Sample records for network multiplexing hierarchy

  1. Designing Two-Layer Optical Networks with Statistical Multiplexing

    NASA Astrophysics Data System (ADS)

    Addis, B.; Capone, A.; Carello, G.; Malucelli, F.; Fumagalli, M.; Pedrin Elli, E.

    The possibility of adding multi-protocol label switching (MPLS) support to transport networks is considered an important opportunity by telecom carriers that want to add packet services and applications to their networks. However, the question that arises is whether it is suitable to have MPLS nodes just at the edge of the network to collect packet traffic from users, or also to introduce MPLS facilities on a subset of the core nodes in order to exploit packet switching flexibility and multiplexing, thus providing induction of a better bandwidth allocation. In this article, we address this complex decisional problem with the support of a mathematical programming approach. We consider two-layer networks where MPLS is overlaid on top of transport networks-synchronous digital hierarchy (SDH) or wavelength division multiplexing (WDM)-depending on the required link speed. The discussions' decisions take into account the trade-off between the cost of adding MPLS support in the core nodes and the savings in the link bandwidth allocation due to the statistical multiplexing and the traffic grooming effects induced by MPLS nodes. The traffic matrix specifies for each point-to-point request a pair of values: a mean traffic value and an additional one. Using this traffic model, the effect of statistical multiplexing on a link allows the allocation of a capacity equal to the sum of all the mean values of the traffic demands routed on the link and only the highest additional one. The proposed approach is suitable to solve real instances in reasonable time.

  2. Fault tolerant hypercube computer system architecture

    NASA Technical Reports Server (NTRS)

    Madan, Herb S. (Inventor); Chow, Edward (Inventor)

    1989-01-01

    A fault-tolerant multiprocessor computer system of the hypercube type comprising a hierarchy of computers of like kind which can be functionally substituted for one another as necessary is disclosed. Communication between the working nodes is via one communications network while communications between the working nodes and watch dog nodes and load balancing nodes higher in the structure is via another communications network separate from the first. A typical branch of the hierarchy reporting to a master node or host computer comprises, a plurality of first computing nodes; a first network of message conducting paths for interconnecting the first computing nodes as a hypercube. The first network provides a path for message transfer between the first computing nodes; a first watch dog node; and a second network of message connecting paths for connecting the first computing nodes to the first watch dog node independent from the first network, the second network provides an independent path for test message and reconfiguration affecting transfers between the first computing nodes and the first switch watch dog node. There is additionally, a plurality of second computing nodes; a third network of message conducting paths for interconnecting the second computing nodes as a hypercube. The third network provides a path for message transfer between the second computing nodes; a fourth network of message conducting paths for connecting the second computing nodes to the first watch dog node independent from the third network. The fourth network provides an independent path for test message and reconfiguration affecting transfers between the second computing nodes and the first watch dog node; and a first multiplexer disposed between the first watch dog node and the second and fourth networks for allowing the first watch dog node to selectively communicate with individual ones of the computing nodes through the second and fourth networks; as well as, a second watch dog node operably connected to the first multiplexer whereby the second watch dog node can selectively communicate with individual ones of the computing nodes through the second and fourth networks. The branch is completed by a first load balancing node; and a second multiplexer connected between the first load balancing node and the first and second watch dog nodes, allowing the first load balancing node to selectively communicate with the first and second watch dog nodes.

  3. Allocation of spectral and spatial modes in multidimensional metro-access optical networks

    NASA Astrophysics Data System (ADS)

    Gao, Wenbo; Cvijetic, Milorad

    2018-04-01

    Introduction of spatial division multiplexing (SDM) has added a new dimension in an effort to increase optical fiber channel capacity. At the same time, it can also be explored as an advanced optical networking tool. In this paper, we have investigated the resource allocation to end-users in multidimensional networking structure with plurality of spectral and spatial modes actively deployed in different networking segments. This presents a more comprehensive method as compared to the common practice where the segments of optical network are analyzed independently since the interaction between network hierarchies is included into consideration. We explored the possible transparency from the metro/core network to the optical access network, analyzed the potential bottlenecks from the network architecture perspective, and identified an optimized network structure. In our considerations, the viability of optical grooming through the entire hierarchical all-optical network is investigated by evaluating the effective utilization and spectral efficiency of the network architecture.

  4. Interplay between geo-population factors and hierarchy of cities in multilayer urban networks.

    PubMed

    Makarov, Vladimir V; Hramov, Alexander E; Kirsanov, Daniil V; Maksimenko, Vladimir A; Goremyko, Mikhail V; Ivanov, Alexey V; Yashkov, Ivan A; Boccaletti, Stefano

    2017-12-08

    Only taking into consideration the interplay between processes occurring at different levels of a country can provide the complete social and geopolitical plot of its urban system. We study the interaction of the administrative structure and the geographical connectivity between cities with the help of a multiplex network approach. We found that a spatially-distributed geo-network imposes its own ranking to the hierarchical administrative network, while the latter redistributes the shortest paths between nodes in the geographical layer. Using both real demographic data of population censuses of the Republic of Kazakhstan and theoretical models, we show that in a country-scale urban network and for each specific city, the geographical neighbouring with highly populated areas is more important than its political setting. Furthermore, the structure of political subordination is instead crucial for the wealth of transportation network and communication between populated regions of the country.

  5. Extracting information from multiplex networks

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ ˜ S for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  6. Measuring and modeling correlations in multiplex networks.

    PubMed

    Nicosia, Vincenzo; Latora, Vito

    2015-09-01

    The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.

  7. The robustness of multiplex networks under layer node-based attack

    PubMed Central

    Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen

    2016-01-01

    From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology. PMID:27075870

  8. The robustness of multiplex networks under layer node-based attack.

    PubMed

    Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen

    2016-04-14

    From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology.

  9. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-02-01

    Call for Papers: Convergence Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:

  10. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-03-01

    Call for Papers: Convergence Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:

  11. Optimal percolation on multiplex networks.

    PubMed

    Osat, Saeed; Faqeeh, Ali; Radicchi, Filippo

    2017-11-16

    Optimal percolation is the problem of finding the minimal set of nodes whose removal from a network fragments the system into non-extensive disconnected clusters. The solution to this problem is important for strategies of immunization in disease spreading, and influence maximization in opinion dynamics. Optimal percolation has received considerable attention in the context of isolated networks. However, its generalization to multiplex networks has not yet been considered. Here we show that approximating the solution of the optimal percolation problem on a multiplex network with solutions valid for single-layer networks extracted from the multiplex may have serious consequences in the characterization of the true robustness of the system. We reach this conclusion by extending many of the methods for finding approximate solutions of the optimal percolation problem from single-layer to multiplex networks, and performing a systematic analysis on synthetic and real-world multiplex networks.

  12. Navigability of multiplex temporal network

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Song, Qiao-Zhen

    2017-01-01

    Real world complex systems have multiple levels of relationships and in many cases, they need to be modeled as multiplex networks where the same nodes can interact with each other in different layers, such as social networks. However, social relationships only appear at prescribed times so the temporal structures of edge activations can also affect the dynamical processes located above them. To consider both factors are simultaneously, we introduce multiplex temporal networks and propose three different walk strategies to investigate the concurrent dynamics of random walks and the temporal structure of multiplex networks. Thus, we derive analytical results for the multiplex centrality and coverage function in multiplex temporal networks. By comparing them with the numerical results, we show how the underlying topology of the layers and the walk strategy affect the efficiency when exploring the networks. In particular, the most interesting result is the emergence of a super-diffusion process, where the time scale of the multiplex is faster than that of both layers acting separately.

  13. Multiplex PageRank.

    PubMed

    Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra

    2013-01-01

    Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  14. Growing multiplex networks with arbitrary number of layers

    NASA Astrophysics Data System (ADS)

    Momeni, Naghmeh; Fotouhi, Babak

    2015-12-01

    This paper focuses on the problem of growing multiplex networks. Currently, the results on the joint degree distribution of growing multiplex networks present in the literature pertain to the case of two layers and are confined to the special case of homogeneous growth and are limited to the state state (that is, the limit of infinite size). In the present paper, we first obtain closed-form solutions for the joint degree distribution of heterogeneously growing multiplex networks with arbitrary number of layers in the steady state. Heterogeneous growth means that each incoming node establishes different numbers of links in different layers. We consider both uniform and preferential growth. We then extend the analysis of the uniform growth mechanism to arbitrary times. We obtain a closed-form solution for the time-dependent joint degree distribution of a growing multiplex network with arbitrary initial conditions. Throughout, theoretical findings are corroborated with Monte Carlo simulations. The results shed light on the effects of the initial network on the transient dynamics of growing multiplex networks and takes a step towards characterizing the temporal variations of the connectivity of growing multiplex networks, as well as predicting their future structural properties.

  15. Percolation in multiplex networks with overlap.

    PubMed

    Cellai, Davide; López, Eduardo; Zhou, Jie; Gleeson, James P; Bianconi, Ginestra

    2013-11-01

    From transportation networks to complex infrastructures, and to social and communication networks, a large variety of systems can be described in terms of multiplexes formed by a set of nodes interacting through different networks (layers). Multiplexes may display an increased fragility with respect to the single layers that constitute them. However, so far the overlap of the links in different layers has been mostly neglected, despite the fact that it is an ubiquitous phenomenon in most multiplexes. Here, we show that the overlap among layers can improve the robustness of interdependent multiplex systems and change the critical behavior of the percolation phase transition in a complex way.

  16. Multiplex Networks of Cortical and Hippocampal Neurons Revealed at Different Timescales

    PubMed Central

    Timme, Nicholas; Ito, Shinya; Myroshnychenko, Maxym; Yeh, Fang-Chin; Hiolski, Emma; Hottowy, Pawel; Beggs, John M.

    2014-01-01

    Recent studies have emphasized the importance of multiplex networks – interdependent networks with shared nodes and different types of connections – in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of networks can greatly affect network behavior (e.g. fault tolerance). Thus, the study of networks of neurons could potentially be greatly enhanced using a multiplex perspective. Given the wide range of temporally dependent rhythms and phenomena present in neural systems, we chose to examine multiplex networks of individual neurons with time scale dependent connections. To study these networks, we used transfer entropy – an information theoretic quantity that can be used to measure linear and nonlinear interactions – to systematically measure the connectivity between individual neurons at different time scales in cortical and hippocampal slice cultures. We recorded the spiking activity of almost 12,000 neurons across 60 tissue samples using a 512-electrode array with 60 micrometer inter-electrode spacing and 50 microsecond temporal resolution. To the best of our knowledge, this preparation and recording method represents a superior combination of number of recorded neurons and temporal and spatial recording resolutions to any currently available in vivo system. We found that highly connected neurons (“hubs”) were localized to certain time scales, which, we hypothesize, increases the fault tolerance of the network. Conversely, a large proportion of non-hub neurons were not localized to certain time scales. In addition, we found that long and short time scale connectivity was uncorrelated. Finally, we found that long time scale networks were significantly less modular and more disassortative than short time scale networks in both tissue types. As far as we are aware, this analysis represents the first systematic study of temporally dependent multiplex networks among individual neurons. PMID:25536059

  17. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-08-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques

  18. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-06-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques

  19. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-05-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques

  20. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-04-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques

  1. On the origins of hierarchy in complex networks

    PubMed Central

    Corominas-Murtra, Bernat; Goñi, Joaquín; Solé, Ricard V.; Rodríguez-Caso, Carlos

    2013-01-01

    Hierarchy seems to pervade complexity in both living and artificial systems. Despite its relevance, no general theory that captures all features of hierarchy and its origins has been proposed yet. Here we present a formal approach resulting from the convergence of theoretical morphology and network theory that allows constructing a 3D morphospace of hierarchies and hence comparing the hierarchical organization of ecological, cellular, technological, and social networks. Embedded within large voids in the morphospace of all possible hierarchies, four major groups are identified. Two of them match the expected from random networks with similar connectivity, thus suggesting that nonadaptive factors are at work. Ecological and gene networks define the other two, indicating that their topological order is the result of functional constraints. These results are consistent with an exploration of the morphospace, using in silico evolved networks. PMID:23898177

  2. Metric projection for dynamic multiplex networks.

    PubMed

    Jurman, Giuseppe

    2016-08-01

    Evolving multiplex networks are a powerful model for representing the dynamics along time of different phenomena, such as social networks, power grids, biological pathways. However, exploring the structure of the multiplex network time series is still an open problem. Here we propose a two-step strategy to tackle this problem based on the concept of distance (metric) between networks. Given a multiplex graph, first a network of networks is built for each time step, and then a real valued time series is obtained by the sequence of (simple) networks by evaluating the distance from the first element of the series. The effectiveness of this approach in detecting the occurring changes along the original time series is shown on a synthetic example first, and then on the Gulf dataset of political events.

  3. Immunization of Epidemics in Multiplex Networks

    PubMed Central

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks. PMID:25401755

  4. Immunization of epidemics in multiplex networks.

    PubMed

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks.

  5. A Perron-Frobenius theory for block matrices associated to a multiplex network

    NASA Astrophysics Data System (ADS)

    Romance, Miguel; Solá, Luis; Flores, Julio; García, Esther; García del Amo, Alejandro; Criado, Regino

    2015-03-01

    The uniqueness of the Perron vector of a nonnegative block matrix associated to a multiplex network is discussed. The conclusions come from the relationships between the irreducibility of some nonnegative block matrix associated to a multiplex network and the irreducibility of the corresponding matrices to each layer as well as the irreducibility of the adjacency matrix of the projection network. In addition the computation of that Perron vector in terms of the Perron vectors of the blocks is also addressed. Finally we present the precise relations that allow to express the Perron eigenvector of the multiplex network in terms of the Perron eigenvectors of its layers.

  6. Designing and application of SAN extension interface based on CWDM

    NASA Astrophysics Data System (ADS)

    Qin, Leihua; Yu, Shengsheng; Zhou, Jingli

    2005-11-01

    As Fibre Channel (FC) becomes the protocol of choice within corporate data centers, enterprises are increasingly deploying SANs in their data central. In order to mitigate the risk of losing data and improve the availability of data, more and more enterprises are increasingly adopting storage extension technologies to replicate their business critical data to a secondary site. Transmitting this information over distance requires a carrier grade environment with zero data loss, scalable throughput, low jitter, high security and ability to travel long distance. To address this business requirements, there are three basic architectures for storage extension, they are Storage over Internet Protocol, Storage over Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Storage over Dense Wavelength Division Multiplexing (DWDM). Each approach varies in functionality, complexity, cost, scalability, security, availability , predictable behavior (bandwidth, jitter, latency) and multiple carrier limitations. Compared with these connectiviy technologies,Coarse Wavelength Division Multiplexing (CWDM) is a Simplified, Low Cost and High Performance connectivity solutions for enterprises to deploy their storage extension. In this paper, we design a storage extension connectivity over CWDM and test it's electrical characteristic and random read and write performance of disk array through the CWDM connectivity, testing result show us that the performance of the connectivity over CWDM is acceptable. Furthermore, we propose three kinds of network architecture of SAN extension based on CWDM interface. Finally the credit-Based flow control mechanism of FC, and the relationship between credits and extension distance is analyzed.

  7. Percolation in real multiplex networks

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Radicchi, Filippo

    2016-12-01

    We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.

  8. Structure-function clustering in multiplex brain networks

    NASA Astrophysics Data System (ADS)

    Crofts, J. J.; Forrester, M.; O'Dea, R. D.

    2016-10-01

    A key question in neuroscience is to understand how a rich functional repertoire of brain activity arises within relatively static networks of structurally connected neural populations: elucidating the subtle interactions between evoked “functional connectivity” and the underlying “structural connectivity” has the potential to address this. These structural-functional networks (and neural networks more generally) are more naturally described using a multilayer or multiplex network approach, in favour of standard single-layer network analyses that are more typically applied to such systems. In this letter, we address such issues by exploring important structure-function relations in the Macaque cortical network by modelling it as a duplex network that comprises an anatomical layer, describing the known (macro-scale) network topology of the Macaque monkey, and a functional layer derived from simulated neural activity. We investigate and characterize correlations between structural and functional layers, as system parameters controlling simulated neural activity are varied, by employing recently described multiplex network measures. Moreover, we propose a novel measure of multiplex structure-function clustering which allows us to investigate the emergence of functional connections that are distinct from the underlying cortical structure, and to highlight the dependence of multiplex structure on the neural dynamical regime.

  9. Global network structure of dominance hierarchy of ant workers.

    PubMed

    Shimoji, Hiroyuki; Abe, Masato S; Tsuji, Kazuki; Masuda, Naoki

    2014-10-06

    Dominance hierarchy among animals is widespread in various species and believed to serve to regulate resource allocation within an animal group. Unlike small groups, however, detection and quantification of linear hierarchy in large groups of animals are a difficult task. Here, we analyse aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as large directed networks. We show that the observed dominance networks are perfect or approximate directed acyclic graphs, which are consistent with perfect linear hierarchy. The observed networks are also sparse and random but significantly different from networks generated through thinning of the perfect linear tournament (i.e. all individuals are linearly ranked and dominance relationship exists between every pair of individuals). These results pertain to global structure of the networks, which contrasts with the previous studies inspecting frequencies of different types of triads. In addition, the distribution of the out-degree (i.e. number of workers that the focal worker attacks), not in-degree (i.e. number of workers that attack the focal worker), of each observed network is right-skewed. Those having excessively large out-degrees are located near the top, but not the top, of the hierarchy. We also discuss evolutionary implications of the discovered properties of dominance networks. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Using arborescences to estimate hierarchicalness in directed complex networks

    PubMed Central

    2018-01-01

    Complex networks are a useful tool for the understanding of complex systems. One of the emerging properties of such systems is their tendency to form hierarchies: networks can be organized in levels, with nodes in each level exerting control on the ones beneath them. In this paper, we focus on the problem of estimating how hierarchical a directed network is. We propose a structural argument: a network has a strong top-down organization if we need to delete only few edges to reduce it to a perfect hierarchy—an arborescence. In an arborescence, all edges point away from the root and there are no horizontal connections, both characteristics we desire in our idealization of what a perfect hierarchy requires. We test our arborescence score in synthetic and real-world directed networks against the current state of the art in hierarchy detection: agony, flow hierarchy and global reaching centrality. These tests highlight that our arborescence score is intuitive and we can visualize it; it is able to better distinguish between networks with and without a hierarchical structure; it agrees the most with the literature about the hierarchy of well-studied complex systems; and it is not just a score, but it provides an overall scheme of the underlying hierarchy of any directed complex network. PMID:29381761

  11. Global network structure of dominance hierarchy of ant workers

    PubMed Central

    Shimoji, Hiroyuki; Abe, Masato S.; Tsuji, Kazuki; Masuda, Naoki

    2014-01-01

    Dominance hierarchy among animals is widespread in various species and believed to serve to regulate resource allocation within an animal group. Unlike small groups, however, detection and quantification of linear hierarchy in large groups of animals are a difficult task. Here, we analyse aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as large directed networks. We show that the observed dominance networks are perfect or approximate directed acyclic graphs, which are consistent with perfect linear hierarchy. The observed networks are also sparse and random but significantly different from networks generated through thinning of the perfect linear tournament (i.e. all individuals are linearly ranked and dominance relationship exists between every pair of individuals). These results pertain to global structure of the networks, which contrasts with the previous studies inspecting frequencies of different types of triads. In addition, the distribution of the out-degree (i.e. number of workers that the focal worker attacks), not in-degree (i.e. number of workers that attack the focal worker), of each observed network is right-skewed. Those having excessively large out-degrees are located near the top, but not the top, of the hierarchy. We also discuss evolutionary implications of the discovered properties of dominance networks. PMID:25100318

  12. Cooperative spreading processes in multiplex networks.

    PubMed

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  13. Group-based strategy diffusion in multiplex networks with weighted values

    NASA Astrophysics Data System (ADS)

    Yu, Jianyong; Jiang, J. C.; Xiang, Leijun

    2017-03-01

    The information diffusion of multiplex social networks has received increasing interests in recent years. Actually, the multiplex networks are made of many communities, and it should be gotten more attention for the influences of community level diffusion, besides of individual level interactions. In view of this, this work explores strategy interactions and diffusion processes in multiplex networks with weighted values from a new perspective. Two different groups consisting of some agents with different influential strength are firstly built in each layer network, the authority and non-authority groups. The strategy interactions between different groups in intralayer and interlayer networks are performed to explore community level diffusion, by playing two classical strategy games, Prisoner's Dilemma and Snowdrift Game. The impact forces from the different groups and the reactive forces from individual agents are simultaneously taken into account in intralayer and interlayer interactions. This paper reveals and explains the evolutions of cooperation diffusion and the influences of interlayer interaction tight degrees in multiplex networks with weighted values. Some thresholds of critical parameters of interaction degrees and games parameters settings are also discussed in group-based strategy diffusion.

  14. Weak percolation on multiplex networks

    NASA Astrophysics Data System (ADS)

    Baxter, Gareth J.; Dorogovtsev, Sergey N.; Mendes, José F. F.; Cellai, Davide

    2014-04-01

    Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters.

  15. How multiple social networks affect user awareness: The information diffusion process in multiplex networks

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Tang, Shaoting; Fang, Wenyi; Guo, Quantong; Zhang, Xiao; Zheng, Zhiming

    2015-10-01

    The information diffusion process in single complex networks has been extensively studied, especially for modeling the spreading activities in online social networks. However, individuals usually use multiple social networks at the same time, and can share the information they have learned from one social network to another. This phenomenon gives rise to a new diffusion process on multiplex networks with more than one network layer. In this paper we account for this multiplex network spreading by proposing a model of information diffusion in two-layer multiplex networks. We develop a theoretical framework using bond percolation and cascading failure to describe the intralayer and interlayer diffusion. This allows us to obtain analytical solutions for the fraction of informed individuals as a function of transmissibility T and the interlayer transmission rate θ . Simulation results show that interaction between layers can greatly enhance the information diffusion process. And explosive diffusion can occur even if the transmissibility of the focal layer is under the critical threshold, due to interlayer transmission.

  16. Resolution of ranking hierarchies in directed networks.

    PubMed

    Letizia, Elisa; Barucca, Paolo; Lillo, Fabrizio

    2018-01-01

    Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit.

  17. Resolution of ranking hierarchies in directed networks

    PubMed Central

    Barucca, Paolo; Lillo, Fabrizio

    2018-01-01

    Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit. PMID:29394278

  18. A Survivable Wavelength Division Multiplexing Passive Optical Network with Both Point-to-Point Service and Broadcast Service Delivery

    NASA Astrophysics Data System (ADS)

    Ma, Xuejiao; Gan, Chaoqin; Deng, Shiqi; Huang, Yan

    2011-11-01

    A survivable wavelength division multiplexing passive optical network enabling both point-to-point service and broadcast service is presented and demonstrated. This architecture provides an automatic traffic recovery against feeder and distribution fiber link failure, respectively. In addition, it also simplifies the protection design for multiple services transmission in wavelength division multiplexing passive optical networks.

  19. Multiplex lexical networks reveal patterns in early word acquisition in children

    NASA Astrophysics Data System (ADS)

    Stella, Massimo; Beckage, Nicole M.; Brede, Markus

    2017-04-01

    Network models of language have provided a way of linking cognitive processes to language structure. However, current approaches focus only on one linguistic relationship at a time, missing the complex multi-relational nature of language. In this work, we overcome this limitation by modelling the mental lexicon of English-speaking toddlers as a multiplex lexical network, i.e. a multi-layered network where N = 529 words/nodes are connected according to four relationship: (i) free association, (ii) feature sharing, (iii) co-occurrence, and (iv) phonological similarity. We investigate the topology of the resulting multiplex and then proceed to evaluate single layers and the full multiplex structure on their ability to predict empirically observed age of acquisition data of English speaking toddlers. We find that the multiplex topology is an important proxy of the cognitive processes of acquisition, capable of capturing emergent lexicon structure. In fact, we show that the multiplex structure is fundamentally more powerful than individual layers in predicting the ordering with which words are acquired. Furthermore, multiplex analysis allows for a quantification of distinct phases of lexical acquisition in early learners: while initially all the multiplex layers contribute to word learning, after about month 23 free associations take the lead in driving word acquisition.

  20. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network.

    PubMed

    Wang, Andong; Zhu, Long; Liu, Jun; Du, Cheng; Mo, Qi; Wang, Jian

    2015-11-16

    Mode-division multiplexing passive optical network (MDM-PON) is a promising scheme for next-generation access networks to further increase fiber transmission capacity. In this paper, we demonstrate the proof-of-concept experiment of hybrid mode-division multiplexing (MDM) and time-division multiplexing (TDM) PON architecture by exploiting orbital angular momentum (OAM) modes. Bidirectional transmissions with 2.5-Gbaud 4-level pulse amplitude modulation (PAM-4) downstream and 2-Gbaud on-off keying (OOK) upstream are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties for downstream and upstream transmissions at a bit-error rate (BER) of 2 × 10(-3) are less than 2.0 dB and 3.0 dB, respectively.

  1. Generalized priority-queue network dynamics: Impact of team and hierarchy

    NASA Astrophysics Data System (ADS)

    Cho, Won-Kuk; Min, Byungjoon; Goh, K.-I.; Kim, I.-M.

    2010-06-01

    We study the effect of team and hierarchy on the waiting-time dynamics of priority-queue networks. To this end, we introduce generalized priority-queue network models incorporating interaction rules based on team-execution and hierarchy in decision making, respectively. It is numerically found that the waiting-time distribution exhibits a power law for long waiting times in both cases, yet with different exponents depending on the team size and the position of queue nodes in the hierarchy, respectively. The observed power-law behaviors have in many cases a corresponding single or pairwise-interacting queue dynamics, suggesting that the pairwise interaction may constitute a major dynamic consequence in the priority-queue networks. It is also found that the reciprocity of influence is a relevant factor for the priority-queue network dynamics.

  2. Mapping Multiplex Hubs in Human Functional Brain Networks

    PubMed Central

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  3. Hierarchy in directed random networks.

    PubMed

    Mones, Enys

    2013-02-01

    In recent years, the theory and application of complex networks have been quickly developing in a markable way due to the increasing amount of data from real systems and the fruitful application of powerful methods used in statistical physics. Many important characteristics of social or biological systems can be described by the study of their underlying structure of interactions. Hierarchy is one of these features that can be formulated in the language of networks. In this paper we present some (qualitative) analytic results on the hierarchical properties of random network models with zero correlations and also investigate, mainly numerically, the effects of different types of correlations. The behavior of the hierarchy is different in the absence and the presence of giant components. We show that the hierarchical structure can be drastically different if there are one-point correlations in the network. We also show numerical results suggesting that the hierarchy does not change monotonically with the correlations and there is an optimal level of nonzero correlations maximizing the level of hierarchy.

  4. The new challenges of multiplex networks: Measures and models

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2017-02-01

    What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.

  5. Management of Large-Scale Wireless Sensor Networks Utilizing Multi-Parent Recursive Area Hierarchies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cree, Johnathan V.; Delgado-Frias, Jose

    2013-04-19

    Autonomously configuring and self-healing a largescale wireless sensor network requires a light-weight maintenance protocol that is scalable. Further, in a battery powered wireless sensor network duty-cycling a node’s radio can reduce the power consumption of a device and extend the lifetime of a network. With duty-cycled nodes the power consumption of a node’s radio depends on the amount of communication is must perform and by reducing the communication the power consumption can also be reduced. Multi-parent hierarchies can be used to reduce the communication cost when constructing a recursive area clustering hierarchy when compared to singleparent solutions that utilize inefficientmore » communication methods such as flooding and information propagation via single-hop broadcasts. The multi-parent hierarchies remain scalable and provides a level of redundancy for the hierarchy.« less

  6. Selective impairment of hippocampus and posterior hub areas in Alzheimer's disease: an MEG-based multiplex network study.

    PubMed

    Yu, Meichen; Engels, Marjolein M A; Hillebrand, Arjan; van Straaten, Elisabeth C W; Gouw, Alida A; Teunissen, Charlotte; van der Flier, Wiesje M; Scheltens, Philip; Stam, Cornelis J

    2017-05-01

    Although frequency-specific network analyses have shown that functional brain networks are altered in patients with Alzheimer's disease, the relationships between these frequency-specific network alterations remain largely unknown. Multiplex network analysis is a novel network approach to study complex systems consisting of subsystems with different types of connectivity patterns. In this study, we used magnetoencephalography to integrate five frequency-band specific brain networks in a multiplex framework. Previous structural and functional brain network studies have consistently shown that hub brain areas are selectively disrupted in Alzheimer's disease. Accordingly, we hypothesized that hub regions in the multiplex brain networks are selectively targeted in patients with Alzheimer's disease in comparison to healthy control subjects. Eyes-closed resting-state magnetoencephalography recordings from 27 patients with Alzheimer's disease (60.6 ± 5.4 years, 12 females) and 26 controls (61.8 ± 5.5 years, 14 females) were projected onto atlas-based regions of interest using beamforming. Subsequently, source-space time series for both 78 cortical and 12 subcortical regions were reconstructed in five frequency bands (delta, theta, alpha 1, alpha 2 and beta band). Multiplex brain networks were constructed by integrating frequency-specific magnetoencephalography networks. Functional connections between all pairs of regions of interests were quantified using a phase-based coupling metric, the phase lag index. Several multiplex hub and heterogeneity metrics were computed to capture both overall importance of each brain area and heterogeneity of the connectivity patterns across frequency-specific layers. Different nodal centrality metrics showed consistently that several hub regions, particularly left hippocampus, posterior parts of the default mode network and occipital regions, were vulnerable in patients with Alzheimer's disease compared to control subjects. Of note, these detected vulnerable hubs in Alzheimer's disease were absent in each individual frequency-specific network, thus showing the value of integrating the networks. The connectivity patterns of these vulnerable hub regions in the patients were heterogeneously distributed across layers. Perturbed cognitive function and abnormal cerebrospinal fluid amyloid-β42 levels correlated positively with the vulnerability of the hub regions in patients with Alzheimer's disease. Our analysis therefore demonstrates that the magnetoencephalography-based multiplex brain networks contain important information that cannot be revealed by frequency-specific brain networks. Furthermore, this indicates that functional networks obtained in different frequency bands do not act as independent entities. Overall, our multiplex network study provides an effective framework to integrate the frequency-specific networks with different frequency patterns and reveal neuropathological mechanism of hub disruption in Alzheimer's disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Inter-layer synchronization in multiplex networks of identical layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevilla-Escoboza, R.; Sendiña-Nadal, I.; Leyva, I.

    2016-06-15

    Inter-layer synchronization is a distinctive process of multiplex networks whereby each node in a given layer evolves synchronously with all its replicas in other layers, irrespective of whether or not it is synchronized with the other units of the same layer. We analytically derive the necessary conditions for the existence and stability of such a state, and verify numerically the analytical predictions in several cases where such a state emerges. We further inspect its robustness against a progressive de-multiplexing of the network, and provide experimental evidence by means of multiplexes of nonlinear electronic circuits affected by intrinsic noise and parametermore » mismatch.« less

  8. Shared protection based virtual network mapping in space division multiplexing optical networks

    NASA Astrophysics Data System (ADS)

    Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie

    2018-05-01

    Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.

  9. Reconfigurable optical multiplexer based on liquid crystals for polymer optical fiber networks

    NASA Astrophysics Data System (ADS)

    Lallana, P. C.; Vázquez, C.; Pena, J. M. S.; Vergaz, R.

    2006-12-01

    In this work, different novel 3×1 multiplexer structures for being used in polymer optical fiber networks are proposed. Designs are compact, scalable, and of low consumption, capable of operating in a large wavelength range simultaneously 660, 850, and 1300 nm, due to the use of nematic liquid crystal cells. Light that comes from each input port is handled independently and eight operation modes are possible. Control electronics has been made using a programmable integrated circuit. Electronic system makes available the managing of the optical stage using a computer. An additional four optical sensors have been included for allowing the optical status checking. Finally, a polarization independent multiplexer has been implemented and tested. Insertion losses less than 4 dB and isolation better than 23 dB have been measured. In addition, 30-ms and 15-ms setup and rise times have been obtained. The proposed multiplexer can be used in any polymer optical fiber network, even in perfluorinated graded index one, and it can be specially useful in optical sensor networks, or in coarse wavelength division multiplexing networks.

  10. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-09-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques To submit to this special issue, follow the normal procedure for submission to JON, indicating "Convergence feature" in the "Comments" field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "Convergence." Additional information can be found on the JON website: http://www.osa-jon.org/submission/ Submission Deadline: 1 October 2005

  11. Neural basis of social status hierarchy across species.

    PubMed

    Chiao, Joan Y

    2010-12-01

    Social status hierarchy is a ubiquitous principle of social organization across the animal kingdom. Recent findings in social neuroscience reveal distinct neural networks associated with the recognition and experience of social hierarchy in humans, as well as modulation of these networks by personality and culture. Additionally, allelic variation in the serotonin transporter gene is associated with prevalence of social hierarchy across species and cultures, suggesting the importance of the study of genetic factors underlying social hierarchy. Future studies are needed to determine how genetic and environmental factors shape neural systems involved in the production and maintenance of social hierarchy across ontogeny and phylogeny. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Time-varying multiplex network: Intralayer and interlayer synchronization

    NASA Astrophysics Data System (ADS)

    Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K.; Sinha, Sudeshna; Ghosh, Dibakar

    2017-12-01

    A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.

  13. Time-varying multiplex network: Intralayer and interlayer synchronization.

    PubMed

    Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K; Sinha, Sudeshna; Ghosh, Dibakar

    2017-12-01

    A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.

  14. Determinants of public cooperation in multiplex networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Perc, Matjaž; Latora, Vito

    2017-07-01

    Synergies between evolutionary game theory and statistical physics have significantly improved our understanding of public cooperation in structured populations. Multiplex networks, in particular, provide the theoretical framework within network science that allows us to mathematically describe the rich structure of interactions characterizing human societies. While research has shown that multiplex networks may enhance the resilience of cooperation, the interplay between the overlap in the structure of the layers and the control parameters of the corresponding games has not yet been investigated. With this aim, we consider here the public goods game on a multiplex network, and we unveil the role of the number of layers and the overlap of links, as well as the impact of different synergy factors in different layers, on the onset of cooperation. We show that enhanced public cooperation emerges only when a significant edge overlap is combined with at least one layer being able to sustain some cooperation by means of a sufficiently high synergy factor. In the absence of either of these conditions, the evolution of cooperation in multiplex networks is determined by the bounds of traditional network reciprocity with no enhanced resilience. These results caution against overly optimistic predictions that the presence of multiple social domains may in itself promote cooperation, and they help us better understand the complexity behind prosocial behavior in layered social systems.

  15. Layer-switching cost and optimality in information spreading on multiplex networks

    PubMed Central

    Min, Byungjoon; Gwak, Sang-Hwan; Lee, Nanoom; Goh, K. -I.

    2016-01-01

    We study a model of information spreading on multiplex networks, in which agents interact through multiple interaction channels (layers), say online vs. offline communication layers, subject to layer-switching cost for transmissions across different interaction layers. The model is characterized by the layer-wise path-dependent transmissibility over a contact, that is dynamically determined dependently on both incoming and outgoing transmission layers. We formulate an analytical framework to deal with such path-dependent transmissibility and demonstrate the nontrivial interplay between the multiplexity and spreading dynamics, including optimality. It is shown that the epidemic threshold and prevalence respond to the layer-switching cost non-monotonically and that the optimal conditions can change in abrupt non-analytic ways, depending also on the densities of network layers and the type of seed infections. Our results elucidate the essential role of multiplexity that its explicit consideration should be crucial for realistic modeling and prediction of spreading phenomena on multiplex social networks in an era of ever-diversifying social interaction layers. PMID:26887527

  16. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2004-12-01

    Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:

    • Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks
    • Integration strategies for multiservice transport platforms
    • Access methods that bridge traditional and emerging services
    • Network signaling and control methodologies
    • All-optical packet routing and switching techniques

    Manuscript Submission

    To submit to this special issue, follow the normal procedure for submission to JON, indicating "Convergence feature" in the "Comments" field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "Convergence." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Submission Deadline: 1 July 2005

  17. Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-01

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  18. Dynamical interplay between awareness and epidemic spreading in multiplex networks.

    PubMed

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-20

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  19. Multiplex network analysis of employee performance and employee social relationships

    NASA Astrophysics Data System (ADS)

    Cai, Meng; Wang, Wei; Cui, Ying; Stanley, H. Eugene

    2018-01-01

    In human resource management, employee performance is strongly affected by both formal and informal employee networks. Most previous research on employee performance has focused on monolayer networks that can represent only single categories of employee social relationships. We study employee performance by taking into account the entire multiplex structure of underlying employee social networks. We collect three datasets consisting of five different employee relationship categories in three firms, and predict employee performance using degree centrality and eigenvector centrality in a superimposed multiplex network (SMN) and an unfolded multiplex network (UMN). We use a quadratic assignment procedure (QAP) analysis and a regression analysis to demonstrate that the different categories of relationship are mutually embedded and that the strength of their impact on employee performance differs. We also use weighted/unweighted SMN/UMN to measure the predictive accuracy of this approach and find that employees with high centrality in a weighted UMN are more likely to perform well. Our results shed new light on how social structures affect employee performance.

  20. The Evolutionary Origins of Hierarchy

    PubMed Central

    Huizinga, Joost; Clune, Jeff

    2016-01-01

    Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics. PMID:27280881

  1. The Evolutionary Origins of Hierarchy.

    PubMed

    Mengistu, Henok; Huizinga, Joost; Mouret, Jean-Baptiste; Clune, Jeff

    2016-06-01

    Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  2. The Advent of WDM and the All-Optical Network: A Reality Check.

    ERIC Educational Resources Information Center

    Lutkowitz, Mark

    1998-01-01

    Discussion of the telecommunications industry focuses on WDM (wavelength division multiplexing) as a solution for dealing with capacity constraints. Highlights include fiber optic technology; cross-connecting and switching wavelengths; SONET (Synchronous Optical Network) and wavelength networking; and optical TDM (Time Division Multiplexing). (LRW)

  3. Energy efficient flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network with pay as you grow deployment

    NASA Astrophysics Data System (ADS)

    Garg, Amit Kumar; Madavi, Amresh Ashok; Janyani, Vijay

    2017-02-01

    A flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network architecture that allows dual rate signals to be sent at 1 and 10 Gbps to each optical networking unit depending upon the traffic load is proposed. The proposed design allows dynamic wavelength allocation with pay-as-you-grow deployment capability. This architecture is capable of providing up to 40 Gbps of equal data rates to all optical distribution networks (ODNs) and up to 70 Gbps of a asymmetrical data rate to the specific ODN. The proposed design handles broadcasting capability with simultaneous point-to-point transmission, which further reduces energy consumption. In this architecture, each module sends a wavelength to each ODN, thus making the architecture fully flexible; this flexibility allows network providers to use only required OLT components and switch off others. The design is also reliable to any module or TRx failure and provides services without any service disruption. Dynamic wavelength allocation and pay-as-you-grow deployment support network extensibility and bandwidth scalability to handle future generation access networks.

  4. Purpose-Driven Communities in Multiplex Networks: Thresholding User-Engaged Layer Aggregation

    DTIC Science & Technology

    2016-06-01

    dark networks is a non-trivial yet useful task. Because terrorists work hard to hide their relationships/network, analysts have an incomplete picture...them identify meaningful terrorist communities. This thesis introduces a general-purpose algorithm for community detection in multiplex dark networks...aggregation, dark networks, conductance, cluster adequacy, mod- ularity, Louvain method, shortest path interdiction 15. NUMBER OF PAGES 155 16. PRICE CODE

  5. A tribal abstraction network for SNOMED CT target hierarchies without attribute relationships.

    PubMed

    Ochs, Christopher; Geller, James; Perl, Yehoshua; Chen, Yan; Agrawal, Ankur; Case, James T; Hripcsak, George

    2015-05-01

    Large and complex terminologies, such as Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT), are prone to errors and inconsistencies. Abstraction networks are compact summarizations of the content and structure of a terminology. Abstraction networks have been shown to support terminology quality assurance. In this paper, we introduce an abstraction network derivation methodology which can be applied to SNOMED CT target hierarchies whose classes are defined using only hierarchical relationships (ie, without attribute relationships) and similar description-logic-based terminologies. We introduce the tribal abstraction network (TAN), based on the notion of a tribe-a subhierarchy rooted at a child of a hierarchy root, assuming only the existence of concepts with multiple parents. The TAN summarizes a hierarchy that does not have attribute relationships using sets of concepts, called tribal units that belong to exactly the same multiple tribes. Tribal units are further divided into refined tribal units which contain closely related concepts. A quality assurance methodology that utilizes TAN summarizations is introduced. A TAN is derived for the Observable entity hierarchy of SNOMED CT, summarizing its content. A TAN-based quality assurance review of the concepts of the hierarchy is performed, and erroneous concepts are shown to appear more frequently in large refined tribal units than in small refined tribal units. Furthermore, more erroneous concepts appear in large refined tribal units of more tribes than of fewer tribes. In this paper we introduce the TAN for summarizing SNOMED CT target hierarchies. A TAN was derived for the Observable entity hierarchy of SNOMED CT. A quality assurance methodology utilizing the TAN was introduced and demonstrated. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Centrality in earthquake multiplex networks

    NASA Astrophysics Data System (ADS)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  7. How women organize social networks different from men

    PubMed Central

    Szell, Michael; Thurner, Stefan

    2013-01-01

    Superpositions of social networks, such as communication, friendship, or trade networks, are called multiplex networks, forming the structural backbone of human societies. Novel datasets now allow quantification and exploration of multiplex networks. Here we study gender-specific differences of a multiplex network from a complete behavioral dataset of an online-game society of about 300,000 players. On the individual level females perform better economically and are less risk-taking than males. Males reciprocate friendship requests from females faster than vice versa and hesitate to reciprocate hostile actions of females. On the network level females have more communication partners, who are less connected than partners of males. We find a strong homophily effect for females and higher clustering coefficients of females in trade and attack networks. Cooperative links between males are under-represented, reflecting competition for resources among males. These results confirm quantitatively that females and males manage their social networks in substantially different ways. PMID:23393616

  8. How women organize social networks different from men.

    PubMed

    Szell, Michael; Thurner, Stefan

    2013-01-01

    Superpositions of social networks, such as communication, friendship, or trade networks, are called multiplex networks, forming the structural backbone of human societies. Novel datasets now allow quantification and exploration of multiplex networks. Here we study gender-specific differences of a multiplex network from a complete behavioral dataset of an online-game society of about 300,000 players. On the individual level females perform better economically and are less risk-taking than males. Males reciprocate friendship requests from females faster than vice versa and hesitate to reciprocate hostile actions of females. On the network level females have more communication partners, who are less connected than partners of males. We find a strong homophily effect for females and higher clustering coefficients of females in trade and attack networks. Cooperative links between males are under-represented, reflecting competition for resources among males. These results confirm quantitatively that females and males manage their social networks in substantially different ways.

  9. A macrochip interconnection network enabled by silicon nanophotonic devices.

    PubMed

    Zheng, Xuezhe; Cunningham, John E; Koka, Pranay; Schwetman, Herb; Lexau, Jon; Ho, Ron; Shubin, Ivan; Krishnamoorthy, Ashok V; Yao, Jin; Mekis, Attila; Pinguet, Thierry

    2010-03-01

    We present an advanced wavelength-division multiplexing point-to-point network enabled by silicon nanophotonic devices. This network offers strictly non-blocking all-to-all connectivity while maximizing bisection bandwidth, making it ideal for multi-core and multi-processor interconnections. We introduce one of the key components, the nanophotonic grating coupler, and discuss, for the first time, how this device can be useful for practical implementations of the wavelength-division multiplexing network using optical proximity communications. Finite difference time-domain simulation of the nanophotonic grating coupler device indicates that it can be made compact (20 microm x 50 microm), low loss (3.8 dB), and broadband (100 nm). These couplers require subwavelength material modulation at the nanoscale to achieve the desired functionality. We show that optical proximity communication provides unmatched optical I/O bandwidth density to electrical chips, which enables the application of wavelength-division multiplexing point-to-point network in macrochip with unprecedented bandwidth-density. The envisioned physical implementation is discussed. The benefits of such an interconnect network include a 5-6x improvement in latency when compared to a purely electronic implementation. Performance analysis shows that the wavelength-division multiplexing point-to-point network offers better overall performance over other optical network architectures.

  10. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen

    2014-07-01

    A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.

  11. Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation.

    PubMed

    Chow, C W; Lin, Y H

    2012-04-09

    To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.

  12. Social contagions on correlated multiplex networks

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cai, Meng; Zheng, Muhua

    2018-06-01

    The existence of interlayer degree correlations has been disclosed by abundant multiplex network analysis. However, how they impose on the dynamics of social contagions are remain largely unknown. In this paper, we propose a non-Markovian social contagion model in multiplex networks with inter-layer degree correlations to delineate the behavior spreading, and develop an edge-based compartmental (EBC) theory to describe the model. We find that multiplex networks promote the final behavior adoption size. Remarkably, it can be observed that the growth pattern of the final behavior adoption size, versus the behavioral information transmission probability, changes from discontinuous to continuous once decreasing the behavior adoption threshold in one layer. We finally unravel that the inter-layer degree correlations play a role on the final behavior adoption size but have no effects on the growth pattern, which is coincidence with our prediction by using the suggested theory.

  13. Dynamic bandwidth allocation based on multiservice in software-defined wavelength-division multiplexing time-division multiplexing passive optical network

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Jin, Feifei; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-03-01

    The wavelength-division multiplexing passive optical network (WDM-PON) is a potential technology to carry multiple services in an optical access network. However, it has the disadvantages of high cost and an immature technique for users. A software-defined WDM/time-division multiplexing PON was proposed to meet the requirements of high bandwidth, high performance, and multiple services. A reasonable and effective uplink dynamic bandwidth allocation algorithm was proposed. A controller with dynamic wavelength and slot assignment was introduced, and a different optical dynamic bandwidth management strategy was formulated flexibly for services of different priorities according to the network loading. The simulation compares the proposed algorithm with the interleaved polling with adaptive cycle time algorithm. The algorithm shows better performance in average delay, throughput, and bandwidth utilization. The results show that the delay is reduced to 62% and the throughput is improved by 35%.

  14. Hierarchy Bayesian model based services awareness of high-speed optical access networks

    NASA Astrophysics Data System (ADS)

    Bai, Hui-feng

    2018-03-01

    As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit (ONU) and to perform complex services awareness from the whole view of system in optical line terminal (OLT). Simulation results show that the proposed scheme is able to achieve better quality of services (QoS), in terms of packet loss rate and time delay.

  15. NOA: A Scalable Multi-Parent Clustering Hierarchy for WSNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cree, Johnathan V.; Delgado-Frias, Jose; Hughes, Michael A.

    2012-08-10

    NOA is a multi-parent, N-tiered, hierarchical clustering algorithm that provides a scalable, robust and reliable solution to autonomous configuration of large-scale wireless sensor networks. The novel clustering hierarchy's inherent benefits can be utilized by in-network data processing techniques to provide equally robust, reliable and scalable in-network data processing solutions capable of reducing the amount of data sent to sinks. Utilizing a multi-parent framework, NOA reduces the cost of network setup when compared to hierarchical beaconing solutions by removing the expense of r-hop broadcasting (r is the radius of the cluster) needed to build the network and instead passes network topologymore » information among shared children. NOA2, a two-parent clustering hierarchy solution, and NOA3, the three-parent variant, saw up to an 83% and 72% reduction in overhead, respectively, when compared to performing one round of a one-parent hierarchical beaconing, as well as 92% and 88% less overhead when compared to one round of two- and three-parent hierarchical beaconing hierarchy.« less

  16. Social network and dominance hierarchy analyses at Chimpanzee Sanctuary Northwest

    PubMed Central

    Mayhew, Jessica A.; Mulcahy, John B.

    2018-01-01

    Different aspects of sociality bear considerable weight on the individual- and group-level welfare of captive nonhuman primates. Social Network Analysis (SNA) is a useful tool for gaining a holistic understanding of the dynamic social relationships of captive primate groups. Gaining a greater understanding of captive chimpanzees through investigations of centrality, preferred and avoided relationships, dominance hierarchy, and social network diagrams can be useful in advising current management practices in sanctuaries and other captive settings. In this study, we investigated the dyadic social relationships, group-level social networks, and dominance hierarchy of seven chimpanzees (Pan troglodytes) at Chimpanzee Sanctuary Northwest. We used focal-animal and instantaneous scan sampling to collect 106.75 total hours of associative, affiliative, and agonistic data from June to September 2016. We analyzed our data using SOCPROG to derive dominance hierarchies and network statistics, and we diagrammed the group’s social networks in NetDraw. Three individuals were most central in the grooming network, while two others had little connection. Through agonistic networks, we found that group members reciprocally exhibited agonism, and the group’s dominance hierarchy was statistically non-linear. One chimpanzee emerged as the most dominant through agonism but was least connected to other group members across affiliative networks. Our results indicate that the conventional methods used to calculate individuals’ dominance rank may be inadequate to wholly depict a group’s social relationships in captive sanctuary populations. Our results have an applied component that can aid sanctuary staff in a variety of ways to best ensure the improvement of group welfare. PMID:29444112

  17. Social network and dominance hierarchy analyses at Chimpanzee Sanctuary Northwest.

    PubMed

    Funkhouser, Jake A; Mayhew, Jessica A; Mulcahy, John B

    2018-01-01

    Different aspects of sociality bear considerable weight on the individual- and group-level welfare of captive nonhuman primates. Social Network Analysis (SNA) is a useful tool for gaining a holistic understanding of the dynamic social relationships of captive primate groups. Gaining a greater understanding of captive chimpanzees through investigations of centrality, preferred and avoided relationships, dominance hierarchy, and social network diagrams can be useful in advising current management practices in sanctuaries and other captive settings. In this study, we investigated the dyadic social relationships, group-level social networks, and dominance hierarchy of seven chimpanzees (Pan troglodytes) at Chimpanzee Sanctuary Northwest. We used focal-animal and instantaneous scan sampling to collect 106.75 total hours of associative, affiliative, and agonistic data from June to September 2016. We analyzed our data using SOCPROG to derive dominance hierarchies and network statistics, and we diagrammed the group's social networks in NetDraw. Three individuals were most central in the grooming network, while two others had little connection. Through agonistic networks, we found that group members reciprocally exhibited agonism, and the group's dominance hierarchy was statistically non-linear. One chimpanzee emerged as the most dominant through agonism but was least connected to other group members across affiliative networks. Our results indicate that the conventional methods used to calculate individuals' dominance rank may be inadequate to wholly depict a group's social relationships in captive sanctuary populations. Our results have an applied component that can aid sanctuary staff in a variety of ways to best ensure the improvement of group welfare.

