Sample records for network patterns supporting

  1. Interaction Patterns of Nurturant Support Exchanged in Online Health Social Networking

    PubMed Central

    Yang, Christopher C

    2012-01-01

    Background Expressing emotion in online support communities is an important aspect of enabling e-patients to connect with each other and expand their social resources. Indirectly it increases the amount of support for coping with health issues. Exploring the supportive interaction patterns in online health social networking would help us better understand how technology features impacts user behavior in this context. Objective To build on previous research that identified different types of social support in online support communities by delving into patterns of supportive behavior across multiple computer-mediated communication formats. Each format combines different architectural elements, affecting the resulting social spaces. Our research question compared communication across different formats of text-based computer-mediated communication provided on the MedHelp.org health social networking environment. Methods We identified messages with nurturant support (emotional, esteem, and network) across three different computer-mediated communication formats (forums, journals, and notes) of an online support community for alcoholism using content analysis. Our sample consisted of 493 forum messages, 423 journal messages, and 1180 notes. Results Nurturant support types occurred frequently among messages offering support (forum comments: 276/412 messages, 67.0%; journal posts: 65/88 messages, 74%; journal comments: 275/335 messages, 82.1%; and notes: 1002/1180 messages, 84.92%), but less often among messages requesting support. Of all the nurturing supports, emotional (ie, encouragement) appeared most frequently, with network and esteem support appearing in patterns of varying combinations. Members of the Alcoholism Community appeared to adapt some traditional face-to-face forms of support to their needs in becoming sober, such as provision of encouragement, understanding, and empathy to one another. Conclusions The computer-mediated communication format may have the greatest influence on the supportive interactions because of characteristics such as audience reach and access. Other factors include perception of community versus personal space or purpose of communication. These results lead to a need for further research. PMID:22555303

  2. Interaction patterns of nurturant support exchanged in online health social networking.

    PubMed

    Chuang, Katherine Y; Yang, Christopher C

    2012-05-03

    Expressing emotion in online support communities is an important aspect of enabling e-patients to connect with each other and expand their social resources. Indirectly it increases the amount of support for coping with health issues. Exploring the supportive interaction patterns in online health social networking would help us better understand how technology features impacts user behavior in this context. To build on previous research that identified different types of social support in online support communities by delving into patterns of supportive behavior across multiple computer-mediated communication formats. Each format combines different architectural elements, affecting the resulting social spaces. Our research question compared communication across different formats of text-based computer-mediated communication provided on the MedHelp.org health social networking environment. We identified messages with nurturant support (emotional, esteem, and network) across three different computer-mediated communication formats (forums, journals, and notes) of an online support community for alcoholism using content analysis. Our sample consisted of 493 forum messages, 423 journal messages, and 1180 notes. Nurturant support types occurred frequently among messages offering support (forum comments: 276/412 messages, 67.0%; journal posts: 65/88 messages, 74%; journal comments: 275/335 messages, 82.1%; and notes: 1002/1180 messages, 84.92%), but less often among messages requesting support. Of all the nurturing supports, emotional (ie, encouragement) appeared most frequently, with network and esteem support appearing in patterns of varying combinations. Members of the Alcoholism Community appeared to adapt some traditional face-to-face forms of support to their needs in becoming sober, such as provision of encouragement, understanding, and empathy to one another. The computer-mediated communication format may have the greatest influence on the supportive interactions because of characteristics such as audience reach and access. Other factors include perception of community versus personal space or purpose of communication. These results lead to a need for further research.

  3. Communication performance analysis and comparison of two patterns for data exchange between nodes in WorldFIP fieldbus network.

    PubMed

    Liang, Geng; Wang, Hong; Li, Wen; Li, Dazhong

    2010-10-01

    Data exchange patterns between nodes in WorldFIP fieldbus network are quite important and meaningful in improving the communication performance of WorldFIP network. Based on the basic communication ways supported in WorldFIP protocol, we propose two patterns for implementation of data exchange between peer nodes over WorldFIP network. Effects on communication performance of WorldFIP network in terms of some network parameters, such as number of bytes in user's data and turn-around time, in both the proposed patterns, are analyzed at length when different network speeds are applied. Such effects with the patterns of periodic message transmission using acknowledged and non-acknowledged messages, are also studied. Communication performance in both the proposed patterns are analyzed and compared. Practical applications of the research are presented. Through the study, it can be seen that different data exchange patterns make a great difference in improving communication efficiency with different network parameters, which is quite useful and helpful in the practical design of distributed systems based on WorldFIP network. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Patterns of Social Support in the Middle Childhood to Early Adolescent Transition: Implications for Adjustment

    ERIC Educational Resources Information Center

    Levitt, Mary J.; Levitt, Jerome; Bustos, Gaston L.; Crooks, Noel A.; Santos, Jennifer D.; Telan, Paige; Hodgetts, Jennifer; Milevsky, Avidan

    2005-01-01

    Children's social networks often include close family members, extended family members, and friends, but little is known about interindividual differences in the patterning of support from these sources. In this study, we used person-oriented analyses to differentiate patterns of support for children undergoing the transition to adolescence.…

  5. Power Terminal Communication Access Network Monitoring System Scheme Based on Design Patterns

    NASA Astrophysics Data System (ADS)

    Yan, Shengchao; Wu, Desheng; Zhu, Jiang

    2018-01-01

    In order to realize patterns design for terminal communication monitoring system, this paper introduces manager-workers, tasks-workers design patterns, based on common design patterns such as factory method, chain of responsibility, facade. Using these patterns, the communication monitoring system which combines module-groups like networking communication, business data processing and the peripheral support has been designed successfully. Using these patterns makes this system have great flexibility and scalability and improves the degree of systematic pattern design structure.

  6. Structural and Supportive Changes in Couples' Family and Friendship Networks across the Transition to Parenthood.

    ERIC Educational Resources Information Center

    Bost, Kelly K.; Cox, Martha J.; Burchinal, Margaret R.; Payne, Chris

    2002-01-01

    Examines patterns of change in family and friend network with parenthood in 137 couples surveyed before the birth of their first child. Husbands and wives who reported larger network sizes and support prior to their first child's birth were more likely to report larger networks after birth. Changes in parents' social systems were related to…

  7. Supporting Teachers in Designing CSCL Activities: A Case Study of Principle-Based Pedagogical Patterns in Networked Second Language Classrooms

    ERIC Educational Resources Information Center

    Wen, Yun; Looi, Chee-Kit; Chen, Wenli

    2012-01-01

    This paper proposes the identification and use of principle-based pedagogical patterns to help teachers to translate design principles into actionable teaching activities, and to scaffold student learning with sufficient flexibility and creativity. A set of pedagogical patterns for networked Second language (L2) learning, categorized and…

  8. Investigating Patterns of Interaction in Networked Learning and Computer-Supported Collaborative Learning: A Role for Social Network Analysis

    ERIC Educational Resources Information Center

    de Laat, Maarten; Lally, Vic; Lipponen, Lasse; Simons, Robert-Jan

    2007-01-01

    The focus of this study is to explore the advances that Social Network Analysis (SNA) can bring, in combination with other methods, when studying Networked Learning/Computer-Supported Collaborative Learning (NL/CSCL). We present a general overview of how SNA is applied in NL/CSCL research; we then go on to illustrate how this research method can…

  9. Mapping Engagement in Twitter-Based Support Networks for Adult Smoking Cessation

    PubMed Central

    Pechmann, Cornelia; Wang, Cheng; Pan, Li; Delucchi, Kevin; Prochaska, Judith J.

    2016-01-01

    We examined engagement in novel quit-smoking private social support networks on Twitter, January 2012 to April 2014. We mapped communication patterns within 8 networks of adult smokers (n = 160) with network ties defined by participants’ tweets over 3 time intervals, and examined tie reciprocity, tie strength, in-degree centrality (popularity), 3-person triangles, 4-person cliques, network density, and abstinence status. On average, more than 50% of ties were reciprocated in most networks and most ties were between abstainers and nonabstainers. Tweets formed into more aggregated patterns especially early in the study. Across networks, 35.00% (7 days after the quit date), 49.38% (30 days), and 46.88% (60 days) abstained from smoking. We demonstrated that abstainers and nonabstainers engaged with one another in dyads and small groups. This study preliminarily suggests potential for Twitter as a platform for adult smoking-cessation interventions. PMID:27310342

  10. Visual analysis and exploration of complex corporate shareholder networks

    NASA Astrophysics Data System (ADS)

    Tekušová, Tatiana; Kohlhammer, Jörn

    2008-01-01

    The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.

  11. Mapping Engagement in Twitter-Based Support Networks for Adult Smoking Cessation.

    PubMed

    Lakon, Cynthia M; Pechmann, Cornelia; Wang, Cheng; Pan, Li; Delucchi, Kevin; Prochaska, Judith J

    2016-08-01

    We examined engagement in novel quit-smoking private social support networks on Twitter, January 2012 to April 2014. We mapped communication patterns within 8 networks of adult smokers (n = 160) with network ties defined by participants' tweets over 3 time intervals, and examined tie reciprocity, tie strength, in-degree centrality (popularity), 3-person triangles, 4-person cliques, network density, and abstinence status. On average, more than 50% of ties were reciprocated in most networks and most ties were between abstainers and nonabstainers. Tweets formed into more aggregated patterns especially early in the study. Across networks, 35.00% (7 days after the quit date), 49.38% (30 days), and 46.88% (60 days) abstained from smoking. We demonstrated that abstainers and nonabstainers engaged with one another in dyads and small groups. This study preliminarily suggests potential for Twitter as a platform for adult smoking-cessation interventions.

  12. Investigating Patterns of Participation in an Online Support Group for Problem Drinking: a Social Network Analysis.

    PubMed

    Urbanoski, Karen; van Mierlo, Trevor; Cunningham, John

    2017-10-01

    This study contributes to emerging literature on online health networks by modeling communication patterns between members of a moderated online support group for problem drinking. Using social network analysis, we described members' patterns of joint participation in threads, parsing out the role of site moderators, and explored differences in member characteristics by network position. Posts made to the online support group of Alcohol Help Centre during 2013 were structured as a two-mode network of members (n = 205) connected via threads (n = 506). Metrics included degree centrality, clique membership, and tie strength. The network consisted of one component and no cliques of members, although most made few posts and a small number communicated only with the site's moderators. Highly active members were older and tended to have started posting prior to 2013. The distribution of members across threads varied from threads containing posts by one member to others that connected multiple members. Moderators accounted for sizable proportions of the connectivity between both members and threads. After 5 years of operation, the AHC online support group appears to be fairly cohesive and stable, in the sense that there were no isolated subnetworks comprised of specific types of members or devoted to specific topics. Participation and connectedness at the member-level was varied, however, and tended to be low on average. The moderators were among the most central in the network, although there were also members who emerged as central and dedicated contributors to the online discussions across topics. Study findings highlight a number of areas for consideration by online support group developers and managers.

  13. Reciprocal Family, Friendship and Church Support Networks of African Americans: Findings from the National Survey of American Life.

    PubMed

    Taylor, Robert Joseph; Mouzon, Dawne M; Nguyen, Ann W; Chatters, Linda M

    2016-12-01

    This study examined reciprocal support networks involving extended family, friends and church members among African Americans. Our analysis examined specific patterns of reciprocal support (i.e., received only, gave only, both gave and received, neither gave or received), as well as network characteristics (i.e., contact and subjective closeness) as correlates of reciprocal support. The analysis is based on the African American sub-sample of the National Survey of American Life (NSAL). Overall, our findings indicate that African Americans are very involved in reciprocal support networks with their extended family, friends and church members. Respondents were most extensively involved in reciprocal supports with extended family members, followed closely by friends and church networks. Network characteristics (i.e., contact and subjective closeness) were significantly and consistently associated with involvement with reciprocal support exchanges for all three networks. These and other findings are discussed in detail. This study complements previous work on the complementary roles of family, friend and congregational support networks, as well as studies of racial differences in informal support networks.

