerical results. In addition, we explore how the threshold changes when varying the overall time of observation of the temporal network, so as to provide insights on the optimal time window for data collection of empirical temporal networked systems. Our framework is of both fundamental and practical interest, as it offers novel understanding of the interplay between temporal networks and spreading dynamics.
PTSD symptomics: network analyses in the field of psychotraumatology.
Armour, Cherie; Fried, Eiko I; Olff, Miranda
2017-01-01
Recent years have seen increasing attention on posttraumatic stress disorder (PTSD) research. While research has largely focused on the dichotomy between patients diagnosed with mental disorders and healthy controls - in other words, investigations at the level of diagnoses - recent work has focused on psychopathology symptoms. Symptomics research in the area of PTSD has been scarce so far, although several studies have focused on investigating the network structures of PTSD symptoms. The present special issue of EJPT adds to the literature by curating additional PTSD network studies, each looking at a different aspect of PTSD. We hope that this special issue encourages researchers to conceptualize and model PTSD data from a network perspective, which arguably has the potential to inform and improve the efficacy of therapeutic interventions.
Emergence of Soft Communities from Geometric Preferential Attachment
Zuev, Konstantin; Boguñá, Marián; Bianconi, Ginestra; Krioukov, Dmitri
2015-01-01
All real networks are different, but many have some structural properties in common. There seems to be no consensus on what the most common properties are, but scale-free degree distributions, strong clustering, and community structure are frequently mentioned without question. Surprisingly, there exists no simple generative mechanism explaining all the three properties at once in growing networks. Here we show how latent network geometry coupled with preferential attachment of nodes to this geometry fills this gap. We call this mechanism geometric preferential attachment (GPA), and validate it against the Internet. GPA gives rise to soft communities that provide a different perspective on the community structure in networks. The connections between GPA and cosmological models, including inflation, are also discussed. PMID:25923110
ERIC Educational Resources Information Center
Levy, Sue
1992-01-01
Presents a library automation vendor's perspective on networking based on activities at Ameritech Information Systems. Topics discussed include the information explosion; information technology; user expectations and needs; remote access; the library of the future; systems integration; ownership versus access; copyright laws; and the role of the…
Psychology and social networks: a dynamic network theory perspective.
Westaby, James D; Pfaff, Danielle L; Redding, Nicholas
2014-04-01
Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
DeepQA: improving the estimation of single protein model quality with deep belief networks.
Cao, Renzhi; Bhattacharya, Debswapna; Hou, Jie; Cheng, Jianlin
2016-12-05
Protein quality assessment (QA) useful for ranking and selecting protein models has long been viewed as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single protein model, which is important for selecting a few good models out of a large model pool consisting of mostly low-quality models, is still a largely unsolved problem. We introduce a novel single-model quality assessment method DeepQA based on deep belief network that utilizes a number of selected features describing the quality of a model from different perspectives, such as energy, physio-chemical characteristics, and structural information. The deep belief network is trained on several large datasets consisting of models from the Critical Assessment of Protein Structure Prediction (CASP) experiments, several publicly available datasets, and models generated by our in-house ab initio method. Our experiments demonstrate that deep belief network has better performance compared to Support Vector Machines and Neural Networks on the protein model quality assessment problem, and our method DeepQA achieves the state-of-the-art performance on CASP11 dataset. It also outperformed two well-established methods in selecting good outlier models from a large set of models of mostly low quality generated by ab initio modeling methods. DeepQA is a useful deep learning tool for protein single model quality assessment and protein structure prediction. The source code, executable, document and training/test datasets of DeepQA for Linux is freely available to non-commercial users at http://cactus.rnet.missouri.edu/DeepQA/ .
Understanding the influence of all nodes in a network
Lawyer, Glenn
2015-01-01
Centrality measures such as the degree, k-shell, or eigenvalue centrality can identify a network's most influential nodes, but are rarely usefully accurate in quantifying the spreading power of the vast majority of nodes which are not highly influential. The spreading power of all network nodes is better explained by considering, from a continuous-time epidemiological perspective, the distribution of the force of infection each node generates. The resulting metric, the expected force, accurately quantifies node spreading power under all primary epidemiological models across a wide range of archetypical human contact networks. When node power is low, influence is a function of neighbor degree. As power increases, a node's own degree becomes more important. The strength of this relationship is modulated by network structure, being more pronounced in narrow, dense networks typical of social networking and weakening in broader, looser association networks such as the Internet. The expected force can be computed independently for individual nodes, making it applicable for networks whose adjacency matrix is dynamic, not well specified, or overwhelmingly large. PMID:25727453
Toward the establishment of design guidelines for effective 3D perspective interfaces
NASA Astrophysics Data System (ADS)
Fitzhugh, Elisabeth; Dixon, Sharon; Aleva, Denise; Smith, Eric; Ghrayeb, Joseph; Douglas, Lisa
2009-05-01
The propagation of information operation technologies, with correspondingly vast amounts of complex network information to be conveyed, significantly impacts operator workload. Information management research is rife with efforts to develop schemes to aid operators to identify, review, organize, and retrieve the wealth of available data. Data may take on such distinct forms as intelligence libraries, logistics databases, operational environment models, or network topologies. Increased use of taxonomies and semantic technologies opens opportunities to employ network visualization as a display mechanism for diverse information aggregations. The broad applicability of network visualizations is still being tested, but in current usage, the complexity of densely populated abstract networks suggests the potential utility of 3D. Employment of 2.5D in network visualization, using classic perceptual cues, creates a 3D experience within a 2D medium. It is anticipated that use of 3D perspective (2.5D) will enhance user ability to visually inspect large, complex, multidimensional networks. Current research for 2.5D visualizations demonstrates that display attributes, including color, shape, size, lighting, atmospheric effects, and shadows, significantly impact operator experience. However, guidelines for utilization of attributes in display design are limited. This paper discusses pilot experimentation intended to identify potential problem areas arising from these cues and determine how best to optimize perceptual cue settings. Development of optimized design guidelines will ensure that future experiments, comparing network displays with other visualizations, are not confounded or impeded by suboptimal attribute characterization. Current experimentation is anticipated to support development of cost-effective, visually effective methods to implement 3D in military applications.
Decision-Making in National Security Affairs: Toward a Typology.
1985-06-07
decisional model, and thus provide the necessary linkage between observation and application of theory in explaining and/or predicting policy decisions . r...examines theories and models of decision -making processes from an interdisciplinary perspective, with a view toward deriving means by which the behavior of...processes, game theory , linear programming, network and graph theory , time series analysis, and the like. The discipline of decision analysis is a relatively
Descriptive vs. mechanistic network models in plant development in the post-genomic era.
Davila-Velderrain, J; Martinez-Garcia, J C; Alvarez-Buylla, E R
2015-01-01
Network modeling is now a widespread practice in systems biology, as well as in integrative genomics, and it constitutes a rich and diverse scientific research field. A conceptually clear understanding of the reasoning behind the main existing modeling approaches, and their associated technical terminologies, is required to avoid confusions and accelerate the transition towards an undeniable necessary more quantitative, multidisciplinary approach to biology. Herein, we focus on two main network-based modeling approaches that are commonly used depending on the information available and the intended goals: inference-based methods and system dynamics approaches. As far as data-based network inference methods are concerned, they enable the discovery of potential functional influences among molecular components. On the other hand, experimentally grounded network dynamical models have been shown to be perfectly suited for the mechanistic study of developmental processes. How do these two perspectives relate to each other? In this chapter, we describe and compare both approaches and then apply them to a given specific developmental module. Along with the step-by-step practical implementation of each approach, we also focus on discussing their respective goals, utility, assumptions, and associated limitations. We use the gene regulatory network (GRN) involved in Arabidopsis thaliana Root Stem Cell Niche patterning as our illustrative example. We show that descriptive models based on functional genomics data can provide important background information consistent with experimentally supported functional relationships integrated in mechanistic GRN models. The rationale of analysis and modeling can be applied to any other well-characterized functional developmental module in multicellular organisms, like plants and animals.
75 FR 10272 - Notice Regarding 340B Drug Pricing Program-Contract Pharmacy Services
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
... a number of issues: Audits; protecting against diversion; network models; limits on the number or...; however, we do not find a blanket restriction on all covered entities to be justified. (2) Audits Many commenters presented varying perspectives on the topic of audits. Multiple comments from drug manufacturers...
Examining the Antecedents of Social Networking Sites Use among CEGEP Students
ERIC Educational Resources Information Center
Doleck, Tenzin; Bazelais, Paul; Lemay, David John
2017-01-01
Investigations in technology acceptance in education has largely overlooked certain unique populations like students from the "Collège d'enseignement général et professionnel" (CEGEP) system. In studies examining CEGEP students' use of technology, the Technology Acceptance Model (TAM) perspective has not been taken into account, nor have…
Human Odometry Verifies the Symmetry Perspective on Bipedal Gaits
ERIC Educational Resources Information Center
Turvey, M. T.; Harrison, Steven J.; Frank, Till D.; Carello, Claudia
2012-01-01
Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias "cells") required to model them. Primary gaits are characterized by dihedral symmetry, whereas secondary gaits are characterized by a lower, cyclic symmetry. This fact was used in a test of human…
Finding a planet's heartbeat: surprising results from patient Mars
NASA Astrophysics Data System (ADS)
Stamenkovic, Vlada; Ward, Lewis; Fischer, Woodward; Russell, Michael J.
2016-10-01
We explore, from a 3D time-dependent perspective, the evolution of oxidizing and reducing planetary niches and how they form a planetary-scale redox network - from a planet's deep interior to its atmosphere. Such redox networks are similar to the circulatory system of animals, but instead of pressure gradients redox gradients drive the flow of electrons and create hotspots for nutrients and metabolic activity.Using time-dependent geodynamic and atmospheric models, we compute for Mars the time-dependent 3D distribution of 1) hydrogen- and methane-rich reducing subsurface environments, driven by serpentinization and radiolysis of water, and 2) oxygen-rich oases as a product of atmosphere-brine interactions governed by climate and surface chemistry.This is only a first step towards our greater goal to globally model the evolution of local redox environments through time for rocky planets. However, already now our preliminary results show where on Mars oxidizing and reducing oases might have existed and might still exist today. This opens the window to search for extinct and extant life on Mars from a probabilistic global 3D perspective.
2017-01-01
The input-output table is comprehensive and detailed in describing the national economic system with complex economic relationships, which embodies information of supply and demand among industrial sectors. This paper aims to scale the degree of competition/collaboration on the global value chain from the perspective of econophysics. Global Industrial Strongest Relevant Network models were established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output tables and then transformed into Global Industrial Resource Competition Network/Global Industrial Production Collaboration Network models embodying the competitive/collaborative relationships based on bibliographic coupling/co-citation approach. Three indicators well suited for these two kinds of weighted and non-directed networks with self-loops were introduced, including unit weight for competitive/collaborative power, disparity in the weight for competitive/collaborative amplitude and weighted clustering coefficient for competitive/collaborative intensity. Finally, these models and indicators were further applied to empirically analyze the function of sectors in the latest World Input-Output Database, to reveal inter-sector competitive/collaborative status during the economic globalization. PMID:28873432
Xing, Lizhi
2017-01-01
The input-output table is comprehensive and detailed in describing the national economic system with complex economic relationships, which embodies information of supply and demand among industrial sectors. This paper aims to scale the degree of competition/collaboration on the global value chain from the perspective of econophysics. Global Industrial Strongest Relevant Network models were established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output tables and then transformed into Global Industrial Resource Competition Network/Global Industrial Production Collaboration Network models embodying the competitive/collaborative relationships based on bibliographic coupling/co-citation approach. Three indicators well suited for these two kinds of weighted and non-directed networks with self-loops were introduced, including unit weight for competitive/collaborative power, disparity in the weight for competitive/collaborative amplitude and weighted clustering coefficient for competitive/collaborative intensity. Finally, these models and indicators were further applied to empirically analyze the function of sectors in the latest World Input-Output Database, to reveal inter-sector competitive/collaborative status during the economic globalization.
Tabor, Whitney; Cho, Pyeong W; Dankowicz, Harry
2013-01-01
Human participants and recurrent ("connectionist") neural networks were both trained on a categorization system abstractly similar to natural language systems involving irregular ("strong") classes and a default class. Both the humans and the networks exhibited staged learning and a generalization pattern reminiscent of the Elsewhere Condition (Kiparsky, 1973). Previous connectionist accounts of related phenomena have often been vague about the nature of the networks' encoding systems. We analyzed our network using dynamical systems theory, revealing topological and geometric properties that can be directly compared with the mechanisms of non-connectionist, rule-based accounts. The results reveal that the networks "contain" structures related to mechanisms posited by rule-based models, partly vindicating the insights of these models. On the other hand, they support the one mechanism (OM), as opposed to the more than one mechanism (MOM), view of symbolic abstraction by showing how the appearance of MOM behavior can arise emergently from one underlying set of principles. The key new contribution of this study is to show that dynamical systems theory can allow us to explicitly characterize the relationship between the two perspectives in implemented models. © 2013 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Leuchter, S.; Reinert, F.; Müller, W.
2014-06-01
Procurement and design of system architectures capable of network centric operations demand for an assessment scheme in order to compare different alternative realizations. In this contribution an assessment method for system architectures targeted at the C4ISR domain is presented. The method addresses the integration capability of software systems from a complex and distributed software system perspective focusing communication, interfaces and software. The aim is to evaluate the capability to integrate a system or its functions within a system-of-systems network. This method uses approaches from software architecture quality assessment and applies them on the system architecture level. It features a specific goal tree of several dimensions that are relevant for enterprise integration. These dimensions have to be weighed against each other and totalized using methods from the normative decision theory in order to reflect the intention of the particular enterprise integration effort. The indicators and measurements for many of the considered quality features rely on a model based view on systems, networks, and the enterprise. That means it is applicable to System-of-System specifications based on enterprise architectural frameworks relying on defined meta-models or domain ontologies for defining views and viewpoints. In the defense context we use the NATO Architecture Framework (NAF) to ground respective system models. The proposed assessment method allows evaluating and comparing competing system designs regarding their future integration potential. It is a contribution to the system-of-systems engineering methodology.
Social network analysis for program implementation.
Valente, Thomas W; Palinkas, Lawrence A; Czaja, Sara; Chu, Kar-Hai; Brown, C Hendricks
2015-01-01
This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach.
Social Network Analysis for Program Implementation
Valente, Thomas W.; Palinkas, Lawrence A.; Czaja, Sara; Chu, Kar-Hai; Brown, C. Hendricks
2015-01-01
This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach. PMID:26110842
Yi, Wen; Miao, Mengyi; Zhang, Lei
2018-01-01
The construction industry has been recognized, for many years, as among those having a high likelihood of accidents, injuries and occupational illnesses. Such risks of construction workers can lead to low productivity and social problems. As a result, construction workers’ well-being should be highly addressed to improve construction workers’ efficiency and productivity. Meanwhile, the social support from a social network and capital (SNC) of construction workers has been considered as an effective approach to promote construction workers’ physical and mental health (P&M health), as well as their work efficiency and productivity. Based on a comprehensive literature review, a conceptual model, which aims to improve construction workers’ efficiency and productivity from the perspective of health and SNC, was proposed. A questionnaire survey was conducted to investigate the construction workers’ health, SNC and work efficiency and productivity in Nanjing, China. A structural equation model (SEM) was employed to test the three hypothetical relationships among construction workers’ P&M health, SNC and work efficiency and productivity. The results indicated that the direct impacts from construction workers’ P&M health on work efficiency and productivity were more significant than that from the SNC. In addition, the construction workers’ social capital and the network can indirectly influence the work efficiency and productivity by affecting the construction workers’ P&M health. Therefore, strategies for enhancing construction workers’ efficiency and productivity were proposed. Furthermore, many useable suggestions can be drawn from the research findings from the perspective of a government. The identified indicators and relationships would contribute to the construction work efficiency and productivity assessment and health management from the perspective of the construction workers. PMID:29462861
Yuan, Jingfeng; Yi, Wen; Miao, Mengyi; Zhang, Lei
2018-02-15
The construction industry has been recognized, for many years, as among those having a high likelihood of accidents, injuries and occupational illnesses. Such risks of construction workers can lead to low productivity and social problems. As a result, construction workers' well-being should be highly addressed to improve construction workers' efficiency and productivity. Meanwhile, the social support from a social network and capital (SNC) of construction workers has been considered as an effective approach to promote construction workers' physical and mental health (P&M health), as well as their work efficiency and productivity. Based on a comprehensive literature review, a conceptual model, which aims to improve construction workers' efficiency and productivity from the perspective of health and SNC, was proposed. A questionnaire survey was conducted to investigate the construction workers' health, SNC and work efficiency and productivity in Nanjing, China. A structural equation model (SEM) was employed to test the three hypothetical relationships among construction workers' P&M health, SNC and work efficiency and productivity. The results indicated that the direct impacts from construction workers' P&M health on work efficiency and productivity were more significant than that from the SNC. In addition, the construction workers' social capital and the network can indirectly influence the work efficiency and productivity by affecting the construction workers' P&M health. Therefore, strategies for enhancing construction workers' efficiency and productivity were proposed. Furthermore, many useable suggestions can be drawn from the research findings from the perspective of a government. The identified indicators and relationships would contribute to the construction work efficiency and productivity assessment and health management from the perspective of the construction workers.
NASA Astrophysics Data System (ADS)
Guan, Jun; Xu, Xiaoyu; Xing, Lizhi
2018-03-01
The input-output table is comprehensive and detailed in describing national economic systems with abundance of economic relationships depicting information of supply and demand among industrial sectors. This paper focuses on how to quantify the degree of competition on the global value chain (GVC) from the perspective of econophysics. Global Industrial Strongest Relevant Network models are established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output (ICIO) tables and then have them transformed into Global Industrial Resource Competition Network models to analyze the competitive relationships based on bibliographic coupling approach. Three indicators well suited for the weighted and undirected networks with self-loops are introduced here, including unit weight for competitive power, disparity in the weight for competitive amplitude and weighted clustering coefficient for competitive intensity. Finally, these models and indicators were further applied empirically to analyze the function of industrial sectors on the basis of the latest World Input-Output Database (WIOD) in order to reveal inter-sector competitive status during the economic globalization.
Structural diversity effect on hashtag adoption in Twitter
NASA Astrophysics Data System (ADS)
Zhang, Aihua; Zheng, Mingxing; Pang, Bowen
2018-03-01
With online social network developing rapidly these years, user' behavior in online social network has attracted a lot of attentions to it. In this paper, we study Twitter user's behavior of hashtag adoption from the perspective of social contagion and focus on "structure diversity" effect on individual's behavior in Twitter. We achieve data through Twitter's API by crawling and build a users' network to carry on empirical research. The Girvan-Newman (G-N) algorithm is used to analyze the structural diversity of user's ego network, and Logistic regression model is adopted to examine the hypothesis. The findings of our empirical study indicate that user' behavior in online social network is indeed influenced by his friends and his decision is significantly affected by the number of groups that these friends belong to, which we call structural diversity.
Lindner, Michael; Donner, Reik V
2017-03-01
We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.
Acidic Calcium Stores of Saccharomyces cerevisiae
Cunningham, Kyle W.
2011-01-01
Fungi and animals constitute sister kingdoms in the eukaryotic domain of life. The major classes of transporters, channels, sensors, and effectors that move and respond to calcium ions were already highly networked in the common ancestor of fungi and animals. Since that time, some key components of the network have been moved, altered, relocalized, lost, or duplicated in the fungal and animal lineages and at the same time some of the regulatory circuitry has been dramatically rewired. Today the calcium transport and signaling networks in fungi provide a fresh perspective on the scene that has emerged from studies of the network in animal cells. This review provides an overview of calcium signaling networks in fungi, particularly the model yeast Saccharomyces cerevisiae, with special attention to the dominant roles of acidic calcium stores in fungal cell physiology. PMID:21377728
Produsage in hybrid networks: sociotechnical skills in the case of Arduino
NASA Astrophysics Data System (ADS)
De Paoli, Stefano; Storni, Cristiano
2011-04-01
In 1this paper we investigate produsage using Actor-Network Theory with a focus on (produsage) skills, their development, and transformation. We argue that produsage is not a model that determines a change in the traditional consumption/production paradigm through a series of essential preconditions (such as open participation, peer-sharing, or common ownership). Rather, we explain produsage as the open-ended result of a series of heterogeneous actor-networking strategies. In this view, the so-called preconditions do not explain produsage but have to be explained along with its establishment as an actor-network. Drawing on this approach, we discuss a case study of an open hardware project: the Arduino board, and we develop a perspective that maps the skills of human and non-human entities in produsage actor-networks, showing how skills are symmetrical, relational, and circulating.
"Promotores'" Perspectives on a Male-to-Male Peer Network
ERIC Educational Resources Information Center
Macia, Laura; Ruiz, Hector Camilo; Boyzo, Roberto; Documet, Patricia Isabel
2016-01-01
Little documentation exists about male community health workers ("promotores") networks. The experiences of "promotores" can provide input on how to attract, train, supervise and maintain male "promotores" in CHW programs. We present the experience and perspectives of "promotores" who participated in a male…
Emergent properties of interacting populations of spiking neurons.
Cardanobile, Stefano; Rotter, Stefan
2011-01-01
Dynamic neuronal networks are a key paradigm of increasing importance in brain research, concerned with the functional analysis of biological neuronal networks and, at the same time, with the synthesis of artificial brain-like systems. In this context, neuronal network models serve as mathematical tools to understand the function of brains, but they might as well develop into future tools for enhancing certain functions of our nervous system. Here, we present and discuss our recent achievements in developing multiplicative point processes into a viable mathematical framework for spiking network modeling. The perspective is that the dynamic behavior of these neuronal networks is faithfully reflected by a set of non-linear rate equations, describing all interactions on the population level. These equations are similar in structure to Lotka-Volterra equations, well known by their use in modeling predator-prey relations in population biology, but abundant applications to economic theory have also been described. We present a number of biologically relevant examples for spiking network function, which can be studied with the help of the aforementioned correspondence between spike trains and specific systems of non-linear coupled ordinary differential equations. We claim that, enabled by the use of multiplicative point processes, we can make essential contributions to a more thorough understanding of the dynamical properties of interacting neuronal populations.
Emergent Properties of Interacting Populations of Spiking Neurons
Cardanobile, Stefano; Rotter, Stefan
2011-01-01
Dynamic neuronal networks are a key paradigm of increasing importance in brain research, concerned with the functional analysis of biological neuronal networks and, at the same time, with the synthesis of artificial brain-like systems. In this context, neuronal network models serve as mathematical tools to understand the function of brains, but they might as well develop into future tools for enhancing certain functions of our nervous system. Here, we present and discuss our recent achievements in developing multiplicative point processes into a viable mathematical framework for spiking network modeling. The perspective is that the dynamic behavior of these neuronal networks is faithfully reflected by a set of non-linear rate equations, describing all interactions on the population level. These equations are similar in structure to Lotka-Volterra equations, well known by their use in modeling predator-prey relations in population biology, but abundant applications to economic theory have also been described. We present a number of biologically relevant examples for spiking network function, which can be studied with the help of the aforementioned correspondence between spike trains and specific systems of non-linear coupled ordinary differential equations. We claim that, enabled by the use of multiplicative point processes, we can make essential contributions to a more thorough understanding of the dynamical properties of interacting neuronal populations. PMID:22207844
Chen, Bor-Sen; Yeh, Chin-Hsun
2017-12-01
We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.
How to estimate the signs' configuration in the directed signed social networks?
NASA Astrophysics Data System (ADS)
Guo, Long; Gao, Fujuan; Jiang, Jian
2017-02-01
Inspired by the ensemble theory in statistical mechanics, we introduce a reshuffling approach to empirical analyze signs' configuration in the directed signed social networks of Epinions and Slashdots. In our reshuffling approach, each negative link has the reshuffling probability prs to exchange its sign with another positive link chosen randomly. Many reshuffled networks with different signs' configuration are built under different prss. For each reshuffled network, the entropies of the self social status are calculated and the opinion formation of the majority-rule model is analyzed. We find that Souts reach their own minimum values and the order parameter |m* | reaches its maximum value in the networks of Epinions and Slashdots without the reshuffling operation. Namely, individuals share the homogeneous properties of self social status and dynamic status in the real directed signed social networks. Our present work provides some interesting tools and perspective to understand the signs' configuration in signed social networks, especially in the online affiliation networks.
Spiking neural networks on high performance computer clusters
NASA Astrophysics Data System (ADS)
Chen, Chong; Taha, Tarek M.
2011-09-01
In this paper we examine the acceleration of two spiking neural network models on three clusters of multicore processors representing three categories of processors: x86, STI Cell, and NVIDIA GPGPUs. The x86 cluster utilized consists of 352 dualcore AMD Opterons, the Cell cluster consists of 320 Sony Playstation 3s, while the GPGPU cluster contains 32 NVIDIA Tesla S1070 systems. The results indicate that the GPGPU platform can dominate in performance compared to the Cell and x86 platforms examined. From a cost perspective, the GPGPU is more expensive in terms of neuron/s throughput. If the cost of GPGPUs go down in the future, this platform will become very cost effective for these models.
How does personality matter? An investigation of the impact of extraversion on individuals' SNS use.
Deng, Shengli; Liu, Yong; Li, Hongxiu; Hu, Feng
2013-08-01
The fast proliferation of social networking sites (SNS) offers Internet users new possibilities for developing and maintaining their social network. Despite a growing interest in SNS, less research attention has been paid to SNS usage from the perspective of personality, that is, the Big Five personality traits. This study develops a model to elucidate how extraversion, an important dimension of personality, affects the perceptions of SNS users and their continuance intention. The research model is empirically tested with answers gained from 221 usable questionnaires. The results indicate that extraversion positively affects perceived satisfaction, supplementary entertainment, and critical mass directly, and indirectly influences both playfulness and SNS continuance intention.
Frantz, Terrill L
2012-01-01
This paper introduces the contemporary perspectives and techniques of social network analysis (SNA) and agent-based modeling (ABM) and advocates applying them to advance various aspects of complementary and alternative medicine (CAM). SNA and ABM are invaluable methods for representing, analyzing and projecting complex, relational, social phenomena; they provide both an insightful vantage point and a set of analytic tools that can be useful in a wide range of contexts. Applying these methods in the CAM context can aid the ongoing advances in the CAM field, in both its scientific aspects and in developing broader acceptance in associated stakeholder communities. Copyright © 2012 S. Karger AG, Basel.
A complex-network perspective on Alexander's wholeness
NASA Astrophysics Data System (ADS)
Jiang, Bin
2016-12-01
The wholeness, conceived and developed by Christopher Alexander, is what exists to some degree or other in space and matter, and can be described by precise mathematical language. However, it remains somehow mysterious and elusive, and therefore hard to grasp. This paper develops a complex network perspective on the wholeness to better understand the nature of order or beauty for sustainable design. I bring together a set of complexity-science subjects such as complex networks, fractal geometry, and in particular underlying scaling hierarchy derived by head/tail breaks - a classification scheme and a visualization tool for data with a heavy-tailed distribution, in order to make Alexander's profound thoughts more accessible to design practitioners and complexity-science researchers. Through several case studies (some of which Alexander studied), I demonstrate that the complex-network perspective helps reduce the mystery of wholeness and brings new insights to Alexander's thoughts on the concept of wholeness or objective beauty that exists in fine and deep structure. The complex-network perspective enables us to see things in their wholeness, and to better understand how the kind of structural beauty emerges from local actions guided by the 15 fundamental properties, and in particular by differentiation and adaptation processes. The wholeness goes beyond current complex network theory towards design or creation of living structures.
Modeling and dynamical topology properties of VANET based on complex networks theory
NASA Astrophysics Data System (ADS)
Zhang, Hong; Li, Jie
2015-01-01
Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate and control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What's more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.
Modeling and dynamical topology properties of VANET based on complex networks theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong; Li, Jie, E-mail: prof.li@foxmail.com
2015-01-15
Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate andmore » control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What’s more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.« less
Comparing Networks from a Data Analysis Perspective
NASA Astrophysics Data System (ADS)
Li, Wei; Yang, Jing-Yu
To probe network characteristics, two predominant ways of network comparison are global property statistics and subgraph enumeration. However, they suffer from limited information and exhaustible computing. Here, we present an approach to compare networks from the perspective of data analysis. Initially, the approach projects each node of original network as a high-dimensional data point, and the network is seen as clouds of data points. Then the dispersion information of the principal component analysis (PCA) projection of the generated data clouds can be used to distinguish networks. We applied this node projection method to the yeast protein-protein interaction networks and the Internet Autonomous System networks, two types of networks with several similar higher properties. The method can efficiently distinguish one from the other. The identical result of different datasets from independent sources also indicated that the method is a robust and universal framework.
NASA Astrophysics Data System (ADS)
Xiao, Xiaojun; Du, Chunsheng; Zhou, Rongsheng
2004-04-01
As a result of data traffic"s exponential growth, network is currently evolving from fixed circuit switched services to dynamic packet switched services, which has brought unprecedented changes to the existing transport infrastructure. It is generally agreed that automatic switched optical network (ASON) is one of the promising solutions for the next generation optical networks. In this paper, we present the results of our experimental tests and economic analysis on ASON. The intention of this paper is to present our perspective, in terms of evolution strategy toward ASON, on next generation optical networks. It is shown through experimental tests that the performance of current Pre-standard ASON enabled equipments satisfies the basic requirements of network operators and is ready for initial deployment. The results of the economic analysis show that network operators can be benefit from the deployment of ASON from three sides. Firstly, ASON can reduce the CAPEX for network expanding by integrating multiple ADM & DCS into one box. Secondly, ASON can reduce the OPEX for network operation by introducing automatic resource control scheme. Finally, ASON can increase margin revenue by providing new optical network services such as Bandwidth on Demand, optical VPN etc. Finally, the evolution strategy is proposed as our perspective toward next generation optical networks. We hope the evolution strategy introduced may be helpful for the network operators to gracefully migrate their fixed ring based legacy networks to next generation dynamic mesh based network.
Integrating Cellular Metabolism into a Multiscale Whole-Body Model
Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars
2012-01-01
Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351
Bassett, Danielle S.; Mattar, Marcelo G.
2017-01-01
Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior. PMID:28259554
Bassett, Danielle S; Mattar, Marcelo G
2017-04-01
Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Somvanshi, Pramod Rajaram; Venkatesh, K V
2014-03-01
Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.
Unfavorable Individuals in Social Gaming Networks.
Zhang, Yichao; Chen, Guanrong; Guan, Jihong; Zhang, Zhongzhi; Zhou, Shuigeng
2015-12-09
In social gaming networks, the current research focus has been on the origin of widespread reciprocal behaviors when individuals play non-cooperative games. In this paper, we investigate the topological properties of unfavorable individuals in evolutionary games. The unfavorable individuals are defined as the individuals gaining the lowest average payoff in a round of game. Since the average payoff is normally considered as a measure of fitness, the unfavorable individuals are very likely to be eliminated or change their strategy updating rules from a Darwinian perspective. Considering that humans can hardly adopt a unified strategy to play with their neighbors, we propose a divide-and-conquer game model, where individuals can interact with their neighbors in the network with appropriate strategies. We test and compare a series of highly rational strategy updating rules. In the tested scenarios, our analytical and simulation results surprisingly reveal that the less-connected individuals in degree-heterogeneous networks are more likely to become the unfavorable individuals. Our finding suggests that the connectivity of individuals as a social capital fundamentally changes the gaming environment. Our model, therefore, provides a theoretical framework for further understanding the social gaming networks.