  18. Multiplex congruence network of natural numbers.

    PubMed

    Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua

    2016-03-31

    Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.

  19. Multiplex congruence network of natural numbers

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua

    2016-03-01

    Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.

  20. Flexible wavelength de-multiplexer for elastic optical networking.

    PubMed

    Zhou, Rui; Gutierrez Pascual, M Deseada; Anandarajah, Prince M; Shao, Tong; Smyth, Frank; Barry, Liam P

    2016-05-15

    We report an injection locked flexible wavelength de-multiplexer (de-mux) that shows 24-h frequency stability of 1 kHz for optical comb-based elastic optical networking applications. We demonstrate 50 GHz, 87.5 GHz equal spacing and 6.25G-25G-50 GHz, 75G-50G-100 GHz unequal spacing for the de-multiplexer outputs. We also implement an unequally spaced (75G-50G-100 GHz), mixed symbol rate (12.5 GBaud and 40 GBaud) and modulation format (polarization division multiplexed quadrature phase shift keying and on-off keying) wavelength division multiplexed transmission system using the de-multiplexer outputs. The results show 0.6 dB receiver sensitivity penalty, at 7% hard decision forward error correction coding limit, of the 100 km transmitted de-mux outputs when compared to comb source seeding laser back-to-back.

  1. Reconstructing the world trade multiplex: The role of intensive and extensive biases

    NASA Astrophysics Data System (ADS)

    Mastrandrea, Rossana; Squartini, Tiziano; Fagiolo, Giorgio; Garlaschelli, Diego

    2014-12-01

    In economic and financial networks, the strength of each node has always an important economic meaning, such as the size of supply and demand, import and export, or financial exposure. Constructing null models of networks matching the observed strengths of all nodes is crucial in order to either detect interesting deviations of an empirical network from economically meaningful benchmarks or reconstruct the most likely structure of an economic network when the latter is unknown. However, several studies have proved that real economic networks and multiplexes topologically differ from configurations inferred only from node strengths. Here we provide a detailed analysis of the world trade multiplex by comparing it to an enhanced null model that simultaneously reproduces the strength and the degree of each node. We study several temporal snapshots and almost 100 layers (commodity classes) of the multiplex and find that the observed properties are systematically well reproduced by our model. Our formalism allows us to introduce the (static) concept of extensive and intensive bias, defined as a measurable tendency of the network to prefer either the formation of extra links or the reinforcement of link weights, with respect to a reference case where only strengths are enforced. Our findings complement the existing economic literature on (dynamic) intensive and extensive trade margins. More generally, they show that real-world multiplexes can be strongly shaped by layer-specific local constraints.

  2. Ferromagnetic transition in a simple variant of the Ising model on multiplex networks

    NASA Astrophysics Data System (ADS)

    Krawiecki, A.

    2018-02-01

    Multiplex networks consist of a fixed set of nodes connected by several sets of edges which are generated separately and correspond to different networks ("layers"). Here, a simple variant of the Ising model on multiplex networks with two layers is considered, with spins located in the nodes and edges corresponding to ferromagnetic interactions between them. Critical temperatures for the ferromagnetic transition are evaluated for the layers in the form of random Erdös-Rényi graphs or heterogeneous scale-free networks using the mean-field approximation and the replica method, from the replica symmetric solution. Both methods require the use of different "partial" magnetizations, associated with different layers of the multiplex network, and yield qualitatively similar results. If the layers are strongly heterogeneous the critical temperature differs noticeably from that for the Ising model on a network being a superposition of the two layers, evaluated in the mean-field approximation neglecting the effect of the underlying multiplex structure on the correlations between the degrees of nodes. The critical temperature evaluated from the replica symmetric solution depends sensitively on the correlations between the degrees of nodes in different layers and shows satisfactory quantitative agreement with that obtained from Monte Carlo simulations. The critical behavior of the magnetization for the model with strongly heterogeneous layers can depend on the distributions of the degrees of nodes and is then determined by the properties of the most heterogeneous layer.

  3. Centralized light-source optical access network based on polarization multiplexing.

    PubMed

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2010-03-01

    This paper presents and demonstrates a centralized light source optical access network based on optical polarization multiplexing technique. By using two optical sources emitting light orthogonally polarized in the Central Node for downstream and upstream operations, the Remote Node is kept source-free. EVM values below telecommunication standard requirements have been measured experimentally when bidirectional digital signals have been transmitted over 10 km of SMF employing subcarrier multiplexing technique in the electrical domain.

  4. Hierarchy Measure for Complex Networks

    PubMed Central

    Mones, Enys; Vicsek, Lilla; Vicsek, Tamás

    2012-01-01

    Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturing the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure. PMID:22470477

  5. Computing chemical organizations in biological networks.

    PubMed

    Centler, Florian; Kaleta, Christoph; di Fenizio, Pietro Speroni; Dittrich, Peter

    2008-07-15

    Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states. We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model. All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.

  6. Multiplex congruity: friendship networks and perceived popularity as correlates of adolescent alcohol use.

    PubMed

    Fujimoto, Kayo; Valente, Thomas W

    2015-01-01

    Adolescents interact with their peers in multiple social settings and form various types of peer relationships that affect drinking behavior. Friendship and popularity perceptions constitute critical relationships during adolescence. These two relations are commonly measured by asking students to name their friends, and this network is used to construct drinking exposure and peer status variables. This study takes a multiplex network approach by examining the congruity between friendships and popularity as correlates of adolescent drinking. Using data on friendship and popularity nominations among high school adolescents in Los Angeles, California (N = 1707; five schools), we examined the associations between an adolescent's drinking and drinking by (a) their friends only; (b) multiplexed friendships, friends also perceived as popular; and (c) congruent, multiplexed-friends, close friends perceived as popular. Logistic regression results indicated that friend-only drinking, but not multiplexed-friend drinking, was significantly associated with self-drinking (AOR = 3.51, p < 0.05). However, congruent, multiplexed-friend drinking also was associated with self-drinking (AOR = 3.10, p < 0.05). This study provides insight into how adolescent health behavior is predicated on the multiplexed nature of peer relationships. The results have implications for the design of health promotion interventions for adolescent drinking. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Multiplex congruity: Friendship networks and perceived popularity as correlates of adolescent alcohol use

    PubMed Central

    Fujimoto, Kayo; Valente, Thomas W.

    2014-01-01

    Adolescents interact with their peers in multiple social settings and form various types of peer relationships that affect drinking behavior. Friendship and popularity perceptions constitute critical relationships during adolescence. These two relations are commonly measured by asking students to name their friends, and this network is used to construct drinking exposure and peer status variables. This study takes a multiplex network approach by examining the congruity between friendships and popularity as correlates of adolescent drinking. Using data on friendship and popularity nominations among high school adolescents in Los Angeles, California (N = 1707; five schools), we examined the associations between an adolescent's drinking and drinking by (a) their friends only; (b) multiplexed friendships, friends also perceived as popular; and (c) congruent, multiplexed-friends, close friends perceived as popular. Logistic regression results indicated that friend-only drinking, but not multiplexed-friend drinking, was significantly associated with self-drinking (AOR = 3.51, p < 0.05). However, congruent, multiplexed-friend drinking also was associated with self-drinking (AOR = 3.10, p < 0.05). This study provides insight into how adolescent health behavior is predicated on the multiplexed nature of peer relationships. The results have implications for the design of health promotion interventions for adolescent drinking. PMID:24913275

  8. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  9. Emergence of Multiplex Communities in Collaboration Networks.

    PubMed

    Battiston, Federico; Iacovacci, Jacopo; Nicosia, Vincenzo; Bianconi, Ginestra; Latora, Vito

    2016-01-01

    Community structures in collaboration networks reflect the natural tendency of individuals to organize their work in groups in order to better achieve common goals. In most of the cases, individuals exploit their connections to introduce themselves to new areas of interests, giving rise to multifaceted collaborations which span different fields. In this paper, we analyse collaborations in science and among movie actors as multiplex networks, where the layers represent respectively research topics and movie genres, and we show that communities indeed coexist and overlap at the different layers of such systems. We then propose a model to grow multiplex networks based on two mechanisms of intra and inter-layer triadic closure which mimic the real processes by which collaborations evolve. We show that our model is able to explain the multiplex community structure observed empirically, and we infer the strength of the two underlying social mechanisms from real-world systems. Being also able to correctly reproduce the values of intra-layer and inter-layer assortativity correlations, the model contributes to a better understanding of the principles driving the evolution of social networks.

  10. The maintenance of cooperation in multiplex networks with limited and partible resources of agents

    NASA Astrophysics Data System (ADS)

    Li, Zhaofeng; Shen, Bi; Jiang, Yichuan

    2017-02-01

    In this paper, we try to explain the maintenance of cooperation in multiplex networks with limited and partible resources of agents: defection brings larger short-term benefit and cooperative agents may become defective because of the unaffordable costs of cooperative behaviors that are performed in multiple layers simultaneously. Recent studies have identified the positive effects of multiple layers on evolutionary cooperation but generally overlook the maximum costs of agents in these synchronous games. By utilizing network effects and designing evolutionary mechanisms, cooperative behaviors become prevailing in public goods games, and agents can allocate personal resources across multiple layers. First, we generalize degree diversity into multiplex networks to improve the prospect for cooperation. Second, to prevent agents allocating all the resources into one layer, a greedy-first mechanism is proposed, in which agents prefer to add additional investments in the higher-payoff layer. It is found that greedy-first agents can perform cooperative behaviors in multiplex networks when one layer is scale-free network and degree differences between conjoint nodes increase. Our work may help to explain the emergence of cooperation in the absence of individual reputation and punishment mechanisms.

  11. Random walk hierarchy measure: What is more hierarchical, a chain, a tree or a star?

    PubMed Central

    Czégel, Dániel; Palla, Gergely

    2015-01-01

    Signs of hierarchy are prevalent in a wide range of systems in nature and society. One of the key problems is quantifying the importance of hierarchical organisation in the structure of the network representing the interactions or connections between the fundamental units of the studied system. Although a number of notable methods are already available, their vast majority is treating all directed acyclic graphs as already maximally hierarchical. Here we propose a hierarchy measure based on random walks on the network. The novelty of our approach is that directed trees corresponding to multi level pyramidal structures obtain higher hierarchy scores compared to directed chains and directed stars. Furthermore, in the thermodynamic limit the hierarchy measure of regular trees is converging to a well defined limit depending only on the branching number. When applied to real networks, our method is computationally very effective, as the result can be evaluated with arbitrary precision by subsequent multiplications of the transition matrix describing the random walk process. In addition, the tests on real world networks provided very intuitive results, e.g., the trophic levels obtained from our approach on a food web were highly consistent with former results from ecology. PMID:26657012

  12. Random walk hierarchy measure: What is more hierarchical, a chain, a tree or a star?

    NASA Astrophysics Data System (ADS)

    Czégel, Dániel; Palla, Gergely

    2015-12-01

    Signs of hierarchy are prevalent in a wide range of systems in nature and society. One of the key problems is quantifying the importance of hierarchical organisation in the structure of the network representing the interactions or connections between the fundamental units of the studied system. Although a number of notable methods are already available, their vast majority is treating all directed acyclic graphs as already maximally hierarchical. Here we propose a hierarchy measure based on random walks on the network. The novelty of our approach is that directed trees corresponding to multi level pyramidal structures obtain higher hierarchy scores compared to directed chains and directed stars. Furthermore, in the thermodynamic limit the hierarchy measure of regular trees is converging to a well defined limit depending only on the branching number. When applied to real networks, our method is computationally very effective, as the result can be evaluated with arbitrary precision by subsequent multiplications of the transition matrix describing the random walk process. In addition, the tests on real world networks provided very intuitive results, e.g., the trophic levels obtained from our approach on a food web were highly consistent with former results from ecology.

  13. Random walk hierarchy measure: What is more hierarchical, a chain, a tree or a star?

    PubMed

    Czégel, Dániel; Palla, Gergely

    2015-12-10

    Signs of hierarchy are prevalent in a wide range of systems in nature and society. One of the key problems is quantifying the importance of hierarchical organisation in the structure of the network representing the interactions or connections between the fundamental units of the studied system. Although a number of notable methods are already available, their vast majority is treating all directed acyclic graphs as already maximally hierarchical. Here we propose a hierarchy measure based on random walks on the network. The novelty of our approach is that directed trees corresponding to multi level pyramidal structures obtain higher hierarchy scores compared to directed chains and directed stars. Furthermore, in the thermodynamic limit the hierarchy measure of regular trees is converging to a well defined limit depending only on the branching number. When applied to real networks, our method is computationally very effective, as the result can be evaluated with arbitrary precision by subsequent multiplications of the transition matrix describing the random walk process. In addition, the tests on real world networks provided very intuitive results, e.g., the trophic levels obtained from our approach on a food web were highly consistent with former results from ecology.

  14. Chaotic, informational and synchronous behaviour of multiplex networks

    NASA Astrophysics Data System (ADS)

    Baptista, M. S.; Szmoski, R. M.; Pereira, R. F.; Pinto, S. E. De Souza

    2016-03-01

    The understanding of the relationship between topology and behaviour in interconnected networks would allow to charac- terise and predict behaviour in many real complex networks since both are usually not simultaneously known. Most previous studies have focused on the relationship between topology and synchronisation. In this work, we provide analytical formulas that shows how topology drives complex behaviour: chaos, information, and weak or strong synchronisation; in multiplex net- works with constant Jacobian. We also study this relationship numerically in multiplex networks of Hindmarsh-Rose neurons. Whereas behaviour in the analytically tractable network is a direct but not trivial consequence of the spectra of eigenvalues of the Laplacian matrix, where behaviour may strongly depend on the break of symmetry in the topology of interconnections, in Hindmarsh-Rose neural networks the nonlinear nature of the chemical synapses breaks the elegant mathematical connec- tion between the spectra of eigenvalues of the Laplacian matrix and the behaviour of the network, creating networks whose behaviour strongly depends on the nature (chemical or electrical) of the inter synapses.

  15. Link prediction in multiplex online social networks

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž

    2017-02-01

    Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.

  16. Link prediction in multiplex online social networks.

    PubMed

    Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž

    2017-02-01

    Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.

  17. Asynchronous updates can promote the evolution of cooperation on multiplex networks

    NASA Astrophysics Data System (ADS)

    Allen, James M.; Hoyle, Rebecca B.

    2017-04-01

    We study the importance to the frequency of cooperation of the choice of updating strategies in a game played asynchronously or synchronously across layers in a multiplex network. Updating asynchronously in the public goods game leads to higher frequencies of cooperation compared to synchronous updates. How large this effect is depends on the sensitivity of the game dynamics to changes in the number of cooperators surrounding a player, with the largest effect observed when players payoffs are small. The discovery of this effect enhances understanding of cooperation on multiplex networks, and demonstrates a new way to maintain cooperation in these systems.

  18. Investigation of Alien Wavelength Quality in Live Multi-Domain, Multi-Vendor Link Using Advanced Simulation Tool

    NASA Astrophysics Data System (ADS)

    Nordal Petersen, Martin; Nuijts, Roeland; Lange Bjørn, Lars

    2014-05-01

    This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi-domain dense wavelength-division multiplexing systems between two national research networks: SURFnet in Holland and NORDUnet in Denmark.

  19. Super-channel oriented routing, spectrum and core assignment under crosstalk limit in spatial division multiplexing elastic optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Zhu, Ye; Wang, Chunhui; Yu, Xiaosong; Liu, Chuan; Liu, Binglin; Zhang, Jie

    2017-07-01

    With the capacity increasing in optical networks enabled by spatial division multiplexing (SDM) technology, spatial division multiplexing elastic optical networks (SDM-EONs) attract much attention from both academic and industry. Super-channel is an important type of service provisioning in SDM-EONs. This paper focuses on the issue of super-channel construction in SDM-EONs. Mixed super-channel oriented routing, spectrum and core assignment (MS-RSCA) algorithm is proposed in SDM-EONs considering inter-core crosstalk. Simulation results show that MS-RSCA can improve spectrum resource utilization and reduce blocking probability significantly compared with the baseline RSCA algorithms.

  20. Enterprise virtual private network (VPN) with dense wavelength division multiplexing (DWDM) design

    NASA Astrophysics Data System (ADS)

    Carranza, Aparicio

    An innovative computer simulation and modeling tool for metropolitan area optical data communication networks is presented. These models address the unique requirements of Virtual Private Networks for enterprise data centers, which may comprise a mixture of protocols including ESCON, FICON, Fibre Channel, Sysplex protocols (ETR, CLO, ISC); and other links interconnected over dark fiber using Dense Wavelength Division Multiplexing (DWDM). Our models have the capability of designing a network with minimal inputs; to compute optical link budgets; suggest alternative configurations; and also optimize the design based on user-defined performance metrics. The models make use of Time Division Multiplexing (TDM) wherever possible for lower data rate traffics. Simulation results for several configurations are presented and they have been validated by means of experiments conducted on the IBM enterprise network testbed in Poughkeepsie, N.Y.

  1. Final Report for the project titled "Enabling Supernova Computations by Integrated Transport and Provisioning Methods Optimized for Dedicated Channels"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malathi Veeraraghavan

    2007-10-31

    A high-speed optical circuit network is one that offers users rate-guaranteed connectivity between two endpoints, unlike today’s IP-routed Internet in which the rate available to a pair of users fluctuates based on the volume of competing traffic. This particular research project advanced our understanding of circuit networks in two ways. First, transport protocols were developed for circuit networks. In a circuit network, since bandwidth resources are reserved for each circuit on an end-to-end basis (much like how a person reserves a seat on every leg of a multi-segment flight), and the sender is limited to send at the rate ofmore » the circuit, there is no possibility of congestion during data transfer. Therefore, no congestion control functions are necessary in a transport protocol designed for circuits. However, error control and flow control are still required because bits can become errored due to noise and interference even on highly reliable optical links, and receivers can, due to multitasking or other reasons, not deplete the receive buffer fast enough to keep up with the sending rate (e.g., if the receiving host is multitasking between receiving a file transfer and some other computation). In this work, we developed two transport protocols for circuits, both of which are described below. Second, this project developed techniques for internetworking different types of connection-oriented networks, which are of two types: circuit-switched or packet-switched. In circuit-switched networks, multiplexing on links is “position based,” where “position” refers to the frequency, time slot, and port (fiber), while connection-oriented packet-switched networks use packet header information to demultiplex packets and switch them from node to node. The latter are commonly referred to as virtual circuit networks. Examples of circuit networks are time-division multiplexed Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Wavelength Division Multiplexing (WDM) networks, while examples of virtual-circuit networks are MultiProtocol Label Switched (MPLS) networks and Ethernet Virtual Local Area Network (VLAN) networks. A series of new technologies have been developed to carry Ethernet VLAN tagged frames on SONET/SDH and WDM networks, such as Generic Framing Procedure (GFP) and ITU G.709, respectively. These technologies form the basis of our solution for connection-oriented internetworking. The benefit of developing such an architecture is that it allows different providers to choose different connection-oriented networking technologies for their networks, and yet be able to allow their customers to connect to those of other providers. As Metcalfe, the inventor of Ethernet, noted, the value of a network service grows exponentially with the number of endpoints to which any single endpoint can connect. Therefore internetworking solutions are key to commercial success. The technical effectiveness of our solutions was measured with proof-of-concept prototypes and experiments. These solutions were shown to be highly effective. Economic feasibility requires business case analyses that were beyond the scope of this project. The project results are beneficial to the public as they demonstrate the viability of simultaneously supporting different types of networks and data communication services much like the variety of services available for the transportation of people and goods. For example, Fedex service offers a deadline based delivery while the USPS offers basic package delivery service. Similarly, a circuit network can offer a deadline based delivery of a data file while the IP-routed network offers only basic delivery service with no guarantees. Two project Web sites, 13 publications, 7 software programs, 21 presentations resulted from this work. This report provides the complete list of publications, software programs and presentations. As for student education and training (human resources), this DOE project, along with an NSF project, jointly supported two postdoctoral fellowships, three PhDs, three Masters, and two undergraduate students. Specifically, two of the Masters students were directly funded on this DOE project.« less

  2. A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYS

    EPA Science Inventory

    AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...

  3. Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Li, Juhao; Wu, Zhongying; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-01-01

    We propose three-mode mode-division-multiplexing passive optical network (MDM-PON) based on low mode-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). The FMF with step-index profile is designed and fabricated for effectively three-independent-spatial-mode transmission and low mode-crosstalk for MDM-PON transmission. The all-fiber mode MUX/DEMUX are composed of cascaded mode selective couplers (MSCs), which simultaneously multiplex or demultiplex multiple modes. Based on the low mode-crosstalk of the FMF and all-fiber mode MUX/DEMUX, each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing a different optical linearly polarized (LP) spatial mode in MDM-PON system. We experimentally demonstrate MDM-PON transmission of three independent-spatial-modes over 12-km FMF with 10-Gb/s optical on-off keying (OOK) signal and direct detection.

  4. Bridging online and offline social networks: Multiplex analysis

    NASA Astrophysics Data System (ADS)

    Filiposka, Sonja; Gajduk, Andrej; Dimitrova, Tamara; Kocarev, Ljupco

    2017-04-01

    We show that three basic actor characteristics, namely normalized reciprocity, three cycles, and triplets, can be expressed using an unified framework that is based on computing the similarity index between two sets associated with the actor: the set of her/his friends and the set of those considering her/him as a friend. These metrics are extended to multiplex networks and then computed for two friendship networks generated by collecting data from two groups of undergraduate students. We found that in offline communication strong and weak ties are (almost) equally presented, while in online communication weak ties are dominant. Moreover, weak ties are much less reciprocal than strong ties. However, across different layers of the multiplex network reciprocities are preserved, while triads (measured with normalized three cycles and triplets) are not significant.

  5. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-01-01

    Call for Papers: Convergence

    Guest Editors: Thomas E. Darcie, University of Victoria Robert Doverspike, AT&T Martin Zirngibl, Lucent Technologies

    Coordinating Associate Editor: Steven K. Korotky, Lucent Technologies

    The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:
    • Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks
    • Integration strategies for multiservice transport platforms
    • Access methods that bridge traditional and emerging services
    • Network signaling and control methodologies
    • All-optical packet routing and switching techniques

    Manuscript Submission

    To submit to this special issue, follow the normal procedure for submission to JON, indicating "Convergence feature" in the "Comments" field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "Convergence." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Submission Deadline: 1 July 2005

  6. Auditing SNOMED Relationships Using a Converse Abstraction Network

    PubMed Central

    Wei, Duo; Halper, Michael; Elhanan, Gai; Chen, Yan; Perl, Yehoshua; Geller, James; Spackman, Kent A.

    2009-01-01

    In SNOMED CT, a given kind of attribute relationship is defined between two hierarchies, a source and a target. Certain hierarchies (or subhierarchies) serve only as targets, with no outgoing relationships of their own. However, converse relationships—those pointing in a direction opposite to the defined relationships—while not explicitly represented in SNOMED’s inferred view, can be utilized in forming an alternative view of a source. In particular, they can help shed light on a source hierarchy’s overall relationship structure. Toward this end, an abstraction network, called the converse abstraction network (CAN), derived automatically from a given SNOMED hierarchy is presented. An auditing methodology based on the CAN is formulated. The methodology is applied to SNOMED’s Device subhierarchy and the related device relationships of the Procedure hierarchy. The results indicate that the CAN is useful in finding opportunities for refining and improving SNOMED. PMID:20351941

  7. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion.

    PubMed

    Baggio, Jacopo A; BurnSilver, Shauna B; Arenas, Alex; Magdanz, James S; Kofinas, Gary P; De Domenico, Manlio

    2016-11-29

    Network analysis provides a powerful tool to analyze complex influences of social and ecological structures on community and household dynamics. Most network studies of social-ecological systems use simple, undirected, unweighted networks. We analyze multiplex, directed, and weighted networks of subsistence food flows collected in three small indigenous communities in Arctic Alaska potentially facing substantial economic and ecological changes. Our analysis of plausible future scenarios suggests that changes to social relations and key households have greater effects on community robustness than changes to specific wild food resources.

  8. Evolution of cooperation under social pressure in multiplex networks

    NASA Astrophysics Data System (ADS)

    Pereda, María

    2016-09-01

    In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.

  9. Evolution of cooperation under social pressure in multiplex networks.

    PubMed

    Pereda, María

    2016-09-01

    In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.

  10. Autonomous management of a recursive area hierarchy for large scale wireless sensor networks using multiple parents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cree, Johnathan Vee; Delgado-Frias, Jose

    Large scale wireless sensor networks have been proposed for applications ranging from anomaly detection in an environment to vehicle tracking. Many of these applications require the networks to be distributed across a large geographic area while supporting three to five year network lifetimes. In order to support these requirements large scale wireless sensor networks of duty-cycled devices need a method of efficient and effective autonomous configuration/maintenance. This method should gracefully handle the synchronization tasks duty-cycled networks. Further, an effective configuration solution needs to recognize that in-network data aggregation and analysis presents significant benefits to wireless sensor network and should configuremore » the network in a way such that said higher level functions benefit from the logically imposed structure. NOA, the proposed configuration and maintenance protocol, provides a multi-parent hierarchical logical structure for the network that reduces the synchronization workload. It also provides higher level functions with significant inherent benefits such as but not limited to: removing network divisions that are created by single-parent hierarchies, guarantees for when data will be compared in the hierarchy, and redundancies for communication as well as in-network data aggregation/analysis/storage.« less

  11. Stability of glassy hierarchical networks

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Camargo-Forero, L.; Vicsek, T.

    2018-02-01

    The structure of interactions in most animal and human societies can be best represented by complex hierarchical networks. In order to maintain close-to-optimal function both stability and adaptability are necessary. Here we investigate the stability of hierarchical networks that emerge from the simulations of an organization type with an efficiency function reminiscent of the Hamiltonian of spin glasses. Using this quantitative approach we find a number of expected (from everyday observations) and highly non-trivial results for the obtained locally optimal networks, including, for example: (i) stability increases with growing efficiency and level of hierarchy; (ii) the same perturbation results in a larger change for more efficient states; (iii) networks with a lower level of hierarchy become more efficient after perturbation; (iv) due to the huge number of possible optimal states only a small fraction of them exhibit resilience and, finally, (v) ‘attacks’ targeting the nodes selectively (regarding their position in the hierarchy) can result in paradoxical outcomes.

  12. A class Hierarchical, object-oriented approach to virtual memory management

    NASA Technical Reports Server (NTRS)

    Russo, Vincent F.; Campbell, Roy H.; Johnston, Gary M.

    1989-01-01

    The Choices family of operating systems exploits class hierarchies and object-oriented programming to facilitate the construction of customized operating systems for shared memory and networked multiprocessors. The software is being used in the Tapestry laboratory to study the performance of algorithms, mechanisms, and policies for parallel systems. Described here are the architectural design and class hierarchy of the Choices virtual memory management system. The software and hardware mechanisms and policies of a virtual memory system implement a memory hierarchy that exploits the trade-off between response times and storage capacities. In Choices, the notion of a memory hierarchy is captured by abstract classes. Concrete subclasses of those abstractions implement a virtual address space, segmentation, paging, physical memory management, secondary storage, and remote (that is, networked) storage. Captured in the notion of a memory hierarchy are classes that represent memory objects. These classes provide a storage mechanism that contains encapsulated data and have methods to read or write the memory object. Each of these classes provides specializations to represent the memory hierarchy.

  13. Leveraging Statistical Physics to Improve Understanding of Cooperation in Multiplex Networks.

    PubMed

    Fu, Feng; Chen, Xingru

    2017-07-01

    Understanding how public cooperation emerges and is maintained is a topic of broad interest, with increasing contributions coming from a synergistic combination of evolutionary game theory and statistical physics. The comprehensive study by Battiston et al (2017 New J. Phys. , in press) improves our understanding of the role of multiplexity in cooperation, revealing that a significant edge overlap across network layers along with benign conditions for cooperation in at least one of the layers is needed to facilitate the emergence of cooperation in the multiplex.

  14. Genomic analysis of the hierarchical structure of regulatory networks

    PubMed Central

    Yu, Haiyuan; Gerstein, Mark

    2006-01-01

    A fundamental question in biology is how the cell uses transcription factors (TFs) to coordinate the expression of thousands of genes in response to various stimuli. The relationships between TFs and their target genes can be modeled in terms of directed regulatory networks. These relationships, in turn, can be readily compared with commonplace “chain-of-command” structures in social networks, which have characteristic hierarchical layouts. Here, we develop algorithms for identifying generalized hierarchies (allowing for various loop structures) and use these approaches to illuminate extensive pyramid-shaped hierarchical structures existing in the regulatory networks of representative prokaryotes (Escherichia coli) and eukaryotes (Saccharomyces cerevisiae), with most TFs at the bottom levels and only a few master TFs on top. These masters are situated near the center of the protein–protein interaction network, a different type of network from the regulatory one, and they receive most of the input for the whole regulatory hierarchy through protein interactions. Moreover, they have maximal influence over other genes, in terms of affecting expression-level changes. Surprisingly, however, TFs at the bottom of the regulatory hierarchy are more essential to the viability of the cell. Finally, one might think master TFs achieve their wide influence through directly regulating many targets, but TFs with most direct targets are in the middle of the hierarchy. We find, in fact, that these midlevel TFs are “control bottlenecks” in the hierarchy, and this great degree of control for “middle managers” has parallels in efficient social structures in various corporate and governmental settings. PMID:17003135

  15. Community Size Effects on Epidemic Spreading in Multiplex Social Networks.

    PubMed

    Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie

    2016-01-01

    The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people's reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals' alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals' risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals' protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes.

  16. Community Size Effects on Epidemic Spreading in Multiplex Social Networks

    PubMed Central

    Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie

    2016-01-01

    The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people’s reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals’ alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals’ risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals’ protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes. PMID:27007112

  17. Cascaded multiplexed optical link on a telecommunication network for frequency dissemination.

    PubMed

    Lopez, Olivier; Haboucha, Adil; Kéfélian, Fabien; Jiang, Haifeng; Chanteau, Bruno; Roncin, Vincent; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio

    2010-08-02

    We demonstrate a cascaded optical link for ultrastable frequency dissemination comprised of two compensated links of 150 km and a repeater station. Each link includes 114 km of Internet fiber simultaneously carrying data traffic through a dense wavelength division multiplexing technology, and passes through two routing centers of the telecommunication network. The optical reference signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station operates autonomously ensuring noise compensation on the two links and the ultra-stable signal optical regeneration. The compensated link shows a fractional frequency instability of 3 x 10(-15) at one second measurement time and 5 x 10(-20) at 20 hours. This work paves the way to a wide dissemination of ultra-stable optical clock signals between distant laboratories via the Internet network.

  18. Synchronization control in multiplex networks of nonlinear multi-agent systems

    NASA Astrophysics Data System (ADS)

    He, Wangli; Xu, Zhiwei; Du, Wenli; Chen, Guanrong; Kubota, Naoyuki; Qian, Feng

    2017-12-01

    This paper is concerned with synchronization control of a multiplex network, in which two different kinds of relationships among agents coexist. Hybrid coupling, including continuous linear coupling and impulsive coupling, is proposed to model the coexisting distinguishable interactions. First, by adding impulsive controllers on a small portion of agents, local synchronization is analyzed by linearizing the error system at the desired trajectory. Then, global synchronization is studied based on the Lyapunov stability theory, where a time-varying coupling strength is involved. To further deal with the time-varying coupling strength, an adaptive updating law is introduced and a corresponding sufficient condition is obtained to ensure synchronization of the multiplex network towards the desired trajectory. Networks of Chua's circuits and other chaotic systems with double layers of interactions are simulated to verify the proposed method.

  19. Systemic risk and hierarchical transitions of financial networks

    NASA Astrophysics Data System (ADS)

    Nobi, Ashadun; Lee, Jae Woo

    2017-06-01

    In this paper, the change in topological hierarchy, which is measured by the minimum spanning tree constructed from the cross-correlations between the stock indices from the S & P 500 for 1998-2012 in a one year moving time window, was used to analyze a financial crisis. The hierarchy increased in all minor crises in the observation time window except for the sharp crisis of 2007-2008 when the global financial crisis occurred. The sudden increase in hierarchy just before the global financial crisis can be used for the early detection of an upcoming crisis. Clearly, the higher the hierarchy, the higher the threats to financial stability. The scaling relations were developed to observe the changes in hierarchy with the network topology. These scaling relations can also identify and quantify the financial crisis periods, and appear to contain the predictive power of an upcoming crisis.

  20. Systemic risk and hierarchical transitions of financial networks.

    PubMed

    Nobi, Ashadun; Lee, Jae Woo

    2017-06-01

    In this paper, the change in topological hierarchy, which is measured by the minimum spanning tree constructed from the cross-correlations between the stock indices from the S & P 500 for 1998-2012 in a one year moving time window, was used to analyze a financial crisis. The hierarchy increased in all minor crises in the observation time window except for the sharp crisis of 2007-2008 when the global financial crisis occurred. The sudden increase in hierarchy just before the global financial crisis can be used for the early detection of an upcoming crisis. Clearly, the higher the hierarchy, the higher the threats to financial stability. The scaling relations were developed to observe the changes in hierarchy with the network topology. These scaling relations can also identify and quantify the financial crisis periods, and appear to contain the predictive power of an upcoming crisis.

  1. The Fragility of Individual-Based Explanations of Social Hierarchies: A Test Using Animal Pecking Orders

    PubMed Central

    2016-01-01

    The standard approach in accounting for hierarchical differentiation in biology and the social sciences considers a hierarchy as a static distribution of individuals possessing differing amounts of some valued commodity, assumes that the hierarchy is generated by micro-level processes involving individuals, and attempts to reverse engineer the processes that produced the hierarchy. However, sufficient experimental and analytical results are available to evaluate this standard approach in the case of animal dominance hierarchies (pecking orders). Our evaluation using evidence from hierarchy formation in small groups of both hens and cichlid fish reveals significant deficiencies in the three tenets of the standard approach in accounting for the organization of dominance hierarchies. In consequence, we suggest that a new approach is needed to explain the organization of pecking orders and, very possibly, by implication, for other kinds of social hierarchies. We develop an example of such an approach that considers dominance hierarchies to be dynamic networks, uses dynamic sequences of interaction (dynamic network motifs) to explain the organization of dominance hierarchies, and derives these dynamic sequences directly from observation of hierarchy formation. We test this dynamical explanation using computer simulation and find a good fit with actual dynamics of hierarchy formation in small groups of hens. We hypothesize that the same dynamic sequences are used in small groups of many other animal species forming pecking orders, and we discuss the data required to evaluate our hypothesis. Finally, we briefly consider how our dynamic approach may be generalized to other kinds of social hierarchies using the example of the distribution of empty gastropod (snail) shells occupied in populations of hermit crabs. PMID:27410230

  2. Understanding Informal Feedback Seeking in the Workplace: The Impact of the Position in the Organizational Hierarchy

    ERIC Educational Resources Information Center

    van der Rijt, Janine; Van den Bossche, Piet; Segers, Mien S. R.

    2013-01-01

    Purpose: The purpose of this study is to investigate whether the position of employees in the organizational hierarchy is important in explaining their feedback seeking behaviour. Design/methodology/approach: This study takes a social network perspective by using an ego-centric network survey to investigate employees' feedback seeking behaviour…

  3. Control of Multilayer Networks

    PubMed Central

    Menichetti, Giulia; Dall’Asta, Luca; Bianconi, Ginestra

    2016-01-01

    The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable. PMID:26869210

  4. Do Convolutional Neural Networks Learn Class Hierarchy?

    PubMed

    Bilal, Alsallakh; Jourabloo, Amin; Ye, Mao; Liu, Xiaoming; Ren, Liu

    2018-01-01

    Convolutional Neural Networks (CNNs) currently achieve state-of-the-art accuracy in image classification. With a growing number of classes, the accuracy usually drops as the possibilities of confusion increase. Interestingly, the class confusion patterns follow a hierarchical structure over the classes. We present visual-analytics methods to reveal and analyze this hierarchy of similar classes in relation with CNN-internal data. We found that this hierarchy not only dictates the confusion patterns between the classes, it furthermore dictates the learning behavior of CNNs. In particular, the early layers in these networks develop feature detectors that can separate high-level groups of classes quite well, even after a few training epochs. In contrast, the latter layers require substantially more epochs to develop specialized feature detectors that can separate individual classes. We demonstrate how these insights are key to significant improvement in accuracy by designing hierarchy-aware CNNs that accelerate model convergence and alleviate overfitting. We further demonstrate how our methods help in identifying various quality issues in the training data.

  5. Multi-gigabit WDM optical networking for next generation avionics system communications

    NASA Astrophysics Data System (ADS)

    Gardner, Robert D.; Andonovic, I.; Hunter, D. K.; Hamoudi, A.; McLaughlin, A. J.; Aitchison, J. S.; Marsh, J. H.

    2000-04-01

    It is envisaged that photonic networking will play a significant role in improving performance and reliability in both civil and military avionics systems. Of all the available photonic multiplexing technologies, wavelength-division multiplexing (WDM) has been the primary focus of attention within mainstream telecommunications offering increased throughput at a reasonable cost, with scope for enhanced routing flexibility, connectivity and network survivability. A direct mapping of techniques and devices from the maturing telecommunications sector is, however, not possible because of the stringent requirements of systems operating in the hostile aerospace environment. This paper gives an outline of these requirements and discusses, in detail, the design and development of a multi-gigabit, broadband optical WDM network architecture, specifically for use on aerospace platforms. The paper will also discuss a key element in the system, the arrayed-waveguide grating (AWG) wavelength multiplexing component, which has been designed to allow operation over the full military temperature specification without environmental conditioning.

  6. Epidemic spreading and immunization strategy in multiplex networks

    NASA Astrophysics Data System (ADS)

    Alvarez Zuzek, Lucila G.; Buono, Camila; Braunstein, Lidia A.

    2015-09-01

    A more connected world has brought major consequences such as facilitate the spread of diseases all over the world to quickly become epidemics, reason why researchers are concentrated in modeling the propagation of epidemics and outbreaks in multilayer networks. In this networks all nodes interact in different layers with different type of links. However, in many scenarios such as in the society, a multiplex network framework is not completely suitable since not all individuals participate in all layers. In this paper, we use a partially overlapped, multiplex network where only a fraction of the individuals are shared by the layers. We develop a mitigation strategy for stopping a disease propagation, considering the Susceptible-Infected- Recover model, in a system consisted by two layers. We consider a random immunization in one of the layers and study the effect of the overlapping fraction in both, the propagation of the disease and the immunization strategy. Using branching theory, we study this scenario theoretically and via simulations and find a lower epidemic threshold than in the case without strategy.

  7. Solving moment hierarchies for chemical reaction networks

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Supriya; Smith, Eric

    2017-10-01

    The study of chemical reaction networks (CRN’s) is a very active field. Earlier well-known results (Feinberg 1987 Chem. Enc. Sci. 42 2229, Anderson et al 2010 Bull. Math. Biol. 72 1947) identify a topological quantity called deficiency, for any CRN, which, when exactly equal to zero, leads to a unique factorized steady-state for these networks. No results exist however for the steady states of non-zero-deficiency networks. In this paper, we show how to write the full moment-hierarchy for any non-zero-deficiency CRN obeying mass-action kinetics, in terms of equations for the factorial moments. Using these, we can recursively predict values for lower moments from higher moments, reversing the procedure usually used to solve moment hierarchies. We show, for non-trivial examples, that in this manner we can predict any moment of interest, for CRN’s with non-zero deficiency and non-factorizable steady states.

  8. Hierarchy in gene expression is predictive of risk, progression, and outcome in adult acute myeloid leukemia

    NASA Astrophysics Data System (ADS)

    Tripathi, Shubham; Deem, Michael W.

    2015-02-01

    Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 AML patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is non-trivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis.

  9. Dynamical origins of the community structure of an online multi-layer society

    NASA Astrophysics Data System (ADS)

    Klimek, Peter; Diakonova, Marina; Eguíluz, Víctor M.; San Miguel, Maxi; Thurner, Stefan

    2016-08-01

    Social structures emerge as a result of individuals managing a variety of different social relationships. Societies can be represented as highly structured dynamic multiplex networks. Here we study the dynamical origins of the specific community structures of a large-scale social multiplex network of a human society that interacts in a virtual world of a massive multiplayer online game. There we find substantial differences in the community structures of different social actions, represented by the various layers in the multiplex network. Community sizes distributions are either fat-tailed or appear to be centered around a size of 50 individuals. To understand these observations we propose a voter model that is built around the principle of triadic closure. It explicitly models the co-evolution of node- and link-dynamics across different layers of the multiplex network. Depending on link and node fluctuation probabilities, the model exhibits an anomalous shattered fragmentation transition, where one layer fragments from one large component into many small components. The observed community size distributions are in good agreement with the predicted fragmentation in the model. This suggests that several detailed features of the fragmentation in societies can be traced back to the triadic closure processes.

  10. Interests diffusion on a semantic multiplex. Comparing Computer Science and American Physical Society communities

    NASA Astrophysics Data System (ADS)

    D'Agostino, Gregorio; De Nicola, Antonio

    2016-10-01

    Exploiting the information about members of a Social Network (SN) represents one of the most attractive and dwelling subjects for both academic and applied scientists. The community of Complexity Science and especially those researchers working on multiplex social systems are devoting increasing efforts to outline general laws, models, and theories, to the purpose of predicting emergent phenomena in SN's (e.g. success of a product). On the other side the semantic web community aims at engineering a new generation of advanced services tailored to specific people needs. This implies defining constructs, models and methods for handling the semantic layer of SNs. We combined models and techniques from both the former fields to provide a hybrid approach to understand a basic (yet complex) phenomenon: the propagation of individual interests along the social networks. Since information may move along different social networks, one should take into account a multiplex structure. Therefore we introduced the notion of "Semantic Multiplex". In this paper we analyse two different semantic social networks represented by authors publishing in the Computer Science and those in the American Physical Society Journals. The comparison allows to outline common and specific features.

  11. Opinion formation on multiplex scale-free networks

    NASA Astrophysics Data System (ADS)

    Nguyen, Vu Xuan; Xiao, Gaoxi; Xu, Xin-Jian; Li, Guoqi; Wang, Zhen

    2018-01-01

    Most individuals, if not all, live in various social networks. The formation of opinion systems is an outcome of social interactions and information propagation occurring in such networks. We study the opinion formation with a new rule of pairwise interactions in the novel version of the well-known Deffuant model on multiplex networks composed of two layers, each of which is a scale-free network. It is found that in a duplex network composed of two identical layers, the presence of the multiplexity helps either diminish or enhance opinion diversity depending on the relative magnitudes of tolerance ranges characterizing the degree of openness/tolerance on both layers: there is a steady separation between different regions of tolerance range values on two network layers where multiplexity plays two different roles, respectively. Additionally, the two critical tolerance ranges follow a one-sum rule; that is, each of the layers reaches a complete consensus only if the sum of the tolerance ranges on the two layers is greater than a constant approximately equaling 1, the double of the critical bound on a corresponding isolated network. A further investigation of the coupling between constituent layers quantified by a link overlap parameter reveals that as the layers are loosely coupled, the two opinion systems co-evolve independently, but when the inter-layer coupling is sufficiently strong, a monotonic behavior is observed: an increase in the tolerance range of a layer causes a decline in the opinion diversity on the other layer regardless of the magnitudes of tolerance ranges associated with the layers in question.

  12. Sparse bursts optimize information transmission in a multiplexed neural code.

    PubMed

    Naud, Richard; Sprekeler, Henning

    2018-06-22

    Many cortical neurons combine the information ascending and descending the cortical hierarchy. In the classical view, this information is combined nonlinearly to give rise to a single firing-rate output, which collapses all input streams into one. We analyze the extent to which neurons can simultaneously represent multiple input streams by using a code that distinguishes spike timing patterns at the level of a neural ensemble. Using computational simulations constrained by experimental data, we show that cortical neurons are well suited to generate such multiplexing. Interestingly, this neural code maximizes information for short and sparse bursts, a regime consistent with in vivo recordings. Neurons can also demultiplex this information, using specific connectivity patterns. The anatomy of the adult mammalian cortex suggests that these connectivity patterns are used by the nervous system to maintain sparse bursting and optimal multiplexing. Contrary to firing-rate coding, our findings indicate that the physiology and anatomy of the cortex may be interpreted as optimizing the transmission of multiple independent signals to different targets. Copyright © 2018 the Author(s). Published by PNAS.

  13. Effects of temporal correlations in social multiplex networks.

    PubMed

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2017-08-17

    Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.

  14. Energy-Efficient Next-Generation Passive Optical Networks Based on Sleep Mode and Heuristic Optimization

    NASA Astrophysics Data System (ADS)

    Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik

    2015-05-01

    In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.

  15. Destination directed packet switch architecture for a 30/20 GHz FDMA/TDM geostationary communication satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1991-01-01

    Emphasis is on a destination directed packet switching architecture for a 30/20 GHz frequency division multiplex access/time division multiplex (FDMA/TDM) geostationary satellite communication network. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  16. A spectral profile multiplexed FBG sensor network with application to strain measurement in a Kevlar woven fabric

    NASA Astrophysics Data System (ADS)

    Guo, Guodong; Hackney, Drew; Pankow, Mark; Peters, Kara

    2017-04-01

    A spectral profile division multiplexed fiber Bragg grating (FBG) sensor network is described in this paper. The unique spectral profile of each sensor in the network is identified as a distinct feature to be interrogated. Spectrum overlap is allowed under working conditions. Thus, a specific wavelength window does not need to be allocated to each sensor as in a wavelength division multiplexed (WDM) network. When the sensors are serially connected in the network, the spectrum output is expressed through a truncated series. To track the wavelength shift of each sensor, the identification problem is transformed to a nonlinear optimization problem, which is then solved by a modified dynamic multi-swarm particle swarm optimizer (DMS-PSO). To demonstrate the application of the developed network, a network consisting of four FBGs was integrated into a Kevlar woven fabric, which was under a quasi-static load imposed by an impactor head. Due to the substantial radial strain in the fabric, the spectrums of different FBGs were found to overlap during the loading process. With the developed interrogating method, the overlapped spectrum would be distinguished thus the wavelength shift of each sensor can be monitored.

  17. Comparing the Hierarchy of Keywords in On-Line News Portals

    PubMed Central

    Tibély, Gergely; Sousa-Rodrigues, David; Pollner, Péter; Palla, Gergely

    2016-01-01

    Hierarchical organization is prevalent in networks representing a wide range of systems in nature and society. An important example is given by the tag hierarchies extracted from large on-line data repositories such as scientific publication archives, file sharing portals, blogs, on-line news portals, etc. The tagging of the stored objects with informative keywords in such repositories has become very common, and in most cases the tags on a given item are free words chosen by the authors independently. Therefore, the relations among keywords appearing in an on-line data repository are unknown in general. However, in most cases the topics and concepts described by these keywords are forming a latent hierarchy, with the more general topics and categories at the top, and more specialized ones at the bottom. There are several algorithms available for deducing this hierarchy from the statistical features of the keywords. In the present work we apply a recent, co-occurrence-based tag hierarchy extraction method to sets of keywords obtained from four different on-line news portals. The resulting hierarchies show substantial differences not just in the topics rendered as important (being at the top of the hierarchy) or of less interest (categorized low in the hierarchy), but also in the underlying network structure. This reveals discrepancies between the plausible keyword association frameworks in the studied news portals. PMID:27802319

  18. Comparing the Hierarchy of Keywords in On-Line News Portals.

    PubMed

    Tibély, Gergely; Sousa-Rodrigues, David; Pollner, Péter; Palla, Gergely

    2016-01-01

    Hierarchical organization is prevalent in networks representing a wide range of systems in nature and society. An important example is given by the tag hierarchies extracted from large on-line data repositories such as scientific publication archives, file sharing portals, blogs, on-line news portals, etc. The tagging of the stored objects with informative keywords in such repositories has become very common, and in most cases the tags on a given item are free words chosen by the authors independently. Therefore, the relations among keywords appearing in an on-line data repository are unknown in general. However, in most cases the topics and concepts described by these keywords are forming a latent hierarchy, with the more general topics and categories at the top, and more specialized ones at the bottom. There are several algorithms available for deducing this hierarchy from the statistical features of the keywords. In the present work we apply a recent, co-occurrence-based tag hierarchy extraction method to sets of keywords obtained from four different on-line news portals. The resulting hierarchies show substantial differences not just in the topics rendered as important (being at the top of the hierarchy) or of less interest (categorized low in the hierarchy), but also in the underlying network structure. This reveals discrepancies between the plausible keyword association frameworks in the studied news portals.