  14. A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.

    PubMed

    Savage, Natasha Saint; Walker, Tom; Wieckowski, Yana; Schiefelbein, John; Dolan, Liam; Monk, Nicholas A M

    2008-09-23

    The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.

  15. A Mutual Support Mechanism through Intercellular Movement of CAPRICE and GLABRA3 Can Pattern the Arabidopsis Root Epidermis

    PubMed Central

    Savage, Natasha Saint; Walker, Tom; Wieckowski, Yana; Schiefelbein, John; Dolan, Liam; Monk, Nicholas A. M

    2008-01-01

    The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition. PMID:18816165

  16. TreeNetViz: revealing patterns of networks over tree structures.

    PubMed

    Gou, Liang; Zhang, Xiaolong Luke

    2011-12-01

    Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE

  17. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Venkat; Sadlier, Ronald J; Geerhart, Mr. Billy

    Well-defined and stable quantum networks are essential to realize functional quantum applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. We develop new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  18. Automation of Some Operations of a Wind Tunnel Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Buggele, Alvin E.

    1996-01-01

    Artificial neural networks were used successfully to sequence operations in a small, recently modernized, supersonic wind tunnel at NASA-Lewis Research Center. The neural nets generated correct estimates of shadowgraph patterns, pressure sensor readings and mach numbers for conditions occurring shortly after startup and extending to fully developed flow. Artificial neural networks were trained and tested for estimating: sensor readings from shadowgraph patterns, shadowgraph patterns from shadowgraph patterns and sensor readings from sensor readings. The 3.81 by 10 in. (0.0968 by 0.254 m) tunnel was operated with its mach 2.0 nozzle, and shadowgraph was recorded near the nozzle exit. These results support the thesis that artificial neural networks can be combined with current workstation technology to automate wind tunnel operations.

  19. From Social Integration to Social Isolation: The Relationship Between Social Network Types and Perceived Availability of Social Support in a National Sample of Older Canadians.

    PubMed

    Harasemiw, Oksana; Newall, Nancy; Shooshtari, Shahin; Mackenzie, Corey; Menec, Verena

    2017-01-01

    It is well-documented that social isolation is detrimental to health and well-being. What is less clear is what types of social networks allow older adults to get the social support they need to promote health and well-being. In this study, we identified social network types in a national sample of older Canadians and explored whether they are associated with perceived availability of different types of social support (affectionate, emotional, or tangible, and positive social interactions). Data were drawn from the baseline questionnaire of the Canadian Longitudinal Study on Aging for participants aged 65-85 (unweighted n = 8,782). Cluster analyses revealed six social network groups. Social support generally declined as social networks became more restricted; however, different patterns of social support availability emerged for different social network groups. These findings suggest that certain types of social networks place older adults at risk of not having met specific social support needs.

  20. Modularity Induced Gating and Delays in Neuronal Networks

    PubMed Central

    Shein-Idelson, Mark; Cohen, Gilad; Hanein, Yael

    2016-01-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350

  1. Scaling of global input-output networks

    NASA Astrophysics Data System (ADS)

    Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming

    2016-06-01

    Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.

  2. Network-Level Structure-Function Relationships in Human Neocortex

    PubMed Central

    Mišić, Bratislav; Betzel, Richard F.; de Reus, Marcel A.; van den Heuvel, Martijn P.; Berman, Marc G.; McIntosh, Anthony R.; Sporns, Olaf

    2016-01-01

    The dynamics of spontaneous fluctuations in neural activity are shaped by underlying patterns of anatomical connectivity. While numerous studies have demonstrated edge-wise correspondence between structural and functional connections, much less is known about how large-scale coherent functional network patterns emerge from the topology of structural networks. In the present study, we deploy a multivariate statistical technique, partial least squares, to investigate the association between spatially extended structural networks and functional networks. We find multiple statistically robust patterns, reflecting reliable combinations of structural and functional subnetworks that are optimally associated with one another. Importantly, these patterns generally do not show a one-to-one correspondence between structural and functional edges, but are instead distributed and heterogeneous, with many functional relationships arising from nonoverlapping sets of anatomical connections. We also find that structural connections between high-degree hubs are disproportionately represented, suggesting that these connections are particularly important in establishing coherent functional networks. Altogether, these results demonstrate that the network organization of the cerebral cortex supports the emergence of diverse functional network configurations that often diverge from the underlying anatomical substrate. PMID:27102654

  3. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    NASA Astrophysics Data System (ADS)

    Dasari, Venkat R.; Sadlier, Ronald J.; Geerhart, Billy E.; Snow, Nikolai A.; Williams, Brian P.; Humble, Travis S.

    2017-05-01

    Well-defined and stable quantum networks are essential to realize functional quantum communication applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. In this paper, we describe new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  4. Using Social Networking Environments to Support Collaborative Learning in a Chinese University Class: Interaction Pattern and Influencing Factors

    ERIC Educational Resources Information Center

    Lu, Jie; Churchill, Daniel

    2014-01-01

    This paper reports a study that investigated the social interaction pattern of collaborative learning and the factors affecting the effectiveness of collaborative learning in a social networking environment (SNE). A class of 55 undergraduate students enrolled in an elective course at a Chinese university was recruited for the study. The…

  5. Educational Design and Networked Learning: Patterns, Pattern Languages and Design Practice

    ERIC Educational Resources Information Center

    Goodyear, Peter

    2005-01-01

    There is a growing demand for advice about effective, time efficient ways of using ICT to support student learning in higher education. This paper uses one such area of activity--networked learning--as a context in which to outline a novel approach to educational design. The paper makes two main contributions. It provides a high level view of the…

  6. Social Embeddedness and Late-Life Parenthood: Community Activity, Close Ties, and Support Networks

    ERIC Educational Resources Information Center

    Wenger, G. Clare; Dykstra, Pearl A.; Melkas, Tuula; Knipscheer, Kees C. P. M.

    2007-01-01

    This article focuses on the ways in which patterns of marriage and fertility shape older people's involvement in community groups and their support networks. The data are from Australia, Finland, Germany, Israel, Japan, the Netherlands, Spain, the United Kingdom, and the United States. Findings show that childless older adults, regardless of…

  7. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  8. Different patterns of social support perceived and their association with physical (hypertension, diabetes) or mental diseases in the context of primary health care.

    PubMed

    Aragão, Ellen Ingrid Souza; Portugal, Flávia Batista; Campos, Mônica Rodrigues; Lopes, Claudia de Souza; Fortes, Sandra Lúcia Correia Lima

    2017-07-01

    This work discusses the relationship between hypertension, diabetes, anxiety, depression, and social support in primary health care. This research aimed to identify the association between physical disease, mental disease, support network and perceived social support in the research sample. This is a cross-sectional study inserted in a larger research project funded by the Pan American Health Organization and carried out in 2002 in Petrópolis, RJ. The sample consisted of 714 patients with ages ranging from 18 to 65 years old. Results showed association between variables from support network either with evidence of hypertension or diabetes, or with the existence of common mental disorders, but with different patterns. Associations with the perceived support were positive in patients with hypertension and diabetes; Common Mental Disorder patients showed negative associations, inversely associated to the level of mental disease.

  9. Understanding the Relationship Between PTSD and Social Support: The Role of Negative Network Orientation

    PubMed Central

    Clapp, Joshua D.; Beck, J. Gayle

    2009-01-01

    Network orientation is conceptualized as an individual’s attitudes and expectations regarding the usefulness of support networks in coping with stress. The present research examined the potential for network orientation to explicate the well documented association between posttraumatic stress disorder (PTSD) and attenuated social support. Data collected from survivors of serious motor vehicle trauma (N = 458) were used to test the hypothesis that severity of PTSD would hold a significant indirect relationship with social support through negative network orientation. Childhood victimization and elapsed time from the accident were examined as potential moderators of this indirect relationship. Consistent with hypotheses, path analyses demonstrated a significant indirect relationship between PTSD and social support through negative network orientation. Specifically, this indirect effect was the result of a direct association between PTSD severity and negative network orientation and an inverse association between negative network orientation and social support. This pattern of relationships was invariant across mode of PTSD assessment (interview vs. self-report). No moderation effects were noted. These data suggest that network orientation may be an important factor in understanding interface of interpersonal processes and posttrauma pathology. PMID:19162260

  10. Peeking Network States with Clustered Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinoh; Sim, Alex

    2015-10-20

    Network traffic monitoring has long been a core element for effec- tive network management and security. However, it is still a chal- lenging task with a high degree of complexity for comprehensive analysis when considering multiple variables and ever-increasing traffic volumes to monitor. For example, one of the widely con- sidered approaches is to scrutinize probabilistic distributions, but it poses a scalability concern and multivariate analysis is not gen- erally supported due to the exponential increase of the complexity. In this work, we propose a novel method for network traffic moni- toring based on clustering, one of the powerful deep-learningmore » tech- niques. We show that the new approach enables us to recognize clustered results as patterns representing the network states, which can then be utilized to evaluate “similarity” of network states over time. In addition, we define a new quantitative measure for the similarity between two compared network states observed in dif- ferent time windows, as a supportive means for intuitive analysis. Finally, we demonstrate the clustering-based network monitoring with public traffic traces, and show that the proposed approach us- ing the clustering method has a great opportunity for feasible, cost- effective network monitoring.« less

  11. Patterns of victimization between and within peer clusters in a high school social network.

    PubMed

    Swartz, Kristin; Reyns, Bradford W; Wilcox, Pamela; Dunham, Jessica R

    2012-01-01

    This study presents a descriptive analysis of patterns of violent victimization between and within the various cohesive clusters of peers comprising a sample of more than 500 9th-12th grade students from one high school. Social network analysis techniques provide a visualization of the overall friendship network structure and allow for the examination of variation in victimization across the various peer clusters within the larger network. Social relationships among clusters with varying levels of victimization are also illustrated so as to provide a sense of possible spatial clustering or diffusion of victimization across proximal peer clusters. Additionally, to provide a sense of the sorts of peer clusters that support (or do not support) victimization, characteristics of clusters at both the high and low ends of the victimization scale are discussed. Finally, several of the peer clusters at both the high and low ends of the victimization continuum are "unpacked", allowing examination of within-network individual-level differences in victimization for these select clusters.

  12. Identification of Resting State Networks Involved in Executive Function.

    PubMed

    Connolly, Joanna; McNulty, Jonathan P; Boran, Lorraine; Roche, Richard A P; Delany, David; Bokde, Arun L W

    2016-06-01

    The structural networks in the human brain are consistent across subjects, and this is reflected also in that functional networks across subjects are relatively consistent. These findings are not only present during performance of a goal oriented task but there are also consistent functional networks during resting state. It suggests that goal oriented activation patterns may be a function of component networks identified using resting state. The current study examines the relationship between resting state networks measured and patterns of neural activation elicited during a Stroop task. The association between the Stroop-activated networks and the resting state networks was quantified using spatial linear regression. In addition, we investigated if the degree of spatial association of resting state networks with the Stroop task may predict performance on the Stroop task. The results of this investigation demonstrated that the Stroop activated network can be decomposed into a number of resting state networks, which were primarily associated with attention, executive function, visual perception, and the default mode network. The close spatial correspondence between the functional organization of the resting brain and task-evoked patterns supports the relevance of resting state networks in cognitive function.

  13. Investigating univariate temporal patterns for intrinsic connectivity networks based on complexity and low-frequency oscillation: a test-retest reliability study.