Unfavorable Individuals in Social Gaming Networks
NASA Astrophysics Data System (ADS)
Zhang, Yichao; Chen, Guanrong; Guan, Jihong; Zhang, Zhongzhi; Zhou, Shuigeng
2015-12-01
In social gaming networks, the current research focus has been on the origin of widespread reciprocal behaviors when individuals play non-cooperative games. In this paper, we investigate the topological properties of unfavorable individuals in evolutionary games. The unfavorable individuals are defined as the individuals gaining the lowest average payoff in a round of game. Since the average payoff is normally considered as a measure of fitness, the unfavorable individuals are very likely to be eliminated or change their strategy updating rules from a Darwinian perspective. Considering that humans can hardly adopt a unified strategy to play with their neighbors, we propose a divide-and-conquer game model, where individuals can interact with their neighbors in the network with appropriate strategies. We test and compare a series of highly rational strategy updating rules. In the tested scenarios, our analytical and simulation results surprisingly reveal that the less-connected individuals in degree-heterogeneous networks are more likely to become the unfavorable individuals. Our finding suggests that the connectivity of individuals as a social capital fundamentally changes the gaming environment. Our model, therefore, provides a theoretical framework for further understanding the social gaming networks.
Theoretical reflections on governance in health regions.
Bretas, Nilo; Shimizu, Helena Eri
2017-04-01
This article analyzes governance in health regions, through the contributions of two studies: one on a governance model and the other on duties in the management of public policies networks. The former conducted a meta-analysis of 137 case studies in the literature on collaborative governance aimed at preparing an explanatory and analytical model. Authors identified critical variables that will influence the results: a previous history of conflict or cooperation, incentives for participation, power imbalances, leadership and institutional design. They also identified key factors: face-to-face dialogue, trust building and development of commitment and shared vision. The latter study examined networks of public policies in the analytic tradition and the perspective of governance, incorporating concepts from the field of political science, economics and interorganizational relations, in order to support the management of public policies networks. The study identified network management as equivalent to a strategic game involving functions: network activation, framework of relations, intermediation, facilitation and consensus building and mediation and arbitration. The combination of the two reflections provides a conceptual reference for better understanding of governance in health regions.
NASA Astrophysics Data System (ADS)
Bloch, Jean-Jacques
The Arabsat and Eutelsat systems are described. The Arabsat belongs to an organization which includes 20 countries of the Arab League. The Eutelsat belongs to the European telecommunication system which includes 29 countries, and is based op the Intelsat model. The current use of their payload is reviewed and compared with their respective planning stage predictions. From this perspective, some teachings are drawn which could be profitable for emerging region Pacific basin networks, now in the planning stage. In the Pacific basin several private and governmental regional satellite networks either newly existing or in the design phase are vying to deliver services to potential customers. These services include national television, commercial television, VSAT (Very Small Aperture Terminal) networks, and regional or domestic telephony.
PTSD symptomics: network analyses in the field of psychotraumatology
Armour, Cherie; Fried, Eiko I.; Olff, Miranda
2017-01-01
ABSTRACT Recent years have seen increasing attention on posttraumatic stress disorder (PTSD) research. While research has largely focused on the dichotomy between patients diagnosed with mental disorders and healthy controls — in other words, investigations at the level of diagnoses — recent work has focused on psychopathology symptoms. Symptomics research in the area of PTSD has been scarce so far, although several studies have focused on investigating the network structures of PTSD symptoms. The present special issue of EJPT adds to the literature by curating additional PTSD network studies, each looking at a different aspect of PTSD. We hope that this special issue encourages researchers to conceptualize and model PTSD data from a network perspective, which arguably has the potential to inform and improve the efficacy of therapeutic interventions. PMID:29250305
NASA Astrophysics Data System (ADS)
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
Social networks and family violence in cross-cultural perspective.
Korbin, J E
1995-01-01
The purpose of this chapter was twofold. First, the chapter put forward a brief cross-cultural perspective indicating that multiple types of intrafamilial violence occur cross-culturally. Second, the chapter placed social networks at the core of a complex etiology of intrafamilial violence. The purpose of giving centrality to social networks is not to suggest that social networks are the sole or primary agent contributing to family violence but to broaden the context in which family violence is viewed beyond that of the perpetrator, the victim/survivor, or the violent dyad.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Aashranth, B.; Davinci, M. Arvinth; Samantaray, Dipti; Borah, Utpal; Bhaduri, A. K.
2018-02-01
The utility of different constitutive models describing high-temperature flow behavior has been evaluated from the perspective of alloy development. Strain compensated Arrhenius model, modified Johnson-Cook (MJC) model, model D8A and artificial neural network (ANN) have been used to describe flow behavior of different model alloys. These alloys are four grades of SS 316LN with different nitrogen contents ranging from 0.07 to 0.22%. Grades with 0.07%N and 0.22%N have been used to determine suitable material constants of the constitutive equations and also to train the ANN model. While the ANN model has been developed with chemical composition as a direct input, the MJC and D8A models have been amended to incorporate the effect of nitrogen content on flow behavior. The prediction capabilities of all models have been validated using the experimental data obtained from grades containing 0.11%N and 0.14%N. The comparative analysis demonstrates that `N-amended D8A' and `N-amended MJC' are preferable to the ANN model for predicting flow behavior of different grades of 316LN. The work provides detailed insights into the usual statistical error analysis technique and frames five additional criteria which must be considered when a model is analyzed from the perspective of alloy development.
Campaign-level dynamic network modelling for spaceflight logistics for the flexible path concept
NASA Astrophysics Data System (ADS)
Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert
2016-06-01
This paper develops a network optimization formulation for dynamic campaign-level space mission planning. Although many past space missions have been designed mainly from a mission-level perspective, a campaign-level perspective will be important for future space exploration. In order to find the optimal campaign-level space transportation architecture, a mixed-integer linear programming (MILP) formulation with a generalized multi-commodity flow and a time-expanded network is developed. Particularly, a new heuristics-based method, a partially static time-expanded network, is developed to provide a solution quickly. The developed method is applied to a case study containing human exploration of a near-Earth object (NEO) and Mars, related to the concept of the Flexible Path. The numerical results show that using the specific combinations of propulsion technologies, in-situ resource utilization (ISRU), and other space infrastructure elements can reduce the initial mass in low-Earth orbit (IMLEO) significantly. In addition, the case study results also show that we can achieve large IMLEO reduction by designing NEO and Mars missions together as a campaign compared with designing them separately owing to their common space infrastructure pre-deployment. This research will be an important step toward efficient and flexible campaign-level space mission planning.
Sánchez de Madariaga, Inés; Ruiz Cantero, María Teresa
2014-01-01
The European Commission supports several routes for incorporating the gender perspective. The Commission currently supports the new Horizon 2020 program, and also funds projects such as "gendered innovations", which show how gender innovations increase the quality of research and professional practice for health and welfare. One of the policy instruments is the Recommendation on Gender, Science and Innovation. Against this background, the international European Cooperation in Science and Technology (COST) network genderSTE (Gender, Science, Technology and Environment) was created, which seeks to: 1) promote structural changes in institutions to increase the number of women researchers; 2) identify the gender dimensions relevant to the environment; and 3) improve the integration of a gender perspective in research and technology. COST GenderSTE supports networking and the dissemination of knowledge with a gender perspective. All these tools provide an opportunity to incorporate a gender perspective in research in Europe. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.
Mlotshwa, Busisiwe C; Mwesigwa, Savannah; Mboowa, Gerald; Williams, Lesedi; Retshabile, Gaone; Kekitiinwa, Adeodata; Wayengera, Misaki; Kyobe, Samuel; Brown, Chester W; Hanchard, Neil A; Mardon, Graeme; Joloba, Moses; Anabwani, Gabriel; Mpoloka, Sununguko W
2017-07-01
The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside trainees' perspectives on their involvement. Historically, collaborations between high-income countries (HICs) and low- and middle-income countries (LMICs), or North-South collaborations, have been criticized for the lack of a mutually beneficial distribution of resources and research findings, often undermining LMICs. CAfGEN plans to address this imbalance in the genomics field through a program of technology and expertise transfer to the participating LMICs. An overview of the training program is presented. Trainees from the CAfGEN project summarized their experiences, looking specifically at the training model, benefits of the program, challenges encountered relating to the cultural transition, and program outcomes after the first 2 years. Collaborative training programs like CAfGEN will not only help establish sustainable long-term research initiatives in LMICs but also foster stronger North-South and South-South networks. The CAfGEN model offers a framework for the development of training programs aimed at genomics education for those for whom genomics is not their "first language." Genet Med advance online publication 06 April 2017.
Konrad, Kerstin; Eickhoff, Simon B
2010-06-01
In recent years, a change in perspective in etiological models of attention deficit hyperactivity disorder (ADHD) has occurred in concordance with emerging concepts in other neuropsychiatric disorders such as schizophrenia and autism. These models shift the focus of the assumed pathology from regional brain abnormalities to dysfunction in distributed network organization. In the current contribution, we report findings from functional connectivity studies during resting and task states, as well as from studies on structural connectivity using diffusion tensor imaging, in subjects with ADHD. Although major methodological limitations in analyzing connectivity measures derived from noninvasive in vivo neuroimaging still exist, there is convergent evidence for white matter pathology and disrupted anatomical connectivity in ADHD. In addition, dysfunctional connectivity during rest and during cognitive tasks has been demonstrated. However, the causality between disturbed white matter architecture and cortical dysfunction remains to be evaluated. Both genetic and environmental factors might contribute to disruptions in interactions between different brain regions. Stimulant medication not only modulates regionally specific activation strength but also normalizes dysfunctional connectivity, pointing to a predominant network dysfunction in ADHD. By combining a longitudinal approach with a systems perspective in ADHD in the future, it might be possible to identify at which stage during development disruptions in neural networks emerge and to delineate possible new endophenotypes of ADHD. (c) 2010 Wiley-Liss, Inc.
Mlotshwa, Busisiwe C.; Mwesigwa, Savannah; Mboowa, Gerald; Williams, Lesedi; Retshabile, Gaone; Kekitiinwa, Adeodata; Wayengera, Misaki; Kyobe, Samuel; Brown, Chester W.; Hanchard, Neil A.; Mardon, Graeme; Joloba, Moses; Anabwani, Gabriel; Mpoloka, Sununguko W.
2017-01-01
Purpose: The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside trainees’ perspectives on their involvement. Background: Historically, collaborations between high-income countries (HICs) and low- and middle-income countries (LMICs), or North–South collaborations, have been criticized for the lack of a mutually beneficial distribution of resources and research findings, often undermining LMICs. CAfGEN plans to address this imbalance in the genomics field through a program of technology and expertise transfer to the participating LMICs. Methods: An overview of the training program is presented. Trainees from the CAfGEN project summarized their experiences, looking specifically at the training model, benefits of the program, challenges encountered relating to the cultural transition, and program outcomes after the first 2 years. Conclusion: Collaborative training programs like CAfGEN will not only help establish sustainable long-term research initiatives in LMICs but also foster stronger North–South and South–South networks. The CAfGEN model offers a framework for the development of training programs aimed at genomics education for those for whom genomics is not their “first language.” Genet Med advance online publication 06 April 2017 PMID:28383545
NASA Astrophysics Data System (ADS)
Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen
2016-04-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].
Functions of the Parent-Teacher Association (PTA): A Hong Kong Perspective.
ERIC Educational Resources Information Center
Pang, I-wah
1997-01-01
Attempts to provide an understanding of the purpose behind the recent increase in parent-teacher associations (PTA) in Hong Kong over the past three years. Shows that enhancing home-school communication is the most important objective. Examines the practices and networking functions of the PTA, and develops a model of PTA functions. (DSK)
Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore
Ibrahim, Bashar; Henze, Richard; Gruenert, Gerd; Egbert, Matthew; Huwald, Jan; Dittrich, Peter
2013-01-01
A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models. PMID:24709796
Primary health care teams and the patient perspective: a social network analysis.
Cheong, Lynn H M; Armour, Carol L; Bosnic-Anticevich, Sinthia Z
2013-01-01
Multidisciplinary care (MDC) has been proposed as a potential strategy to address the rising challenges of modern health issues. However, it remains unclear as to how patients' health connections may impact on multidisciplinary processes and outcomes. This research aims to gain a deeper understanding of patients' potential role in MDC: i) describe patients' health networks, ii) compare different care groups, iii) gain an understanding of the nature and extent of their interactions, and iv) identify the role of pharmacists within patient networks. In-depth, semi-structured interviews were conducted with asthma patients from Sydney, Australia. Participants were recruited from a range of standard asthma health care access points (community group) and a specialized multidisciplinary asthma clinic (clinic group). Quantitative social network analysis provided structural insight into asthma networks while qualitative social network analysis assisted in interpretation of network data. A total of 47 interviews were conducted (26 community group participants and 21 clinic group participants). Although participants' asthma networks consisted of a range of health care professionals (HCPs), these did not reflect or encourage MDC. Not only did participants favor minimal interaction with any HCP, they preferred sole-charge care and were found to strongly rely on lay individuals such as family and friends. While general practitioners and respiratory specialists were participants' principal choice of HCP, community pharmacists were less regarded. Limited opportunities were presented for HCPs to collaborate, particularly pharmacists. As patients' choices of HCPs may strongly influence collaborative processes and outcomes, this research highlights the need to consider patient perspectives in the development of MDC models in primary care. Copyright © 2013 Elsevier Inc. All rights reserved.
Patterson, Megan S; Goodson, Patricia
2017-05-01
Compulsive exercise, a form of unhealthy exercise often associated with prioritizing exercise and feeling guilty when exercise is missed, is a common precursor to and symptom of eating disorders. College-aged women are at high risk of exercising compulsively compared with other groups. Social network analysis (SNA) is a theoretical perspective and methodology allowing researchers to observe the effects of relational dynamics on the behaviors of people. SNA was used to assess the relationship between compulsive exercise and body dissatisfaction, physical activity, and network variables. Descriptive statistics were conducted using SPSS, and quadratic assignment procedure (QAP) analyses were conducted using UCINET. QAP regression analysis revealed a statistically significant model (R 2 = .375, P < .0001) predicting compulsive exercise behavior. Physical activity, body dissatisfaction, and network variables were statistically significant predictor variables in the QAP regression model. In our sample, women who are connected to "important" or "powerful" people in their network are likely to have higher compulsive exercise scores. This result provides healthcare practitioners key target points for intervention within similar groups of women. For scholars researching eating disorders and associated behaviors, this study supports looking into group dynamics and network structure in conjunction with body dissatisfaction and exercise frequency.
Covariance, correlation matrix, and the multiscale community structure of networks.
Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing
2010-07-01
Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.
Consciousness, cognition and brain networks: New perspectives.
Aldana, E M; Valverde, J L; Fábregas, N
2016-10-01
A detailed analysis of the literature on consciousness and cognition mechanisms based on the neural networks theory is presented. The immune and inflammatory response to the anesthetic-surgical procedure induces modulation of neuronal plasticity by influencing higher cognitive functions. Anesthetic drugs can cause unconsciousness, producing a functional disruption of cortical and thalamic cortical integration complex. The external and internal perceptions are processed through an intricate network of neural connections, involving the higher nervous activity centers, especially the cerebral cortex. This requires an integrated model, formed by neural networks and their interactions with highly specialized regions, through large-scale networks, which are distributed throughout the brain collecting information flow of these perceptions. Functional and effective connectivity between large-scale networks, are essential for consciousness, unconsciousness and cognition. It is what is called the "human connectome" or map neural networks. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Network Hardware Virtualization for Application Provisioning in Core Networks
Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp; ...
2017-02-03
We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less
Network Hardware Virtualization for Application Provisioning in Core Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp
We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less
Riggs, Shelley A; Riggs, David S
2011-10-01
Deployment separation constitutes a significant stressor for U.S. military men and women and their families. Many military personnel return home struggling with physical and/or psychological injuries that challenge their ability to reintegrate and contribute to marital problems, family dysfunction, and emotional or behavioral disturbance in spouses and children. Yet research examining the psychological health and functioning of military families is scarce and rarely driven by developmental theory. The primary purpose of this theoretical paper is to describe a family attachment network model of military families during deployment and reintegration that is grounded in attachment theory and family systems theory. This integrative perspective provides a solid empirical foundation and a comprehensive account of individual and family risk and resilience during military-related separations and reunions. The proposed family attachment network model will inform future research and intervention efforts with service members and their families.
Exploring mobile health in a private online social network.
Memon, Qurban A; Mustafa, Asma Fayes
2015-01-01
Health information is very vulnerable. Certain individuals or corporate organisations will continue to steal it similar to bank account data once data is on wireless channels. Once health information is part of a social network, corresponding privacy issues also surface. Insufficiently trained employees at hospitals that pay less attention to creating a privacy-aware culture will suffer loss when mobile devices containing health information are lost, stolen or sniffed. In this work, a social network system is explored as a m-health system from a privacy perspective. A model is developed within a framework of data-driven privacy and implemented on Android operating system. In order to check feasibility of the proposed model, a prototype application is developed on Facebook for different services, including: i) sharing user location; ii) showing nearby friends; iii) calculating and sharing distance moved, and calories burned; iv) calculating, tracking and sharing user heart rate; etc.
A Dynamic Network Model to Explain the Development of Excellent Human Performance
Den Hartigh, Ruud J. R.; Van Dijk, Marijn W. G.; Steenbeek, Henderien W.; Van Geert, Paul L. C.
2016-01-01
Across different domains, from sports to science, some individuals accomplish excellent levels of performance. For over 150 years, researchers have debated the roles of specific nature and nurture components to develop excellence. In this article, we argue that the key to excellence does not reside in specific underlying components, but rather in the ongoing interactions among the components. We propose that excellence emerges out of dynamic networks consisting of idiosyncratic mixtures of interacting components such as genetic endowment, motivation, practice, and coaching. Using computer simulations we demonstrate that the dynamic network model accurately predicts typical properties of excellence reported in the literature, such as the idiosyncratic developmental trajectories leading to excellence and the highly skewed distributions of productivity present in virtually any achievement domain. Based on this novel theoretical perspective on excellent human performance, this article concludes by suggesting policy implications and directions for future research. PMID:27148140
More than a meal: integrating non-feeding interactions into food webs
Kéfi, Sonia; Berlow, Eric L.; Wieters, Evie A.; Navarrete, Sergio A.; Petchey, Owen L.; Wood, Spencer A.; Boit, Alice; Joppa, Lucas N.; Lafferty, Kevin D.; Williams, Richard J.; Martinez, Neo D.; Menge, Bruce A.; Blanchette, Carol A.; Iles, Alison C.; Brose, Ulrich
2012-01-01
Organisms eating each other are only one of many types of well documented and important interactions among species. Other such types include habitat modification, predator interference and facilitation. However, ecological network research has been typically limited to either pure food webs or to networks of only a few (<3) interaction types. The great diversity of non-trophic interactions observed in nature has been poorly addressed by ecologists and largely excluded from network theory. Herein, we propose a conceptual framework that organises this diversity into three main functional classes defined by how they modify specific parameters in a dynamic food web model. This approach provides a path forward for incorporating non-trophic interactions in traditional food web models and offers a new perspective on tackling ecological complexity that should stimulate both theoretical and empirical approaches to understanding the patterns and dynamics of diverse species interactions in nature.
Understanding Online Health Groups for Depression: Social Network and Linguistic Perspectives
2016-01-01
Background Mental health problems have become increasingly prevalent in the past decade. With the advance of Web 2.0 technologies, social media present a novel platform for Web users to form online health groups. Members of online health groups discuss health-related issues and mutually help one another by anonymously revealing their mental conditions, sharing personal experiences, exchanging health information, and providing suggestions and support. The conversations in online health groups contain valuable information to facilitate the understanding of their mutual help behaviors and their mental health problems. Objective We aimed to characterize the conversations in a major online health group for major depressive disorder (MDD) patients in a popular Chinese social media platform. In particular, we intended to explain how Web users discuss depression-related issues from the perspective of the social networks and linguistic patterns revealed by the members’ conversations. Methods Social network analysis and linguistic analysis were employed to characterize the social structure and linguistic patterns, respectively. Furthermore, we integrated both perspectives to exploit the hidden relations between them. Results We found an intensive use of self-focus words and negative affect words. In general, group members used a higher proportion of negative affect words than positive affect words. The social network of the MDD group for depression possessed small-world and scale-free properties, with a much higher reciprocity ratio and clustering coefficient value as compared to the networks of other social media platforms and classic network models. We observed a number of interesting relationships, either strong correlations or convergent trends, between the topological properties and linguistic properties of the MDD group members. Conclusions (1) The MDD group members have the characteristics of self-preoccupation and negative thought content, according to Beck’s cognitive theory of depression; (2) the social structure of the MDD group is much stickier than those of other social media groups, indicating the tendency of mutual communications and efficient spread of information in the MDD group; and (3) the linguistic patterns of MDD members are associated with their topological positions in the social network. PMID:26966078
Understanding Online Health Groups for Depression: Social Network and Linguistic Perspectives.
Xu, Ronghua; Zhang, Qingpeng
2016-03-10
Mental health problems have become increasingly prevalent in the past decade. With the advance of Web 2.0 technologies, social media present a novel platform for Web users to form online health groups. Members of online health groups discuss health-related issues and mutually help one another by anonymously revealing their mental conditions, sharing personal experiences, exchanging health information, and providing suggestions and support. The conversations in online health groups contain valuable information to facilitate the understanding of their mutual help behaviors and their mental health problems. We aimed to characterize the conversations in a major online health group for major depressive disorder (MDD) patients in a popular Chinese social media platform. In particular, we intended to explain how Web users discuss depression-related issues from the perspective of the social networks and linguistic patterns revealed by the members' conversations. Social network analysis and linguistic analysis were employed to characterize the social structure and linguistic patterns, respectively. Furthermore, we integrated both perspectives to exploit the hidden relations between them. We found an intensive use of self-focus words and negative affect words. In general, group members used a higher proportion of negative affect words than positive affect words. The social network of the MDD group for depression possessed small-world and scale-free properties, with a much higher reciprocity ratio and clustering coefficient value as compared to the networks of other social media platforms and classic network models. We observed a number of interesting relationships, either strong correlations or convergent trends, between the topological properties and linguistic properties of the MDD group members. (1) The MDD group members have the characteristics of self-preoccupation and negative thought content, according to Beck's cognitive theory of depression; (2) the social structure of the MDD group is much stickier than those of other social media groups, indicating the tendency of mutual communications and efficient spread of information in the MDD group; and (3) the linguistic patterns of MDD members are associated with their topological positions in the social network.
Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K
2018-06-01
This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.
Graph theoretical analysis of complex networks in the brain
Stam, Cornelis J; Reijneveld, Jaap C
2007-01-01
Since the discovery of small-world and scale-free networks the study of complex systems from a network perspective has taken an enormous flight. In recent years many important properties of complex networks have been delineated. In particular, significant progress has been made in understanding the relationship between the structural properties of networks and the nature of dynamics taking place on these networks. For instance, the 'synchronizability' of complex networks of coupled oscillators can be determined by graph spectral analysis. These developments in the theory of complex networks have inspired new applications in the field of neuroscience. Graph analysis has been used in the study of models of neural networks, anatomical connectivity, and functional connectivity based upon fMRI, EEG and MEG. These studies suggest that the human brain can be modelled as a complex network, and may have a small-world structure both at the level of anatomical as well as functional connectivity. This small-world structure is hypothesized to reflect an optimal situation associated with rapid synchronization and information transfer, minimal wiring costs, as well as a balance between local processing and global integration. The topological structure of functional networks is probably restrained by genetic and anatomical factors, but can be modified during tasks. There is also increasing evidence that various types of brain disease such as Alzheimer's disease, schizophrenia, brain tumours and epilepsy may be associated with deviations of the functional network topology from the optimal small-world pattern. PMID:17908336
Control, responses and modularity of cellular regulatory networks: a control analysis perspective.
Bruggeman, F J; Snoep, J L; Westerhoff, H V
2008-11-01
Cells adapt to changes in environmental conditions through the concerted action of signalling, gene expression and metabolic subsystems. The authors will discuss a theoretical framework addressing such integrated systems. This 'hierarchical analysis' was first developed as an extension to a metabolic control analysis. It builds on the phenomenon that often the communication between signalling, gene expression and metabolic subsystems is almost exclusively via regulatory interactions and not via mass flow interactions. This allows for the treatment of the said subsystems as 'levels' in a hierarchical view of the organisation of the molecular reaction network of cells. Such a hierarchical approach has as a major advantage that levels can be analysed conceptually in isolation of each other (from a local intra-level perspective) and at a later stage integrated via their interactions (from a global inter-level perspective). Hereby, it allows for a modular approach with variable scope. A number of different approaches have been developed for the analysis of hierarchical systems, for example hierarchical control analysis and modular response analysis. The authors, here, review these methods and illustrate the strength of these types of analyses using a core model of a system with gene expression, metabolic and signal transduction levels.
Abbasi, Naveed A; Akan, Ozgur B
2017-12-01
Molecular communication is an important tool to understand biological communications with many promising applications in Internet of Bio-Nano Things (IoBNT). The insulin-glucose system is of key significance among the major intra-body nanonetworks, since it fulfills metabolic requirements of the body. The study of biological networks from information and communication theoretical (ICT) perspective is necessary for their introduction in the IoBNT framework. Therefore, the objective of this paper is to provide and analyze for the first time in the literature, a simple molecular communication model of the human insulin-glucose system from ICT perspective. The data rate, channel capacity, and the group propagation delay are analyzed for a two-cell network between a pancreatic beta cell and a muscle cell that are connected through a capillary. The results point out a correlation between an increase in insulin resistance and a decrease in the data rate and channel capacity, an increase in the insulin transmission rate, and an increase in the propagation delay. We also propose applications for the introduction of the system in the IoBNT framework. Multi-cell insulin glucose system models may be based on this simple model to help in the investigation, diagnosis, and treatment of insulin resistance by means of novel IoBNT applications.
Mechanism Design for Incentivizing Social Media Contributions
NASA Astrophysics Data System (ADS)
Singh, Vivek K.; Jain, Ramesh; Kankanhalli, Mohan
Despite recent advancements in user-driven social media platforms, tools for studying user behavior patterns and motivations remain primitive. We highlight the voluntary nature of user contributions and that users can choose when (and when not) to contribute to the common media pool. A Game theoretic framework is proposed to study the dynamics of social media networks where contribution costs are individual but gains are common. We model users as rational selfish agents, and consider domain attributes like voluntary participation, virtual reward structure, network effect, and public-sharing to model the dynamics of this interaction. The created model describes the most appropriate contribution strategy from each user's perspective and also highlights issues like 'free-rider' problem and individual rationality leading to irrational (i.e. sub-optimal) group behavior. We also consider the perspective of the system designer who is interested in finding the best incentive mechanisms to influence the selfish end-users so that the overall system utility is maximized. We propose and compare multiple mechanisms (based on optimal bonus payment, social incentive leveraging, and second price auction) to study how a system designer can exploit the selfishness of its users, to design incentive mechanisms which improve the overall task-completion probability and system performance, while possibly still benefiting the individual users.
Analysis of metro network performance from a complex network perspective
NASA Astrophysics Data System (ADS)
Wu, Xingtang; Dong, Hairong; Tse, Chi Kong; Ho, Ivan W. H.; Lau, Francis C. M.
2018-02-01
In this paper, the performance of metro networks is studied from a network science perspective. We review the structural efficiency of metro networks on the basis of a passenger's intuitive routing strategy that optimizes the number of transfers and the distance traveled.A new node centrality measure, called node occupying probability, is introduced for evaluating the level of utilization of stations. The robustness of a metro network is analyzed under several attack scenarios. Six metro networks (Beijing, London, Paris, Hong Kong, Tokyo and New York) are compared in terms of the node occupying probability and a few other performance parameters. Simulation results show that the New York metro system has better topological efficiency, the Tokyo and Hong Kong systems are the most robust under random attack and target attack, respectively.
NASA Astrophysics Data System (ADS)
Costa, Cristina Chuva; da Cunha, Paulo Rupino
The way the Internet has connected millions of users at negligible costs has changed playing field for companies. Several stakeholders can now come together in virtual networks to create innovative business models that would be unfeasible in the physical world. However, the more radical the departure from the established models of value creation, the bigger the complexity in ensuring the sustained interest of the involved parties and the stability of the bonds. To address this problem, we sought inspiration in the Actor-Network Theory (ANT), which is capable of providing insights into socio-technical settings where human and non-human agents interact. We describe how several of its principles, ideas, and concepts were adapted and embedded in our approach for complex business model design or analysis. A simple illustration is provided. Our iterative approach helps systematically scrutinize and tune the contributions and returns of the various actors, ensuring that all end up with an attractive value proposal, thus promoting the robustness of the network. Guidelines for the services that an underlying information system must provide are also derived from the results.
Flexible Redistribution in Cognitive Networks.
Hartwigsen, Gesa
2018-06-15
Previous work has emphasized that cognitive functions in the human brain are organized into large-scale networks. However, the mechanisms that allow these networks to compensate for focal disruptions remain elusive. I suggest a new perspective on the compensatory flexibility of cognitive networks. First, I demonstrate that cognitive networks can rapidly change the functional weight of the relative contribution of different regions. Second, I argue that there is an asymmetry in the compensatory potential of different kinds of networks. Specifically, recruitment of domain-general functions can partially compensate for focal disruptions of specialized cognitive functions, but not vice versa. Considering the compensatory potential within and across networks will increase our understanding of functional adaptation and reorganization after brain lesions and offers a new perspective on large-scale neural network (re-)organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Trust Networks: A New Perspective on Pedigree and the Ambiguities of Admissions
ERIC Educational Resources Information Center
Posselt, Julie R.
2018-01-01
Privileging elite academic pedigrees in graduate admissions preserves racial and socioeconomic inequities that many institutions say they wish to reduce. To understand this preference, I integrate across perspectives on trust in rational choice, social capital, and social network theories, and use the resulting framework to interpret 68 interviews…
Social Network Perspectives Reveal Strength of Academic Developers as Weak Ties
ERIC Educational Resources Information Center
Matthews, Kelly E.; Crampton, Andrea; Hill, Matthew; Johnson, Elizabeth D.; Sharma, Manjula D.; Varsavsky, Cristina
2015-01-01
Social network perspectives acknowledge the influence of disciplinary cultures on academics' teaching beliefs and practices with implications for academic developers. The contribution of academic developers in 18 scholarship of teaching and learning (SoTL) projects situated in the sciences are explored by drawing on data from a two-year national…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auld, Joshua; Hope, Michael; Ley, Hubert
This paper discusses the development of an agent-based modelling software development kit, and the implementation and validation of a model using it that integrates dynamic simulation of travel demand, network supply and network operations. A description is given of the core utilities in the kit: a parallel discrete event engine, interprocess exchange engine, and memory allocator, as well as a number of ancillary utilities: visualization library, database IO library, and scenario manager. The overall framework emphasizes the design goals of: generality, code agility, and high performance. This framework allows the modeling of several aspects of transportation system that are typicallymore » done with separate stand-alone software applications, in a high-performance and extensible manner. The issue of integrating such models as dynamic traffic assignment and disaggregate demand models has been a long standing issue for transportation modelers. The integrated approach shows a possible way to resolve this difficulty. The simulation model built from the POLARIS framework is a single, shared-memory process for handling all aspects of the integrated urban simulation. The resulting gains in computational efficiency and performance allow planning models to be extended to include previously separate aspects of the urban system, enhancing the utility of such models from the planning perspective. Initial tests with case studies involving traffic management center impacts on various network events such as accidents, congestion and weather events, show the potential of the system.« less
Mapping a Careflow Network to assess the connectedness of Connected Health.