  19. Network based management for multiplexed electric vehicle charging

    DOEpatents

    Gadh, Rajit; Chung, Ching Yen; Qui, Li

    2017-04-11

    A system for multiplexing charging of electric vehicles, comprising a server coupled to a plurality of charging control modules over a network. Each of said charging modules being connected to a voltage source such that each charging control module is configured to regulate distribution of voltage from the voltage source to an electric vehicle coupled to the charging control module. Data collection and control software is provided on the server for identifying a plurality of electric vehicles coupled to the plurality of charging control modules and selectively distributing charging of the plurality of charging control modules to multiplex distribution of voltage to the plurality of electric vehicles.

  20. Dense wavelength division multiplexing devices for metropolitan-area datacom and telecom networks

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Priest, David G.

    2000-12-01

    Large data processing environments in use today can require multi-gigabyte or terabyte capacity in the data communication infrastructure; these requirements are being driven by storage area networks with access to petabyte data bases, new architecture for parallel processing which require high bandwidth optical links, and rapidly growing network applications such as electronic commerce over the Internet or virtual private networks. These datacom applications require high availability, fault tolerance, security, and the capacity to recover from any single point of failure without relying on traditional SONET-based networking. These requirements, coupled with fiber exhaust in metropolitan areas, are driving the introduction of dense optical wavelength division multiplexing (DWDM) in data communication systems, particularly for large enterprise servers or mainframes. In this paper, we examine the technical requirements for emerging nextgeneration DWDM systems. Protocols for storage area networks and computer architectures such as Parallel Sysplex are presented, including their fiber bandwidth requirements. We then describe two commercially available DWDM solutions, a first generation 10 channel system and a recently announced next generation 32 channel system. Technical requirements, network management and security, fault tolerant network designs, new network topologies enabled by DWDM, and the role of time division multiplexing in the network are all discussed. Finally, we present a description of testing conducted on these networks and future directions for this technology.

  1. Observability of Boolean multiplex control networks

    NASA Astrophysics Data System (ADS)

    Wu, Yuhu; Xu, Jingxue; Sun, Xi-Ming; Wang, Wei

    2017-04-01

    Boolean multiplex (multilevel) networks (BMNs) are currently receiving considerable attention as theoretical arguments for modeling of biological systems and system level analysis. Studying control-related problems in BMNs may not only provide new views into the intrinsic control in complex biological systems, but also enable us to develop a method for manipulating biological systems using exogenous inputs. In this article, the observability of the Boolean multiplex control networks (BMCNs) are studied. First, the dynamical model and structure of BMCNs with control inputs and outputs are constructed. By using of Semi-Tensor Product (STP) approach, the logical dynamics of BMCNs is converted into an equivalent algebraic representation. Then, the observability of the BMCNs with two different kinds of control inputs is investigated by giving necessary and sufficient conditions. Finally, examples are given to illustrate the efficiency of the obtained theoretical results.

  2. Quantum metropolitan optical network based on wavelength division multiplexing.

    PubMed

    Ciurana, A; Martínez-Mateo, J; Peev, M; Poppe, A; Walenta, N; Zbinden, H; Martín, V

    2014-01-27

    Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its application in optical networks make it an expensive technology. QKD networks deployed to date are designed as a collection of point-to-point, dedicated QKD links where non-neighboring nodes communicate using the trusted repeater paradigm. We propose a novel optical network model in which QKD systems share the communication infrastructure by wavelength multiplexing their quantum and classical signals. The routing is done using optical components within a metropolitan area which allows for a dynamically any-to-any communication scheme. Moreover, it resembles a commercial telecom network, takes advantage of existing infrastructure and utilizes commercial components, allowing for an easy, cost-effective and reliable deployment.

  3. Self-organizing hierarchies in sensor and communication networks.

    PubMed

    Prokopenko, Mikhail; Wang, Peter; Valencia, Philip; Price, Don; Foreman, Mark; Farmer, Anthony

    2005-01-01

    We consider a hierarchical multicellular sensing and communication network, embedded in an ageless aerospace vehicle that is expected to detect and react to multiple impacts and damage over a wide range of impact energies. In particular, we investigate self-organization of impact boundaries enclosing critically damaged areas, and impact networks connecting remote cells that have detected noncritical impacts. Each level of the hierarchy is shown to have distinct higher-order emergent properties, desirable in self-monitoring and self-repairing vehicles. In addition, cells and communication messages are shown to need memory (hysteresis) in order to retain desirable emergent behavior within and between various hierarchical levels. Spatiotemporal robustness of self-organizing hierarchies is quantitatively measured with graph-theoretic and information-theoretic techniques, such as the Shannon entropy. This allows us to clearly identify phase transitions separating chaotic dynamics from ordered and robust patterns.

  4. Key Management Schemes for Peer-to-Peer Multimedia Streaming Overlay Networks

    NASA Astrophysics Data System (ADS)

    Naranjo, J. A. M.; López-Ramos, J. A.; Casado, L. G.

    Key distribution for multimedia live streaming peer-to-peer overlay networks is a field still in its childhood stage. A scheme designed for networks of this kind must seek security and efficiency while keeping in mind the following restrictions: limited bandwidth, continuous playing, great audience size and clients churn. This paper introduces two novel schemes that allow a trade-off between security and efficiency by allowing to dynamically vary the number of levels used in the key hierarchy. These changes are motivated by great variations in audience size, and initiated by decision of the Key Server. Additionally, a comparative study of both is presented, focusing on security and audience size. Results show that larger key hierarchies can supply bigger audiences, but offer less security against statistical attacks. The opposite happens for shorter key hierarchies.

  5. The impact of multiple information on coupled awareness-epidemic dynamics in multiplex networks

    NASA Astrophysics Data System (ADS)

    Pan, Yaohui; Yan, Zhijun

    2018-02-01

    Growing interest has emerged in the study of the interplay between awareness and epidemics in multiplex networks. However, previous studies on this issue usually assume that all aware individuals take the same level of precautions, ignoring individual heterogeneity. In this paper, we investigate the coupled awareness-epidemic dynamics in multiplex networks considering individual heterogeneity. Here, the precaution levels are heterogeneous and depend on three types of information: contact information and local and global prevalence information. The results show that contact-based precautions can decrease the epidemic prevalence and augment the epidemic threshold, but prevalence-based precautions, regardless of local or global information, can only decrease the epidemic prevalence. Moreover, unlike previous studies in single-layer networks, we do not find a greater impact of local prevalence information on the epidemic prevalence compared to global prevalence information. In addition, we find that the altruistic behaviors of infected individuals can effectively suppress epidemic spreading, especially when the level of contact-based precaution is high.

  6. MFAHP: A novel method on the performance evaluation of the industrial wireless networked control system

    NASA Astrophysics Data System (ADS)

    Wu, Linqin; Xu, Sheng; Jiang, Dezhi

    2015-12-01

    Industrial wireless networked control system has been widely used, and how to evaluate the performance of the wireless network is of great significance. In this paper, considering the shortcoming of the existing performance evaluation methods, a comprehensive performance evaluation method of networks multi-indexes fuzzy analytic hierarchy process (MFAHP) combined with the fuzzy mathematics and the traditional analytic hierarchy process (AHP) is presented. The method can overcome that the performance evaluation is not comprehensive and subjective. Experiments show that the method can reflect the network performance of real condition. It has direct guiding role on protocol selection, network cabling, and node setting, and can meet the requirements of different occasions by modifying the underlying parameters.

  7. Deffuant model of opinion formation in one-dimensional multiplex networks

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2015-10-01

    Complex systems in the real world often operate through multiple kinds of links connecting their constituents. In this paper we propose an opinion formation model under bounded confidence over multiplex networks, consisting of edges at different topological and temporal scales. We determine rigorously the critical confidence threshold by exploiting probability theory and network science when the nodes are arranged on the integers, {{Z}}, evolving in continuous time. It is found that the existence of ‘multiplexity’ impedes the convergence, and that working with the aggregated or summarized simplex network is inaccurate since it misses vital information. Analytical calculations are confirmed by extensive numerical simulations.

  8. Deriving an Abstraction Network to Support Quality Assurance in OCRe

    PubMed Central

    Ochs, Christopher; Agrawal, Ankur; Perl, Yehoshua; Halper, Michael; Tu, Samson W.; Carini, Simona; Sim, Ida; Noy, Natasha; Musen, Mark; Geller, James

    2012-01-01

    An abstraction network is an auxiliary network of nodes and links that provides a compact, high-level view of an ontology. Such a view lends support to ontology orientation, comprehension, and quality-assurance efforts. A methodology is presented for deriving a kind of abstraction network, called a partial-area taxonomy, for the Ontology of Clinical Research (OCRe). OCRe was selected as a representative of ontologies implemented using the Web Ontology Language (OWL) based on shared domains. The derivation of the partial-area taxonomy for the Entity hierarchy of OCRe is described. Utilizing the visualization of the content and structure of the hierarchy provided by the taxonomy, the Entity hierarchy is audited, and several errors and inconsistencies in OCRe’s modeling of its domain are exposed. After appropriate corrections are made to OCRe, a new partial-area taxonomy is derived. The generalizability of the paradigm of the derivation methodology to various families of biomedical ontologies is discussed. PMID:23304341

  9. Conditions for Viral Influence Spreading through Multiplex Correlated Social Networks

    NASA Astrophysics Data System (ADS)

    Hu, Yanqing; Havlin, Shlomo; Makse, Hernán A.

    2014-04-01

    A fundamental problem in network science is to predict how certain individuals are able to initiate new networks to spring up "new ideas." Frequently, these changes in trends are triggered by a few innovators who rapidly impose their ideas through "viral" influence spreading, producing cascades of followers and fragmenting an old network to create a new one. Typical examples include the rise of scientific ideas or abrupt changes in social media, like the rise of Facebook to the detriment of Myspace. How this process arises in practice has not been conclusively demonstrated. Here, we show that a condition for sustaining a viral spreading process is the existence of a multiplex-correlated graph with hidden "influence links." Analytical solutions predict percolation-phase transitions, either abrupt or continuous, where networks are disintegrated through viral cascades of followers, as in empirical data. Our modeling predicts the strict conditions to sustain a large viral spreading via a scaling form of the local correlation function between multilayers, which we also confirm empirically. Ultimately, the theory predicts the conditions for viral cascading in a large class of multiplex networks ranging from social to financial systems and markets.

  10. Energy-efficient process-stacking multiplexing access for 60-GHz mm-wave wireless personal area networks.

    PubMed

    Estevez, Claudio; Kailas, Aravind

    2012-01-01

    Millimeter-wave technology shows high potential for future wireless personal area networks, reaching over 1 Gbps transmissions using simple modulation techniques. Current specifications consider dividing the spectrum into effortlessly separable spectrum ranges. These low requirements open a research area in time and space multiplexing techniques for millimeter-waves. In this work a process-stacking multiplexing access algorithm is designed for single channel operation. The concept is intuitive, but its implementation is not trivial. The key to stacking single channel events is to operate while simultaneously obtaining and handling a-posteriori time-frame information of scheduled events. This information is used to shift a global time pointer that the wireless access point manages and uses to synchronize all serviced nodes. The performance of the proposed multiplexing access technique is lower bounded by the performance of legacy TDMA and can significantly improve the effective throughput. Work is validated by simulation results.

  11. Multichannel activity propagation across an engineered axon network

    NASA Astrophysics Data System (ADS)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.

    2017-04-01

    Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers. These results provide insight into how the brain potentially processes information and generates the neural code and could guide the development of clinical therapies based on multichannel brain stimulation.

  12. Networks: A Review of Their Technology, Architecture, and Implementation.

    ERIC Educational Resources Information Center

    Learn, Larry L.

    1988-01-01

    This overview of network-related technologies covers network elements, analog and digital signals, transmission media and their characteristics, equipment certification, multiplexing, network types, access technologies, network architectures local-area network technologies and attributes, protocols, internetworking, fiber optics versus satellites,…

  13. OWC with vortex beams in data center networks

    NASA Astrophysics Data System (ADS)

    Kupferman, Judy; Arnon, Shlomi

    2017-10-01

    Data centers are a key building block in the rapidly growing area of internet technology. A typical data center has tens of thousands of servers, and communication between them must be flexible and robust. Vortex light beams have orbital angular momentum and can provide a useful and flexible method for optical wireless communication in data centers. Vortex beams can be generated with orbital angular momentum but independent of polarization, and used in a multiplexed system. We propose a multiplexing vortex system to increase the communication capacity using optical wireless communication for data center networks. We then evaluate performance. This paper is intended for use as an engineering guideline for design of vortex multiplexing in data center applications.

  14. Experimental demonstration of time- and mode-division multiplexed passive optical network

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Li, Juhao; Tang, Ruizhi; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-07-01

    A time- and mode-division multiplexed passive optical network (TMDM-PON) architecture is proposed, in which each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing both different time slots and switched optical linearly polarized (LP) spatial modes. Combination of a mode multiplexer/demultiplexer (MUX/DEUX) and a simple N × 1 optical switch is employed to select the specific LP mode in each ONU. A mode-insensitive power splitter is used for signal broadcast/combination between OLT and ONUs. We theoretically propose a dynamic mode and time slot assignment scheme for TMDM-PON based on inter-ONU priority rating, in which the time delay and packet loss ratio's variation tendency are investigated by simulation. Moreover, we experimentally demonstrate 2-mode TMDM-PON transmission over 10 km FMF with 10-Gb/s on-off keying (OOK) signal and direct detection.

  15. Self Organized Multi Agent Swarms (SOMAS) for Network Security Control

    DTIC Science & Technology

    2009-03-01

    Normal hierarchy vs entangled hierarchy 2.5.7 Quantifying Entangledness . While self organization means that the swarm develops a consistent structure of...flexibility due to centralization of control and com- munication. Thus, self organized, entangled hierarchy multi-agent swarms are evolved in this study to...technique. The resulting design exhibits a self organized multi-agent swarm (SOMAS) with entangled hierarchical control and communication through the

  16. Exploring the Complexities of Army Civilians and the Army Profession

    DTIC Science & Technology

    2013-03-01

    61. 55 Gareth R. Jones, 2-4. 56 Thomas Diefenbach and Rune Todnem, “Bureaucracy and Hierarchy - What Else!? in Reinventing Hierarchy and...57 Thomas Diefenbach and Rune Todnem, “Introduction,” in Reinventing Hierarchy and Bureaucracy—From the Bureau to Network Organizations (Bingley...Handbook of Public Management (New York: Oxford University Press, 2005), 472; Gareth R. Jones, 313. 73 Thomas Diefenbach and Rune Todnem

  17. Predicting multicellular function through multi-layer tissue networks

    PubMed Central

    Zitnik, Marinka; Leskovec, Jure

    2017-01-01

    Abstract Motivation: Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine. Results: Here, we present OhmNet, a hierarchy-aware unsupervised node feature learning approach for multi-layer networks. We build a multi-layer network, where each layer represents molecular interactions in a different human tissue. OhmNet then automatically learns a mapping of proteins, represented as nodes, to a neural embedding-based low-dimensional space of features. OhmNet encourages sharing of similar features among proteins with similar network neighborhoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which generally ignores relationships between tissues, by modeling tissue organization with a rich multiscale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein interaction network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet provides more accurate predictions of cellular function than alternative approaches, and also generates more accurate hypotheses about tissue-specific protein actions. We show that taking into account the tissue hierarchy leads to improved predictive power. Remarkably, we also demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellular functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to multiscale models able to predict a range of phenotypes spanning cellular subsystems. Availability and implementation: Source code and datasets are available at http://snap.stanford.edu/ohmnet. Contact: jure@cs.stanford.edu PMID:28881986

  18. Time Division Multiplexing of Semiconductor Qubits

    NASA Astrophysics Data System (ADS)

    Jarratt, Marie Claire; Hornibrook, John; Croot, Xanthe; Watson, John; Gardner, Geoff; Fallahi, Saeed; Manfra, Michael; Reilly, David

    Readout chains, comprising resonators, amplifiers, and demodulators, are likely to be precious resources in quantum computing architectures. The potential to share readout resources is contingent on realising efficient means of time-division multiplexing (TDM) schemes that are compatible with quantum computing. Here, we demonstrate TDM using a GaAs quantum dot device with multiple charge sensors. Our device incorporates chip-level switches that do not load the impedance matching network. When used in conjunction with frequency multiplexing, each frequency tone addresses multiple time-multiplexed qubits, vastly increasing the capacity of a single readout line.

  19. High Speed All-Optical Data Distribution Network

    NASA Astrophysics Data System (ADS)

    Braun, Steve; Hodara, Henri

    2017-11-01

    This article describes the performance and capabilities of an all-optical network featuring low latency, high speed file transfer between serially connected optical nodes. A basic component of the network is a network interface card (NIC) implemented through a unique planar lightwave circuit (PLC) that performs add/drop data and optical signal amplification. The network uses a linear bus topology with nodes in a "T" configuration, as described in the text. The signal is sent optically (hence, no latency) to all nodes via wavelength division multiplexing (WDM), with each node receiver tuned to wavelength of choice via an optical de-multiplexer. Each "T" node routes a portion of the signal to/from the bus through optical couplers, embedded in the network interface card (NIC), to each of the 1 through n computers.

  20. Organizing product innovation: hierarchy, market or triple-helix networks?

    PubMed

    Fitjar, Rune Dahl; Gjelsvik, Martin; Rodríguez-Pose, Andrés

    This paper assesses the extent to which the organization of the innovation effort in firms, as well as the geographical scale at which this effort is pursued, affects the capacity to benefit from product innovations. Three alternative modes of organization are studied: hierarchy, market and triple-helix-type networks. Furthermore, we consider triple-helix networks at three geographical scales: local, national and international. These relationships are tested on a random sample of 763 firms located in five urban regions of Norway which reported having introduced new products or services during the preceding 3 years. The analysis shows that firms exploiting internal hierarchy or triple-helix networks with a wide range of partners managed to derive a significantly higher share of their income from new products, compared to those that mainly relied on outsourcing within the market. In addition, the analysis shows that the geographical scale of cooperation in networks, as well as the type of partner used, matters for the capacity of firms to benefit from product innovation. In particular, firms that collaborate in international triple-helix-type networks involving suppliers, customers and R&D institutions extract a higher share of their income from product innovations, regardless of whether they organize the processes internally or through the network.

  1. A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs

    NASA Astrophysics Data System (ADS)

    Lee, Kwanil; Lee, Sang Bae; Lee, Ju Han; Han, Young-Geun; Mun, Sil-Gu; Lee, Sang-Mook; Lee, Chang-Hee

    2007-04-01

    We propose and experimentally demonstrate a novel protection scheme for wavelength-division-multiplexed passive optical network (WDM-PON) employing colorless optical transceivers. The proposed network employs 2 × N arrayed waveguide grating (AWG) to utilize its routing characteristics. The colorless operation is achieved by using wavelength-locked Fabry-Perot laser diodes (FP-LDs) injected with spectrum-sliced amplified spontaneous emission (ASE) light. The experimental results show that the restoration can be achieved within 8 ms against the feeder fiber fault and the power penalty introduced by the restoration process is negligible.

  2. Space division multiplexing chip-to-chip quantum key distribution.

    PubMed

    Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2017-09-29

    Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.

  3. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip.

    PubMed

    Jia, Hao; Zhou, Ting; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin

    2017-08-21

    We propose a 2 × 2 multimode optical switch, which is composed of two mode de-multiplexers, n 2 × 2 single-mode optical switches where n is the number of the supported spatial modes, and two mode multiplexers. As a proof of concept, asymmetric directional couplers are employed to construct the mode multiplexers and de-multiplexers, balanced Mach-Zehnder interferometer is utilized to construct the 2 × 2 single-mode optical switches. The fabricated silicon 2 × 2 multimode optical switch has a broad optical bandwidth and can support four spatial modes. The link-crosstalk for all four modes is smaller than -18.8 dB. The inter-mode crosstalk for the same optical link is less than -22.1 dB. 40 Gbps data transmission is performed for all spatial modes and all optical links. The power penalties for the error-free switching (BER<10 -9 ) at 25 Gbps are less than 1.8 dB for all channels at the wavelength of 1550 nm. The power consumption of the device is 117.9 mW in the "cross" state and 116.2 mW in the "bar" state. The switching time is about 21 μs. This work enables large-capacity multimode photonic networks-on-chip.

  4. Quantifying the propagation of distress and mental disorders in social networks.

    PubMed

    Scatà, Marialisa; Di Stefano, Alessandro; La Corte, Aurelio; Liò, Pietro

    2018-03-22

    Heterogeneity of human beings leads to think and react differently to social phenomena. Awareness and homophily drive people to weigh interactions in social multiplex networks, influencing a potential contagion effect. To quantify the impact of heterogeneity on spreading dynamics, we propose a model of coevolution of social contagion and awareness, through the introduction of statistical estimators, in a weighted multiplex network. Multiplexity of networked individuals may trigger propagation enough to produce effects among vulnerable subjects experiencing distress, mental disorder, which represent some of the strongest predictors of suicidal behaviours. The exposure to suicide is emotionally harmful, since talking about it may give support or inadvertently promote it. To disclose the complex effect of the overlapping awareness on suicidal ideation spreading among disordered people, we also introduce a data-driven approach by integrating different types of data. Our modelling approach unveils the relationship between distress and mental disorders propagation and suicidal ideation spreading, shedding light on the role of awareness in a social network for suicide prevention. The proposed model is able to quantify the impact of overlapping awareness on suicidal ideation spreading and our findings demonstrate that it plays a dual role on contagion, either reinforcing or delaying the contagion outbreak.

  5. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  6. Detecting and evaluating communities in complex human and biological networks

    NASA Astrophysics Data System (ADS)

    Morrison, Greg; Mahadevan, L.

    2012-02-01

    We develop a simple method for detecting the community structure in a network can by utilizing a measure of closeness between nodes. This approach readily leads to a method of coarse graining the network, which allows the detection of the natural hierarchy (or hierarchies) of community structure without appealing to an unknown resolution parameter. The closeness measure can also be used to evaluate the robustness of an individual node's assignment to its community (rather than evaluating only the quality of the global structure). Each of these methods in community detection and evaluation are illustrated using a variety of real world networks of either biological or sociological importance and illustrate the power and flexibility of the approach.

  7. Epidemic spreading with activity-driven awareness diffusion on multiplex network.

    PubMed

    Guo, Quantong; Lei, Yanjun; Jiang, Xin; Ma, Yifang; Huo, Guanying; Zheng, Zhiming

    2016-04-01

    There has been growing interest in exploring the interplay between epidemic spreading with human response, since it is natural for people to take various measures when they become aware of epidemics. As a proper way to describe the multiple connections among people in reality, multiplex network, a set of nodes interacting through multiple sets of edges, has attracted much attention. In this paper, to explore the coupled dynamical processes, a multiplex network with two layers is built. Specifically, the information spreading layer is a time varying network generated by the activity driven model, while the contagion layer is a static network. We extend the microscopic Markov chain approach to derive the epidemic threshold of the model. Compared with extensive Monte Carlo simulations, the method shows high accuracy for the prediction of the epidemic threshold. Besides, taking different spreading models of awareness into consideration, we explored the interplay between epidemic spreading with awareness spreading. The results show that the awareness spreading can not only enhance the epidemic threshold but also reduce the prevalence of epidemics. When the spreading of awareness is defined as susceptible-infected-susceptible model, there exists a critical value where the dynamical process on the awareness layer can control the onset of epidemics; while if it is a threshold model, the epidemic threshold emerges an abrupt transition with the local awareness ratio α approximating 0.5. Moreover, we also find that temporal changes in the topology hinder the spread of awareness which directly affect the epidemic threshold, especially when the awareness layer is threshold model. Given that the threshold model is a widely used model for social contagion, this is an important and meaningful result. Our results could also lead to interesting future research about the different time-scales of structural changes in multiplex networks.

  8. Epidemic spreading with activity-driven awareness diffusion on multiplex network

    NASA Astrophysics Data System (ADS)

    Guo, Quantong; Lei, Yanjun; Jiang, Xin; Ma, Yifang; Huo, Guanying; Zheng, Zhiming

    2016-04-01

    There has been growing interest in exploring the interplay between epidemic spreading with human response, since it is natural for people to take various measures when they become aware of epidemics. As a proper way to describe the multiple connections among people in reality, multiplex network, a set of nodes interacting through multiple sets of edges, has attracted much attention. In this paper, to explore the coupled dynamical processes, a multiplex network with two layers is built. Specifically, the information spreading layer is a time varying network generated by the activity driven model, while the contagion layer is a static network. We extend the microscopic Markov chain approach to derive the epidemic threshold of the model. Compared with extensive Monte Carlo simulations, the method shows high accuracy for the prediction of the epidemic threshold. Besides, taking different spreading models of awareness into consideration, we explored the interplay between epidemic spreading with awareness spreading. The results show that the awareness spreading can not only enhance the epidemic threshold but also reduce the prevalence of epidemics. When the spreading of awareness is defined as susceptible-infected-susceptible model, there exists a critical value where the dynamical process on the awareness layer can control the onset of epidemics; while if it is a threshold model, the epidemic threshold emerges an abrupt transition with the local awareness ratio α approximating 0.5. Moreover, we also find that temporal changes in the topology hinder the spread of awareness which directly affect the epidemic threshold, especially when the awareness layer is threshold model. Given that the threshold model is a widely used model for social contagion, this is an important and meaningful result. Our results could also lead to interesting future research about the different time-scales of structural changes in multiplex networks.

  9. An All-Optical Access Metro Interface for Hybrid WDM/TDM PON Based on OBS

    NASA Astrophysics Data System (ADS)

    Segarra, Josep; Sales, Vicent; Prat, Josep

    2007-04-01

    A new all-optical access metro network interface based on optical burst switching (OBS) is proposed. A hybrid wavelength-division multiplexing/time-division multiplexing (WDM/TDM) access architecture with reflective optical network units (ONUs), an arrayed-waveguide-grating outside plant, and a tunable laser stack at the optical line terminal (OLT) is presented as a solution for the passive optical network. By means of OBS and a dynamic bandwidth allocation (DBA) protocol, which polls the ONUs, the available access bandwidth is managed. All the network intelligence and costly equipment is located at the OLT, where the DBA module is centrally implemented, providing quality of service (QoS). To scale this access network, an optical cross connect (OXC) is then used to attain a large number of ONUs by the same OLT. The hybrid WDM/TDM structure is also extended toward the metropolitan area network (MAN) by introducing the concept of OBS multiplexer (OBS-M). The network element OBS-M bridges the MAN and access networks by offering all-optical cross connection, wavelength conversion, and data signaling. The proposed innovative OBS-M node yields a full optical data network, interfacing access and metro with a geographically distributed access control. The resulting novel access metro architectures are nonblocking and, with an improved signaling, provide QoS, scalability, and very low latency. Finally, numerical analysis and simulations demonstrate the traffic performance of the proposed access scheme and all-optical access metro interface and architectures.

  10. The network and transmission of based on the principle of laser multipoint communication

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Liu, Xianzhu; Jiang, Huilin; Hu, Yuan; Jiang, Lun

    2014-11-01

    Space laser communication is the perfectly choose to the earth integrated information backbone network in the future. This paper introduces the structure of the earth integrated information network that is a large capacity integrated high-speed broadband information network, a variety of communications platforms were densely interconnected together, such as the land, sea, air and deep air users or aircraft, the technologies of the intelligent high-speed processing, switching and routing were adopt. According to the principle of maximum effective comprehensive utilization of information resources, get accurately information, fast processing and efficient transmission through inter-satellite, satellite earth, sky and ground station and other links. Namely it will be a space-based, air-based and ground-based integrated information network. It will be started from the trends of laser communication. The current situation of laser multi-point communications were expounded, the transmission scheme of the dynamic multi-point between wireless laser communication n network has been carefully studied, a variety of laser communication network transmission schemes the corresponding characteristics and scope described in detail , described the optical multiplexer machine that based on the multiport form of communication is applied to relay backbone link; the optical multiplexer-based on the form of the segmentation receiver field of view is applied to small angle link, the optical multiplexer-based form of three concentric spheres structure is applied to short distances, motorized occasions, and the multi-point stitching structure based on the rotation paraboloid is applied to inter-satellite communications in detail. The multi-point laser communication terminal apparatus consist of the transmitting and receiving antenna, a relay optical system, the spectroscopic system, communication system and communication receiver transmitter system. The communication forms of optical multiplexer more than four goals or more, the ratio of received power and volume weight will be Obvious advantages, and can track multiple moving targets in flexible.It would to provide reference for the construction of earth integrated information networks.

  11. A Net of Friends: Investigating Friendship by Integrating Attachment Theory and Social Network Analysis.

    PubMed

    Gillath, Omri; Karantzas, Gery C; Selcuk, Emre

    2017-11-01

    The current article focuses on attachment style-an individual difference widely studied in the field of close relationships-and its application to the study of social networks. Specifically, we investigated whether attachment style predicts perception and management of social networks. In Study 1, we examined the associations of attachment style with perceptions of network tie strength and multiplexity. In Studies 2a and 2b, we investigated the association between attachment style and network management skills (initiating, maintaining, and dissolving ties) and whether network management skills mediated the associations of attachment style with network tie strength and multiplexity. In Study 3, experimentally enhancing attachment security made people more likely to initiate and less likely to dissolve social ties (for the latter, especially among those high on avoidance or anxiety). As for maintenance, security priming also increased maintenance; however, mainly among people high on attachment anxiety or low on attachment avoidance.

  12. Flows, scaling, and the control of moment hierarchies for stochastic chemical reaction networks

    NASA Astrophysics Data System (ADS)

    Smith, Eric; Krishnamurthy, Supriya

    2017-12-01

    Stochastic chemical reaction networks (CRNs) are complex systems that combine the features of concurrent transformation of multiple variables in each elementary reaction event and nonlinear relations between states and their rates of change. Most general results concerning CRNs are limited to restricted cases where a topological characteristic known as deficiency takes a value 0 or 1, implying uniqueness and positivity of steady states and surprising, low-information forms for their associated probability distributions. Here we derive equations of motion for fluctuation moments at all orders for stochastic CRNs at general deficiency. We show, for the standard base case of proportional sampling without replacement (which underlies the mass-action rate law), that the generator of the stochastic process acts on the hierarchy of factorial moments with a finite representation. Whereas simulation of high-order moments for many-particle systems is costly, this representation reduces the solution of moment hierarchies to a complexity comparable to solving a heat equation. At steady states, moment hierarchies for finite CRNs interpolate between low-order and high-order scaling regimes, which may be approximated separately by distributions similar to those for deficiency-zero networks and connected through matched asymptotic expansions. In CRNs with multiple stable or metastable steady states, boundedness of high-order moments provides the starting condition for recursive solution downward to low-order moments, reversing the order usually used to solve moment hierarchies. A basis for a subset of network flows defined by having the same mean-regressing property as the flows in deficiency-zero networks gives the leading contribution to low-order moments in CRNs at general deficiency, in a 1 /n expansion in large particle numbers. Our results give a physical picture of the different informational roles of mean-regressing and non-mean-regressing flows and clarify the dynamical meaning of deficiency not only for first-moment conditions but for all orders in fluctuations.

  13. Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment

    PubMed Central

    Yamashita, Yuichi; Tani, Jun

    2008-01-01

    It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties (“multiple timescales”). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional hierarchy in neural systems. PMID:18989398

  14. Topological enslavement in evolutionary games on correlated multiplex networks

    NASA Astrophysics Data System (ADS)

    Kleineberg, Kaj-Kolja; Helbing, Dirk

    2018-05-01

    Governments and enterprises strongly rely on incentives to generate favorable outcomes from social and strategic interactions between individuals. The incentives are usually modeled by payoffs in evolutionary games, such as the prisoners dilemma or the harmony game, with imitation dynamics. Adjusting the incentives by changing the payoff parameters can favor cooperation, as found in the harmony game, over defection, which prevails in the prisoner’s dilemma. Here, we show that this is not always the case if individuals engage in strategic interactions in multiple domains. In particular, we investigate evolutionary games on multiplex networks where individuals obtain an aggregate payoff. We explicitly control the strength of degree correlations between nodes in the different layers of the multiplex. We find that if the multiplex is composed of many layers and degree correlations are strong, the topology of the system enslaves the dynamics and the final outcome, cooperation or defection, becomes independent of the payoff parameters. The fate of the system is then determined by the initial conditions.

  15. Spatial Multiplexing of Atom-Photon Entanglement Sources using Feedforward Control and Switching Networks.

    PubMed

    Tian, Long; Xu, Zhongxiao; Chen, Lirong; Ge, Wei; Yuan, Haoxiang; Wen, Yafei; Wang, Shengzhi; Li, Shujing; Wang, Hai

    2017-09-29

    The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ∼sixfold (∼fourfold) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49±0.03 combined with a memory lifetime of up to ∼51  μs.

  16. Vanishing point: Scale independence in geomorphological hierarchies

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2016-08-01

    Scale linkage problems in geosciences are often associated with a hierarchy of components. Both dynamical systems perspectives and intuition suggest that processes or relationships operating at fundamentally different scales are independent with respect to influences on system dynamics. But how far apart is ;fundamentally different;-that is, what is the ;vanishing point; at which scales are no longer interdependent? And how do we reconcile that with the idea (again, supported by both theory and intuition) that we can work our way along scale hierarchies from microscale to planetary (and vice-versa)? Graph and network theory are employed here to address these questions. Analysis of two archetypal hierarchical networks shows low algebraic connectivity, indicating low levels of inferential synchronization. This explains the apparent paradox between scale independence and hierarchical linkages. Incorporating more hierarchical levels results in an increase in complexity or entropy of the network as a whole, but at a nonlinear rate. Complexity increases as a power α of the number of levels in the hierarchy, with α < 1 and usually ≤ 0.6. However, algebraic connectivity decreases at a more rapid rate. Thus, the ability to infer one part of the hierarchical network from other level decays rapidly as more levels are added. Relatedness among system components decreases with differences in scale or resolution, analogous to distance decay in the spatial domain. These findings suggest a strategy of identifying and focusing on the most important or interesting scale levels, rather than attempting to identify the smallest or largest scale levels and work top-down or bottom-up from there. Examples are given from soil geomorphology and karst flow networks.

  17. Experimental demonstration of optical stealth transmission over wavelength-division multiplexing network.

    PubMed

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Tang, Yeteng; Chen, Dalei

    2016-08-10

    We propose and experimentally demonstrate an optical stealth transmission system over a 200 GHz-grid wavelength-division multiplexing (WDM) network. The stealth signal is processed by spectral broadening, temporal spreading, and power equalizing. The public signal is suppressed by multiband notch filtering at the stealth channel receiver. The interaction between the public and stealth channels is investigated in terms of public-signal-to-stealth-signal ratio, data rate, notch-filter bandwidth, and public channel number. The stealth signal can transmit over 80 km single-mode fiber with no error. Our experimental results verify the feasibility of optical steganography used over the existing WDM-based optical network.

  18. Effects of Modulation Techniques (Manchester Code, NRZ or RZ) on the Operation of Hybrid WDM/TDM Passive Optical Networks

    PubMed Central

    Nyachionjeka, Kumbirayi

    2014-01-01

    In this paper, the performance and feasibility of a hybrid wavelength division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) system with 128 optical network units (ONUs) is analysed. In this system, triple play services (video, voice and data) are successfully communicated through a distance of up to 28 km. Moreover, we analysed and compared the performance of various modulation formats for different distances in the proposed hybrid WDM/TDM PON. NRZ rectangular emerged as the most appropriate modulation format for triple play transmission in the proposed hybrid PON. PMID:27382633

  19. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    NASA Astrophysics Data System (ADS)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  20. Non-identical multiplexing promotes chimera states

    NASA Astrophysics Data System (ADS)

    Ghosh, Saptarshi; Zakharova, Anna; Jalan, Sarika

    2018-01-01

    We present the emergence of chimeras, a state referring to coexistence of partly coherent, partly incoherent dynamics in networks of identical oscillators, in a multiplex network consisting of two non-identical layers which are interconnected. We demonstrate that the parameter range displaying the chimera state in the homogeneous first layer of the multiplex networks can be tuned by changing the link density or connection architecture of the same nodes in the second layer. We focus on the impact of the interconnected second layer on the enlargement or shrinking of the coupling regime for which chimeras are displayed in the homogeneous first layer. We find that a denser homogeneous second layer promotes chimera in a sparse first layer, where chimeras do not occur in isolation. Furthermore, while a dense connection density is required for the second layer if it is homogeneous, this is not true if the second layer is inhomogeneous. We demonstrate that a sparse inhomogeneous second layer which is common in real-world complex systems can promote chimera states in a sparse homogeneous first layer.

  1. GCF Mark IV development

    NASA Technical Reports Server (NTRS)

    Mortensen, L. O.

    1982-01-01

    The Mark IV ground communication facility (GCF) as it is implemented to support the network consolidation program is reviewed. Changes in the GCF are made in the area of increased capacity. Common carrier circuits are the medium for data transfer. The message multiplexing in the Mark IV era differs from the Mark III era, in that all multiplexing is done in a GCF computer under GCF software control, which is similar to the multiplexing currently done in the high speed data subsystem.

  2. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    NASA Astrophysics Data System (ADS)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  3. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    NASA Astrophysics Data System (ADS)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  4. Quality assurance of chemical ingredient classification for the National Drug File - Reference Terminology.

    PubMed

    Zheng, Ling; Yumak, Hasan; Chen, Ling; Ochs, Christopher; Geller, James; Kapusnik-Uner, Joan; Perl, Yehoshua

    2017-09-01

    The National Drug File - Reference Terminology (NDF-RT) is a large and complex drug terminology consisting of several classification hierarchies on top of an extensive collection of drug concepts. These hierarchies provide important information about clinical drugs, e.g., their chemical ingredients, mechanisms of action, dosage form and physiological effects. Within NDF-RT such information is represented using tens of thousands of roles connecting drugs to classifications. In previous studies, we have introduced various kinds of Abstraction Networks to summarize the content and structure of terminologies in order to facilitate their visual comprehension, and support quality assurance of terminologies. However, these previous kinds of Abstraction Networks are not appropriate for summarizing the NDF-RT classification hierarchies, due to its unique structure. In this paper, we present the novel Ingredient Abstraction Network (IAbN) to summarize, visualize and support the audit of NDF-RT's Chemical Ingredients hierarchy and its associated drugs. A common theme in our quality assurance framework is to use characterizations of sets of concepts, revealed by the Abstraction Network structure, to capture concepts, the modeling of which is more complex than for other concepts. For the IAbN, we characterize drug ingredient concepts as more complex if they belong to IAbN groups with multiple parent groups. We show that such concepts have a statistically significantly higher rate of errors than a control sample and identify two especially common patterns of errors. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Meeting the future metro network challenges and requirements by adopting programmable S-BVT with direct-detection and PDM functionality

    NASA Astrophysics Data System (ADS)

    Nadal, Laia; Svaluto Moreolo, Michela; Fàbrega, Josep M.; Vílchez, F. Javier

    2017-07-01

    In this paper, we propose an advanced programmable sliceable-bandwidth variable transceiver (S-BVT) with polarization division multiplexing (PDM) capability as a key enabler to fulfill the requirements for future 5G networks. Thanks to its cost-effective optoelectronic front-end based on orthogonal frequency division multiplexing (OFDM) technology and direct-detection (DD), the proposed S-BVT becomes suitable for next generation highly flexible and scalable metro networks. Polarization beam splitters (PBSs) and controllers (PCs), available on-demand, are included at the transceivers and at the network nodes, further enhancing the system flexibility and promoting an efficient use of the spectrum. 40G-100G PDM transmission has been experimentally demonstrated, within a 4-node photonic mesh network (ADRENALINE testbed), implementing a simplified equalization process.

  6. Multiplexing of Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  7. Spike phase synchronization in multiplex cortical neural networks

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2017-01-01

    In this paper we study synchronizability of two multiplex cortical networks: whole-cortex of hermaphrodite C. elegans and posterior cortex in male C. elegans. These networks are composed of two connection layers: network of chemical synapses and the one formed by gap junctions. This work studies the contribution of each layer on the phase synchronization of non-identical spiking Hindmarsh-Rose neurons. The network of male C. elegans shows higher phase synchronization than its randomized version, while it is not the case for hermaphrodite type. The random networks in each layer are constructed such that the nodes have the same degree as the original network, thus providing an unbiased comparison. In male C. elegans, although the gap junction network is sparser than the chemical network, it shows higher contribution in the synchronization phenomenon. This is not the case in hermaphrodite type, which is mainly due to significant less density of gap junction layer (0.013) as compared to chemical layer (0.028). Also, the gap junction network in this type has stronger community structure than the chemical network, and this is another driving factor for its weaker synchronizability.

  8. Anger Modulates Influence Hierarchies Within and Between Emotional Reactivity and Regulation Networks

    PubMed Central

    Jacob, Yael; Gilam, Gadi; Lin, Tamar; Raz, Gal; Hendler, Talma

    2018-01-01

    Emotion regulation is hypothesized to be mediated by the interactions between emotional reactivity and regulation networks during the dynamic unfolding of the emotional episode. Yet, it remains unclear how to delineate the effective relationships between these networks. In this study, we examined the aforementioned networks’ information flow hierarchy during viewing of an anger provoking movie excerpt. Anger regulation is particularly essential for averting individuals from aggression and violence, thus improving prosocial behavior. Using subjective ratings of anger intensity we differentiated between low and high anger periods of the film. We then applied the Dependency Network Analysis (DEPNA), a newly developed graph theory method to quantify networks’ node importance during the two anger periods. The DEPNA analysis revealed that the impact of the ventromedial prefrontal cortex (vmPFC) was higher in the high anger condition, particularly within the regulation network and on the connections between the reactivity and regulation networks. We further showed that higher levels of vmPFC impact on the regulation network were associated with lower subjective anger intensity during the high-anger cinematic period, and lower trait anger levels. Supporting and replicating previous findings, these results emphasize the previously acknowledged central role of vmPFC in modulating negative affect. We further show that the impact of the vmPFC relies on its correlational influence on the connectivity between reactivity and regulation networks. More importantly, the hierarchy network analysis revealed a link between connectivity patterns of the vmPFC and individual differences in anger reactivity and trait, suggesting its potential therapeutic role. PMID:29681803

  9. Peptide Immunoaffinity Enrichment and Targeted Mass Spectrometry Enables Multiplex, Quantitative Pharmacodynamic Studies of Phospho-Signaling*

    PubMed Central

    Whiteaker, Jeffrey R.; Zhao, Lei; Yan, Ping; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Paulovich, Amanda G.

    2015-01-01

    In most cell signaling experiments, analytes are measured one Western blot lane at a time in a semiquantitative and often poorly specific manner, limiting our understanding of network biology and hindering the translation of novel therapeutics and diagnostics. We show the feasibility of using multiplex immuno-MRM for phospho-pharmacodynamic measurements, establishing the potential for rapid and precise quantification of cell signaling networks. A 69-plex immuno-MRM assay targeting the DNA damage response network was developed and characterized by response curves and determinations of intra- and inter-assay repeatability. The linear range was ≥3 orders of magnitude, the median limit of quantification was 2.0 fmol/mg, the median intra-assay variability was 10% CV, and the median interassay variability was 16% CV. The assay was applied in proof-of-concept studies to immortalized and primary human cells and surgically excised cancer tissues to quantify exposure–response relationships and the effects of a genomic variant (ATM kinase mutation) or pharmacologic (kinase) inhibitor. The study shows the utility of multiplex immuno-MRM for simultaneous quantification of phosphorylated and nonmodified peptides, showing feasibility for development of targeted assay panels to cell signaling networks. PMID:25987412

  10. Architecture design and performance evaluation of multigranularity optical networks based on optical code division multiplexing

    NASA Astrophysics Data System (ADS)

    Huang, Shaowei; Baba, Ken-Ichi; Murata, Masayuki; Kitayama, Ken-Ichi

    2006-12-01

    In traditional lambda-based multigranularity optical networks, a lambda is always treated as the basic routing unit, resulting in low wavelength utilization. On the basis of optical code division multiplexing (OCDM) technology, a novel OCDM-based multigranularity optical cross-connect (MG-OXC) is proposed. Compared with the traditional lambda-based MG-OXC, its switching capability has been extended to support fiber switching, waveband switching, lambda switching, and OCDM switching. In a network composed of OCDM-based MG-OXCs, a single wavelength can be shared by distinct label switched paths (LSPs) called OCDM-LSPs, and OCDM-LSP switching can be implemented in the optical domain. To improve the network flexibility for an OCDM-LSP provisioning, two kinds of switches enabling hybrid optical code (OC)-wavelength conversion are designed. Simulation results indicate that a blocking probability reduction of 2 orders can be obtained by deploying only five OCs to a single wavelength. Furthermore, compared with time-division-multiplexing LSP (TDM-LSP), owing to the asynchronous accessibility and the OC conversion, OCDM-LSPs have been shown to permit a simpler switch architecture and achieve better blocking performance than TDM-LSPs.

  11. Erratum to "10 Gbit/s mode-multiplexed QPSK transmission using MDM-to-MFDM based single coherent receiver for intra- and inter data center networking" [Opt. Commun. 391 (2017) 106-110

    NASA Astrophysics Data System (ADS)

    Asif, Rameez; Haithem, Mustafa

    2018-03-01

    We revisited our previous work "10 Gbit/s mode-multiplexed QPSK transmission using MDM-to-MFDM based single coherent receiver for intraand inter data center networking" [Opt. Commun. 391 (2017) 106-110] and discover a mistake in the Appendix 'A', i.e. mode-selective coherent detection technique. In this section, the direct referencing of the previous work at appropriate points is not adequate (page no. 109).

  12. Low-cost coherent receiver for long-reach optical access network using single-ended detection.

    PubMed

    Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao

    2014-09-15

    A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two polarization components of polarization division multiplexing (PDM) signals. Polarization de-multiplexing and signal-to-signal beat interference (SSBI) cancellation are realized by using only three photodiodes. Simulation results for 40 Gb/s PDM-OFDM transmissions indicate that the low-cost coherent receiver has 3.2 dB optical signal-to-noise ratio difference compared with the theoretical value.

  13. Comparing the hierarchy of author given tags and repository given tags in a large document archive

    NASA Astrophysics Data System (ADS)

    Tibély, Gergely; Pollner, Péter; Palla, Gergely

    2016-10-01

    Folksonomies - large databases arising from collaborative tagging of items by independent users - are becoming an increasingly important way of categorizing information. In these systems users can tag items with free words, resulting in a tripartite item-tag-user network. Although there are no prescribed relations between tags, the way users think about the different categories presumably has some built in hierarchy, in which more special concepts are descendants of some more general categories. Several applications would benefit from the knowledge of this hierarchy. Here we apply a recent method to check the differences and similarities of hierarchies resulting from tags given by independent individuals and from tags given by a centrally managed repository system. The results from our method showed substantial differences between the lower part of the hierarchies, and in contrast, a relatively high similarity at the top of the hierarchies.

  14. A Novel Cost-effective OFDM WDM-PON Radio Over Fiber System Employing FBG to Generate Optical mm-wave

    NASA Astrophysics Data System (ADS)

    Nguyen, HoangViet

    2015-03-01

    We have investigated and demonstrated a novel scheme to generate 2.5 Gbit/s 64 QAM orthogonal frequency division multiplexing (OFDM) signals for Radio Over Fiber (ROF) systems. We employ Fiber Bragg Grating (FBG) because the repetitive frequency of the RF source and the bandwidth of the optical modulator are largely reduced and the architecture of the ROF system is simpler. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) has been considered as a promising solution for future broadband access networks. Principle of WDM-PON access network compatible with OFDM-ROF systems is investigated. This novel scheme which has multiple double-frequency technique to generate mm-wave signal to carry OFDM signals is a practical scheme to be applied for future broadband access networks.

  15. Stability of Boolean multilevel networks.

    PubMed

    Cozzo, Emanuele; Arenas, Alex; Moreno, Yamir

    2012-09-01

    The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics of these systems. Our results point out the need for a conceptual transition from the physics of single-layered networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.

  16. Layer 1 VPN services in distributed next-generation SONET/SDH networks with inverse multiplexing

    NASA Astrophysics Data System (ADS)

    Ghani, N.; Muthalaly, M. V.; Benhaddou, D.; Alanqar, W.

    2006-05-01

    Advances in next-generation SONET/SDH along with GMPLS control architectures have enabled many new service provisioning capabilities. In particular, a key services paradigm is the emergent Layer 1 virtual private network (L1 VPN) framework, which allows multiple clients to utilize a common physical infrastructure and provision their own 'virtualized' circuit-switched networks. This precludes expensive infrastructure builds and increases resource utilization for carriers. Along these lines, a novel L1 VPN services resource management scheme for next-generation SONET/SDH networks is proposed that fully leverages advanced virtual concatenation and inverse multiplexing features. Additionally, both centralized and distributed GMPLS-based implementations are also tabled to support the proposed L1 VPN services model. Detailed performance analysis results are presented along with avenues for future research.

  17. A novel survivable architecture for hybrid WDM/TDM passive optical networks

    NASA Astrophysics Data System (ADS)

    Qiu, Yang; Chan, Chun-Kit

    2014-02-01

    A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.

  18. Fighting for resources: Two leaders in the money addicted social hierarchies

    NASA Astrophysics Data System (ADS)

    Dybiec, Bartłomiej

    Building of hierarchy is inevitably associated with the constant competition for resources and attention. Here, we show how presence of two favored (leading) nodes affects properties of the network connecting individuals. In particular, we study how nodes characteristics depend on relative asymmetry between two leading nodes. It is shown that without strong and rigorous avoidance mechanism, individuals can support both dominating nodes. Slow redistribution of resources enhances this effect. Moreover, slow redistribution of resources results in development of social networks with a very limited number of layers.