    PubMed

    Wang, X; Jiao, Y; Tang, T; Wang, H; Lu, Z

    2013-12-19

    Intrinsic connectivity networks (ICNs) are composed of spatial components and time courses. The spatial components of ICNs were discovered with moderate-to-high reliability. So far as we know, few studies focused on the reliability of the temporal patterns for ICNs based their individual time courses. The goals of this study were twofold: to investigate the test-retest reliability of temporal patterns for ICNs, and to analyze these informative univariate metrics. Additionally, a correlation analysis was performed to enhance interpretability. Our study included three datasets: (a) short- and long-term scans, (b) multi-band echo-planar imaging (mEPI), and (c) eyes open or closed. Using dual regression, we obtained the time courses of ICNs for each subject. To produce temporal patterns for ICNs, we applied two categories of univariate metrics: network-wise complexity and network-wise low-frequency oscillation. Furthermore, we validated the test-retest reliability for each metric. The network-wise temporal patterns for most ICNs (especially for default mode network, DMN) exhibited moderate-to-high reliability and reproducibility under different scan conditions. Network-wise complexity for DMN exhibited fair reliability (ICC<0.5) based on eyes-closed sessions. Specially, our results supported that mEPI could be a useful method with high reliability and reproducibility. In addition, these temporal patterns were with physiological meanings, and certain temporal patterns were correlated to the node strength of the corresponding ICN. Overall, network-wise temporal patterns of ICNs were reliable and informative and could be complementary to spatial patterns of ICNs for further study. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Spike frequency adaptation is a possible mechanism for control of attractor preference in auto-associative neural networks

    NASA Astrophysics Data System (ADS)

    Roach, James; Sander, Leonard; Zochowski, Michal

    Auto-associative memory is the ability to retrieve a pattern from a small fraction of the pattern and is an important function of neural networks. Within this context, memories that are stored within the synaptic strengths of networks act as dynamical attractors for network firing patterns. In networks with many encoded memories, some attractors will be stronger than others. This presents the problem of how networks switch between attractors depending on the situation. We suggest that regulation of neuronal spike-frequency adaptation (SFA) provides a universal mechanism for network-wide attractor selectivity. Here we demonstrate in a Hopfield type attractor network that neurons minimal SFA will reliably activate in the pattern corresponding to a local attractor and that a moderate increase in SFA leads to the network to converge to the strongest attractor state. Furthermore, we show that on long time scales SFA allows for temporal sequences of activation to emerge. Finally, using a model of cholinergic modulation within the cortex we argue that dynamic regulation of attractor preference by SFA could be critical for the role of acetylcholine in attention or for arousal states in general. This work was supported by: NSF Graduate Research Fellowship Program under Grant No. DGE 1256260 (JPR), NSF CMMI 1029388 (MRZ) and NSF PoLS 1058034 (MRZ & LMS).

  15. Curriculum Assessment Using Artificial Neural Network and Support Vector Machine Modeling Approaches: A Case Study. IR Applications. Volume 29

    ERIC Educational Resources Information Center

    Chen, Chau-Kuang

    2010-01-01

    Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…

  16. Dynamic Neural Networks Supporting Memory Retrieval

    PubMed Central

    St. Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.

    2011-01-01

    How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) Medial Prefrontal Cortex (PFC) Network, associated with self-referential processes, 2) Medial Temporal Lobe (MTL) Network, associated with memory, 3) Frontoparietal Network, associated with strategic search, and 4) Cingulooperculum Network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior. PMID:21550407

  17. Childhood adversity, social support networks and well-being among youth aging out of care: An exploratory study of mediation.

    PubMed

    Melkman, Eran P

    2017-10-01

    The goals of the present study are to examine the relationship between childhood adversity and adult well-being among vulnerable young adults formerly placed in substitute care, and to investigate how characteristics of their social support networks mediate this association. A sample of 345 Israeli young adults (ages 18-25), who had aged out of foster or residential care, responded to standardized self-report questionnaires tapping their social support network characteristics (e.g., network size or adequacy) vis-à-vis several types of social support (emotional, practical, information and guidance), experiences of childhood adversity, and measures of well-being (psychological distress, loneliness, and life satisfaction). Structural equation modelling (SEM) provided support for the mediating role of social support in the relationship between early adversity and adult well-being. Although network size, frequency of contact with its members, satisfaction with support, and network adequacy, were all negatively related to early adversity, only network adequacy showed a major and consistent contribution to the various measures of well-being. While patterns were similar across the types of support, the effects of practical and guidance support were most substantial. The findings suggest that the detrimental long-term consequences of early adversity on adult well-being are related not only to impaired structural aspects of support (e.g., network size), but also to a decreased ability to recognize available support and mobilize it. Practical and guidance support, more than emotional support, seem to be of critical importance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Genotet: An Interactive Web-based Visual Exploration Framework to Support Validation of Gene Regulatory Networks.

    PubMed

    Yu, Bowen; Doraiswamy, Harish; Chen, Xi; Miraldi, Emily; Arrieta-Ortiz, Mario Luis; Hafemeister, Christoph; Madar, Aviv; Bonneau, Richard; Silva, Cláudio T

    2014-12-01

    Elucidation of transcriptional regulatory networks (TRNs) is a fundamental goal in biology, and one of the most important components of TRNs are transcription factors (TFs), proteins that specifically bind to gene promoter and enhancer regions to alter target gene expression patterns. Advances in genomic technologies as well as advances in computational biology have led to multiple large regulatory network models (directed networks) each with a large corpus of supporting data and gene-annotation. There are multiple possible biological motivations for exploring large regulatory network models, including: validating TF-target gene relationships, figuring out co-regulation patterns, and exploring the coordination of cell processes in response to changes in cell state or environment. Here we focus on queries aimed at validating regulatory network models, and on coordinating visualization of primary data and directed weighted gene regulatory networks. The large size of both the network models and the primary data can make such coordinated queries cumbersome with existing tools and, in particular, inhibits the sharing of results between collaborators. In this work, we develop and demonstrate a web-based framework for coordinating visualization and exploration of expression data (RNA-seq, microarray), network models and gene-binding data (ChIP-seq). Using specialized data structures and multiple coordinated views, we design an efficient querying model to support interactive analysis of the data. Finally, we show the effectiveness of our framework through case studies for the mouse immune system (a dataset focused on a subset of key cellular functions) and a model bacteria (a small genome with high data-completeness).

  19. Systematic Assessment of the Impact of User Roles on Network Flow Patterns

    DTIC Science & Technology

    2017-09-01

    Protocol SNMP Simple Network Management Protocol SQL Structured Query Language SSH Secure Shell SYN TCP Sync Flag SVDD Support Vector Data Description SVM...and evaluating users based on roles provide the best approach for defining normal digital behaviors? People are individuals, with different interests...activities on the network. We evaluate the assumption that users sharing similar roles exhibit similar network behaviors, and contrast the level of similarity

  20. Characteristics and Impact of the Further Mathematics Knowledge Networks: Analysis of an English Professional Development Initiative on the Teaching of Advanced Mathematics

    ERIC Educational Resources Information Center

    Ruthven, Kenneth

    2014-01-01

    Reports from 13 Further Mathematics Knowledge Networks supported by the National Centre for Excellence in the Teaching of Mathematics [NCETM] are analysed. After summarizing basic characteristics of the networks regarding leadership, composition and pattern of activity, each of the following aspects is examined in greater depth: Developmental aims…

  1. Me and My 400 Friends: The Anatomy of College Students' Facebook Networks, Their Communication Patterns, and Well-Being

    ERIC Educational Resources Information Center

    Manago, Adriana M.; Taylor, Tamara; Greenfield, Patricia M.

    2012-01-01

    Is there a trade-off between having large networks of social connections on social networking sites such as Facebook and the development of intimacy and social support among today's generation of emerging adults? To understand the socialization context of Facebook during the transition to adulthood, an online survey was distributed to college…

  2. Phonology and arithmetic in the language-calculation network.

    PubMed

    Andin, Josefine; Fransson, Peter; Rönnberg, Jerker; Rudner, Mary

    2015-04-01

    Arithmetic and language processing involve similar neural networks, but the relative engagement remains unclear. In the present study we used fMRI to compare activation for phonological, multiplication and subtraction tasks, keeping the stimulus material constant, within a predefined language-calculation network including left inferior frontal gyrus and angular gyrus (AG) as well as superior parietal lobule and the intraparietal sulcus bilaterally. Results revealed a generally left lateralized activation pattern within the language-calculation network for phonology and a bilateral activation pattern for arithmetic, and suggested regional differences between tasks. In particular, we found a more prominent role for phonology than arithmetic in pars opercularis of the left inferior frontal gyrus but domain generality in pars triangularis. Parietal activation patterns demonstrated greater engagement of the visual and quantity systems for calculation than language. This set of findings supports the notion of a common, but regionally differentiated, language-calculation network. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Automating Network Node Behavior Characterization by Mining Communication Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.

    Enterprise networks of scale are complex, dynamic computing environments that respond to evolv- ing business objectives and requirements. Characteriz- ing system behaviors in these environments is essential for network management and cyber security operations. Characterization of system’s communication is typical and is supported using network flow information (NetFlow). Related work has characterized behavior using theoretical graph metrics; results are often difficult to interpret by enterprise staff. We propose a different approach, where flow information is mapped to sets of tags that contextualize the data in terms of network principals and enterprise concepts. Frequent patterns are then extracted and are expressedmore » as behaviors. Behaviors can be com- pared, identifying systems expressing similar behaviors. We evaluate the approach using flow information collected by a third party.« less

  4. Early Development of Functional Network Segregation Revealed by Connectomic Analysis of the Preterm Human Brain.

    PubMed

    Cao, Miao; He, Yong; Dai, Zhengjia; Liao, Xuhong; Jeon, Tina; Ouyang, Minhui; Chalak, Lina; Bi, Yanchao; Rollins, Nancy; Dong, Qi; Huang, Hao

    2017-03-01

    Human brain functional networks are topologically organized with nontrivial connectivity characteristics such as small-worldness and densely linked hubs to support highly segregated and integrated information processing. However, how they emerge and change at very early developmental phases remains poorly understood. Here, we used resting-state functional MRI and voxel-based graph theory analysis to systematically investigate the topological organization of whole-brain networks in 40 infants aged around 31 to 42 postmenstrual weeks. The functional connectivity strength and heterogeneity increased significantly in primary motor, somatosensory, visual, and auditory regions, but much less in high-order default-mode and executive-control regions. The hub and rich-club structures in primary regions were already present at around 31 postmenstrual weeks and exhibited remarkable expansions with age, accompanied by increased local clustering and shortest path length, indicating a transition from a relatively random to a more organized configuration. Moreover, multivariate pattern analysis using support vector regression revealed that individual brain maturity of preterm babies could be predicted by the network connectivity patterns. Collectively, we highlighted a gradually enhanced functional network segregation manner in the third trimester, which is primarily driven by the rapid increases of functional connectivity of the primary regions, providing crucial insights into the topological development patterns prior to birth. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Weak connections form an infinite number of patterns in the brain

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Bai, Chao; Baptista, Murilo S.; Grebogi, Celso

    2017-04-01

    Recently, much attention has been paid to interpreting the mechanisms for memory formation in terms of brain connectivity and dynamics. Within the plethora of collective states a complex network can exhibit, we show that the phenomenon of Collective Almost Synchronisation (CAS), which describes a state with an infinite number of patterns emerging in complex networks for weak coupling strengths, deserves special attention. We show that a simulated neuron network with neurons weakly connected does produce CAS patterns, and additionally produces an output that optimally model experimental electroencephalograph (EEG) signals. This work provides strong evidence that the brain operates locally in a CAS regime, allowing it to have an unlimited number of dynamical patterns, a state that could explain the enormous memory capacity of the brain, and that would give support to the idea that local clusters of neurons are sufficiently decorrelated to independently process information locally.