Carroll, Noel; Richardson, Ita
2017-04-01
Connected Health is an emerging and rapidly developing field which has the potential to transform healthcare service systems by increasing its safety, quality and overall efficiency. From a healthcare perspective, process improvement models have mainly focused on the static workflow viewpoint. The objective of this article is to study and model the dynamic nature of healthcare delivery, allowing us to identify where potential issues exist within the service system and to examine how Connected Health technological solutions may support service efficiencies. We explore the application of social network analysis (SNA) as a modelling technique which captures the dynamic nature of a healthcare service. We demonstrate how it can be used to map the 'Careflow Network' and guide Connected Health innovators to examine specific opportunities within the healthcare service. Our results indicate that healthcare technology must be correctly identified and implemented within the Careflow Network to enjoy improvements in service delivery. Oftentimes, prior to making the transformation to Connected Health, researchers use various modelling techniques that fail to identify where Connected Health innovation is best placed in a healthcare service network. Using SNA allows us to develop an understanding of the current operation of healthcare system within which they can effect change. It is important to identify and model the resource exchanges to ensure that the quality and safety of care are enhanced, efficiencies are increased and the overall healthcare service system is improved. We have shown that dynamic models allow us to study the exchange of resources. These are often intertwined within a socio-technical context in an informal manner and not accounted for in static models, yet capture a truer insight on the operations of a Careflow Network.
NASA Astrophysics Data System (ADS)
Kotegawa, Tatsuya
Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high robustness is achievable only in exchange of lower passenger travel and fuel burn efficiency. However, increase in the network density can mitigate this trade-off.
On Complex Networks Representation and Computation of Hydrologycal Quantities
NASA Astrophysics Data System (ADS)
Serafin, F.; Bancheri, M.; David, O.; Rigon, R.
2017-12-01
Water is our blue gold. Despite results of discovery-based science keep warning public opinion about the looming worldwide water crisis, water is still treated as a not worth taking resource. Could a different multi-scale perspective affect environmental decision-making more deeply? Can also a further pairing to a new graphical representation of processes interaction sway decision-making more effectively and public opinion consequently?This abstract introduces a complex networks driven way to represent catchments eco-hydrology and related flexible informatics to manage it. The representation is built upon mathematical category. A category is an algebraic structure that comprises "objects" linked by "arrows". It is an evolution of Petri Nets said Time Continuous Petri Nets (TCPN). It aims to display (water) budgets processes and catchment interactions using explicative and self-contained symbolism. The result improves readability of physical processes compared to current descriptions. The IT perspective hinges on the Object Modeling System (OMS) v3. The latter is a non-invasive flexible environmental modeling framework designed to support component-based model development. The implementation of a Directed Acyclic Graph (DAG) data structure, named Net3, has recently enhanced its flexibility. Net3 represents interacting systems as complex networks: vertices match up with any sort of time evolving quantity; edges correspond to their data (fluxes) interchange. It currently hosts JGrass-NewAge components, and those implementing travel time analysis of fluxes. Further bio-physical or management oriented components can be easily added.This talk introduces both graphical representation and related informatics exercising actual applications and examples.
Network analysis applications in hydrology
NASA Astrophysics Data System (ADS)
Price, Katie
2017-04-01
Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain underexplored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five longterm USGS streamflow and water quality gages, allowing network application of longterm flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long term and eventbased hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwatersurface water interactions.
Yeung, D Y; Fung, H H; Lang, F R
2007-01-01
Gender differences in social network characteristics are well documented in the literature. Socio-emotional selectivity theory emphasizes the importance of future time perception on selection of social partners whereas cultural studies stress the roles of Renqing (relationship orientation) on social interactions. This study examined the effects of future time perspective and adherence to Renqing on social network characteristics, and their associations with psychological well-being of 321 Chinese men and women, aged 28-91 years. Results showed that adherence to Renqing partially accounted for gender differences in the number of relatives, even after controlling for the effects of extraversion and structural factors. Moreover, women, but not men, with lower adherence to Renqing and more limited future time perspective were found to be happier when they had fewer close friends in their social networks.
Assessing Advanced Technology in CENATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallent, Nathan R.; Barker, Kevin J.; Gioiosa, Roberto
PNNL's Center for Advanced Technology Evaluation (CENATE) is a new U.S. Department of Energy center whose mission is to assess and facilitate access to emerging computing technology. CENATE is assessing a range of advanced technologies, from evolutionary to disruptive. Technologies of interest include the processor socket (homogeneous and accelerated systems), memories (dynamic, static, memory cubes), motherboards, networks (network interface cards and switches), and input/output and storage devices. CENATE is developing a multi-perspective evaluation process based on integrating advanced system instrumentation, performance measurements, and modeling and simulation. We show evaluations of two emerging network technologies: silicon photonics interconnects and the Datamore » Vortex network. CENATE's evaluation also addresses the question of which machine is best for a given workload under certain constraints. We show a performance-power tradeoff analysis of a well-known machine learning application on two systems.« less
Parodi, Silvio; Riccardi, Giuseppe; Castagnino, Nicoletta; Tortolina, Lorenzo; Maffei, Massimo; Zoppoli, Gabriele; Nencioni, Alessio; Ballestrero, Alberto; Patrone, Franco
2016-01-01
Two different perspectives are the main focus of this book chapter: (1) A perspective that looks to the future, with the goal of devising rational associations of targeted inhibitors against distinct altered signaling-network pathways. This goal implies a sufficiently in-depth molecular diagnosis of the personal cancer of a given patient. A sufficiently robust and extended dynamic modeling will suggest rational combinations of the abovementioned oncoprotein inhibitors. The work toward new selective drugs, in the field of medicinal chemistry, is very intensive. Rational associations of selective drug inhibitors will become progressively a more realistic goal within the next 3-5 years. Toward the possibility of an implementation in standard oncologic structures of technologically sufficiently advanced countries, new (legal) rules probably will have to be established through a consensus process, at the level of both diagnostic and therapeutic behaviors.(2) The cancer patient of today is not the patient of 5-10 years from now. How to support the choice of the most convenient (and already clinically allowed) treatment for an individual cancer patient, as of today? We will consider the present level of artificial intelligence (AI) sophistication and the continuous feeding, updating, and integration of cancer-related new data, in AI systems. We will also report briefly about one of the most important projects in this field: IBM Watson US Cancer Centers. Allowing for a temporal shift, in the long term the two perspectives should move in the same direction, with a necessary time lag between them.
ERIC Educational Resources Information Center
Critelli, Filomena; Lewis, Laura; Méndez-López, Adalberto
2017-01-01
This article examines an innovative model of online international education regarding disability through a human rights perspective piloted through a collaboration between Universidad LaSalle, Mexico, and University at Buffalo, United States. The course is organized around a pressing global human rights and development issue. Its objective is to…
ERIC Educational Resources Information Center
Huang, Tony Cheng-Kui; Huang, Chih-Hong
2010-01-01
With advances in information and network technologies, lots of data have been digitized to reveal information for users by the construction of Web sites. Unfortunately, they are both overloading and overlapping in Internet so that users cannot distinguish their quality. To address this issue in education, Hwang, Huang, and Tseng proposed a group…
ERIC Educational Resources Information Center
Deserno, Marie K.; Borsboom, Denny; Begeer, Sander; Geurts, Hilde M.
2017-01-01
Given the heterogeneity of autism spectrum disorder, an important limitation of much autism spectrum disorder research is that outcome measures are statistically modeled as separate dependent variables. Often, their multivariate structure is either ignored or treated as a nuisance. This study aims to lift this limitation by applying network…
Shen, Tongye; Gnanakaran, S
2009-04-22
A critical roadblock to the production of biofuels from lignocellulosic biomass is the efficient degradation of crystalline microfibrils of cellulose to glucose. A microscopic understanding of how different physical conditions affect the overall stability of the crystalline structure of microfibrils could facilitate the design of more effective protocols for their degradation. One of the essential physical interactions that stabilizes microfibrils is a network of hydrogen (H) bonds: both intrachain H-bonds between neighboring monomers of a single cellulose polymer chain and interchain H-bonds between adjacent chains. We construct a statistical mechanical model of cellulose assembly at the resolution of explicit hydrogen-bond networks. Using the transfer matrix method, the partition function and the subsequent statistical properties are evaluated. With the help of this lattice-based model, we capture the plasticity of the H-bond network in cellulose due to frustration and redundancy in the placement of H-bonds. This plasticity is responsible for the stability of cellulose over a wide range of temperatures. Stable intrachain and interchain H-bonds are identified as a function of temperature that could possibly be manipulated toward rational destruction of crystalline cellulose.
Examining Self-Disclosure on Social Networking Sites: A Flow Theory and Privacy Perspective.
Ampong, George Oppong Appiagyei; Mensah, Aseda; Adu, Adolph Sedem Yaw; Addae, John Agyekum; Omoregie, Osaretin Kayode; Ofori, Kwame Simpe
2018-06-06
Social media and other web 2.0 tools have provided users with the platform to interact with and also disclose personal information to not only their friends and acquaintances but also relative strangers with unprecedented ease. This has enhanced the ability of people to share more about themselves, their families, and their friends through a variety of media including text, photo, and video, thus developing and sustaining social and business relationships. The purpose of the paper is to identify the factors that predict self-disclosure on social networking sites from the perspective of privacy and flow. Data was collected from 452 students in three leading universities in Ghana and analyzed with Partial Least Square-Structural Equation Modeling. Results from the study revealed that privacy risk was the most significant predictor. We also found privacy awareness, privacy concerns, and privacy invasion experience to be significant predictors of self-disclosure. Interaction and perceived control were found to have significant effect on self-disclosure. In all, the model accounted for 54.6 percent of the variance in self-disclosure. The implications and limitations of the current study are discussed, and directions for future research proposed.
Memristor-based neural networks: Synaptic versus neuronal stochasticity
NASA Astrophysics Data System (ADS)
Naous, Rawan; AlShedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled Nabil
2016-11-01
In neuromorphic circuits, stochasticity in the cortex can be mapped into the synaptic or neuronal components. The hardware emulation of these stochastic neural networks are currently being extensively studied using resistive memories or memristors. The ionic process involved in the underlying switching behavior of the memristive elements is considered as the main source of stochasticity of its operation. Building on its inherent variability, the memristor is incorporated into abstract models of stochastic neurons and synapses. Two approaches of stochastic neural networks are investigated. Aside from the size and area perspective, the impact on the system performance, in terms of accuracy, recognition rates, and learning, among these two approaches and where the memristor would fall into place are the main comparison points to be considered.
A novel approach to characterize information radiation in complex networks
NASA Astrophysics Data System (ADS)
Wang, Xiaoyang; Wang, Ying; Zhu, Lin; Li, Chao
2016-06-01
The traditional research of information dissemination is mostly based on the virus spreading model that the information is being spread by probability, which does not match very well to the reality, because the information that we receive is always more or less than what was sent. In order to quantitatively describe variations in the amount of information during the spreading process, this article proposes a safety information radiation model on the basis of communication theory, combining with relevant theories of complex networks. This model comprehensively considers the various influence factors when safety information radiates in the network, and introduces some concepts from the communication theory perspective, such as the radiation gain function, receiving gain function, information retaining capacity and information second reception capacity, to describe the safety information radiation process between nodes and dynamically investigate the states of network nodes. On a micro level, this article analyzes the influence of various initial conditions and parameters on safety information radiation through the new model simulation. The simulation reveals that this novel approach can reflect the variation of safety information quantity of each node in the complex network, and the scale-free network has better ;radiation explosive power;, while the small-world network has better ;radiation staying power;. The results also show that it is efficient to improve the overall performance of network security by selecting nodes with high degrees as the information source, refining and simplifying the information, increasing the information second reception capacity and decreasing the noises. In a word, this article lays the foundation for further research on the interactions of information and energy between internal components within complex systems.
Identifying and Investigating the "Best" Schools: A Network-Based Analysis
ERIC Educational Resources Information Center
Joshi, Priyadarshani
2018-01-01
This paper aims to provide a fresh perspective on the predominantly negative discourse on schooling quality in low-income countries by focusing on the research questions: "How can one identify great schools and what makes them special?" Using a network-based perspective, I measure peer evaluations of quality in two districts in Nepal.…
The National Research and Education Network (NREN): Research and Policy Perspectives.
ERIC Educational Resources Information Center
McClure, Charles R.; And Others
This book provides an overview and status report on the progress made in developing the National Research and Education Network (NREN) as of early 1991. It reports on a number of investigations that provide a research and policy perspective on the NREN and computer-mediated communication (CMC), and brings together key source documents that have…
ERIC Educational Resources Information Center
Chen, Tse-Mei; Barnett, George A.
2000-01-01
Analysis of 64 countries representing the largest number of international student exchanges examines student flows from a macro perspective. Findings indicate that the international student exchange network is relatively stable; the United States and Western industrialized nations are at the center; East European and Asian countries have become…
Mesoscopic structure conditions the emergence of cooperation on social networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozano, S.; Arenas, A.; Sanchez, A.
We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement withmore » the observations in both real substrates. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.« less
A National Perspective on Women Owning Woodlands (WOW) Networks
ERIC Educational Resources Information Center
Huff, Emily S.
2017-01-01
This article provides a national overview of women owning woodlands (WOW) networks and the barriers and successes they encounter. Qualitative interview data with key network leaders were used for increasing understanding of how these networks operate. Network leaders were all connected professionally, and all successful WOW networks involved…
Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma
2015-04-29
Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential for pigmentation which can be further explored to better understand normal pigmentation as well as its pathologies including vitiligo and melanoma, and enable therapeutic intervention.
Moylan, Carrie A; Lindhorst, Taryn; Tajima, Emiko A
2015-04-01
Multidisciplinary coordinated Sexual Assault Response Teams (SARTs) are a growing model of providing health, legal, and emotional support services to victims of sexual assault. This article conceptualizes SARTs from an organizational perspective and explores three approaches to researching SARTs that have the potential of increasing our understanding of the benefits and challenges of multidisciplinary service delivery. These approaches attend to several levels of organizational behavior, including the organizational response to external legitimacy pressures, the inter-organizational networks of victim services, and the negotiation of power and disciplinary boundaries. Possible applications to organizational research on SARTs are explored. © The Author(s) 2015.
Zhang, Shihua; Zhang, Liang; Tai, Yuling; Wang, Xuewen; Ho, Chi-Tang; Wan, Xiaochun
2018-01-01
Characteristic secondary metabolites, including flavonoids, theanine and caffeine, in the tea plant (Camellia sinensis) are the primary sources of the rich flavors, fresh taste, and health benefits of tea. The decoding of genes involved in these characteristic components is still significantly lagging, which lays an obstacle for applied genetic improvement and metabolic engineering. With the popularity of high-throughout transcriptomics and metabolomics, ‘omics’-based network approaches, such as gene co-expression network and gene-to-metabolite network, have emerged as powerful tools for gene discovery of plant-specialized (secondary) metabolism. Thus, it is pivotal to summarize and introduce such system-based strategies in facilitating gene identification of characteristic metabolic pathways in the tea plant (or other plants). In this review, we describe recent advances in transcriptomics and metabolomics for transcript and metabolite profiling, and highlight ‘omics’-based network strategies using successful examples in model and non-model plants. Further, we summarize recent progress in ‘omics’ analysis for gene identification of characteristic metabolites in the tea plant. Limitations of the current strategies are discussed by comparison with ‘omics’-based network approaches. Finally, we demonstrate the potential of introducing such network strategies in the tea plant, with a prospects ending for a promising network discovery of characteristic metabolite genes in the tea plant. PMID:29915604
Erdoğdu, Utku; Tan, Mehmet; Alhajj, Reda; Polat, Faruk; Rokne, Jon; Demetrick, Douglas
2013-01-01
The availability of enough samples for effective analysis and knowledge discovery has been a challenge in the research community, especially in the area of gene expression data analysis. Thus, the approaches being developed for data analysis have mostly suffered from the lack of enough data to train and test the constructed models. We argue that the process of sample generation could be successfully automated by employing some sophisticated machine learning techniques. An automated sample generation framework could successfully complement the actual sample generation from real cases. This argument is validated in this paper by describing a framework that integrates multiple models (perspectives) for sample generation. We illustrate its applicability for producing new gene expression data samples, a highly demanding area that has not received attention. The three perspectives employed in the process are based on models that are not closely related. The independence eliminates the bias of having the produced approach covering only certain characteristics of the domain and leading to samples skewed towards one direction. The first model is based on the Probabilistic Boolean Network (PBN) representation of the gene regulatory network underlying the given gene expression data. The second model integrates Hierarchical Markov Model (HIMM) and the third model employs a genetic algorithm in the process. Each model learns as much as possible characteristics of the domain being analysed and tries to incorporate the learned characteristics in generating new samples. In other words, the models base their analysis on domain knowledge implicitly present in the data itself. The developed framework has been extensively tested by checking how the new samples complement the original samples. The produced results are very promising in showing the effectiveness, usefulness and applicability of the proposed multi-model framework.
Enhancing Interdisciplinary Human System Risk Research Through Modeling and Network Approaches
NASA Technical Reports Server (NTRS)
Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark
2015-01-01
NASA's Human Research Program (HRP) supports research to reduce human health and performance risks inherent in future human space exploration missions. Understanding risk outcomes and contributing factors in an integrated manner allows HRP research to support development of efficient and effective mitigations from cross-disciplinary perspectives, and to enable resilient human and engineered systems for spaceflight. The purpose of this work is to support scientific collaborations and research portfolio management by utilizing modeling for analysis and visualization of current and potential future interdisciplinary efforts.
MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control
NASA Astrophysics Data System (ADS)
Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming
2017-09-01
Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.
Coevolution of Cooperation and Partner Rewiring Range in Spatial Social Networks
NASA Astrophysics Data System (ADS)
Khoo, Tommy; Fu, Feng; Pauls, Scott
2016-11-01
In recent years, there has been growing interest in the study of coevolutionary games on networks. Despite much progress, little attention has been paid to spatially embedded networks, where the underlying geographic distance, rather than the graph distance, is an important and relevant aspect of the partner rewiring process. It thus remains largely unclear how individual partner rewiring range preference, local vs. global, emerges and affects cooperation. Here we explicitly address this issue using a coevolutionary model of cooperation and partner rewiring range preference in spatially embedded social networks. In contrast to local rewiring, global rewiring has no distance restriction but incurs a one-time cost upon establishing any long range link. We find that under a wide range of model parameters, global partner switching preference can coevolve with cooperation. Moreover, the resulting partner network is highly degree-heterogeneous with small average shortest path length while maintaining high clustering, thereby possessing small-world properties. We also discover an optimum availability of reputation information for the emergence of global cooperators, who form distant partnerships at a cost to themselves. From the coevolutionary perspective, our work may help explain the ubiquity of small-world topologies arising alongside cooperation in the real world.
NASA Astrophysics Data System (ADS)
Griffiths, John D.
2015-12-01
The modern understanding of the brain as a large, complex network of interacting elements is a natural consequence of the Neuron Doctrine [1,2] that has been bolstered in recent years by the tools and concepts of connectomics. In this abstracted, network-centric view, the essence of neural and cognitive function derives from the flows between network elements of activity and information - or, more generally, causal influence. The appropriate characterization of causality in neural systems, therefore, is a question at the very heart of systems neuroscience.
Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue.
D'Angelo, Egidio; Antonietti, Alberto; Casali, Stefano; Casellato, Claudia; Garrido, Jesus A; Luque, Niceto Rafael; Mapelli, Lisa; Masoli, Stefano; Pedrocchi, Alessandra; Prestori, Francesca; Rizza, Martina Francesca; Ros, Eduardo
2016-01-01
The cerebellar microcircuit has been the work bench for theoretical and computational modeling since the beginning of neuroscientific research. The regular neural architecture of the cerebellum inspired different solutions to the long-standing issue of how its circuitry could control motor learning and coordination. Originally, the cerebellar network was modeled using a statistical-topological approach that was later extended by considering the geometrical organization of local microcircuits. However, with the advancement in anatomical and physiological investigations, new discoveries have revealed an unexpected richness of connections, neuronal dynamics and plasticity, calling for a change in modeling strategies, so as to include the multitude of elementary aspects of the network into an integrated and easily updatable computational framework. Recently, biophysically accurate "realistic" models using a bottom-up strategy accounted for both detailed connectivity and neuronal non-linear membrane dynamics. In this perspective review, we will consider the state of the art and discuss how these initial efforts could be further improved. Moreover, we will consider how embodied neurorobotic models including spiking cerebellar networks could help explaining the role and interplay of distributed forms of plasticity. We envisage that realistic modeling, combined with closed-loop simulations, will help to capture the essence of cerebellar computations and could eventually be applied to neurological diseases and neurorobotic control systems.
Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue
D’Angelo, Egidio; Antonietti, Alberto; Casali, Stefano; Casellato, Claudia; Garrido, Jesus A.; Luque, Niceto Rafael; Mapelli, Lisa; Masoli, Stefano; Pedrocchi, Alessandra; Prestori, Francesca; Rizza, Martina Francesca; Ros, Eduardo
2016-01-01
The cerebellar microcircuit has been the work bench for theoretical and computational modeling since the beginning of neuroscientific research. The regular neural architecture of the cerebellum inspired different solutions to the long-standing issue of how its circuitry could control motor learning and coordination. Originally, the cerebellar network was modeled using a statistical-topological approach that was later extended by considering the geometrical organization of local microcircuits. However, with the advancement in anatomical and physiological investigations, new discoveries have revealed an unexpected richness of connections, neuronal dynamics and plasticity, calling for a change in modeling strategies, so as to include the multitude of elementary aspects of the network into an integrated and easily updatable computational framework. Recently, biophysically accurate “realistic” models using a bottom-up strategy accounted for both detailed connectivity and neuronal non-linear membrane dynamics. In this perspective review, we will consider the state of the art and discuss how these initial efforts could be further improved. Moreover, we will consider how embodied neurorobotic models including spiking cerebellar networks could help explaining the role and interplay of distributed forms of plasticity. We envisage that realistic modeling, combined with closed-loop simulations, will help to capture the essence of cerebellar computations and could eventually be applied to neurological diseases and neurorobotic control systems. PMID:27458345
Network approach to patterns in stratocumulus clouds
NASA Astrophysics Data System (ADS)
Glassmeier, Franziska; Feingold, Graham
2017-10-01
Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth’s climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis’s Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav-Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes.
Network approach to patterns in stratocumulus clouds.
Glassmeier, Franziska; Feingold, Graham
2017-10-03
Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth's climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis's Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav-Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes.
Network approach to patterns in stratocumulus clouds
Feingold, Graham
2017-01-01
Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth’s climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis’s Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav–Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes. PMID:28904097
Why Network? Theoretical Perspectives on Networking
ERIC Educational Resources Information Center
Muijs, Daniel; West, Mel; Ainscow, Mel
2010-01-01
In recent years, networking and collaboration have become increasingly popular in education. However, there is at present a lack of attention to the theoretical basis of networking, which could illuminate when and when not to network and under what conditions networks are likely to be successful. In this paper, we will attempt to sketch the…
Wigman, J T W; van Os, J; Borsboom, D; Wardenaar, K J; Epskamp, S; Klippel, A; Viechtbauer, W; Myin-Germeys, I; Wichers, M
2015-08-01
It has been suggested that the structure of psychopathology is best described as a complex network of components that interact in dynamic ways. The goal of the present paper was to examine the concept of psychopathology from a network perspective, combining complementary top-down and bottom-up approaches using momentary assessment techniques. A pooled Experience Sampling Method (ESM) dataset of three groups (individuals with a diagnosis of depression, psychotic disorder or no diagnosis) was used (pooled N = 599). The top-down approach explored the network structure of mental states across different diagnostic categories. For this purpose, networks of five momentary mental states ('cheerful', 'content', 'down', 'insecure' and 'suspicious') were compared between the three groups. The complementary bottom-up approach used principal component analysis to explore whether empirically derived network structures yield meaningful higher order clusters. Individuals with a clinical diagnosis had more strongly connected moment-to-moment network structures, especially the depressed group. This group also showed more interconnections specifically between positive and negative mental states than the psychotic group. In the bottom-up approach, all possible connections between mental states were clustered into seven main components that together captured the main characteristics of the network dynamics. Our combination of (i) comparing network structure of mental states across three diagnostically different groups and (ii) searching for trans-diagnostic network components across all pooled individuals showed that these two approaches yield different, complementary perspectives in the field of psychopathology. The network paradigm therefore may be useful to map transdiagnostic processes.
Okamoto, Janet; Johnson, C. Anderson; Leventhal, Adam; Milam, Joel; Pentz, Mary Ann; Schwartz, David; Valente, Thomas W.
2012-01-01
Despite the well established influence of peer experiences on adolescent attitudes, thoughts, and behaviors, surprisingly little research has examined the importance of peer context and the increased prevalence of depressive symptoms accompanying the transition into adolescence. Examination of social networks may provide some insight into the role of peers in the vulnerability of some adolescents to depression. To address this issue, we leveraged an existing sample of 5,563 Chinese 10th graders to incorporate social network data into a multilevel regression model of depressive symptoms. We found that, in this sample, being nominated as a friend was more important than being nominated as most liked. Social network centrality was significantly associated with depression; those adolescents who were less connected were more likely to suffer from depression. The risk of depression for those who were marginal members of classroom social networks was substantial. These findings suggest that a social network perspective could help to increase the effectiveness of programs aimed at preventing adolescent depression. PMID:23226988
The brain network reflecting bodily self-consciousness: a functional connectivity study
Ionta, Silvio; Martuzzi, Roberto; Salomon, Roy
2014-01-01
Several brain regions are important for processing self-location and first-person perspective, two important aspects of bodily self-consciousness. However, the interplay between these regions has not been clarified. In addition, while self-location and first-person perspective in healthy subjects are associated with bilateral activity in temporoparietal junction (TPJ), disturbed self-location and first-person perspective result from damage of only the right TPJ. Identifying the involved brain network and understanding the role of hemispheric specializations in encoding self-location and first-person perspective, will provide important information on system-level interactions neurally mediating bodily self-consciousness. Here, we used functional connectivity and showed that right and left TPJ are bilaterally connected to supplementary motor area, ventral premotor cortex, insula, intraparietal sulcus and occipitotemporal cortex. Furthermore, the functional connectivity between right TPJ and right insula had the highest selectivity for changes in self-location and first-person perspective. Finally, functional connectivity revealed hemispheric differences showing that self-location and first-person perspective modulated the connectivity between right TPJ, right posterior insula, and right supplementary motor area, and between left TPJ and right anterior insula. The present data extend previous evidence on healthy populations and clinical observations in neurological deficits, supporting a bilateral, but right-hemispheric dominant, network for bodily self-consciousness. PMID:24396007
Multilayer modeling and analysis of human brain networks
2017-01-01
Abstract Understanding how the human brain is structured, and how its architecture is related to function, is of paramount importance for a variety of applications, including but not limited to new ways to prevent, deal with, and cure brain diseases, such as Alzheimer’s or Parkinson’s, and psychiatric disorders, such as schizophrenia. The recent advances in structural and functional neuroimaging, together with the increasing attitude toward interdisciplinary approaches involving computer science, mathematics, and physics, are fostering interesting results from computational neuroscience that are quite often based on the analysis of complex network representation of the human brain. In recent years, this representation experienced a theoretical and computational revolution that is breaching neuroscience, allowing us to cope with the increasing complexity of the human brain across multiple scales and in multiple dimensions and to model structural and functional connectivity from new perspectives, often combined with each other. In this work, we will review the main achievements obtained from interdisciplinary research based on magnetic resonance imaging and establish de facto, the birth of multilayer network analysis and modeling of the human brain. PMID:28327916
Target Control in Logical Models Using the Domain of Influence of Nodes.
Yang, Gang; Gómez Tejeda Zañudo, Jorge; Albert, Réka
2018-01-01
Dynamical models of biomolecular networks are successfully used to understand the mechanisms underlying complex diseases and to design therapeutic strategies. Network control and its special case of target control, is a promising avenue toward developing disease therapies. In target control it is assumed that a small subset of nodes is most relevant to the system's state and the goal is to drive the target nodes into their desired states. An example of target control would be driving a cell to commit to apoptosis (programmed cell death). From the experimental perspective, gene knockout, pharmacological inhibition of proteins, and providing sustained external signals are among practical intervention techniques. We identify methodologies to use the stabilizing effect of sustained interventions for target control in Boolean network models of biomolecular networks. Specifically, we define the domain of influence (DOI) of a node (in a certain state) to be the nodes (and their corresponding states) that will be ultimately stabilized by the sustained state of this node regardless of the initial state of the system. We also define the related concept of the logical domain of influence (LDOI) of a node, and develop an algorithm for its identification using an auxiliary network that incorporates the regulatory logic. This way a solution to the target control problem is a set of nodes whose DOI can cover the desired target node states. We perform greedy randomized adaptive search in node state space to find such solutions. We apply our strategy to in silico biological network models of real systems to demonstrate its effectiveness.
Todd, Robert G.; van der Zee, Lucas
2016-01-01
Abstract The eukaryotic cell cycle is robustly designed, with interacting molecules organized within a definite topology that ensures temporal precision of its phase transitions. Its underlying dynamics are regulated by molecular switches, for which remarkable insights have been provided by genetic and molecular biology efforts. In a number of cases, this information has been made predictive, through computational models. These models have allowed for the identification of novel molecular mechanisms, later validated experimentally. Logical modeling represents one of the youngest approaches to address cell cycle regulation. We summarize the advances that this type of modeling has achieved to reproduce and predict cell cycle dynamics. Furthermore, we present the challenge that this type of modeling is now ready to tackle: its integration with intracellular networks, and its formalisms, to understand crosstalks underlying systems level properties, ultimate aim of multi-scale models. Specifically, we discuss and illustrate how such an integration may be realized, by integrating a minimal logical model of the cell cycle with a metabolic network. PMID:27993914
A financial network perspective of financial institutions' systemic risk contributions
NASA Astrophysics Data System (ADS)
Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang; Uryasev, Stan
2016-08-01
This study considers the effects of the financial institutions' local topology structure in the financial network on their systemic risk contribution using data from the Chinese stock market. We first measure the systemic risk contribution with the Conditional Value-at-Risk (CoVaR) which is estimated by applying dynamic conditional correlation multivariate GARCH model (DCC-MVGARCH). Financial networks are constructed from dynamic conditional correlations (DCC) with graph filtering method of minimum spanning trees (MSTs). Then we investigate dynamics of systemic risk contributions of financial institution. Also we study dynamics of financial institution's local topology structure in the financial network. Finally, we analyze the quantitative relationships between the local topology structure and systemic risk contribution with panel data regression analysis. We find that financial institutions with greater node strength, larger node betweenness centrality, larger node closeness centrality and larger node clustering coefficient tend to be associated with larger systemic risk contributions.
Mathematical foundations of hybrid data assimilation from a synchronization perspective
NASA Astrophysics Data System (ADS)
Penny, Stephen G.
2017-12-01
The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.
Mathematical foundations of hybrid data assimilation from a synchronization perspective.
Penny, Stephen G
2017-12-01
The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.
Explanatory Models for Psychiatric Illness
Kendler, Kenneth S.
2009-01-01
How can we best develop explanatory models for psychiatric disorders? Because causal factors have an impact on psychiatric illness both at micro levels and macro levels, both within and outside of the individual, and involving processes best understood from biological, psychological, and sociocultural perspectives, traditional models of science that strive for single broadly applicable explanatory laws are ill suited for our field. Such models are based on the incorrect assumption that psychiatric illnesses can be understood from a single perspective. A more appropriate scientific model for psychiatry emphasizes the understanding of mechanisms, an approach that fits naturally with a multicausal framework and provides a realistic paradigm for scientific progress, that is, understanding mechanisms through decomposition and reassembly. Simple subunits of complicated mechanisms can be usefully studied in isolation. Reassembling these constituent parts into a functioning whole, which is straightforward for simple additive mechanisms, will be far more challenging in psychiatry where causal networks contain multiple nonlinear interactions and causal loops. Our field has long struggled with the interrelationship between biological and psychological explanatory perspectives. Building from the seminal work of the neuronal modeler and philosopher David Marr, the author suggests that biology will implement but not replace psychology within our explanatory systems. The iterative process of interactions between biology and psychology needed to achieve this implementation will deepen our understanding of both classes of processes. PMID:18483135
Multi-scale modelling of rubber-like materials and soft tissues: an appraisal
Puglisi, G.