  19. Time signal distribution in communication networks based on synchronous digital hierarchy

    NASA Technical Reports Server (NTRS)

    Imaoka, Atsushi; Kihara, Masami

    1993-01-01

    A new method that uses round-trip paths to accurately measure transmission delay for time synchronization is proposed. The performance of the method in Synchronous Digital Hierarchy networks is discussed. The feature of this method is that it separately measures the initial round trip path delay and the variations in round-trip path delay. The delay generated in SDH equipment is determined by measuring the initial round-trip path delay. In an experiment with actual SDH equipment, the error of initial delay measurement was suppressed to 30ns.

  20. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit.

    PubMed

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-12-21

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10 -9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

  1. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    NASA Astrophysics Data System (ADS)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-12-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10-9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

  2. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    PubMed Central

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-01-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than −30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10−9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers. PMID:28000735

  3. Overload-based cascades on multiplex networks and effects of inter-similarity

    PubMed Central

    Zhou, Dong

    2017-01-01

    Although cascading failures caused by overload on interdependent/interconnected networks have been studied in the recent years, the effect of overlapping links (inter-similarity) on robustness to such cascades in coupled networks is not well understood. This is an important issue since shared links exist in many real-world coupled networks. In this paper, we propose a new model for load-based cascading failures in multiplex networks. We leverage it to compare different network structures, coupling schemes, and overload rules. More importantly, we systematically investigate the impact of inter-similarity on the robustness of the whole system under an initial intentional attack. Surprisingly, we find that inter-similarity can have a negative impact on robustness to overload cascades. To the best of our knowledge, we are the first to report the competition between the positive and the negative impacts of overlapping links on the robustness of coupled networks. These results provide useful suggestions for designing robust coupled traffic systems. PMID:29252988

  4. Use of FEC coding to improve statistical multiplexing performance for video transport over ATM networks

    NASA Astrophysics Data System (ADS)

    Kurceren, Ragip; Modestino, James W.

    1998-12-01

    The use of forward error-control (FEC) coding, possibly in conjunction with ARQ techniques, has emerged as a promising approach for video transport over ATM networks for cell-loss recovery and/or bit error correction, such as might be required for wireless links. Although FEC provides cell-loss recovery capabilities it also introduces transmission overhead which can possibly cause additional cell losses. A methodology is described to maximize the number of video sources multiplexed at a given quality of service (QoS), measured in terms of decoded cell loss probability, using interlaced FEC codes. The transport channel is modelled as a block interference channel (BIC) and the multiplexer as single server, deterministic service, finite buffer supporting N users. Based upon an information-theoretic characterization of the BIC and large deviation bounds on the buffer overflow probability, the described methodology provides theoretically achievable upper limits on the number of sources multiplexed. Performance of specific coding techniques using interlaced nonbinary Reed-Solomon (RS) codes and binary rate-compatible punctured convolutional (RCPC) codes is illustrated.

  5. Modeling rises and falls in money addicted social hierarchies

    NASA Astrophysics Data System (ADS)

    Dybiec, Bartłomiej; Mitarai, Namiko; Sneppen, Kim

    2014-08-01

    The emergence of large communities is inherently associated with the creation of social structures. Connections between individuals are indispensable for cooperative action of agents building social groups. Moreover, social groups usually evolve and their structure changes over time. Consequently, an underlying network connecting individuals is not static, reflecting an ongoing adaptation to new conditions. The evolution of social connections is influenced by the relative position (hierarchy) of individuals building the system as well as by the availability of resources. We explore this aspect of human ambition by modeling the interplay of social networking and an uneven distribution of external resources. The model naturally generates social hierarchies. Remarkably, this social structure exhibits a rise-and-fall behavior. A well pronounced quasi-periodic dynamics, which is closely associated with the dissipation of resources that are needed to sustain the social links, is revealed.

  6. Extending Stability Through Hierarchical Clusters in Echo State Networks

    PubMed Central

    Jarvis, Sarah; Rotter, Stefan; Egert, Ulrich

    2009-01-01

    Echo State Networks (ESN) are reservoir networks that satisfy well-established criteria for stability when constructed as feedforward networks. Recent evidence suggests that stability criteria are altered in the presence of reservoir substructures, such as clusters. Understanding how the reservoir architecture affects stability is thus important for the appropriate design of any ESN. To quantitatively determine the influence of the most relevant network parameters, we analyzed the impact of reservoir substructures on stability in hierarchically clustered ESNs, as they allow a smooth transition from highly structured to increasingly homogeneous reservoirs. Previous studies used the largest eigenvalue of the reservoir connectivity matrix (spectral radius) as a predictor for stable network dynamics. Here, we evaluate the impact of clusters, hierarchy and intercluster connectivity on the predictive power of the spectral radius for stability. Both hierarchy and low relative cluster sizes extend the range of spectral radius values, leading to stable networks, while increasing intercluster connectivity decreased maximal spectral radius. PMID:20725523

  7. A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy.

    PubMed

    Kell, Alexander J E; Yamins, Daniel L K; Shook, Erica N; Norman-Haignere, Sam V; McDermott, Josh H

    2018-05-02

    A core goal of auditory neuroscience is to build quantitative models that predict cortical responses to natural sounds. Reasoning that a complete model of auditory cortex must solve ecologically relevant tasks, we optimized hierarchical neural networks for speech and music recognition. The best-performing network contained separate music and speech pathways following early shared processing, potentially replicating human cortical organization. The network performed both tasks as well as humans and exhibited human-like errors despite not being optimized to do so, suggesting common constraints on network and human performance. The network predicted fMRI voxel responses substantially better than traditional spectrotemporal filter models throughout auditory cortex. It also provided a quantitative signature of cortical representational hierarchy-primary and non-primary responses were best predicted by intermediate and late network layers, respectively. The results suggest that task optimization provides a powerful set of tools for modeling sensory systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The Relationship of Age to Personal Network Size, Relational Multiplexity, and Proximity to Alters in the Western United States

    PubMed Central

    Smith, Emily J.; Marcum, Christopher S.; Boessen, Adam; Almquist, Zack W.; Hipp, John R.; Nagle, Nicholas N.

    2015-01-01

    Objectives. This study examines the association of age and other sociodemographic variables with properties of personal networks; using samples of individuals residing in the rural western United States and the City of Los Angeles, we evaluate the degree to which these associations vary with geographical context. For both samples, we test the hypothesis that age is negatively associated with network size (i.e., degree) and positively associated with network multiplexity (the extent of overlap) on 6 different relations: core discussion members, social activity participants, emergency contacts, neighborhood safety contacts, job informants, and kin. We also examine the relationship between age and spatial proximity to alters. Method. Our data consist of a large-scale, spatially stratified egocentric network survey containing information about respondents and those to whom they are tied. We use Poisson regression to test our hypothesis regarding degree while adjusting for covariates, including education, gender, race, and self-reported sense of neighborhood belonging. We use multiple linear regression to test our hypotheses on multiplexity and distance to alters. Results. For both rural and urban populations, we find a nonmonotone association between age and numbers of core discussants and emergency contacts, with rural populations also showing nonmonotone associations for social activity partners and kin. These nonmonotone relationships show a peak in expected degree at midlife, followed by an eventual decline. We find a decline in degree among the elderly for all relations in both populations. Age is positively associated with distance to nonhousehold alters for the rural population, although residential tenure is associated with shorter ego-alter distances in both rural and urban settings. Additionally, age is negatively associated with network multiplexity for both populations. Discussion. Although personal network size ultimately declines with age, we find that increases for some relations extend well into late-midlife and most elders still maintain numerous contacts across diverse relations. The evidence we present suggests that older people tap into an wider variety of different network members for different types of relations than do younger people. This is true even for populations in rural settings, for whom immediate access to potential alters is more limited. PMID:25324292

  9. Coexistence of 3G repeaters with LTE base stations.

    PubMed

    Yeo, Woon-Young; Lee, Sang-Min; Hwang, Gyung-Ho; Kim, Jae-Hoon

    2013-01-01

    Repeaters have been an attractive solution for mobile operators to upgrade their wireless networks at low cost and to extend network coverage effectively. Since the first LTE commercial deployment in 2009, many mobile operators have launched LTE networks by upgrading their 3G and legacy networks. Because all 3G frequency bands are shared with the frequency bands for LTE deployment and 3G mobile operators have an enormous number of repeaters, reusing 3G repeaters in LTE networks is definitely a practical and cost-efficient solution. However, 3G repeaters usually do not support spatial multiplexing with multiple antennas, and thus it is difficult to reuse them directly in LTE networks. In order to support spatial multiplexing of LTE, the role of 3G repeaters should be replaced with small LTE base stations or MIMO-capable repeaters. In this paper, a repeater network is proposed to reuse 3G repeaters in LTE deployment while still supporting multilayer transmission of LTE. Interestingly, the proposed network has a higher cluster throughput than an LTE network with MIMO-capable repeaters.

  10. Coexistence of 3G Repeaters with LTE Base Stations

    PubMed Central

    Yeo, Woon-Young

    2013-01-01

    Repeaters have been an attractive solution for mobile operators to upgrade their wireless networks at low cost and to extend network coverage effectively. Since the first LTE commercial deployment in 2009, many mobile operators have launched LTE networks by upgrading their 3G and legacy networks. Because all 3G frequency bands are shared with the frequency bands for LTE deployment and 3G mobile operators have an enormous number of repeaters, reusing 3G repeaters in LTE networks is definitely a practical and cost-efficient solution. However, 3G repeaters usually do not support spatial multiplexing with multiple antennas, and thus it is difficult to reuse them directly in LTE networks. In order to support spatial multiplexing of LTE, the role of 3G repeaters should be replaced with small LTE base stations or MIMO-capable repeaters. In this paper, a repeater network is proposed to reuse 3G repeaters in LTE deployment while still supporting multilayer transmission of LTE. Interestingly, the proposed network has a higher cluster throughput than an LTE network with MIMO-capable repeaters. PMID:24459420

  11. Changes of hierarchical network in local and world stock market

    NASA Astrophysics Data System (ADS)

    Patwary, Enayet Ullah; Lee, Jong Youl; Nobi, Ashadun; Kim, Doo Hwan; Lee, Jae Woo

    2017-10-01

    We consider the cross-correlation coefficients of the daily returns in the local and global stock markets. We generate the minimal spanning tree (MST) using the correlation matrix. We observe that the MSTs change their structure from chain-like networks to star-like networks during periods of market uncertainty. We quantify the measure of the hierarchical network utilizing the value of the hierarchy measured by the hierarchical path. The hierarchy and betweenness centrality characterize the state of the market regarding the impact of crises. During crises, the non-financial company is established as the central node of the MST. However, before the crisis and during stable periods, the financial company is occupying the central node of the MST in the Korean and the U.S. stock markets. The changes in the network structure and the central node are good indicators of an upcoming crisis.

  12. Multiplexity and multireciprocity in directed multiplexes.

    PubMed

    Gemmetto, Valerio; Squartini, Tiziano; Picciolo, Francesco; Ruzzenenti, Franco; Garlaschelli, Diego

    2016-10-01

    Real-world multilayer networks feature nontrivial dependencies among links of different layers. Here we argue that if links are directed, then dependencies are twofold. Besides the ordinary tendency of links of different layers to align as the result of "multiplexity," there is also a tendency to antialign as a result of what we call "multireciprocity," i.e., the fact that links in one layer can be reciprocated by opposite links in a different layer. Multireciprocity generalizes the scalar definition of single-layer reciprocity to that of a square matrix involving all pairs of layers. We introduce multiplexity and multireciprocity matrices for both binary and weighted multiplexes and validate their statistical significance against maximum-entropy null models that filter out the effects of node heterogeneity. We then perform a detailed empirical analysis of the world trade multiplex (WTM), representing the import-export relationships between world countries in different commodities. We show that the WTM exhibits strong multiplexity and multireciprocity, an effect which is, however, largely encoded into the degree or strength sequences of individual layers. The residual effects are still significant and allow us to classify pairs of commodities according to their tendency to be traded together in the same direction and/or in opposite ones. We also find that the multireciprocity of the WTM is significantly lower than the usual reciprocity measured on the aggregate network. Moreover, layers with low (high) internal reciprocity are embedded within sets of layers with comparably low (high) mutual multireciprocity. This suggests that, in the WTM, reciprocity is inherent to groups of related commodities rather than to individual commodities. We discuss the implications for international trade research focusing on product taxonomies, the product space, and fitness and complexity metrics.

  13. Multiplex visibility graphs to investigate recurrent neural network dynamics

    NASA Astrophysics Data System (ADS)

    Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert

    2017-03-01

    A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.

  14. Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring.

    PubMed

    Luo, Yiyang; Xia, Li; Xu, Zhilin; Yu, Can; Sun, Qizhen; Li, Wei; Huang, Di; Liu, Deming

    2015-02-09

    An optical chaos and hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) based large capacity quasi-distributed sensing network with real-time fiber fault monitoring is proposed. Chirped fiber Bragg grating (CFBG) intensity demodulation is adopted to improve the dynamic range of the measurements. Compared with the traditional sensing interrogation methods in time, radio frequency and optical wavelength domains, the measurand sensing and the precise locating of the proposed sensing network can be simultaneously interrogated by the relative amplitude change (RAC) and the time delay of the correlation peak in the cross-correlation spectrum. Assisted with the WDM/TDM technology, hundreds of sensing units could be potentially multiplexed in the multiple sensing fiber lines. Based on the proof-of-concept experiment for axial strain measurement with three sensing fiber lines, the strain sensitivity up to 0.14% RAC/με and the precise locating of the sensors are achieved. Significantly, real-time fiber fault monitoring in the three sensing fiber lines is also implemented with a spatial resolution of 2.8 cm.

  15. Multiplex visibility graphs to investigate recurrent neural network dynamics

    PubMed Central

    Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert

    2017-01-01

    A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods. PMID:28281563

  16. Response Inhibition Is Facilitated by a Change to Red Over Green in the Stop Signal Paradigm

    PubMed Central

    Blizzard, Shawn; Fierro-Rojas, Adriela; Fallah, Mazyar

    2017-01-01

    Actions are informed by the complex interactions of response execution and inhibition networks. These networks integrate sensory information with internal states and behavioral goals to produce an appropriate action or to update an ongoing action. Recent investigations have shown that, behaviorally, attention is captured through a hierarchy of colors. These studies showed how the color hierarchy affected visual processing. To determine whether the color hierarchy can be extended to higher level executive functions such as response execution and inhibition, we conducted several experiments using the stop-signal task (SST). In the first experiment, we modified the classic paradigm so that the go signals could vary in task-irrelevant color, with an auditory stop signal. We found that the task-irrelevant color of the go signals did not differentially affect response times. In the second experiment we determined that making the color of the go signal relevant for response selection still did not affect reaction times(RTs) and, thus, execution. In the third experiment, we modified the paradigm so that the stop signal was a task relevant change in color of the go signal. The mean RT to the red stop signal was approximately 25 ms faster than to the green stop signal. In other words, red stop signals facilitated response inhibition more than green stop signals, however, there was no comparative facilitation of response execution. These findings suggest that response inhibition, but not execution, networks are sensitive to differences in color salience. They also suggest that the color hierarchy is based on attentional networks and not simply on early sensory processing. PMID:28101011

  17. An Enriched Unified Medical Language System Semantic Network with a Multiple Subsumption Hierarchy

    PubMed Central

    Zhang, Li; Perl, Yehoshua; Halper, Michael; Geller, James; Cimino, James J.

    2004-01-01

    Objective: The Unified Medical Language System's (UMLS's) Semantic Network's (SN's) two-tree structure is restrictive because it does not allow a semantic type to be a specialization of several other semantic types. In this article, the SN is expanded into a multiple subsumption structure with a directed acyclic graph (DAG) IS-A hierarchy, allowing a semantic type to have multiple parents. New viable IS-A links are added as warranted. Design: Two methodologies are presented to identify and add new viable IS-A links. The first methodology is based on imposing the characteristic of connectivity on a previously presented partition of the SN. Four transformations are provided to find viable IS-A links in the process of converting the partition's disconnected groups into connected ones. The second methodology identifies new IS-A links through a string matching process involving names and definitions of various semantic types in the SN. A domain expert is needed to review all the results to determine the validity of the new IS-A links. Results: Nineteen new IS-A links are added to the SN, and four new semantic types are also created to support the multiple subsumption framework. The resulting network, called the Enriched Semantic Network (ESN), exhibits a DAG-structured hierarchy. A partition of the ESN containing 19 connected groups is also derived. Conclusion: The ESN is an expanded abstraction of the UMLS compared with the original SN. Its multiple subsumption hierarchy can accommodate semantic types with multiple parents. Its representation thus provides direct access to a broader range of subsumption knowledge. PMID:14764611

  18. Wavelength Division Multiplexing Scheme for Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We describe work on a wavelength division multiplexing scheme for radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. Using discrete components, we made a two-channel demonstration of this concept and successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  19. Dynamic segment shared protection for multicast traffic in meshed wavelength-division-multiplexing optical networks

    NASA Astrophysics Data System (ADS)

    Liao, Luhua; Li, Lemin; Wang, Sheng

    2006-12-01

    We investigate the protection approach for dynamic multicast traffic under shared risk link group (SRLG) constraints in meshed wavelength-division-multiplexing optical networks. We present a shared protection algorithm called dynamic segment shared protection for multicast traffic (DSSPM), which can dynamically adjust the link cost according to the current network state and can establish a primary light-tree as well as corresponding SRLG-disjoint backup segments for a dependable multicast connection. A backup segment can efficiently share the wavelength capacity of its working tree and the common resources of other backup segments based on SRLG-disjoint constraints. The simulation results show that DSSPM not only can protect the multicast sessions against a single-SRLG breakdown, but can make better use of the wavelength resources and also lower the network blocking probability.

  20. Clustering determines the dynamics of complex contagions in multiplex networks

    NASA Astrophysics Data System (ADS)

    Zhuang, Yong; Arenas, Alex; Yaǧan, Osman

    2017-01-01

    We present the mathematical analysis of generalized complex contagions in a class of clustered multiplex networks. The model is intended to understand spread of influence, or any other spreading process implying a threshold dynamics, in setups of interconnected networks with significant clustering. The contagion is assumed to be general enough to account for a content-dependent linear threshold model, where each link type has a different weight (for spreading influence) that may depend on the content (e.g., product, rumor, political view) that is being spread. Using the generating functions formalism, we determine the conditions, probability, and expected size of the emergent global cascades. This analysis provides a generalization of previous approaches and is especially useful in problems related to spreading and percolation. The results present nontrivial dependencies between the clustering coefficient of the networks and its average degree. In particular, several phase transitions are shown to occur depending on these descriptors. Generally speaking, our findings reveal that increasing clustering decreases the probability of having global cascades and their size, however, this tendency changes with the average degree. There exists a certain average degree from which on clustering favors the probability and size of the contagion. By comparing the dynamics of complex contagions over multiplex networks and their monoplex projections, we demonstrate that ignoring link types and aggregating network layers may lead to inaccurate conclusions about contagion dynamics, particularly when the correlation of degrees between layers is high.

  1. Opportunistic Access in Frequency Hopping Cognitive Radio Networks

    DTIC Science & Technology

    2014-03-27

    thresholding MA multiple access MFSK M-ary frequency shift keying MIMO multiple-input/multiple-output OFDM orthogonal frequency-division multiplexing x...adaptive BER performance as a function of ISR with orthogonal frequency-division multiplexing ( OFDM ) interference present. . . . . . . . . . 41 4.15 Non...adaptive BER performance as a function of EB/N0 with OFDM interfer- ence present

  2. Local Area Networks: Part I.

    ERIC Educational Resources Information Center

    Dessy, Raymond E.

    1982-01-01

    Local area networks are common communication conduits allowing various terminals, computers, discs, printers, and other electronic devices to intercommunicate over short distances. Discusses the vocabulary of such networks including RS-232C point-to-point and IEEE-488 multidrop protocols; error detection; message packets; multiplexing; star, ring,…

  3. Upgrade of an optical network unit in a 40 Gb/s time and wavelength-division multiplexed passive optical network using an upstream tunable colorless laser

    NASA Astrophysics Data System (ADS)

    Bindhaiq, Salem; Supa'at, Abu Sahmah M.; Zulkifli, Nadiatulhuda; Shaddad, Redhwan Q.; Mataria, Abdallah

    2014-07-01

    A high data transmission rate is the main requirement for next-generation telecommunication networks. A design for a 40 Gb/s time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 is presented. The use of a modulated grating Y-branch (MG-Y) laser is proposed as an upstream tunable colorless laser source to upgrade the optical network unit. The electronically tuned MG-Y externally modulated laser with a 10 Gb/s modulation rate is applied to a TWDM-PON and presented across a 3.2-nm tuning range. The performance of the proposed laser is analyzed in terms of bit error rate, eye diagram, and optical signal-to-noise ratio. The proposed TWDM-PON achieved an aggregated data rate of 40 Gb/s along 40 km of bidirectional fiber at a 1:128 splitting ratio without amplification and dispersion compensation.

  4. Percolation of networks with directed dependency links

    NASA Astrophysics Data System (ADS)

    Niu, Dunbiao; Yuan, Xin; Du, Minhui; Stanley, H. Eugene; Hu, Yanqing

    2016-04-01

    The self-consistent probabilistic approach has proven itself powerful in studying the percolation behavior of interdependent or multiplex networks without tracking the percolation process through each cascading step. In order to understand how directed dependency links impact criticality, we employ this approach to study the percolation properties of networks with both undirected connectivity links and directed dependency links. We find that when a random network with a given degree distribution undergoes a second-order phase transition, the critical point and the unstable regime surrounding the second-order phase transition regime are determined by the proportion of nodes that do not depend on any other nodes. Moreover, we also find that the triple point and the boundary between first- and second-order transitions are determined by the proportion of nodes that depend on no more than one node. This implies that it is maybe general for multiplex network systems, some important properties of phase transitions can be determined only by a few parameters. We illustrate our findings using Erdős-Rényi networks.

  5. Optimization of the segmented method for optical compression and multiplexing system

    NASA Astrophysics Data System (ADS)

    Al Falou, Ayman

    2002-05-01

    Because of the constant increasing demands of images exchange, and despite the ever increasing bandwidth of the networks, compression and multiplexing of images is becoming inseparable from their generation and display. For high resolution real time motion pictures, electronic performing of compression requires complex and time-consuming processing units. On the contrary, by its inherent bi-dimensional character, coherent optics is well fitted to perform such processes that are basically bi-dimensional data handling in the Fourier domain. Additionally, the main limiting factor that was the maximum frame rate is vanishing because of the recent improvement of spatial light modulator technology. The purpose of this communication is to benefit from recent optical correlation algorithms. The segmented filtering used to store multi-references in a given space bandwidth product optical filter can be applied to networks to compress and multiplex images in a given bandwidth channel.

  6. All optical OFDM transmission for passive optical networks

    NASA Astrophysics Data System (ADS)

    Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram

    2017-06-01

    This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.

  7. Optimizing diffusion in multiplexes by maximizing layer dissimilarity

    NASA Astrophysics Data System (ADS)

    Serrano, Alfredo B.; Gómez-Gardeñes, Jesús; Andrade, Roberto F. S.

    2017-05-01

    Diffusion in a multiplex depends on the specific link distribution between the nodes in each layer, but also on the set of the intralayer and interlayer diffusion coefficients. In this work we investigate, in a quantitative way, the efficiency of multiplex diffusion as a function of the topological similarity among multiplex layers. This similarity is measured by the distance between layers, taken among the pairs of layers. Results are presented for a simple two-layer multiplex, where one of the layers is held fixed, while the other one can be rewired in a controlled way in order to increase or decrease the interlayer distance. The results indicate that, for fixed values of all intra- and interlayer diffusion coefficients, a large interlayer distance generally enhances the global multiplex diffusion, providing a topological mechanism to control the global diffusive process. For some sets of networks, we develop an algorithm to identify the most sensitive nodes in the rewirable layer, so that changes in a small set of connections produce a drastic enhancement of the global diffusion of the whole multiplex system.

  8. All-optical LAN architectures based on arrayed waveguide grating multiplexers

    NASA Astrophysics Data System (ADS)

    Woesner, Hagen

    1998-10-01

    The paper presents optical LAN topologies which are made possible using an Arrayed Waveguide Grating Multiplexer (AWGM) instead of a passive star coupler to interconnect stations in an all-optical LAN. Due to the collision-free nature of an AWGM it offers the n-fold bandwidth compared to the star coupler. Virtual ring topologies appear (one ring on each wavelength) if the number of stations attached to the AWGM is a prime number. A method to construct larger networks using Cayley graphs is shown. An access protocol to avoid collisions on the proposed network is outlined.

  9. A transcription factor hierarchy defines an environmental stress response network.

    PubMed

    Song, Liang; Huang, Shao-Shan Carol; Wise, Aaron; Castanon, Rosa; Nery, Joseph R; Chen, Huaming; Watanabe, Marina; Thomas, Jerushah; Bar-Joseph, Ziv; Ecker, Joseph R

    2016-11-04

    Environmental stresses are universally encountered by microbes, plants, and animals. Yet systematic studies of stress-responsive transcription factor (TF) networks in multicellular organisms have been limited. The phytohormone abscisic acid (ABA) influences the expression of thousands of genes, allowing us to characterize complex stress-responsive regulatory networks. Using chromatin immunoprecipitation sequencing, we identified genome-wide targets of 21 ABA-related TFs to construct a comprehensive regulatory network in Arabidopsis thaliana Determinants of dynamic TF binding and a hierarchy among TFs were defined, illuminating the relationship between differential gene expression patterns and ABA pathway feedback regulation. By extrapolating regulatory characteristics of observed canonical ABA pathway components, we identified a new family of transcriptional regulators modulating ABA and salt responsiveness and demonstrated their utility to modulate plant resilience to osmotic stress. Copyright © 2016, American Association for the Advancement of Science.

  10. Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems.

    PubMed

    Park, Jongkil; Yu, Theodore; Joshi, Siddharth; Maier, Christoph; Cauwenberghs, Gert

    2017-10-01

    We present a hierarchical address-event routing (HiAER) architecture for scalable communication of neural and synaptic spike events between neuromorphic processors, implemented with five Xilinx Spartan-6 field-programmable gate arrays and four custom analog neuromophic integrated circuits serving 262k neurons and 262M synapses. The architecture extends the single-bus address-event representation protocol to a hierarchy of multiple nested buses, routing events across increasing scales of spatial distance. The HiAER protocol provides individually programmable axonal delay in addition to strength for each synapse, lending itself toward biologically plausible neural network architectures, and scales across a range of hierarchies suitable for multichip and multiboard systems in reconfigurable large-scale neuromorphic systems. We show approximately linear scaling of net global synaptic event throughput with number of routing nodes in the network, at 3.6×10 7 synaptic events per second per 16k-neuron node in the hierarchy.

  11. Optical signal processing techniques and applications of optical phase modulation in high-speed communication systems

    NASA Astrophysics Data System (ADS)

    Deng, Ning

    In recent years, optical phase modulation has attracted much research attention in the field of fiber optic communications. Compared with the traditional optical intensity-modulated signal, one of the main merits of the optical phase-modulated signal is the better transmission performance. For optical phase modulation, in spite of the comprehensive study of its transmission performance, only a little research has been carried out in terms of its functions, applications and signal processing for future optical networks. These issues are systematically investigated in this thesis. The research findings suggest that optical phase modulation and its signal processing can greatly facilitate flexible network functions and high bandwidth which can be enjoyed by end users. In the thesis, the most important physical-layer technology, signal processing and multiplexing, are investigated with optical phase-modulated signals. Novel and advantageous signal processing and multiplexing approaches are proposed and studied. Experimental investigations are also reported and discussed in the thesis. Optical time-division multiplexing and demultiplexing. With the ever-increasing demand on communication bandwidth, optical time division multiplexing (OTDM) is an effective approach to upgrade the capacity of each wavelength channel in current optical systems. OTDM multiplexing can be simply realized, however, the demultiplexing requires relatively complicated signal processing and stringent timing control, and thus hinders its practicability. To tackle this problem, in this thesis a new OTDM scheme with hybrid DPSK and OOK signals is proposed. Experimental investigation shows this scheme can greatly enhance the demultiplexing timing misalignment and improve the demultiplexing performance, and thus make OTDM more practical and cost effective. All-optical signal processing. In current and future optical communication systems and networks, the data rate per wavelength has been approaching the speed limitation of electronics. Thus, all-optical signal processing techniques are highly desirable to support the necessary optical switching functionalities in future ultrahigh-speed optical packet-switching networks. To cope with the wide use of optical phase-modulated signals, in the thesis, an all-optical logic for DPSK or PSK input signals is developed, for the first time. Based on four-wave mixing in semiconductor optical amplifier, the structure of the logic gate is simple, compact, and capable of supporting ultrafast operation. In addition to the general logic processing, a simple label recognition scheme, as a specific signal processing function, is proposed for phase-modulated label signals. The proposed scheme can recognize any incoming label pattern according to the local pattern, and is potentially capable of handling variable-length label patterns. Optical access network with multicast overlay and centralized light sources. In the arena of optical access networks, wavelength division multiplexing passive optical network (WDM-PON) is a promising technology to deliver high-speed data traffic. However, most of proposed WDM-PONs only support conventional point-to-point service, and cannot meet the requirement of increasing demand on broadcast and multicast service. In this thesis, a simple network upgrade is proposed based on the traditional PON architecture to support both point-to-point and multicast service. In addition, the two service signals are modulated on the same lightwave carrier. The upstream signal is also remodulated on the same carrier at the optical network unit, which can significantly relax the requirement on wavelength management at the network unit.

  12. Loop Group Parakeet Virtual Cable Concept Demonstrator

    NASA Astrophysics Data System (ADS)

    Dowsett, T.; McNeill, T. C.; Reynolds, A. B.; Blair, W. D.

    2002-07-01

    The Parakeet Virtual Cable (PVC) concept demonstrator uses the Ethernet Local Area Network (LAN) laid for the Battle Command Support System (BCSS) to connect the Parakeet DVT(DA) (voice terminal) to the Parakeet multiplexer. This currently requires pairs of PVC interface units to be installed for each DVT(DA) . To reduce the cost of a PVC installation, the concept of a Loop Group Parakeet Virtual Cable (LGPVC) was proposed. This device was designed to replace the up to 30 PVC boxes and the multiplexer at the multiplexer side of a PVC installation. While the demonstrator is largely complete, testing has revealed an incomplete understanding of how to emulate the proprietary handshaking occurring between the circuit switch and the multiplexer. The LGPVC concept cannot yet be demonstrated.

  13. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells.

    PubMed

    Pu, Y-F; Jiang, N; Chang, W; Yang, H-X; Li, C; Duan, L-M

    2017-05-08

    To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology.

  14. 2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON.

    PubMed

    Deng, Lei; Pang, Xiaodan; Zhao, Ying; Othman, M B; Jensen, Jesper Bevensee; Zibar, Darko; Yu, Xianbin; Liu, Deming; Monroy, Idelfonso Tafur

    2012-02-13

    We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based zero forcing (ZF) channel estimation algorithm is designed to compensate the polarization rotation and wireless multipath fading. A 797 Mb/s net data rate QPSK-OFDM signal with error free (<1 × 10(5)) performance and a 1.59 Gb/s net data rate 16QAM-OFDM signal with BER performance of 1.2 × 10(2) are achieved after transmission of 22.8 km single mode fiber followed by 3 m and 1 m air distances, respectively.

  15. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity.

    PubMed

    Leuthaeuser, Janelle B; Knutson, Stacy T; Kumar, Kiran; Babbitt, Patricia C; Fetrow, Jacquelyn S

    2015-09-01

    The development of accurate protein function annotation methods has emerged as a major unsolved biological problem. Protein similarity networks, one approach to function annotation via annotation transfer, group proteins into similarity-based clusters. An underlying assumption is that the edge metric used to identify such clusters correlates with functional information. In this contribution, this assumption is evaluated by observing topologies in similarity networks using three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity (active site profiling, implemented in DASP). Network topologies for four well-studied protein superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were compared with curated functional hierarchies and structure. As expected, network topology differs, depending on edge metric; comparison of topologies provides valuable information on structure/function relationships. Subnetworks based on active site similarity correlate with known functional hierarchies at a single edge threshold more often than sequence- or structure-based networks. Sequence- and structure-based networks are useful for identifying sequence and domain similarities and differences; therefore, it is important to consider the clustering goal before deciding appropriate edge metric. Further, conserved active site residues identified in enolase and GST active site subnetworks correspond with published functionally important residues. Extension of this analysis yields predictions of functionally determinant residues for GST subgroups. These results support the hypothesis that active site similarity-based networks reveal clusters that share functional details and lay the foundation for capturing functionally relevant hierarchies using an approach that is both automatable and can deliver greater precision in function annotation than current similarity-based methods. © 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  16. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity

    PubMed Central

    Leuthaeuser, Janelle B; Knutson, Stacy T; Kumar, Kiran; Babbitt, Patricia C; Fetrow, Jacquelyn S

    2015-01-01

    The development of accurate protein function annotation methods has emerged as a major unsolved biological problem. Protein similarity networks, one approach to function annotation via annotation transfer, group proteins into similarity-based clusters. An underlying assumption is that the edge metric used to identify such clusters correlates with functional information. In this contribution, this assumption is evaluated by observing topologies in similarity networks using three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity (active site profiling, implemented in DASP). Network topologies for four well-studied protein superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were compared with curated functional hierarchies and structure. As expected, network topology differs, depending on edge metric; comparison of topologies provides valuable information on structure/function relationships. Subnetworks based on active site similarity correlate with known functional hierarchies at a single edge threshold more often than sequence- or structure-based networks. Sequence- and structure-based networks are useful for identifying sequence and domain similarities and differences; therefore, it is important to consider the clustering goal before deciding appropriate edge metric. Further, conserved active site residues identified in enolase and GST active site subnetworks correspond with published functionally important residues. Extension of this analysis yields predictions of functionally determinant residues for GST subgroups. These results support the hypothesis that active site similarity-based networks reveal clusters that share functional details and lay the foundation for capturing functionally relevant hierarchies using an approach that is both automatable and can deliver greater precision in function annotation than current similarity-based methods. PMID:26073648

  17. Optofluidic wavelength division multiplexing for single-virus detection

    PubMed Central

    Ozcelik, Damla; Parks, Joshua W.; Wall, Thomas A.; Stott, Matthew A.; Cai, Hong; Parks, Joseph W.; Hawkins, Aaron R.; Schmidt, Holger

    2015-01-01

    Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context––the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine. PMID:26438840

  18. Modes of Interaction between Individuals Dominate the Topologies of Real World Networks

    PubMed Central

    Lee, Insuk; Kim, Eiru; Marcotte, Edward M.

    2015-01-01

    We find that the topologies of real world networks, such as those formed within human societies, by the Internet, or among cellular proteins, are dominated by the mode of the interactions considered among the individuals. Specifically, a major dichotomy in previously studied networks arises from modeling networks in terms of pairwise versus group tasks. The former often intrinsically give rise to scale-free, disassortative, hierarchical networks, whereas the latter often give rise to single- or broad-scale, assortative, nonhierarchical networks. These dependencies explain contrasting observations among previous topological analyses of real world complex systems. We also observe this trend in systems with natural hierarchies, in which alternate representations of the same networks, but which capture different levels of the hierarchy, manifest these signature topological differences. For example, in both the Internet and cellular proteomes, networks of lower-level system components (routers within domains or proteins within biological processes) are assortative and nonhierarchical, whereas networks of upper-level system components (internet domains or biological processes) are disassortative and hierarchical. Our results demonstrate that network topologies of complex systems must be interpreted in light of their hierarchical natures and interaction types. PMID:25793969

  19. Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks.

    PubMed

    Chen, Yuanxiang; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Zhou, Peng; Tian, Yu; Ren, Fang; Yu, Jinyi; Ge, Dawei; Chen, Jingbiao; He, Yongqi; Chen, Zhangyuan

    2015-12-14

    In this paper, we propose a cost-effective, energy-saving mode-division-multiplexing passive optical network (MDM-PON) scheme utilizing self-homodyne detection for high-speed/capacity access network based on low modal-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). In the proposed scheme, one of the spatial modes is used to transmit a portion of signal carrier (namely pilot-tone) as the local oscillator (LO), while the others are used for signal-bearing channels. At the receiver, the pilot-tone and the signal can be separated without strong crosstalk and sent to the receiver for coherent detection. The spectral efficiency (SE) is significantly enhanced when multiple spatial channels are used. Meanwhile, the self-homodyne detection scheme can effectively suppress laser phase noise, which relaxes the requirement for the lasers line-width at the optical line terminal or optical network units (OLT/ONUs). The digital signal processing (DSP) at the receiver is also simplified since it removes the need for frequency offset compensation and complex phase correction, which reduces the computational complexity and energy consumption. Polarization division multiplexing (PDM) that offers doubled SE is also supported by the scheme. The proposed scheme is scalable to multi-wavelength application when wavelength MUX/DEMUX is utilized. Utilizing the proposed scheme, we demonstrate a proof of concept 4 × 40-Gb/s orthogonal frequency division multiplexing (OFDM) transmission over 55-km FMF using low modal-crosstalk two-mode FMF and MUX/DEMUX with error free operation. Compared with back to back case, less than 1-dB Q-factor penalty is observed after 55-km FMF of the four channels. Signal power and pilot-tone power are also optimized to achieve the optimal transmission performance.

  20. UGV Interoperability Profile (IOP) Communications Profile, Version 0

    DTIC Science & Technology

    2011-12-21

    some UGV systems employ Orthogonal Frequency Division Multiplexing ( OFDM ) or Coded Orthogonal Frequency Division Multiplexing (COFDM) waveforms which...other portions of the IOP. Attribute Paragraph Title Values Waveform 3.3 Air Interface/ Waveform OFDM , COFDM, DDL, CDL, None OCU to Platform...Sight MANET Mobile Ad-hoc Network Mbps Megabits per second MC/PM Master Controller/ Payload Manager MHz Megahertz MIMO Multiple Input Multiple

  1. MEMS for optical switching: technologies, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Lin, Lih-Y.; Goldstein, Evan L.

    1999-09-01

    Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, lowcost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.

  2. MEMS for optical switching: technologies, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Lin, Lih-Yuan; Goldstein, Evan L.

    1999-09-01

    Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, low-cost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.

  3. Power Budget Analysis of Colorless Hybrid WDM/TDM-PON Scheme Using Downstream DPSK and Re-modulated Upstream OOK Data Signals

    NASA Astrophysics Data System (ADS)

    Khan, Yousaf; Afridi, Muhammad Idrees; Khan, Ahmed Mudassir; Rehman, Waheed Ur; Khan, Jahanzeb

    2014-09-01

    Hybrid wavelength-division multiplexed/time-division multiplexed passive optical access networks (WDM/TDM-PONs) combine the advance features of both WDM and TDM PONs to provide a cost-effective access network solution. We demonstrate and analyze the transmission performances and power budget issues of a colorless hybrid WDM/TDM-PON scheme. A 10-Gb/s downstream differential phase shift keying (DPSK) and remodulated upstream on/off keying (OOK) data signals are transmitted over 25 km standard single mode fiber. Simulation results show error free transmission having adequate power margins in both downstream and upstream transmission, which prove the applicability of the proposed scheme to future passive optical access networks. The power budget confines both the PON splitting ratio and the distance between the Optical Line Terminal (OLT) and Optical Network Unit (ONU).

  4. A computerized tomography system for transcranial ultrasound imaging.

    PubMed

    Tang, Sai Chun; Clement, Gregory T

    Hardware for tomographic imaging presents both challenge and opportunity for simplification when compared with traditional pulse-echo imaging systems. Specifically, point diffraction tomography does not require simultaneous powering of elements, in theory allowing just a single transmit channel and a single receive channel to be coupled with a switching or multiplexing network. In our ongoing work on transcranial imaging, we have developed a 512-channel system designed to transmit and/or receive a high voltage signal from/to arbitrary elements of an imaging array. The overall design follows a hierarchy of modules including a software interface, microcontroller, pulse generator, pulse amplifier, high-voltage power converter, switching mother board, switching daughter board, receiver amplifier, analog-to-digital converter, peak detector, memory, and USB communication. Two pulse amplifiers are included, each capable of producing up to 400Vpp via power MOSFETS. Switching is based around mechanical relays that allow passage of 200V, while still achieving switching times of under 2ms, with an operating frequency ranging from below 100kHz to 10MHz. The system is demonstrated through ex vivo human skulls using 1MHz transducers. The overall system design is applicable to planned human studies in transcranial image acquisition, and may have additional tomographic applications for other materials necessitating a high signal output.

  5. Energy efficiency evaluation of tree-topology 10 gigabit ethernet passive optical network and ring-topology time- and wavelength-division-multiplexed passive optical network

    NASA Astrophysics Data System (ADS)

    Song, Jingjing; Yang, Chuanchuan; Zhang, Qingxiang; Ma, Zhuang; Huang, Xingang; Geng, Dan; Wang, Ziyu

    2015-09-01

    Higher capacity and larger scales have always been the top targets for the evolution of optical access networks, driven by the ever-increasing demand from the end users. One thing that started to attract wide attention not long ago, but with at least equal importance as capacity and scale, is energy efficiency, a metric essential nowadays as human beings are confronted with severe environmental issues like global warming, air pollution, and so on. Here, different from the conventional energy consumption analysis of tree-topology networks, we propose an effective energy consumption calculation method to compare the energy efficiency of the tree-topology 10 gigabit ethernet passive optical network (10G-EPON) and ring-topology time- and wavelength-division-multiplexed passive optical network (TWDM-PON), two experimental networks deployed in China. Numerical results show that the ring-topology TWDM-PON networks with 2, 4, 8, and 16 wavelengths are more energy efficient than the tree-topology 10G-EPON, although 10G-EPON consumes less energy. Also, TWDM-PON with four wavelengths is the most energy-efficient network candidate and saves 58.7% more energy than 10G-EPON when fully loaded.

  6. Organization and hierarchy of the human functional brain network lead to a chain-like core.

    PubMed

    Mastrandrea, Rossana; Gabrielli, Andrea; Piras, Fabrizio; Spalletta, Gianfranco; Caldarelli, Guido; Gili, Tommaso

    2017-07-07

    The brain is a paradigmatic example of a complex system: its functionality emerges as a global property of local mesoscopic and microscopic interactions. Complex network theory allows to elicit the functional architecture of the brain in terms of links (correlations) between nodes (grey matter regions) and to extract information out of the noise. Here we present the analysis of functional magnetic resonance imaging data from forty healthy humans at rest for the investigation of the basal scaffold of the functional brain network organization. We show how brain regions tend to coordinate by forming a highly hierarchical chain-like structure of homogeneously clustered anatomical areas. A maximum spanning tree approach revealed the centrality of the occipital cortex and the peculiar aggregation of cerebellar regions to form a closed core. We also report the hierarchy of network segregation and the level of clusters integration as a function of the connectivity strength between brain regions.

  7. The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Chang, Jun

    2013-07-01

    In this paper, we design a WDM-RoF-PON based on linearly-polarized dual-wavelength fiber laser and CSRZ-DPSK, which can achieve wire-line and wireless access synchronously. With the CSRZ-DPSK modulation, the wireless access in ONU can save RF source and the frequency of radio carrier can be controlled by OLT. The dual-wavelength fiber laser is the union light source of WDM-PON with polarization multiplexing. By the RSOA and downstream light source reusing, the ONU can save omit laser source and makes the WDM-PON to be colorless. The networking has the credible transmission property, including wireless access and fiber transmission. The networking also has excellent covering range.

  8. Fronthaul evolution: From CPRI to Ethernet

    NASA Astrophysics Data System (ADS)

    Gomes, Nathan J.; Chanclou, Philippe; Turnbull, Peter; Magee, Anthony; Jungnickel, Volker

    2015-12-01

    It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved.

  9. Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction

    NASA Astrophysics Data System (ADS)

    Jia, Nan; Ding, Li; Liu, Yu-Jing; Hu, Ping

    2018-07-01

    In this paper, we consider two interacting pathogens spreading on multiplex networks. Each pathogen spreads only on its single layer, and different layers have the same individuals but different network topology. A state-dependent infectious rate is proposed to describe the nonlinear mutual interaction during the propagation of two pathogens. Then a novel epidemic spreading model incorporating treatment control strategy is established. We investigate the global asymptotic stability of the equilibrium points by using Dulac's criterion, Poincaré-Bendixson theorem and Lyapunov method. Furthermore, we discuss an optimal strategy to minimize the total number of the infected individuals and the cost associated with treatment control for both spreading of two pathogens. Finally, numerical simulations are presented to show the validity and efficiency of our results.

  10. Design and implementation of flexible TWDM-PON with PtP WDM overlay based on WSS for next-generation optical access networks

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Yin, Hongxi; Qin, Jie; Liu, Chang; Liu, Anliang; Shao, Qi; Xu, Xiaoguang

    2016-09-01

    Aiming at the increasing demand of the diversification services and flexible bandwidth allocation of the future access networks, a flexible passive optical network (PON) scheme combining time and wavelength division multiplexing (TWDM) with point-to-point wavelength division multiplexing (PtP WDM) overlay is proposed for the next-generation optical access networks in this paper. A novel software-defined optical distribution network (ODN) structure is designed based on wavelength selective switches (WSS), which can implement wavelength and bandwidth dynamical allocations and suits for the bursty traffic. The experimental results reveal that the TWDM-PON can provide 40 Gb/s downstream and 10 Gb/s upstream data transmission, while the PtP WDM-PON can support 10 GHz point-to-point dedicated bandwidth as the overlay complement system. The wavelengths of the TWDM-PON and PtP WDM-PON are allocated dynamically based on WSS, which verifies the feasibility of the proposed structure.

  11. High-Speed Optical Wide-Area Data-Communication Network

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Proposed fiber-optic wide-area network (WAN) for digital communication balances input and output flows of data with its internal capacity by routing traffic via dynamically interconnected routing planes. Data transmitted optically through network by wavelength-division multiplexing in synchronous or asynchronous packets. WAN implemented with currently available technology. Network is multiple-ring cyclic shuffle exchange network ensuring traffic reaches its destination with minimum number of hops.

  12. All-optical VPN utilizing DSP-based digital orthogonal filters access for PONs

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoling; Zhang, Chongfu; Chen, Chen; Jin, Wei; Qiu, Kun

    2018-04-01

    Utilizing digital filtering-enabled signal multiplexing and de-multiplexing, a cost-effective all-optical virtual private network (VPN) system is proposed, for the first time to our best knowledge, in digital filter multiple access passive optical networks (DFMA-PONs). Based on the DFMA technology, the proposed system can be easily designed to meet the requirements of next generation network's flexibility, elasticity, adaptability and compatibility. Through dynamic digital filter allocation and recycling, the proposed all-optical VPN system can provide dynamic establishments and cancellations of multiple VPN communications with arbitrary traffic volumes. More importantly, due to the employment of DFMA technology, the system is not limited to a fixed signal format and different signal formats such as pulse amplitude modulation (PAM), quadrature amplitude modulation (QAM) and orthogonal frequency division multiplexing (OFDM) can be used. Moreover, one transceiver is sufficient to simultaneously transmit upstream (US)/VPN data to optical line terminal (OLT) or other VPN optical network units (ONUs), thus leading to great reduction in network constructions and operation expenditures. The proposed all-optical VPN system is demonstrated with the transceiver incorporating the formats of QAM and OFDM, which can be made transparent to downstream (DS), US and VPN communications. The bit error rates (BERs) of DS, US and VPN for OFDM signals are below the forward-error-correction (FEC) limit of 3 . 8 × 10-3 when the received optical powers are about -16.8 dBm, -14.5 dBm and -15.7 dBm, respectively.

  13. Complexity measures to track the evolution of a SNOMED hierarchy.

    PubMed

    Wei, Duo; Wang, Yue; Perl, Yehoshua; Xu, Junchuan; Halper, Michael; Spackman, Kent A; Spackman, Kent

    2008-11-06

    SNOMED CT is an extensive terminology with an attendant amount of complexity. Two measures are proposed for quantifying that complexity. Both are based on abstraction networks, called the area taxonomy and the partial-area taxonomy, that provide, for example, distributions of the relationships within a SNOMED hierarchy. The complexity measures are employed specifically to track the complexity of versions of the Specimen hierarchy of SNOMED before and after it is put through an auditing process. The pre-audit and post-audit versions are compared. The results show that the auditing process indeed leads to a simplification of the terminology's structure.

  14. Self-homodyne optical OFDM for broadband WDM-PONs with crosstalk-free remodulation and enhanced tolerance to Rayleigh noise

    NASA Astrophysics Data System (ADS)

    Lyu, WeiChao; Wang, Andong; Xie, Dequan; Zhu, Long; Guan, Xun; Wang, Jian; Xu, Jing

    2018-05-01

    We propose a novel architecture for wavelength-division-multiplexed passive optical network (WDM-PON) that can simultaneously circumvent both remodulation crosstalk and Rayleigh noise, based on self-homodyne detection and optical orthogonal frequency-division multiplexing (OFDM) remodulation. The proposed self-homodyne detection at optical network unit (ONU) requires neither frequency offset compensation nor phase noise compensation, and thus can significantly reduce system complexity and power consumption. Bidirectional transmission of 12.5 Gb/s down- and up-stream signals, via single 25 km single-mode fiber without dispersion compensation, is demonstrated in a proof-of-concept experiment.