  6. Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure☆

    PubMed Central

    Frick, Andreas; Gingnell, Malin; Marquand, Andre F.; Howner, Katarina; Fischer, Håkan; Kristiansson, Marianne; Williams, Steven C.R.; Fredrikson, Mats; Furmark, Tomas

    2014-01-01

    Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have investigated the brain at the voxel level using mass-univariate methods which do not enable detection of more complex patterns of activity and structural alterations that may separate SAD from healthy individuals. Support vector machine (SVM) is a supervised machine learning method that capitalizes on brain activation and structural patterns to classify individuals. The aim of this study was to investigate if it is possible to discriminate SAD patients (n = 14) from healthy controls (n = 12) using SVM based on (1) functional magnetic resonance imaging during fearful face processing and (2) regional gray matter volume. Whole brain and region of interest (fear network) SVM analyses were performed for both modalities. For functional scans, significant classifications were obtained both at whole brain level and when restricting the analysis to the fear network while gray matter SVM analyses correctly classified participants only when using the whole brain search volume. These results support that SAD is characterized by aberrant neural activation to affective stimuli in the fear network, while disorder-related alterations in regional gray matter volume are more diffusely distributed over the whole brain. SVM may thus be useful for identifying imaging biomarkers of SAD. PMID:24239689

  7. Social interactions elicit rapid shifts in functional connectivity in the social decision-making network of zebrafish

    PubMed Central

    Teles, Magda C.; Almeida, Olinda; Lopes, João S.; Oliveira, Rui F.

    2015-01-01

    According to the social decision-making (SDM) network hypothesis, SDM is encoded in a network of forebrain and midbrain structures in a distributed and dynamic fashion, such that the expression of a given social behaviour is better reflected by the overall profile of activation across the different loci rather than by the activity of a single node. This proposal has the implicit assumption that SDM relies on integration across brain regions, rather than on regional specialization. Here we tested the occurrence of functional localization and of functional connectivity in the SDM network. For this purpose we used zebrafish to map different social behaviour states into patterns of neuronal activity, as indicated by the expression of the immediate early genes c-fos and egr-1, across the SDM network. The results did not support functional localization, as some loci had similar patterns of activity associated with different social behaviour states, and showed socially driven changes in functional connectivity. Thus, this study provides functional support to the SDM network hypothesis and suggests that the neural context in which a given node of the network is operating (i.e. the state of its interconnected areas) is central to its functional relevance. PMID:26423839

  8. Social interactions elicit rapid shifts in functional connectivity in the social decision-making network of zebrafish.

    PubMed

    Teles, Magda C; Almeida, Olinda; Lopes, João S; Oliveira, Rui F

    2015-10-07

    According to the social decision-making (SDM) network hypothesis, SDM is encoded in a network of forebrain and midbrain structures in a distributed and dynamic fashion, such that the expression of a given social behaviour is better reflected by the overall profile of activation across the different loci rather than by the activity of a single node. This proposal has the implicit assumption that SDM relies on integration across brain regions, rather than on regional specialization. Here we tested the occurrence of functional localization and of functional connectivity in the SDM network. For this purpose we used zebrafish to map different social behaviour states into patterns of neuronal activity, as indicated by the expression of the immediate early genes c-fos and egr-1, across the SDM network. The results did not support functional localization, as some loci had similar patterns of activity associated with different social behaviour states, and showed socially driven changes in functional connectivity. Thus, this study provides functional support to the SDM network hypothesis and suggests that the neural context in which a given node of the network is operating (i.e. the state of its interconnected areas) is central to its functional relevance. © 2015 The Author(s).

  9. A Tri-network Model of Human Semantic Processing

    PubMed Central

    Xu, Yangwen; He, Yong; Bi, Yanchao

    2017-01-01

    Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266

  10. Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity.

    PubMed

    Egorov, Alexei V; Draguhn, Andreas

    2013-01-01

    Many mammals are born in a very immature state and develop their rich repertoire of behavioral and cognitive functions postnatally. This development goes in parallel with changes in the anatomical and functional organization of cortical structures which are involved in most complex activities. The emerging spatiotemporal activity patterns in multi-neuronal cortical networks may indeed form a direct neuronal correlate of systemic functions like perception, sensorimotor integration, decision making or memory formation. During recent years, several studies--mostly in rodents--have shed light on the ontogenesis of such highly organized patterns of network activity. While each local network has its own peculiar properties, some general rules can be derived. We therefore review and compare data from the developing hippocampus, neocortex and--as an intermediate region--entorhinal cortex. All cortices seem to follow a characteristic sequence starting with uncorrelated activity in uncoupled single neurons where transient activity seems to have mostly trophic effects. In rodents, before and shortly after birth, cortical networks develop weakly coordinated multineuronal discharges which have been termed synchronous plateau assemblies (SPAs). While these patterns rely mostly on electrical coupling by gap junctions, the subsequent increase in number and maturation of chemical synapses leads to the generation of large-scale coherent discharges. These patterns have been termed giant depolarizing potentials (GDPs) for predominantly GABA-induced events or early network oscillations (ENOs) for mostly glutamatergic bursts, respectively. During the third to fourth postnatal week, cortical areas reach their final activity patterns with distinct network oscillations and highly specific neuronal discharge sequences which support adult behavior. While some of the mechanisms underlying maturation of network activity have been elucidated much work remains to be done in order to fully understand the rules governing transition from immature to mature patterns of network activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Social Networks, Sexual Networks and HIV Risk in Men Who Have Sex with Men

    PubMed Central

    Amirkhanian, Yuri A.

    2014-01-01

    Worldwide, men who have sex with men (MSM) remain one of the most HIV-vulnerable community populations. A global public health priority is developing new methods of reaching MSM, understanding HIV transmission patterns, and intervening to reduce their risk. Increased attention is being given to the role that MSM networks play in HIV epidemiology. This review of MSM network research studies demonstrates that: (1) Members of the same social network often share similar norms, attitudes, and HIV risk behavior levels; (2) Network interventions are feasible and powerful for reducing unprotected sex and potentially for increasing HIV testing uptake; (3) HIV vulnerability among African American MSM increases when an individual enters a high-risk sexual network characterized by high density and racial homogeneity; and (4) Networks are primary sources of social support for MSM, particularly for those living with HIV, with greater support predicting higher care uptake and adherence. PMID:24384832

  12. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    DOE PAGES

    Dart, Eli; Rotman, Lauren; Tierney, Brian; ...

    2014-01-01

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers andmore » research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less

  13. Motor modules in robot-aided walking

    PubMed Central

    2012-01-01

    Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). Results The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns. PMID:23043818

  14. Connectivity patterns in cognitive control networks predict naturalistic multitasking ability.

    PubMed

    Wen, Tanya; Liu, De-Cyuan; Hsieh, Shulan

    2018-06-01

    Multitasking is a fundamental aspect of everyday life activities. To achieve a complex, multi-component goal, the tasks must be subdivided into sub-tasks and component steps, a critical function of prefrontal networks. The prefrontal cortex is considered to be organized in a cascade of executive processes from the sensorimotor to anterior prefrontal cortex, which includes execution of specific goal-directed action, to encoding and maintaining task rules, and finally monitoring distal goals. In the current study, we used a virtual multitasking paradigm to tap into real-world performance and relate it to each individual's resting-state functional connectivity in fMRI. While did not find any correlation between global connectivity of any of the major networks with multitasking ability, global connectivity of the lateral prefrontal cortex (LPFC) was predictive of multitasking ability. Further analysis showed that multivariate connectivity patterns within the sensorimotor network (SMN), and between-network connectivity of the frontoparietal network (FPN) and dorsal attention network (DAN), predicted individual multitasking ability and could be generalized to novel individuals. Together, these results support previous research that prefrontal networks underlie multitasking abilities and show that connectivity patterns in the cascade of prefrontal networks may explain individual differences in performance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics

    PubMed Central

    Rimbach, Rebecca; Bisanzio, Donal; Galvis, Nelson; Link, Andrés; Di Fiore, Anthony; Gillespie, Thomas R.

    2015-01-01

    Elevated risk of disease transmission is considered a major cost of sociality, although empirical evidence supporting this idea remains scant. Variation in spatial cohesion and the occurrence of social interactions may have profound implications for patterns of interindividual parasite transmission. We used a social network approach to shed light on the importance of different aspects of group-living (i.e. within-group associations versus physical contact) on patterns of parasitism in a neotropical primate, the brown spider monkey (Ateles hybridus), which exhibits a high degree of fission–fusion subgrouping. We used daily subgroup composition records to create a ‘proximity’ network, and built a separate ‘contact’ network using social interactions involving physical contact. In the proximity network, connectivity between individuals was homogeneous, whereas the contact network highlighted high between-individual variation in the extent to which animals had physical contact with others, which correlated with an individual's age and sex. The gastrointestinal parasite species richness of highly connected individuals was greater than that of less connected individuals in the contact network, but not in the proximity network. Our findings suggest that among brown spider monkeys, physical contact impacts the spread of several common parasites and supports the idea that pathogen transmission is one cost associated with social contact. PMID:25870396

  16. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics.

    PubMed

    Rimbach, Rebecca; Bisanzio, Donal; Galvis, Nelson; Link, Andrés; Di Fiore, Anthony; Gillespie, Thomas R

    2015-05-26

    Elevated risk of disease transmission is considered a major cost of sociality, although empirical evidence supporting this idea remains scant. Variation in spatial cohesion and the occurrence of social interactions may have profound implications for patterns of interindividual parasite transmission. We used a social network approach to shed light on the importance of different aspects of group-living (i.e. within-group associations versus physical contact) on patterns of parasitism in a neotropical primate, the brown spider monkey (Ateles hybridus), which exhibits a high degree of fission-fusion subgrouping. We used daily subgroup composition records to create a 'proximity' network, and built a separate 'contact' network using social interactions involving physical contact. In the proximity network, connectivity between individuals was homogeneous, whereas the contact network highlighted high between-individual variation in the extent to which animals had physical contact with others, which correlated with an individual's age and sex. The gastrointestinal parasite species richness of highly connected individuals was greater than that of less connected individuals in the contact network, but not in the proximity network. Our findings suggest that among brown spider monkeys, physical contact impacts the spread of several common parasites and supports the idea that pathogen transmission is one cost associated with social contact. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, R; Gallagher, B; Neville, J

    Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less

  18. Understanding Social and Sexual Networks of Sexual Minority Men and Transgender Women in Guatemala City to Improve HIV Prevention Efforts

    PubMed Central

    Tucker, C.; Arandi, C. Galindo; Bolaños, J. Herbert; Paz-Bailey, G.; Barrington, C.

    2015-01-01

    Sexual minority men and transgender women are disproportionately affected by HIV in Guatemala. Innovative prevention strategies are urgently needed to address these disparities. While social network approaches are frequently used to reach sexual minorities, little is known about the unique network characteristics among sub-groups. We conducted in-depth qualitative interviews with 13 gay-identifying men, eight non-gay-identifying men who have sex with men (MSM) and eight transgender women in Guatemala City. Using narrative and thematic coding procedures, we identified distinct patterns in the size, composition, and overlap between social and sexual networks across groups. Gay-identifying men had the largest, most supportive social networks, predominantly comprising family. For both non-gay-identifying MSM and transgender women, friends and sex clients provided more support. Transgender women reported the smallest social networks, least social support, and the most discrimination. HIV prevention efforts should be tailored to the specific sexual minority population and engage with strong ties. PMID:25418236

  19. Understanding social and sexual networks of sexual minority men and transgender women in Guatemala city to improve HIV prevention efforts.

    PubMed

    Tucker, C; Arandi, C Galindo; Bolaños, J Herbert; Paz-Bailey, G; Barrington, C

    2014-11-01

    Sexual minority men and transgender women are disproportionately affected by HIV in Guatemala. Innovative prevention strategies are urgently needed to address these disparities. While social network approaches are frequently used to reach sexual minorities, little is known about the unique network characteristics among sub-groups. We conducted in-depth qualitative interviews with 13 gay-identifying men, eight non-gay-identifying men who have sex with men (MSM) and eight transgender women in Guatemala City. Using narrative and thematic coding procedures, we identified distinct patterns in the size, composition, and overlap between social and sexual networks across groups. Gay-identifying men had the largest, most supportive social networks, predominantly comprising family. For both non-gay-identifying MSM and transgender women, friends and sex clients provided more support. Transgender women reported the smallest social networks, least social support, and the most discrimination. HIV prevention efforts should be tailored to the specific sexual minority population and engage with strong ties.