2016-01-01
We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreover, such models are fundamental in the perspective of the design, through manipulation at the micro- and nano-scales, of new polymeric and bioinspired materials with exceptional macroscopic properties. PMID:27118927
``Just Another Distribution Channel?''
NASA Astrophysics Data System (ADS)
Lemstra, Wolter; de Leeuw, Gerd-Jan; van de Kar, Els; Brand, Paul
The telecommunications-centric business model of mobile operators is under attack due to technological convergence in the communication and content industries. This has resulted in a plethora of academic contributions on the design of new business models and service platform architectures. However, a discussion of the challenges that operators are facing in adopting these models is lacking. We assess these challenges by considering the mobile network as part of the value system of the content industry. We will argue that from the perspective of a content provider the mobile network is ‘just another’ distribution channel. Strategic options available for the mobile communication operators are to deliver an excellent distribution channel for content delivery or to move upwards in the value chain by becoming a content aggregator. To become a mobile content aggregator operators will have to develop or acquire complementary resources and capabilities. Whether this strategic option is sustainable remains open.
Critical branching neural networks.
Kello, Christopher T
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.
Dynamics for a 2-vertex quantum gravity model
NASA Astrophysics Data System (ADS)
Borja, Enrique F.; Díaz-Polo, Jacobo; Garay, Iñaki; Livine, Etera R.
2010-12-01
We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.
Semantic transcoding of video based on regions of interest
NASA Astrophysics Data System (ADS)
Lim, Jeongyeon; Kim, Munchurl; Kim, Jong-Nam; Kim, Kyeongsoo
2003-06-01
Traditional transcoding on multimedia has been performed from the perspectives of user terminal capabilities such as display sizes and decoding processing power, and network resources such as available network bandwidth and quality of services (QoS) etc. The adaptation (or transcoding) of multimedia contents to given such constraints has been made by frame dropping and resizing of audiovisual, as well as reduction of SNR (Signal-to-Noise Ratio) values by saving the resulting bitrates. Not only such traditional transcoding is performed from the perspective of user"s environment, but also we incorporate a method of semantic transcoding of audiovisual based on region of interest (ROI) from user"s perspective. Users can designate their interested parts in images or video so that the corresponding video contents can be adapted focused on the user"s ROI. We incorporate the MPEG-21 DIA (Digital Item Adaptation) framework in which such semantic information of the user"s ROI is represented and delivered to the content provider side as XDI (context digital item). Representation schema of our semantic information of the user"s ROI has been adopted in MPEG-21 DIA Adaptation Model. In this paper, we present the usage of semantic information of user"s ROI for transcoding and show our system implementation with experimental results.
Cascade phenomenon against subsequent failures in complex networks
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng
2018-06-01
Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.
Tracking of time-varying genomic regulatory networks with a LASSO-Kalman smoother
2014-01-01
It is widely accepted that cellular requirements and environmental conditions dictate the architecture of genetic regulatory networks. Nonetheless, the status quo in regulatory network modeling and analysis assumes an invariant network topology over time. In this paper, we refocus on a dynamic perspective of genetic networks, one that can uncover substantial topological changes in network structure during biological processes such as developmental growth. We propose a novel outlook on the inference of time-varying genetic networks, from a limited number of noisy observations, by formulating the network estimation as a target tracking problem. We overcome the limited number of observations (small n large p problem) by performing tracking in a compressed domain. Assuming linear dynamics, we derive the LASSO-Kalman smoother, which recursively computes the minimum mean-square sparse estimate of the network connectivity at each time point. The LASSO operator, motivated by the sparsity of the genetic regulatory networks, allows simultaneous signal recovery and compression, thereby reducing the amount of required observations. The smoothing improves the estimation by incorporating all observations. We track the time-varying networks during the life cycle of the Drosophila melanogaster. The recovered networks show that few genes are permanent, whereas most are transient, acting only during specific developmental phases of the organism. PMID:24517200
Cooperative Management of a Lithium-Ion Battery Energy Storage Network: A Distributed MPC Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Huazhen; Wu, Di; Yang, Tao
2016-12-12
This paper presents a study of cooperative power supply and storage for a network of Lithium-ion energy storage systems (LiBESSs). We propose to develop a distributed model predictive control (MPC) approach for two reasons. First, able to account for the practical constraints of a LiBESS, the MPC can enable a constraint-aware operation. Second, a distributed management can cope with a complex network that integrates a large number of LiBESSs over a complex communication topology. With this motivation, we then build a fully distributed MPC algorithm from an optimization perspective, which is based on an extension of the alternating direction methodmore » of multipliers (ADMM) method. A simulation example is provided to demonstrate the effectiveness of the proposed algorithm.« less
The game of go as a complex network
NASA Astrophysics Data System (ADS)
Georgeot, Bertrand; Giraud, Olivier; Kandiah, Vivek
2014-03-01
We have studied the game of go, one of the most ancient and complex board games, from a complex network perspective. We have defined a proper categorization of moves taking into account the local environment, and shown that in this case Zipf's law emerges from data taken from real games. The network shows differences between professional and amateur games, different level of amateurs, or different phases of the game. Certain eigenvectors are localized on specific groups of moves which correspond to different strategies (communities of moves). The point of view developed should allow to better modelize such games and could also help to design simulators which could in the future beat good human players. Our approach could be used for other types of games, and in parallel shed light on the human decision making process.
A review on machine learning principles for multi-view biological data integration.
Li, Yifeng; Wu, Fang-Xiang; Ngom, Alioune
2018-03-01
Driven by high-throughput sequencing techniques, modern genomic and clinical studies are in a strong need of integrative machine learning models for better use of vast volumes of heterogeneous information in the deep understanding of biological systems and the development of predictive models. How data from multiple sources (called multi-view data) are incorporated in a learning system is a key step for successful analysis. In this article, we provide a comprehensive review on omics and clinical data integration techniques, from a machine learning perspective, for various analyses such as prediction, clustering, dimension reduction and association. We shall show that Bayesian models are able to use prior information and model measurements with various distributions; tree-based methods can either build a tree with all features or collectively make a final decision based on trees learned from each view; kernel methods fuse the similarity matrices learned from individual views together for a final similarity matrix or learning model; network-based fusion methods are capable of inferring direct and indirect associations in a heterogeneous network; matrix factorization models have potential to learn interactions among features from different views; and a range of deep neural networks can be integrated in multi-modal learning for capturing the complex mechanism of biological systems.
Intention to continue using Facebook fan pages from the perspective of social capital theory.
Lin, Kuan-Yu; Lu, Hsi-Peng
2011-10-01
Social network sites enable users to express themselves, establish ties, and develop and maintain social relationships. Recently, many companies have begun using social media identity (e.g., Facebook fan pages) to enhance brand attractiveness, and social network sites have evolved into social utility networks, thereby creating a number of promising business opportunities. To this end, the operators of fan pages need to be aware of the factors motivating users to continue their patronization of such pages. This study set out to identify these motivating factors from the point of view of social capital. This study employed structural equation modeling to investigate a research model based on a survey of 327 fan pages users. This study discovered that ties related to social interaction (structural dimension), shared values (cognitive dimension), and trust (relational dimension) play important roles in users' continued intention to use Facebook fan pages. Finally, this study discusses the implications of these findings and offers directions for future research.
Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data
Liu, Yu; Sui, Zhengwei; Kang, Chaogui; Gao, Yong
2014-01-01
The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips. PMID:24465849
Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data.
Liu, Yu; Sui, Zhengwei; Kang, Chaogui; Gao, Yong
2014-01-01
The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips.
Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.
Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora
2018-07-01
Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Aziz, H M Abdul; Young, Stan
Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections.more » In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.« less
Harris, Jenine K.; Carothers, Bobbi J.; Wald, Lana M.; Shelton, Sarah C.; Leischow, Scott J.
2012-01-01
Background In public health, interpersonal influence has been identified as an important factor in the spread of health information, and in understanding and changing health behaviors. However, little is known about influence in public health leadership. Influence is important in leadership settings, where public health professionals contribute to national policy and practice agendas. Drawing on social theory and recent advances in statistical network modeling, we examined influence in a network of tobacco control leaders at the United States Department of Health and Human Services (DHHS). Design and Methods Fifty-four tobacco control leaders across all 11 agencies in the DHHS were identified; 49 (91%) responded to a web-based survey. Participants were asked about communication with other tobacco control leaders, who influenced their work, and general job characteristics. Exponential random graph modeling was used to develop a network model of influence accounting for characteristics of individuals, their relationships, and global network structures. Results Higher job ranks, more experience in tobacco control, and more time devoted to tobacco control each week increased the likelihood of influence nomination, as did more frequent communication between network members. Being in the same agency and working the same number of hours per week were positively associated with mutual influence nominations. Controlling for these characteristics, the network also exhibited patterns associated with influential clusters of network members. Conclusions Findings from this unique study provide a perspective on influence within a government agency that both helps to understand decision-making and also can serve to inform organizational efforts that allow for more effective structuring of leadership. PMID:25170448
Harris, Jenine K; Carothers, Bobbi J; Wald, Lana M; Shelton, Sarah C; Leischow, Scott J
2012-02-17
In public health, interpersonal influence has been identified as an important factor in the spread of health information, and in understanding and changing health behaviors. However, little is known about influence in public health leadership. Influence is important in leadership settings, where public health professionals contribute to national policy and practice agendas. Drawing on social theory and recent advances in statistical network modeling, we examined influence in a network of tobacco control leaders at the United States Department of Health and Human Services (DHHS). Fifty-four tobacco control leaders across all 11 agencies in the DHHS were identified; 49 (91%) responded to a web-based survey. Participants were asked about communication with other tobacco control leaders, who influenced their work, and general job characteristics. Exponential random graph modeling was used to develop a network model of influence accounting for characteristics of individuals, their relationships, and global network structures. Higher job ranks, more experience in tobacco control, and more time devoted to tobacco control each week increased the likelihood of influence nomination, as did more frequent communication between network members. Being in the same agency and working the same number of hours per week were positively associated with mutual influence nominations. Controlling for these characteristics, the network also exhibited patterns associated with influential clusters of network members. Findings from this unique study provide a perspective on influence within a government agency that both helps to understand decision-making and also can serve to inform organizational efforts that allow for more effective structuring of leadership.
NASA Astrophysics Data System (ADS)
Aguilera, Rosana; Marcé, Rafael; Sabater, Sergi
2013-06-01
are conveyed from terrestrial and upstream sources through drainage networks. Streams and rivers contribute to regulate the material exported downstream by means of transformation, storage, and removal of nutrients. It has been recently suggested that the efficiency of process rates relative to available nutrient concentration in streams eventually declines, following an efficiency loss (EL) dynamics. However, most of these predictions are based at the reach scale in pristine streams, failing to describe the role of entire river networks. Models provide the means to study nutrient cycling from the stream network perspective via upscaling to the watershed the key mechanisms occurring at the reach scale. We applied a hybrid process-based and statistical model (SPARROW, Spatially Referenced Regression on Watershed Attributes) as a heuristic approach to describe in-stream nutrient processes in a highly impaired, high stream order watershed (the Llobregat River Basin, NE Spain). The in-stream decay specifications of the model were modified to include a partial saturation effect in uptake efficiency (expressed as a power law) and better capture biological nutrient retention in river systems under high anthropogenic stress. The stream decay coefficients were statistically significant in both nitrate and phosphate models, indicating the potential role of in-stream processing in limiting nutrient export. However, the EL concept did not reliably describe the patterns of nutrient uptake efficiency for the concentration gradient and streamflow values found in the Llobregat River basin, posing in doubt its complete applicability to explain nutrient retention processes in stream networks comprising highly impaired rivers.
The Promise of Global Networks. 1999 Annual Review.
ERIC Educational Resources Information Center
Institute for Information Studies, Queenstown, MD.
This collection of commissioned papers provides a variety of perspectives on the impact of global information networks. The following articles are included: "The Promise of Global Networks: An Introduction" (Jorge Reina Schement); "Architecture and Expectations: Networks of the World--Unite!" (Marjory S. Blumenthal); "The…
Teachers' Motives for Learning in Networks: Costs, Rewards and Community Interest
ERIC Educational Resources Information Center
van den Beemt, Antoine; Ketelaar, Evelien; Diepstraten, Isabelle; de Laat, Maarten
2018-01-01
Background: This paper discusses teachers' perspectives on learning networks and their motives for participating in these networks. Although it is widely held that teachers' learning may be developed through learning networks, not all teachers participate in such networks. Purpose: The theme of reciprocity, central to studies in the area of…
Adaptive-network models of collective dynamics
NASA Astrophysics Data System (ADS)
Zschaler, G.
2012-09-01
Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge. Moreover, we show what minimal microscopic interaction rules determine whether the transition to collective motion is continuous or discontinuous. Second, we consider a model of opinion formation in groups of individuals, where we focus on the effect of directed links in adaptive networks. Extending the adaptive voter model to directed networks, we find a novel fragmentation mechanism, by which the network breaks into distinct components of opposing agents. This fragmentation is mediated by the formation of self-stabilizing structures in the network, which do not occur in the undirected case. We find that they are related to degree correlations stemming from the interplay of link directionality and adaptive topological change. Third, we discuss a model for the evolution of cooperation among self-interested agents, in which the adaptive nature of their interaction network gives rise to a novel dynamical mechanism promoting cooperation. We show that even full cooperation can be achieved asymptotically if the networks' adaptive response to the agents' dynamics is sufficiently fast.
Bond, Katherine C.; Macfarlane, Sarah B.; Burke, Charlanne; Ungchusak, Kumnuan; Wibulpolprasert, Suwit
2013-01-01
We examine the emergence, development, and value of regional infectious disease surveillance networks that neighboring countries worldwide are organizing to control cross-border outbreaks at their source. The regional perspective represented in the paper is intended to serve as an instructive framework for others who decide to launch such networks as new technologies and emerging threats bring countries even closer together. Distinct from more formal networks in geographic regions designated by the World Health Organization (WHO), these networks usually involve groupings of fewer countries chosen by national governments to optimize surveillance efforts. Sometimes referred to as sub-regional, these “self-organizing” networks complement national and local government recognition with informal relationships across borders among epidemiologists, scientists, ministry officials, health workers, border officers, and community members. Their development over time reflects both incremental learning and growing connections among network actors; and changing disease patterns, with infectious disease threats shifting over time from local to regional to global levels. Not only has this regional disease surveillance network model expanded across the globe, it has also expanded from a mostly practitioner-based network model to one that covers training, capacity-building, and multidisciplinary research. Today, several of these networks are linked through Connecting Organizations for Regional Disease Surveillance (CORDS). We explore how regional disease surveillance networks add value to global disease detection and response by complementing other systems and efforts, by harnessing their power to achieve other goals such as health and human security, and by helping countries adapt to complex challenges via multi-sectoral solutions. We note that governmental commitment and trust among participating individuals are critical to the success of regional infectious disease surveillance networks. PMID:23362414
The Comet Halley archive: Summary volume
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek (Editor); Fry, Lori (Editor)
1991-01-01
The contents are as follows: The Organizational History of the International Halley Watch; Operations of the International Halley Watch from a Lead Center Perspective; The Steering Group; Astrometry Network; Infrared Studies Network; Large-Scale Phenomena Network; Meteor Studies Network; Near-Nucleus Studies Network; Photometry and Polarimetry Network; Radio Science Network; Spectroscopy and Spectrophotometry Network; Amateur Observation Network; Use of the CD-ROM Archive; The 1986 Passage of Comet Halley; and Recent Observations of Comet Halley.
ERIC Educational Resources Information Center
Mobray, Deborah, Ed.
Papers on local area networks (LANs), modelling techniques, software improvement, capacity planning, software engineering, microcomputers and end user computing, cost accounting and chargeback, configuration and performance management, and benchmarking presented at this conference include: (1) "Theoretical Performance Analysis of Virtual…
Structure and Connectivity Analysis of Financial Complex System Based on G-Causality Network
NASA Astrophysics Data System (ADS)
Xu, Chuan-Ming; Yan, Yan; Zhu, Xiao-Wu; Li, Xiao-Teng; Chen, Xiao-Song
2013-11-01
The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.
Network analysis: A new way of understanding psychopathology?
Fonseca-Pedrero, Eduardo
Current taxonomic systems are based on a descriptive and categorical approach where psychopathological symptoms and signs are caused by a hypothetical underlying mental disorder. In order to circumvent the limitations of classification systems, it is necessary to incorporate new conceptual and psychometric models that allow to understand, analyze and intervene in psychopathological phenomena from another perspective. The main goal was to present a new approach called network analysis for its application in the field of psychopathology. First of all, a brief introduction where psychopathological disorders are conceived as complex dynamic systems was carried out. Key concepts, as well as the different types of networks and the procedures for their estimation, are discussed. Following this, centrality measures, important for the understanding of the network as well as to examine the relevance of the variables within the network were addressed. These factors were then exemplified by estimating a network of self-reported psychopathological symptoms in a representative sample of adolescents. Finally, a brief recapitulation is made and future lines of research are discussed. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.
From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.
Bauer, Eugen; Thiele, Ines
2018-01-01
An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.
Systems Science and Childhood Obesity: A Systematic Review and New Directions
Foster, E. Michael
2013-01-01
As a public health problem, childhood obesity operates at multiple levels, ranging from individual health behaviors to school and community characteristics to public policies. Examining obesity, particularly childhood obesity, from any single perspective is likely to fail, and systems science methods offer a possible solution. We systematically reviewed studies that examined the causes and/or consequences of obesity from a systems science perspective. The 21 included studies addressed four general areas of systems science in obesity: (1) translating interventions to a large scale, (2) the effect of obesity on other health or economic outcomes, (3) the effect of geography on obesity, and (4) the effect of social networks on obesity. In general, little research addresses obesity from a true, integrated systems science perspective, and the available research infrequently focuses on children. This shortcoming limits the ability of that research to inform public policy. However, we believe that the largely incremental approaches used in current systems science lay a foundation for future work and present a model demonstrating the system of childhood obesity. Systems science perspective and related methods are particularly promising in understanding the link between childhood obesity and adult outcomes. Systems models emphasize the evolution of agents and their interactions; such evolution is particularly salient in the context of a developing child. PMID:23710344
Biomathematical modeling of pulsatile hormone secretion: a historical perspective.
Evans, William S; Farhy, Leon S; Johnson, Michael L
2009-01-01
Shortly after the recognition of the profound physiological significance of the pulsatile nature of hormone secretion, computer-based modeling techniques were introduced for the identification and characterization of such pulses. Whereas these earlier approaches defined perturbations in hormone concentration-time series, deconvolution procedures were subsequently employed to separate such pulses into their secretion event and clearance components. Stochastic differential equation modeling was also used to define basal and pulsatile hormone secretion. To assess the regulation of individual components within a hormone network, a method that quantitated approximate entropy within hormone concentration-times series was described. To define relationships within coupled hormone systems, methods including cross-correlation and cross-approximate entropy were utilized. To address some of the inherent limitations of these methods, modeling techniques with which to appraise the strength of feedback signaling between and among hormone-secreting components of a network have been developed. Techniques such as dynamic modeling have been utilized to reconstruct dose-response interactions between hormones within coupled systems. A logical extension of these advances will require the development of mathematical methods with which to approximate endocrine networks exhibiting multiple feedback interactions and subsequently reconstruct their parameters based on experimental data for the purpose of testing regulatory hypotheses and estimating alterations in hormone release control mechanisms.
Jagtap, Pranav; Diwadkar, Vaibhav A.
2016-01-01
Frontal-thalamic interactions are crucial for bottom-up gating and top-down control, yet have not been well studied from brain network perspectives. We applied network modeling of fMRI signals (Dynamic Causal Modeling; DCM) to investigate frontal-thalamic interactions during an attention task with parametrically varying levels of demand. fMRI was collected while subjects participated in a sustained continuous performance task with low and high attention demands. 162 competing model architectures were employed in DCM to evaluate hypotheses on bilateral frontal-thalamic connections and their modulation by attention demand, selected at a second level using Bayesian Model Selection. The model architecture evinced significant contextual modulation by attention of ascending (thalamus → dPFC) and descending (dPFC → thalamus) pathways. However, modulation of these pathways was asymmetric: While positive modulation of the ascending pathway was comparable across attention demand, modulation of the descending pathway was significantly greater when attention demands were increased. Increased modulation of the (dPFC → thalamus) pathway in response to increased attention demand constitutes novel evidence of attention-related gain in the connectivity of the descending attention pathway. By comparison demand-independent modulation of the ascending (thalamus → dPFC) pathway suggests unbiased thalamic inputs to the cortex in the context of the paradigm. PMID:27145923
Implementation and application of ACL in campus network
NASA Astrophysics Data System (ADS)
Zheng, Shiyong; Li, Zhao; Li, Biqing
2017-03-01
In this paper, it firstly introduces the related knowledge of access control list (ACL) technology, hardware requirements and software configuration. Then it discusses the topological structure of campus network from the perspective of campus network planning as well as demonstrates the application of ACL technology in campus network combined with examples.
Composing Networks: Writing Practices on Mobile Devices
ERIC Educational Resources Information Center
Swarts, Jason
2016-01-01
This article is an investigation of composing practices through which people create networks with mobile phones. By looking through the lens of actor-network theory, the author portrays the networking activity of mobile phone users as translation, what Latour describes as an infralanguage to which different disciplinary perspectives can be…
Networks: A Route to Improving Performance in Manufacturing SMEs
ERIC Educational Resources Information Center
Coleman, J.
2003-01-01
Perceived as important contributors to economic growth, network and cluster groups are currently receiving much attention. The same may be said of SMEs. But practical and theoretical perspectives indicate that SMEs, and particularly the owner-managers, place little value on networks and have only limited networking resources. Consequently, they do…
Campus Network Strategies: A Small College Perspective.
ERIC Educational Resources Information Center
Moberg, Thomas
1999-01-01
Offers advice to administrators and faculty in small colleges on planning, building, and managing campus computer networks. Also included are observations about the network as a strategic asset, funding and staffing issues, and planning for unexpected results. (Author/MSE)
Advanced and secure architectural EHR approaches.
Blobel, Bernd
2006-01-01
Electronic Health Records (EHRs) provided as a lifelong patient record advance towards core applications of distributed and co-operating health information systems and health networks. For meeting the challenge of scalable, flexible, portable, secure EHR systems, the underlying EHR architecture must be based on the component paradigm and model driven, separating platform-independent and platform-specific models. Allowing manageable models, real systems must be decomposed and simplified. The resulting modelling approach has to follow the ISO Reference Model - Open Distributing Processing (RM-ODP). The ISO RM-ODP describes any system component from different perspectives. Platform-independent perspectives contain the enterprise view (business process, policies, scenarios, use cases), the information view (classes and associations) and the computational view (composition and decomposition), whereas platform-specific perspectives concern the engineering view (physical distribution and realisation) and the technology view (implementation details from protocols up to education and training) on system components. Those views have to be established for components reflecting aspects of all domains involved in healthcare environments including administrative, legal, medical, technical, etc. Thus, security-related component models reflecting all view mentioned have to be established for enabling both application and communication security services as integral part of the system's architecture. Beside decomposition and simplification of system regarding the different viewpoint on their components, different levels of systems' granularity can be defined hiding internals or focusing on properties of basic components to form a more complex structure. The resulting models describe both structure and behaviour of component-based systems. The described approach has been deployed in different projects defining EHR systems and their underlying architectural principles. In that context, the Australian GEHR project, the openEHR initiative, the revision of CEN ENV 13606 "Electronic Health Record communication", all based on Archetypes, but also the HL7 version 3 activities are discussed in some detail. The latter include the HL7 RIM, the HL7 Development Framework, the HL7's clinical document architecture (CDA) as well as the set of models from use cases, activity diagrams, sequence diagrams up to Domain Information Models (DMIMs) and their building blocks Common Message Element Types (CMET) Constraining Models to their underlying concepts. The future-proof EHR architecture as open, user-centric, user-friendly, flexible, scalable, portable core application in health information systems and health networks has to follow advanced architectural paradigms.
Bayesian Networks Predict Neuronal Transdifferentiation.
Ainsworth, Richard I; Ai, Rizi; Ding, Bo; Li, Nan; Zhang, Kai; Wang, Wei
2018-05-30
We employ the language of Bayesian networks to systematically construct gene-regulation topologies from deep-sequencing single-nucleus RNA-Seq data for human neurons. From the perspective of the cell-state potential landscape, we identify attractors that correspond closely to different neuron subtypes. Attractors are also recovered for cell states from an independent data set confirming our models accurate description of global genetic regulations across differing cell types of the neocortex (not included in the training data). Our model recovers experimentally confirmed genetic regulations and community analysis reveals genetic associations in common pathways. Via a comprehensive scan of all theoretical three-gene perturbations of gene knockout and overexpression, we discover novel neuronal trans-differrentiation recipes (including perturbations of SATB2, GAD1, POU6F2 and ADARB2) for excitatory projection neuron and inhibitory interneuron subtypes. Copyright © 2018, G3: Genes, Genomes, Genetics.
Perspectives on optimizing care of patients in multidisciplinary chronic kidney disease clinics.
Collister, David; Russell, Randall; Verdon, Josee; Beaulieu, Monica; Levin, Adeera
2016-01-01
To summarize a jointly held symposium by the Canadian Society of Nephrology (CSN), the Canadian Association of Nephrology Administrators (CANA), and the Canadian Kidney Knowledge Translation and Generation Network (CANN-NET) entitled "Perspectives on Optimizing Care of Patients in Multidisciplinary Chronic Kidney Disease (CKD) Clinics" that was held on April 24, 2015, in Montreal, Quebec. The panel consisted of a variety of members from across Canada including a multidisciplinary CKD clinic patient (Randall Russell), nephrology fellow (Dr. David Collister), geriatrician (Dr. Josee Verdon), and nephrologists (Dr. Monica Beaulieu, Dr. Adeera Levin). The objectives of the symposium were (1) to gain an understanding of the goals of care for CKD patients, (2) to gain an appreciation of different perspectives regarding optimal care for patients with CKD, (3) to examine the components required for optimal care including education strategies, structures, and tools, and (4) to describe a framework and metrics for CKD care which respect patient and system needs. This article summarizes the key concepts discussed at the symposium from a patient and physician perspectives. Key messages include (1) understanding patient values and preferences is important as it provides a framework as to what to prioritize in multidisciplinary CKD clinic and provincial renal program models, (2) barriers to effective communication and education are common in the elderly, and adaptive strategies to limit their influence are critical to improve adherence and facilitate shared decision-making, (3) the use of standardized operating procedures (SOPs) improves efficiency and minimizes practice variability among health care practitioners, and (4) CKD scorecards with standardized system processes are useful in approaching variability as well as measuring and improving patient outcomes. The perspectives provided may not be applicable across centers given the differences in patient populations including age, ethnicity, culture, language, socioeconomic status, education, and multidisciplinary CKD clinic structure and function. Knowledge transmission by collaborative interprovincial and interprofessional networks may play a role in facilitating optimal CKD care. Validation of system and clinic models that improve outcomes is needed prior to disseminating these best practices.
Armstrong, Rachel
2010-01-01
This report details a workshop held at the Bartlett School of Architecture, University College London, to initiate interdisciplinary collaborations for the practice of systems architecture, which is a new model for the generation of sustainable architecture that combines the discipline of the study of the built environment with the scientific study of complexity, or systems science, and adopts the perspective of systems theory. Systems architecture offers new perspectives on the organization of the built environment that enable architects to consider architecture as a series of interconnected networks with embedded links into natural systems. The public workshop brought together architects and scientists working with the convergence of nanotechnology, biotechnology, information technology, and cognitive science and with living technology to investigate the possibility of a new generation of smart materials that are implied by this approach.
A quantum probability perspective on borderline vagueness.
Blutner, Reinhard; Pothos, Emmanuel M; Bruza, Peter
2013-10-01
The term "vagueness" describes a property of natural concepts, which normally have fuzzy boundaries, admit borderline cases, and are susceptible to Zeno's sorites paradox. We will discuss the psychology of vagueness, especially experiments investigating the judgment of borderline cases and contradictions. In the theoretical part, we will propose a probabilistic model that describes the quantitative characteristics of the experimental finding and extends Alxatib's and Pelletier's () theoretical analysis. The model is based on a Hopfield network for predicting truth values. Powerful as this classical perspective is, we show that it falls short of providing an adequate coverage of the relevant empirical results. In the final part, we will argue that a substantial modification of the analysis put forward by Alxatib and Pelletier and its probabilistic pendant is needed. The proposed modification replaces the standard notion of probabilities by quantum probabilities. The crucial phenomenon of borderline contradictions can be explained then as a quantum interference phenomenon. © 2013 Cognitive Science Society, Inc.
Damage spreading in spatial and small-world random Boolean networks
NASA Astrophysics Data System (ADS)
Lu, Qiming; Teuscher, Christof
2014-02-01
The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean networks (RBNs) are commonly used as a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other nonrandom connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the Hamming distance at very low connectivities (K¯≪1) and that the critical connectivity of stability Ks changes compared to random networks. At higher K¯, this scaling remains unchanged. We also show that the Hamming distance of spatially local networks scales with a power law as the system size N increases, but with a different exponent for local and small-world networks. The scaling arguments for small-world networks are obtained with respect to the system sizes and strength of spatially local connections. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.
Re-examining the paradox of structure: a child health network perspective.
McPherson, Charmaine M; Popp, Janice K; Lindstrom, Ronald R
2006-01-01
In their lead paper, Huerta, Casebeer and VanderPlaat argue that there are several key forces driving the development of health services delivery (HSD) networks, and propose a series of paradoxes and propositions to initiate this timely and essential dialogue. Ultimately, they submit that networks are likely to remain within the healthcare system to build system capacity and drive integration. Given this, they challenge us to further the dialogue and investigate these networks. While this peer commentary shares many of the lead author's perspectives, the generic nature of the discussion does not bring us to the relative complexities revealed in some HSD network practices. A Canadian child health network lens is used to re-examine the lead paper's conceptualization of network typologies and the proposed paradox of structure. We combine network practice and academic expertise to highlight the structural, governance and leadership tensions between traditional hierarchical public service organizations and the non-hierarchical nature of inter-organizational networks. Child health network leaders and members must examine and work with the challenges associated with importing traditional organizational cultures into an inter-organizationally networked context, while simultaneously maintaining these dual (or duelling) cultures.
Şahin, Charlotte; Iseringhausen, Olaf; Hower, Kira; Liebe, Constanze; Rethmeier-Hanke, Anja; Wedmann, Bernd
2018-04-01
Regional planning of healthcare requires special consideration for the complex needs of elderly, multimorbid people living in a domestic environment. In the District of Lippe, a hospital (Klinikum Lippe) and network of ambulatory care physicians (Ärztenetz Lippe) developed and tested a geriatric care network based on case management for geriatric patients living in a domestic environment. The establishment of the geriatric care network (e.g. promoting networking acceptance and implementation) was formatively evaluated, e. g. with qualitative methods. Data were acquired by guideline-based interviews with experts and analyzed by qualitative content analysis according to Mayring. Structural effects included forming a cross-sectoral and interdisciplinary network for a functioning care network and a geriatric care pathway. The practical work of case managers (CM) is essential for communication with patients, family members and care providers as well as integrating providers into the network. A critical factor was working together with general practitioners and the close cooperation with the hospital's department of geriatric. The quality of care is improved because of exchange of information between sectors and continuity in the course of care. In the District of Lippe the quality of care was improved and structures of care were integrated by the network according to the needs of the target group. The integrative perspective was achieved in particular by the geriatric care pathway and integration of providers into the communication and care process; however, the scope of this care model could not be extended into routine care due to the rigid and subdivided health care system.