  15. An IEEE802.15.4-Based System for Locating Children on Their School Commutes

    NASA Astrophysics Data System (ADS)

    Sugiura, Akihiko; Baba, Ryoichi; Kobayashi, Hideyuki

    With the increasing number of crimes and accidents in which children are becoming involved, there is a growing demand for devices to safeguard children's security by detecting their locations on their way to and from school. This paper proposes a system that uses an IEEE802.15.4-standard network to detect children's locations. To overcome the susceptibility of radio interference from nearby wireless LANs, frequency division multiplexing is applied to this IEEE802.15.4-based network, toward improving data acquisition from terminal units. The effectiveness of the system was field-tested with elementary school students who used about 400 IEEE 802.15.4-compliant terminal units. An experiment verified that the use of frequency division multiplexing in an environment where radio interference by wireless LANs is strong allowed the network to double the success rate of information communication from terminal units relative to that without frequency division multiplexing. In the experiment for detecting elementary schoolers' arrival at and departure from school, the terminal detection rate was 99% and the terminal detection rate on the designated school routes was 90%. These results prove the effectiveness of the system in detecting locations.

  16. A Social Network Approach to Understanding an Insurgency

    DTIC Science & Technology

    2007-07-01

    and a framework for testing theories regarding struc- tured social relationships.6 Equally relevant is the understanding of a social network approach...A Social Network Approach to Understanding an Insurgency BRIAN REED The study of networks, interactions, and relationships has a long history...characteristics of social network analysis is often counter-intuitive to traditional military thinking, rooted in the efficiency of a hierarchy that

  17. Urban networks among Chinese cities along "the Belt and Road": A case of web search activity in cyberspace.

    PubMed

    Zhang, Lu; Du, Hongru; Zhao, Yannan; Wu, Rongwei; Zhang, Xiaolei

    2017-01-01

    "The Belt and Road" initiative has been expected to facilitate interactions among numerous city centers. This initiative would generate a number of centers, both economic and political, which would facilitate greater interaction. To explore how information flows are merged and the specific opportunities that may be offered, Chinese cities along "the Belt and Road" are selected for a case study. Furthermore, urban networks in cyberspace have been characterized by their infrastructure orientation, which implies that there is a relative dearth of studies focusing on the investigation of urban hierarchies by capturing information flows between Chinese cities along "the Belt and Road". This paper employs Baidu, the main web search engine in China, to examine urban hierarchies. The results show that urban networks become more balanced, shifting from a polycentric to a homogenized pattern. Furthermore, cities in networks tend to have both a hierarchical system and a spatial concentration primarily in regions such as Beijing-Tianjin-Hebei, Yangtze River Delta and the Pearl River Delta region. Urban hierarchy based on web search activity does not follow the existing hierarchical system based on geospatial and economic development in all cases. Moreover, urban networks, under the framework of "the Belt and Road", show several significant corridors and more opportunities for more cities, particularly western cities. Furthermore, factors that may influence web search activity are explored. The results show that web search activity is significantly influenced by the economic gap, geographical proximity and administrative rank of the city.

  18. Multiple-region directed functional connectivity based on phase delays.

    PubMed

    Goelman, Gadi; Dan, Rotem

    2017-03-01

    Network analysis is increasingly advancing the field of neuroimaging. Neural networks are generally constructed from pairwise interactions with an assumption of linear relations between them. Here, a high-order statistical framework to calculate directed functional connectivity among multiple regions, using wavelet analysis and spectral coherence has been presented. The mathematical expression for 4 regions was derived and used to characterize a quartet of regions as a linear, combined (nonlinear), or disconnected network. Phase delays between regions were used to obtain network's temporal hierarchy and directionality. The validity of the mathematical derivation along with the effects of coupling strength and noise on its outcomes were studied by computer simulations of the Kuramoto model. The simulations demonstrated correct directionality for a large range of coupling strength and low sensitivity to Gaussian noise compared with pairwise coherences. The analysis was applied to resting-state fMRI data of 40 healthy young subjects to characterize the ventral visual system, motor system and default mode network (DMN). It was shown that the ventral visual system was predominantly composed of linear networks while the motor system and the DMN were composed of combined (nonlinear) networks. The ventral visual system exhibits its known temporal hierarchy, the motor system exhibits center ↔ out hierarchy and the DMN has dorsal ↔ ventral and anterior ↔ posterior organizations. The analysis can be applied in different disciplines such as seismology, or economy and in a variety of brain data including stimulus-driven fMRI, electrophysiology, EEG, and MEG, thus open new horizons in brain research. Hum Brain Mapp 38:1374-1386, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. The CRYPTOCHROME photoreceptor gates PDF neuropeptide signaling to set circadian network hierarchy in Drosophila.

    PubMed

    Zhang, Luoying; Lear, Bridget C; Seluzicki, Adam; Allada, Ravi

    2009-12-15

    Circadian clocks in the brain are organized as coupled oscillators that integrate seasonal cues such as light and temperature to time daily behaviors. In Drosophila, the PIGMENT DISPERSING FACTOR (PDF) neuropeptide-expressing morning (M) and non-PDF evening (E) cells are coupled cell groups important for morning and evening behavior, respectively. Depending on day length, either M cells (short days) or E cells (long days) dictate both the morning and the evening phase, a phenomenon that we term network hierarchy. To examine the role of PDF in light-dark conditions, we examined flies lacking both the PDF receptor (PDFR) and the circadian photoreceptor CRYPTOCHROME (CRY). We found that subsets of E cells exhibit molecular oscillations antiphase to those of wild-type flies, single cry mutants, or single Pdfr mutants, demonstrating a potent role for PDF in light-mediated entrainment, specifically in the absence of CRY. Moreover, we find that the evening behavioral phase is more strongly reset by PDF(+) M cells in the absence of CRY. On the basis of our findings, we propose that CRY can gate PDF signaling to determine behavioral phase and network hierarchy.

  20. Criteria for Evaluating Alternative Network and Link Layer Protocols for the NASA Constellation Program Communication Architecture

    NASA Technical Reports Server (NTRS)

    Benbenek, Daniel; Soloff, Jason; Lieb, Erica

    2010-01-01

    Selecting a communications and network architecture for future manned space flight requires an evaluation of the varying goals and objectives of the program, development of communications and network architecture evaluation criteria, and assessment of critical architecture trades. This paper uses Cx Program proposed exploration activities as a guideline; lunar sortie, outpost, Mars, and flexible path options are described. A set of proposed communications network architecture criteria are proposed and described. They include: interoperability, security, reliability, and ease of automating topology changes. Finally a key set of architecture options are traded including (1) multiplexing data at a common network layer vs. at the data link layer, (2) implementing multiple network layers vs. a single network layer, and (3) the use of a particular network layer protocol, primarily IPv6 vs. Delay Tolerant Networking (DTN). In summary, the protocol options are evaluated against the proposed exploration activities and their relative performance with respect to the criteria are assessed. An architectural approach which includes (a) the capability of multiplexing at both the network layer and the data link layer and (b) a single network layer for operations at each program phase, as these solutions are best suited to respond to the widest array of program needs and meet each of the evaluation criteria.

  1. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells

    PubMed Central

    Pu, Y-F; Jiang, N.; Chang, W.; Yang, H-X; Li, C.; Duan, L-M

    2017-01-01

    To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology. PMID:28480891

  2. Threshold cascades with response heterogeneity in multiplex networks

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Min; Brummitt, Charles D.; Goh, K.-I.

    2014-12-01

    Threshold cascade models have been used to describe the spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors is active, while the other nodes activate when, in all layers, a large enough fraction of neighbors is active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.

  3. Roles of the spreading scope and effectiveness in spreading dynamics on multiplex networks

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Run-Ran; Peng, Dan; Jia, Chun-Xiao; Wang, Bing-Hong

    2018-02-01

    Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges the spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.

  4. Optical frequency comb generation with high tone-to-noise ratio for large-capacity wavelength division multiplexed passive optical network

    NASA Astrophysics Data System (ADS)

    Ullah, Rahat; Liu, Bo; Zhang, Qi; Tian, Qinghua; Tian, Feng; Qu, Zhaowei; Yan, Cheng; Khan, Muhammad Saad; Ahmad, Ibrar; Xin, Xiangjun

    2015-11-01

    We propose a technique for the generation of optical frequency comb from a single source, which reduces the costs of optical access networks. Two Mach-Zehnder modulators are cascaded with one phase modulator driven by radiofrequency signals. With 10-GHz frequency spacing, the generated 40 optical multicarriers have good tone-to-noise ratio with least excursions in their comb lines. The laser array at the optical line terminal of the conventional wavelength division multiplexed passive optical network (WDM-PON) system has been replaced with optical frequency comb generator (OFCG), which may result in cost-effective optical line terminal (OLT) supporting a large-capacity WDM-PON system. Of 40 carriers generated, each carrier carries 10 Gbps data based on differential phase-shift keying. Four hundred Gbps multiplexed data from all channels are successfully transmitted through a fiber span of 25 km with negligible power penalties. Part of the downlink signal is used in uplink transmission at optical network unit where intensity-modulated on-off keying is deployed for remodulation. Theoretical analysis of the proposed WDM-PON system based on OFCG are in good agreement with simulation results. The metrics considered for the analysis of the proposed OFCG in a WDM-PON system are power penalties of the full-duplex transmission, eye diagrams, and bit error rate.

  5. Multiplex Recurrence Networks

    NASA Astrophysics Data System (ADS)

    Eroglu, Deniz; Marwan, Norbert

    2017-04-01

    The complex nature of a variety of phenomena in physical, biological, or earth sciences is driven by a large number of degrees of freedom which are strongly interconnected. Although the evolution of such systems is described by multivariate time series (MTS), so far research mostly focuses on analyzing these components one by one. Recurrence based analyses are powerful methods to understand the underlying dynamics of a dynamical system and have been used for many successful applications including examples from earth science, economics, or chemical reactions. The backbone of these techniques is creating the phase space of the system. However, increasing the dimension of a system requires increasing the length of the time series in order get significant and reliable results. This requirement is one of the challenges in many disciplines, in particular in palaeoclimate, thus, it is not easy to create a phase space from measured MTS due to the limited number of available obervations (samples). To overcome this problem, we suggest to create recurrence networks from each component of the system and combine them into a multiplex network structure, the multiplex recurrence network (MRN). We test the MRN by using prototypical mathematical models and demonstrate its use by studying high-dimensional palaeoclimate dynamics derived from pollen data from the Bear Lake (Utah, US). By using the MRN, we can distinguish typical climate transition events, e.g., such between Marine Isotope Stages.

  6. Evaluating Implementations of Service Oriented Architecture for Sensor Network via Simulation

    DTIC Science & Technology

    2011-04-01

    Subject: COMPUTER SCIENCE Approved: Boleslaw Szymanski , Thesis Adviser Rensselaer Polytechnic Institute Troy, New York April 2011 (For Graduation May 2011...simulation supports distributed and centralized composition with a type hierarchy and multiple -service statically-located nodes in a 2-dimensional space...distributed and centralized composition with a type hierarchy and multiple -service statically-located nodes in a 2-dimensional space. The second simulation

  7. The Face-Processing Network Is Resilient to Focal Resection of Human Visual Cortex

    PubMed Central

    Jonas, Jacques; Gomez, Jesse; Maillard, Louis; Brissart, Hélène; Hossu, Gabriela; Jacques, Corentin; Loftus, David; Colnat-Coulbois, Sophie; Stigliani, Anthony; Barnett, Michael A.; Grill-Spector, Kalanit; Rossion, Bruno

    2016-01-01

    Human face perception requires a network of brain regions distributed throughout the occipital and temporal lobes with a right hemisphere advantage. Present theories consider this network as either a processing hierarchy beginning with the inferior occipital gyrus (occipital face area; IOG-faces/OFA) or a multiple-route network with nonhierarchical components. The former predicts that removing IOG-faces/OFA will detrimentally affect downstream stages, whereas the latter does not. We tested this prediction in a human patient (Patient S.P.) requiring removal of the right inferior occipital cortex, including IOG-faces/OFA. We acquired multiple fMRI measurements in Patient S.P. before and after a preplanned surgery and multiple measurements in typical controls, enabling both within-subject/across-session comparisons (Patient S.P. before resection vs Patient S.P. after resection) and between-subject/across-session comparisons (Patient S.P. vs controls). We found that the spatial topology and selectivity of downstream ipsilateral face-selective regions were stable 1 and 8 month(s) after surgery. Additionally, the reliability of distributed patterns of face selectivity in Patient S.P. before versus after resection was not different from across-session reliability in controls. Nevertheless, postoperatively, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1 of the resected hemisphere. Diffusion weighted imaging in Patient S.P. and controls identifies white matter tracts connecting retinotopic areas to downstream face-selective regions, which may contribute to the stable and plastic features of the face network in Patient S.P. after surgery. Together, our results support a multiple-route network of face processing with nonhierarchical components and shed light on stable and plastic features of high-level visual cortex following focal brain damage. SIGNIFICANCE STATEMENT Brain networks consist of interconnected functional regions commonly organized in processing hierarchies. Prevailing theories predict that damage to the input of the hierarchy will detrimentally affect later stages. We tested this prediction with multiple brain measurements in a rare human patient requiring surgical removal of the putative input to a network processing faces. Surprisingly, the spatial topology and selectivity of downstream face-selective regions are stable after surgery. Nevertheless, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1. White matter connections from outside the face network may support these stable and plastic features. As processing hierarchies are ubiquitous in biological and nonbiological systems, our results have pervasive implications for understanding the construction of resilient networks. PMID:27511014

  8. DReAM: Demand Response Architecture for Multi-level District Heating and Cooling Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Saptarshi; Chandan, Vikas; Arya, Vijay

    In this paper, we exploit the inherent hierarchy of heat exchangers in District Heating and Cooling (DHC) networks and propose DReAM, a novel Demand Response (DR) architecture for Multi-level DHC networks. DReAM serves to economize system operation while still respecting comfort requirements of individual consumers. Contrary to many present day DR schemes that work on a consumer level granularity, DReAM works at a level of hierarchy above buildings, i.e. substations that supply heat to a group of buildings. This improves the overall DR scalability and reduce the computational complexity. In the first step of the proposed approach, mathematical models ofmore » individual substations and their downstream networks are abstracted into appropriately constructed low-complexity structural forms. In the second step, this abstracted information is employed by the utility to perform DR optimization that determines the optimal heat inflow to individual substations rather than buildings, in order to achieve the targeted objectives across the network. We validate the proposed DReAM framework through experimental results under different scenarios on a test network.« less

  9. Low-peak-to-average power ratio and low-complexity asymmetrically clipped optical orthogonal frequency-division multiplexing uplink transmission scheme for long-reach passive optical network.

    PubMed

    Zhou, Ji; Qiao, Yaojun

    2015-09-01

    In this Letter, we propose a discrete Hartley transform (DHT)-spread asymmetrically clipped optical orthogonal frequency-division multiplexing (DHT-S-ACO-OFDM) uplink transmission scheme in which the multiplexing/demultiplexing process also uses the DHT algorithm. By designing a simple encoding structure, the computational complexity of the transmitter can be reduced from O(Nlog(2)(N)) to O(N). At the probability of 10(-3), the peak-to-average power ratio (PAPR) of 2-ary pulse amplitude modulation (2-PAM)-modulated DHT-S-ACO-OFDM is approximately 9.7 dB lower than that of 2-PAM-modulated conventional ACO-OFDM. To verify the feasibility of the proposed scheme, a 4-Gbit/s DHT-S-ACO-OFDM uplink transmission scheme with a 1∶64 way split has been experimentally implemented using 100-km standard single-mode fiber (SSMF) for a long-reach passive optical network (LR-PON).

  10. Experimental multiplexing of quantum key distribution with classical optical communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei

    2015-02-23

    We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across themore » entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.« less

  11. Institutional networks and adaptive water governance in the Klamath River Basin, USA.

    EPA Science Inventory

    Polycentric networks of formal organizations and informal stakeholder groups, as opposed to centralized institutional hierarchies, can be critically important for strengthening the capacity of governance systems to adapt to unexpected social and biophysical change. Adaptive gover...

  12. Identification of overlapping communities and their hierarchy by locally calculating community-changing resolution levels

    NASA Astrophysics Data System (ADS)

    Havemann, Frank; Heinz, Michael; Struck, Alexander; Gläser, Jochen

    2011-01-01

    We propose a new local, deterministic and parameter-free algorithm that detects fuzzy and crisp overlapping communities in a weighted network and simultaneously reveals their hierarchy. Using a local fitness function, the algorithm greedily expands natural communities of seeds until the whole graph is covered. The hierarchy of communities is obtained analytically by calculating resolution levels at which communities grow rather than numerically by testing different resolution levels. This analytic procedure is not only more exact than its numerical alternatives such as LFM and GCE but also much faster. Critical resolution levels can be identified by searching for intervals in which large changes of the resolution do not lead to growth of communities. We tested our algorithm on benchmark graphs and on a network of 492 papers in information science. Combined with a specific post-processing, the algorithm gives much more precise results on LFR benchmarks with high overlap compared to other algorithms and performs very similarly to GCE.

  13. Cooperative epidemics on multiplex networks.

    PubMed

    Azimi-Tafreshi, N

    2016-04-01

    The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network. We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of the diseases increases the probability of getting infected with the other. Using the generating function method, we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally, we compare the coinfected clusters in the case of cooperating diseases with the so-called "viable" clusters in networks with dependencies.

  14. Cooperative epidemics on multiplex networks

    NASA Astrophysics Data System (ADS)

    Azimi-Tafreshi, N.

    2016-04-01

    The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network. We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of the diseases increases the probability of getting infected with the other. Using the generating function method, we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally, we compare the coinfected clusters in the case of cooperating diseases with the so-called "viable" clusters in networks with dependencies.

  15. Optical network scaling: roles of spectral and spatial aggregation.

    PubMed

    Arık, Sercan Ö; Ho, Keang-Po; Kahn, Joseph M

    2014-12-01

    As the bit rates of routed data streams exceed the throughput of single wavelength-division multiplexing channels, spectral and spatial traffic aggregation become essential for optical network scaling. These aggregation techniques reduce network routing complexity by increasing spectral efficiency to decrease the number of fibers, and by increasing switching granularity to decrease the number of switching components. Spectral aggregation yields a modest decrease in the number of fibers but a substantial decrease in the number of switching components. Spatial aggregation yields a substantial decrease in both the number of fibers and the number of switching components. To quantify routing complexity reduction, we analyze the number of multi-cast and wavelength-selective switches required in a colorless, directionless and contentionless reconfigurable optical add-drop multiplexer architecture. Traffic aggregation has two potential drawbacks: reduced routing power and increased switching component size.

  16. An auxiliary graph based dynamic traffic grooming algorithm in spatial division multiplexing enabled elastic optical networks with multi-core fibers

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie

    2017-03-01

    A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.

  17. Analysis of physical layer performance of hybrid optical-wireless access network

    NASA Astrophysics Data System (ADS)

    Shaddad, R. Q.; Mohammad, A. B.; Al-hetar, A. M.

    2011-09-01

    The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.

  18. 5G small-cell networks leveraging optical technologies with mm-wave massive MIMO and MT-MAC protocols

    NASA Astrophysics Data System (ADS)

    Papaioannou, S.; Kalfas, G.; Vagionas, C.; Mitsolidou, C.; Maniotis, P.; Miliou, A.; Pleros, N.

    2018-01-01

    Analog optical fronthaul for 5G network architectures is currently being promoted as a bandwidth- and energy-efficient technology that can sustain the data-rate, latency and energy requirements of the emerging 5G era. This paper deals with a new optical fronthaul architecture that can effectively synergize optical transceiver, optical add/drop multiplexer and optical beamforming integrated photonics towards a DSP-assisted analog fronthaul for seamless and medium-transparent 5G small-cell networks. Its main application targets include dense and Hot-Spot Area networks, promoting the deployment of mmWave massive MIMO Remote Radio Heads (RRHs) that can offer wireless data-rates ranging from 25Gbps up to 400Gbps depending on the fronthaul technology employed. Small-cell access and resource allocation is ensured via a Medium-Transparent (MT-) MAC protocol that enables the transparent communication between the Central Office and the wireless end-users or the lamp-posts via roof-top-located V-band massive MIMO RRHs. The MTMAC is analysed in detail with simulation and analytical theoretical results being in good agreement and confirming its credentials to satisfy 5G network latency requirements by guaranteeing latency values lower than 1 ms for small- to midload conditions. Its extension towards supporting optical beamforming capabilities and mmWave massive MIMO antennas is discussed, while its performance is analysed for different fiber fronthaul link lengths and different optical channel capacities. Finally, different physical layer network architectures supporting the MT-MAC scheme are presented and adapted to different 5G use case scenarios, starting from PON-overlaid fronthaul solutions and gradually moving through Spatial Division Multiplexing up to Wavelength Division Multiplexing transport as the user density increases.

  19. What Next for Networks and Netwars

    DTIC Science & Technology

    2001-01-01

    Jacques Derrida , Michel Foucault, 30Standard sources on neorealism include a range of writings by Kenneth Waltz and John Mearshimer in particular. The...address banking networks, and Jacques (1990), which provides a classic defense of the importance of hierarchy in corporate structures. What Next for

  20. A general model for memory interference in a multiprocessor system with memory hierarchy

    NASA Technical Reports Server (NTRS)

    Taha, Badie A.; Standley, Hilda M.

    1989-01-01

    The problem of memory interference in a multiprocessor system with a hierarchy of shared buses and memories is addressed. The behavior of the processors is represented by a sequence of memory requests with each followed by a determined amount of processing time. A statistical queuing network model for determining the extent of memory interference in multiprocessor systems with clusters of memory hierarchies is presented. The performance of the system is measured by the expected number of busy memory clusters. The results of the analytic model are compared with simulation results, and the correlation between them is found to be very high.

  1. 40Gbit/s MDM-WDM Laguerre-Gaussian Mode with Equalization for Multimode Fiber in Access Networks

    NASA Astrophysics Data System (ADS)

    Fazea, Yousef; Amphawan, Angela

    2018-04-01

    Modal dispersion is seen as the primary impairment for multimode fiber. Mode division multiplexing (MDM) is a promising technology that has been realized as a favorable technology for considerably upsurges the capacity and distance of multimode fiber in conjunction with Wavelength Division Multiplexing (WDM) for fiber-to-the-home. This paper reveals the importance of an equalization technique in conjunction with controlling the modes spacing of mode division multiplexing-wavelength division multiplexing of Laguerre-Gaussian modes to alleviate modal dispersion for multimode fiber. The effects of channel spacing of 20 channels MDM-WDM were examined through controlling the azimuthal mode number and the radial mode number of Laguerre-Gaussian modes. A data rate of 40Gbit/s was achieved for a distance of 1,500 m for MDM-WDM.

  2. Simulation and measurement of optical access network with different types of optical-fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Latal, Jan; Vogl, Jan; Koudelka, Petr; Vitasek, Jan; Siska, Petr; Liner, Andrej; Papes, Martin; Vasinek, Vladimir

    2012-01-01

    The optical access networks are nowadays swiftly developing in the telecommunications field. These networks can provide higher data transfer rates, and have great potential to the future in terms of transmission possibilities. Many local internet providers responded to these facts and began gradually installing optical access networks into their originally built networks, mostly based on wireless communication. This allowed enlargement of possibilities for end-users in terms of high data rates and also new services such as Triple play, IPTV (Internet Protocol television) etc. However, with this expansion and building-up is also related the potential of reach in case of these networks. Big cities, such as Prague, Brno, Ostrava or Olomouc cannot be simply covered, because of their sizes and also because of their internal regulations given by various organizations in each city. Standard logical and also physical reach of EPON (IEEE 802.3ah - Ethernet Passive Optical Network) optical access network is about 20 km. However, for networks based on Wavelength Division Multiplex the reach can be up to 80 km, if the optical-fiber amplifier is inserted into the network. This article deals with simulation of different types of amplifiers for WDM-PON (Wavelength Division Multiplexing-Passive Optical Network) network in software application Optiwave OptiSystem and than are the values from the application and from real measurement compared.

  3. Fiber-Optic Terahertz Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.

    1994-01-01

    Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.

  4. Network Policy Languages: A Survey and a New Approach

    DTIC Science & Technology

    2000-08-01

    go, throwing a community into economic chaos. These events could result from discontinued funding from Silicon Valley investors who became aware of...prevented. C. POLICY HIERARCHIES FOR DISTRIBUTED SYSTEMS MANAGEMENT In [23], Moffett and Sloman form a policy hierarchy is by refining general high...management behavior of a system, without coding the behavior into the manager agents. Lupu and Sloman focus on techniques and tool support for off-line

  5. Cellular network entropy as the energy potential in Waddington's differentiation landscape

    PubMed Central

    Banerji, Christopher R. S.; Miranda-Saavedra, Diego; Severini, Simone; Widschwendter, Martin; Enver, Tariq; Zhou, Joseph X.; Teschendorff, Andrew E.

    2013-01-01

    Differentiation is a key cellular process in normal tissue development that is significantly altered in cancer. Although molecular signatures characterising pluripotency and multipotency exist, there is, as yet, no single quantitative mark of a cellular sample's position in the global differentiation hierarchy. Here we adopt a systems view and consider the sample's network entropy, a measure of signaling pathway promiscuity, computable from a sample's genome-wide expression profile. We demonstrate that network entropy provides a quantitative, in-silico, readout of the average undifferentiated state of the profiled cells, recapitulating the known hierarchy of pluripotent, multipotent and differentiated cell types. Network entropy further exhibits dynamic changes in time course differentiation data, and in line with a sample's differentiation stage. In disease, network entropy predicts a higher level of cellular plasticity in cancer stem cell populations compared to ordinary cancer cells. Importantly, network entropy also allows identification of key differentiation pathways. Our results are consistent with the view that pluripotency is a statistical property defined at the cellular population level, correlating with intra-sample heterogeneity, and driven by the degree of signaling promiscuity in cells. In summary, network entropy provides a quantitative measure of a cell's undifferentiated state, defining its elevation in Waddington's landscape. PMID:24154593

  6. Research on the architecture and key technologies of SIG

    NASA Astrophysics Data System (ADS)

    Fu, Zhongliang; Meng, Qingxiang; Huang, Yan; Liu, Shufan

    2007-06-01

    Along with the development of computer network, Grid has become one of the hottest issues of researches on sharing and cooperation of Internet resources throughout the world. This paper illustrates a new architecture of SIG-a five-hierarchy architecture (including Data Collecting Layer, Grid Layer, Service Layer, Application Layer and Client Layer) of SIG from the traditional three hierarchies (only including resource layer, service layer and client layer). In the paper, the author proposes a new mixed network mode of Spatial Information Grid which integrates CAG (Certificate Authority of Grid) and P2P (Peer to Peer) in the Grid Layer, besides, the author discusses some key technologies of SIG and analysis the functions of these key technologies.

  7. Suppressing disease spreading by using information diffusion on multiplex networks.

    PubMed

    Wang, Wei; Liu, Quan-Hui; Cai, Shi-Min; Tang, Ming; Braunstein, Lidia A; Stanley, H Eugene

    2016-07-06

    Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.

  8. A multiplexed light-matter interface for fibre-based quantum networks

    PubMed Central

    Saglamyurek, Erhan; Grimau Puigibert, Marcelli; Zhou, Qiang; Giner, Lambert; Marsili, Francesco; Verma, Varun B.; Woo Nam, Sae; Oesterling, Lee; Nippa, David; Oblak, Daniel; Tittel, Wolfgang

    2016-01-01

    Processing and distributing quantum information using photons through fibre-optic or free-space links are essential for building future quantum networks. The scalability needed for such networks can be achieved by employing photonic quantum states that are multiplexed into time and/or frequency, and light-matter interfaces that are able to store and process such states with large time-bandwidth product and multimode capacities. Despite important progress in developing such devices, the demonstration of these capabilities using non-classical light remains challenging. Here, employing the atomic frequency comb quantum memory protocol in a cryogenically cooled erbium-doped optical fibre, we report the quantum storage of heralded single photons at a telecom-wavelength (1.53 μm) with a time-bandwidth product approaching 800. Furthermore, we demonstrate frequency-multimode storage and memory-based spectral-temporal photon manipulation. Notably, our demonstrations rely on fully integrated quantum technologies operating at telecommunication wavelengths. With improved storage efficiency, our light-matter interface may become a useful tool in future quantum networks. PMID:27046076

  9. Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system

    NASA Astrophysics Data System (ADS)

    Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel

    2000-04-01

    Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.

  10. A multiplexed light-matter interface for fibre-based quantum networks.

    PubMed

    Saglamyurek, Erhan; Grimau Puigibert, Marcelli; Zhou, Qiang; Giner, Lambert; Marsili, Francesco; Verma, Varun B; Woo Nam, Sae; Oesterling, Lee; Nippa, David; Oblak, Daniel; Tittel, Wolfgang

    2016-04-05

    Processing and distributing quantum information using photons through fibre-optic or free-space links are essential for building future quantum networks. The scalability needed for such networks can be achieved by employing photonic quantum states that are multiplexed into time and/or frequency, and light-matter interfaces that are able to store and process such states with large time-bandwidth product and multimode capacities. Despite important progress in developing such devices, the demonstration of these capabilities using non-classical light remains challenging. Here, employing the atomic frequency comb quantum memory protocol in a cryogenically cooled erbium-doped optical fibre, we report the quantum storage of heralded single photons at a telecom-wavelength (1.53 μm) with a time-bandwidth product approaching 800. Furthermore, we demonstrate frequency-multimode storage and memory-based spectral-temporal photon manipulation. Notably, our demonstrations rely on fully integrated quantum technologies operating at telecommunication wavelengths. With improved storage efficiency, our light-matter interface may become a useful tool in future quantum networks.

  11. Urban networks among Chinese cities along "the Belt and Road": A case of web search activity in cyberspace

    PubMed Central

    Du, Hongru; Zhao, Yannan; Wu, Rongwei; Zhang, Xiaolei

    2017-01-01

    “The Belt and Road” initiative has been expected to facilitate interactions among numerous city centers. This initiative would generate a number of centers, both economic and political, which would facilitate greater interaction. To explore how information flows are merged and the specific opportunities that may be offered, Chinese cities along “the Belt and Road” are selected for a case study. Furthermore, urban networks in cyberspace have been characterized by their infrastructure orientation, which implies that there is a relative dearth of studies focusing on the investigation of urban hierarchies by capturing information flows between Chinese cities along “the Belt and Road”. This paper employs Baidu, the main web search engine in China, to examine urban hierarchies. The results show that urban networks become more balanced, shifting from a polycentric to a homogenized pattern. Furthermore, cities in networks tend to have both a hierarchical system and a spatial concentration primarily in regions such as Beijing-Tianjin-Hebei, Yangtze River Delta and the Pearl River Delta region. Urban hierarchy based on web search activity does not follow the existing hierarchical system based on geospatial and economic development in all cases. Moreover, urban networks, under the framework of “the Belt and Road”, show several significant corridors and more opportunities for more cities, particularly western cities. Furthermore, factors that may influence web search activity are explored. The results show that web search activity is significantly influenced by the economic gap, geographical proximity and administrative rank of the city. PMID:29200421

  12. TDM interrogation of intensity-modulated USFBGs network based on multichannel lasers.

    PubMed

    Rohollahnejad, Jalal; Xia, Li; Cheng, Rui; Ran, Yanli; Rahubadde, Udaya; Zhou, Jiaao; Zhu, Lin

    2017-01-23

    We report a large-scale multi-channel fiber sensing network, where ultra-short FBGs (USFBGs) instead of conventional narrow-band ultra-weak FBGs are used as the sensors. In the time division multiplexing scheme of the network, each grating response is resolved as three adjacent discrete peaks. The central wavelengths of USFBGs are tracked with the differential detection, which is achieved by calculating the peak-to-peak ratio of two maximum peaks. Compared with previous large-scale hybrid multiplexing sensing networks (e.g., WDM/TDM) which typically have relatively low interrogation speed and very high complexity, the proposed system can achieve interrogation of all channel sensors through very fast and simple intensity measurements with a broad dynamic range. A proof-of-concept experiment with twenty USFBGs, at two wavelength channels, was performed and a fast static strain measurements were demonstrated, with a high average sensitivity of ~0.54dB/µƐ and wide dynamic range of over ~3000µƐ. The channel to channel switching time was 10ms and total network interrogation time was 50ms.

  13. Physically secured orthogonal frequency division multiplexing-passive optical network employing noise-based encryption and signal recovery process

    NASA Astrophysics Data System (ADS)

    Jin, Wei; Zhang, Chongfu; Yuan, Weicheng

    2016-02-01

    We propose a physically enhanced secure scheme for direct detection-orthogonal frequency division multiplexing-passive optical network (DD-OFDM-PON) and long reach coherent detection-orthogonal frequency division multiplexing-passive optical network (LRCO-OFDM-PON), by employing noise-based encryption and channel/phase estimation. The noise data generated by chaos mapping are used to substitute training sequences in preamble to realize channel estimation and frame synchronization, and also to be embedded on variable number of key-selected randomly spaced pilot subcarriers to implement phase estimation. Consequently, the information used for signal recovery is totally hidden as unpredictable noise information in OFDM frames to mask useful information and to prevent illegal users from correctly realizing OFDM demodulation, and thereby enhancing resistance to attackers. The levels of illegal-decryption complexity and implementation complexity are theoretically discussed. Through extensive simulations, the performances of the proposed channel/phase estimation and the security introduced by encrypted pilot carriers have been investigated in both DD-OFDM and LRCO-OFDM systems. In addition, in the proposed secure DD-OFDM/LRCO-OFDM PON models, both legal and illegal receiving scenarios have been considered. These results show that, by utilizing the proposed scheme, the resistance to attackers can be significantly enhanced in DD-OFDM-PON and LRCO-OFDM-PON systems without performance degradations.

  14. Optical time division multiplexer on silicon chip.

    PubMed

    Aboketaf, Abdelsalam A; Elshaari, Ali W; Preble, Stefan F

    2010-06-21

    In this work, we experimentally demonstrate a novel broadband optical time division multiplexer (OTDM) on a silicon chip. The fabricated devices generate 20 Gb/s and 40 Gb/s signals starting from a 5 Gb/s input signal. The proposed design has a small footprint of 1mm x 1mm. The system is inherently broadband with a bandwidth of over 100nm making it suitable for high-speed optical networks on chip.

  15. Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior.

    PubMed

    Pillai, Ajay S; Jirsa, Viktor K

    2017-06-07

    In order to maintain brain function, neural activity needs to be tightly coordinated within the brain network. How this coordination is achieved and related to behavior is largely unknown. It has been previously argued that the study of the link between brain and behavior is impossible without a guiding vision. Here we propose behavioral-level concepts and mechanisms embodied as structured flows on manifold (SFM) that provide a formal description of behavior as a low-dimensional process emerging from a network's dynamics dependent on the symmetry and invariance properties of the network connectivity. Specifically, we demonstrate that the symmetry breaking of network connectivity constitutes a timescale hierarchy resulting in the emergence of an attractive functional subspace. We show that behavior emerges when appropriate conditions imposed upon the couplings are satisfied, justifying the conductance-based nature of synaptic couplings. Our concepts propose design principles for networks predicting how behavior and task rules are represented in real neural circuits and open new avenues for the analyses of neural data. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Energy-efficient orthogonal frequency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun

    2016-02-01

    We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.

  17. Fiber-connected position localization sensor networks

    NASA Astrophysics Data System (ADS)

    Pan, Shilong; Zhu, Dan; Fu, Jianbin; Yao, Tingfeng

    2014-11-01

    Position localization has drawn great attention due to its wide applications in radars, sonars, electronic warfare, wireless communications and so on. Photonic approaches to realize position localization can achieve high-resolution, which also provides the possibility to move the signal processing from each sensor node to the central station, thanks to the low loss, immunity to electromagnetic interference (EMI) and broad bandwidth brought by the photonic technologies. In this paper, we present a review on the recent works of position localization based on photonic technologies. A fiber-connected ultra-wideband (UWB) sensor network using optical time-division multiplexing (OTDM) is proposed to realize high-resolution localization and moving the signal processing to the central station. A 3.9-cm high spatial resolution is achieved. A wavelength-division multiplexed (WDM) fiber-connected sensor network is also demonstrated to realize location which is independent of the received signal format.

  18. Fast reversible learning based on neurons functioning as anisotropic multiplex hubs

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Goldental, Amir; Sheinin, Anton; Sardi, Shira; Kanter, Ido

    2017-05-01

    Neural networks are composed of neurons and synapses, which are responsible for learning in a slow adaptive dynamical process. Here we experimentally show that neurons act like independent anisotropic multiplex hubs, which relay and mute incoming signals following their input directions. Theoretically, the observed information routing enriches the computational capabilities of neurons by allowing, for instance, equalization among different information routes in the network, as well as high-frequency transmission of complex time-dependent signals constructed via several parallel routes. In addition, this kind of hubs adaptively eliminate very noisy neurons from the dynamics of the network, preventing masking of information transmission. The timescales for these features are several seconds at most, as opposed to the imprint of information by the synaptic plasticity, a process which exceeds minutes. Results open the horizon to the understanding of fast and adaptive learning realities in higher cognitive brain's functionalities.

  19. A long-reach WDM passive optical network enabling broadcasting service with centralized light source

    NASA Astrophysics Data System (ADS)

    Liu, D.; Tang, M.; Fu, S.; Liu, D.; Shum, P.

    2012-02-01

    We propose a long-reach wavelength-division-multiplexed (WDM) passive optical network (PON) to provide conventional point-to-point (P2P) data and downstream broadcasting service simultaneously by superimposing, for each WDM channel, the differential-phase-shift-keying (DPSK) broadcasting signal with the subcarrier multiplexing (SCM) modulated downstream P2P signal, at the optical line terminal (OLT). In the optical network units (ONUs), by re-modulating part of the downstream signal with a reflective semiconductor optical amplifier (RSOA), we realize color-less ONUs for upstream data transmission. The proposed scheme is numerically verified with a 5 Gb/s downstream P2P signal and broadcasting services, as well as 2.5 Gb/s upstream data through a 60 km bidirectional fiber link. In particular, the influence of the downstream lightwave's optical carrier-subcarrier ratio (OCSR) on the system performance is also investigated.

  20. Telecommunications Policy Research Conference. Future of the Telecommunications Network Section. Papers.

    ERIC Educational Resources Information Center

    Telecommunications Policy Research Conference, Inc., Washington, DC.

    The paper for which an abstract is presented here, "Future Network Architectures" (Anthony Rutowski), discussed innovations in processing/switching and transmission technologies, including the development of new broadband optical transfer modes using label and position multiplexing techniques. It is suggested that future network…

  1. Four-fold increase in users of time-wavelength division multiplexing (TWDM) passive optical network (PON) by delayed optical amplitude modulation (AM) upstream

    NASA Astrophysics Data System (ADS)

    Kachhatiya, Vivek; Prince, Shanthi

    2016-12-01

    In this paper, we have proposed and simulated optical time division multiplexed passive optical network (TDM-PON) using delayed optical amplitude modulation (AM). Eight upstream wavelengths are demonstrated to show optical time wavelength division multiplexed (TWDM) by combining optical network units (ONU) users data at the remote node (RN). Each ONU generates 2.5 Gb/s user data, and it is modulated using novel return to zero (RZ) delayed AM. Optical TDM aggregates 10 Gb/s data per wavelength from four 2.5 Gb/s upstream user data, which facilitates four different ONU data on the same wavelength as 10 Gb/s per upstream wavelength and, simplify the laser requirements (2.5 Gb/s) at each optical network unit (ONU) transmitter. Upstream optical TWDM-PON is investigated for eight wavelengths with wavelength spacing of 100 GHz. Novel optical TDM for upstream increased the number of the simultaneous user to fourfold from conventional TWDM-PON using delayed AM with a high-quality-factor of received signal. Despite performance degradation due to different fiber reach and dispersion compensation technique, Optical TWDM link shows significant improvement regarding receiver sensitivity when compared with common TWDM link. Hence, it offers optimistic thinking to show optical TDM at this phase as one of the future direction, where complex digital signal processing (DSP) and coherent optical communication are frequently demonstrated to serve the access network. Downstream side conventional TWDM eight wavelengths are multiplexed at the OLT and sent downstream to serve distributed tunable ONU receivers through an optical distribution network (ODN). Each downstream wavelengths are modulated at the peak rate of 10 Gb/s using non-return to zero external modulation (NRZ-EM). The proposed architecture is cost efficient and supports high data rates as well as ;pay as you grow; network for both service providers and the users perspectives. Users are classified into two categories viz home-user and business-user, with an option for easy up-gradation. Proposed architecture operates on next generation passive optical network stage 2 (NG-PON2) wavelength plan, with symmetrical data rate. Downstream performance is investigated by comparing, high power laser source with a conventional laser source and the L-band Erbium-doped fiber amplifier (EDFA) of gain 10 dB and 20 dB. Downstream eight wavelengths perform error-free up to 40 Km fiber reach and 1024 splitting points. Power budget of the proposed architecture incorporates the N1, N2, E1 and E2 optical path loss class.

  2. A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format

    NASA Astrophysics Data System (ADS)

    Tian, Yue; Leng, Lufeng; Su, Yikai

    2008-11-01

    All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.

  3. Complex networks as an emerging property of hierarchical preferential attachment.

    PubMed

    Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J

    2015-12-01

    Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.

  4. Complex networks as an emerging property of hierarchical preferential attachment

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.

    2015-12-01

    Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.

  5. Automatic anatomy recognition using neural network learning of object relationships via virtual landmarks

    NASA Astrophysics Data System (ADS)

    Yan, Fengxia; Udupa, Jayaram K.; Tong, Yubing; Xu, Guoping; Odhner, Dewey; Torigian, Drew A.

    2018-03-01

    The recently developed body-wide Automatic Anatomy Recognition (AAR) methodology depends on fuzzy modeling of individual objects, hierarchically arranging objects, constructing an anatomy ensemble of these models, and a dichotomous object recognition-delineation process. The parent-to-offspring spatial relationship in the object hierarchy is crucial in the AAR method. We have found this relationship to be quite complex, and as such any improvement in capturing this relationship information in the anatomy model will improve the process of recognition itself. Currently, the method encodes this relationship based on the layout of the geometric centers of the objects. Motivated by the concept of virtual landmarks (VLs), this paper presents a new one-shot AAR recognition method that utilizes the VLs to learn object relationships by training a neural network to predict the pose and the VLs of an offspring object given the VLs of the parent object in the hierarchy. We set up two neural networks for each parent-offspring object pair in a body region, one for predicting the VLs and another for predicting the pose parameters. The VL-based learning/prediction method is evaluated on two object hierarchies involving 14 objects. We utilize 54 computed tomography (CT) image data sets of head and neck cancer patients and the associated object contours drawn by dosimetrists for routine radiation therapy treatment planning. The VL neural network method is found to yield more accurate object localization than the currently used simple AAR method.

  6. 10 CFR Appendix H to Subpart B of... - Uniform Test Method for Measuring the Power Consumption of Television Sets

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... connections (e.g., Wi-Fi and Ethernet), the TV shall be configured and connected to a single network source in... Hierarchy Priority Network connection type 1 Wi-Fi (Institution of Electrical and Electronics Engineers—IEEE...

  7. Wired/wireless access integrated RoF-PON with scalable generation of multi-frequency MMWs enabled by polarization multiplexed FWM in SOA.

    PubMed

    Xiang, Yu; Chen, Chen; Zhang, Chongfu; Qiu, Kun

    2013-01-14

    In this paper, we propose and demonstrate a novel integrated radio-over-fiber passive optical network (RoF-PON) system for both wired and wireless access. By utilizing the polarization multiplexed four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA), scalable generation of multi-frequency millimeter-waves (MMWs) can be provided so as to assist the configuration of multi-frequency wireless access for the wire/wireless access integrated ROF-PON system. In order to obtain a better performance, the polarization multiplexed FWM effect is investigated in detail. Simulation results successfully verify the feasibility of our proposed scheme.

  8. The Face-Processing Network Is Resilient to Focal Resection of Human Visual Cortex.

    PubMed

    Weiner, Kevin S; Jonas, Jacques; Gomez, Jesse; Maillard, Louis; Brissart, Hélène; Hossu, Gabriela; Jacques, Corentin; Loftus, David; Colnat-Coulbois, Sophie; Stigliani, Anthony; Barnett, Michael A; Grill-Spector, Kalanit; Rossion, Bruno

    2016-08-10

    Human face perception requires a network of brain regions distributed throughout the occipital and temporal lobes with a right hemisphere advantage. Present theories consider this network as either a processing hierarchy beginning with the inferior occipital gyrus (occipital face area; IOG-faces/OFA) or a multiple-route network with nonhierarchical components. The former predicts that removing IOG-faces/OFA will detrimentally affect downstream stages, whereas the latter does not. We tested this prediction in a human patient (Patient S.P.) requiring removal of the right inferior occipital cortex, including IOG-faces/OFA. We acquired multiple fMRI measurements in Patient S.P. before and after a preplanned surgery and multiple measurements in typical controls, enabling both within-subject/across-session comparisons (Patient S.P. before resection vs Patient S.P. after resection) and between-subject/across-session comparisons (Patient S.P. vs controls). We found that the spatial topology and selectivity of downstream ipsilateral face-selective regions were stable 1 and 8 month(s) after surgery. Additionally, the reliability of distributed patterns of face selectivity in Patient S.P. before versus after resection was not different from across-session reliability in controls. Nevertheless, postoperatively, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1 of the resected hemisphere. Diffusion weighted imaging in Patient S.P. and controls identifies white matter tracts connecting retinotopic areas to downstream face-selective regions, which may contribute to the stable and plastic features of the face network in Patient S.P. after surgery. Together, our results support a multiple-route network of face processing with nonhierarchical components and shed light on stable and plastic features of high-level visual cortex following focal brain damage. Brain networks consist of interconnected functional regions commonly organized in processing hierarchies. Prevailing theories predict that damage to the input of the hierarchy will detrimentally affect later stages. We tested this prediction with multiple brain measurements in a rare human patient requiring surgical removal of the putative input to a network processing faces. Surprisingly, the spatial topology and selectivity of downstream face-selective regions are stable after surgery. Nevertheless, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1. White matter connections from outside the face network may support these stable and plastic features. As processing hierarchies are ubiquitous in biological and nonbiological systems, our results have pervasive implications for understanding the construction of resilient networks. Copyright © 2016 the authors 0270-6474/16/368426-16$15.00/0.

  9. A Multiplexed Assay for Determination of Neurotoxicant Effects on Spontaneous Network Activity and Viability from Microelectrode Arrays.

    EPA Science Inventory

    Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characterize the ability of drugs, chemicals and particles to cause neurotoxicity. While effects of compounds on spontaneous network activity is easily determined by MEA recordin...

  10. Life of Lambda

    ERIC Educational Resources Information Center

    Futhey, Tracy

    2005-01-01

    In this column, the author discusses the four key questions related to the National LambdaRail (NLR) networking technology. NLR uses Dense Wave Division Multiplexing (DWDM) to enable multiple networks to coexist on a national fiber footprint, and is owned and operated not by carriers, but by the research and education community. The NLR Board…

  11. Development of authentication code for multi-access optical code division multiplexing based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.

    2018-05-01

    One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.

  12. Data Optical Networking Architecture Using Wavelength-Division Multiplexing Method for Optical Sensors

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.

    2008-01-01

    Recently there has been a growth in the number of fiber optical sensors used for health monitoring in the hostile environment of commercial aircraft. Health monitoring to detect the onset of failure in structural systems from such causes as corrosion, stress corrosion cracking, and fatigue is a critical factor in safety as well in aircraft maintenance costs. This report presents an assessment of an analysis model of optical data networking architectures used for monitoring data signals among these optical sensors. Our model is focused on the design concept of the wavelength-division multiplexing (WDM) method since most of the optical sensors deployed in the aircraft for health monitoring typically operate in a wide spectrum of optical wavelengths from 710 to 1550 nm.

  13. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis.

    PubMed

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner; Sakaguchi, Jun; Olmos, Juan José Vegas; Awaji, Yoshinari; Monroy, Idelfonso Tafur; Wada, Naoya

    2017-09-18

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.

  14. Finite-dimensional modeling of network-induced delays for real-time control systems

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Halevi, Yoram

    1988-01-01

    In integrated control systems (ICS), a feedback loop is closed by the common communication channel, which multiplexes digital data from the sensor to the controller and from the controller to the actuator along with the data traffic from other control loops and management functions. Due to asynchronous time-division multiplexing in the network access protocols, time-varying delays are introduced in the control loop, which degrade the system dynamic performance and are a potential source of instability. The delayed control system is represented by a finite-dimensional, time-varying, discrete-time model which is less complex than the existing continuous-time models for time-varying delays; this approach allows for simpler schemes for analysis and simulation of the ICS.

  15. Network regularised Cox regression and multiplex network models to predict disease comorbidities and survival of cancer.

    PubMed

    Xu, Haoming; Moni, Mohammad Ali; Liò, Pietro

    2015-12-01

    In cancer genomics, gene expression levels provide important molecular signatures for all types of cancer, and this could be very useful for predicting the survival of cancer patients. However, the main challenge of gene expression data analysis is high dimensionality, and microarray is characterised by few number of samples with large number of genes. To overcome this problem, a variety of penalised Cox proportional hazard models have been proposed. We introduce a novel network regularised Cox proportional hazard model and a novel multiplex network model to measure the disease comorbidities and to predict survival of the cancer patient. Our methods are applied to analyse seven microarray cancer gene expression datasets: breast cancer, ovarian cancer, lung cancer, liver cancer, renal cancer and osteosarcoma. Firstly, we applied a principal component analysis to reduce the dimensionality of original gene expression data. Secondly, we applied a network regularised Cox regression model on the reduced gene expression datasets. By using normalised mutual information method and multiplex network model, we predict the comorbidities for the liver cancer based on the integration of diverse set of omics and clinical data, and we find the diseasome associations (disease-gene association) among different cancers based on the identified common significant genes. Finally, we evaluated the precision of the approach with respect to the accuracy of survival prediction using ROC curves. We report that colon cancer, liver cancer and renal cancer share the CXCL5 gene, and breast cancer, ovarian cancer and renal cancer share the CCND2 gene. Our methods are useful to predict survival of the patient and disease comorbidities more accurately and helpful for improvement of the care of patients with comorbidity. Software in Matlab and R is available on our GitHub page: https://github.com/ssnhcom/NetworkRegularisedCox.git. Copyright © 2015. Published by Elsevier Ltd.