  20. Experimental observation of chimera and cluster states in a minimal globally coupled network

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    2016-09-01

    A "chimera state" is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  1. Discriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Liu, Yong; Jiang, Tianzi; Liu, Zhening; Hao, Yihui; Liu, Haihong

    2010-03-01

    The functional networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive functions and neurological diseases. In this paper, we propose a novel algorithm for discriminant analysis of functional networks encoded by spatial independent components. The functional networks of each individual are used as bases for a linear subspace, referred to as a functional connectivity pattern, which facilitates a comprehensive characterization of temporal signals of fMRI data. The functional connectivity patterns of different individuals are analyzed on the Grassmann manifold by adopting a principal angle based subspace distance. In conjunction with a support vector machine classifier, a forward component selection technique is proposed to select independent components for constructing the most discriminative functional connectivity pattern. The discriminant analysis method has been applied to an fMRI based schizophrenia study with 31 schizophrenia patients and 31 healthy individuals. The experimental results demonstrate that the proposed method not only achieves a promising classification performance for distinguishing schizophrenia patients from healthy controls, but also identifies discriminative functional networks that are informative for schizophrenia diagnosis.

  2. Searching social networks for subgraph patterns

    NASA Astrophysics Data System (ADS)

    Ogaard, Kirk; Kase, Sue; Roy, Heather; Nagi, Rakesh; Sambhoos, Kedar; Sudit, Moises

    2013-06-01

    Software tools for Social Network Analysis (SNA) are being developed which support various types of analysis of social networks extracted from social media websites (e.g., Twitter). Once extracted and stored in a database such social networks are amenable to analysis by SNA software. This data analysis often involves searching for occurrences of various subgraph patterns (i.e., graphical representations of entities and relationships). The authors have developed the Graph Matching Toolkit (GMT) which provides an intuitive Graphical User Interface (GUI) for a heuristic graph matching algorithm called the Truncated Search Tree (TruST) algorithm. GMT is a visual interface for graph matching algorithms processing large social networks. GMT enables an analyst to draw a subgraph pattern by using a mouse to select categories and labels for nodes and links from drop-down menus. GMT then executes the TruST algorithm to find the top five occurrences of the subgraph pattern within the social network stored in the database. GMT was tested using a simulated counter-insurgency dataset consisting of cellular phone communications within a populated area of operations in Iraq. The results indicated GMT (when executing the TruST graph matching algorithm) is a time-efficient approach to searching large social networks. GMT's visual interface to a graph matching algorithm enables intelligence analysts to quickly analyze and summarize the large amounts of data necessary to produce actionable intelligence.

  3. Altered anatomical patterns of depression in relation to antidepressant treatment: Evidence from a pattern recognition analysis on the topological organization of brain networks.

    PubMed

    Qin, Jiaolong; Wei, Maobin; Liu, Haiyan; Chen, Jianhuai; Yan, Rui; Yao, Zhijian; Lu, Qing

    2015-07-15

    Accumulated evidence has illuminated the topological infrastructure of major depressive disorder (MDD). However, the changes of topological properties of anatomical brain networks in remitted major depressive disorder patients (rMDD) remain an open question. The present study provides an exploratory examination of pattern changes among current major depressive disorder patients (cMDD), rMDD patients and healthy controls (HC) by means of a pattern recognition analysis. Twenty-eight cMDD patients (age range: 22-54, mean age: 39.57), 15 rMDD patients (age range: 23-53, mean age: 38.40) and 30 HC (23-54, mean age: 35.57) were enrolled. For each subject, we computed five kinds of weighted white matter (WM) networks via employing five physiological parameters (i.e. fractional anisotropy, mean diffusivity, λ1, λ2 and λ3) and then calculated three network measures of these weighted networks. We treated these measures as features and fed into a feature selection mechanism to choose the most discriminative features for linear support vector machine (SVM) classifiers. Linear SVM could excellently distinguish the three groups with the 100% classification accuracy of recognizing cMDD/rMDD from HC, and 97.67% classification accuracy of recognizing cMDD from rMDD. The further pattern analysis found two types of discriminative patterns among cMDD, rMDD and HC. (i) Compared with HC, both cMDD and rMDD exhibited the similar deficit patterns of node strength primarily involving the salience network (SN), default mode network (DMN) and frontoparietal network (FPN). (ii) Compared with cMDD and rMDD showed the altered pattern of intra-communicability within DMN and inter-communicability between DMN and the other sub-networks including the visual recognition network (VRN) and SN. The present study had a limited sample size and a lack of larger independent data set to validate the methods and confirm the findings. These findings implied that the impairment of MDD was closely associated with the alterations of connections within SN, DMN and FPN, whereas the remission of MDD was benefitted from the network compensatory of intra-communication within DMN and inter-communication between DMN and the other sub-networks (i.e., VRN and SN). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Network modulation during complex syntactic processing

    PubMed Central

    den Ouden, Dirk-Bart; Saur, Dorothee; Mader, Wolfgang; Schelter, Björn; Lukic, Sladjana; Wali, Eisha; Timmer, Jens; Thompson, Cynthia K.

    2011-01-01

    Complex sentence processing is supported by a left-lateralized neural network including inferior frontal cortex and posterior superior temporal cortex. This study investigates the pattern of connectivity and information flow within this network. We used fMRI BOLD data derived from 12 healthy participants reported in an earlier study (Thompson, C. K., Den Ouden, D. B., Bonakdarpour, B., Garibaldi, K., & Parrish, T. B. (2010b). Neural plasticity and treatment-induced recovery of sentence processing in agrammatism. Neuropsychologia, 48(11), 3211-3227) to identify activation peaks associated with object-cleft over syntactically less complex subject-cleft processing. Directed Partial Correlation Analysis was conducted on time series extracted from participant-specific activation peaks and showed evidence of functional connectivity between four regions, linearly between premotor cortex, inferior frontal gyrus, posterior superior temporal sulcus and anterior middle temporal gyrus. This pattern served as the basis for Dynamic Causal Modeling of networks with a driving input to posterior superior temporal cortex, which likely supports thematic role assignment, and networks with a driving input to inferior frontal cortex, a core region associated with syntactic computation. The optimal model was determined through both frequentist and Bayesian model selection and turned out to reflect a network with a primary drive from inferior frontal cortex and modulation of the connection between inferior frontal and posterior superior temporal cortex by complex sentence processing. The winning model also showed a substantive role for a feedback mechanism from posterior superior temporal cortex back to inferior frontal cortex. We suggest that complex syntactic processing is driven by word-order analysis, supported by inferior frontal cortex, in an interactive relation with posterior superior temporal cortex, which supports verb argument structure processing. PMID:21820518

  5. Examining the Impact of Pre-Induction Social Networking on the Student Transition into Higher Education

    ERIC Educational Resources Information Center

    Ribchester, Chris; Ross, Kim; Rees, Emma L. E.

    2014-01-01

    This research paper considers how bespoke online social networks have been used to support students' transition into higher education during the weeks immediately prior to formal "on-site" induction. An analysis of online activities showed some differences in the pattern of engagement between two contrasting departments (Geography and…

  6. Integration and segregation of large-scale brain networks during short-term task automatization

    PubMed Central

    Mohr, Holger; Wolfensteller, Uta; Betzel, Richard F.; Mišić, Bratislav; Sporns, Olaf; Richiardi, Jonas; Ruge, Hannes

    2016-01-01

    The human brain is organized into large-scale functional networks that can flexibly reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term learning processes. However, it has remained unclear how short-term network dynamics support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data of a learning sample (N=70) with a control sample (N=67), we find that increasingly efficient task processing during short-term practice is associated with a reorganization of large-scale network interactions. Practice-related efficiency gains are facilitated by enhanced coupling between the cingulo-opercular network and the dorsal attention network. Simultaneously, short-term task automatization is accompanied by decreasing activation of the fronto-parietal network, indicating a release of high-level cognitive control, and a segregation of the default mode network from task-related networks. These findings suggest that short-term task automatization is enabled by the brain's ability to rapidly reconfigure its large-scale network organization involving complementary integration and segregation processes. PMID:27808095

  7. Gene expression links functional networks across cortex and striatum.

    PubMed

    Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J

    2018-04-12

    The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.

  8. Sediment and Vegetation Controls on Delta Channel Networks

    NASA Astrophysics Data System (ADS)

    Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.

    2016-12-01

    Numerous factors control the patterns of distributary channels formed on a delta, including water and sediment discharge, grain size, sea level rise rates, and vegetation type. In turn, these channel networks influence the shape and evolution of a delta, including what types of plant and animal life - such as humans - it can support. Previous fluvial modeling and flume experiments, outside of the delta context, have addressed how interactions between sediment and vegetation, through their influence on lateral transport of sediment, determine what type of channel networks develops. Similar interactions likely also shape delta flow patterns. Vegetation introduces cohesion, tending to reduce channel migration rates and strengthen existing channel banks, reinforcing existing channels and resulting in localized, relatively stable flow patterns. On the other hand, sediment transport processes can result in lateral migration and frequent switching of active channels, resulting in flow resembling that of a braided stream. While previous studies of deltas have indirectly explored the effects of vegetation through the introduction of cohesive sediment, we directly incorporate key effects of vegetation on flow and sediment transport into the delta-building model DeltaRCM to explore how these effects influence delta channel network formation. Model development is informed by laboratory flume experiments at UT Austin. Here we present initial results of experiments exploring the effects of sea level rise rate, sediment grain size, vegetation type, and vegetation growth rate on delta channel network morphology. These results support the hypothesis that the ability for lateral transport of sediment to occur plays a key role in determining the evolution of delta channel networks and delta morphology.

  9. How do people with long-term mental health problems negotiate relationships with network members at times of crisis?

    PubMed

    Walker, Sandra; Kennedy, Anne; Vassilev, Ivaylo; Rogers, Anne

    2018-02-01

    Social network processes impact on the genesis and management of mental health problems. There is currently less understanding of the way people negotiate networked relationships in times of crisis compared to how they manage at other times. This paper explores the patterns and nature of personal network involvement at times of crises and how these may differ from day-to-day networks of recovery and maintenance. Semi-structured interviews with 25 participants with a diagnosis of long-term mental health (MH) problems drawn from recovery settings in the south of England. Interviews centred on personal network mapping of members and resources providing support. The mapping interviews explored the work of network members and changes in times of crisis. Interviews were recorded, transcribed and analysed using a framework analysis. Three key themes were identified: the fluidity of network relationality between crisis and recovery; isolation as a means of crises management; leaning towards peer support. Personal network input retreated at times of crisis often as result of "ejection" from the network by participants who used self-isolation as a personal management strategy in an attempt to deal with crises. Peer support is considered useful during a crisis, whilst the role of services was viewed with some ambiguity. Social networks membership, and type and depth of involvement, is subject to change between times of crisis and everyday support. This has implications for managing mental health in terms of engaging with network support differently in times of crises versus recovery and everyday living. © 2017 The Authors Health Expectations Published by John Wiley & Sons Ltd.

  10. Connecting to young adults: an online social network survey of beliefs and attitudes associated with prescription opioid misuse among college students.

    PubMed

    Lord, Sarah; Brevard, Julie; Budman, Simon

    2011-01-01

    A survey of motives and attitudes associated with patterns of nonmedical prescription opioid medication use among college students was conducted on Facebook, a popular online social networking Web site. Response metrics for a 2-week random advertisement post, targeting students who had misused prescription medications, surpassed typical benchmarks for online marketing campaigns and yielded 527 valid surveys. Respondent characteristics, substance use patterns, and use motives were consistent with other surveys of prescription opioid use among college populations. Results support the potential of online social networks to serve as powerful vehicles to connect with college-aged populations about their drug use. Limitations of the study are noted.

  11. Age and Gender Differences in Social Network Composition and Social Support Among Older Rural South Africans: Findings From the HAALSI Study.