Summary of photovoltaic system performance models
NASA Technical Reports Server (NTRS)
Smith, J. H.; Reiter, L. J.
1984-01-01
A detailed overview of photovoltaics (PV) performance modeling capabilities developed for analyzing PV system and component design and policy issues is provided. A set of 10 performance models are selected which span a representative range of capabilities from generalized first order calculations to highly specialized electrical network simulations. A set of performance modeling topics and characteristics is defined and used to examine some of the major issues associated with photovoltaic performance modeling. Each of the models is described in the context of these topics and characteristics to assess its purpose, approach, and level of detail. The issues are discussed in terms of the range of model capabilities available and summarized in tabular form for quick reference. The models are grouped into categories to illustrate their purposes and perspectives.
Capturing the Interplay of Dynamics and Networks through Parameterizations of Laplacian Operators
2016-08-24
important vertices and communities in the network. Specifically, for each dynamical process in this framework, we define a centrality measure that...vertices as a potential cluster (or community ) with respect to this process. We show that the subset-quality function generalizes the traditional conductance...compare the different perspectives they create on network structure. Subjects Network Science and Online Social Networks Keywords Network, Community
Analysis of the “naming game” with learning errors in communications
NASA Astrophysics Data System (ADS)
Lou, Yang; Chen, Guanrong
2015-07-01
Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.
Analysis of the "naming game" with learning errors in communications.
Lou, Yang; Chen, Guanrong
2015-07-16
Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.
Metacognition and Perspective-Taking in Alzheimer's Disease: A Mini-Review.
Bertrand, Elodie; Landeira-Fernandez, Jesus; Mograbi, Daniel C
2016-01-01
Metacognition refers to the monitoring and regulation of cognitive processes and its impairment can lead to a lack of self-awareness of deficits, or anosognosia. In the context of different neurological and psychiatric disorders (e.g., traumatic brain injury, dementia, and schizophrenia), studies have shown that patients who present impairments in metacognitive abilities may be able to recognize such difficulties in others and in themselves when exposed to material in a third-person perspective. Considering that metacognitive impairments are an important characteristic of dementia, especially in Alzheimer's Disease (AD), studies of the relationship between metacognition and perspective-taking may be relevant to improve the quality of life of people with dementia. The current paper first briefly addresses the theme of metacognition and the impact of metacognitive deficits in people with AD. The focus then turns to the relationship between metacognition and perspective-taking in different neurological and psychiatric disorders, particularly AD. This relationship is also discussed based on theoretical models, particularly the Cognitive Awareness Model (CAM). Specifically, the CAM suggests the existence of distinct memory systems for self- and other-information, an idea which is supported by neuroimaging findings. We suggest that the Default Mode Network, as it has been shown to be implicated in self vs. other processing and is affected early in AD, could explain the impact of perspective-taking on awareness of deficits in AD. Finally, we present possible clinical implications of the relationship between metacognition and perspective-taking in AD. Indeed, we considered the possibility of improving patient's awareness through the use of a third-person perspective, which, consequently, may decrease the negative impacts of anosognosia in AD.
Lin, B Y; Wan, T T
1999-12-01
Few empirical analyses have been done in the organizational researches of integrated healthcare networks (IHNs) or integrated healthcare delivery systems. Using a contingency derived contact-process-performance model, this study attempts to explore the relationships among an IHN's strategic direction, structural design, and performance. A cross-sectional analysis of 100 IHNs suggests that certain contextual factors such as market competition and network age and tax status have statistically significant effects on the implementation of an IHN's service differentiation strategy, which addresses coordination and control in the market. An IHN's service differentiation strategy is positively related to its integrated structural design, which is characterized as integration of administration, patient care, and information system across different settings. However, no evidence supports that the development of integrated structural design may benefit an IHN's performance in terms of clinical efficiency and financial viability.
NASA Astrophysics Data System (ADS)
Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.; Teige, Virginia; Harley, Robert A.; Cohen, Ronald C.
2016-11-01
The majority of anthropogenic CO2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO2 Observation Network (BEACO2N) in California's Bay Area, in combination with an inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km2. The model uses an hourly 1 × 1 km2 emission inventory and 1 × 1 km2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model-observing system in reducing uncertainty in CO2 emissions. We examine uncertainty in estimated CO2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.
Insights into Tropical Tropospheric Ozone from Satellite and Sonde Data
NASA Technical Reports Server (NTRS)
Thompson, Anne M.
2003-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The data reside at: http://code916.gsfc.nasa.gov/Data_services/shadoz. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this. In addition to leading the SHADOZ network, we have been producing near-real tropical tropospheric ozone ('TTO') data from the Total Ozone Mapping Spectrometer (TOMS) since 1997 with Prof. Hudson and students at the University of Maryland: http://metosrv2.umd.edu/tropo. Further perspective on the complexity of tropospheric ozone variability is shown using satellite observations.
Dynamic Network-Based Epistasis Analysis: Boolean Examples
Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.
2011-01-01
In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and single-path assumption, but also by demonstrating the importance of considering temporal dynamics, and specifically introducing the usefulness of Boolean network models and also reviewing some key properties of network approaches. PMID:22645556
NASA Astrophysics Data System (ADS)
Ravindran, Vandana; Sunitha, V.; Bagler, Ganesh
2017-05-01
Cancer is characterized by a complex web of regulatory mechanisms which makes it difficult to identify features that are central to its control. Molecular integrative models of cancer, generated with the help of data from experimental assays, facilitate use of control theory to probe for ways of controlling the state of such a complex dynamic network. We modeled the human cancer signaling network as a directed graph and analyzed it for its controllability, identification of driver nodes and their characterization. We identified the driver nodes using the maximum matching algorithm and classified them as backbone, peripheral and ordinary based on their role in regulatory interactions and control of the network. We found that the backbone driver nodes were key to driving the regulatory network into cancer phenotype (via mutations) as well as for steering into healthy phenotype (as drug targets). This implies that while backbone genes could lead to cancer by virtue of mutations, they are also therapeutic targets of cancer. Further, based on their impact on the size of the set of driver nodes, genes were characterized as indispensable, dispensable and neutral. Indispensable nodes within backbone of the network emerged as central to regulatory mechanisms of control of cancer. In addition to probing the cancer signaling network from the perspective of control, our findings suggest that indispensable backbone driver nodes could be potentially leveraged as therapeutic targets. This study also illustrates the application of structural controllability for studying the mechanisms underlying the regulation of complex diseases.
Yousefi Nooraie, Reza; Khan, Sobia; Gutberg, Jennifer; Baker, G Ross
2018-01-01
Although implementation models broadly recognize the importance of social relationships, our knowledge about applying social network analysis (SNA) to formative, process, and outcome evaluations of health system interventions is limited. We explored applications of adopting an SNA lens to inform implementation planning, engagement and execution, and evaluation. We used Health Links, a province-wide program in Canada aiming to improve care coordination among multiple providers of high-needs patients, as an example of a health system intervention. At the planning phase, an SNA can depict the structure, network influencers, and composition of clusters at various levels. It can inform the engagement and execution by identifying potential targets (e.g., opinion leaders) and by revealing structural gaps and clusters. It can also be used to assess the outcomes of the intervention, such as its success in increasing network connectivity; changing the position of certain actors; and bridging across specialties, organizations, and sectors. We provided an overview of how an SNA lens can shed light on the complexity of implementation along the entire implementation pathway, by revealing the relational barriers and facilitators, the application of network-informed and network-altering interventions, and testing hypotheses on network consequences of the implementation.
An Adaptive Resonance Theory account of the implicit learning of orthographic word forms.
Glotin, H; Warnier, P; Dandurand, F; Dufau, S; Lété, B; Touzet, C; Ziegler, J C; Grainger, J
2010-01-01
An Adaptive Resonance Theory (ART) network was trained to identify unique orthographic word forms. Each word input to the model was represented as an unordered set of ordered letter pairs (open bigrams) that implement a flexible prelexical orthographic code. The network learned to map this prelexical orthographic code onto unique word representations (orthographic word forms). The network was trained on a realistic corpus of reading textbooks used in French primary schools. The amount of training was strictly identical to children's exposure to reading material from grade 1 to grade 5. Network performance was examined at each grade level. Adjustment of the learning and vigilance parameters of the network allowed us to reproduce the developmental growth of word identification performance seen in children. The network exhibited a word frequency effect and was found to be sensitive to the order of presentation of word inputs, particularly with low frequency words. These words were better learned with a randomized presentation order compared with the order of presentation in the school books. These results open up interesting perspectives for the application of ART networks in the study of the dynamics of learning to read. 2009 Elsevier Ltd. All rights reserved.
Agnati, Luigi F; Guidolin, Diego; Marcoli, Manuela; Genedani, Susanna; Borroto-Escuela, Dasiel; Maura, Guido; Fuxe, Kjell
2014-01-01
Two far-reaching theoretical approaches, namely "Neuro-semeiotics" (NS) and "Free-energy Minimization" (FEM), have been recently proposed as frames within which to put forward heuristic hypotheses on integrative brain actions. In the present paper these two theoretical approaches are briefly discussed in the perspective of a recent model of brain architecture and information handling based on what we suggest calling Jacob's tinkering principle, whereby "to create is to recombine!". The NS and FEM theoretical approaches will be discussed from the perspective both of the Roamer-Type Volume Transmission (especially exosome-mediated) of intercellular communication and of the impact of receptor oligomers and Receptor-Receptor Interactions (RRIs) on signal recognition/decoding processes. In particular, the Bio-semeiotics concept of "adaptor" will be used to analyze RRIs as an important feature of NS. Furthermore, the concept of phenotypic plasticity of cells will be introduced in view of the demonstration of the possible transfer of receptors (i.e., adaptors) into a computational network via exosomes (see also Appendix). Thus, Jacob's tinkering principle will be proposed as a theoretical basis for some learning processes both at the network level (Turing-like type of machine) and at the molecular level as a consequence of both the plastic changes in the adaptors caused by the allosteric interactions in the receptor oligomers and the intercellular transfer of receptors. Finally, on the basis of NS and FEM theories, a unified perspective for integrative brain actions will be proposed.
Designing Industrial Networks Using Ecological Food Web Metrics.
Layton, Astrid; Bras, Bert; Weissburg, Marc
2016-10-18
Biologically Inspired Design (biomimicry) and Industrial Ecology both look to natural systems to enhance the sustainability and performance of engineered products, systems and industries. Bioinspired design (BID) traditionally has focused on a unit operation and single product level. In contrast, this paper describes how principles of network organization derived from analysis of ecosystem properties can be applied to industrial system networks. Specifically, this paper examines the applicability of particular food web matrix properties as design rules for economically and biologically sustainable industrial networks, using an optimization model developed for a carpet recycling network. Carpet recycling network designs based on traditional cost and emissions based optimization are compared to designs obtained using optimizations based solely on ecological food web metrics. The analysis suggests that networks optimized using food web metrics also were superior from a traditional cost and emissions perspective; correlations between optimization using ecological metrics and traditional optimization ranged generally from 0.70 to 0.96, with flow-based metrics being superior to structural parameters. Four structural food parameters provided correlations nearly the same as that obtained using all structural parameters, but individual structural parameters provided much less satisfactory correlations. The analysis indicates that bioinspired design principles from ecosystems can lead to both environmentally and economically sustainable industrial resource networks, and represent guidelines for designing sustainable industry networks.
Proteome-scale human interactomics
Luck, Katja; Sheynkman, Gloria M.; Zhang, Ivy; Vidal, Marc
2017-01-01
Cellular functions are mediated by complex interactome networks of physical, biochemical, and functional interactions between DNA sequences, RNA molecules, proteins, lipids, and small metabolites. A thorough understanding of cellular organization requires accurate and relatively complete models of interactome networks at proteome-scale. The recent publication of four human protein-protein interaction (PPI) maps represents a technological breakthrough and an unprecedented resource for the scientific community, heralding a new era of proteome-scale human interactomics. Our knowledge gained from these and complementary studies provides fresh insights into the opportunities and challenges when analyzing systematically generated interactome data, defines a clear roadmap towards the generation of a first reference interactome, and reveals new perspectives on the organization of cellular life. PMID:28284537
ERIC Educational Resources Information Center
Xiang, Qiao
2014-01-01
As wireless cyber-physical systems (WCPS) are increasingly being deployed in mission-critical applications, it becomes imperative that we consider application QoS requirements in in-network processing (INP). In this dissertation, we explore the potentials of two INP methods, packet packing and network coding, on improving network performance while…
ERIC Educational Resources Information Center
Reychav, Iris; Raban, Daphne Ruth; McHaney, Roger
2018-01-01
The current empirical study examines relationships between network measures and learning performance from a social network analysis perspective. We collected computerized, networking data to analyze how 401 junior high students connected to classroom peers using text- and video-based material on iPads. Following a period of computerized…
ERIC Educational Resources Information Center
Rodway, Joelle
2015-01-01
Networks are frequently cited as an important knowledge mobilization strategy; however, there is little empirical research that considers how they connect research and practice. Taking a social network perspective, I explore how central office personnel find, understand and share research knowledge within a research brokering network. This mixed…
Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku
2009-01-01
Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050
Friedman, B A
2001-08-01
Major forces are now reshaping all businesses on a global basis, including the healthcare and clinical laboratory industries. One of the major forces at work is information technology (IT), which now provides the opportunity to create a new economic and business model for the clinical laboratory industry based on the creation of an integrated vertical meta-network, referred to here as the "total laboratory solution" (TLS). Participants at the most basic level of such a network would include a hospital-based laboratory, a reference laboratory, a laboratory information system/application service provider/laboratory portal vendor, an in vitro diagnostic manufacturer, and a pharmaceutical/biotechnology manufacturer. It is suggested that each of these participants would add value to the network primarily in its area of core competency. Subvariants of such a network have evolved over recent years, but a TLS comprising all or most of these participants does not exist at this time. Although the TLS, enabled by IT and closely akin to the various e-businesses that are now taking shape, offers many advantages from a theoretical perspective over the current laboratory business model, its success will depend largely on (a) market forces, (b) how the collaborative networks are organized and managed, and (c) whether the network can offer healthcare organizations higher quality testing services at lower cost. If the concept is successful, new demands will be placed on hospital-based laboratory professionals to shift the range of professional services that they offer toward clinical consulting, integration of laboratory information from multiple sources, and laboratory information management. These information management and integration tasks can only increase in complexity in the future as new genomic and proteomics testing modalities are developed and come on-line in clinical laboratories.
Self-organization in cold atomic gases: a synchronization perspective.
Tesio, E; Robb, G R M; Oppo, G-L; Gomes, P M; Ackemann, T; Labeyrie, G; Kaiser, R; Firth, W J
2014-10-28
We study non-equilibrium spatial self-organization in cold atomic gases, where long-range spatial order spontaneously emerges from fluctuations in the plane transverse to the propagation axis of a single optical beam. The self-organization process can be interpreted as a synchronization transition in a fully connected network of fictitious oscillators, and described in terms of the Kuramoto model. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Bassett, R.; Beard, R.; Burnett, W.; Crout, R.; Griffith, B.; Jensen, R.; Signell, R.
2010-01-01
The national Integrated Ocean Observing System (IOOS??) is responsible for coordinating a network of people, resources, and technology to disseminate continuous data, information, models, products, and services made throughout our coastal waters, Great Lakes, and the oceans. There are many components of the IOOS-including government, academic, and private entities. This article will focus on some of the federal contributions to IOOS and describe the capabilities of several agency partners.
Mohammadi, Reza; Fallah-Mehrabadi, Jalil; Bidkhori, Gholamreza; Zahiri, Javad; Javad Niroomand, Mohammad; Masoudi-Nejad, Ali
2016-07-19
Production of biofuels has been one of the promising efforts in biotechnology in the past few decades. The perspective of these efforts can be reduction of increasing demands for fossil fuels and consequently reducing environmental pollution. Nonetheless, most previous approaches did not succeed in obviating many big challenges in this way. In recent years systems biology with the help of microorganisms has been trying to overcome these challenges. Unicellular cyanobacteria are widespread phototrophic microorganisms that have capabilities such as consuming solar energy and atmospheric carbon dioxide for growth and thus can be a suitable chassis for the production of valuable organic materials such as biofuels. For the ultimate use of metabolic potential of cyanobacteria, it is necessary to understand the reactions that are taking place inside the metabolic network of these microorganisms. In this study, we developed a Java tool to reconstruct an integrated metabolic network of a cyanobacterium (Synechocystis sp. PCC 6803). We merged three existing reconstructed metabolic networks of this microorganism. Then, after modeling for biofuel production, the results from flux balance analysis (FBA) disclosed an increased yield in biofuel production for ethanol, isobutanol, 3-methyl-1-butanol, 2-methyl-1-butanol, and propanol. The numbers of blocked reactions were also decreased for 2-methyl-1-butanol production. In addition, coverage of the metabolic network in terms of the number of metabolites and reactions was increased in the new obtained model.
NASA Astrophysics Data System (ADS)
Zhou, Jianfeng; Lou, Yang; Chen, Guanrong; Tang, Wallace K. S.
2018-04-01
Naming game is a simulation-based experiment used to study the evolution of languages. The conventional naming game focuses on a single language. In this paper, a novel naming game model named multi-language naming game (MLNG) is proposed, where the agents are different-language speakers who cannot communicate with each other without a translator (interpreter) in between. The MLNG model is general, capable of managing k different languages with k ≥ 2. For illustration, the paper only discusses the MLNG with two different languages, and studies five representative network topologies, namely random-graph, WS small-world, NW small-world, scale-free, and random-triangle topologies. Simulation and analysis results both show that: 1) using the network features and based on the proportion of translators the probability of establishing a conversation between two or three agents can be theoretically estimated; 2) the relationship between the convergence speed and the proportion of translators has a power-law-like relation; 3) different agents require different memory sizes, thus a local memory allocation rule is recommended for saving memory resources. The new model and new findings should be useful for further studies of naming games and for better understanding of languages evolution from a dynamical network perspective.
Druce, Maralyn; Howden, Stella
2017-07-01
The growth of e-learning in health professional education reflects expansion of personal use of online resources. Understanding the user perspective in a fast-changing digital world is essential to maintain the currency of our approach. Mixed methods were used to investigate a cohort of postgraduate, e-learning healthcare students' perspectives on their use of online resources for personal and/or professional roles, via questionnaire and student-constructed diagrams, capturing use of online resources (underpinned by White's model of "resident" and "visitor" online engagement). Semistructured interviews explored the use and value of resources afforded via the online environment. The 45 study participants described a range of prior experiences with online resources in personal and professional capacities, but overall students tended to use online "tools" ("visitor" mode) rather than highly collaborative networks ("resident" mode). In relation to e-learning, the dominant interview theme was valuing knowledge transfer from the tutor and using "visitor" behaviors to maximize knowledge acquisition. Peer-learning opportunities were less valued and barriers to collaborative "resident" modes were identified. These findings help to inform e-learning course design to promote engagement. The results enable recommendations for use of the "Visitor and Residents" model and for planning activities that learners might utilize effectively.
Crystal Structure Prediction via Deep Learning.
Ryan, Kevin; Lengyel, Jeff; Shatruk, Michael
2018-06-06
We demonstrate the application of deep neural networks as a machine-learning tool for the analysis of a large collection of crystallographic data contained in the crystal structure repositories. Using input data in the form of multi-perspective atomic fingerprints, which describe coordination topology around unique crystallographic sites, we show that the neural-network model can be trained to effectively distinguish chemical elements based on the topology of their crystallographic environment. The model also identifies structurally similar atomic sites in the entire dataset of ~50000 crystal structures, essentially uncovering trends that reflect the periodic table of elements. The trained model was used to analyze templates derived from the known binary and ternary crystal structures in order to predict the likelihood to form new compounds that could be generated by placing elements into these structural templates in combinatorial fashion. Statistical analysis of predictive performance of the neural-network model, which was applied to a test set of structures never seen by the model during training, indicates its ability to predict known elemental compositions with a high likelihood of success. In ~30% of cases, the known compositions were found among top-10 most likely candidates proposed by the model. These results suggest that the approach developed in this work can be used to effectively guide the synthetic efforts in the discovery of new materials, especially in the case of systems composed of 3 or more chemical elements.
Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.; ...
2016-11-01
The majority of anthropogenic CO 2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO 2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO 2 Observation Network (BEACO 2N) in California's Bay Area, in combination with anmore » inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km 2. The model uses an hourly 1 × 1 km 2 emission inventory and 1 × 1 km 2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO 2 emissions. We examine uncertainty in estimated CO 2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO 2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO 2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Alexander J.; Shusterman, Alexis A.; McDonald, Brian C.
The majority of anthropogenic CO 2 emissions are attributable to urban areas. While the emissions from urban electricity generation often occur in locations remote from consumption, many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies for controlling these emissions depends on our ability to observe urban CO 2 emissions and attribute them to specific activities. Cost-effective strategies for doing so have yet to be described. Here we characterize the ability of a prototype measurement network, modeled after the Berkeley Atmospheric CO 2 Observation Network (BEACO 2N) in California's Bay Area, in combination with anmore » inverse model based on the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) to improve our understanding of urban emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering an area of roughly 400 km 2. The model uses an hourly 1 × 1 km 2 emission inventory and 1 × 1 km 2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary the estimates of the combined uncertainty of the pseudo-observations and model over a range of 20 to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop statistical models that estimate the efficacy of the combined model–observing system in reducing uncertainty in CO 2 emissions. We examine uncertainty in estimated CO 2 fluxes on the urban scale, as well as for sources embedded within the city such as a line source (e.g., a highway) or a point source (e.g., emissions from the stacks of small industrial facilities). Using our inversion framework, we find that a dense network with moderate precision is the preferred setup for estimating area, line, and point sources from a combined uncertainty and cost perspective. The dense network considered here (modeled after the BEACO 2N network with an assumed mismatch error of 1 ppm at an hourly temporal resolution) could estimate weekly CO 2 emissions from an urban region with less than 5 % error, given our characterization of the combined observation and model uncertainty.« less
The Science of Transportation Analysis and Simulation
NASA Astrophysics Data System (ADS)
Gleibe, John
2010-03-01
Transportation Science focuses on methods developed to model and analyze the interaction between human behavior and transportation systems. From the human behavioral, or demand, perspective, we are interested in how person and households organize their activities across space and time, with travel viewed as an enabling activity. We have a particular interest in how to model the range of responses to public policy and transportation system changes, which leads to the consideration of both short- and long-term decision-making, interpersonal dependencies, and non-transportation-related opportunities and constraints, including household budgets, land use systems and economic systems. This has led to the development of complex structural econometric modeling systems as well as agent-based simulations. From the transportation systems, or supply, perspective we are interested in the level of service provide by transportation facilities, be it auto, transit or multi-modal systems. This has led to the development of network models and equilibrium concepts as well as hybrid simulation systems based on concepts borrowed from physics, such as fluid flow models, and cellular automata-type models. In this presentation, we review a representative sample of these methods and their use in transportation planning and public policy analysis.
Aydin, Cem Iskender; Ozkaynak, Begum; Rodríguez-Labajos, Beatriz; Yenilmez, Taylan
2017-01-01
This paper examines conflicts that occur between mining companies and civil society organizations (CSOs) around the world and offers an innovative analysis of mining conflicts from a social network perspective. The analysis showed that, as the number of CSOs involved in a conflict increased, its outcome was more likely to be perceived as a success in terms of environmental justice (EJ); if a CSO was connected to other central CSOs, the average perception of EJ success was likely to increase; and as network distance between two conflicts increased (or decreased), they were more likely to lead to different (or similar) EJ outcomes. Such network effects in mining conflicts have policy implications for EJ movements. It would be a strategic move on the part of successful CSOs to become involved in other major conflicts and disseminate information about how they achieved greater EJ success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunden, Fanny; Peck, Ariana; Salzman, Julia
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less
Aydin, Cem Iskender; Ozkaynak, Begum; Rodríguez-Labajos, Beatriz
2017-01-01
This paper examines conflicts that occur between mining companies and civil society organizations (CSOs) around the world and offers an innovative analysis of mining conflicts from a social network perspective. The analysis showed that, as the number of CSOs involved in a conflict increased, its outcome was more likely to be perceived as a success in terms of environmental justice (EJ); if a CSO was connected to other central CSOs, the average perception of EJ success was likely to increase; and as network distance between two conflicts increased (or decreased), they were more likely to lead to different (or similar) EJ outcomes. Such network effects in mining conflicts have policy implications for EJ movements. It would be a strategic move on the part of successful CSOs to become involved in other major conflicts and disseminate information about how they achieved greater EJ success. PMID:28686618
International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.
Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen
2015-01-01
This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.
International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis
Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen
2015-01-01
This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries’ roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading “trophic levels” have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows. PMID:26569618
Value Encounters - Modeling and Analyzing Co-creation of Value
NASA Astrophysics Data System (ADS)
Weigand, Hans
Recent marketing and management literature has introduced the concept of co-creation of value. Current value modeling approaches such as e3-value focus on the exchange of value rather than co-creation. In this paper, an extension to e3-value is proposed in the form of a “value encounter”. Value encounters are defined as interaction spaces where a group of actors meet and derive value by each one bringing in some of its own resources. They can be analyzed from multiple strategic perspectives, including knowledge management, social network management and operational management. Value encounter modeling can be instrumental in the context of service analysis and design.
Bauer, Sebastian; van Alphen, Natascha; Becker, Albert; Chiocchetti, Andreas; Deichmann, Ralf; Deller, Thomas; Freiman, Thomas; Freitag, Christine M; Gehrig, Johannes; Hermsen, Anke M; Jedlicka, Peter; Kell, Christian; Klein, Karl Martin; Knake, Susanne; Kullmann, Dimitri M; Liebner, Stefan; Norwood, Braxton A; Omigie, Diana; Plate, Karlheinz; Reif, Andreas; Reif, Philipp S; Reiss, Yvonne; Roeper, Jochen; Ronellenfitsch, Michael W; Schorge, Stephanie; Schratt, Gerhard; Schwarzacher, Stephan W; Steinbach, Joachim P; Strzelczyk, Adam; Triesch, Jochen; Wagner, Marlies; Walker, Matthew C; von Wegner, Frederic; Rosenow, Felix
2017-11-01
Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics, and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. This Part II includes the experimental and translational approaches and a discussion of the future perspectives, while the diagnostic methods, EEG network analysis, biomarkers, and personalized treatment approaches were addressed in Part I [1]. Copyright © 2017. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Engel, Paul G. H.; van den Bor, Wout
1995-01-01
Application of a knowledge and information systems perspective shows how agricultural innovation can be enhanced through networking. In the Netherlands, a number of alternative systems of inquiry and learning are infused with this perspective: participatory technology development, participatory rural appraisal, soft systems methodology, and rapid…
NASA Astrophysics Data System (ADS)
di Volo, Matteo; Burioni, Raffaella; Casartelli, Mario; Livi, Roberto; Vezzani, Alessandro
2016-01-01
We study the dynamics of networks with inhibitory and excitatory leak-integrate-and-fire neurons with short-term synaptic plasticity in the presence of depressive and facilitating mechanisms. The dynamics is analyzed by a heterogeneous mean-field approximation, which allows us to keep track of the effects of structural disorder in the network. We describe the complex behavior of different classes of excitatory and inhibitory components, which give rise to a rich dynamical phase diagram as a function of the fraction of inhibitory neurons. Using the same mean-field approach, we study and solve a global inverse problem: reconstructing the degree probability distributions of the inhibitory and excitatory components and the fraction of inhibitory neurons from the knowledge of the average synaptic activity field. This approach unveils new perspectives on the numerical study of neural network dynamics and the possibility of using these models as a test bed for the analysis of experimental data.
Support network of adolescents with chronic disease: adolescents' perspective.
Kyngäs, Helvi
2004-12-01
The purpose of this study was to describe the support network of adolescents with a chronic disease from their own perspective. Data were collected by interviewing adolescents with asthma, epilepsy, juvenile rheumatoid arthritis (JRA) and insulin-dependent diabetes mellitus (IDDM). The sample consisted of 40 adolescents aged between 13 and 17 years. Interview data were examined using content analysis. Six main categories were established to describe the support network of adolescents with a chronic disease: parents, peers, school, health care providers, technology and pets. Peers were divided into two groups: fellow sufferers and peers without a chronic disease. At school, teachers, school nurses and classmates were part of the support network. Health care providers included nurses, physicians and physiotherapists. Technology was also part of the support network and included four techniques that may be used to communicate: computers, mobile telephones, television and videos. The results provided a useful insight into the social network of adolescents with chronic disease and serve to raise awareness of the problems and opinions experienced by adolescents with this condition.
Specializing network analysis to detect anomalous insider actions
Chen, You; Nyemba, Steve; Zhang, Wen; Malin, Bradley
2012-01-01
Collaborative information systems (CIS) enable users to coordinate efficiently over shared tasks in complex distributed environments. For flexibility, they provide users with broad access privileges, which, as a side-effect, leave such systems vulnerable to various attacks. Some of the more damaging malicious activities stem from internal misuse, where users are authorized to access system resources. A promising class of insider threat detection models for CIS focuses on mining access patterns from audit logs, however, current models are limited in that they assume organizations have significant resources to generate label cases for training classifiers or assume the user has committed a large number of actions that deviate from “normal” behavior. In lieu of the previous assumptions, we introduce an approach that detects when specific actions of an insider deviate from expectation in the context of collaborative behavior. Specifically, in this paper, we introduce a specialized network anomaly detection model, or SNAD, to detect such events. This approach assesses the extent to which a user influences the similarity of the group of users that access a particular record in the CIS. From a theoretical perspective, we show that the proposed model is appropriate for detecting insider actions in dynamic collaborative systems. From an empirical perspective, we perform an extensive evaluation of SNAD with the access logs of two distinct environments: the patient record access logs a large electronic health record system (6,015 users, 130,457 patients and 1,327,500 accesses) and the editing logs of Wikipedia (2,394,385 revisors, 55,200 articles and 6,482,780 revisions). We compare our model with several competing methods and demonstrate SNAD is significantly more effective: on average it achieves 20–30% greater area under an ROC curve. PMID:23399988
Using network analysis to study behavioural phenotypes: an example using domestic dogs.
Goold, Conor; Vas, Judit; Olsen, Christine; Newberry, Ruth C
2016-10-01
Phenotypic integration describes the complex interrelationships between organismal traits, traditionally focusing on morphology. Recently, research has sought to represent behavioural phenotypes as composed of quasi-independent latent traits. Concurrently, psychologists have opposed latent variable interpretations of human behaviour, proposing instead a network perspective envisaging interrelationships between behaviours as emerging from causal dependencies. Network analysis could also be applied to understand integrated behavioural phenotypes in animals. Here, we assimilate this cross-disciplinary progression of ideas by demonstrating the use of network analysis on survey data collected on behavioural and motivational characteristics of police patrol and detection dogs ( Canis lupus familiaris ). Networks of conditional independence relationships illustrated a number of functional connections between descriptors, which varied between dog types. The most central descriptors denoted desirable characteristics in both patrol and detection dog networks, with 'Playful' being widely correlated and possessing mediating relationships between descriptors. Bootstrap analyses revealed the stability of network results. We discuss the results in relation to previous research on dog personality, and benefits of using network analysis to study behavioural phenotypes. We conclude that a network perspective offers widespread opportunities for advancing the understanding of phenotypic integration in animal behaviour.