  16. Homeostatic plasticity for single node delay-coupled reservoir computing.

    PubMed

    Toutounji, Hazem; Schumacher, Johannes; Pipa, Gordon

    2015-06-01

    Supplementing a differential equation with delays results in an infinite-dimensional dynamical system. This property provides the basis for a reservoir computing architecture, where the recurrent neural network is replaced by a single nonlinear node, delay-coupled to itself. Instead of the spatial topology of a network, subunits in the delay-coupled reservoir are multiplexed in time along one delay span of the system. The computational power of the reservoir is contingent on this temporal multiplexing. Here, we learn optimal temporal multiplexing by means of a biologically inspired homeostatic plasticity mechanism. Plasticity acts locally and changes the distances between the subunits along the delay, depending on how responsive these subunits are to the input. After analytically deriving the learning mechanism, we illustrate its role in improving the reservoir's computational power. To this end, we investigate, first, the increase of the reservoir's memory capacity. Second, we predict a NARMA-10 time series, showing that plasticity reduces the normalized root-mean-square error by more than 20%. Third, we discuss plasticity's influence on the reservoir's input-information capacity, the coupling strength between subunits, and the distribution of the readout coefficients.

  17. Method and Apparatus of Multiplexing and Acquiring Data from Multiple Optical Fibers Using a Single Data Channel of an Optical Frequency-Domain Reflectometry (OFDR) System

    NASA Technical Reports Server (NTRS)

    Parker, Jr., Allen R (Inventor); Chan, Hon Man (Inventor); Piazza, Anthony (Nino) (Inventor); Richards, William Lance (Inventor)

    2014-01-01

    A method and system for multiplexing a network of parallel fiber Bragg grating (FBG) sensor-fibers to a single acquisition channel of a closed Michelson interferometer system via a fiber splitter by distinguishing each branch of fiber sensors in the spatial domain. On each branch of the splitter, the fibers have a specific pre-determined length, effectively separating each branch of fiber sensors spatially. In the spatial domain the fiber branches are seen as part of one acquisition channel on the interrogation system. However, the FBG-reference arm beat frequency information for each fiber is retained. Since the beat frequency is generated between the reference arm, the effective fiber length of each successive branch includes the entire length of the preceding branch. The multiple branches are seen as one fiber having three segments where the segments can be resolved. This greatly simplifies optical, electronic and computational complexity, and is especially suited for use in multiplexed or branched OFS networks for SHM of large and/or distributed structures which need a lot of measurement points.

  18. Fiber optical parametric amplifiers in optical communication systems

    PubMed Central

    Marhic (†), Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. PMID:25866588

  19. Accelerate!

    PubMed

    Kotter, John P

    2012-11-01

    The old ways of setting and implementing strategy are failing us, writes the author of Leading Change, in part because we can no longer keep up with the pace of change. Organizational leaders are torn between trying to stay ahead of increasingly fierce competition and needing to deliver this year's results. Although traditional hierarchies and managerial processes--the components of a company's "operating system"--can meet the daily demands of running an enterprise, they are rarely equipped to identify important hazards quickly, formulate creative strategic initiatives nimbly, and implement them speedily. The solution Kotter offers is a second system--an agile, networklike structure--that operates in concert with the first to create a dual operating system. In such a system the hierarchy can hand off the pursuit of big strategic initiatives to the strategy network, freeing itself to focus on incremental changes to improve efficiency. The network is populated by employees from all levels of the organization, giving it organizational knowledge, relationships, credibility, and influence. It can Liberate information from silos with ease. It has a dynamic structure free of bureaucratic layers, permitting a level of individualism, creativity, and innovation beyond the reach of any hierarchy. The network's core is a guiding coalition that represents each level and department in the hierarchy, with a broad range of skills. Its drivers are members of a "volunteer army" who are energized by and committed to the coalition's vividly formulated, high-stakes vision and strategy. Kotter has helped eight organizations, public and private, build dual operating systems over the past three years. He predicts that such systems will lead to long-term success in the 21st century--for shareholders, customers, employees, and companies themselves.

  20. Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling*

    PubMed Central

    Kennedy, Jacob J.; Yan, Ping; Zhao, Lei; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Pogosova-Agadjanyan, Era L.; Stirewalt, Derek L.; Reding, Kerryn W.; Whiteaker, Jeffrey R.; Paulovich, Amanda G.

    2016-01-01

    A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks. PMID:26621847

  1. Uplink transmission of a 60-km-reach WDM/OCDM-PON using a spectrum-sliced pulse source

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Kyu; Hanawa, Masanori; Park, Chang-Soo

    2014-02-01

    We propose and experimentally demonstrate the uplink transmission of a 60-km-reach wavelength division multiplexing/optical code division multiplexing (WDM/OCDM) passive optical network (PON) using a spectrum-sliced pulse source. As a single light source, a broadband pulse source with a bandwidth of 6.5 nm and a repetition rate of 1.25 GHz is generated at a central office and supplied to a remote node (RN) through a 50-km fiber link. At the RN, narrow-band pulses (as a source for uplink transmission) are obtained by spectrum slicing the broadband pulse source with a cyclic arrayed waveguide grating and are then supplied to all optical network units (ONUs) via 1×4 power splitters and 10-km drop fibers. Eight wavelengths are obtained with a 6.5-nm bandwidth of the broadband pulse source, and the qualities of the pulses with a repetition rate of 1.25 GHz and a pulse width of 45 ps for the eight wavelengths are sufficient for four-chip OCDM encoding at the ONUs. In our experiments, four signals are multiplexed by OCDM at one wavelength, and another encoded signal is also multiplexed by WDM. The bit error rates (BERs) of the signals exhibit error-free transmission (BER<10-9) over a 60-km single-mode fiber at 1.25 Gb/s.

  2. Bridging the Capability Gap for Battle Command On-the-Move

    DTIC Science & Technology

    2005-06-01

    FDM) and synchronous Time Division Multiplexing (TDM) network components. This advantage will become further realized once mobile satellite modem... synchronize the initial network timing . Once a NM receives this beacon, it reports the measured receive signal strength back to the NC using the NM’s...in certain areas of the world. Due to M4’s synchronous network connections, link engineering to manage required distributed network timing is often

  3. Finding modules and hierarchy in weighted financial network using transfer entropy

    NASA Astrophysics Data System (ADS)

    Yook, Soon-Hyung; Chae, Huiseung; Kim, Jinho; Kim, Yup

    2016-04-01

    We study the modular structure of financial network based on the transfer entropy (TE). From the comparison with the obtained modular structure using the cross-correlation (CC), we find that TE and CC both provide well organized modular structure and the hierarchical relationship between each industrial group when the time scale of the measurement is less than one month. However, when the time scale of the measurement becomes larger than one month, we find that the modular structure from CC cannot correctly reflect the known industrial classification and their hierarchy. In addition the measured maximum modularity, Qmax, for TE is always larger than that for CC, which indicates that TE is a better weight measure than CC for the system with asymmetric relationship.

  4. A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice

    PubMed Central

    Snijders, Tom A.B.; Lomi, Alessandro; Torló, Vanina Jasmine

    2012-01-01

    We propose a new stochastic actor-oriented model for the co-evolution of two-mode and one-mode networks. The model posits that activities of a set of actors, represented in the two-mode network, co-evolve with exchanges and interactions between the actors, as represented in the one-mode network. The model assumes that the actors, not the activities, have agency. The empirical value of the model is demonstrated by examining how employment preferences co-evolve with friendship and advice relations in a group of seventy-five MBA students. The analysis shows that activity in the two-mode network, as expressed by number of employment preferences, is related to activity in the friendship network, as expressed by outdegrees. Further, advice ties between students lead to agreement with respect to employment preferences. In addition, considering the multiplexity of advice and friendship ties yields a better understanding of the dynamics of the advice relation: tendencies to reciprocation and homophily in advice relations are mediated to an important extent by friendship relations. The discussion pays attention to the implications of this study in the broader context of current efforts to model the co-evolutionary dynamics of social networks and individual behavior. PMID:23690653

  5. A Survey on Next-Generation Mixed Line Rate (MLR) and Energy-Driven Wavelength-Division Multiplexed (WDM) Optical Networks

    NASA Astrophysics Data System (ADS)

    Iyer, Sridhar

    2015-06-01

    With the ever-increasing traffic demands, infrastructure of the current 10 Gbps optical network needs to be enhanced. Further, since the energy crisis is gaining increasing concerns, new research topics need to be devised and technological solutions for energy conservation need to be investigated. In all-optical mixed line rate (MLR) network, feasibility of a lightpath is determined by the physical layer impairment (PLI) accumulation. Contrary to PLI-aware routing and wavelength assignment (PLIA-RWA) algorithm applicable for a 10 Gbps wavelength-division multiplexed (WDM) network, a new Routing, Wavelength, Modulation format assignment (RWMFA) algorithm is required for the MLR optical network. With the rapid growth of energy consumption in Information and Communication Technologies (ICT), recently, lot of attention is being devoted toward "green" ICT solutions. This article presents a review of different RWMFA (PLIA-RWA) algorithms for MLR networks, and surveys the most relevant research activities aimed at minimizing energy consumption in optical networks. In essence, this article presents a comprehensive and timely survey on a growing field of research, as it covers most aspects of MLR and energy-driven optical networks. Hence, the author aims at providing a comprehensive reference for the growing base of researchers who will work on MLR and energy-driven optical networks in the upcoming years. Finally, the article also identifies several open problems for future research.

  6. Physical-Layer Network Coding for VPN in TDM-PON

    NASA Astrophysics Data System (ADS)

    Wang, Qike; Tse, Kam-Hon; Chen, Lian-Kuan; Liew, Soung-Chang

    2012-12-01

    We experimentally demonstrate a novel optical physical-layer network coding (PNC) scheme over time-division multiplexing (TDM) passive optical network (PON). Full-duplex error-free communications between optical network units (ONUs) at 2.5 Gb/s are shown for all-optical virtual private network (VPN) applications. Compared to the conventional half-duplex communications set-up, our scheme can increase the capacity by 100% with power penalty smaller than 3 dB. Synchronization of two ONUs is not required for the proposed VPN scheme

  7. Structural Measures to Track the Evolution of SNOMED CT Hierarchies

    PubMed Central

    Wei, Duo; Gu, Huanying (Helen); Perl, Yehoshua; Halper, Michael; Ochs, Christopher; Elhanan, Gai; Chen, Yan

    2015-01-01

    The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is an extensive reference terminology with an attendant amount of complexity. It has been updated continuously and revisions have been released semi-annually to meet users’ needs and to reflect the results of quality assurance (QA) activities. Two measures based on structural features are proposed to track the effects of both natural terminology growth and QA activities based on aspects of the complexity of SNOMED CT. These two measures, called the structural density measure and accumulated structural measure, are derived based on two abstraction networks, the area taxonomy and the partial-area taxonomy. The measures derive from attribute relationship distributions and various concept groupings that are associated with the abstraction networks. They are used to track the trends in the complexity of structures as SNOMED CT changes over time. The measures were calculated for consecutive releases of five SNOMED CT hierarchies, including the Specimen hierarchy. The structural density measure shows that natural growth tends to move a hierarchy’s structure toward a more complex state, whereas the accumulated structural measure shows that QA processes tend to move a hierarchy’s structure toward a less complex state. It is also observed that both the structural density and accumulated structural measures are useful tools to track the evolution of an entire SNOMED CT hierarchy and reveal internal concept migration within it. PMID:26260003

  8. The Young Psychiatrists’ Network: between past and future

    PubMed Central

    Los, T.

    2016-01-01

    The Young Psychiatrists’ Network is a movement of early-career psychiatrists that was established in 2009 with the principles of peer regulation, lack of hierarchy and transparency. From humble beginnings as a small group of professionals in Eastern Europe, the Network is expanding into a globally inclusive platform. Future challenges, such as retention of the Network’s core values, are now being debated. PMID:29093900

  9. Scout-MRM: Multiplexed Targeted Mass Spectrometry-Based Assay without Retention Time Scheduling Exemplified by Dickeya dadantii Proteomic Analysis during Plant Infection.

    PubMed

    Rougemont, Blandine; Bontemps Gallo, Sébastien; Ayciriex, Sophie; Carrière, Romain; Hondermarck, Hubert; Lacroix, Jean Marie; Le Blanc, J C Yves; Lemoine, Jérôme

    2017-02-07

    Targeted mass spectrometry of a surrogate peptide panel is a powerful method to study the dynamics of protein networks, but chromatographic time scheduling remains a major limitation for dissemination and implementation of robust and large multiplexed assays. We unveil a Multiple Reaction Monitoring method (Scout-MRM) where the use of spiked scout peptides triggers complex transition lists, regardless of the retention time of targeted surrogate peptides. The interest of Scout-MRM method regarding the retention time independency, multiplexing capability, reproducibility, and putative interest in facilitating method transfer was illustrated by a 782-peptide-plex relative assay targeting 445 proteins of the phytopathogen Dickeya dadantii during plant infection.

  10. Multiplexed protein measurement: technologies and applications of protein and antibody arrays

    PubMed Central

    Kingsmore, Stephen F.

    2006-01-01

    The ability to measure the abundance of many proteins precisely and simultaneously in experimental samples is an important, recent advance for static and dynamic, as well as descriptive and predictive, biological research. The value of multiplexed protein measurement is being established in applications such as comprehensive proteomic surveys, studies of protein networks and pathways, validation of genomic discoveries and clinical biomarker development. As standards do not yet exist that bridge all of these applications, the current recommended best practice for validation of results is to approach study design in an iterative process and to integrate data from several measurement technologies. This review describes current and emerging multiplexed protein measurement technologies and their applications, and discusses the remaining challenges in this field. PMID:16582876

  11. Multiplexed memory-insensitive quantum repeaters.

    PubMed

    Collins, O A; Jenkins, S D; Kuzmich, A; Kennedy, T A B

    2007-02-09

    Long-distance quantum communication via distant pairs of entangled quantum bits (qubits) is the first step towards secure message transmission and distributed quantum computing. To date, the most promising proposals require quantum repeaters to mitigate the exponential decrease in communication rate due to optical fiber losses. However, these are exquisitely sensitive to the lifetimes of their memory elements. We propose a multiplexing of quantum nodes that should enable the construction of quantum networks that are largely insensitive to the coherence times of the quantum memory elements.

  12. Microlaser-based compact optical neuro-processors (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Paek, Eung Gi; Chan, Winston K.; Zah, Chung-En; Cheung, Kwok-wai; Curtis, L.; Chang-Hasnain, Constance J.

    1992-10-01

    This paper reviews the recent progress in the development of holographic neural networks using surface-emitting laser diode arrays (SELDAs). Since the previous work on ultrafast holographic memory readout system and a robust incoherent correlator, progress has been made in several areas: the use of an array of monolithic `neurons' to reconstruct holographic memories; two-dimensional (2-D) wavelength-division multiplexing (WDM) for image transmission through a single-mode fiber; and finally, an associative memory using time- division multiplexing (TDM). Experimental demonstrations on these are presented.

  13. The Multiplex Network of EU Lobby Organizations.

    PubMed

    Zeng, An; Battiston, Stefano

    2016-01-01

    The practice of lobbying in the interest of economic or social groups plays an important role in the policy making process of most economies. While no data is available at this stage to examine the success of lobbies in exerting influence on specific policy issues, we perform a first systematic multi-layer network analysis of a large lobby registry. Here we focus on the domains of finance and climate and we combine information on affiliation and client relations from the EU transparency register with information about shareholding and interlocking directorates of firms. We find that the network centrality of lobby organizations has no simple relation with their lobbying budget. Moreover, different layers of the multiplex network provide complementary information to characterize organizations' potential influence. At the aggregate level, it appears that while the domains of finance and climate are separated on the layer of affiliation relations, they become intertwined when economic relations are considered. Because groups of interest differ not only in their budget and network centrality but also in terms of their internal cohesiveness, drawing a map of both connections across and within groups is a precondition to better understand the dynamics of influence on policy making and the forces at play.

  14. The Multiplex Network of EU Lobby Organizations

    PubMed Central

    Zeng, An; Battiston, Stefano

    2016-01-01

    The practice of lobbying in the interest of economic or social groups plays an important role in the policy making process of most economies. While no data is available at this stage to examine the success of lobbies in exerting influence on specific policy issues, we perform a first systematic multi-layer network analysis of a large lobby registry. Here we focus on the domains of finance and climate and we combine information on affiliation and client relations from the EU transparency register with information about shareholding and interlocking directorates of firms. We find that the network centrality of lobby organizations has no simple relation with their lobbying budget. Moreover, different layers of the multiplex network provide complementary information to characterize organizations’ potential influence. At the aggregate level, it appears that while the domains of finance and climate are separated on the layer of affiliation relations, they become intertwined when economic relations are considered. Because groups of interest differ not only in their budget and network centrality but also in terms of their internal cohesiveness, drawing a map of both connections across and within groups is a precondition to better understand the dynamics of influence on policy making and the forces at play. PMID:27792734

  15. Impairments Computation for Routing Purposes in a Transparent-Access Optical Network Based on Optical CDMA and WDM

    NASA Astrophysics Data System (ADS)

    Musa, Ahmed

    2016-06-01

    Optical access networks are becoming more widespread and the use of multiple services might require a transparent optical network (TON). Multiplexing and privacy could benefit from the combination of wavelength division multiplexing (WDM) and optical coding (OC) and wavelength conversion in optical switches. The routing process needs to be cognizant of different resource types and characteristics such as fiber types, fiber linear impairments such as attenuation, dispersion, etc. as well as fiber nonlinear impairments such as four-wave mixing, cross-phase modulation, etc. Other types of impairments, generated by optical nodes or photonic switches, also affect the signal quality (Q) or the optical signal to noise ratio (OSNR), which is related to the bit error rate (BER). Therefore, both link and switch impairments must be addressed and somehow incorporated into the routing algorithm. However, it is not practical to fully integrate all photonic-specific attributes in the routing process. In this study, new routing parameters and constraints are defined that reflect the distinct characteristics of photonic networking. These constraints are applied to the design phase of TON and expressed as a cost or metric form that will be used in the network routing algorithm.

  16. How Structured Is the Entangled Bank? The Surprisingly Simple Organization of Multiplex Ecological Networks Leads to Increased Persistence and Resilience

    PubMed Central

    Wieters, Evie A.; Navarrete, Sergio A.

    2016-01-01

    Species are linked to each other by a myriad of positive and negative interactions. This complex spectrum of interactions constitutes a network of links that mediates ecological communities’ response to perturbations, such as exploitation and climate change. In the last decades, there have been great advances in the study of intricate ecological networks. We have, nonetheless, lacked both the data and the tools to more rigorously understand the patterning of multiple interaction types between species (i.e., “multiplex networks”), as well as their consequences for community dynamics. Using network statistical modeling applied to a comprehensive ecological network, which includes trophic and diverse non-trophic links, we provide a first glimpse at what the full “entangled bank” of species looks like. The community exhibits clear multidimensional structure, which is taxonomically coherent and broadly predictable from species traits. Moreover, dynamic simulations suggest that this non-random patterning of how diverse non-trophic interactions map onto the food web could allow for higher species persistence and higher total biomass than expected by chance and tends to promote a higher robustness to extinctions. PMID:27487303

  17. Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.

    PubMed

    Liang, Xiaojun; Kumar, Shiva

    2017-03-06

    We have investigated an optical back propagation (OBP) method to compensate for propagation impairments in fiber optic networks with lumped Erbium doped fiber amplifier (EDFA) and/or distributed Raman amplification. An OBP module consists of an optical phase conjugator (OPC), optical amplifiers and dispersion varying fibers (DVFs). We derived a semi-analytical expression that calculates the dispersion profile of DVF. The OBP module acts as a nonlinear filter that fully compensates for the nonlinear distortions due to signal propagation in a transmission fiber, and is applicable for fiber optic networks with reconfigurable optical add-drop multiplexers (ROADMs). We studied a wavelength division multiplexing (WDM) network with 3000 km transmission distance and 64-quadrature amplitude modulation (QAM) modulation. OBP brings 5.8 dB, 5.9 dB and 6.1 dB Q-factor gains over linear compensation for systems with full EDFA amplification, hybrid EDFA/Raman amplification, and full Raman amplification, respectively. In contrast, digital back propagation (DBP) or OPC-only systems provide only 0.8 ~ 1.5 dB Q-factor gains.

  18. Systemic risk in multiplex networks with asymmetric coupling and threshold feedback

    NASA Astrophysics Data System (ADS)

    Burkholz, Rebekka; Leduc, Matt V.; Garas, Antonios; Schweitzer, Frank

    2016-06-01

    We study cascades on a two-layer multiplex network, with asymmetric feedback that depends on the coupling strength between the layers. Based on an analytical branching process approximation, we calculate the systemic risk measured by the final fraction of failed nodes on a reference layer. The results are compared with the case of a single layer network that is an aggregated representation of the two layers. We find that systemic risk in the two-layer network is smaller than in the aggregated one only if the coupling strength between the two layers is small. Above a critical coupling strength, systemic risk is increased because of the mutual amplification of cascades in the two layers. We even observe sharp phase transitions in the cascade size that are less pronounced on the aggregated layer. Our insights can be applied to a scenario where firms decide whether they want to split their business into a less risky core business and a more risky subsidiary business. In most cases, this may lead to a drastic increase of systemic risk, which is underestimated in an aggregated approach.

  19. Neural representations of social status hierarchy in human inferior parietal cortex.

    PubMed

    Chiao, Joan Y; Harada, Tokiko; Oby, Emily R; Li, Zhang; Parrish, Todd; Bridge, Donna J

    2009-01-01

    Mental representations of social status hierarchy share properties with that of numbers. Previous neuroimaging studies have shown that the neural representation of numerical magnitude lies within a network of regions within inferior parietal cortex. However the neural basis of social status hierarchy remains unknown. Using fMRI, we studied subjects while they compared social status magnitude of people, objects and symbols, as well as numerical magnitude. Both social status and number comparisons recruited bilateral intraparietal sulci. We also observed a semantic distance effect whereby neural activity within bilateral intraparietal sulci increased for semantically close relative to far numerical and social status comparisons. These results demonstrate that social status and number comparisons recruit distinct and overlapping neuronal representations within human inferior parietal cortex.

  20. Challenges to the Use of Artificial Neural Networks for Diagnostic Classifications with Student Test Data

    ERIC Educational Resources Information Center

    Briggs, Derek C.; Circi, Ruhan

    2017-01-01

    Artificial Neural Networks (ANNs) have been proposed as a promising approach for the classification of students into different levels of a psychological attribute hierarchy. Unfortunately, because such classifications typically rely upon internally produced item response patterns that have not been externally validated, the instability of ANN…

  1. An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity

    PubMed Central

    Whittington, James C. R.; Bogacz, Rafal

    2017-01-01

    To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output. PMID:28333583

  2. Hierarchical mutual information for the comparison of hierarchical community structures in complex networks

    NASA Astrophysics Data System (ADS)

    Perotti, Juan Ignacio; Tessone, Claudio Juan; Caldarelli, Guido

    2015-12-01

    The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust, and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the hierarchical mutual information, which is a generalization of the traditional mutual information and makes it possible to compare hierarchical partitions and hierarchical community structures. The normalized version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies and on the hierarchical community structure of artificial and empirical networks. Furthermore, the experiments illustrate some of the practical applications of the hierarchical mutual information, namely the comparison of different community detection methods and the study of the consistency, robustness, and temporal evolution of the hierarchical modular structure of networks.

  3. An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity.

    PubMed

    Whittington, James C R; Bogacz, Rafal

    2017-05-01

    To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output.

  4. Overlapping communities detection based on spectral analysis of line graphs

    NASA Astrophysics Data System (ADS)

    Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan

    2018-05-01

    Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.

  5. Detecting Role Errors in the Gene Hierarchy of the NCI Thesaurus

    PubMed Central

    Min, Hua; Cohen, Barry; Halper, Michael; Oren, Marc; Perl, Yehoshua

    2008-01-01

    Gene terminologies are playing an increasingly important role in the ever-growing field of genomic research. While errors in large, complex terminologies are inevitable, gene terminologies are even more susceptible to them due to the rapid growth of genomic knowledge and the nature of its discovery. It is therefore very important to establish quality-assurance protocols for such genomic-knowledge repositories. Different kinds of terminologies oftentimes require auditing methodologies adapted to their particular structures. In light of this, an auditing methodology tailored to the characteristics of the NCI Thesaurus’s (NCIT’s) Gene hierarchy is presented. The Gene hierarchy is of particular interest to the NCIT’s designers due to the primary role of genomics in current cancer research. This multiphase methodology focuses on detecting role-errors, such as missing roles or roles with incorrect or incomplete target structures, occurring within that hierarchy. The methodology is based on two kinds of abstraction networks, called taxonomies, that highlight the role distribution among concepts within the IS-A (subsumption) hierarchy. These abstract views tend to highlight portions of the hierarchy having a higher concentration of errors. The errors found during an application of the methodology are reported. Hypotheses pertaining to the efficacy of our methodology are investigated. PMID:19221606

  6. Optics in neural computation

    NASA Astrophysics Data System (ADS)

    Levene, Michael John

    In all attempts to emulate the considerable powers of the brain, one is struck by both its immense size, parallelism, and complexity. While the fields of neural networks, artificial intelligence, and neuromorphic engineering have all attempted oversimplifications on the considerable complexity, all three can benefit from the inherent scalability and parallelism of optics. This thesis looks at specific aspects of three modes in which optics, and particularly volume holography, can play a part in neural computation. First, holography serves as the basis of highly-parallel correlators, which are the foundation of optical neural networks. The huge input capability of optical neural networks make them most useful for image processing and image recognition and tracking. These tasks benefit from the shift invariance of optical correlators. In this thesis, I analyze the capacity of correlators, and then present several techniques for controlling the amount of shift invariance. Of particular interest is the Fresnel correlator, in which the hologram is displaced from the Fourier plane. In this case, the amount of shift invariance is limited not just by the thickness of the hologram, but by the distance of the hologram from the Fourier plane. Second, volume holography can provide the huge storage capacity and high speed, parallel read-out necessary to support large artificial intelligence systems. However, previous methods for storing data in volume holograms have relied on awkward beam-steering or on as-yet non- existent cheap, wide-bandwidth, tunable laser sources. This thesis presents a new technique, shift multiplexing, which is capable of very high densities, but which has the advantage of a very simple implementation. In shift multiplexing, the reference wave consists of a focused spot a few millimeters in front of the hologram. Multiplexing is achieved by simply translating the hologram a few tens of microns or less. This thesis describes the theory for how shift multiplexing works based on an unconventional, but very intuitive, analysis of the optical far-field. A more detailed analysis based on a path-integral interpretation of the Born approximation is also derived. The capacity of shift multiplexing is compared with that of angle and wavelength multiplexing. The last part of this thesis deals with the role of optics in neuromorphic engineering. Up until now, most neuromorphic engineering has involved one or a few VLSI circuits emulating early sensory systems. However, optical interconnects will be required in order to push towards more ambitious goals, such as the simulation of early visual cortex. I describe a preliminary approach to designing such a system, and show how shift multiplexing can be used to simultaneously store and implement the immense interconnections required by such a project.

  7. Mapping U.S. long-haul truck drivers' multiplex networks and risk topography in inner-city neighborhoods

    PubMed Central

    Apostolopoulos, Yorghos; Sönmez, Sevil; Lemke, Michael Kenneth; Rothenberg, Richard B.

    2015-01-01

    This article illustrates how urban inner-city trucking milieux may influence STI/BBI/HIV acquisition and transmission risks for U.S. long-haul truckers, as well as their social and risk relationships. Using mixed methods, we collected ethnoepidemiological and biological data from long-haul truck drivers and their risk contacts in inner-city trucking milieux in Atlanta, Georgia, United States. Key findings indicate that within the risk-endemic environment of distressed inner-city areas, diverse trucking risk milieux can amplify STI/BBI/HIV risk for multiplex networks of truckers. Inner-city neighborhood location, short geographic distance among risk contacts, and trucker concurrency can potentially exacerbate transmission via bridging higher-risk individuals with lower-risk populations at disparate geographic and epidemiological locations. PMID:25863181

  8. Multicasting based optical inverse multiplexing in elastic optical network.

    PubMed

    Guo, Bingli; Xu, Yingying; Zhu, Paikun; Zhong, Yucheng; Chen, Yuanxiang; Li, Juhao; Chen, Zhangyuan; He, Yongqi

    2014-06-16

    Optical multicasting based inverse multiplexing (IM) is introduced in spectrum allocation of elastic optical network to resolve the spectrum fragmentation problem, where superchannels could be split and fit into several discrete spectrum blocks in the intermediate node. We experimentally demonstrate it with a 1-to-7 optical superchannel multicasting module and selecting/coupling components. Also, simulation results show that, comparing with several emerging spectrum defragmentation solutions (e.g., spectrum conversion, split spectrum), IM could reduce blocking performance significantly but without adding too much system complexity as split spectrum. On the other hand, service fairness for traffic with different granularity of these schemes is investigated for the first time and it shows that IM performs better than spectrum conversion and almost as well as split spectrum, especially for smaller size traffic under light traffic intensity.

  9. On-chip switch for reconfigurable mode-multiplexing optical network.

    PubMed

    Sun, Chunlei; Yu, Yu; Chen, Guanyu; Zhang, Xinliang

    2016-09-19

    The switching and routing is essential for an advanced and reconfigurable optical network, and great efforts have been done for traditional single-mode system. We propose and demonstrate an on-chip switch compatible with mode-division multiplexing system. By controlling the induced phase difference, the functionalities of dynamically routing data channels can be achieved. The proposed switch is experimentally demonstrated with low insertion loss of ~1 dB and high extinction ratio of ~20 dB over the C-band for OFF-ON switchover. For further demonstration, the non-return-to-zero on-off keying signals at 10 Gb/s carried on the two spatial modes are successfully processed. Open and clear eye diagrams can be observed and the bit error rate measurements indicate a good data routing performance.

  10. Resolving Structural Variability in Network Models and the Brain

    PubMed Central

    Klimm, Florian; Bassett, Danielle S.; Carlson, Jean M.; Mucha, Peter J.

    2014-01-01

    Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling—in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data. PMID:24675546

  11. A New Wavelength Optimization and Energy-Saving Scheme Based on Network Coding in Software-Defined WDM-PON Networks

    NASA Astrophysics Data System (ADS)

    Ren, Danping; Wu, Shanshan; Zhang, Lijing

    2016-09-01

    In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.

  12. A linguistic geometry for 3D strategic planning

    NASA Technical Reports Server (NTRS)

    Stilman, Boris

    1995-01-01

    This paper is a new step in the development and application of the Linguistic Geometry. This formal theory is intended to discover the inner properties of human expert heuristics, which have been successful in a certain class of complex control systems, and apply them to different systems. In this paper we investigate heuristics extracted in the form of hierarchical networks of planning paths of autonomous agents. Employing Linguistic Geometry tools the dynamic hierarchy of networks is represented as a hierarchy of formal attribute languages. The main ideas of this methodology are shown in this paper on the new pilot example of the solution of the extremely complex 3D optimization problem of strategic planning for the space combat of autonomous vehicles. This example demonstrates deep and highly selective search in comparison with conventional search algorithms.

  13. Reframing coalitions as systems interventions: a network study exploring the contribution of a youth violence prevention coalition to broader system capacity.

    PubMed

    Bess, Kimberly D

    2015-06-01

    This longitudinal research conceptualizes community coalitions as events in local intervention systems (Hawe et al. in Am J Commun Psychol 43(3-4):267-276, 2009). It explores the potential contribution coalitions make, through the collaborative activities of their members, to the broader intervention systems in which they are embedded. Using social network analysis, it examines patterns of structural change in a network of 99 organizations focused on youth violence prevention (YVP) over a 5-year period in which 30 of the 99 organizations were involved in a local YVP Coalition. Both longitudinal modeling and cross sectional analyses are used to examine change in system capacity-strong interorganizational networks-related to patterns of network density, centralization, and hierarchy. Somewhat surprisingly, the study found that capacity in the broader YVP Intervention System actually diminished during the 5-year period of the coalition's operation, though part of the system-the sub-network that made up the YVP Coalition-was marginally strengthened. In this case, therefore, the evidence suggests that power and relational resources in the broader YVP Intervention System were redistributed. The article explores how the definition of capacity related to density and hierarchy may be contextually dependent. Implications for the role of coalitions in building system capacity are discussed.

  14. Voice over internet protocol with prepaid calling card solutions

    NASA Astrophysics Data System (ADS)

    Gunadi, Tri

    2001-07-01

    The VoIP technology is growing up rapidly, it has big network impact on PT Telkom Indonesia, the bigger telecommunication operator in Indonesia. Telkom has adopted VoIP and one other technology, Intelligent Network (IN). We develop those technologies together in one service product, called Internet Prepaid Calling Card (IPCC). IPCC is becoming new breakthrough for the Indonesia telecommunication services especially on VoIP and Prepaid Calling Card solutions. Network architecture of Indonesia telecommunication consists of three layer, Local, Tandem and Trunck Exchange layer. Network development researches for IPCC architecture are focus on network overlay hierarchy, Internet and PSTN. With this design hierarchy the goal of Interworking PSTN, VoIP and IN calling card, become reality. Overlay design for IPCC is not on Trunck Exchange, this is the new architecture, these overlay on Tandem and Local Exchange, to make the faster call processing. The nodes added: Gateway (GW) and Card Management Center (CMC) The GW do interfacing between PSTN and Internet Network used ISDN-PRA and Ethernet. The other functions are making bridge on circuit (PSTN) with packet (VoIP) based and real time billing process. The CMC used for data storage, pin validation, report activation, tariff system, directory number and all the administration transaction. With two nodes added the IPCC service offered to the market.

  15. Effects of awareness diffusion and self-initiated awareness behavior on epidemic spreading - An approach based on multiplex networks

    NASA Astrophysics Data System (ADS)

    Kan, Jia-Qian; Zhang, Hai-Feng

    2017-03-01

    In this paper, we study the interplay between the epidemic spreading and the diffusion of awareness in multiplex networks. In the model, an infectious disease can spread in one network representing the paths of epidemic spreading (contact network), leading to the diffusion of awareness in the other network (information network), and then the diffusion of awareness will cause individuals to take social distances, which in turn affects the epidemic spreading. As for the diffusion of awareness, we assume that, on the one hand, individuals can be informed by other aware neighbors in information network, on the other hand, the susceptible individuals can be self-awareness induced by the infected neighbors in the contact networks (local information) or mass media (global information). Through Markov chain approach and numerical computations, we find that the density of infected individuals and the epidemic threshold can be affected by the structures of the two networks and the effective transmission rate of the awareness. However, we prove that though the introduction of the self-awareness can lower the density of infection, which cannot increase the epidemic threshold no matter of the local information or global information. Our finding is remarkably different to many previous results on single-layer network: local information based behavioral response can alter the epidemic threshold. Furthermore, our results indicate that the nodes with more neighbors (hub nodes) in information networks are easier to be informed, as a result, their risk of infection in contact networks can be effectively reduced.

  16. Reliable Wide-Area Wavelength Division Multiplexing Passive Optical Network Accommodating Gigabit Ethernet and 10-Gb Ethernet Services

    NASA Astrophysics Data System (ADS)

    Nakamura, Hirotaka; Suzuki, Hiro; Kani, Jun-Ichi; Iwatsuki, Katsumi

    2006-05-01

    This paper proposes and demonstrates a reliable wide-area wavelength-division-multiplexing passive optical network (WDM-PON) with a wavelength-shifted protection scheme. This protection scheme utilizes the cyclic property of 2 × N athermal arrayed-waveguide grating and two kinds of wavelength allocations, each of which is assigned for working and protection, respectively. Compared with conventional protection schemes, this scheme does not need a 3-dB optical coupler, thus leading to ensure the large loss budget that is suited for wide-area WDM-PONs. It also features a passive access node and does not have a protection function in the optical network unit (ONU). The feasibility of the proposed scheme is experimentally confirmed by the carrier-distributed WDM-PON with gigabit Ethernet interface (GbE-IF) and 10-GbE-IF, in which the ONU does not employ a light source, and all wavelengths for upstream signals are centralized and distributed from the central office.

  17. Coherent ultra dense wavelength division multiplexing passive optical networks

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António

    2015-12-01

    In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).

  18. OAM-labeled free-space optical flow routing.

    PubMed

    Gao, Shecheng; Lei, Ting; Li, Yangjin; Yuan, Yangsheng; Xie, Zhenwei; Li, Zhaohui; Yuan, Xiaocong

    2016-09-19

    Space-division multiplexing allows unprecedented scaling of bandwidth density for optical communication. Routing spatial channels among transmission ports is critical for future scalable optical network, however, there is still no characteristic parameter to label the overlapped optical carriers. Here we propose a free-space optical flow routing (OFR) scheme by using optical orbital angular moment (OAM) states to label optical flows and simultaneously steer each flow according to their OAM states. With an OAM multiplexer and a reconfigurable OAM demultiplexer, massive individual optical flows can be routed to the demanded optical ports. In the routing process, the OAM beams act as data carriers at the same time their topological charges act as each carrier's labels. Using this scheme, we experimentally demonstrate switching, multicasting and filtering network functions by simultaneously steer 10 input optical flows on demand to 10 output ports. The demonstration of data-carrying OFR with nonreturn-to-zero signals shows that this process enables synchronous processing of massive spatial channels and flexible optical network.

  19. Characterization, adaptive traffic shaping, and multiplexing of real-time MPEG II video

    NASA Astrophysics Data System (ADS)

    Agrawal, Sanjay; Barry, Charles F.; Binnai, Vinay; Kazovsky, Leonid G.

    1997-01-01

    We obtain network traffic model for real-time MPEG-II encoded digital video by analyzing video stream samples from real-time encoders from NUKO Information Systems. MPEG-II sample streams include a resolution intensive movie, City of Joy, an action intensive movie, Aliens, a luminance intensive (black and white) movie, Road To Utopia, and a chrominance intensive (color) movie, Dick Tracy. From our analysis we obtain a heuristic model for the encoded video traffic which uses a 15-stage Markov process to model the I,B,P frame sequences within a group of pictures (GOP). A jointly-correlated Gaussian process is used to model the individual frame sizes. Scene change arrivals are modeled according to a gamma process. Simulations show that our MPEG-II traffic model generates, I,B,P frame sequences and frame sizes that closely match the sample MPEG-II stream traffic characteristics as they relate to latency and buffer occupancy in network queues. To achieve high multiplexing efficiency we propose a traffic shaping scheme which sets preferred 1-frame generation times among a group of encoders so as to minimize the overall variation in total offered traffic while still allowing the individual encoders to react to scene changes. Simulations show that our scheme results in multiplexing gains of up to 10% enabling us to multiplex twenty 6 Mbps MPEG-II video streams instead of 18 streams over an ATM/SONET OC3 link without latency or cell loss penalty. This scheme is due for a patent.

  20. Operating systems and network protocols for wireless sensor networks.

    PubMed

    Dutta, Prabal; Dunkels, Adam

    2012-01-13

    Sensor network protocols exist to satisfy the communication needs of diverse applications, including data collection, event detection, target tracking and control. Network protocols to enable these services are constrained by the extreme resource scarcity of sensor nodes-including energy, computing, communications and storage-which must be carefully managed and multiplexed by the operating system. These challenges have led to new protocols and operating systems that are efficient in their energy consumption, careful in their computational needs and miserly in their memory footprints, all while discovering neighbours, forming networks, delivering data and correcting failures.

  1. Cross-Domain Shoe Retrieval with a Semantic Hierarchy of Attribute Classification Network.

    PubMed

    Zhan, Huijing; Shi, Boxin; Kot, Alex C

    2017-08-04

    Cross-domain shoe image retrieval is a challenging problem, because the query photo from the street domain (daily life scenario) and the reference photo in the online domain (online shop images) have significant visual differences due to the viewpoint and scale variation, self-occlusion, and cluttered background. This paper proposes the Semantic Hierarchy Of attributE Convolutional Neural Network (SHOE-CNN) with a three-level feature representation for discriminative shoe feature expression and efficient retrieval. The SHOE-CNN with its newly designed loss function systematically merges semantic attributes of closer visual appearances to prevent shoe images with the obvious visual differences being confused with each other; the features extracted from image, region, and part levels effectively match the shoe images across different domains. We collect a large-scale shoe dataset composed of 14341 street domain and 12652 corresponding online domain images with fine-grained attributes to train our network and evaluate our system. The top-20 retrieval accuracy improves significantly over the solution with the pre-trained CNN features.

  2. Characterization of ToxCast Phase II compounds disruption of spontaneous network activity in cortical networks grown on multi-well microelectrode array (mwMEA) plates.

    EPA Science Inventory

    The development of multi-well microelectrode array (mwMEA) systems has increased in vitro screening throughput making them an effective method to screen and prioritize large sets of compounds for potential neurotoxicity. In the present experiments, a multiplexed approach was used...

  3. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields

    PubMed Central

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-01-01

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931

  4. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    PubMed

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-09-06

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.

  5. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach

    PubMed Central

    Senior, Alistair M.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments. PMID:26858671

  6. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks.

    PubMed

    Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing

    2017-07-19

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.

  7. Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks

    PubMed Central

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2014-01-01

    Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels of hierarchy using internal cluster quality metrics on 7 real-life networks. PMID:24949877

  8. Ontologies and tag-statistics

    NASA Astrophysics Data System (ADS)

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2012-05-01

    Due to the increasing popularity of collaborative tagging systems, the research on tagged networks, hypergraphs, ontologies, folksonomies and other related concepts is becoming an important interdisciplinary area with great potential and relevance for practical applications. In most collaborative tagging systems the tagging by the users is completely ‘flat’, while in some cases they are allowed to define a shallow hierarchy for their own tags. However, usually no overall hierarchical organization of the tags is given, and one of the interesting challenges of this area is to provide an algorithm generating the ontology of the tags from the available data. In contrast, there are also other types of tagged networks available for research, where the tags are already organized into a directed acyclic graph (DAG), encapsulating the ‘is a sub-category of’ type of hierarchy between each other. In this paper, we study how this DAG affects the statistical distribution of tags on the nodes marked by the tags in various real networks. The motivation for this research was the fact that understanding the tagging based on a known hierarchy can help in revealing the hidden hierarchy of tags in collaborative tagging systems. We analyse the relation between the tag-frequency and the position of the tag in the DAG in two large sub-networks of the English Wikipedia and a protein-protein interaction network. We also study the tag co-occurrence statistics by introducing a two-dimensional (2D) tag-distance distribution preserving both the difference in the levels and the absolute distance in the DAG for the co-occurring pairs of tags. Our most interesting finding is that the local relevance of tags in the DAG (i.e. their rank or significance as characterized by, e.g., the length of the branches starting from them) is much more important than their global distance from the root. Furthermore, we also introduce a simple tagging model based on random walks on the DAG, capable of reproducing the main statistical features of tag co-occurrence. This model has high potential for further practical applications, e.g., it can provide the starting point for a benchmark system in ontology retrieval or it may help pinpoint unusual correlations in the co-occurrence of tags.

  9. Multi-element fiber technology for space-division multiplexing applications.

    PubMed

    Jain, S; Rancaño, V J F; May-Smith, T C; Petropoulos, P; Sahu, J K; Richardson, D J

    2014-02-24

    A novel technological approach to space division multiplexing (SDM) based on the use of multiple individual fibers embedded in a common polymer coating material is presented, which is referred to as Multi-Element Fiber (MEF). The approach ensures ultralow crosstalk between spatial channels and allows for cost-effective ways of realizing multi-spatial channel amplification and signal multiplexing/demultiplexing. Both the fabrication and characterization of a passive 3-element MEF for data transmission, and an active 5-element erbium/ytterbium doped MEF for cladding-pumped optical amplification that uses one of the elements as an integrated pump delivery fiber is reported. Finally, both components were combined to emulate an optical fiber network comprising SDM transmission lines and amplifiers, and illustrate the compatibility of the approach with existing installed single-mode WDM fiber systems.

  10. Language Networks in Anophthalmia: Maintained Hierarchy of Processing in "Visual" Cortex

    ERIC Educational Resources Information Center

    Watkins, Kate E.; Cowey, Alan; Alexander, Iona; Filippini, Nicola; Kennedy, James M.; Smith, Stephen M.; Ragge, Nicola; Bridge, Holly

    2012-01-01

    Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an…

  11. A Review of Verb Network Strengthening Treatment: Theory, Methods, Results, and Clinical Implications

    ERIC Educational Resources Information Center

    Edmonds, Lisa A.

    2016-01-01

    This article examines Verb Network Strengthening Treatment (VNeST), a relatively new treatment approach for anomia in people with aphasia. The VNeST protocol aims to promote generalization to increased lexical retrieval of untrained words across a hierarchy of linguistic tasks, including single-word naming of nouns and verbs, sentence production,…

  12. Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Chaves, M.; Preto, M.

    2013-06-01

    A hierarchy of models, ranging from high to lower levels of abstraction, is proposed to construct "minimal" but predictive and explanatory models of biological systems. Three hierarchical levels will be considered: Boolean networks, piecewise affine differential (PWA) equations, and a class of continuous, ordinary, differential equations' models derived from the PWA model. This hierarchy provides different levels of approximation of the biological system and, crucially, allows the use of theoretical tools to more exactly analyze and understand the mechanisms of the system. The Kai ABC oscillator, which is at the core of the cyanobacterial circadian rhythm, is analyzed as a case study, showing how several fundamental properties—order of oscillations, synchronization when mixing oscillating samples, structural robustness, and entrainment by external cues—can be obtained from basic mechanisms.

  13. Ultra-high capacity WDM-SDM optical access network with self-homodyne detection downstream and 32QAM-FBMC upstream.

    PubMed

    Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-03-20

    Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.

  14. Clinical Relevance of Pathogens Detected by Multiplex PCR in Blood of Very-Low-Birth Weight Infants with Suspected Sepsis - Multicentre Study of the German Neonatal Network.

    PubMed

    Tröger, Birte; Härtel, Christoph; Buer, Jan; Dördelmann, Michael; Felderhoff-Müser, Ursula; Höhn, Thomas; Hepping, Nico; Hillebrand, Georg; Kribs, Angela; Marissen, Janina; Olbertz, Dirk; Rath, Peter-Michael; Schmidtke, Susanne; Siegel, Jens; Herting, Egbert; Göpel, Wolfgang; Steinmann, Joerg; Stein, Anja

    2016-01-01

    In the German Neonatal Network (GNN) 10% of very-low-birth weight infants (VLBWI) suffer from blood-culture confirmed sepsis, while 30% of VLBWI develop clinical sepsis. Diagnosis of sepsis is a difficult task leading to potential over-treatment with antibiotics. This study aims to investigate whether the results of blood multiplex-PCR (SeptiFast®) for common sepsis pathogens are relevant for clinical decision making when sepsis is suspected in VLBWI. We performed a prospective, multi-centre study within the GNN including 133 VLBWI with 214 episodes of suspected late onset sepsis (LOS). In patients with suspected sepsis a multiplex-PCR (LightCycler SeptiFast MGRADE-test®) was performed from 100 μl EDTA blood in addition to center-specific laboratory biomarkers. The attending neonatologist documented whether the PCR-result, which was available after 24 to 48 hrs, had an impact on the choice of antibiotic drugs and duration of therapy. PCR was positive in 110/214 episodes (51%) and blood culture (BC) was positive in 55 episodes (26%). Both methods yielded predominantly coagulase-negative staphylococci (CoNS) followed by Escherichia coli and Staphylococcus aureus. In 214 BC-PCR paired samples concordant results were documented in 126 episodes (59%; n = 32 were concordant pathogen positive results, n = 94 were negative in both methods). In 65 episodes (30%) we found positive PCR results but negative BCs, with CoNS being identified in 43 (66%) of these samples. Multiplex-PCR results influenced clinical decision making in 30% of episodes, specifically in 18% for the choice of antimicrobial therapy and in 22% for the duration of antimicrobial therapy. Multiplex-PCR results had a moderate impact on clinical management in about one third of LOS-episodes. The main advantage of multiplex-PCR was the rapid detection of pathogens from micro-volume blood samples. In VLBWI limitations include risk of contamination, lack of resistance testing and high costs. The high rate of positive PCR results in episodes of negative BC might lead to overtreatment of infants which is associated with risk of mortality, antibiotic resistance, fungal sepsis and NEC.

  15. Survivable architectures for time and wavelength division multiplexed passive optical networks

    NASA Astrophysics Data System (ADS)

    Wong, Elaine

    2014-08-01

    The increased network reach and customer base of next-generation time and wavelength division multiplexed PON (TWDM-PONs) have necessitated rapid fault detection and subsequent restoration of services to its users. However, direct application of existing solutions for conventional PONs to TWDM-PONs is unsuitable as these schemes rely on the loss of signal (LOS) of upstream transmissions to trigger protection switching. As TWDM-PONs are required to potentially use sleep/doze mode optical network units (ONU), the loss of upstream transmission from a sleeping or dozing ONU could erroneously trigger protection switching. Further, TWDM-PONs require its monitoring modules for fiber/device fault detection to be more sensitive than those typically deployed in conventional PONs. To address the above issues, three survivable architectures that are compliant with TWDM-PON specifications are presented in this work. These architectures combine rapid detection and protection switching against multipoint failure, and most importantly do not rely on upstream transmissions for LOS activation. Survivability analyses as well as evaluations of the additional costs incurred to achieve survivability are performed and compared to the unprotected TWDM-PON. Network parameters that impact the maximum achievable network reach, maximum split ratio, connection availability, fault impact, and the incremental reliability costs for each proposed survivable architecture are highlighted.