    PubMed

    Harling, Guy; Morris, Katherine Ann; Manderson, Lenore; Perkins, Jessica M; Berkman, Lisa F

    2018-03-26

    Drawing on the "Health and Aging in Africa: A Longitudinal Study of an INDEPTH community in South Africa" (HAALSI) baseline survey, we present data on older adults' social networks and receipt of social support in rural South Africa. We examine how age and gender differences in social network characteristics matched with patterns predicted by theories of choice- and constraint-based network contraction in older adults. We used regression analysis on data for 5,059 South African adults aged 40 and older. Older respondents reported fewer important social contacts and less frequent communication than their middle-aged peers, largely due to fewer nonkin connections. Network size difference between older and younger respondents was greater for women than for men. These gender and age differences were explicable by much higher levels of widowhood among older women compared to younger women and older men. There was no evidence for employment-related network contraction or selective retention of emotionally supportive ties. Marriage-related structural constraints impacted on older women's social networks in rural South Africa, but did not explain choice-based network contraction. These findings suggest that many older women in rural Africa, a growing population, may have an unmet need for social support.

  12. When Experience Counts: The Effects of Experiential and Structural Similarity on Patterns of Support and Interpersonal Stress.

    ERIC Educational Resources Information Center

    Suitor, J. Jill; And Others

    1995-01-01

    Draws upon theories of homophily and reference groups to argue that experiential similarity (similar status transition) is more important than structural similarity (age, gender, and marital status) in determining sources of emotional support and stress following life events. Arguments are supported by longitudinal data on social networks of…

  13. Multi-voxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    PubMed Central

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350

  14. Can Learning Collaboratives Support Implementation by Rewiring Professional Networks?

    PubMed

    Bunger, Alicia C; Hanson, Rochelle F; Doogan, Nathan J; Powell, Byron J; Cao, Yiwen; Dunn, Jerry

    2016-01-01

    This study examined how a learning collaborative focusing on trauma-focused CBT (TF-CBT) impacted advice-seeking patterns between clinicians and three key learning sources: (1) training experts who share technical knowledge about TF-CBT, (2) peers from other participating organizations who share their implementation experiences, and (3) colleagues from their own agency who provide social and professional support. Based on surveys administered to 132 clinicians from 32 agencies, participants' professional networks changed slightly over time by forming new advice-seeking relationships with training experts. While small, these changes at the clinician-level yielded substantial changes in the structure of the regional advice network.

  15. Can Learning Collaboratives Support Implementation By Rewiring Professional Networks?

    PubMed Central

    Hanson, Rochelle F.; Doogan, Nathan J.; Powell, Byron J.; Cao, Yiwen; Dunn, Jerry

    2015-01-01

    This study examined how a learning collaborative focusing on Trauma-Focused CBT (TF-CBT) impacted advice-seeking patterns between clinicians and three key learning sources: (1) training experts who share technical knowledge about TF-CBT, (2) peers from other participating organizations who share their implementation experiences, and (3) colleagues from their own agency who provide social and professional support. Based on surveys administered to 132 clinicians from 32 agencies, participants’ professional networks changed slightly over time by forming new advice-seeking relationships with training experts. While small, these changes at the clinician-level yielded substantial changes in the structure of the regional advice network. PMID:25542237

  16. Developmental Self-Construction and -Configuration of Functional Neocortical Neuronal Networks

    PubMed Central

    Bauer, Roman; Zubler, Frédéric; Pfister, Sabina; Hauri, Andreas; Pfeiffer, Michael; Muir, Dylan R.; Douglas, Rodney J.

    2014-01-01

    The prenatal development of neural circuits must provide sufficient configuration to support at least a set of core postnatal behaviors. Although knowledge of various genetic and cellular aspects of development is accumulating rapidly, there is less systematic understanding of how these various processes play together in order to construct such functional networks. Here we make some steps toward such understanding by demonstrating through detailed simulations how a competitive co-operative (‘winner-take-all’, WTA) network architecture can arise by development from a single precursor cell. This precursor is granted a simplified gene regulatory network that directs cell mitosis, differentiation, migration, neurite outgrowth and synaptogenesis. Once initial axonal connection patterns are established, their synaptic weights undergo homeostatic unsupervised learning that is shaped by wave-like input patterns. We demonstrate how this autonomous genetically directed developmental sequence can give rise to self-calibrated WTA networks, and compare our simulation results with biological data. PMID:25474693

  17. Experimental observation of chimera and cluster states in a minimal globally coupled network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Joseph D.; Department of Physics, University of Maryland, College Park, Maryland 20742; Bansal, Kanika

    A “chimera state” is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belongingmore » to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.« less

  18. Software tool for data mining and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Ye, Chenzhou; Chen, Nianyi

    2002-03-01

    A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.

  19. Two distinct neural networks support the mapping of meaning to a novel word.

    PubMed

    Ye, Zheng; Mestres-Missé, Anna; Rodriguez-Fornells, Antoni; Münte, Thomas F

    2011-07-01

    Children can learn the meaning of a new word from context during normal reading or listening, without any explicit instruction. It is unclear how such meaning acquisition is supported and achieved in human brain. In this functional magnetic resonance imaging (fMRI) study we investigated neural networks supporting word learning with a functional connectivity approach. Participants were exposed to a new word presented in two successive sentences and needed to derive the meaning of the new word. We observed two neural networks involved in mapping the meaning to the new word. One network connected the left inferior frontal gyrus (LIFG) with the middle frontal gyrus (MFG), medial superior frontal gyrus, caudate nucleus, thalamus, and inferior parietal lobule. The other network connected the left middle temporal gyrus (LMTG) with the MFG, anterior and posterior cingulate cortex. The LIFG network showed stronger interregional interactions for new than real words, whereas the LMTG network showed similar connectivity patterns for new and real words. We proposed that these two networks support different functions during word learning. The LIFG network appears to select the most appropriate meaning from competing candidates and to map the selected meaning onto the new word. The LMTG network may be recruited to integrate the word into sentential context, regardless of whether the word is real or new. The LIFG and the LMTG networks share a common node, the MFG, suggesting that these two networks communicate in working memory. Copyright © 2010 Wiley-Liss, Inc.

  20. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis.

    PubMed

    Sonuga-Barke, Edmund J S; Castellanos, F Xavier

    2007-01-01

    In traditional accounts, fluctuations in sustained and focused attention and associated attentional lapses during task performance are regarded as the result of failures of top-down and effortful higher order processes. The current paper reviews an alternative hypothesis: that spontaneous patterns of very low frequency (<0.1 Hz) coherence within a specific brain network ('default-mode network') thought to support a pattern of generalized task-non-specific cognition during rest, can persist or intrude into periods of active task-specific processing, producing periodic fluctuations in attention that compete with goal-directed activity. We review recent studies supporting the existence of the resting state default network, examine the mechanism underpinning it, describe the consequent temporally distinctive effects on cognition and behaviour of default-mode interference into active processing periods, and suggest some factors that might predispose to it. Finally, we explore the putative role of default-mode interference as a cause of performance variability in attention deficit/hyperactivity disorder.

  1. Discovery of Action Patterns and User Correlations in Task-Oriented Processes for Goal-Driven Learning Recommendation

    ERIC Educational Resources Information Center

    Zhou, Xiaokang; Chen, Jian; Wu, Bo; Jin, Qun

    2014-01-01

    With the high development of social networks, collaborations in a socialized web-based learning environment has become increasing important, which means people can learn through interactions and collaborations in communities across social networks. In this study, in order to support the enhanced collaborative learning, two important factors, user…

  2. Social Network Behavior and Engagement Within a Smoking Cessation Facebook Page.

    PubMed

    Cole-Lewis, Heather; Perotte, Adler; Galica, Kasia; Dreyer, Lindy; Griffith, Christopher; Schwarz, Mary; Yun, Christopher; Patrick, Heather; Coa, Kisha; Augustson, Erik

    2016-08-02

    Social media platforms are increasingly being used to support individuals in behavior change attempts, including smoking cessation. Examining the interactions of participants in health-related social media groups can help inform our understanding of how these groups can best be leveraged to facilitate behavior change. The aim of this study was to analyze patterns of participation, self-reported smoking cessation length, and interactions within the National Cancer Institutes' Facebook community for smoking cessation support. Our sample consisted of approximately 4243 individuals who interacted (eg, posted, commented) on the public Smokefree Women Facebook page during the time of data collection. In Phase 1, social network visualizations and centrality measures were used to evaluate network structure and engagement. In Phase 2, an inductive, thematic qualitative content analysis was conducted with a subsample of 500 individuals, and correlational analysis was used to determine how participant engagement was associated with self-reported session length. Between February 2013 and March 2014, there were 875 posts and 4088 comments from approximately 4243 participants. Social network visualizations revealed the moderator's role in keeping the community together and distributing the most active participants. Correlation analyses suggest that engagement in the network was significantly inversely associated with cessation status (Spearman correlation coefficient = -0.14, P=.03, N=243). The content analysis of 1698 posts from 500 randomly selected participants identified the most frequent interactions in the community as providing support (43%, n=721) and announcing number of days smoke free (41%, n=689). These findings highlight the importance of the moderator for network engagement and provide helpful insights into the patterns and types of interactions participants are engaging in. This study adds knowledge of how the social network of a smoking cessation community behaves within the confines of a Facebook group.

  3. Self-organized semiconductor nano-network on graphene

    NASA Astrophysics Data System (ADS)

    Son, Dabin; Kim, Sang Jin; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Kang, Jae-Wook; Lee, Sang Hyun

    2017-04-01

    A network structure consisting of nanomaterials with a stable structural support and charge path on a large area is desirable for various electronic and optoelectronic devices. Generally, network structures have been fabricated via two main strategies: (1) assembly of pre-grown nanostructures onto a desired substrate and (2) direct growth of nanomaterials onto a desired substrate. In this study, we utilized the surface defects of graphene to form a nano-network of ZnO via atomic layer deposition (ALD). The surface of pure and structurally perfect graphene is chemically inert. However, various types of point and line defects, including vacancies/adatoms, grain boundaries, and ripples in graphene are generated by growth, chemical or physical treatments. The defective sites enhance the chemical reactivity with foreign atoms. ZnO nanoparticles formed by ALD were predominantly deposited at the line defects and agglomerated with increasing ALD cycles. Due to the formation of the ZnO nano-network, the photocurrent between two electrodes was clearly changed under UV irradiation as a result of the charge transport between ZnO and graphene. The line patterned ZnO/graphene (ZnO/G) nano-network devices exhibit sensitivities greater than ten times those of non-patterned structures. We also confirmed the superior operation of a fabricated flexible photodetector based on the line patterned ZnO/G nano-network.

  4. Tune the topology to create or destroy patterns

    NASA Astrophysics Data System (ADS)

    Asllani, Malbor; Carletti, Timoteo; Fanelli, Duccio

    2016-12-01

    We consider the dynamics of a reaction-diffusion system on a multigraph. The species share the same set of nodes but can access different links to explore the embedding spatial support. By acting on the topology of the networks we can control the ability of the system to self-organise in macroscopic patterns, emerging as a symmetry breaking instability of an homogeneous fixed point. Two different cases study are considered: on the one side, we produce a global modification of the networks, starting from the limiting setting where species are hosted on the same graph. On the other, we consider the effect of inserting just one additional single link to differentiate the two graphs. In both cases, patterns can be generated or destroyed, as follows the imposed, small, topological perturbation. Approximate analytical formulae allow to grasp the essence of the phenomenon and can potentially inspire innovative control strategies to shape the macroscopic dynamics on multigraph networks.