Strategic tradeoffs in competitor dynamics on adaptive networks.
Hébert-Dufresne, Laurent; Allard, Antoine; Noël, Pierre-André; Young, Jean-Gabriel; Libby, Eric
2017-08-08
Recent empirical work highlights the heterogeneity of social competitions such as political campaigns: proponents of some ideologies seek debate and conversation, others create echo chambers. While symmetric and static network structure is typically used as a substrate to study such competitor dynamics, network structure can instead be interpreted as a signature of the competitor strategies, yielding competition dynamics on adaptive networks. Here we demonstrate that tradeoffs between aggressiveness and defensiveness (i.e., targeting adversaries vs. targeting like-minded individuals) creates paradoxical behaviour such as non-transitive dynamics. And while there is an optimal strategy in a two competitor system, three competitor systems have no such solution; the introduction of extreme strategies can easily affect the outcome of a competition, even if the extreme strategies have no chance of winning. Not only are these results reminiscent of classic paradoxical results from evolutionary game theory, but the structure of social networks created by our model can be mapped to particular forms of payoff matrices. Consequently, social structure can act as a measurable metric for social games which in turn allows us to provide a game theoretical perspective on online political debates.
Small-world human brain networks: Perspectives and challenges.
Liao, Xuhong; Vasilakos, Athanasios V; He, Yong
2017-06-01
Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Computational modelling of genome-scale metabolic networks and its application to CHO cell cultures.
Rejc, Živa; Magdevska, Lidija; Tršelič, Tilen; Osolin, Timotej; Vodopivec, Rok; Mraz, Jakob; Pavliha, Eva; Zimic, Nikolaj; Cvitanović, Tanja; Rozman, Damjana; Moškon, Miha; Mraz, Miha
2017-09-01
Genome-scale metabolic models (GEMs) have become increasingly important in recent years. Currently, GEMs are the most accurate in silico representation of the genotype-phenotype link. They allow us to study complex networks from the systems perspective. Their application may drastically reduce the amount of experimental and clinical work, improve diagnostic tools and increase our understanding of complex biological phenomena. GEMs have also demonstrated high potential for the optimisation of bio-based production of recombinant proteins. Herein, we review the basic concepts, methods, resources and software tools used for the reconstruction and application of GEMs. We overview the evolution of the modelling efforts devoted to the metabolism of Chinese Hamster Ovary (CHO) cells. We present a case study on CHO cell metabolism under different amino acid depletions. This leads us to the identification of the most influential as well as essential amino acids in selected CHO cell lines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adedokun, Lola; Burke, Colin
2016-01-01
Ranibizumab and aflibercept are anti-vascular endothelial growth factor agents licensed for the treatment of visual impairment due to macular edema secondary to branch retinal vein occlusion (BRVO). The aim of this study was to estimate, from a UK healthcare payer's perspective, the cost-effectiveness of ranibizumab versus aflibercept in this indication. A Markov model was used to simulate the outcomes and costs of treating BRVO. Patient baseline characteristics and efficacy data for ranibizumab were obtained from the BRAVO trial. The relative efficacy of aflibercept was derived from a published network meta-analysis. Injection frequencies were derived from ranibizumab and aflibercept studies included in the network meta-analysis. Health states were defined by increments of 10 letters in best corrected visual acuity (BCVA). Patients could gain or lose a maximum of two health states between cycles. The first cycle was 6 months, followed by monthly cycles. Different utility values were assigned to the better-seeing and worse-seeing eyes based on BCVA. A 2-year treatment time frame and a lifetime time horizon were used. Future costs and health outcomes were discounted at 3.5% per annum. Sensitivity analyses were used to test the robustness of the model. The lifetime cost per patient treated was £15,273 with ranibizumab and £17,347 with aflibercept. Ranibizumab was dominant over aflibercept, producing incremental health gains of 0.0120 quality-adjusted life-years (QALYs) and cost savings of £2074. Net monetary benefit for ranibizumab at a willingness-to-pay threshold of £20,000/QALY was £2314. Sensitivity analyses showed that the results were robust to variations in model parameters. Ranibizumab provides greater health gains at a lower overall cost than aflibercept in the treatment of visual impairment due to macular edema secondary to BRVO. Ranibizumab is therefore cost-effective from a UK healthcare payer's perspective. Novartis Pharma AG, Basel, Switzerland.
Reducing readmissions to detoxification: an interorganizational network perspective.
Spear, Suzanne E
2014-04-01
The high cost of detoxification (detox) services and health risks associated with continued substance abuse make readmission to detox an important indicator of poor performance for substance use disorder treatment systems. This study examined the extent to which the structure of local networks available to detox programs affects patients' odds of readmission to detox within 1 year. Administrative data from 32 counties in California in 2008-2009 were used to map network ties between programs based on patient transfers. Social network analysis was employed to measure structural features of detox program networks. Contextual predictors included efficiency (proportion of ties within a network that are non-redundant) and out-degree (number of outgoing ties to other programs). A binary mixed model was used to predict the odds of readmission among detox patients in residential (non-hospital) facilities (N=18,278). After adjusting for patient-level covariates and continuity of service from detox to outpatient or residential treatment, network efficiency was associated with lower odds of readmission. The impact of network structure on detox readmissions suggests that the interorganizational context in which detox programs operate may be important for improving continuity of service within substance use disorder treatment systems. Implications for future research are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Reducing Readmissions to Detoxification: An Interorganizational Network Perspective
Spear, Suzanne E.
2014-01-01
Background The high cost of detoxification (detox) services and health risks associated with continued substance abuse make readmission to detox an important indicator of poor performance for substance use disorder treatment systems. This study examined the extent to which the structure of local networks available to detox programs affects patients’ odds of readmission to detox within 1 year. Methods Administrative data from 32 counties in California in 2008–2009 were used to map network ties between programs based on patient transfers. Social network analysis was employed to measure structural features of detox program networks. Contextual predictors included efficiency (proportion of ties within a network that are non-redundant) and out-degree (number of outgoing ties to other programs). A binary mixed model was used to predict the odds of readmission among detox patients in residential (non-hospital) facilities (N =18,278). Results After adjusting for patient-level covariates and continuity of service from detox to outpatient or residential treatment, network efficiency was associated with lower odds of readmission. Conclusion The impact of network structure on detox readmissions suggests that the interorganizational context in which detox programs operate may be important for improving continuity of service within substance use disorder treatment systems. Implications for future research are discussed. PMID:24529966
An optimal general type-2 fuzzy controller for Urban Traffic Network.
Khooban, Mohammad Hassan; Vafamand, Navid; Liaghat, Alireza; Dragicevic, Tomislav
2017-01-01
Urban traffic network model is illustrated by state-charts and object-diagram. However, they have limitations to show the behavioral perspective of the Traffic Information flow. Consequently, a state space model is used to calculate the half-value waiting time of vehicles. In this study, a combination of the general type-2 fuzzy logic sets and the Modified Backtracking Search Algorithm (MBSA) techniques are used in order to control the traffic signal scheduling and phase succession so as to guarantee a smooth flow of traffic with the least wait times and average queue length. The parameters of input and output membership functions are optimized simultaneously by the novel heuristic algorithm MBSA. A comparison is made between the achieved results with those of optimal and conventional type-1 fuzzy logic controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model.
Nikmaneshi, M R; Firoozabadi, B; Saidi, M S
2015-09-01
The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as the distribution of effective forces across the lamellipodia of a keratocyte with stationary shape. The order of magnitude method is also used to determine the contribution of forces in the internal dynamics of lamellipodia.
On building a memory evolutive system for application to learning and cognition modeling.
de Lima do Rego Monteiro, Julio; Kogler, Joao Eduardo; Ribeiro, Joao Henrique Ranhel; Netto, Marcio Lobo
2010-01-01
We address here aspects of the implementation of a memory evolutive system (MES), based on the model proposed by A. Ehresmann and J. Vanbremeersch (2007), by means of a simulated network of spiking neurons with time dependent plasticity. We point out the advantages and challenges of applying category theory for the representation of cognition, by using the MES architecture. Then we discuss the issues concerning the minimum requirements that an artificial neural network (ANN) should fulfill in order that it would be capable of expressing the categories and mappings between them, underlying the MES. We conclude that a pulsed ANN based on Izhikevich's formal neuron with STDP (spike time-dependent plasticity) has sufficient dynamical properties to achieve these requirements, provided it can cope with the topological requirements. Finally, we present some perspectives of future research concerning the proposed ANN topology.
NASA Astrophysics Data System (ADS)
Setiawan, Retno Agus; Setyohadi, Djoko Budiyanto; Pranowo
2018-02-01
Social network sites (SNSs) have grown rapidly in recent years. More and more companies have used SNSs as part of their business strategy. SNSs offer numerous advantages, especially in enhancing communication. SNSs have a potential as a new complaint channel for young customers to file their complaints to companies. The objective of this study is to investigate the acceptance of SNSs as complaint channel based on TAM. A structured questionnaire was distributed to young participants, which collected 222 valid questionnaires. Furthermore, structural equation modeling was utilized to investigate the structural model. The results revealed that perceived ease of use and perceived usefulness have a positive correlation on the attitude towards SNSs. While the attitude plays an important role in understanding customers' intention to use SNSs to voice complaints. However perceived usefulness has no significant impact on intention to use. Limitations and further research were also discussed.
The Global Special Operations Forces Network from a Partner-Nation Perspective
2014-12-01
in networks vs . management of Networks. ................................80 Figure 17. A national SOF network with SOCOM as the manager of networks...context and are asked in the natural course of things; there is no predetermination of question topics or wording. 10 descriptive section is the...struggles and challenges that occur naturally over time. As depicted in Figure 2, the network will constantly have to examine how it is evolving and, if
A New Generation of Networks and Computing Models for High Energy Physics in the LHC Era
NASA Astrophysics Data System (ADS)
Newman, H.
2011-12-01
Wide area networks of increasing end-to-end capacity and capability are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of several hundred times over the past decade. With the opening of the LHC era in 2009-10 and the prospects for discoveries in the upcoming LHC run, the outlook is for a continuation or an acceleration of these trends using next generation networks over the next few years. Responding to the need to rapidly distribute and access datasets of tens to hundreds of terabytes drawn from multi-petabyte data stores, high energy physicists working with network engineers and computer scientists are learning to use long range networks effectively on an increasing scale, and aggregate flows reaching the 100 Gbps range have been observed. The progress of the LHC, and the unprecedented ability of the experiments to produce results rapidly using worldwide distributed data processing and analysis has sparked major, emerging changes in the LHC Computing Models, which are moving from the classic hierarchical model designed a decade ago to more agile peer-to-peer-like models that make more effective use of the resources at Tier2 and Tier3 sites located throughout the world. A new requirements working group has gauged the needs of Tier2 centers, and charged the LHCOPN group that runs the network interconnecting the LHC Tierls with designing a new architecture interconnecting the Tier2s. As seen from the perspective of ICFA's Standing Committee on Inter-regional Connectivity (SCIC), the Digital Divide that separates physicists in several regions of the developing world from those in the developed world remains acute, although many countries have made major advances through the rapid installation of modern network infrastructures. A case in point is Africa, where a new round of undersea cables promises to transform the continent.
The social network of international health aid.
Han, Lu; Koenig-Archibugi, Mathias; Opsahl, Tore
2018-06-01
International development assistance for health generates an emergent social network in which policy makers in recipient countries are connected to numerous bilateral and multilateral aid agencies and to other aid recipients. Ties in this global network are channels for the transmission of knowledge, norms and influence in addition to material resources, and policy makers in centrally situated governments receive information faster and are exposed to a more diverse range of sources and perspectives. Since diversity of perspectives improves problem-solving capacity, the structural position of aid-receiving governments in the health aid network can affect the health outcomes that those governments are able to attain. We apply a recently developed Social Network Analysis measure to health aid data for 1990-2010 to investigate the relationship between country centrality in the health aid network and improvements in child health. A generalized method of moments (GMM) analysis indicates that, controlling for the volume of health aid and other factors, higher centrality in the health aid network is associated with better child survival rates in a sample of 110 low and middle income countries. Copyright © 2018 Elsevier Ltd. All rights reserved.
Photonic Network R&D Activities in Japan-Current Activities and Future Perspectives
NASA Astrophysics Data System (ADS)
Kitayama, Ken-Ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-Ichi; Onaka, Hiroshi; Namiki, Shu; Aoyama, Tomonori
2005-10-01
R&D activities on photonic networks in Japan are presented. First, milestones in current ongoing R&D programs supported by Japanese government agencies are introduced, including long-distance and wavelength division multiplexing (WDM) fiber transmission, wavelength routing, optical burst switching (OBS), and control-plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP-over-WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R&D programs for photonic networks over the next 5 years until 2010, by focusing on the report that has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R&D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis, through the customer's initiative to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.
Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks.
Castrillo, Juan I; Oliver, Stephen G
2016-01-01
Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.
Social structure of Facebook networks
NASA Astrophysics Data System (ADS)
Traud, Amanda L.; Mucha, Peter J.; Porter, Mason A.
2012-08-01
We study the social structure of Facebook “friendship” networks at one hundred American colleges and universities at a single point in time, and we examine the roles of user attributes-gender, class year, major, high school, and residence-at these institutions. We investigate the influence of common attributes at the dyad level in terms of assortativity coefficients and regression models. We then examine larger-scale groupings by detecting communities algorithmically and comparing them to network partitions based on user characteristics. We thereby examine the relative importance of different characteristics at different institutions, finding for example that common high school is more important to the social organization of large institutions and that the importance of common major varies significantly between institutions. Our calculations illustrate how microscopic and macroscopic perspectives give complementary insights on the social organization at universities and suggest future studies to investigate such phenomena further.
A network model of behavioural performance in a rule learning task.
Hasselmo, Michael E; Stern, Chantal E
2018-04-19
Humans demonstrate differences in performance on cognitive rule learning tasks which could involve differences in properties of neural circuits. An example model is presented to show how gating of the spread of neural activity could underlie rule learning and the generalization of rules to previously unseen stimuli. This model uses the activity of gating units to regulate the pattern of connectivity between neurons responding to sensory input and subsequent gating units or output units. This model allows analysis of network parameters that could contribute to differences in cognitive rule learning. These network parameters include differences in the parameters of synaptic modification and presynaptic inhibition of synaptic transmission that could be regulated by neuromodulatory influences on neural circuits. Neuromodulatory receptors play an important role in cognitive function, as demonstrated by the fact that drugs that block cholinergic muscarinic receptors can cause cognitive impairments. In discussions of the links between neuromodulatory systems and biologically based traits, the issue of mechanisms through which these linkages are realized is often missing. This model demonstrates potential roles of neural circuit parameters regulated by acetylcholine in learning context-dependent rules, and demonstrates the potential contribution of variation in neural circuit properties and neuromodulatory function to individual differences in cognitive function.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Author(s).
He, Min; van Wijk, Eduard; van Wietmarschen, Herman; Wang, Mei; Sun, Mengmeng; Koval, Slavik; van Wijk, Roeland; Hankemeier, Thomas; van der Greef, Jan
2017-03-01
The increasing prevalence of rheumatoid arthritis has driven the development of new approaches and technologies for investigating the pathophysiology of this devastating, chronic disease. From the perspective of systems biology, combining comprehensive personal data such as metabolomics profiling with ultra-weak photon emission (UPE) data may provide key information regarding the complex pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE with metabolomics-based technologies in order to investigate collagen-induced arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we investigated the biological underpinnings of the complex dataset. Using correlation networks, we found that elevated inflammatory and ROS-mediated plasma metabolites are strongly correlated with a systematic reduction in amine metabolites, which is linked to muscle wasting in rheumatoid arthritis. We also found that increased UPE intensity is strongly linked to metabolic processes (with correlation co-efficiency |r| value >0.7), which may be associated with lipid oxidation that related to inflammatory and/or ROS-mediated processes. Together, these results indicate that UPE is correlated with metabolomics and may serve as a valuable tool for diagnosing chronic disease by integrating inflammatory signals at the systems level. Our correlation network analysis provides important and valuable information regarding the disease process from a system-wide perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
Vodovotz, Yoram; Xia, Ashley; Read, Elizabeth L.; Bassaganya-Riera, Josep; Hafler, David A.; Sontag, Eduardo; Wang, Jin; Tsang, John S.; Day, Judy D.; Kleinstein, Steven; Butte, Atul J.; Altman, Matthew C; Hammond, Ross; Sealfon, Stuart C.
2016-01-01
Emergent responses of the immune system result from integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the NIAID workshop “Complex Systems Science, Modeling and Immunity” and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies. PMID:27986392
Rosenow, Felix; van Alphen, Natascha; Becker, Albert; Chiocchetti, Andreas; Deichmann, Ralf; Deller, Thomas; Freiman, Thomas; Freitag, Christine M; Gehrig, Johannes; Hermsen, Anke M; Jedlicka, Peter; Kell, Christian; Klein, Karl Martin; Knake, Susanne; Kullmann, Dimitri M; Liebner, Stefan; Norwood, Braxton A; Omigie, Diana; Plate, Karlheinz; Reif, Andreas; Reif, Philipp S; Reiss, Yvonne; Roeper, Jochen; Ronellenfitsch, Michael W; Schorge, Stephanie; Schratt, Gerhard; Schwarzacher, Stephan W; Steinbach, Joachim P; Strzelczyk, Adam; Triesch, Jochen; Wagner, Marlies; Walker, Matthew C; von Wegner, Frederic; Bauer, Sebastian
2017-11-01
Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. Part I includes the clinical phenotyping and diagnostic methods, EEG network-analysis, biomarkers, and personalized treatment approaches. In Part II, experimental and translational approaches will be discussed (Bauer et al., 2017) [1]. Copyright © 2017 Elsevier Inc. All rights reserved.
Carlos, Diene Monique; de Pádua, Elisabete Matallo Marchesini; da Silva, Lygia Maria Pereira; Silva, Marta Angélica Iossi; Marques, Walter Ernesto Ude; Leitão, Maria Neto da Cruz; Ferriani, Maria das Graças Carvalho
2017-08-01
To contribute the understanding of the network care provided to families involved in family violence against children and adolescents (FVACA), from the Primary Health Care (PHC) perspective. Children and adolescents figure among the main victims of violence around the world, which occurs predominantly in the family context. PHC-guided network care has emerged as a new process that contrasts with traditional approaches, which rely on fragmented, punctual and compensatory actions and produce simplified and segmented interventions in response to complex phenomena like violence. The Paradigm of Complexity interacts with the network care approach and, by articulating the multiple dimensions of the research phenomenon, contributes to its understanding. Qualitative research, based on the Paradigm of Complexity. Data were collected through minimal maps of the external institutional social network, focus groups and semi-structured interviews held with 41 PHC professionals in Brazil. The notions of comprehension and contextualisation as well as dialogical, recursive and holographic principles from complexity theory guided the data analysis. The two thematic categories that emerged revealed reduced institutional networks, with low-density and homogeneous bonds, which resulted in fragmented care in all stages of the care process. Although the network organisation of care for the families involved in FVACA is fundamental, the construction of these networks still represents a great challenge, as it requires the joint work of a multiprofessional team. For nursing to respond to the contemporary care demands in a contemplative and pertinent manner, a perspective and a reference framework need to be developed, leading to broader and more contextualised actions, with a multidimensional approach to the families and communities of which child and adolescent victims of violence are a part. © 2016 John Wiley & Sons Ltd.
The geometry of chaotic dynamics — a complex network perspective
NASA Astrophysics Data System (ADS)
Donner, R. V.; Heitzig, J.; Donges, J. F.; Zou, Y.; Marwan, N.; Kurths, J.
2011-12-01
Recently, several complex network approaches to time series analysis have been developed and applied to study a wide range of model systems as well as real-world data, e.g., geophysical or financial time series. Among these techniques, recurrence-based concepts and prominently ɛ-recurrence networks, most faithfully represent the geometrical fine structure of the attractors underlying chaotic (and less interestingly non-chaotic) time series. In this paper we demonstrate that the well known graph theoretical properties local clustering coefficient and global (network) transitivity can meaningfully be exploited to define two new local and two new global measures of dimension in phase space: local upper and lower clustering dimension as well as global upper and lower transitivity dimension. Rigorous analytical as well as numerical results for self-similar sets and simple chaotic model systems suggest that these measures are well-behaved in most non-pathological situations and that they can be estimated reasonably well using ɛ-recurrence networks constructed from relatively short time series. Moreover, we study the relationship between clustering and transitivity dimensions on the one hand, and traditional measures like pointwise dimension or local Lyapunov dimension on the other hand. We also provide further evidence that the local clustering coefficients, or equivalently the local clustering dimensions, are useful for identifying unstable periodic orbits and other dynamically invariant objects from time series. Our results demonstrate that ɛ-recurrence networks exhibit an important link between dynamical systems and graph theory.
Perceived support from a caregiver's social ties predicts subsequent care-recipient health.
Kelley, Dannielle E; Lewis, Megan A; Southwell, Brian G
2017-12-01
Most social support research has examined support from an individual patient perspective and does not model the broader social context of support felt by caregivers. Understanding how social support networks may complement healthcare services is critical, considering the aging population, as social support networks may be a valuable resource to offset some of the demands placed on the healthcare system. We sought to identify how caregivers' perceived organizational and interpersonal support from their social support network influences care-recipient health. We created a dyadic dataset of care-recipient and caregivers from the first two rounds of the National Health and Aging Trends survey (2011, 2012) and the first round of the associated National Study of Caregivers survey (2011). Using structural equation modeling, we explored how caregivers' perceived social support is associated with caregiver confidence to provide care, and is associated with care-recipient health outcomes at two time points. All data were analyzed in 2016. Social engagement with members from caregivers' social support networks was positively associated with caregiver confidence, and social engagement and confidence were positively associated with care-recipient health at time 1. Social engagement positively predicted patient health at time 2 controlling for time 1. Conversely, use of organizational support negatively predicted care-recipient health at time 2. Care-recipients experience better health outcomes when caregivers are able to be more engaged with members of their social support network.
Information Networks and Education: An Analytic Bibliography.
ERIC Educational Resources Information Center
Pritchard, Roger
This literature review presents a broad and overall perspective on the various kinds of information networks that will be useful to educators in developing nations. There are five sections to the essay. The first section cites and briefly describes the literature dealing with library, information, and computer networks. Sections two and three…
ERIC Educational Resources Information Center
Huang, Jun Song
2014-01-01
While collaboration is increasingly recognized to be important for research, researchers' collaboration networks are still not adequately recognized as a form of research capacity in the literature. Research is a knowledge creation activity and interpersonal research collaboration networks are important for knowledge cross-fertilization and…
Status Struggles: Network Centrality and Gender Segregation in Same- and Cross-Gender Aggression
ERIC Educational Resources Information Center
Faris, Robert; Felmlee, Diane
2011-01-01
Literature on aggression often suggests that individual deficiencies, such as social incompetence, psychological difficulties, or troublesome home environments, are responsible for aggressive behavior. In this article, by contrast, we examine aggression from a social network perspective, arguing that social network centrality, our primary measure…
Kris Havstad
2016-01-01
The USDA Agricultural Research Service (ARS) established a Long Term Agroecosystem Research Network (LTAR) across 10 of its research locations, including some of its large watershed facilities, in 2012 and expanded that network to 18 locations in 2014.
SOUND SURVEY DESIGNS CAN FACILITATE INTEGRATING STREAM MONITORING DATA ACROSS MULTIPLE PROGRAMS
Multiple agencies in the Pacific Northwest monitor the condition of stream networks or their watersheds. Some agencies use a stream "network" perspective to report on the fraction or length of the network that either meets or violates particular criteria. Other agencies use a "wa...
Sjolander, Catarina; Ahlstrom, Gerd
2012-09-17
To strengthen the mental well-being of close family of persons newly diagnosed as having cancer, it is necessary to acquire a greater understanding of their experiences of social support networks, so as to better assess what resources are available to them from such networks and what professional measures are required. The main aim of the present study was to explore the meaning of these networks for close family of adult persons in the early stage of treatment for advanced lung or gastrointestinal cancer. An additional aim was to validate the study's empirical findings by means of the Finfgeld-Connett conceptual model for social support. The intention was to investigate whether these findings were in accordance with previous research in nursing. Seventeen family members with a relative who 8-14 weeks earlier had been diagnosed as having lung or gastrointestinal cancer were interviewed. The data were subjected to qualitative latent content analysis and validated by means of identifying antecedents and critical attributes. The meaning or main attribute of the social support network was expressed by the theme Confirmation through togetherness, based on six subthemes covering emotional and, to a lesser extent, instrumental support. Confirmation through togetherness derived principally from information, understanding, encouragement, involvement and spiritual community. Three subthemes were identified as the antecedents to social support: Need of support, Desire for a deeper relationship with relatives, Network to turn to. Social support involves reciprocal exchange of verbal and non-verbal information provided mainly by lay persons. The study provides knowledge of the antecedents and attributes of social support networks, particularly from the perspective of close family of adult persons with advanced lung or gastrointestinal cancer. There is a need for measurement instruments that could encourage nurses and other health-care professionals to focus on family members' personal networks as a way to strengthen their mental health. There is also a need for further clarification of the meaning of social support versus caring during the whole illness trajectory of cancer from the family members' perspective.
2012-01-01
Background To strengthen the mental well-being of close family of persons newly diagnosed as having cancer, it is necessary to acquire a greater understanding of their experiences of social support networks, so as to better assess what resources are available to them from such networks and what professional measures are required. The main aim of the present study was to explore the meaning of these networks for close family of adult persons in the early stage of treatment for advanced lung or gastrointestinal cancer. An additional aim was to validate the study’s empirical findings by means of the Finfgeld-Connett conceptual model for social support. The intention was to investigate whether these findings were in accordance with previous research in nursing. Methods Seventeen family members with a relative who 8–14 weeks earlier had been diagnosed as having lung or gastrointestinal cancer were interviewed. The data were subjected to qualitative latent content analysis and validated by means of identifying antecedents and critical attributes. Results The meaning or main attribute of the social support network was expressed by the theme Confirmation through togetherness, based on six subthemes covering emotional and, to a lesser extent, instrumental support. Confirmation through togetherness derived principally from information, understanding, encouragement, involvement and spiritual community. Three subthemes were identified as the antecedents to social support: Need of support, Desire for a deeper relationship with relatives, Network to turn to. Social support involves reciprocal exchange of verbal and non-verbal information provided mainly by lay persons. Conclusions The study provides knowledge of the antecedents and attributes of social support networks, particularly from the perspective of close family of adult persons with advanced lung or gastrointestinal cancer. There is a need for measurement instruments that could encourage nurses and other health-care professionals to focus on family members’ personal networks as a way to strengthen their mental health. There is also a need for further clarification of the meaning of social support versus caring during the whole illness trajectory of cancer from the family members’ perspective. PMID:22978508
ERIC Educational Resources Information Center
Matsumoto, Kazuko
2010-01-01
This paper aims to reveal mechanisms of language maintenance and shift in the rural post-colonial multilingual island community of Palau in the Western Pacific, using social networks as an explanatory framework. I explore the usefulness of social networks from three perspectives, investigating whether and how social networks can explain changes in…
NASA Astrophysics Data System (ADS)
Srimani, P. K.; Parimala, Y. G.
2011-12-01
A unique approach has been developed to study patterns in ragas of Carnatic Classical music based on artificial neural networks. Ragas in Carnatic music which have found their roots in the Vedic period, have grown on a Scientific foundation over thousands of years. However owing to its vastness and complexities it has always been a challenge for scientists and musicologists to give an all encompassing perspective both qualitatively and quantitatively. Cognition, comprehension and perception of ragas in Indian classical music have always been the subject of intensive research, highly intriguing and many facets of these are hitherto not unravelled. This paper is an attempt to view the melakartha ragas with a cognitive perspective using artificial neural network based approach which has given raise to very interesting results. The 72 ragas of the melakartha system were defined through the combination of frequencies occurring in each of them. The data sets were trained using several neural networks. 100% accurate pattern recognition and classification was obtained using linear regression, TLRN, MLP and RBF networks. Performance of the different network topologies, by varying various network parameters, were compared. Linear regression was found to be the best performing network.
Grosser, Travis J; Venkataramani, Vijaya; Labianca, Giuseppe Joe
2017-09-01
While most social network studies of employee innovation behavior examine the focal employees' ("egos'") network structure, we employ an alter-centric perspective to study the personal characteristics of employees' network contacts-their "alters"-to better understand employee innovation. Specifically, we examine how the creative self-efficacy (CSE) and innovation behavior of employees' social network contacts affects their ability to generate and implement novel ideas. Hypotheses were tested using a sample of 144 employees in a U.S.-based product development organization. We find that the average CSE of alters in an employee's problem solving network is positively related to that employee's innovation behavior, with this relationship being mediated by these alters' average innovation behavior. The relationship between the alters' average innovation behavior and the employee's own innovation behavior is strengthened when these alters have less dense social networks. Post hoc results suggest that having network contacts with high levels of CSE also leads to an increase in ego's personal CSE 1 year later in cases where the employee's initial level of CSE was relatively low. Implications for theory and practice are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Global multi-layer network of human mobility
Belyi, Alexander; Bojic, Iva; Sobolevsky, Stanislav; Sitko, Izabela; Hawelka, Bartosz; Rudikova, Lada; Kurbatski, Alexander; Ratti, Carlo
2017-01-01
ABSTRACT Recent availability of geo-localized data capturing individual human activity together with the statistical data on international migration opened up unprecedented opportunities for a study on global mobility. In this paper, we consider it from the perspective of a multi-layer complex network, built using a combination of three datasets: Twitter, Flickr and official migration data. Those datasets provide different, but equally important insights on the global mobility – while the first two highlight short-term visits of people from one country to another, the last one – migration – shows the long-term mobility perspective, when people relocate for good. The main purpose of the paper is to emphasize importance of this multi-layer approach capturing both aspects of human mobility at the same time. On the one hand, we show that although the general properties of different layers of the global mobility network are similar, there are important quantitative differences among them. On the other hand, we demonstrate that consideration of mobility from a multi-layer perspective can reveal important global spatial patterns in a way more consistent with those observed in other available relevant sources of international connections, in comparison to the spatial structure inferred from each network layer taken separately. PMID:28553155
Domestic violence against children and adolescents: social support network perspectives.
Carlos, Diene Monique; Pádua, Elisabete Matallo Marchesini De; Fernandes, Maria Isabel Domingues; Leitão, Maria Neto da Cruz; Ferriani, Maria das Graças Carvalho
2017-07-20
To identify and analyze the social support network of families involved in violence against children and adolescents, from the perspective of health professionals and families in a municipality of the state of São Paulo, Brazil. This was a qualitative strategic social study, anchored in the paradigm of complexity. Data were collected from 41 health professionals and 15 families using institutional or personal network maps, and semi-structured interviews. Analysis was conducted by organizing the data, constructing theoretical frameworks, and categorizing resulting information. The category "weaving the network" was unveiled, with family experiences and professionals focused on a logic of fragmentation of care. The creation and implementation of public policy are urgently needed to address the needs of this population, by empowering families and communities and developing research that respects the multidimensional nature of the phenomenon.
Protein-Protein Interface and Disease: Perspective from Biomolecular Networks.
Hu, Guang; Xiao, Fei; Li, Yuqian; Li, Yuan; Vongsangnak, Wanwipa
Protein-protein interactions are involved in many important biological processes and molecular mechanisms of disease association. Structural studies of interfacial residues in protein complexes provide information on protein-protein interactions. Characterizing protein-protein interfaces, including binding sites and allosteric changes, thus pose an imminent challenge. With special focus on protein complexes, approaches based on network theory are proposed to meet this challenge. In this review we pay attention to protein-protein interfaces from the perspective of biomolecular networks and their roles in disease. We first describe the different roles of protein complexes in disease through several structural aspects of interfaces. We then discuss some recent advances in predicting hot spots and communication pathway analysis in terms of amino acid networks. Finally, we highlight possible future aspects of this area with respect to both methodology development and applications for disease treatment.