  16. The CARFAX road traffic information system

    NASA Astrophysics Data System (ADS)

    Sandell, R. S.

    1984-02-01

    A description of the development work and field trials which led to the completion of the dedicated traffic information service "CARFAX' is presented. The system employs a single medium frequency channel, and involves a network of low powered transmitters that operate in time division multiplex to provide traffic announcements. A description of the network distribution, equipment test, results and future system utilization is included.

  17. 10Gbps monolithic silicon FTTH transceiver without laser diode for a new PON configuration.

    PubMed

    Zhang, Jing; Liow, Tsung-Yang; Lo, Guo-Qiang; Kwong, Dim-Lee

    2010-03-01

    A new passive optical network (PON) configuration and a novel silicon photonic transceiver architecture for optical network unit (ONU) are proposed, eliminating the need for an internal laser source in ONU. The Si transceiver is fully monolithic, includes integrated wavelength division multiplexing (WDM) filters, modulators (MOD) and photo-detectors (PD), and demonstrates low-cost high volume manufacturability.

  18. Modulation and multiplexing in ultra-broadband photonic internet: Part II

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  19. Modulation and multiplexing in ultra-broadband photonic internet: Part I

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  20. Cooperation in group-structured populations with two layers of interactions

    PubMed Central

    Zhang, Yanling; Fu, Feng; Chen, Xiaojie; Xie, Guangming; Wang, Long

    2015-01-01

    Recently there has been a growing interest in studying multiplex networks where individuals are structured in multiple network layers. Previous agent-based simulations of games on multiplex networks reveal rich dynamics arising from interdependency of interactions along each network layer, yet there is little known about analytical conditions for cooperation to evolve thereof. Here we aim to tackle this issue by calculating the evolutionary dynamics of cooperation in group-structured populations with two layers of interactions. In our model, an individual is engaged in two layers of group interactions simultaneously and uses unrelated strategies across layers. Evolutionary competition of individuals is determined by the total payoffs accrued from two layers of interactions. We also consider migration which allows individuals to move to a new group within each layer. An approach combining the coalescence theory with the theory of random walks is established to overcome the analytical difficulty upon local migration. We obtain the exact results for all “isotropic” migration patterns, particularly for migration tuned with varying ranges. When the two layers use one game, the optimal migration ranges are proved identical across layers and become smaller as the migration probability grows. PMID:26632251

  1. Maximizing algebraic connectivity in interconnected networks.

    PubMed

    Shakeri, Heman; Albin, Nathan; Darabi Sahneh, Faryad; Poggi-Corradini, Pietro; Scoglio, Caterina

    2016-03-01

    Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with interlayer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these interlayer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one interlayer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be nonuniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.

  2. Algorithm for protecting light-trees in survivable mesh wavelength-division-multiplexing networks

    NASA Astrophysics Data System (ADS)

    Luo, Hongbin; Li, Lemin; Yu, Hongfang

    2006-12-01

    Wavelength-division-multiplexing (WDM) technology is expected to facilitate bandwidth-intensive multicast applications such as high-definition television. A single fiber cut in a WDM mesh network, however, can disrupt the dissemination of information to several destinations on a light-tree based multicast session. Thus it is imperative to protect multicast sessions by reserving redundant resources. We propose a novel and efficient algorithm for protecting light-trees in survivable WDM mesh networks. The algorithm is called segment-based protection with sister node first (SSNF), whose basic idea is to protect a light-tree using a set of backup segments with a higher priority to protect the segments from a branch point to its children (sister nodes). The SSNF algorithm differs from the segment protection scheme proposed in the literature in how the segments are identified and protected. Our objective is to minimize the network resources used for protecting each primary light-tree such that the blocking probability can be minimized. To verify the effectiveness of the SSNF algorithm, we conduct extensive simulation experiments. The simulation results demonstrate that the SSNF algorithm outperforms existing algorithms for the same problem.

  3. The role of pulvinar in the transmission of information in the visual hierarchy.

    PubMed

    Cortes, Nelson; van Vreeswijk, Carl

    2012-01-01

    VISUAL RECEPTIVE FIELD (RF) ATTRIBUTES IN VISUAL CORTEX OF PRIMATES HAVE BEEN EXPLAINED MAINLY FROM CORTICAL CONNECTIONS: visual RFs progress from simple to complex through cortico-cortical pathways from lower to higher levels in the visual hierarchy. This feedforward flow of information is paired with top-down processes through the feedback pathway. Although the hierarchical organization explains the spatial properties of RFs, is unclear how a non-linear transmission of activity through the visual hierarchy can yield smooth contrast response functions in all level of the hierarchy. Depending on the gain, non-linear transfer functions create either a bimodal response to contrast, or no contrast dependence of the response in the highest level of the hierarchy. One possible mechanism to regulate this transmission of visual contrast information from low to high level involves an external component that shortcuts the flow of information through the hierarchy. A candidate for this shortcut is the Pulvinar nucleus of the thalamus. To investigate representation of stimulus contrast a hierarchical model network of ten cortical areas is examined. In each level of the network, the activity from the previous layer is integrated and then non-linearly transmitted to the next level. The arrangement of interactions creates a gradient from simple to complex RFs of increasing size as one moves from lower to higher cortical levels. The visual input is modeled as a Gaussian random input, whose width codes for the contrast. This input is applied to the first area. The output activity ratio among different contrast values is analyzed for the last level to observe sensitivity to a contrast and contrast invariant tuning. For a purely cortical system, the output of the last area can be approximately contrast invariant, but the sensitivity to contrast is poor. To account for an alternative visual processing pathway, non-reciprocal connections from and to a parallel pulvinar like structure of nine areas is coupled to the system. Compared to the pure feedforward model, cortico-pulvino-cortical output presents much more sensitivity to contrast and has a similar level of contrast invariance of the tuning.

  4. The Role of Pulvinar in the Transmission of Information in the Visual Hierarchy

    PubMed Central

    Cortes, Nelson; van Vreeswijk, Carl

    2012-01-01

    Visual receptive field (RF) attributes in visual cortex of primates have been explained mainly from cortical connections: visual RFs progress from simple to complex through cortico-cortical pathways from lower to higher levels in the visual hierarchy. This feedforward flow of information is paired with top-down processes through the feedback pathway. Although the hierarchical organization explains the spatial properties of RFs, is unclear how a non-linear transmission of activity through the visual hierarchy can yield smooth contrast response functions in all level of the hierarchy. Depending on the gain, non-linear transfer functions create either a bimodal response to contrast, or no contrast dependence of the response in the highest level of the hierarchy. One possible mechanism to regulate this transmission of visual contrast information from low to high level involves an external component that shortcuts the flow of information through the hierarchy. A candidate for this shortcut is the Pulvinar nucleus of the thalamus. To investigate representation of stimulus contrast a hierarchical model network of ten cortical areas is examined. In each level of the network, the activity from the previous layer is integrated and then non-linearly transmitted to the next level. The arrangement of interactions creates a gradient from simple to complex RFs of increasing size as one moves from lower to higher cortical levels. The visual input is modeled as a Gaussian random input, whose width codes for the contrast. This input is applied to the first area. The output activity ratio among different contrast values is analyzed for the last level to observe sensitivity to a contrast and contrast invariant tuning. For a purely cortical system, the output of the last area can be approximately contrast invariant, but the sensitivity to contrast is poor. To account for an alternative visual processing pathway, non-reciprocal connections from and to a parallel pulvinar like structure of nine areas is coupled to the system. Compared to the pure feedforward model, cortico-pulvino-cortical output presents much more sensitivity to contrast and has a similar level of contrast invariance of the tuning. PMID:22654750

  5. Development of Low Noise-Broadband Raman Amplification Systems Based on Photonic Crystal Fibers for High Capacity DWDM Networks

    NASA Astrophysics Data System (ADS)

    Elgamri, Abdelghafor

    The increased demand from IP traffic, video application and cell backhaul has placed fiber routes under severe stains. The high demands for large bandwidth from enormous numbers from cell sites on a network made the capacity of yesterday's networks not adequate for today's bandwidth demand. Carries considered Dense Wavelength Division Multiplexing (DWDM) network to overcome this issue. Recently, there has been growing interest in fiber Raman amplifiers due to their capability to upgrade the wavelength-division-multiplexing bandwidth, arbitrary gain bandwidth. In addition, photonic crystal fibers have been widely modeled, studied, and fabricated due to their peculiar properties that cannot be achieved with conventional fibers. The focus of this thesis is to develop a low-noise broadband Raman amplification system based on photonic crystal Fiber that can be implemented in high capacity DWDM network successfully. The design a module of photonic crystal fiber Raman amplifier is based on the knowledge of the fiber cross-sectional characteristics i.e. the geometric parameters and the Germania concentration in the dope area. The module allows to study different air-hole dimension and disposition, with or without a central doped area. In addition the design integrates distributed Raman amplifier and nonlinear optical loop mirror to improve the signal to noise ratio and overall gain in large capacity DWDM networks.

  6. The Impact of Hierarchy and Group Structure on Information Processing in Decision Making: Application of a Networks/Systems Approach.

    ERIC Educational Resources Information Center

    Ford, David L., Jr.

    When one engages in organizational diagnosis, it has been suggested that greater understanding of the organization can come through: (1) an identification of all the channels conveying material and information, and (2) a description of the means by which this communication influences the behavior of the organization. A networks/system approach is…

  7. Characterizing Communication Networks in a Web-Based Classroom: Cognitive Styles and Linguistic Behavior of Self-Organizing Groups in Online Discussions

    ERIC Educational Resources Information Center

    Vercellone-Smith, Pamela; Jablokow, Kathryn; Friedel, Curtis

    2012-01-01

    In this study, we explore the cognitive style profiles and linguistic patterns of self-organizing groups within a web-based graduate education course to determine how cognitive preferences and individual behaviors influence the patterns of information exchange and the formation of communication hierarchies in an online classroom. Network analysis…

  8. A practical introduction to skeletons for the plant sciences1

    PubMed Central

    Bucksch, Alexander

    2014-01-01

    Before the availability of digital photography resulting from the invention of charged couple devices in 1969, the measurement of plant architecture was a manual process either on the plant itself or on traditional photographs. The introduction of cheap digital imaging devices for the consumer market enabled the wide use of digital images to capture the shape of plant networks such as roots, tree crowns, or leaf venation. Plant networks contain geometric traits that can establish links to genetic or physiological characteristics, support plant breeding efforts, drive evolutionary studies, or serve as input to plant growth simulations. Typically, traits are encoded in shape descriptors that are computed from imaging data. Skeletons are one class of shape descriptors that are used to describe the hierarchies and extent of branching and looping plant networks. While the mathematical understanding of skeletons is well developed, their application within the plant sciences remains challenging because the quality of the measurement depends partly on the interpretation of the skeleton. This article is meant to bridge the skeletonization literature in the plant sciences and related technical fields by discussing best practices for deriving diameters and approximating branching hierarchies in a plant network. PMID:25202645

  9. Software defined networking (SDN) over space division multiplexing (SDM) optical networks: features, benefits and experimental demonstration.

    PubMed

    Amaya, N; Yan, S; Channegowda, M; Rofoee, B R; Shu, Y; Rashidi, M; Ou, Y; Hugues-Salas, E; Zervas, G; Nejabati, R; Simeonidou, D; Puttnam, B J; Klaus, W; Sakaguchi, J; Miyazawa, T; Awaji, Y; Harai, H; Wada, N

    2014-02-10

    We present results from the first demonstration of a fully integrated SDN-controlled bandwidth-flexible and programmable SDM optical network utilizing sliceable self-homodyne spatial superchannels to support dynamic bandwidth and QoT provisioning, infrastructure slicing and isolation. Results show that SDN is a suitable control plane solution for the high-capacity flexible SDM network. It is able to provision end-to-end bandwidth and QoT requests according to user requirements, considering the unique characteristics of the underlying SDM infrastructure.

  10. QoS for Real Time Applications over Next Generation Data Networks

    NASA Technical Reports Server (NTRS)

    Ivancic, William; Atiquzzaman, Mohammed; Bai, Haowei; Su, Hongjun; Chitri, Jyotsna; Ahamed, Faruque

    2001-01-01

    Viewgraphs on Qualtity of Service (QOS) for real time applications over next generation data networks are presented. The progress to date include: Task 1: QoS in Integrated Services over DiffServ networks (UD); Task 2: Interconnecting ATN with the next generation Internet (UD); Task 3: QoS in DiffServ over ATM (UD); Task 4: Improving Explicit Congestion Notification with the Mark-Front Strategy (OSU); Task 5: Multiplexing VBR over VBR (OSU); and Task 6: Achieving QoS for TCP traffic in Satellite Networks with Differentiated Services (OSU).

  11. System data communication structures for active-control transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.

  12. AptRank: an adaptive PageRank model for protein function prediction on   bi-relational graphs.

    PubMed

    Jiang, Biaobin; Kloster, Kyle; Gleich, David F; Gribskov, Michael

    2017-06-15

    Diffusion-based network models are widely used for protein function prediction using protein network data and have been shown to outperform neighborhood-based and module-based methods. Recent studies have shown that integrating the hierarchical structure of the Gene Ontology (GO) data dramatically improves prediction accuracy. However, previous methods usually either used the GO hierarchy to refine the prediction results of multiple classifiers, or flattened the hierarchy into a function-function similarity kernel. No study has taken the GO hierarchy into account together with the protein network as a two-layer network model. We first construct a Bi-relational graph (Birg) model comprised of both protein-protein association and function-function hierarchical networks. We then propose two diffusion-based methods, BirgRank and AptRank, both of which use PageRank to diffuse information on this two-layer graph model. BirgRank is a direct application of traditional PageRank with fixed decay parameters. In contrast, AptRank utilizes an adaptive diffusion mechanism to improve the performance of BirgRank. We evaluate the ability of both methods to predict protein function on yeast, fly and human protein datasets, and compare with four previous methods: GeneMANIA, TMC, ProteinRank and clusDCA. We design four different validation strategies: missing function prediction, de novo function prediction, guided function prediction and newly discovered function prediction to comprehensively evaluate predictability of all six methods. We find that both BirgRank and AptRank outperform the previous methods, especially in missing function prediction when using only 10% of the data for training. The MATLAB code is available at https://github.rcac.purdue.edu/mgribsko/aptrank . gribskov@purdue.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. THESEUS: A wavelength division multiplexed/microwave subcarrier multiplexed optical network, its ATM switch applications and device requirements

    NASA Astrophysics Data System (ADS)

    Xin, Wei

    1997-10-01

    A Terabit Hybrid Electro-optical /underline[Se]lf- routing Ultrafast Switch (THESEUS) has been proposed. It is a self-routing wavelength division multiplexed (WDM) / microwave subcarrier multiplexed (SCM) asynchronous transfer mode (ATM) switch for the multirate ATM networks. It has potential to be extended to a large ATM switch as 1000 x 1000 without internal blocking. Among the advantages of the hybrid implementation are flexibility in service upgrade, relaxed tolerances on optical filtering, protocol simplification and less processing overhead. For a small ATM switch, the subcarrier can be used as output buffers to solve output contention. A mathematical analysis was conducted to evaluate different buffer configurations. A testbed has been successfully constructed. Multirate binary data streams have been switched through the testbed and error free reception ([<]10-9 bit error rate) has been achieved. A simple, intuitive theoretical model has been developed to describe the heterodyne optical beat interference. A new concept of interference time and interference length has been introduced. An experimental confirmation has been conducted. The experimental results match the model very well. It shows that a large portion of optical bandwidth is wasted due to the beat interference. Based on the model, several improvement approaches have been proposed. The photo-generated carrier lifetime of silicon germanium has been measured using time-resolved reflectivity measurement. Via oxygen ion implantation, the carrier lifetime has been reduced to as short as 1 ps, corresponding to 1 THz of photodetector bandwidth. It has also been shown that copper dopants act as recombination centers in the silicon germanium.

  14. How to simulate global cosmic strings with large string tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de

    Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.

  15. Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services.

    PubMed

    Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra

    2011-12-12

    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America

  16. A STUDY ON THE HIERARCHY OF MANAGEMENT ELEMENTS

    NASA Astrophysics Data System (ADS)

    Suzuki, Nobuyuki; Watanabe, Tadashi

    Compared to the late 20th century, the Japanese construction industry has drastically changed its business methodology, outlook and approach in response to global issues and the incredible advances in technology. Such influences, non-exhaustively include the; WTO Government procurement agreement, updating conditions of tendering and contracting, client demands for cost reduction and the rapid penetration of ICT (Information and Communication Technology) into modern society. These days, the significance of controlling Quality, Cost and Time (the so-called QCT) has been recognized as an eternal-triangle by almost all countries, Government organizations and the private sector. However, as the construction industry is exposed to , and influenced by, more and more internal and external dynamic factors, continued reliance on managing and controlling QCT elements on their own is no longer adequate in meeting the growing demands and expectations, and as such control of additional management elements is now essential to avoid problems, or minimize their potential impacts should they occur. This paper utilizes the results of a survey carried out amongst construction managers and consultants in Japan and overseas to develop a spatial network that defines the interaction of management factors as a weighted graphical model. The calculated closeness centrality index of the developed management network model is adopted to identify the initialelement hierarchy, which is then further analyzed using the minimum distance of independent relationships of management elements (Warshall-Floyd algorism methodology), to identify the optimum potential hierarchy for effective construction management. A key result of the analysis is the significance of "Human Resource" in the construction industry management element hierarchy alongside the traditional QCT elements.

  17. Developing daisy chain receivers for light-emitting diode illumination adopting the digital multiplex-512 protocol.

    PubMed

    Um, Keehong; Yoo, Sooyeup

    2013-10-01

    Protocol for digital multiplex with 512 pieces of information is increasingly adopted in the design of illumination systems. In conventional light-emitting diode systems, the receivers are connected in parallel and each of the receiving units receives all the data from the master dimmer console, but each receiving unit operates by recognizing as its own data that which corresponds to the assigned number of the receiver. Because the serial numbers of illumination devices are transmitted in binary code, synchronization is too complicated to be used properly. In order to improve the protocol of illumination control systems, we propose an algorithm of protocol reception to install and manage the system in a simpler and more convenient way. We propose the systems for controlling the light-emitting diode illumination of simplified receiver slaves adopting the digital multiplex-512 protocol where master console and multiple receiver slaves are connected in a daisy chain fashion. The digital multiplex-512 data packet is received according to the sequence order of their locations from the console, without assigning the sequence number of each channel at the receiving device. The purpose of this paper is to design a simple and small-sized controller for the control systems of lamps and lighting adopting the digital multiplex-512 network.

  18. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks

    PubMed Central

    Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Li, Baoqing; Yuan, Xiaobing

    2017-01-01

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum–minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms. PMID:28753962

  19. The 10 Hottest Technologies in Telecom.

    ERIC Educational Resources Information Center

    Flanagan, Patrick

    1997-01-01

    Presents the fourth annual listing of the 10 "hottest" telecommunications technologies. Describes Web broadcasting, remote-access servers, extranets, Internet telephony, enterprise network directory services, Web site management tools, IP (Internet Protocols) switching, wavelength division multiplexing, digital subscriber lines, and…

  20. Bragg gratings: Optical microchip sensors

    NASA Astrophysics Data System (ADS)

    Watts, Sam

    2010-07-01

    A direct UV writing technique that can create multiple Bragg gratings and waveguides in a planar silica-on-silicon chip is enabling sensing applications ranging from individual disposable sensors for biotechnology through to multiplexed sensor networks in pharmaceutical manufacturing.

  1. Fault detection technique for wavelength division multiplexing passive optical network using chaotic fiber laser

    NASA Astrophysics Data System (ADS)

    Xu, Naijun; Yang, Lingzhen; Zhang, Juan; Zhang, Xiangyuan; Wang, Juanfen; Zhang, Zhaoxia; Liu, Xianglian

    2014-03-01

    We propose a fault localization method for wavelength division multiplexing passive optical network (WDM-PON). A proof-of-concept experiment was demonstrated by utilizing the wavelength tunable chaotic laser generated from an erbium-doped fiber ring laser with a manual tunable fiber Bragg grating (TFBG) filter. The range of the chaotic lasing wavelength can cover the C-band. Basing on the TFBG filter, we can adjust the wavelength of the chaotic laser to match the WDM-PON channel with identical wavelength. We determined the fault location by calculating the cross-correlation between the reference and return signals. Analysis of the characteristics of the wavelength tunable chaotic laser showed that the breakpoint, the loose connector, and the mismatch connector could be precisely located. A dynamic range of approximately 23.8 dB and a spatial resolution of 4 cm, which was independent of the measuring range, were obtained.

  2. High-speed millimeter communication through radio-over-free-space-optics network by mode-division multiplexing

    NASA Astrophysics Data System (ADS)

    Chaudhary, Sushank; Amphawan, Angela

    2017-11-01

    In an attempt to meet the goal of distributing millimeter-wave (mm-wave) signals, recent years have witnessed significant relevance being given to combining radio frequency with optical fiber technologies. The future of radio-over-free-space-optics technology aims to build a universal platform for distributing millimeter waves for wireless local area networks without using expensive optical fibers. This work is focused on simultaneous transmission of four independent OFDM-based channels, each carrying 20 Gbps to 40 GHz data, by mode-division multiplexing of Laguerre-Gaussian mode with vortex lens and Hermite-Gaussian mode to realize a total transmission of 80 Gbps to 160 GHz data over 50-km free-space optical link. Moreover, the performance of the proposed system is also evaluated under the influence of various atmospheric turbulences, such as light fog, thin fog, and thick fog.

  3. The impact of heterogeneous response on coupled spreading dynamics in multiplex networks

    NASA Astrophysics Data System (ADS)

    Nie, Xiaoyu; Tang, Ming; Zou, Yong; Guan, Shuguang; Zhou, Jie

    2017-10-01

    Many recent studies have demonstrated that individual awareness of disease may significantly affect the spreading process of infectious disease. In the majority of these studies, the response of the awareness is generally treated homogeneously. Considering of diversity and heterogeneity in the human behavior which widely exist under different circumstances, in this paper we study heterogeneous response when people are aware of the prevalence of infectious diseases. Specifically, we consider that an individual with more neighbors may take more preventive measures as a reaction when he is aware of the disease. A suppression strength is introduced to describe such heterogeneity, and we find that a more evident heterogeneity may cause a more effective suppressing effect to the spreading of epidemics. A mean-field theory is developed to support the results which are verified on the multiplex networks with different interlayer degree correlation.

  4. Flexible Organic Electronics for Use in Neural Sensing

    PubMed Central

    Bink, Hank; Lai, Yuming; Saudari, Sangameshwar R.; Helfer, Brian; Viventi, Jonathan; Van der Spiegel, Jan; Litt, Brian; Kagan, Cherie

    2016-01-01

    Recent research in brain-machine interfaces and devices to treat neurological disease indicate that important network activity exists at temporal and spatial scales beyond the resolution of existing implantable devices. High density, active electrode arrays hold great promise in enabling high-resolution interface with the brain to access and influence this network activity. Integrating flexible electronic devices directly at the neural interface can enable thousands of multiplexed electrodes to be connected using many fewer wires. Active electrode arrays have been demonstrated using flexible, inorganic silicon transistors. However, these approaches may be limited in their ability to be cost-effectively scaled to large array sizes (8×8 cm). Here we show amplifiers built using flexible organic transistors with sufficient performance for neural signal recording. We also demonstrate a pathway for a fully integrated, amplified and multiplexed electrode array built from these devices. PMID:22255558

  5. Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks.

    PubMed

    Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M

    2010-02-01

    In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.

  6. Performance Analysis of Diversity-Controlled Multi-User Superposition Transmission for 5G Wireless Networks

    PubMed Central

    Yeom, Jeong Seon; Jung, Bang Chul; Jin, Hu

    2018-01-01

    In this paper, we propose a novel low-complexity multi-user superposition transmission (MUST) technique for 5G downlink networks, which allows multiple cell-edge users to be multiplexed with a single cell-center user. We call the proposed technique diversity-controlled MUST technique since the cell-center user enjoys the frequency diversity effect via signal repetition over multiple orthogonal frequency division multiplexing (OFDM) sub-carriers. We assume that a base station is equipped with a single antenna but users are equipped with multiple antennas. In addition, we assume that the quadrature phase shift keying (QPSK) modulation is used for users. We mathematically analyze the bit error rate (BER) of both cell-edge users and cell-center users, which is the first theoretical result in the literature to the best of our knowledge. The mathematical analysis is validated through extensive link-level simulations. PMID:29439413

  7. Performance Analysis of Diversity-Controlled Multi-User Superposition Transmission for 5G Wireless Networks.

    PubMed

    Yeom, Jeong Seon; Chu, Eunmi; Jung, Bang Chul; Jin, Hu

    2018-02-10

    In this paper, we propose a novel low-complexity multi-user superposition transmission (MUST) technique for 5G downlink networks, which allows multiple cell-edge users to be multiplexed with a single cell-center user. We call the proposed technique diversity-controlled MUST technique since the cell-center user enjoys the frequency diversity effect via signal repetition over multiple orthogonal frequency division multiplexing (OFDM) sub-carriers. We assume that a base station is equipped with a single antenna but users are equipped with multiple antennas. In addition, we assume that the quadrature phase shift keying (QPSK) modulation is used for users. We mathematically analyze the bit error rate (BER) of both cell-edge users and cell-center users, which is the first theoretical result in the literature to the best of our knowledge. The mathematical analysis is validated through extensive link-level simulations.

  8. Effect of soil temperature on optical frequency transfer through unidirectional dense-wavelength-division-multiplexing fiber-optic links.

    PubMed

    Pinkert, T J; Böll, O; Willmann, L; Jansen, G S M; Dijck, E A; Groeneveld, B G H M; Smets, R; Bosveld, F C; Ubachs, W; Jungmann, K; Eikema, K S E; Koelemeij, J C J

    2015-02-01

    Results of optical frequency transfer over a carrier-grade dense-wavelength-division-multiplexing (DWDM) optical fiber network are presented. The relation between soil temperature changes on a buried optical fiber and frequency changes of an optical carrier through the fiber is modeled. Soil temperatures, measured at various depths by the Royal Netherlands Meteorology Institute (KNMI) are compared with observed frequency variations through this model. A comparison of a nine-day record of optical frequency measurements through the 2×298  km fiber link with soil temperature data shows qualitative agreement. A soil temperature model is used to predict the link stability over longer periods (days-months-years). We show that optical frequency dissemination is sufficiently stable to distribute and compare, e.g., rubidium frequency standards over standard DWDM optical fiber networks using unidirectional fibers.

  9. Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON

    NASA Astrophysics Data System (ADS)

    Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling

    2017-12-01

    WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.

  10. Muxstep: an open-source C ++ multiplex HMM library for making inferences on multiple data types.

    PubMed

    Veličković, Petar; Liò, Pietro

    2016-08-15

    With the development of experimental methods and technology, we are able to reliably gain access to data in larger quantities, dimensions and types. This has great potential for the improvement of machine learning (as the learning algorithms have access to a larger space of information). However, conventional machine learning approaches used thus far on single-dimensional data inputs are unlikely to be expressive enough to accurately model the problem in higher dimensions; in fact, it should generally be most suitable to represent our underlying models as some form of complex networksng;nsio with nontrivial topological features. As the first step in establishing such a trend, we present MUXSTEP: , an open-source library utilising multiplex networks for the purposes of binary classification on multiple data types. The library is designed to be used out-of-the-box for developing models based on the multiplex network framework, as well as easily modifiable to suit problem modelling needs that may differ significantly from the default approach described. The full source code is available on GitHub: https://github.com/PetarV-/muxstep petar.velickovic@cl.cam.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Physiologically motivated multiplex Kuramoto model describes phase diagram of cortical activity

    NASA Astrophysics Data System (ADS)

    Sadilek, Maximilian; Thurner, Stefan

    2015-05-01

    We derive a two-layer multiplex Kuramoto model from Wilson-Cowan type physiological equations that describe neural activity on a network of interconnected cortical regions. This is mathematically possible due to the existence of a unique, stable limit cycle, weak coupling, and inhibitory synaptic time delays. We study the phase diagram of this model numerically as a function of the inter-regional connection strength that is related to cerebral blood flow, and a phase shift parameter that is associated with synaptic GABA concentrations. We find three macroscopic phases of cortical activity: background activity (unsynchronized oscillations), epileptiform activity (highly synchronized oscillations) and resting-state activity (synchronized clusters/chaotic behaviour). Previous network models could hitherto not explain the existence of all three phases. We further observe a shift of the average oscillation frequency towards lower values together with the appearance of coherent slow oscillations at the transition from resting-state to epileptiform activity. This observation is fully in line with experimental data and could explain the influence of GABAergic drugs both on gamma oscillations and epileptic states. Compared to previous models for gamma oscillations and resting-state activity, the multiplex Kuramoto model not only provides a unifying framework, but also has a direct connection to measurable physiological parameters.

  12. Physiologically motivated multiplex Kuramoto model describes phase diagram of cortical activity.

    PubMed

    Sadilek, Maximilian; Thurner, Stefan

    2015-05-21

    We derive a two-layer multiplex Kuramoto model from Wilson-Cowan type physiological equations that describe neural activity on a network of interconnected cortical regions. This is mathematically possible due to the existence of a unique, stable limit cycle, weak coupling, and inhibitory synaptic time delays. We study the phase diagram of this model numerically as a function of the inter-regional connection strength that is related to cerebral blood flow, and a phase shift parameter that is associated with synaptic GABA concentrations. We find three macroscopic phases of cortical activity: background activity (unsynchronized oscillations), epileptiform activity (highly synchronized oscillations) and resting-state activity (synchronized clusters/chaotic behaviour). Previous network models could hitherto not explain the existence of all three phases. We further observe a shift of the average oscillation frequency towards lower values together with the appearance of coherent slow oscillations at the transition from resting-state to epileptiform activity. This observation is fully in line with experimental data and could explain the influence of GABAergic drugs both on gamma oscillations and epileptic states. Compared to previous models for gamma oscillations and resting-state activity, the multiplex Kuramoto model not only provides a unifying framework, but also has a direct connection to measurable physiological parameters.

  13. Circuit-switch architecture for a 30/20-GHz FDMA/TDM geostationary satellite communications network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1992-01-01

    A circuit switching architecture is described for a 30/20 GHz frequency division, multiple access uplink/time division multiplexed downlink (FDMA/TDM) geostationary satellite communications network. Critical subsystems and problem areas are identified and addressed. Work was concentrated primarily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  14. Destination-directed, packet-switching architecture for 30/20-GHz FDMA/TDM geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1992-01-01

    A destination-directed packet switching architecture for a 30/20-GHz frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary satellite communications network is discussed. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints.

  15. Performance analysis of Integrated Communication and Control System networks

    NASA Technical Reports Server (NTRS)

    Halevi, Y.; Ray, A.

    1990-01-01

    This paper presents statistical analysis of delays in Integrated Communication and Control System (ICCS) networks that are based on asynchronous time-division multiplexing. The models are obtained in closed form for analyzing control systems with randomly varying delays. The results of this research are applicable to ICCS design for complex dynamical processes like advanced aircraft and spacecraft, autonomous manufacturing plants, and chemical and processing plants.

  16. A Fuzzy-Based Decision Support Model for Selecting the Best Dialyser Flux in Haemodialysis.

    PubMed

    Oztürk, Necla; Tozan, Hakan

    2015-01-01

    Decision making is an important procedure for every organization. The procedure is particularly challenging for complicated multi-criteria problems. Selection of dialyser flux is one of the decisions routinely made for haemodialysis treatment provided for chronic kidney failure patients. This study provides a decision support model for selecting the best dialyser flux between high-flux and low-flux dialyser alternatives. The preferences of decision makers were collected via a questionnaire. A total of 45 questionnaires filled by dialysis physicians and nephrologists were assessed. A hybrid fuzzy-based decision support software that enables the use of Analytic Hierarchy Process (AHP), Fuzzy Analytic Hierarchy Process (FAHP), Analytic Network Process (ANP), and Fuzzy Analytic Network Process (FANP) was used to evaluate the flux selection model. In conclusion, the results showed that a high-flux dialyser is the best. option for haemodialysis treatment.

  17. Constraints and spandrels of interareal connectomes

    PubMed Central

    Rubinov, Mikail

    2016-01-01

    Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls. PMID:27924867

  18. Constraints and spandrels of interareal connectomes.

    PubMed

    Rubinov, Mikail

    2016-12-07

    Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls.

  19. The role of nonlinear viscoelasticity on the functionality of laminating shortenings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macias-Rodriguez, Braulio A.; Peyronel, Fernanda; Marangoni, Alejandro G.

    The rheology of fats is essential for the development of homogeneous and continuous layered structures of doughs. Here, we define laminating shortenings in terms of rheological behavior displayed during linear-to-nonlinear shear deformations, investigated by large amplitude oscillatory shear rheology. Likewise, we associate the rheological behavior of the shortenings with structural length scales elucidated by ultra-small angle x-ray scattering and cryo-electron microscopy. Shortenings exhibited solid-like viscoelastic and viscoelastoplastic behaviors in the linear and nonlinear regimes respectively. In the nonlinear region, laminating shortenings dissipated more viscous energy (larger normalized dynamic viscosities) than a cake bakery shortening. The fat solid-like network of laminatingmore » shortening displayed a three-hierarchy structure and layered crystal aggregates, in comparison to two-hierarchy structure and spherical-like crystal aggregates of a cake shortening. We argue that the observed rheology, correlated to the structural network, is crucial for optimal laminating performance of shortenings.« less

  20. A neural network for intermale aggression to establish social hierarchy.

    PubMed

    Stagkourakis, Stefanos; Spigolon, Giada; Williams, Paul; Protzmann, Jil; Fisone, Gilberto; Broberger, Christian

    2018-06-01

    Intermale aggression is used to establish social rank. Several neuronal populations have been implicated in aggression, but the circuit mechanisms that shape this innate behavior and coordinate its different components (including attack execution and reward) remain elusive. We show that dopamine transporter-expressing neurons in the hypothalamic ventral premammillary nucleus (PMv DAT neurons) organize goal-oriented aggression in male mice. Activation of PMv DAT neurons triggers attack behavior; silencing these neurons interrupts attacks. Regenerative PMv DAT membrane conductances interacting with recurrent and reciprocal excitation explain how a brief trigger can elicit a long-lasting response (hysteresis). PMv DAT projections to the ventrolateral part of the ventromedial hypothalamic and the supramammillary nuclei control attack execution and aggression reward, respectively. Brief manipulation of PMv DAT activity switched the dominance relationship between males, an effect persisting for weeks. These results identify a network structure anchored in PMv DAT neurons that organizes aggressive behavior and, as a consequence, determines intermale hierarchy.

  1. Multiplex Superconducting Transmission Line for green power consolidation on a Smart Grid

    NASA Astrophysics Data System (ADS)

    McIntyre, P.; Gerity, J.; Kellams, J.; Sattarov, A.

    2017-12-01

    A multiplex superconducting transmission line (MSTL) is being developed for applications requiring interconnection of multi-MW electric power generation among a number of locations. MSTL consists of a cluster of many 2- or 3-conductor transmission lines within a coaxial cryostat envelope. Each line operates autonomously, so that the interconnection of multiple power loads can be done in a failure-tolerant network. Specifics of the electrical, mechanical, and cryogenic design are presented. The consolidation of transformation and conditioning and the failure-tolerant interconnects have the potential to offer important benefit for the green energy components of a Smart Grid.

  2. Analysis of hybrid subcarrier multiplexing of OCDMA based on single photodiode detection

    NASA Astrophysics Data System (ADS)

    Ahmad, N. A. A.; Junita, M. N.; Aljunid, S. A.; Rashidi, C. B. M.; Endut, R.

    2017-11-01

    This paper analyzes the performance of subcarrier multiplexing (SCM) of spectral amplitude coding optical code multiple access (SAC-OCDMA) by applying Recursive Combinatorial (RC) code based on single photodiode detection (SPD). SPD is used in the receiver part to reduce the effect of multiple access interference (MAI) which contributes as a dominant noise in incoherent SAC-OCDMA systems. Results indicate that the SCM OCDMA network performance could be improved by using lower data rates and higher number of weight. Total number of users can also be enhanced by adding lower data rates and higher number of subcarriers.

  3. Organizational structure and communication networks in a university environment

    NASA Astrophysics Data System (ADS)

    Mathiesen, Joachim; Jamtveit, Bjørn; Sneppen, Kim

    2010-07-01

    The “six degrees of separation” between any two individuals on Earth has become emblematic of the “small world” theme, even though the information conveyed via a chain of human encounters decays very rapidly with increasing chain length, and diffusion of information via this process may be very inefficient in large human organizations. The information flow on a communication network in a large organization, the University of Oslo, has been studied by analyzing email records. The records allow for quantification of communication intensity across organizational levels and between organizational units (referred to as “modules”). We find that the number of email messages within modules scales with module size to the power of 1.29±.06 , and the frequency of communication between individuals decays exponentially with the number of links required upward in the organizational hierarchy before they are connected. Our data also indicates that the number of messages sent by administrative units is proportional to the number of individuals at lower levels in the administrative hierarchy, and the “divergence of information” within modules is associated with this linear relationship. The observed scaling is consistent with a hierarchical system in which individuals far apart in the organization interact little with each other and receive a disproportionate number of messages from higher levels in the administrative hierarchy.

  4. Growing trees in child brains: graph theoretical analysis of electroencephalography-derived minimum spanning tree in 5- and 7-year-old children reflects brain maturation.

    PubMed

    Boersma, Maria; Smit, Dirk J A; Boomsma, Dorret I; De Geus, Eco J C; Delemarre-van de Waal, Henriette A; Stam, Cornelis J

    2013-01-01

    The child brain is a small-world network, which is hypothesized to change toward more ordered configurations with development. In graph theoretical studies, comparing network topologies under different conditions remains a critical point. Constructing a minimum spanning tree (MST) might present a solution, since it does not require setting a threshold and uses a fixed number of nodes and edges. In this study, the MST method is introduced to examine developmental changes in functional brain network topology in young children. Resting-state electroencephalography was recorded from 227 children twice at 5 and 7 years of age. Synchronization likelihood (SL) weighted matrices were calculated in three different frequency bands from which MSTs were constructed, which represent constructs of the most important routes for information flow in a network. From these trees, several parameters were calculated to characterize developmental change in network organization. The MST diameter and eccentricity significantly increased, while the leaf number and hierarchy significantly decreased in the alpha band with development. Boys showed significant higher leaf number, betweenness, degree and hierarchy and significant lower SL, diameter, and eccentricity than girls in the theta band. The developmental changes indicate a shift toward more decentralized line-like trees, which supports the previously hypothesized increase toward regularity of brain networks with development. Additionally, girls showed more line-like decentralized configurations, which is consistent with the view that girls are ahead of boys in brain development. MST provides an elegant method sensitive to capture subtle developmental changes in network organization without the bias of network comparison.

  5. Alcohol Use among Adolescent Youth: The Role of Friendship Networks and Family Factors in Multiple School Studies

    PubMed Central

    Wang, Cheng; Hipp, John R.; Butts, Carter T.; Jose, Rupa; Lakon, Cynthia M.

    2015-01-01

    To explore the co-evolution of friendship tie choice and alcohol use behavior among 1,284 adolescents from 12 small schools and 976 adolescents from one big school sampled in the National Longitudinal Study of Adolescent to Adult Health (AddHealth), we apply a Stochastic Actor-Based (SAB) approach implemented in the R-based Simulation Investigation for Empirical Network Analysis (RSiena) package. Our results indicate the salience of both peer selection and peer influence effects for friendship tie choice and adolescent drinking behavior. Concurrently, the main effect models indicate that parental monitoring and the parental home drinking environment affected adolescent alcohol use in the small school sample, and that parental home drinking environment affected adolescent drinking in the large school sample. In the small school sample, we detect an interaction between the parental home drinking environment and choosing friends that drink as they multiplicatively affect friendship tie choice. Our findings suggest that future research should investigate the synergistic effects of both peer and parental influences for adolescent friendship tie choices and drinking behavior. And given the tendency of adolescents to form ties with their friends' friends, and the evidence of local hierarchy in these networks, popular youth who do not drink may be uniquely positioned and uniquely salient as the highest rank of the hierarchy to cause anti-drinking peer influences to diffuse down the social hierarchy to less popular youth. As such, future interventions should harness prosocial peer influences simultaneously with strategies to increase parental support and monitoring among parents to promote affiliation with prosocial peers. PMID:25756364

  6. Temporal Multimode Storage of Entangled Photon Pairs

    NASA Astrophysics Data System (ADS)

    Tiranov, Alexey; Strassmann, Peter C.; Lavoie, Jonathan; Brunner, Nicolas; Huber, Marcus; Verma, Varun B.; Nam, Sae Woo; Mirin, Richard P.; Lita, Adriana E.; Marsili, Francesco; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas

    2016-12-01

    Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witnesses, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method, useful for the characterization of multiplexed quantum memories.

  7. Pulse patterning effect in optical pulse division multiplexing for flexible single wavelength multiple access optical network

    NASA Astrophysics Data System (ADS)

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-01

    A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.

  8. Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization.

    PubMed

    Ruffato, Gianluca; Massari, Michele; Romanato, Filippo

    2016-04-20

    During the last decade, the orbital angular momentum (OAM) of light has attracted growing interest as a new degree of freedom for signal channel multiplexing in order to increase the information transmission capacity in today's optical networks. Here we present the design, fabrication and characterization of phase-only diffractive optical elements (DOE) performing mode-division (de)multiplexing (MDM) and spatial-division (de)multiplexing (SDM) at the same time. Samples have been fabricated with high-resolution electron-beam lithography patterning a polymethylmethacrylate (PMMA) resist layer spun over a glass substrate. Different DOE designs are presented for the sorting of optical vortices differing in either OAM content or beam size in the optical regime, with different steering geometries in far-field. These novel DOE designs appear promising for telecom applications both in free-space and in multi-core fibers propagation.

  9. The Wright stuff: reimagining path analysis reveals novel components of the sex determination hierarchy in Drosophila melanogaster.

    PubMed

    Fear, Justin M; Arbeitman, Michelle N; Salomon, Matthew P; Dalton, Justin E; Tower, John; Nuzhdin, Sergey V; McIntyre, Lauren M

    2015-09-04

    The Drosophila sex determination hierarchy is a classic example of a transcriptional regulatory hierarchy, with sex-specific isoforms regulating morphology and behavior. We use a structural equation modeling approach, leveraging natural genetic variation from two studies on Drosophila female head tissues--DSPR collection (596 F1-hybrids from crosses between DSPR sub-populations) and CEGS population (75 F1-hybrids from crosses between DGRP/Winters lines to a reference strain w1118)--to expand understanding of the sex hierarchy gene regulatory network (GRN). This approach is completely generalizable to any natural population, including humans. We expanded the sex hierarchy GRN adding novel links among genes, including a link from fruitless (fru) to Sex-lethal (Sxl) identified in both populations. This link is further supported by the presence of fru binding sites in the Sxl locus. 754 candidate genes were added to the pathway, including the splicing factors male-specific lethal 2 and Rm62 as downstream targets of Sxl which are well-supported links in males. Independent studies of doublesex and transformer mutants support many additions, including evidence for a link between the sex hierarchy and metabolism, via Insulin-like receptor. The genes added in the CEGS population were enriched for genes with sex-biased splicing and components of the spliceosome. A common goal of molecular biologists is to expand understanding about regulatory interactions among genes. Using natural alleles we can not only identify novel relationships, but using supervised approaches can order genes into a regulatory hierarchy. Combining these results with independent large effect mutation studies, allows clear candidates for detailed molecular follow-up to emerge.

  10. Novel Schemes for Local Area Network Emulation in Passive Optical Networks With RF Subcarrier Multiplexed Customer Traffic

    NASA Astrophysics Data System (ADS)

    Nadarajah, Nishaanthan; Attygalle, Manik; Wong, Elaine; Nirmalathas, Ampalavanapillai

    2005-10-01

    This paper proposes two novel optical layer schemes for intercommunication between customers in a passive optical network (PON). The proposed schemes use radio frequency (RF) subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office (CO) at baseband. One scheme employs a narrowband fiber Bragg grating (FBG) placed close to the star coupler in the feeder fiber of the PON, while the other uses an additional short-length distribution fiber from the star coupler to each customer unit for the redirection of customer traffic. In both schemes, only one optical transmitter is required at each optical network unit (ONU) for the transmission of customer traffic and upstream access traffic. Moreover, downstream bandwidth is not consumed by customer traffic unlike in previously reported techniques. The authors experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the CO and 155 Mb/s customer data transmission on the RF carrier. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme. Further, the proposed schemes were discussed in terms of upgradability of the transmission bit rates for the upstream access traffic, bandwidth requirements at the customer premises, dispersion tolerance, and stability issues for the practical implementations of the network.

  11. Demonstration of flexible and reconfigurable WDM multicast scheme supporting downstream emergency multicast communication for WDM optical access network

    NASA Astrophysics Data System (ADS)

    Li, Ze; Zhang, Min; Wang, Danshi; Cui, Yue

    2017-09-01

    We propose a flexible and reconfigurable wavelength-division multiplexing (WDM) multicast scheme supporting downstream emergency multicast communication for WDM optical access network (WDM-OAN) via a multicast module (MM) based on four-wave mixing (FWM) in a semiconductor optical amplifier. It serves as an emergency measure to dispose of the burst, large bandwidth, and real-time multicast service with fast service provisioning and high resource efficiency. It also plays the role of physical backup in cases of big data migration or network disaster caused by invalid lasers or modulator failures. It provides convenient and reliable multicast service and emergency protection for WDM-OAN without modifying WDM-OAN structure. The strategies of an MM setting at the optical line terminal and remote node are discussed to apply this scheme to passive optical networks and active optical networks, respectively. Utilizing the proposed scheme, we demonstrate a proof-of-concept experiment in which one-to-six/eight 10-Gbps nonreturn-to-zero-differential phase-shift keying WDM multicasts in both strategies are successfully transmitted over single-mode fiber of 20.2 km. One-to-many reconfigurable WDM multicasts dealing with higher data rate and other modulation formats of multicast service are possible through the proposed scheme. It can be applied to different WDM access technologies, e.g., time-wavelength-division multiplexing-OAN and coherent WDM-OAN, and upgraded smoothly.

  12. Energy Systems Integration: Demonstrating Distributed Grid-Edge Control Hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-01-01

    Overview fact sheet about the OMNETRIC Group Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  13. Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies

    NASA Astrophysics Data System (ADS)

    Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio

    2012-04-01

    This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.

  14. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network.

    PubMed

    Lautz, Jonathan D; Brown, Emily A; VanSchoiack, Alison A Williams; Smith, Stephen E P

    2018-05-27

    Cells utilize dynamic, network level rearrangements in highly interconnected protein interaction networks to transmit and integrate information from distinct signaling inputs. Despite the importance of protein interaction network dynamics, the organizational logic underlying information flow through these networks is not well understood. Previously, we developed the quantitative multiplex co-immunoprecipitation platform, which allows for the simultaneous and quantitative measurement of the amount of co-association between large numbers of proteins in shared complexes. Here, we adapt quantitative multiplex co-immunoprecipitation to define the activity dependent dynamics of an 18-member protein interaction network in order to better understand the underlying principles governing glutamatergic signal transduction. We first establish that immunoprecipitation detected by flow cytometry can detect activity dependent changes in two known protein-protein interactions (Homer1-mGluR5 and PSD-95-SynGAP). We next demonstrate that neuronal stimulation elicits a coordinated change in our targeted protein interaction network, characterized by the initial dissociation of Homer1 and SynGAP-containing complexes followed by increased associations among glutamate receptors and PSD-95. Finally, we show that stimulation of distinct glutamate receptor types results in different modular sets of protein interaction network rearrangements, and that cells activate both modules in order to integrate complex inputs. This analysis demonstrates that cells respond to distinct types of glutamatergic input by modulating different combinations of protein co-associations among a targeted network of proteins. Our data support a model of synaptic plasticity in which synaptic stimulation elicits dissociation of preexisting multiprotein complexes, opening binding slots in scaffold proteins and allowing for the recruitment of additional glutamatergic receptors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. XCEDE: An Extensible Schema For Biomedical Data

    PubMed Central

    Gadde, Syam; Aucoin, Nicole; Grethe, Jeffrey S.; Keator, David B.; Marcus, Daniel S.; Pieper, Steve

    2013-01-01

    The XCEDE (XML-based Clinical and Experimental Data Exchange) XML schema, developed by members of the BIRN (Biomedical Informatics Research Network), provides an extensive metadata hierarchy for storing, describing and documenting the data generated by scientific studies. Currently at version 2.0, the XCEDE schema serves as a specification for the exchange of scientific data between databases, analysis tools, and web services. It provides a structured metadata hierarchy, storing information relevant to various aspects of an experiment (project, subject, protocol, etc.). Each hierarchy level also provides for the storage of data provenance information allowing for a traceable record of processing and/or changes to the underlying data. The schema is extensible to support the needs of various data modalities and to express types of data not originally envisioned by the developers. The latest version of the XCEDE schema and manual are available from http://www.xcede.org/ PMID:21479735

  16. Scaling properties of cosmic (super)string networks

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.

    2014-10-01

    I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings.