  5. On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from connectivity-based single-subject classification.

    PubMed

    Pläschke, Rachel N; Cieslik, Edna C; Müller, Veronika I; Hoffstaedter, Felix; Plachti, Anna; Varikuti, Deepthi P; Goosses, Mareike; Latz, Anne; Caspers, Svenja; Jockwitz, Christiane; Moebus, Susanne; Gruber, Oliver; Eickhoff, Claudia R; Reetz, Kathrin; Heller, Julia; Südmeyer, Martin; Mathys, Christian; Caspers, Julian; Grefkes, Christian; Kalenscher, Tobias; Langner, Robert; Eickhoff, Simon B

    2017-12-01

    Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Sparse network-based models for patient classification using fMRI

    PubMed Central

    Rosa, Maria J.; Portugal, Liana; Hahn, Tim; Fallgatter, Andreas J.; Garrido, Marta I.; Shawe-Taylor, John; Mourao-Miranda, Janaina

    2015-01-01

    Pattern recognition applied to whole-brain neuroimaging data, such as functional Magnetic Resonance Imaging (fMRI), has proved successful at discriminating psychiatric patients from healthy participants. However, predictive patterns obtained from whole-brain voxel-based features are difficult to interpret in terms of the underlying neurobiology. Many psychiatric disorders, such as depression and schizophrenia, are thought to be brain connectivity disorders. Therefore, pattern recognition based on network models might provide deeper insights and potentially more powerful predictions than whole-brain voxel-based approaches. Here, we build a novel sparse network-based discriminative modeling framework, based on Gaussian graphical models and L1-norm regularized linear Support Vector Machines (SVM). In addition, the proposed framework is optimized in terms of both predictive power and reproducibility/stability of the patterns. Our approach aims to provide better pattern interpretation than voxel-based whole-brain approaches by yielding stable brain connectivity patterns that underlie discriminative changes in brain function between the groups. We illustrate our technique by classifying patients with major depressive disorder (MDD) and healthy participants, in two (event- and block-related) fMRI datasets acquired while participants performed a gender discrimination and emotional task, respectively, during the visualization of emotional valent faces. PMID:25463459

  7. Magnostics: Image-Based Search of Interesting Matrix Views for Guided Network Exploration.

    PubMed

    Behrisch, Michael; Bach, Benjamin; Hund, Michael; Delz, Michael; Von Ruden, Laura; Fekete, Jean-Daniel; Schreck, Tobias

    2017-01-01

    In this work we address the problem of retrieving potentially interesting matrix views to support the exploration of networks. We introduce Matrix Diagnostics (or Magnostics), following in spirit related approaches for rating and ranking other visualization techniques, such as Scagnostics for scatter plots. Our approach ranks matrix views according to the appearance of specific visual patterns, such as blocks and lines, indicating the existence of topological motifs in the data, such as clusters, bi-graphs, or central nodes. Magnostics can be used to analyze, query, or search for visually similar matrices in large collections, or to assess the quality of matrix reordering algorithms. While many feature descriptors for image analyzes exist, there is no evidence how they perform for detecting patterns in matrices. In order to make an informed choice of feature descriptors for matrix diagnostics, we evaluate 30 feature descriptors-27 existing ones and three new descriptors that we designed specifically for MAGNOSTICS-with respect to four criteria: pattern response, pattern variability, pattern sensibility, and pattern discrimination. We conclude with an informed set of six descriptors as most appropriate for Magnostics and demonstrate their application in two scenarios; exploring a large collection of matrices and analyzing temporal networks.

  8. Face Patch Resting State Networks Link Face Processing to Social Cognition

    PubMed Central

    Schwiedrzik, Caspar M.; Zarco, Wilbert; Everling, Stefan; Freiwald, Winrich A.

    2015-01-01

    Faces transmit a wealth of social information. How this information is exchanged between face-processing centers and brain areas supporting social cognition remains largely unclear. Here we identify these routes using resting state functional magnetic resonance imaging in macaque monkeys. We find that face areas functionally connect to specific regions within frontal, temporal, and parietal cortices, as well as subcortical structures supporting emotive, mnemonic, and cognitive functions. This establishes the existence of an extended face-recognition system in the macaque. Furthermore, the face patch resting state networks and the default mode network in monkeys show a pattern of overlap akin to that between the social brain and the default mode network in humans: this overlap specifically includes the posterior superior temporal sulcus, medial parietal, and dorsomedial prefrontal cortex, areas supporting high-level social cognition in humans. Together, these results reveal the embedding of face areas into larger brain networks and suggest that the resting state networks of the face patch system offer a new, easily accessible venue into the functional organization of the social brain and into the evolution of possibly uniquely human social skills. PMID:26348613

  9. The Peer Social Networks of Young Children with Down Syndrome in Classroom Programmes

    PubMed Central

    Guralnick, Michael J.; Connor, Robert T.; Johnson, L. Clark

    2010-01-01

    Background The nature and characteristics of the peer social networks of young children with Down syndrome in classroom settings were examined within a developmental framework. Method Comparisons were made with younger typically developing children matched on mental age and typically developing children matched on chronological age. Results Similar patterns were found for all three groups for most peer social network measures. However, group differences were obtained for measures of teacher assistance and peer interactions in unstructured situations. Conclusions Positive patterns appeared to be related to the social orientation of children with Down syndrome and the special efforts of teachers to support children’s peer social networks. Findings also suggested that fundamental peer competence problems for children with Down syndrome remain and may best be addressed within the framework of contemporary models of peer-related social competence. PMID:21765644

  10. Assimilation and accommodation patterns in ventral occipitotemporal cortex in learning a second writing system

    PubMed Central

    Nelson, Jessica R.; Liu, Ying; Fiez, Julie; Perfetti, Charles A.

    2017-01-01

    Using fMRI, we compared the patterns of fusiform activity produced by viewing English and Chinese for readers who were either English speakers learning Chinese, or Chinese-English bilinguals. The pattern of fusiform activity depended on both the writing system and the reader’s native language. Native Chinese speakers fluent in English recruited bilateral fusiform areas when viewing both Chinese and English. English speakers learning Chinese, however, used heavily left-lateralized fusiform regions when viewing English, but recruited an additional right fusiform region for viewing Chinese. Thus, English learners of Chinese show an accommodation pattern, in which the reading network accommodates the new writing system by adding neural resources that support its specific graphic requirements. Chinese speakers show an assimilation pattern, in which the reading network established for L1 includes procedures sufficient for the graphic demands of L2 without major change. PMID:18381767

  11. Connecting to Young Adults: An Online Social Network Survey of Beliefs and Attitudes Associated With Prescription Opioid Misuse Among College Students

    PubMed Central

    Lord, Sarah; Brevard, Julie; Budman, Simon

    2011-01-01

    A survey of motives and attitudes associated with patterns of nonmedical prescription opioid medication use among college students was conducted on Facebook, a popular online social networking Web site. Response metrics for a 2-week random advertisement post, targeting students who had misused prescription medications, surpassed typical benchmarks for online marketing campaigns and yielded 527 valid surveys. Respondent characteristics, substance use patterns, and use motives were consistent with other surveys of prescription opioid use among college populations. Results support the potential of online social networks to serve as powerful vehicles to connect with college-aged populations about their drug use. Limitations of the study are noted. PMID:21190407

  12. Social support relationships for sexual minority women in Mumbai, India: a photo elicitation interview study.

    PubMed

    Bowling, Jessamyn; Dodge, Brian; Banik, Swagata; Bartelt, Elizabeth; Mengle, Shruta; Guerra-Reyes, Lucia; Hensel, Devon; Herbenick, Debby; Anand, Vivek

    2018-02-01

    Little research exists on women who do not identify as heterosexual in India. Social support for sexual minority women may protect against the effects of discrimination. An examination of significant social relationships may point to both strengths and weaknesses in this support. We aimed to understand relationship prioritisation and communication patterns associated with the social support of sexual minority women in Mumbai. In partnership with the Humsafar Trust, India's oldest and largest sexual and gender minority-advocacy organisation, we conducted photo-elicitation interviews with 18 sexual minority women, using participants' photographs to prompt dialogue about their social support. Intimate partners were a source of dependable support and many of those without relationships were seeking them. Participants' extended networks included friends and family as well as less formal relationships of social support. Participants mediated their communication with particular social network members, which involved filtering information sexual identity, romantic interests, and personal aspirations, among others. The diverse relationships that sexual minority women have in their social support networks may be used to guide programmes to improve health outcomes.

  13. Stability and Hopf bifurcation in a simplified BAM neural network with two time delays.

    PubMed

    Cao, Jinde; Xiao, Min

    2007-03-01

    Various local periodic solutions may represent different classes of storage patterns or memory patterns, and arise from the different equilibrium points of neural networks (NNs) by applying Hopf bifurcation technique. In this paper, a bidirectional associative memory NN with four neurons and multiple delays is considered. By applying the normal form theory and the center manifold theorem, analysis of its linear stability and Hopf bifurcation is performed. An algorithm is worked out for determining the direction and stability of the bifurcated periodic solutions. Numerical simulation results supporting the theoretical analysis are also given.

  14. Grammatical Analysis as a Distributed Neurobiological Function

    PubMed Central

    Bozic, Mirjana; Fonteneau, Elisabeth; Su, Li; Marslen-Wilson, William D

    2015-01-01

    Language processing engages large-scale functional networks in both hemispheres. Although it is widely accepted that left perisylvian regions have a key role in supporting complex grammatical computations, patient data suggest that some aspects of grammatical processing could be supported bilaterally. We investigated the distribution and the nature of grammatical computations across language processing networks by comparing two types of combinatorial grammatical sequences—inflectionally complex words and minimal phrases—and contrasting them with grammatically simple words. Novel multivariate analyses revealed that they engage a coalition of separable subsystems: inflected forms triggered left-lateralized activation, dissociable into dorsal processes supporting morphophonological parsing and ventral, lexically driven morphosyntactic processes. In contrast, simple phrases activated a consistently bilateral pattern of temporal regions, overlapping with inflectional activations in L middle temporal gyrus. These data confirm the role of the left-lateralized frontotemporal network in supporting complex grammatical computations. Critically, they also point to the capacity of bilateral temporal regions to support simple, linear grammatical computations. This is consistent with a dual neurobiological framework where phylogenetically older bihemispheric systems form part of the network that supports language function in the modern human, and where significant capacities for language comprehension remain intact even following severe left hemisphere damage. PMID:25421880

  15. Estimating the Importance of Terrorists in a Terror Network

    NASA Astrophysics Data System (ADS)

    Elhajj, Ahmed; Elsheikh, Abdallah; Addam, Omar; Alzohbi, Mohamad; Zarour, Omar; Aksaç, Alper; Öztürk, Orkun; Özyer, Tansel; Ridley, Mick; Alhajj, Reda

    While criminals may start their activities at individual level, the same is in general not true for terrorists who are mostly organized in well established networks. The effectiveness of a terror network could be realized by watching many factors, including the volume of activities accomplished by its members, the capabilities of its members to hide, and the ability of the network to grow and to maintain its influence even after the loss of some members, even leaders. Social network analysis, data mining and machine learning techniques could play important role in measuring the effectiveness of a network in general and in particular a terror network in support of the work presented in this chapter. We present a framework that employs clustering, frequent pattern mining and some social network analysis measures to determine the effectiveness of a network. The clustering and frequent pattern mining techniques start with the adjacency matrix of the network. For clustering, we utilize entries in the table by considering each row as an object and each column as a feature. Thus features of a network member are his/her direct neighbors. We maintain the weight of links in case of weighted network links. For frequent pattern mining, we consider each row of the adjacency matrix as a transaction and each column as an item. Further, we map entries into a 0/1 scale such that every entry whose value is greater than zero is assigned the value one; entries keep the value zero otherwise. This way we can apply frequent pattern mining algorithms to determine the most influential members in a network as well as the effect of removing some members or even links between members of a network. We also investigate the effect of adding some links between members. The target is to study how the various members in the network change role as the network evolves. This is measured by applying some social network analysis measures on the network at each stage during the development. We report some interesting results related to two benchmark networks: the first is 9/11 and the second is Madrid bombing.

  16. SLIDER: a generic metaheuristic for the discovery of correlated motifs in protein-protein interaction networks.

    PubMed

    Boyen, Peter; Van Dyck, Dries; Neven, Frank; van Ham, Roeland C H J; van Dijk, Aalt D J

    2011-01-01

    Correlated motif mining (cmm) is the problem of finding overrepresented pairs of patterns, called motifs, in sequences of interacting proteins. Algorithmic solutions for cmm thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that cmm is an np-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the generic metaheuristic slider which uses steepest ascent with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that slider outperforms existing motif-driven cmm methods and scales to large protein-protein interaction networks. The slider-implementation and the data used in the experiments are available on http://bioinformatics.uhasselt.be.