Neuroimaging of love: fMRI meta-analysis evidence toward new perspectives in sexual medicine.
Ortigue, Stephanie; Bianchi-Demicheli, Francesco; Patel, Nisa; Frum, Chris; Lewis, James W
2010-11-01
Brain imaging is becoming a powerful tool in the study of human cerebral functions related to close personal relationships. Outside of subcortical structures traditionally thought to be involved in reward-related systems, a wide range of neuroimaging studies in relationship science indicate a prominent role for different cortical networks and cognitive factors. Thus, the field needs a better anatomical/network/whole-brain model to help translate scientific knowledge from lab bench to clinical models and ultimately to the patients suffering from disorders associated with love and couple relationships. The aim of the present review is to provide a review across wide range of functional magnetic resonance imaging (fMRI) studies to critically identify the cortical networks associated with passionate love, and to compare and contrast it with other types of love (such as maternal love and unconditional love for persons with intellectual disabilities). Retrospective review of pertinent neuroimaging literature. Review of published literature on fMRI studies of love illustrating brain regions associated with different forms of love. Although all fMRI studies of love point to the subcortical dopaminergic reward-related brain systems (involving dopamine and oxytocin receptors) for motivating individuals in pair-bonding, the present meta-analysis newly demonstrated that different types of love involve distinct cerebral networks, including those for higher cognitive functions such as social cognition and bodily self-representation. These metaresults provide the first stages of a global neuroanatomical model of cortical networks involved in emotions related to different aspects of love. Developing this model in future studies should be helpful for advancing clinical approaches helpful in sexual medicine and couple therapy. © 2010 International Society for Sexual Medicine.
Whited, John D; Datta, Santanu K; Aiello, Lloyd M; Aiello, Lloyd P; Cavallerano, Jerry D; Conlin, Paul R; Horton, Mark B; Vigersky, Robert A; Poropatich, Ronald K; Challa, Pratap; Darkins, Adam W; Bursell, Sven-Erik
2005-12-01
The objective of this study was to compare, using a 12-month time frame, the cost-effectiveness of a non-mydriatic digital tele-ophthalmology system (Joslin Vision Network) versus traditional clinic-based ophthalmoscopy examinations with pupil dilation to detect proliferative diabetic retinopathy and its consequences. Decision analysis techniques, including Monte Carlo simulation, were used to model the use of the Joslin Vision Network versus conventional clinic-based ophthalmoscopy among the entire diabetic populations served by the Indian Health Service, the Department of Veterans Affairs, and the active duty Department of Defense. The economic perspective analyzed was that of each federal agency. Data sources for costs and outcomes included the published literature, epidemiologic data, administrative data, market prices, and expert opinion. Outcome measures included the number of true positive cases of proliferative diabetic retinopathy detected, the number of patients treated with panretinal laser photocoagulation, and the number of cases of severe vision loss averted. In the base-case analyses, the Joslin Vision Network was the dominant strategy in all but two of the nine modeled scenarios, meaning that it was both less costly and more effective. In the active duty Department of Defense population, the Joslin Vision Network would be more effective but cost an extra 1,618 dollars per additional patient treated with panretinal laser photo-coagulation and an additional 13,748 dollars per severe vision loss event averted. Based on our economic model, the Joslin Vision Network has the potential to be more effective than clinic-based ophthalmoscopy for detecting proliferative diabetic retinopathy and averting cases of severe vision loss, and may do so at lower cost.
Implicit Motives as Determinants of Networking Behaviors.
Wolff, Hans-Georg; Weikamp, Julia G; Batinic, Bernad
2018-01-01
In today's world of work, networking behaviors are an important and viable strategy to enhance success in work and career domains. Concerning personality as an antecedent of networking behaviors, prior studies have exclusively relied on trait perspectives that focus on how people feel, think, and act. Adopting a motivational perspective on personality, we enlarge this focus and argue that beyond traits predominantly tapping social content, motives shed further light on instrumental aspects of networking - or why people network. We use McClelland's implicit motives framework of need for power (nPow), need for achievement (nAch), and need for affiliation (nAff) to examine instrumental determinants of networking. Using a facet theoretical approach to networking behaviors, we predict differential relations of these three motives with facets of (1) internal vs. external networking and (2) building, maintaining, and using contacts. We conducted an online study, in which we temporally separate measures ( N = 539 employed individuals) to examine our hypotheses. Using multivariate latent regression, we show that nAch is related to networking in general. In line with theoretical differences between networking facets, we find that nAff is positively related to building contacts, whereas nPow is positively related to using internal contacts. In sum, this study shows that networking is not only driven by social factors (i.e., nAff), but instead the achievement motive is the most important driver of networking behaviors.
Implicit Motives as Determinants of Networking Behaviors
Wolff, Hans-Georg; Weikamp, Julia G.; Batinic, Bernad
2018-01-01
In today’s world of work, networking behaviors are an important and viable strategy to enhance success in work and career domains. Concerning personality as an antecedent of networking behaviors, prior studies have exclusively relied on trait perspectives that focus on how people feel, think, and act. Adopting a motivational perspective on personality, we enlarge this focus and argue that beyond traits predominantly tapping social content, motives shed further light on instrumental aspects of networking – or why people network. We use McClelland’s implicit motives framework of need for power (nPow), need for achievement (nAch), and need for affiliation (nAff) to examine instrumental determinants of networking. Using a facet theoretical approach to networking behaviors, we predict differential relations of these three motives with facets of (1) internal vs. external networking and (2) building, maintaining, and using contacts. We conducted an online study, in which we temporally separate measures (N = 539 employed individuals) to examine our hypotheses. Using multivariate latent regression, we show that nAch is related to networking in general. In line with theoretical differences between networking facets, we find that nAff is positively related to building contacts, whereas nPow is positively related to using internal contacts. In sum, this study shows that networking is not only driven by social factors (i.e., nAff), but instead the achievement motive is the most important driver of networking behaviors. PMID:29760668
Smith, Marie; Cannon-Breland, Michelle L; Spiggle, Susan
2014-01-01
Health care reform initiatives are examining new care delivery models and payment reform alternatives such as medical homes, health homes, community-based care transitions teams, medical neighborhoods and accountable care organizations (ACOs). Of particular interest is the extent to which pharmacists are integrated in team-based health care reform initiatives and the related perspectives of consumers, physicians, and payers. To assess the current knowledge of consumers and physicians about pharmacist training/expertise and capacity to provide primary care medication management services in a shared resource network; determine factors that will facilitate/limit consumer interest in having pharmacists as a member of a community-based "health care team;" determine factors that will facilitate/limit physician utilization of pharmacists for medication management services; and determine factors that will facilitate/limit payer reimbursement models for medication management services using a shared resource pharmacist network model. This project used qualitative research methods to assess the perceptions of consumers, primary care physicians, and payers on pharmacist-provided medication management services using a shared resource network of pharmacists. Focus groups were conducted with primary care physicians and consumers, while semi-structured discussions were conducted with a public and private payer. Most consumers viewed pharmacists in traditional dispensing roles and were unaware of the direct patient care responsibilities of pharmacists as part of community-based health teams. Physicians noted several chronic disease states where clinically-trained pharmacists could collaborate as health care team members yet had uncertainties about integrating pharmacists into their practice workflow and payment sources for pharmacist services. Payers were interested in having credentialed pharmacists provide medication management services if the services improved quality of patient care and/or prevented adverse drug events, and the services were cost neutral (at a minimum). It was difficult for most consumers and physicians to envision pharmacists practicing in non-dispensing roles. The pharmacy profession must disseminate the existing body of evidence on pharmacists as care providers of medication management services and the related impact on clinical outcomes, patient safety, and cost savings to external audiences. Without such, new pharmacist practice models may have limited acceptance by consumers, primary care physicians, and payers. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Taruffi, Liila; Koelsch, Stefan
2017-07-01
Pelowski et al. present a holistic framework within which the multiple processes underlying art viewing can be systematically organized [1]. The proposed model integrates a broad range of dynamic mechanisms, which can effectively account for empirical as well as humanistic perspectives on art perception. Particularly challenging is the final section of the article, where the authors draw a correspondence between behavioral and cognitive components and brain structures (as well as networks). Here, we comment on the implications of the Vienna Integrated Model of Art Perception for art therapy in clinical populations, particularly focusing on (1) expanding Pelowski et al.'s considerations of the Default Mode Network (DMN) into discussion of its relevance to mental diseases, and (2) elaborating on empathic resonance in aesthetic contexts and the capacity of art to build up empathic skills.
NASA Astrophysics Data System (ADS)
West, Damien; West, Bruce J.
2012-07-01
There are a substantial number of empirical relations that began with the identification of a pattern in data; were shown to have a terse power-law description; were interpreted using existing theory; reached the level of "law" and given a name; only to be subsequently fade away when it proved impossible to connect the "law" with a larger body of theory and/or data. Various forms of allometry relations (ARs) have followed this path. The ARs in biology are nearly two hundred years old and those in ecology, geophysics, physiology and other areas of investigation are not that much younger. In general if X is a measure of the size of a complex host network and Y is a property of a complex subnetwork embedded within the host network a theoretical AR exists between the two when Y = aXb. We emphasize that the reductionistic models of AR interpret X and Y as dynamic variables, albeit the ARs themselves are explicitly time independent even though in some cases the parameter values change over time. On the other hand, the phenomenological models of AR are based on the statistical analysis of data and interpret X and Y as averages to yield the empirical AR:
Pritchard, Leighton; Birch, Paul
2011-04-01
Plants have biochemical defences against stresses from predators, parasites and pathogens. In this review we discuss the interaction of plant defences with microbial pathogens such as bacteria, fungi and oomycetes, and viruses. We examine principles of complex dynamic networks that allow identification of network components that are differentially and predictably sensitive to perturbation, thus making them likely effector targets. We relate these principles to recent developments in our understanding of known effector targets in plant-pathogen systems, and propose a systems-level framework for the interpretation and modelling of host-microbe interactions mediated by effectors. We describe this framework briefly, and conclude by discussing useful experimental approaches for populating this framework. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Proteome-Scale Human Interactomics.
Luck, Katja; Sheynkman, Gloria M; Zhang, Ivy; Vidal, Marc
2017-05-01
Cellular functions are mediated by complex interactome networks of physical, biochemical, and functional interactions between DNA sequences, RNA molecules, proteins, lipids, and small metabolites. A thorough understanding of cellular organization requires accurate and relatively complete models of interactome networks at proteome scale. The recent publication of four human protein-protein interaction (PPI) maps represents a technological breakthrough and an unprecedented resource for the scientific community, heralding a new era of proteome-scale human interactomics. Our knowledge gained from these and complementary studies provides fresh insights into the opportunities and challenges when analyzing systematically generated interactome data, defines a clear roadmap towards the generation of a first reference interactome, and reveals new perspectives on the organization of cellular life. Copyright © 2017 Elsevier Ltd. All rights reserved.
Epidemic spread in bipartite network by considering risk awareness
NASA Astrophysics Data System (ADS)
Han, She; Sun, Mei; Ampimah, Benjamin Chris; Han, Dun
2018-02-01
Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. Exploring the interplay between human awareness and epidemic spreading is a topic that has been receiving increasing attention. Considering the fact, some well-known diseases only spread between different species we propose a theoretical analysis of the Susceptible-Infected-Susceptible (SIS) epidemic spread from the perspective of bipartite network and risk aversion. Using mean field theory, the epidemic threshold is calculated theoretically. Simulation results are consistent with the proposed analytic model. The results show that, the final infection density is negative linear with the value of individuals' risk awareness. Therefore, the epidemic spread could be effectively suppressed by improving individuals' risk awareness.
Przyrembel, Marisa; Smallwood, Jonathan; Pauen, Michael; Singer, Tania
2012-01-01
Successful human social interaction depends on our capacity to understand other people's mental states and to anticipate how they will react to our actions. Despite its importance to the human condition, the exact mechanisms underlying our ability to understand another's actions, feelings, and thoughts are still a matter of conjecture. Here, we consider this problem from philosophical, psychological, and neuroscientific perspectives. In a critical review, we demonstrate that attempts to draw parallels across these complementary disciplines is premature: The second-person perspective does not map directly to Interaction or Simulation theories, online social cognition, or shared neural network accounts underlying action observation or empathy. Nor does the third-person perspective map onto Theory-Theory (TT), offline social cognition, or the neural networks that support Theory of Mind (ToM). Moreover, we argue that important qualities of social interaction emerge through the reciprocal interplay of two independent agents whose unpredictable behavior requires that models of their partner's internal state be continually updated. This analysis draws attention to the need for paradigms in social neuroscience that allow two individuals to interact in a spontaneous and natural manner and to adapt their behavior and cognitions in a response contingent fashion due to the inherent unpredictability in another person's behavior. Even if such paradigms were implemented, it is possible that the specific neural correlates supporting such reciprocal interaction would not reflect computation unique to social interaction but rather the use of basic cognitive and emotional processes combined in a unique manner. Finally, we argue that given the crucial role of social interaction in human evolution, ontogeny, and every-day social life, a more theoretically and methodologically nuanced approach to the study of real social interaction will nevertheless help the field of social cognition to evolve.
Bohnert, Amy S B; Bradshaw, Catherine P; Latkin, Carl A
2009-07-01
While several studies have documented a relationship between initiation of drug use and social network drug use in youth, the direction of this association is not well understood, particularly among adults or for stages of drug involvement beyond initiation. The present study sought to examine two competing theories (social selection and social influence) in the longitudinal relationship between drug use (heroin and/or cocaine) and social network drug use among drug-experienced adults. Three waves of data came from a cohort of 1108 adults reporting a life-time history of heroin and/or cocaine use. Low-income neighborhoods with high rates of drug use in Baltimore, Maryland. Participants had weekly contact with drug users and were 18 years of age or older. Drug use data were self-report. Network drug use was assessed through a social network inventory. Close friends were individuals whom the participant reported seeing daily or rated as having the highest level of trust. Findings Structural equation modeling indicated significant bidirectional influences. The majority of change in network drug use over time was due to change in the composition of the network rather than change in friends' behavior. Drug use by close peers did not influence participant drug use beyond the total network. There is evidence of both social selection and social influence processes in the association between drug use and network drug use among drug-experienced adults.
The Mathematics of Psychotherapy: A Nonlinear Model of Change Dynamics.
Schiepek, Gunter; Aas, Benjamin; Viol, Kathrin
2016-07-01
Psychotherapy is a dynamic process produced by a complex system of interacting variables. Even though there are qualitative models of such systems the link between structure and function, between network and network dynamics is still missing. The aim of this study is to realize these links. The proposed model is composed of five state variables (P: problem severity, S: success and therapeutic progress, M: motivation to change, E: emotions, I: insight and new perspectives) interconnected by 16 functions. The shape of each function is modified by four parameters (a: capability to form a trustful working alliance, c: mentalization and emotion regulation, r: behavioral resources and skills, m: self-efficacy and reward expectation). Psychologically, the parameters play the role of competencies or traits, which translate into the concept of control parameters in synergetics. The qualitative model was transferred into five coupled, deterministic, nonlinear difference equations generating the dynamics of each variable as a function of other variables. The mathematical model is able to reproduce important features of psychotherapy processes. Examples of parameter-dependent bifurcation diagrams are given. Beyond the illustrated similarities between simulated and empirical dynamics, the model has to be further developed, systematically tested by simulated experiments, and compared to empirical data.
Inferring social status and rich club effects in enterprise communication networks.
Dong, Yuxiao; Tang, Jie; Chawla, Nitesh V; Lou, Tiancheng; Yang, Yang; Wang, Bai
2015-01-01
Social status, defined as the relative rank or position that an individual holds in a social hierarchy, is known to be among the most important motivating forces in social behaviors. In this paper, we consider the notion of status from the perspective of a position or title held by a person in an enterprise. We study the intersection of social status and social networks in an enterprise. We study whether enterprise communication logs can help reveal how social interactions and individual status manifest themselves in social networks. To that end, we use two enterprise datasets with three communication channels--voice call, short message, and email--to demonstrate the social-behavioral differences among individuals with different status. We have several interesting findings and based on these findings we also develop a model to predict social status. On the individual level, high-status individuals are more likely to be spanned as structural holes by linking to people in parts of the enterprise networks that are otherwise not well connected to one another. On the community level, the principle of homophily, social balance and clique theory generally indicate a "rich club" maintained by high-status individuals, in the sense that this community is much more connected, balanced and dense. Our model can predict social status of individuals with 93% accuracy.
Impact of the topology of global macroeconomic network on the spreading of economic crises.
Lee, Kyu-Min; Yang, Jae-Suk; Kim, Gunn; Lee, Jaesung; Goh, Kwang-Il; Kim, In-mook
2011-03-31
Throughout economic history, the global economy has experienced recurring crises. The persistent recurrence of such economic crises calls for an understanding of their generic features rather than treating them as singular events. The global economic system is a highly complex system and can best be viewed in terms of a network of interacting macroeconomic agents. In this regard, from the perspective of collective network dynamics, here we explore how the topology of the global macroeconomic network affects the patterns of spreading of economic crises. Using a simple toy model of crisis spreading, we demonstrate that an individual country's role in crisis spreading is not only dependent on its gross macroeconomic capacities, but also on its local and global connectivity profile in the context of the world economic network. We find that on one hand clustering of weak links at the regional scale can significantly aggravate the spread of crises, but on the other hand the current network structure at the global scale harbors higher tolerance of extreme crises compared to more "globalized" random networks. These results suggest that there can be a potential hidden cost in the ongoing globalization movement towards establishing less-constrained, trans-regional economic links between countries, by increasing vulnerability of the global economic system to extreme crises.
Impact of the Topology of Global Macroeconomic Network on the Spreading of Economic Crises
Lee, Kyu-Min; Yang, Jae-Suk; Kim, Gunn; Lee, Jaesung; Goh, Kwang-Il; Kim, In-mook
2011-01-01
Throughout economic history, the global economy has experienced recurring crises. The persistent recurrence of such economic crises calls for an understanding of their generic features rather than treating them as singular events. The global economic system is a highly complex system and can best be viewed in terms of a network of interacting macroeconomic agents. In this regard, from the perspective of collective network dynamics, here we explore how the topology of the global macroeconomic network affects the patterns of spreading of economic crises. Using a simple toy model of crisis spreading, we demonstrate that an individual country's role in crisis spreading is not only dependent on its gross macroeconomic capacities, but also on its local and global connectivity profile in the context of the world economic network. We find that on one hand clustering of weak links at the regional scale can significantly aggravate the spread of crises, but on the other hand the current network structure at the global scale harbors higher tolerance of extreme crises compared to more “globalized” random networks. These results suggest that there can be a potential hidden cost in the ongoing globalization movement towards establishing less-constrained, trans-regional economic links between countries, by increasing vulnerability of the global economic system to extreme crises. PMID:21483794
How people make friends in social networking sites—A microscopic perspective
NASA Astrophysics Data System (ADS)
Hu, Haibo; Wang, Xiaofan
2012-02-01
We study the detailed growth of a social networking site with full temporal information by examining the creation process of each friendship relation that can collectively lead to the macroscopic properties of the network. We first study the reciprocal behavior of users, and find that link requests are quickly responded to and that the distribution of reciprocation intervals decays in an exponential form. The degrees of inviters/accepters are slightly negatively correlative with reciprocation time. In addition, the temporal feature of the online community shows that the distributions of intervals of user behaviors, such as sending or accepting link requests, follow a power law with a universal exponent, and peaks emerge for intervals of an integral day. We finally study the preferential selection and linking phenomena of the social networking site and find that, for the former, a linear preference holds for preferential sending and reception, and for the latter, a linear preference also holds for preferential acceptance, creation, and attachment. Based on the linearly preferential linking, we put forward an analyzable network model which can reproduce the degree distribution of the network. The research framework presented in the paper could provide a potential insight into how the micro-motives of users lead to the global structure of online social networks.
Wei, Xiaoyan; Liu, Xuejun; Cheng, Liang; Sun, Lele; Pan, Yingying; Zong, Wenwen
2017-11-28
Southwest China is home to more than 30 ethnic minority groups. Since most of these populations reside in mountainous areas, convenient access to medical services is an important metric of how well their livelihoods are being protected. This paper proposes a medical convenience index (MCI) and computation model for mountain residents, taking into account various conditions including topography, geology, and climate. Data on road networks were used for comprehensive evaluation from three perspectives: vulnerability, complexity, and accessibility. The model is innovative for considering road network vulnerability in mountainous areas, and proposing a method of evaluating road network vulnerability by measuring the impacts of debris flows based on only links. The model was used to compute and rank the respective MCIs for settlements of each ethnic population in the Dehong Dai and Jingpo Autonomous Prefecture of Yunnan Province, in 2009 and 2015. Data on the settlements over the two periods were also used to analyze the spatial differentiation of medical convenience levels within the study area. The medical convenience levels of many settlements improved significantly. 80 settlements were greatly improved, while another 103 showed slight improvement.Areas with obvious improvement were distributed in clusters, and mainly located in the southwestern part of Yingjiang County, northern Longchuan County, eastern Lianghe County, and the region where Lianghe and Longchuan counties and Mang City intersect. Development of the road network was found to be a major contributor to improvements in MCI for mountain residents over the six-year period.
Perspective: Stochastic magnetic devices for cognitive computing
NASA Astrophysics Data System (ADS)
Roy, Kaushik; Sengupta, Abhronil; Shim, Yong
2018-06-01
Stochastic switching of nanomagnets can potentially enable probabilistic cognitive hardware consisting of noisy neural and synaptic components. Furthermore, computational paradigms inspired from the Ising computing model require stochasticity for achieving near-optimality in solutions to various types of combinatorial optimization problems such as the Graph Coloring Problem or the Travelling Salesman Problem. Achieving optimal solutions in such problems are computationally exhaustive and requires natural annealing to arrive at the near-optimal solutions. Stochastic switching of devices also finds use in applications involving Deep Belief Networks and Bayesian Inference. In this article, we provide a multi-disciplinary perspective across the stack of devices, circuits, and algorithms to illustrate how the stochastic switching dynamics of spintronic devices in the presence of thermal noise can provide a direct mapping to the computational units of such probabilistic intelligent systems.
Constrained Active Learning for Anchor Link Prediction Across Multiple Heterogeneous Social Networks
Zhu, Junxing; Zhang, Jiawei; Wu, Quanyuan; Jia, Yan; Zhou, Bin; Wei, Xiaokai; Yu, Philip S.
2017-01-01
Nowadays, people are usually involved in multiple heterogeneous social networks simultaneously. Discovering the anchor links between the accounts owned by the same users across different social networks is crucial for many important inter-network applications, e.g., cross-network link transfer and cross-network recommendation. Many different supervised models have been proposed to predict anchor links so far, but they are effective only when the labeled anchor links are abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious. To overcome such a problem and utilize the numerous unlabeled anchor links in model building, in this paper, we introduce the active learning based anchor link prediction problem. Different from the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled anchor link a=(u,v) is identified as positive (i.e., existing), all the other unlabeled anchor links incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be rewarding in the active anchor link prediction problem. Various novel anchor link information gain measures are defined in this paper, based on which several constraint active anchor link prediction methods are introduced. Extensive experiments have been done on real-world social network datasets to compare the performance of these methods with state-of-art anchor link prediction methods. The experimental results show that the proposed Mean-entropy-based Constrained Active Learning (MC) method can outperform other methods with significant advantages. PMID:28771201
Zhu, Junxing; Zhang, Jiawei; Wu, Quanyuan; Jia, Yan; Zhou, Bin; Wei, Xiaokai; Yu, Philip S
2017-08-03
Nowadays, people are usually involved in multiple heterogeneous social networks simultaneously. Discovering the anchor links between the accounts owned by the same users across different social networks is crucial for many important inter-network applications, e.g., cross-network link transfer and cross-network recommendation. Many different supervised models have been proposed to predict anchor links so far, but they are effective only when the labeled anchor links are abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious. To overcome such a problem and utilize the numerous unlabeled anchor links in model building, in this paper, we introduce the active learning based anchor link prediction problem. Different from the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled anchor link a = ( u , v ) is identified as positive (i.e., existing), all the other unlabeled anchor links incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be rewarding in the active anchor link prediction problem. Various novel anchor link information gain measures are defined in this paper, based on which several constraint active anchor link prediction methods are introduced. Extensive experiments have been done on real-world social network datasets to compare the performance of these methods with state-of-art anchor link prediction methods. The experimental results show that the proposed Mean-entropy-based Constrained Active Learning (MC) method can outperform other methods with significant advantages.
NASA Astrophysics Data System (ADS)
Blasch, Erik; Salerno, John; Kadar, Ivan; Yang, Shanchieh J.; Fenstermacher, Laurie; Endsley, Mica; Grewe, Lynne
2013-05-01
During the SPIE 2012 conference, panelists convened to discuss "Real world issues and challenges in Human Social/Cultural/Behavioral modeling with Applications to Information Fusion." Each panelist presented their current trends and issues. The panel had agreement on advanced situation modeling, working with users for situation awareness and sense-making, and HSCB context modeling in focusing research activities. Each panelist added different perspectives based on the domain of interest such as physical, cyber, and social attacks from which estimates and projections can be forecasted. Also, additional techniques were addressed such as interest graphs, network modeling, and variable length Markov Models. This paper summarizes the panelists discussions to highlight the common themes and the related contrasting approaches to the domains in which HSCB applies to information fusion applications.
Network Robustness: the whole story
NASA Astrophysics Data System (ADS)
Longjas, A.; Tejedor, A.; Zaliapin, I. V.; Ambroj, S.; Foufoula-Georgiou, E.
2014-12-01
A multitude of actual processes operating on hydrological networks may exhibit binary outcomes such as clean streams in a river network that may become contaminated. These binary outcomes can be modeled by node removal processes (attacks) acting in a network. Network robustness against attacks has been widely studied in fields as diverse as the Internet, power grids and human societies. However, the current definition of robustness is only accounting for the connectivity of the nodes unaffected by the attack. Here, we put forward the idea that the connectivity of the affected nodes can play a crucial role in proper evaluation of the overall network robustness and its future recovery from the attack. Specifically, we propose a dual perspective approach wherein at any instant in the network evolution under attack, two distinct networks are defined: (i) the Active Network (AN) composed of the unaffected nodes and (ii) the Idle Network (IN) composed of the affected nodes. The proposed robustness metric considers both the efficiency of destroying the AN and the efficiency of building-up the IN. This approach is motivated by concrete applied problems, since, for example, if we study the dynamics of contamination in river systems, it is necessary to know both the connectivity of the healthy and contaminated parts of the river to assess its ecological functionality. We show that trade-offs between the efficiency of the Active and Idle network dynamics give rise to surprising crossovers and re-ranking of different attack strategies, pointing to significant implications for decision making.
Teleneurology in stroke management: costs of service in different organizational models.
Handschu, René; Scibor, Mateusz; Nückel, Martin; Asshoff, Dirk; Willaczek, Barbara; Erbguth, Frank; Schwab, Stefan; Daumann, Frank
2014-10-01
Telemedicine is in increasing use in clinical neuroscience such as acute stroke care, especially by applying remote audiovisual communication for patient evaluation. However, telephone consultation was also used linking stroke centres to smaller hospitals. We compared costs of telestroke services using audiovisual and telephone communication in different organizational models. Within a small network in Northern Bavaria video-based teleconsultation (VTC) and telephone advice (TA) was provided for evaluation of acute stroke patients on a weekly rotation. The costs of the admissions process with or without one of both methods of telemedicine were calculated and compared from the perspective of the spoke hospital. Different levels of service and network size were modelled and costs of transfers as well as loss of revenues were calculated. Yearly total labour costs were 415,000 € for an on-site service VTC-service compared to 61,000 € in an on-call service. Additional costs for one teleconsultation were 109.55 € in VTC and 49.82 € in TA (VTC/TA ratio 2.2). The ratio decreased to 0.8 when accounting for costs of transfer and loss of reimbursement for all patients transferred as transfer of patients to the stroke centre was more frequent after TA (9.1 vs. 14.9%full-time on-site ser). Costs of one QALY gained by using VTC instead of TA ranged from 115.00 € to 515.86 € depending on the different models. In the first view TA looks like the less expensive method as it is easy to access and works without additional costs. When accounting for all disadvantages TA becomes slightly more expensive. In telestroke care VTC should be recommended as the method of choice also from an economic perspective.
Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel
2015-01-01
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402
Underwater Sensor Nodes and Networks
Lloret, Jaime
2013-01-01
Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489
Sunden, Fanny; Peck, Ariana; Salzman, Julia; ...
2015-04-22
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less
Efficacy of Online Social Networks on Language Teaching: A Bangladeshi Perspective
ERIC Educational Resources Information Center
Shams, Shaila
2014-01-01
It is now an established fact that the use of technology facilitates teaching and learning in language classrooms. With the advancement of technology, social networking websites have emerged too. Social networking sites have been quite popular among various age group users particularly the young users since their invention. Also, they are…
Network-Based Professional Development: A Comparison of Statewide Initiatives.
ERIC Educational Resources Information Center
Shotsberger, Paul G.; Stammen, Ronald; Vetter, Ronald; Blue, Gloria; Greer, Edrie
This paper addresses opportunities and issues related to the use of the World Wide Web and high-speed networks as a delivery vehicle for training educators who are geographically dispersed. The benefits and potential pitfalls of using networks as educational platforms are explored from the perspective of various systems specifically being…
The STIN in the Tale: A Socio-Technical Interaction Perspective on Networked Learning
ERIC Educational Resources Information Center
Walker, Steve; Creanor, Linda
2009-01-01
In this paper, we go beyond what have been described as "mechanistic" accounts of e-learning to explore the complexity of relationships between people and technology as encountered in cases of networked learning. We introduce from the social informatics literature the concept of sociotechnical interaction networks which focus on the…
Social Network Sites: A Starting Point for Career Development Practitioners
ERIC Educational Resources Information Center
Strehlke, Christina
2010-01-01
This action research study explores the career influence of social network sites (SNSs) by examining 14 web-based articles that consider the risks and opportunities of SNSs from a job search perspective. Three themes are discussed: user visibility, self-presentation, and network connections. Practical strategies are identified to help career…
China's Education Policy-Making: A Policy Network Perspective
ERIC Educational Resources Information Center
Han, Shuangmiao; Ye, Fugui
2017-01-01
Policy network approach has become a broadly accepted and frequently adopted practice in modern state governance, especially in the public sector. The study utilises a broadly defined policy network conceptual frame and categories of reference to trace the evolution of education policy-making in China. The study uses "The Outline of China's…
Co-Ethnic Network, Social Class, and Heritage Language Maintenance among Chinese Immigrant Families
ERIC Educational Resources Information Center
Zhang, Donghui
2012-01-01
This ethnographic study investigated heritage language maintenance among two distinct groups of Chinese immigrant families (Mandarin and Fujianese) from the social network perspective. The results indicated that a co-ethnic network could be a double-edged sword, which works differently on children from different social classes. While the Mandarin…
NASA Astrophysics Data System (ADS)
Horwitz, Barry
2014-09-01
As the poet John Donne said of man - "No man is an island entire of itself; every man is a piece of the continent, a part of the main." - so the neuroscience research community now says of brain areas. This is the topic that Luiz Pessoa expands upon in his thorough review of the paradigm shift that has occurred in much of brain research, especially in cognitive neuroscience [1]. His key point is made explicitly in the Abstract: "I argue that a network perspective should supplement the common strategy of understanding the brain in terms of individual regions." In his review, Pessoa covers a large range of topics, including how the network perspective changes the way in which one views the structure-function relationship between brain and behavior, the importance of context in ascertaining how a brain region functions, and the notion of emergent properties as a network feature. Also discussed is graph theory, one of the important mathematical methods used to analyze and describe network structure and function.