  17. Space-Time Processing for Tactical Mobile Ad Hoc Networks

    DTIC Science & Technology

    2007-08-01

    rates in mobile ad hoc networks. In addition, he has considered the design of a cross-layer multi-user resource allocation framework using a... framework for many-to-one communication. In this context, multiple nodes cooperate to transmit their packets simultaneously to a single node using multi...spatially multiplexed signals transmitted from multiple nodes. Our goal is to form a framework that activates different sets of communication links

  18. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    NASA Astrophysics Data System (ADS)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.

  19. Cascades in multiplex financial networks with debts of different seniority

    NASA Astrophysics Data System (ADS)

    Brummitt, Charles D.; Kobayashi, Teruyoshi

    2015-06-01

    The seniority of debt, which determines the order in which a bankrupt institution repays its debts, is an important and sometimes contentious feature of financial crises, yet its impact on systemwide stability is not well understood. We capture seniority of debt in a multiplex network, a graph of nodes connected by multiple types of edges. Here an edge between banks denotes a debt contract of a certain level of seniority. Next we study cascading default. There exist multiple kinds of bankruptcy, indexed by the highest level of seniority at which a bank cannot repay all its debts. Self-interested banks would prefer that all their loans be made at the most senior level. However, mixing debts of different seniority levels makes the system more stable in that it shrinks the set of network densities for which bankruptcies spread widely. We compute the optimal ratio of senior to junior debts, which we call the optimal seniority ratio, for two uncorrelated Erdős-Rényi networks. If institutions erode their buffer against insolvency, then this optimal seniority ratio rises; in other words, if default thresholds fall, then more loans should be senior. We generalize the analytical results to arbitrarily many levels of seniority and to heavy-tailed degree distributions.

  20. Cascades in multiplex financial networks with debts of different seniority.

    PubMed

    Brummitt, Charles D; Kobayashi, Teruyoshi

    2015-06-01

    The seniority of debt, which determines the order in which a bankrupt institution repays its debts, is an important and sometimes contentious feature of financial crises, yet its impact on systemwide stability is not well understood. We capture seniority of debt in a multiplex network, a graph of nodes connected by multiple types of edges. Here an edge between banks denotes a debt contract of a certain level of seniority. Next we study cascading default. There exist multiple kinds of bankruptcy, indexed by the highest level of seniority at which a bank cannot repay all its debts. Self-interested banks would prefer that all their loans be made at the most senior level. However, mixing debts of different seniority levels makes the system more stable in that it shrinks the set of network densities for which bankruptcies spread widely. We compute the optimal ratio of senior to junior debts, which we call the optimal seniority ratio, for two uncorrelated Erdős-Rényi networks. If institutions erode their buffer against insolvency, then this optimal seniority ratio rises; in other words, if default thresholds fall, then more loans should be senior. We generalize the analytical results to arbitrarily many levels of seniority and to heavy-tailed degree distributions.

  1. Maintaining relationships is critical in network's success.

    PubMed

    Huerta, Timothy

    2006-01-01

    As the authors of the lead paper recognize, networks have become an increasingly popular form of organizing, both in the delivery of public services and within political arenas. A network is an arrangement of individuals and/or organizations that are linked through connections that range from informal relationships to formally agreed protocols. Networks have proved useful in addressing complex and intractable problems that require a holistic approach to identifying and implementing long-term solutions. They succeed in situations where hierarchies and "silo-based" systems have failed, and are particularly valuable in facilitating the transfer of resources and knowledge across sectoral and organizational boundaries.

  2. Risk Evaluation of Railway Coal Transportation Network Based on Multi Level Grey Evaluation Model

    NASA Astrophysics Data System (ADS)

    Niu, Wei; Wang, Xifu

    2018-01-01

    The railway transport mode is currently the most important way of coal transportation, and now China’s railway coal transportation network has become increasingly perfect, but there is still insufficient capacity, some lines close to saturation and other issues. In this paper, the theory and method of risk assessment, analytic hierarchy process and multi-level gray evaluation model are applied to the risk evaluation of coal railway transportation network in China. Based on the example analysis of Shanxi railway coal transportation network, to improve the internal structure and the competitiveness of the market.

  3. Extraction of Multilayered Social Networks from Activity Data

    PubMed Central

    Bródka, Piotr; Kazienko, Przemysław; Gaworecki, Jarosław

    2014-01-01

    The data gathered in all kinds of web-based systems, which enable users to interact with each other, provides an opportunity to extract social networks that consist of people and relationships between them. The emerging structures are very complex due to the number and type of discovered connections. In web-based systems, the characteristic element of each interaction between users is that there is always an object that serves as a communication medium. This can be, for example, an e-mail sent from one user to another or post at the forum authored by one user and commented on by others. Based on these objects and activities that users perform towards them, different kinds of relationships can be identified and extracted. Additional challenge arises from the fact that hierarchies can exist between objects; for example, a forum consists of one or more groups of topics, and each of them contains topics that finally include posts. In this paper, we propose a new method for creation of multilayered social network based on the data about users activities towards different types of objects between which the hierarchy exists. Due to the flattening, preprocessing procedure of new layers and new relationships in the multilayered social network can be identified and analysed. PMID:25105159

  4. Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system

    NASA Astrophysics Data System (ADS)

    Zou, Li; Wang, Le; Zhao, Sheng-Mei; Chen, Han-Wu

    2016-11-01

    Atmospheric turbulence (AT) induced crosstalk can significantly impair the performance of a free-space optical (FSO) communication link using orbital angular momentum (OAM) multiplexing. In this paper, we propose a multiple-user detection (MUD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link. First, we present a MUD equivalent communication model for an OAM-multiplexed FSO communication link under AT. In the equivalent model, each input bit stream represents one user’s information. The deformed OAM spatial modes caused by AT, instead of the pure OAM spatial modes, are used as information carriers, and the overlapping between the deformed OAM spatial modes are computed as the correlation coefficients between the users. Then, we present a turbulence mitigation scheme based on MUD idea to enhance AT tolerance of the OAM-multiplexed FSO communication link. In the proposed scheme, the crosstalk caused by AT is used as a useful component to deduce users’ information. The numerical results show that the performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme. When the turbulence strength is 1 × 10-15 m-2/3, the transmission distance is 1000 m and the channel signal-to-noise ratio (SNR) is 26 dB, the bit-error-rate (BER) performance of four spatial multiplexed OAM modes lm = +1,+2,+3,+4 are all close to 10-5, and there is a 2-3 fold increase in the BER performance in comparison with those results without the proposed scheme. In addition, the proposed scheme is more effective for an OAM-multiplexed FSO communication link with a larger OAM mode topological charge interval. The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), the Postgraduate Innovation Research Plan of Jiangsu Province, China (Grant No. CXZZ13_0489), and the University Natural Science Foundation of Jiangsu Province, China (Grant No. 16KJB510037).

  5. Implementing Network-Centric Operations in Joint Task Forces: Changes in Joint Doctrine

    DTIC Science & Technology

    2006-06-16

    the hierarchy, explaining the relationship between vertically connected components (Gibson, Ivancevich , and Donnelly 1973, 289). The flow of...John M. Ivancevich , and James H. Donnelly. 1973. Organizations: Structure, Processes, Behavior. Dallas, TX: Business Publication, Inc. Gonzales

  6. Social Network Analysis of Crowds

    DTIC Science & Technology

    2009-10-29

    Response to non-lethal weapons fire depends on social relationships among crowd members – Pre-existing Personal Relationships – Ongoing Real Time...weapons and systems – Prior, existing social relationships – Real time social interactions – Formal/informal hierarchies 13-Feb-15 24UNCLASSIFIED

  7. Self-healing ring-based WDM-PON

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Gan, Chaoqin; Zhu, Long

    2010-05-01

    In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.

  8. Hybrid optoelectronic neural networks using a mutually pumped phase-conjugate mirror

    NASA Astrophysics Data System (ADS)

    Dunning, G. J.; Owechko, Y.; Soffer, B. H.

    1991-06-01

    A method is described for interconnecting hybrid optoelectronic neural networks by using a mutually pumped phase conjugate mirror (MP-PCM). In this method, cross talk due to Bragg degeneracies is greatly reduced by storing each weight among many spatially and angularly multiplexed gratings. The effective weight throughput is increased by the parallel updating of weights using outer-product learning. Experiments demonstrated a high degree of interconnectivity between adjacent pixels. A diagram is presented showing the architecture for the optoelectronic neural network using an MP-PCM.

  9. First demonstration and field trial on multi-user UDWDM-PON full duplex PSK-PSK with single monolithic integrated dual-output-DFB-SOA based ONUs.

    PubMed

    Chu, GuangYong; Maho, Anaëlle; Cano, Iván; Polo, Victor; Brenot, Romain; Debrégeas, Hélène; Prat, Josep

    2016-10-15

    We demonstrate a monolithically integrated dual-output DFB-SOA, and conduct the field trial on a multi-user bidirectional coherent ultradense wavelength division multiplexing-passive optical network (UDWDM-PON). To the best of our knowledge, this is the first achievement of simplified single integrated laser-based neighboring coherent optical network units (ONUs) with a 12.5 GHz channel spaced ultra-dense access network, including both downstream and upstream, taking the benefits of low footprint and low-temperature dependence.

  10. Interspecific aggression in hermatypic corals from Bermuda

    NASA Astrophysics Data System (ADS)

    Logan, A.

    1984-11-01

    Interspecific aggression between hermatypic corals on Bermudian reefs has been investigated by aquarium and field studies, the latter involving induced interactions, observations from 30 m-2 transects and random SCUBA traverses. Resultant hierarchies, constructed by ranking the abilities of species to damage competitors, show close similarities with each other and with the Jamaican hierarchy at the family level, notwithstanding some differences in the ranking of some species. Only 11% of natural-occurring interactions depart from the aquarium-derived results; in terms of species-pair combinations, 30% show partial or complete inversions from aquarium to field, with most changes involving species close together in the field hierarchy. Circular (intransitive) interactions occur mostly within a network of weakly-aggressive species in both aquarium- and fieldderived hierarchies. While number of potential interactions m-2 varies directly with density, frequency of aggression is positively correlated with coral diversity (species richness), while frequency of “no reactions” and conspecific fusion (combined) shows a correspondingly negative correlation with diversity. Frequency of aggression does not appear to be depth related. Comparison of aquarium and field hierarchies suggest that digestion by mesenterial filaments is the most important mechanism of aggression under natural conditions. Sweeper tentacle activity is the most likely cause of field reversals involving Madracis mirabilis and Montastrea cavernosa. Other factors, such as stress caused by seasonal environmental extremes, may be responsible for reversals or inconsistent behaviour in other species.

  11. Integrated-Optic Wavelength Multiplexer In Glass Fabricated By A Charge Controlled Ion Exchange

    NASA Astrophysics Data System (ADS)

    Klein, R.; Jestel, D.; Lilienhof, H. J.; Rottman, F.; Voges, E.

    1989-02-01

    Integrated-optic wavelength division multiplexing (WDM) is commonly used in communication systems. These WDM-devices are also well suited to build up optical fiber networks for both intensity and interferometric sensor types. The operation principle of our wavelength division multiplexing devise is based on the wavelength dependent two-mode interference in a two-moded waveguide, which is coupled adiabatically to the single-mode input and output strip waveguides. The single-mode input and output waveguides are connected via two Y-branches ( "'kJ- 1° branching angle ) with a two-moded intersection region. The ratio of the light powers in the single-mode output waveguides depends on wavelength . The two-mode interference within the two-moded center waveguide leads to an almost wavelength periodic transmission caracteristic . Dual-channel multiplexers/demultiplexers were fabricated by a charge controlled field assisted pottasium exchange in B-270 glass (Desag). The devices have a typical channel separation of 30 - 40 nm and a far-end crosstalk attenuation of better than 16 dB. The operation wavelength regions of the fabricated devices are 0.6 - 0.8 µm and 1.3 - 1.6 µm, respectively.

  12. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks.

    PubMed

    Maere, Steven; Heymans, Karel; Kuiper, Martin

    2005-08-15

    The Biological Networks Gene Ontology tool (BiNGO) is an open-source Java tool to determine which Gene Ontology (GO) terms are significantly overrepresented in a set of genes. BiNGO can be used either on a list of genes, pasted as text, or interactively on subgraphs of biological networks visualized in Cytoscape. BiNGO maps the predominant functional themes of the tested gene set on the GO hierarchy, and takes advantage of Cytoscape's versatile visualization environment to produce an intuitive and customizable visual representation of the results.

  13. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems.

    PubMed

    Winzer, Peter J; Foschini, Gerard J

    2011-08-15

    With wavelength-division multiplexing (WDM) rapidly nearing its scalability limits, space-division multiplexing (SDM) seems the only option to further scale the capacity of optical transport networks. In order for SDM systems to continue the WDM trend of reducing energy and cost per bit with system capacity, integration will be key to SDM. Since integration is likely to introduce non-negligible crosstalk between multiple parallel transmission paths, multiple-input multiple output (MIMO) signal processing techniques will have to be used. In this paper, we discuss MIMO capacities in optical SDM systems, including related outage considerations which are an important part in the design of such systems. In order to achieve the low-outage standards required for optical transport networks, SDM transponders should be capable of individually addressing, and preferably MIMO processing all modes supported by the optical SDM waveguide. We then discuss the effect of distributed optical noise in MIMO SDM systems and focus on the impact of mode-dependent loss (MDL) on system capacity and system outage. Through extensive numerical simulations, we extract scaling rules for mode-average and mode-dependent loss and show that MIMO SDM systems composed of up to 128 segments and supporting up to 128 modes can tolerate up to 1 dB of per-segment MDL at 90% of the system's full capacity at an outage probability of 10(-4). © 2011 Optical Society of America

  14. Fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes.

    PubMed

    Amaya, N; Irfan, M; Zervas, G; Nejabati, R; Simeonidou, D; Sakaguchi, J; Klaus, W; Puttnam, B J; Miyazawa, T; Awaji, Y; Wada, N; Henning, I

    2013-04-08

    We present the first elastic, space division multiplexing, and multi-granular network based on two 7-core MCF links and four programmable optical nodes able to switch traffic utilising the space, frequency and time dimensions with over 6000-fold bandwidth granularity. Results show good end-to-end performance on all channels with power penalties between 0.75 dB and 3.7 dB.

  15. Experimental demonstration of PAM-DWMT for passive optical network

    NASA Astrophysics Data System (ADS)

    Lin, Bangjiang; Zhang, Kaiwei; Tang, Xuan; Ghassemlooy, Zabih; Lin, Chun; Zhou, Zhenlei

    2018-07-01

    We experimentally demonstrate a discrete wavelet multitone (DWMT) modulation scheme based on pulse amplitude modulation (PAM) for next generation passive optical network (PON), which offers high tolerance against chromatic dispersion, high spectral efficiency, low peak to average power ratio (PAPR) and low side lobes. The experimental results show the chromatic dispersion induced power penalties are negligible after 20km fiber transmission. Compared with orthogonal frequency division multiplexing (OFDM), DWMT offers a better receiver sensitivity.

  16. Time Hierarchies and Model Reduction in Canonical Non-linear Models

    PubMed Central

    Löwe, Hannes; Kremling, Andreas; Marin-Sanguino, Alberto

    2016-01-01

    The time-scale hierarchies of a very general class of models in differential equations is analyzed. Classical methods for model reduction and time-scale analysis have been adapted to this formalism and a complementary method is proposed. A unified theoretical treatment shows how the structure of the system can be much better understood by inspection of two sets of singular values: one related to the stoichiometric structure of the system and another to its kinetics. The methods are exemplified first through a toy model, then a large synthetic network and finally with numeric simulations of three classical benchmark models of real biological systems. PMID:27708665

  17. Phase transitions in the q -voter model with noise on a duplex clique

    NASA Astrophysics Data System (ADS)

    Chmiel, Anna; Sznajd-Weron, Katarzyna

    2015-11-01

    We study a nonlinear q -voter model with stochastic noise, interpreted in the social context as independence, on a duplex network. To study the role of the multilevelness in this model we propose three methods of transferring the model from a mono- to a multiplex network. They take into account two criteria: one related to the status of independence (LOCAL vs GLOBAL) and one related to peer pressure (AND vs OR). In order to examine the influence of the presence of more than one level in the social network, we perform simulations on a particularly simple multiplex: a duplex clique, which consists of two fully overlapped complete graphs (cliques). Solving numerically the rate equation and simultaneously conducting Monte Carlo simulations, we provide evidence that even a simple rearrangement into a duplex topology may lead to significant changes in the observed behavior. However, qualitative changes in the phase transitions can be observed for only one of the considered rules: LOCAL&AND. For this rule the phase transition becomes discontinuous for q =5 , whereas for a monoplex such behavior is observed for q =6 . Interestingly, only this rule admits construction of realistic variants of the model, in line with recent social experiments.

  18. Multiplexing topologies and time scales: The gains and losses of synchrony

    NASA Astrophysics Data System (ADS)

    Makovkin, Sergey; Kumar, Anil; Zaikin, Alexey; Jalan, Sarika; Ivanchenko, Mikhail

    2017-11-01

    Inspired by the recent interest in collective dynamics of biological neural networks immersed in the glial cell medium, we investigate the frequency and phase order, i.e., Kuramoto type of synchronization in a multiplex two-layer network of phase oscillators of different time scales and topologies. One of them has a long-range connectivity, exemplified by the Erdős-Rényi random network, and supports both kinds of synchrony. The other is a locally coupled two-dimensional lattice that can reach frequency synchronization but lacks phase order. Drastically different layer frequencies disentangle intra- and interlayer synchronization. We find that an indirect but sufficiently strong coupling through the regular layer can induce both phase order in the originally nonsynchronized random layer and global order, even when an isolated regular layer does not manifest it in principle. At the same time, the route to global synchronization is complex: an initial onset of (partial) synchrony in the regular layer, when its intra- and interlayer coupling is increased, provokes the loss of synchrony even in the originally synchronized random layer. Ultimately, a developed asynchronous dynamics in both layers is abruptly taken over by the global synchrony of both kinds.

  19. Two-stage effects of awareness cascade on epidemic spreading in multiplex networks

    NASA Astrophysics Data System (ADS)

    Guo, Quantong; Jiang, Xin; Lei, Yanjun; Li, Meng; Ma, Yifang; Zheng, Zhiming

    2015-01-01

    Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. The dynamic process with human awareness is called awareness cascade, during which individuals exhibit herd-like behavior because they are making decisions based on the actions of other individuals [Borge-Holthoefer et al., J. Complex Networks 1, 3 (2013), 10.1093/comnet/cnt006]. In this paper, to investigate the epidemic spreading with awareness cascade, we propose a local awareness controlled contagion spreading model on multiplex networks. By theoretical analysis using a microscopic Markov chain approach and numerical simulations, we find the emergence of an abrupt transition of epidemic threshold βc with the local awareness ratio α approximating 0.5 , which induces two-stage effects on epidemic threshold and the final epidemic size. These findings indicate that the increase of α can accelerate the outbreak of epidemics. Furthermore, a simple 1D lattice model is investigated to illustrate the two-stage-like sharp transition at αc≈0.5 . The results can give us a better understanding of why some epidemics cannot break out in reality and also provide a potential access to suppressing and controlling the awareness cascading systems.

  20. Impairment assessment of orthogonal frequency division multiplexing over dispersion-managed links in backbone and backhaul networks

    NASA Astrophysics Data System (ADS)

    Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi

    2016-04-01

    The past decade has seen the phenomenal usage of orthogonal frequency division multiplexing (OFDM) in the wired as well as wireless communication domains, and it is also proposed in the literature as a future proof technique for the implementation of flexible resource allocation in cognitive optical networks. Fiber impairment assessment and adaptive compensation becomes critical in such implementations. A comprehensive analytical model for impairments in OFDM-based fiber links is developed. The proposed model includes the combined impact of laser phase fluctuations, fiber dispersion, self phase modulation, cross phase modulation, four-wave mixing, the nonlinear phase noise due to the interaction of amplified spontaneous emission with fiber nonlinearities, and the photodetector noises. The bit error rate expression for the proposed model is derived based on error vector magnitude estimation. The performance analysis of the proposed model is presented and compared for dispersion compensated and uncompensated backbone/backhaul links. The results suggest that OFDM would perform better for uncompensated links than the compensated links due to the negligible FWM effects and there is a need for flexible compensation. The proposed model can be employed in cognitive optical networks for accurate assessment of fiber-related impairments.

  1. Improved Dynamic Lightpath Provisioning for Large Wavelength-Division Multiplexed Backbones

    NASA Astrophysics Data System (ADS)

    Kong, Huifang; Phillips, Chris

    2007-07-01

    Technology already exists that would allow future optical networks to support automatic lightpath configuration in response to dynamic traffic demands. Given appropriate commercial drivers, it is possible to foresee carrier network operators migrating away from semipermanent provisioning to enable on-demand short-duration communications. However, with traditional lightpath reservation protocols, a portion of the lightpath is idly held during the signaling propagation phase, which can significantly reduce the lightpath bandwidth efficiency in large wavelength-division multiplexed backbones. This paper proposes a prebooking mechanism to improve the lightpath efficiency over traditional reactive two-way reservation protocols, consequently liberating network resources to support higher traffic loads. The prebooking mechanism predicts the time when the traffic will appear at the optical cross connects, and intelligently schedules the lightpath components such that resources are only consumed as necessary. We describe the proposed signaling procedure for both centralized and distributed control planes and analyze its performance. This paper also investigates the aggregated flow length characteristics with the self-similar incident traffic and examines the effects of traffic prediction on the blocking probability as well as the ability to support latency sensitive traffic in a wide-area environment.

  2. Field demonstration of a continuous-variable quantum key distribution network.

    PubMed

    Huang, Duan; Huang, Peng; Li, Huasheng; Wang, Tao; Zhou, Yingming; Zeng, Guihua

    2016-08-01

    We report on what we believe is the first field implementation of a continuous-variable quantum key distribution (CV-QKD) network with point-to-point configuration. Four QKD nodes are deployed on standard communication infrastructures connected with commercial telecom optical fiber. Reliable key exchange is achieved in the wavelength-division-multiplexing CV-QKD network. The impact of a complex and volatile field environment on the excess noise is investigated, since excess noise controlling and reduction is arguably the major issue pertaining to distance and the secure key rate. We confirm the applicability and verify the maturity of the CV-QKD network in a metropolitan area, thus paving the way for a next-generation global secure communication network.

  3. A Spiking Neural Network Based Cortex-Like Mechanism and Application to Facial Expression Recognition

    PubMed Central

    Fu, Si-Yao; Yang, Guo-Sheng; Kuai, Xin-Kai

    2012-01-01

    In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs). By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people's facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism. PMID:23193391

  4. A spiking neural network based cortex-like mechanism and application to facial expression recognition.

    PubMed

    Fu, Si-Yao; Yang, Guo-Sheng; Kuai, Xin-Kai

    2012-01-01

    In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs). By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people's facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism.

  5. Architecture of the parallel hierarchical network for fast image recognition

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid; Wójcik, Waldemar; Kokriatskaia, Natalia; Kutaev, Yuriy; Ivasyuk, Igor; Kotyra, Andrzej; Smailova, Saule

    2016-09-01

    Multistage integration of visual information in the brain allows humans to respond quickly to most significant stimuli while maintaining their ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing includes main types of cortical multistage convergence. The input images are mapped into a flexible hierarchy that reflects complexity of image data. Procedures of the temporal image decomposition and hierarchy formation are described in mathematical expressions. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image that encapsulates a structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a quick response of the system. The result is presented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match. With regard to the forecasting method, its idea lies in the following. In the results synchronization block, network-processed data arrive to the database where a sample of most correlated data is drawn using service parameters of the parallel-hierarchical network.

  6. Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

    PubMed

    Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming

    2018-05-01

    The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.

  7. Use of Primary Human Cell Systems for Creating Predictive Toxicology Profiles

    EPA Science Inventory

    Use of cellular regulatory networks to detect and distinguish effects of compounds with a broad range of on- and off-target mechanisms and biological processes provides an opportunity to understand toxicity mechanisms of action. Here we use the Biologically Multiplexed Activity P...

  8. Dynamic Bandwidth Allocation with Effective Utilization of Polling Interval over WDM/TDM PON

    NASA Astrophysics Data System (ADS)

    Ni, Cuiping; Gan, Chaoqin; Gao, Ziyue

    2014-12-01

    WDM/TDM (wavelength-division multiplexing/time-division multiplexing) PON (passive optical network) appears to be an attractive solution for the next generation optical access networks. Dynamic bandwidth allocation (DBA) plays a crucial role in efficiently and fairly allocating the bandwidth among all users in WDM/TDM PON. In this paper, two dynamic bandwidth allocation schemes (DBA1 and DBA2) are proposed to eliminate the idle time of polling cycles (i.e. polling interval), improve bandwidth utilization and make full use of bandwidth resources. The two DBA schemes adjust the time slot of sending request information and make fair scheduling among users to achieve the effective utilization of polling interval in WDM/TDM PON. The simulation and theoretical analyses verify that the proposed schemes outperform the conventional DBA scheme. We also make comparisons between the two schemes in terms of bandwidth utilization and average packet delay to further demonstrate the effectiveness of the scheme of DBA2.

  9. Demonstration of 20Gb/s polarization-insensitive wavelength switching system for high-speed free-space optical network

    NASA Astrophysics Data System (ADS)

    Qian, Feng-chen; Ye, Ya-lin; Wen, Yu; Duan, Tao; Feng, Huan

    2015-10-01

    A 20Gb/s polarization-insensitive all-optical wavelength switching system for high-speed free-space optical communication (FSO) network is experimentally demonstrated All-optical wavelength conversion (AOWC) is implemented using four-wave mixing (FWM) by highly-nonlinear fiber (HNLF). In the experimental setup, a simple actively mode-locked fiber ring laser (AML-FRL) with repetition frequency from 1 to 15 GHz is used to generate eight 2.5Gb/s tributary signals, which are multiplexed into one 20Gb/s optical data stream. At the receiver, the 20 Gb/s OTDM data stream is demultiplexed down to 2.5 Gb/s via a polarization-insensitive FWM scheme. The whole space communication distance is over 10 meters in building hallway. The experimental results show that this system can stably run over 24 hours at 10-9 BER level, thus the proposed architecture can work at higher rate with wavelength-division multiplexing (WDM) and high order modulation schemes.

  10. Opinion competition dynamics on multiplex networks

    NASA Astrophysics Data System (ADS)

    Amato, R.; Kouvaris, N. E.; San Miguel, M.; Díaz-Guilera, A.

    2017-12-01

    Multilayer and multiplex networks represent a good proxy for the description of social phenomena where social structure is important and can have different origins. Here, we propose a model of opinion competition where individuals are organized according to two different structures in two layers. Agents exchange opinions according to the Abrams-Strogatz model in each layer separately and opinions can be copied across layers by the same individual. In each layer a different opinion is dominant, so each layer has a different absorbing state. Consensus in one opinion is not the only possible stable solution because of the interaction between the two layers. A new mean field solution has been found where both opinions coexist. In a finite system there is a long transient time for the dynamical coexistence of both opinions. However, the system ends in a consensus state due to finite size effects. We analyze sparse topologies in the two layers and the existence of positive correlations between them, which enables the coexistence of inter-layer groups of agents sharing the same opinion.

  11. A new IPQAM modulator with high integrated degree for digital TV

    NASA Astrophysics Data System (ADS)

    He, Yejun; Liu, Deming; Zhu, Guangxi; Jiang, Tao; Sun, Gongxian

    2008-12-01

    As video on demand (VOD) services are deployed, cable operators will experience a fundamental shift in their business, moving from broadcast to unicast content delivery. Another significant change is the introduction of Gigabit Ethernet into their network, which is providing an unprecedented opportunity to turn the cable operator's infrastructure into a sustainable competitive advantage. However, Gigabit Ethernet is more than just transport; it's the foundation of the Next-Generation Digital Video Network. IPQAM modulator, which is a main equipment, aren't made in China so far. It is the first time that we did design IPQAM modulator and will apply it to interactive TV based on DWDM (dense wavelength-division multiplexing). This paper introduces the principle of IPQAM modulator and transmission approach. The differences between IPQAM and conventional QAM are analysed. Some key techniques such as scrambling, statistical multiplexing, Data over Cable Service Interface Specification (DOCSIS) 3.0, software defined radio as well as DVB simulcrypt are also studied.

  12. The Impact of Heterogeneity and Awareness in Modeling Epidemic Spreading on Multiplex Networks

    PubMed Central

    Scatà, Marialisa; Di Stefano, Alessandro; Liò, Pietro; La Corte, Aurelio

    2016-01-01

    In the real world, dynamic processes involving human beings are not disjoint. To capture the real complexity of such dynamics, we propose a novel model of the coevolution of epidemic and awareness spreading processes on a multiplex network, also introducing a preventive isolation strategy. Our aim is to evaluate and quantify the joint impact of heterogeneity and awareness, under different socioeconomic conditions. Considering, as case study, an emerging public health threat, Zika virus, we introduce a data-driven analysis by exploiting multiple sources and different types of data, ranging from Big Five personality traits to Google Trends, related to different world countries where there is an ongoing epidemic outbreak. Our findings demonstrate how the proposed model allows delaying the epidemic outbreak and increasing the resilience of nodes, especially under critical economic conditions. Simulation results, using data-driven approach on Zika virus, which has a growing scientific research interest, are coherent with the proposed analytic model. PMID:27848978

  13. Demonstration of flexible multicasting and aggregation functionality for TWDM-PON

    NASA Astrophysics Data System (ADS)

    Chen, Yuanxiang; Li, Juhao; Zhu, Paikun; Zhu, Jinglong; Tian, Yu; Wu, Zhongying; Peng, Huangfa; Xu, Yongchi; Chen, Jingbiao; He, Yongqi; Chen, Zhangyuan

    2017-06-01

    The time- and wavelength-division multiplexed passive optical network (TWDM-PON) has been recognized as an attractive solution to provide broadband access for the next-generation networks. In this paper, we propose flexible service multicasting and aggregation functionality for TWDM-PON utilizing multiple-pump four-wave-mixing (FWM) and cyclic arrayed waveguide grating (AWG). With the proposed scheme, multiple TWDM-PON links share a single optical line terminal (OLT), which can greatly reduce the network deployment expense and achieve efficient network resource utilization by load balancing among different optical distribution networks (ODNs). The proposed scheme is compatible with existing TDM-PON infrastructure with fixed-wavelength OLT transmitter, thus smooth service upgrade can be achieved. Utilizing the proposed scheme, we demonstrate a proof-of-concept experiment with 10-Gb/s OOK and 10-Gb/s QPSK orthogonal frequency division multiplexing (OFDM) signal multicasting and aggregating to seven PON links. Compared with back-to-back (BTB) channel, the newly generated multicasting OOK signal and OFDM signal have power penalty of 1.6 dB and 2 dB at the BER of 10-3, respectively. For the aggregation of multiple channels, no obvious power penalty is observed. What is more, to verify the flexibility of the proposed scheme, we reconfigure the wavelength selective switch (WSS) and adjust the number of pumps to realize flexible multicasting functionality. One to three, one to seven, one to thirteen and one to twenty-one multicasting are achieved without modifying OLT structure.

  14. RedeR: R/Bioconductor package for representing modular structures, nested networks and multiple levels of hierarchical associations

    PubMed Central

    2012-01-01

    Visualization and analysis of molecular networks are both central to systems biology. However, there still exists a large technological gap between them, especially when assessing multiple network levels or hierarchies. Here we present RedeR, an R/Bioconductor package combined with a Java core engine for representing modular networks. The functionality of RedeR is demonstrated in two different scenarios: hierarchical and modular organization in gene co-expression networks and nested structures in time-course gene expression subnetworks. Our results demonstrate RedeR as a new framework to deal with the multiple network levels that are inherent to complex biological systems. RedeR is available from http://bioconductor.org/packages/release/bioc/html/RedeR.html. PMID:22531049

  15. Modeling the Emergence of Modular Leadership Hierarchy During the Collective Motion of Herds Made of Harems

    NASA Astrophysics Data System (ADS)

    Ozogány, Katalin; Vicsek, Tamás

    2015-02-01

    Gregarious animals need to make collective decisions in order to keep their cohesiveness. Several species of them live in multilevel societies, and form herds composed of smaller communities. We present a model for the development of a leadership hierarchy in a herd consisting of loosely connected sub-groups (e.g. harems) by combining self organization and social dynamics. It starts from unfamiliar individuals without relationships and reproduces the emergence of a hierarchical and modular leadership network that promotes an effective spreading of the decisions from more capable individuals to the others, and thus gives rise to a beneficial collective decision. Our results stemming from the model are in a good agreement with our observations of a Przewalski horse herd (Hortobágy, Hungary). We find that the harem-leader to harem-member ratio observed in Przewalski horses corresponds to an optimal network in this approach regarding common success, and that the observed and modeled harem size distributions are close to a lognormal.

  16. Epidemics and dimensionality in hierarchical networks

    NASA Astrophysics Data System (ADS)

    Zheng, Da-Fang; Hui, P. M.; Trimper, Steffen; Zheng, Bo

    2005-07-01

    Epidemiological processes are studied within a recently proposed hierarchical network model using the susceptible-infected-refractory dynamics of an epidemic. Within the network model, a population may be characterized by H independent hierarchies or dimensions, each of which consists of groupings of individuals into layers of subgroups. Detailed numerical simulations reveal that for H>1, global spreading results regardless of the degree of homophily of the individuals forming a social circle. For H=1, a transition from global to local spread occurs as the population becomes decomposed into increasingly homophilous groups. Multiple dimensions in classifying individuals (nodes) thus make a society (computer network) highly susceptible to large-scale outbreaks of infectious diseases (viruses).

  17. Reciprocity in spatial evolutionary public goods game on double-layered network

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Yook, Soon-Hyung; Kim, Yup

    2016-08-01

    Spatial evolutionary games have mainly been studied on a single, isolated network. However, in real world systems, many interaction topologies are not isolated but many different types of networks are inter-connected to each other. In this study, we investigate the spatial evolutionary public goods game (SEPGG) on double-layered random networks (DRN). Based on the mean-field type arguments and numerical simulations, we find that SEPGG on DRN shows very rich interesting phenomena, especially, depending on the size of each layer, intra-connectivity, and inter-connected couplings, the network reciprocity of SEPGG on DRN can be drastically enhanced through the inter-connected coupling. Furthermore, SEPGG on DRN can provide a more general framework which includes the evolutionary dynamics on multiplex networks and inter-connected networks at the same time.

  18. Reciprocity in spatial evolutionary public goods game on double-layered network

    PubMed Central

    Kim, Jinho; Yook, Soon-Hyung; Kim, Yup

    2016-01-01

    Spatial evolutionary games have mainly been studied on a single, isolated network. However, in real world systems, many interaction topologies are not isolated but many different types of networks are inter-connected to each other. In this study, we investigate the spatial evolutionary public goods game (SEPGG) on double-layered random networks (DRN). Based on the mean-field type arguments and numerical simulations, we find that SEPGG on DRN shows very rich interesting phenomena, especially, depending on the size of each layer, intra-connectivity, and inter-connected couplings, the network reciprocity of SEPGG on DRN can be drastically enhanced through the inter-connected coupling. Furthermore, SEPGG on DRN can provide a more general framework which includes the evolutionary dynamics on multiplex networks and inter-connected networks at the same time. PMID:27503801

  19. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    NASA Astrophysics Data System (ADS)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  20. GLOBECOM '89 - IEEE Global Telecommunications Conference and Exhibition, Dallas, TX, Nov. 27-30, 1989, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.

  1. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology.

    PubMed

    Lamontagne, Marie-Eve

    2013-01-01

    Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. To illustrate social network analysis use in the context of systems of care for traumatic brain injury. We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Social network analysis is a useful methodology to objectively characterise integrated networks.

  2. Transfer functions of double- and multiple-cavity Fabry-Perot filters driven by Lorentzian sources.

    PubMed

    Marti, J; Capmany, J

    1996-12-20

    We derive expressions for the transfer functions of double- and multiple-cavity Fabry-Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.

  3. Transfer functions of double- and multiple-cavity Fabry Perot filters driven by Lorentzian sources

    NASA Astrophysics Data System (ADS)

    Marti, Javier; Capmany, Jose

    1996-12-01

    We derive expressions for the transfer functions of double- and multiple-cavity Fabry Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.

  4. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.

    PubMed

    Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna

    2014-03-01

    This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.

  5. Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    PubMed Central

    Du, Jiangang; Blanche, Timothy J.; Harrison, Reid R.; Lester, Henry A.; Masmanidis, Sotiris C.

    2011-01-01

    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable. PMID:22022568

  6. Chromatic characterization of ion-exchanged glass binary phase plates for mode-division multiplexing.

    PubMed

    Prieto-Blanco, Xesús; Montero-Orille, Carlos; Moreno, Vicente; Mateo, Eduardo F; Liñares, Jesús

    2015-04-10

    Mode-division multiplexing (MDM) in few-mode fibers is regarded as a promising candidate to increase optical network capacity. A fundamental element for MDM is a modal transformer to LP modes which can be implemented in a free-space basis by using multiregion phase plates, that is, LP plates. Likewise, several wavelengths have to be used due to wavelength multiplexing purposes, optical amplification tasks, and so on. In this work we show that efficient monolithic binary phase plates for different wavelengths can be fabricated by ion-exchange in glass and used for MDM tasks. We introduce an optical characterization method of the chromatic properties of such phase plates which combines the inverse Wentzel-Kramers-Brillouin (IWKB) together with Mach-Zehnder and Michelson-based interferometric techniques. The interferometric method provides a measurement of the phase step for several wavelengths, which characterizes the chromatic properties of the phase plate. Consequently, it is shown that the IWKB method allows us to design and characterize the phase plates in an easy and fast way.

  7. 80-Channel Multiplexer-Demultiplexer Module for DWDM Communications using Hybrid AWG -- Interleaver Technology

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Bredthauer, Lance

    2007-10-01

    Aside from the more traditional data, voice and e-mail communications, new bandwidth intensive applications in the larger consumer markets, such as music, digital pictures and movies, have led to an explosive increase in the demand for transmission capacity for optical communications networks. This has resulted in a widespread deployment of Dense Wavelength Division Multiplexing (DWDM) as a means of increasing the communications capacity by multiplexing and transmitting signals of different wavelengths (establishing multiple communication channels) through a single strand of fiber. We report on the design, assembly and characterization of a 50-GHz, 80-channel Mux-Demux module for DWDM systems. The module has been assembled from two commercially available 100 GHz, 40-channel Array Waveguide Grating (AWG) modules and a 50-GHz to 100-GHz interleaver. Relevant performance parameters such as insertion loss, channel uniformity, next-channel isolation (crosstalk) and integrated cross-talk are presented and discussed in contrast with the performance of other competing technologies such as Thin-Film-Filter-based Mux-Demux devices.

  8. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble.

    PubMed

    Vernaz-Gris, Pierre; Huang, Kun; Cao, Mingtao; Sheremet, Alexandra S; Laurat, Julien

    2018-01-25

    Quantum memory for flying optical qubits is a key enabler for a wide range of applications in quantum information. A critical figure of merit is the overall storage and retrieval efficiency. So far, despite the recent achievements of efficient memories for light pulses, the storage of qubits has suffered from limited efficiency. Here we report on a quantum memory for polarization qubits that combines an average conditional fidelity above 99% and efficiency around 68%, thereby demonstrating a reversible qubit mapping where more information is retrieved than lost. The qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically-induced transparency in an elongated laser-cooled ensemble of cesium atoms, spatially multiplexed for dual-rail storage. This implementation preserves high optical depth on both rails, without compromise between multiplexing and storage efficiency. Our work provides an efficient node for future tests of quantum network functionalities and advanced photonic circuits.

  9. The missing link: leadership, identity, and the social brain.

    PubMed

    van Vugt, Mark

    2012-05-01

    How the cohesion of a social network is being maintained in spite of having different layers of social interaction is an important question. I argue that the evolution of both (political) hierarchy and social identity play a crucial role in scaling up and bonding social networks. Together they are missing links in the social brain hypothesis, and further research is needed to understand the functions of leadership and social identity. ©2011 The British Psychological Society.

  10. Supporting large scale applications on networks of workstations

    NASA Technical Reports Server (NTRS)

    Cooper, Robert; Birman, Kenneth P.

    1989-01-01

    Distributed applications on networks of workstations are an increasingly common way to satisfy computing needs. However, existing mechanisms for distributed programming exhibit poor performance and reliability as application size increases. Extension of the ISIS distributed programming system to support large scale distributed applications by providing hierarchical process groups is discussed. Incorporation of hierarchy in the program structure and exploitation of this to limit the communication and storage required in any one component of the distributed system is examined.

  11. Neuroanatomical Markers of Social Hierarchy Recognition in Humans: A Combined ERP/MRI Study.

    PubMed

    Santamaría-García, Hernando; Burgaleta, Miguel; Sebastián-Gallés, Nuria

    2015-07-29

    Social hierarchy is an ubiquitous principle of social organization across animal species. Although some progress has been made in our understanding of how humans infer hierarchical identity, the neuroanatomical basis for perceiving key social dimensions of others remains unexplored. Here, we combined event-related potentials and structural MRI to reveal the neuroanatomical substrates of early status recognition. We designed a covertly simulated hierarchical setting in which participants performed a task either with a superior or with an inferior player. Participants showed higher amplitude in the N170 component when presented with a picture of a superior player compared with an inferior player. Crucially, the magnitude of this effect correlated with brain morphology of the posterior cingulate cortex, superior temporal gyrus, insula, fusiform gyrus, and caudate nucleus. We conclude that early recognition of social hierarchies relies on the structural properties of a network involved in the automatic recognition of social identity. Humans can perceive social hierarchies very rapidly, an ability that is key for social interactions. However, some individuals are more sensitive to hierarchical information than others. Currently, it is unknown how brain structure supports such fast-paced processes of social hierarchy perception and their individual differences. Here, we addressed this issue for the first time by combining the high temporal resolution of event-related potentials (ERPs) and the high spatial resolution of structural MRI. This methodological approach allowed us to unveil a novel association between ERP neuromarkers of social hierarchy perception and the morphology of several cortical and subcortical brain regions typically assumed to play a role in automatic processes of social cognition. Our results are a step forward in our understanding of the human social brain. Copyright © 2015 the authors 0270-6474/15/3510843-08$15.00/0.

  12. Dynamic Bayesian Networks for Student Modeling

    ERIC Educational Resources Information Center

    Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus

    2017-01-01

    Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…

  13. Adolescent Social Structure and the Spread of Linguistic Change.

    ERIC Educational Resources Information Center

    Eckert, Penelope

    1988-01-01

    Detailed study of Detroit-area adolescents provides explanations for the spread of sound change outward from urban areas and upward through the socioeconomic hierarchy. Social network structure, orientation to the urban area, and phonology are contrasted for the two adolescent social categories, "Jocks" (middle class) and…

  14. Relations between Spatial Distribution, Social Affiliations and Dominance Hierarchy in a Semi-Free Mandrill Population

    PubMed Central

    Naud, Alexandre; Chailleux, Eloise; Kestens, Yan; Bret, Céline; Desjardins, Dominic; Petit, Odile; Ngoubangoye, Barthélémy; Sueur, Cédric

    2016-01-01

    Although there exist advantages to group-living in comparison to a solitary lifestyle, costs and gains of group-living may be unequally distributed among group members. Predation risk, vigilance levels and food intake may be unevenly distributed across group spatial geometry and certain within-group spatial positions may be more or less advantageous depending on the spatial distribution of these factors. In species characterized with dominance hierarchy, high-ranking individuals are commonly observed in advantageous spatial position. However, in complex social systems, individuals can develop affiliative relationships that may balance the effect of dominance relationships in individual's spatial distribution. The objective of the present study is to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills relates to its social organization. Using spatial observations in an area surrounding the feeding zone, we tested the three following hypothesis: (1) does dominance hierarchy explain being observed in proximity or far from a food patch? (2) Do affiliative associations also explain being observed in proximity or far from a food patch? (3) Do the differences in rank in the group hierarchy explain being co-observed in proximity of a food patch? Our results showed that high-ranking individuals were more observed in proximity of the feeding zone while low-ranking individuals were more observed at the boundaries of the observation area. Furthermore, we observed that affiliative relationships were also associated with individual spatial distributions and explain more of the total variance of the spatial distribution in comparison with dominance hierarchy. Finally, we found that individuals observed at a same moment in proximity of the feeding zone were more likely to be distant in the hierarchy while controlling for maternal kinship, age and sex similarity. This study brings some elements about how affiliative networks and dominance hierarchy are related to spatial positions in primates. PMID:27199845

  15. Relations between Spatial Distribution, Social Affiliations and Dominance Hierarchy in a Semi-Free Mandrill Population.

    PubMed

    Naud, Alexandre; Chailleux, Eloise; Kestens, Yan; Bret, Céline; Desjardins, Dominic; Petit, Odile; Ngoubangoye, Barthélémy; Sueur, Cédric

    2016-01-01

    Although there exist advantages to group-living in comparison to a solitary lifestyle, costs and gains of group-living may be unequally distributed among group members. Predation risk, vigilance levels and food intake may be unevenly distributed across group spatial geometry and certain within-group spatial positions may be more or less advantageous depending on the spatial distribution of these factors. In species characterized with dominance hierarchy, high-ranking individuals are commonly observed in advantageous spatial position. However, in complex social systems, individuals can develop affiliative relationships that may balance the effect of dominance relationships in individual's spatial distribution. The objective of the present study is to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills relates to its social organization. Using spatial observations in an area surrounding the feeding zone, we tested the three following hypothesis: (1) does dominance hierarchy explain being observed in proximity or far from a food patch? (2) Do affiliative associations also explain being observed in proximity or far from a food patch? (3) Do the differences in rank in the group hierarchy explain being co-observed in proximity of a food patch? Our results showed that high-ranking individuals were more observed in proximity of the feeding zone while low-ranking individuals were more observed at the boundaries of the observation area. Furthermore, we observed that affiliative relationships were also associated with individual spatial distributions and explain more of the total variance of the spatial distribution in comparison with dominance hierarchy. Finally, we found that individuals observed at a same moment in proximity of the feeding zone were more likely to be distant in the hierarchy while controlling for maternal kinship, age and sex similarity. This study brings some elements about how affiliative networks and dominance hierarchy are related to spatial positions in primates.

  16. Cost-effective TCM-based WDM-PON for highly asymmetric traffic conditions.

    PubMed

    Lee, Danbi; Kwon, Won-Bae; Chae, Chang-Joon; Park, Chang-Soo

    2015-11-16

    A time compression multiplexing (TCM)-based wavelength division multiplexing passive optical network (WDM-PON) using a reflective semiconductor optical amplifier (RSOA) is proposed, and its feasibility is experimentally demonstrated. In the proposed system, the RSOA pre-amplifies a 10 Gb/s downstream signal and modulates the RSOA output, wavelength-locked to the downstream signal, with a 1.25 Gb/s upstream signal simultaneously. The sensitivity of the downstream signal is improved by about 3 dB through the RSOA. The downstream and upstream signals have power penalties of about 0.1 dB and 1.1 dB, respectively, at bit error rates (BERs) of 10(-9) after 20 km transmission.

  17. Optical communication beyond orbital angular momentum

    PubMed Central

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks. PMID:27283799

  18. Innovative architecture of switching device for expanding the applications in fiber to the home (FTTH)

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed; Fayed, Heba A.; Aly, Moustafa H.; Aboul Seoud, A. K.

    2011-08-01

    A new device, optical cross add drop multiplexer (OXADM), is proposed and analyzed. It uses the combination concept of optical add drop multiplexer (OADM) and optical cross connect (OXC). It enables a wavelength switch while implementing add and drop functions simultaneously. So, it expands the applications in fiber to the home (FTTH) and optical core networks. A very high isolation crosstalk level (~ 60 dB) is achieved. Also, a bidirectional OXADM and N×N OXADM are proposed. Finally, a multistage OXADM is presented making some sort of wavelength buffering. To make these devices operate more efficient, tunable fiber Bragg gratings (TFBGs) switches are used to control the operation mechanism.

  19. Continuous-variable quantum key distribution with 1 Mbps secure key rate.

    PubMed

    Huang, Duan; Lin, Dakai; Wang, Chao; Liu, Weiqi; Fang, Shuanghong; Peng, Jinye; Huang, Peng; Zeng, Guihua

    2015-06-29

    We report the first continuous-variable quantum key distribution (CVQKD) experiment to enable the creation of 1 Mbps secure key rate over 25 km standard telecom fiber in a coarse wavelength division multiplexers (CWDM) environment. The result is achieved with two major technological advances: the use of a 1 GHz shot-noise-limited homodyne detector and the implementation of a 50 MHz clock system. The excess noise due to noise photons from local oscillator and classical data channels in CWDM is controlled effectively. We note that the experimental verification of high-bit-rate CVQKD in the multiplexing environment is a significant step closer toward large-scale deployment in fiber networks.

  20. Microfluidic platform for neurotransmitter sensing based on cyclic voltammetry and dielectrophoresis for in vitro experiments.

    PubMed

    Mathault, Jessy; Zamprogno, Pauline; Greener, Jesse; Miled, Amine

    2015-08-01

    This paper presents a new microfluidic platform that can simultaneously measure and locally modulate neurotransmitter concentration in a neuron network. This work focuses on the development of a first prototype including a potentiostat and electrode functionalization to detect several neurotransmitter's simultaneously. We tested dopamine as proof of concept to validate functionality. The system is based on 320 bidirectional electrode array for dielectrophoretic manipulation and cyclic voltammetry. Each electrode is connected to a mechanical multiplexer in order to reduce noise interference and fully isolate the electrode. The multiplexing rate is 476 kHz and each electrode can drive a signal with an amplitude of 60 V pp for dielectrophoretic manipulation.

Top