Abrams, John M; White, Michael A
2004-12-01
In development and in the adult, complex signaling pathways operate within and between cells to coordinate proliferation and cell death. These networks can be viewed as coupling devices that link engines driving the cell cycle and the initiation of apoptosis. We propose three simple frameworks for modeling the effects of proliferative drive on apoptotic propensity. This perspective offers a potentially useful foundation for predicting group behaviors of cells in normal and pathological settings.
Egnoto, Michael J; Sirianni, Joseph M; Ortega, Christopher R; Stefanone, Michael
2014-01-01
Increasingly, individuals are bonding and maintaining relationships online. These digital representations of ourselves allow us to connect with others in ways previously not possible. One behavior that is growing in online presentations of self is grieving after the death of an individual in our social network. This work investigates the outcomes of online grieving from a transcorporeal communication model perspective, and draws conclusions on the outcomes of online grief behaviors.
Hernandez, Kristen E; Bejarano, Sandra; Reyes, Francis J; Chavez, Margarita; Mata, Holly
2014-01-01
Universities offering undergraduate degrees in health promotion or health education and/or graduate degrees in public health typically require an internship, practicum, or fieldwork experience. This type of mentored experience is an important aspect of career development for the next generation of public health professionals and benefits not only the students but also the profession and the communities in which they work. This article provides perspectives from four public health professionals who have recently graduated from designated minority-serving institutions and highlights the ways in which internship, practicum, or fieldwork experiences have contributed to their career development. From a career development perspective, internships provide unique opportunities to develop professional networks, practice competencies learned in the classroom, gain experience in different environments, and share lessons learned with others in our field. The diversification of the public health research and practice workforce is increasingly recognized as crucial in building health equity. Internship programs that focus specifically on the academic and professional development of students underrepresented in public health provide experiences that meet or supplement academic requirements, and provide students with real-world experience and an expanded network of mentors and role models.
Stetz, Gabrielle; Verkhivker, Gennady M.
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. PMID:28095400
Stetz, Gabrielle; Verkhivker, Gennady M
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms.
NASA Astrophysics Data System (ADS)
Eschenbächer, Jens; Seifert, Marcus; Thoben, Klaus-Dieter
Distributed innovation processes are considered as a new option to handle both the complexity and the speed in which new products and services need to be prepared. Indeed most research on innovation processes was focused on multinational companies with an intra-organisational perspective. The phenomena of innovation processes in networks - with an inter-organisational perspective - have been almost neglected. Collaborative networks present a perfect playground for such distributed innovation processes whereas the authors highlight in specific Virtual Organisation because of their dynamic behaviour. Research activities supporting distributed innovation processes in VO are rather new so that little knowledge about the management of such research is available. With the presentation of the collaborative network relationship analysis this gap will be addressed. It will be shown that a qualitative planning of collaboration intensities can support real business cases by proving knowledge and planning data.
Through the Immune Looking Glass: A Model for Brain Memory Strategies
Sánchez-Ramón, Silvia; Faure, Florence
2016-01-01
The immune system (IS) and the central nervous system (CNS) are complex cognitive networks involved in defining the identity (self) of the individual through recognition and memory processes that enable one to anticipate responses to stimuli. Brain memory has traditionally been classified as either implicit or explicit on psychological and anatomical grounds, with reminiscences of the evolutionarily-based innate-adaptive IS responses. Beyond the multineuronal networks of the CNS, we propose a theoretical model of brain memory integrating the CNS as a whole. This is achieved by analogical reasoning between the operational rules of recognition and memory processes in both systems, coupled to an evolutionary analysis. In this new model, the hippocampus is no longer specifically ascribed to explicit memory but rather it both becomes part of the innate (implicit) memory system and tightly controls the explicit memory system. Alike the antigen presenting cells for the IS, the hippocampus would integrate transient and pseudo-specific (i.e., danger-fear) memories and would drive the formation of long-term and highly specific or explicit memories (i.e., the taste of the Proust’s madeleine cake) by the more complex and recent, evolutionarily speaking, neocortex. Experimental and clinical evidence is provided to support the model. We believe that the singularity of this model’s approximation could help to gain a better understanding of the mechanisms operating in brain memory strategies from a large-scale network perspective. PMID:26869886
Seismic data fusion anomaly detection
NASA Astrophysics Data System (ADS)
Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David
2014-06-01
Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.
Identifying the Community Structure of the Food-Trade International Multi-Network
NASA Technical Reports Server (NTRS)
Torreggiani, S.; Mangioni, G.
2018-01-01
Achieving international food security requires improved understanding of how international trade networks connect countries around the world through the import-export flows of food commodities. The properties of international food trade networks are still poorly documented, especially from a multi-network perspective. In particular, nothing is known about the multi-network's community structure. Here we find that the individual crop-specific layers of the multi-network have densely connected trading groups, a consistent characteristic over the period 2001-2011. Further, the multi-network is characterized by low variability over this period but with substantial heterogeneity across layers in each year. In particular, the layers are mostly assortative: more-intensively connected countries tend to import from and export to countries that are themselves more connected. We also fit econometric models to identify social, economic and geographic factors explaining the probability that any two countries are co-present in the same community. Our estimates indicate that the probability of country pairs belonging to the same food trade community depends more on geopolitical and economic factors-such as geographical proximity and trade-agreement co-membership-than on country economic size and/or income. These community-structure findings of the multi-network are especially valuable for efforts to understand past and emerging dynamics in the global food system, especially those that examine potential 'shocks' to global food trade.
Kim, Sun-Young; Olives, Casey; Sheppard, Lianne; Sampson, Paul D; Larson, Timothy V; Keller, Joshua P; Kaufman, Joel D
2017-01-01
Recent cohort studies have used exposure prediction models to estimate the association between long-term residential concentrations of fine particulate matter (PM2.5) and health. Because these prediction models rely on PM2.5 monitoring data, predictions for times before extensive spatial monitoring present a challenge to understanding long-term exposure effects. The U.S. Environmental Protection Agency (EPA) Federal Reference Method (FRM) network for PM2.5 was established in 1999. We evaluated a novel statistical approach to produce high-quality exposure predictions from 1980 through 2010 in the continental United States for epidemiological applications. We developed spatio-temporal prediction models using geographic predictors and annual average PM2.5 data from 1999 through 2010 from the FRM and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks. Temporal trends before 1999 were estimated by using a) extrapolation based on PM2.5 data in FRM/IMPROVE, b) PM2.5 sulfate data in the Clean Air Status and Trends Network, and c) visibility data across the Weather Bureau Army Navy network. We validated the models using PM2.5 data collected before 1999 from IMPROVE, California Air Resources Board dichotomous sampler monitoring (CARB dichot), the Children's Health Study (CHS), and the Inhalable Particulate Network (IPN). In our validation using pre-1999 data, the prediction model performed well across three trend estimation approaches when validated using IMPROVE and CHS data (R2 = 0.84-0.91) with lower R2 values in early years. Model performance using CARB dichot and IPN data was worse (R2 = 0.00-0.85) most likely because of fewer monitoring sites and inconsistent sampling methods. Our prediction modeling approach will allow health effects estimation associated with long-term exposures to PM2.5 over extended time periods ≤ 30 years. Citation: Kim SY, Olives C, Sheppard L, Sampson PD, Larson TV, Keller JP, Kaufman JD. 2017. Historical prediction modeling approach for estimating long-term concentrations of PM2.5 in cohort studies before the 1999 implementation of widespread monitoring. Environ Health Perspect 125:38-46; http://dx.doi.org/10.1289/EHP131.
Complexity Leadership: A Theoretical Perspective
ERIC Educational Resources Information Center
Baltaci, Ali; Balci, Ali
2017-01-01
Complex systems are social networks composed of interactive employees interconnected through collaborative, dynamic ties such as shared goals, perspectives and needs. Complex systems are largely based on "the complex system theory". The complex system theory focuses mainly on finding out and developing strategies and behaviours that…
Visual pathways from the perspective of cost functions and multi-task deep neural networks.
Scholte, H Steven; Losch, Max M; Ramakrishnan, Kandan; de Haan, Edward H F; Bohte, Sander M
2018-01-01
Vision research has been shaped by the seminal insight that we can understand the higher-tier visual cortex from the perspective of multiple functional pathways with different goals. In this paper, we try to give a computational account of the functional organization of this system by reasoning from the perspective of multi-task deep neural networks. Machine learning has shown that tasks become easier to solve when they are decomposed into subtasks with their own cost function. We hypothesize that the visual system optimizes multiple cost functions of unrelated tasks and this causes the emergence of a ventral pathway dedicated to vision for perception, and a dorsal pathway dedicated to vision for action. To evaluate the functional organization in multi-task deep neural networks, we propose a method that measures the contribution of a unit towards each task, applying it to two networks that have been trained on either two related or two unrelated tasks, using an identical stimulus set. Results show that the network trained on the unrelated tasks shows a decreasing degree of feature representation sharing towards higher-tier layers while the network trained on related tasks uniformly shows high degree of sharing. We conjecture that the method we propose can be used to analyze the anatomical and functional organization of the visual system and beyond. We predict that the degree to which tasks are related is a good descriptor of the degree to which they share downstream cortical-units. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self organising hypothesis networks: a new approach for representing and structuring SAR knowledge
2014-01-01
Background Combining different sources of knowledge to build improved structure activity relationship models is not easy owing to the variety of knowledge formats and the absence of a common framework to interoperate between learning techniques. Most of the current approaches address this problem by using consensus models that operate at the prediction level. We explore the possibility to directly combine these sources at the knowledge level, with the aim to harvest potentially increased synergy at an earlier stage. Our goal is to design a general methodology to facilitate knowledge discovery and produce accurate and interpretable models. Results To combine models at the knowledge level, we propose to decouple the learning phase from the knowledge application phase using a pivot representation (lingua franca) based on the concept of hypothesis. A hypothesis is a simple and interpretable knowledge unit. Regardless of its origin, knowledge is broken down into a collection of hypotheses. These hypotheses are subsequently organised into hierarchical network. This unification permits to combine different sources of knowledge into a common formalised framework. The approach allows us to create a synergistic system between different forms of knowledge and new algorithms can be applied to leverage this unified model. This first article focuses on the general principle of the Self Organising Hypothesis Network (SOHN) approach in the context of binary classification problems along with an illustrative application to the prediction of mutagenicity. Conclusion It is possible to represent knowledge in the unified form of a hypothesis network allowing interpretable predictions with performances comparable to mainstream machine learning techniques. This new approach offers the potential to combine knowledge from different sources into a common framework in which high level reasoning and meta-learning can be applied; these latter perspectives will be explored in future work. PMID:24959206
Long, Haiming; Zhang, Ji; Tang, Nengyu
2017-01-01
This study considers the effect of an industry's network topology on its systemic risk contribution to the stock market using data from the CSI 300 two-tier industry indices from the Chinese stock market. We first measure industry's conditional-value-at-risk (CoVaR) and the systemic risk contribution (ΔCoVaR) using the fitted time-varying t-copula function. The network of the stock industry is established based on dynamic conditional correlations with the minimum spanning tree. Then, we investigate the connection characteristics and topology of the network. Finally, we utilize seemingly unrelated regression estimation (SUR) of panel data to analyze the relationship between network topology of the stock industry and the industry's systemic risk contribution. The results show that the systemic risk contribution of small-scale industries such as real estate, food and beverage, software services, and durable goods and clothing, is higher than that of large-scale industries, such as banking, insurance and energy. Industries with large betweenness centrality, closeness centrality, and clustering coefficient and small node occupancy layer are associated with greater systemic risk contribution. In addition, further analysis using a threshold model confirms that the results are robust.
Soft matter: rubber and networks
NASA Astrophysics Data System (ADS)
McKenna, Gregory B.
2018-06-01
Rubber networks are important and form the basis for materials with properties ranging from rubber tires to super absorbents and contact lenses. The development of the entropy ideas of rubber deformation thermodynamics provides a powerful framework from which to understand and to use these materials. In addition, swelling of the rubber in the presence of small molecule liquids or solvents leads to materials that are very soft and ‘gel’ like in nature. The review covers the thermodynamics of polymer networks and gels from the perspective of the thermodynamics and mechanics of the strain energy density function. Important relationships are presented and experimental results show that the continuum ideas contained in the phenomenological thermodynamics are valid, but that the molecular bases for some of them remain to be fully elucidated. This is particularly so in the case of the entropic gels or swollen networks. The review is concluded with some perspectives on other networks, ranging from entropic polymer networks such as thermoplastic elastomers to physical gels in which cross-link points are formed by glassy or crystalline domains. A discussion is provided for other physical gels in which the network forms a spinodal-like decomposition, both in thermoplastic polymers that form a glassy network upon phase separation and for colloidal gels that seem to have a similar behavior.
The Hospital Satellite Network. A National/International Perspective.
ERIC Educational Resources Information Center
Linder, Ronald L.
1985-01-01
Describes how continuing distance education through satellite transmitted-television can help health service professionals, and how such networks operate. The development of such a program is described, including audience, title, learning objectives, program text, and onsite instructional materials. (CT)
Optimizing Power–Frequency Droop Characteristics of Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guggilam, Swaroop S.; Zhao, Changhong; Dall Anese, Emiliano
This paper outlines a procedure to design power-frequency droop slopes for distributed energy resources (DERs) installed in distribution networks to optimally participate in primary frequency response. In particular, the droop slopes are engineered such that DERs respond in proportion to their power ratings and they are not unfairly penalized in power provisioning based on their location in the distribution network. The main contribution of our approach is that a guaranteed level of frequency regulation can be guaranteed at the feeder head, while ensuring that the outputs of individual DERs conform to some well-defined notion of fairness. The approach we adoptmore » leverages an optimization-based perspective and suitable linearizations of the power-flow equations to embed notions of fairness and information regarding the physics of the power flows within the distribution network into the droop slopes. Time-domain simulations from a differential algebraic equation model of the 39-bus New England test-case system augmented with three instances of the IEEE 37-node distribution-network with frequency-sensitive DERs are provided to validate our approach.« less
Lin, Hui-Heng; Zhang, Le-Le; Yan, Ru; Lu, Jin-Jian; Hu, Yuanjia
2017-09-25
The U.S. Food and Drug Administration (FDA) approves new drugs every year. Drug targets are some of the most important interactive molecules for drugs, as they have a significant impact on the therapeutic effects of drugs. In this work, we thoroughly analyzed the data of small molecule drugs approved by the U.S. FDA between 2000 and 2015. Specifically, we focused on seven classes of new molecular entity (NME) classified by the anatomic therapeutic chemical (ATC) classification system. They were NMEs and their corresponding targets for the cardiovascular system, respiratory system, nerve system, general anti-infective systemic, genito-urinary system and sex hormones, alimentary tract and metabolisms, and antineoplastic and immunomodulating agents. To study the drug-target interaction on the systems level, we employed network topological analysis and multipartite network projections. As a result, the drug-target relations of different kinds of drugs were comprehensively characterized and global pictures of drug-target, drug-drug, and target-target interactions were visualized and analyzed from the perspective of network models.
Niño-García, Juan Pablo; Ruiz-González, Clara; Del Giorgio, Paul A
2016-12-01
Aquatic bacterial communities harbour thousands of coexisting taxa. To meet the challenge of discriminating between a 'core' and a sporadically occurring 'random' component of these communities, we explored the spatial abundance distribution of individual bacterioplankton taxa across 198 boreal lakes and their associated fluvial networks (188 rivers). We found that all taxa could be grouped into four distinct categories based on model statistical distributions (normal like, bimodal, logistic and lognormal). The distribution patterns across lakes and their associated river networks showed that lake communities are composed of a core of taxa whose distribution appears to be linked to in-lake environmental sorting (normal-like and bimodal categories), and a large fraction of mostly rare bacteria (94% of all taxa) whose presence appears to be largely random and linked to downstream transport in aquatic networks (logistic and lognormal categories). These rare taxa are thus likely to reflect species sorting at upstream locations, providing a perspective of the conditions prevailing in entire aquatic networks rather than only in lakes. © 2016 John Wiley & Sons Ltd/CNRS.
Genetic heterogeneity in autism: From single gene to a pathway perspective.
An, Joon Yong; Claudianos, Charles
2016-09-01
The extreme genetic heterogeneity of autism spectrum disorder (ASD) represents a major challenge. Recent advances in genetic screening and systems biology approaches have extended our knowledge of the genetic etiology of ASD. In this review, we discuss the paradigm shift from a single gene causation model to pathway perturbation model as a guide to better understand the pathophysiology of ASD. We discuss recent genetic findings obtained through next-generation sequencing (NGS) and examine various integrative analyses using systems biology and complex networks approaches that identify convergent patterns of genetic elements associated with ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Postscript on Institutional Motivations, Research Concerns and Professional Implications
ERIC Educational Resources Information Center
Dalton-Puffer, Christiane
2012-01-01
From the point of view of AILA's research network "CLIL and Immersion Education: Applied Linguistic Perspectives" this volume finally does justice to a strand of interest that has been part of the network from its inception. As the editors rightly point out in the introduction, ReN events and publications during the network's first…
ERIC Educational Resources Information Center
Silva, Marisa; da Silva, Sofia Marques; Araújo, Helena C
2017-01-01
This article presents an analysis of school principals' perspectives on networking concerning schools and school clusters from areas of social vulnerability (Educational Territories of Priority Intervention (TEIP)) in Northern Portugal. The meanings, purpose, benefits and difficulties of networking in education are examined, based on interviews…
ERIC Educational Resources Information Center
Cornelissen, Frank; de Jong, Tjip; Kessels, Joseph
2012-01-01
Purpose: This paper aims to propose a framework which connects perspectives on knowledge and learning to various approaches of social networks studies. The purpose is twofold: providing input for the discourse in organizational studies about the way different views on knowledge and networks drive design choices and activities of researchers,…
Networking as a Strategic Tool, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
This conference focuses on the technological advances, pitfalls, requirements, and trends involved in planning and implementing an effective computer network system. The basic theme of the conference is networking as a strategic tool. Tutorials and conference presentations explore the technology and methods involved in this rapidly changing field. Future directions are explored from a global, as well as local, perspective.
Productive Tensions in a Cross-Cultural Peer Mentoring Women's Network: A Social Capital Perspective
ERIC Educational Resources Information Center
Esnard, Talia; Cobb-Roberts, Deirdre; Agosto, Vonzell; Karanxha, Zorka; Beck, Makini; Wu, Ke; Unterreiner, Ann
2015-01-01
A growing body of researchers documents the unique barriers women face in their academic career progression and the significance of mentoring networks for advancement of their academic trajectories as faculty. However, few researchers explore the embedded tensions and conflicts in the social processes and relations of mentoring networks, and the…
Building Trust-Based Sustainable Networks
2013-06-05
entities to build sustainable networks with limited resources or misbehaving entities by learning from the lessons in the social sciences. We discuss...their individuality); and ■ Misbehaving nodes in terms of environmental, economic, and social perspectives. The sustainable network concerns...equitable access to particular services which are otherwise abused by misbehaving or malicious users. Such approaches provide a fair and
Baldensperger, Linda; Wiedemann, Amelie U; Wessel, Lauri; Keilholz, Ulrich; Knoll, Nina
2018-06-01
Socioemotional selectivity theory proposes that, with more limited future time perspective (FTP), the meaning of individual life goals shifts from instrumental and long-term goals, such as autonomy, to emotionally meaningful and short-term life goals, especially concerning meaningful social relationships. Adverse side effects of cancer therapy may conflict with the realization of emotionally meaningful goals leading to nonadherence. In line with the theoretical assumptions, this study aimed to investigate (a) associations among disease symptoms, physical and cognitive limitations, and FTP and (b) among FTP, family network size, striving for autonomy, and treatment adherence. One hundred fifty-seven patients (43-90 years; 75% male) with head and/or neck cancer of a German University Medical Centre completed a questionnaire measuring FTP, age, disease symptoms, physical and cognitive functioning, family network size, and treatment adherence. Autonomy was assessed with a card sort task. A structural equation model yielded an acceptable fit χ 2 (28) = 44.41, P = .025, χ 2 /df = 1.59, root mean square error of approximation = 0.06 (90% CI = 0.02, 0.09), Tucker-Lewis Index = 0.92, and Comparative Fit Index = 0.96. An increased level of disease symptoms and physical and cognitive limitations was related to a shorter subjective FTP. Furthermore, individuals with a limited FTP reported a smaller family network, a lowered quest for autonomy, and lower treatment adherence. Hypotheses derived from socioemotional selectivity theory were supported by the data. Longitudinal investigations should follow to corroborate findings and to focus on underlying mechanisms as improving patients FTP may play a crucial role in future disease management programs. Copyright © 2018 John Wiley & Sons, Ltd.
A network approach to the geometric structure of shallow cloud fields
NASA Astrophysics Data System (ADS)
Glassmeier, F.; Feingold, G.
2017-12-01
The representation of shallow clouds and their radiative impact is one of the largest challenges for global climate models. While the bulk properties of cloud fields, including effects of organization, are a very active area of research, the potential of the geometric arrangement of cloud fields for the development of new parameterizations has hardly been explored. Self-organized patterns are particularly evident in the cellular structure of Stratocumulus (Sc) clouds so readily visible in satellite imagery. Inspired by similar patterns in biology and physics, we approach pattern formation in Sc fields from the perspective of natural cellular networks. Our network analysis is based on large-eddy simulations of open- and closed-cell Sc cases. We find the network structure to be neither random nor characteristic to natural convection. It is independent of macroscopic cloud fields properties like the Sc regime (open vs closed) and its typical length scale (boundary layer height). The latter is a consequence of entropy maximization (Lewis's Law with parameter 0.16). The cellular pattern is on average hexagonal, where non-6 sided cells occur according to a neighbor-number distribution variance of about 2. Reflecting the continuously renewing dynamics of Sc fields, large (many-sided) cells tend to neighbor small (few-sided) cells (Aboav-Weaire Law with parameter 0.9). These macroscopic network properties emerge independent of the Sc regime because the different processes governing the evolution of closed as compared to open cells correspond to topologically equivalent network dynamics. By developing a heuristic model, we show that open and closed cell dynamics can both be mimicked by versions of cell division and cell disappearance and are biased towards the expansion of smaller cells. This model offers for the first time a fundamental and universal explanation for the geometric pattern of Sc clouds. It may contribute to the development of advanced Sc parameterizations. As an outlook, we discuss how a similar network approach can be applied to describe and quantify the geometric structure of shallow cumulus cloud fields.
Jagtap, Pranav; Diwadkar, Vaibhav A
2016-07-01
Frontal-thalamic interactions are crucial for bottom-up gating and top-down control, yet have not been well studied from brain network perspectives. We applied network modeling of fMRI signals [dynamic causal modeling (DCM)] to investigate frontal-thalamic interactions during an attention task with parametrically varying levels of demand. fMRI was collected while subjects participated in a sustained continuous performance task with low and high attention demands. 162 competing model architectures were employed in DCM to evaluate hypotheses on bilateral frontal-thalamic connections and their modulation by attention demand, selected at a second level using Bayesian model selection. The model architecture evinced significant contextual modulation by attention of ascending (thalamus → dPFC) and descending (dPFC → thalamus) pathways. However, modulation of these pathways was asymmetric: while positive modulation of the ascending pathway was comparable across attention demand, modulation of the descending pathway was significantly greater when attention demands were increased. Increased modulation of the (dPFC → thalamus) pathway in response to increased attention demand constitutes novel evidence of attention-related gain in the connectivity of the descending attention pathway. By comparison demand-independent modulation of the ascending (thalamus → dPFC) pathway suggests unbiased thalamic inputs to the cortex in the context of the paradigm. Hum Brain Mapp 37:2557-2570, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mutual-Information-Based Incremental Relaying Communications for Wireless Biomedical Implant Systems
Liao, Yangzhe; Cai, Qing; Ai, Qingsong; Liu, Quan
2018-01-01
Network lifetime maximization of wireless biomedical implant systems is one of the major research challenges of wireless body area networks (WBANs). In this paper, a mutual information (MI)-based incremental relaying communication protocol is presented where several on-body relay nodes and one coordinator are attached to the clothes of a patient. Firstly, a comprehensive analysis of a system model is investigated in terms of channel path loss, energy consumption, and the outage probability from the network perspective. Secondly, only when the MI value becomes smaller than the predetermined threshold is data transmission allowed. The communication path selection can be either from the implanted sensor to the on-body relay then forwards to the coordinator or from the implanted sensor to the coordinator directly, depending on the communication distance. Moreover, mathematical models of quality of service (QoS) metrics are derived along with the related subjective functions. The results show that the MI-based incremental relaying technique achieves better performance in comparison to our previous proposed protocol techniques regarding several selected performance metrics. The outcome of this paper can be applied to intra-body continuous physiological signal monitoring, artificial biofeedback-oriented WBANs, and telemedicine system design. PMID:29419784
Attacker-defender game from a network science perspective
NASA Astrophysics Data System (ADS)
Li, Ya-Peng; Tan, Suo-Yi; Deng, Ye; Wu, Jun
2018-05-01
Dealing with the protection of critical infrastructures, many game-theoretic methods have been developed to study the strategic interactions between defenders and attackers. However, most game models ignore the interrelationship between different components within a certain system. In this paper, we propose a simultaneous-move attacker-defender game model, which is a two-player zero-sum static game with complete information. The strategies and payoffs of this game are defined on the basis of the topology structure of the infrastructure system, which is represented by a complex network. Due to the complexity of strategies, the attack and defense strategies are confined by two typical strategies, namely, targeted strategy and random strategy. The simulation results indicate that in a scale-free network, the attacker virtually always attacks randomly in the Nash equilibrium. With a small cost-sensitive parameter, representing the degree to which costs increase with the importance of a target, the defender protects the hub targets with large degrees preferentially. When the cost-sensitive parameter exceeds a threshold, the defender switches to protecting nodes randomly. Our work provides a new theoretical framework to analyze the confrontations between the attacker and the defender on critical infrastructures and deserves further study.
Liao, Yangzhe; Leeson, Mark S; Cai, Qing; Ai, Qingsong; Liu, Quan
2018-02-08
Network lifetime maximization of wireless biomedical implant systems is one of the major research challenges of wireless body area networks (WBANs). In this paper, a mutual information (MI)-based incremental relaying communication protocol is presented where several on-body relay nodes and one coordinator are attached to the clothes of a patient. Firstly, a comprehensive analysis of a system model is investigated in terms of channel path loss, energy consumption, and the outage probability from the network perspective. Secondly, only when the MI value becomes smaller than the predetermined threshold is data transmission allowed. The communication path selection can be either from the implanted sensor to the on-body relay then forwards to the coordinator or from the implanted sensor to the coordinator directly, depending on the communication distance. Moreover, mathematical models of quality of service (QoS) metrics are derived along with the related subjective functions. The results show that the MI-based incremental relaying technique achieves better performance in comparison to our previous proposed protocol techniques regarding several selected performance metrics. The outcome of this paper can be applied to intra-body continuous physiological signal monitoring, artificial biofeedback-oriented WBANs, and telemedicine system design.
Coding Classroom Interactions for Collective and Individual Engagement
ERIC Educational Resources Information Center
Ryu, Suna; Lombardi, Doug
2015-01-01
This article characterizes "engagement in science learning" from a sociocultural perspective and offers a mixed method approach to measuring engagement that combines critical discourse analysis (CDA) and social network analysis (SNA). Conceptualizing engagement from a sociocultural perspective, the article discusses the advantages of a…
Convoys of Social Relations in Cross-National Context.
Ajrouch, Kristine J; Fuller, Heather R; Akiyama, Hiroko; Antonucci, Toni C
2018-05-08
This study examines national variations in social networks among older adults across 4 countries in diverse regions of the world: Japan, Lebanon, Mexico, and the United States. The aim is to provide insights into universal as well as unique attributes of social networks in later life. The analyses examine convoy characteristics among adults aged 50+ in metropolitan areas of Japan (N = 557), Lebanon (N = 284), Mexico (N = 556), and the United States (N = 583). Data were collected using the hierarchical mapping technique on representative samples in each locale. Multilevel models were conducted by nation to examine whether convoy characteristics vary by age and closeness. Network size and geographic proximity were dimensions of social networks sensitive to national context. By contrast, how age and feelings of closeness varied with contact frequency and the presence of children in networks revealed universal patterns. Furthermore, feelings of closeness varied by age with regard to size and contact frequency in Lebanon, proximity in Japan, and composition in Mexico. Identifying universal and unique characteristics of social networks in later life provide a preliminary empirical basis upon which to advance a global perspective on convoys of social relations and how they inform policies that can facilitate health and well-being among middle-aged and older people around the world.
Robust synthetic biology design: stochastic game theory approach.
Chen, Bor-Sen; Chang, Chia-Hung; Lee, Hsiao-Ching
2009-07-15
Synthetic biology is to engineer artificial biological systems to investigate natural biological phenomena and for a variety of applications. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to uncertain initial conditions and disturbances of extra-cellular environments on the host cell. At present, how to design a robust synthetic gene network to work properly under these uncertain factors is the most important topic of synthetic biology. A robust regulation design is proposed for a stochastic synthetic gene network to achieve the prescribed steady states under these uncertain factors from the minimax regulation perspective. This minimax regulation design problem can be transformed to an equivalent stochastic game problem. Since it is not easy to solve the robust regulation design problem of synthetic gene networks by non-linear stochastic game method directly, the Takagi-Sugeno (T-S) fuzzy model is proposed to approximate the non-linear synthetic gene network via the linear matrix inequality (LMI) technique through the Robust Control Toolbox in Matlab. Finally, an in silico example is given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed robust gene design method. http://www.ee.nthu.edu.tw/bschen/SyntheticBioDesign_supplement.pdf.
Clark, Renee M; Besterfield-Sacre, Mary E
2009-03-01
We take a novel approach to analyzing hazardous materials transportation risk in this research. Previous studies analyzed this risk from an operations research (OR) or quantitative risk assessment (QRA) perspective by minimizing or calculating risk along a transport route. Further, even though the majority of incidents occur when containers are unloaded, the research has not focused on transportation-related activities, including container loading and unloading. In this work, we developed a decision model of a hazardous materials release during unloading using actual data and an exploratory data modeling approach. Previous studies have had a theoretical perspective in terms of identifying and advancing the key variables related to this risk, and there has not been a focus on probability and statistics-based approaches for doing this. Our decision model empirically identifies the critical variables using an exploratory methodology for a large, highly categorical database involving latent class analysis (LCA), loglinear modeling, and Bayesian networking. Our model identified the most influential variables and countermeasures for two consequences of a hazmat incident, dollar loss and release quantity, and is one of the first models to do this. The most influential variables were found to be related to the failure of the container. In addition to analyzing hazmat risk, our methodology can be used to develop data-driven models for strategic decision making in other domains involving risk.
Distributed sensor networks: a cellular nonlinear network perspective.
Haenggi, Martin
2003-12-01
Large-scale networks of integrated wireless sensors become increasingly tractable. Advances in hardware technology and engineering design have led to dramatic reductions in size, power consumption, and cost for digital circuitry, and wireless communications. Networking, self-organization, and distributed operation are crucial ingredients to harness the sensing, computing, and computational capabilities of the nodes into a complete system. This article shows that those networks can be considered as cellular nonlinear networks (CNNs), and that their analysis and design may greatly benefit from the rich theoretical results available for CNNs.