  17. Resting State Network Topology of the Ferret Brain

    PubMed Central

    Zhou, Zhe Charles; Salzwedel, Andrew P.; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K.; Gilmore, John H.; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-01-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. PMID:27596024

  18. Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control

    NASA Astrophysics Data System (ADS)

    Xue, Xiaoxiao; Xuan, Yi; Bao, Chengying; Li, Shangyuan; Zheng, Xiaoping; Zhou, Bingkun; Qi, Minghao; Weiner, Andrew M.

    2018-06-01

    Microwave phased array antennas (PAAs) are very attractive to defense applications and high-speed wireless communications for their abilities of fast beam scanning and complex beam pattern control. However, traditional PAAs based on phase shifters suffer from the beam-squint problem and have limited bandwidths. True-time-delay (TTD) beamforming based on low-loss photonic delay lines can solve this problem. But it is still quite challenging to build large-scale photonic TTD beamformers due to their high hardware complexity. In this paper, we demonstrate a photonic TTD beamforming network based on a miniature microresonator frequency comb (microcomb) source and dispersive time delay. A method incorporating optical phase modulation and programmable spectral shaping is proposed for positive and negative apodization weighting to achieve arbitrary microwave beam pattern control. The experimentally demonstrated TTD beamforming network can support a PAA with 21 elements. The microwave frequency range is $\\mathbf{8\\sim20\\ {GHz}}$, and the beam scanning range is $\\mathbf{\\pm 60.2^\\circ}$. Detailed measurements of the microwave amplitudes and phases are performed. The beamforming performances of Gaussian, rectangular beams and beam notch steering are evaluated through simulations by assuming a uniform radiating antenna array. The scheme can potentially support larger PAAs with hundreds of elements by increasing the number of comb lines with broadband microcomb generation.

  19. The maturation of cortical sleep rhythms and networks over early development.

    PubMed

    Chu, C J; Leahy, J; Pathmanathan, J; Kramer, M A; Cash, S S

    2014-07-01

    Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. The maturation of cortical sleep rhythms and networks over early development

    PubMed Central

    Chu, CJ; Leahy, J; Pathmanathan, J; Kramer, MA; Cash, SS

    2014-01-01

    Objective Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. Methods We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. Results We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Conclusion Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. Significance This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. PMID:24418219

  1. Distributed effects of methylphenidate on the network structure of the resting brain: a connectomic pattern classification analysis.

    PubMed

    Sripada, Chandra Sekhar; Kessler, Daniel; Welsh, Robert; Angstadt, Michael; Liberzon, Israel; Phan, K Luan; Scott, Clayton

    2013-11-01

    Methylphenidate is a psychostimulant medication that produces improvements in functions associated with multiple neurocognitive systems. To investigate the potentially distributed effects of methylphenidate on the brain's intrinsic network architecture, we coupled resting state imaging with multivariate pattern classification. In a within-subject, double-blind, placebo-controlled, randomized, counterbalanced, cross-over design, 32 healthy human volunteers received either methylphenidate or placebo prior to two fMRI resting state scans separated by approximately one week. Resting state connectomes were generated by placing regions of interest at regular intervals throughout the brain, and these connectomes were submitted for support vector machine analysis. We found that methylphenidate produces a distributed, reliably detected, multivariate neural signature. Methylphenidate effects were evident across multiple resting state networks, especially visual, somatomotor, and default networks. Methylphenidate reduced coupling within visual and somatomotor networks. In addition, default network exhibited decoupling with several task positive networks, consistent with methylphenidate modulation of the competitive relationship between these networks. These results suggest that connectivity changes within and between large-scale networks are potentially involved in the mechanisms by which methylphenidate improves attention functioning. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Bibliometric trends of health economic evaluation in Sub-Saharan Africa.

    PubMed

    Hernandez-Villafuerte, Karla; Li, Ryan; Hofman, Karen J

    2016-08-24

    Collaboration between Sub-Saharan African researchers is important for the generation and transfer of health technology assessment (HTA) evidence, in order to support priority-setting in health. The objective of this analysis was to evaluate collaboration patterns between countries. We conducted a rapid evidence assessment that included a random sample of health economic evaluations carried out in 20 countries (Angola, Botswana, Congo, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia, Zimbabwe, Ghana, Kenya, Nigeria, Ethiopia, Uganda). We conducted bibliometric network analysis based on all first authors with a Sub-Saharan African academic affiliation and their co-authored publications ("network-articles"). Then we produced a connection map of collaboration patterns among Sub-Saharan African researchers, reflecting the number of network-articles and the country of affiliation of the main co-authors. The sample of 119 economic evaluations mostly related to treatments of communicable diseases, in particular HIV/AIDS (42/119, 35.29 %) and malaria (26/119, 21.85 %). The 39 first authors from Sub-Saharan African institutions together co-authored 729 network-articles. The network analysis showed weak collaboration between health economic researchers in Sub-Saharan Africa, with researchers being more likely to collaborate with Europe and North America than with other African countries. South Africa stood out as producing the highest number of health economic evaluations and collaborations. The development and evaluation of HTA research networks in Sub-Saharan Africa should be supported, with South Africa central to any such efforts. Organizations and institutions from high income countries interested in supporting priority setting in Sub-Saharan Africa should include promoting collaboration as part of their agendas, in order to take advantage of the potential transferability of results and methods of the available health economic analyses in Africa and internationally.

  3. Short-term memory in networks of dissociated cortical neurons.

    PubMed

    Dranias, Mark R; Ju, Han; Rajaram, Ezhilarasan; VanDongen, Antonius M J

    2013-01-30

    Short-term memory refers to the ability to store small amounts of stimulus-specific information for a short period of time. It is supported by both fading and hidden memory processes. Fading memory relies on recurrent activity patterns in a neuronal network, whereas hidden memory is encoded using synaptic mechanisms, such as facilitation, which persist even when neurons fall silent. We have used a novel computational and optogenetic approach to investigate whether these same memory processes hypothesized to support pattern recognition and short-term memory in vivo, exist in vitro. Electrophysiological activity was recorded from primary cultures of dissociated rat cortical neurons plated on multielectrode arrays. Cultures were transfected with ChannelRhodopsin-2 and optically stimulated using random dot stimuli. The pattern of neuronal activity resulting from this stimulation was analyzed using classification algorithms that enabled the identification of stimulus-specific memories. Fading memories for different stimuli, encoded in ongoing neural activity, persisted and could be distinguished from each other for as long as 1 s after stimulation was terminated. Hidden memories were detected by altered responses of neurons to additional stimulation, and this effect persisted longer than 1 s. Interestingly, network bursts seem to eliminate hidden memories. These results are similar to those that have been reported from similar experiments in vivo and demonstrate that mechanisms of information processing and short-term memory can be studied using cultured neuronal networks, thereby setting the stage for therapeutic applications using this platform.

  4. Molecular Evolution of the Neural Crest Regulatory Network in Ray-Finned Fish

    PubMed Central

    Kratochwil, Claudius F.; Geissler, Laura; Irisarri, Iker; Meyer, Axel

    2015-01-01

    Abstract Gene regulatory networks (GRN) are central to developmental processes. They are composed of transcription factors and signaling molecules orchestrating gene expression modules that tightly regulate the development of organisms. The neural crest (NC) is a multipotent cell population that is considered a key innovation of vertebrates. Its derivatives contribute to shaping the astounding morphological diversity of jaws, teeth, head skeleton, or pigmentation. Here, we study the molecular evolution of the NC GRN by analyzing patterns of molecular divergence for a total of 36 genes in 16 species of bony fishes. Analyses of nonsynonymous to synonymous substitution rate ratios (dN/dS) support patterns of variable selective pressures among genes deployed at different stages of NC development, consistent with the developmental hourglass model. Model-based clustering techniques of sequence features support the notion of extreme conservation of NC-genes across the entire network. Our data show that most genes are under strong purifying selection that is maintained throughout ray-finned fish evolution. Late NC development genes reveal a pattern of increased constraints in more recent lineages. Additionally, seven of the NC-genes showed signs of relaxation of purifying selection in the famously species-rich lineage of cichlid fishes. This suggests that NC genes might have played a role in the adaptive radiation of cichlids by granting flexibility in the development of NC-derived traits—suggesting an important role for NC network architecture during the diversification in vertebrates. PMID:26475317

  5. Neuroendocrine and immune network re-modeling in chronic fatigue syndrome: an exploratory analysis.

    PubMed

    Fuite, Jim; Vernon, Suzanne D; Broderick, Gordon

    2008-12-01

    This work investigates the significance of changes in association patterns linking indicators of neuroendocrine and immune activity in patients with chronic fatigue syndrome (CFS). Gene sets preferentially expressed in specific immune cell isolates were integrated with neuroendocrine data from a large population-based study. Co-expression patterns linking immune cell activity with hypothalamic-pituitary-adrenal (HPA), thyroidal (HPT) and gonadal (HPG) axis status were computed using mutual information criteria. Networks in control and CFS subjects were compared globally in terms of a weighted graph edit distance. Local re-modeling of node connectivity was quantified by node degree and eigenvector centrality measures. Results indicate statistically significant differences between CFS and control networks determined mainly by re-modeling around pituitary and thyroid nodes as well as an emergent immune sub-network. Findings align with known mechanisms of chronic inflammation and support possible immune-mediated loss of thyroid function in CFS exacerbated by blunted HPA axis responsiveness.

  6. The association between individual attachment patterns, the perceived social support, and the psychological well-being of Turkish informal caregivers.

    PubMed

    Kuscu, M Kemal; Dural, Uzay; Onen, Pinar; Yaşa, Yeşim; Yayla, Mete; Basaran, Gül; Turhal, Serdar; Bekiroğlu, Nural

    2009-09-01

    This study aimed to investigate the relations among the psychological well-being (i.e. depression and state/trait anxiety levels), attachment patterns (i.e. secure, ambivalent, avoidant), and the perceived social support from family/friends/significant others of caregivers of cancer patients in Turkey. Fifty-one caregivers of adult cancer patients were recruited from the oncology outpatient clinic of the Marmara Medical School Hospital in Istanbul. Caregivers were assessed with the Adult Attachment Scale, the Beck Depression Inventory, State-trait Anxiety Inventories, and the Multidimensional Scale of Perceived Social Support. Stepwise multiple regression analysis indicated that depression was predicted by ambivalent attachment and the perceived social support from family. The support from significant others was the significant predictor of trait anxiety and the caregivers' ambivalent attachment score was the significant predictor of state anxiety. We assert that ambivalent attachment pattern could confer a vulnerability to psychological distress in cancer caregivers. Assessing the psychological experiences and needs of caregivers and being aware of possible risk factors (such as attachment patterns) and protective factors (social support network) for depression and anxiety might be helpful for successful programmes and interventions that support the caregivers of cancer patients.

  7. A security architecture for health information networks.

    PubMed

    Kailar, Rajashekar; Muralidhar, Vinod

    2007-10-11

    Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today's healthcare enterprise. Recent work on 'nationwide health information network' architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately.

  8. Clustered Numerical Data Analysis Using Markov Lie Monoid Based Networks

    NASA Astrophysics Data System (ADS)

    Johnson, Joseph

    2016-03-01

    We have designed and build an optimal numerical standardization algorithm that links numerical values with their associated units, error level, and defining metadata thus supporting automated data exchange and new levels of artificial intelligence (AI). The software manages all dimensional and error analysis and computational tracing. Tables of entities verses properties of these generalized numbers (called ``metanumbers'') support a transformation of each table into a network among the entities and another network among their properties where the network connection matrix is based upon a proximity metric between the two items. We previously proved that every network is isomorphic to the Lie algebra that generates continuous Markov transformations. We have also shown that the eigenvectors of these Markov matrices provide an agnostic clustering of the underlying patterns. We will present this methodology and show how our new work on conversion of scientific numerical data through this process can reveal underlying information clusters ordered by the eigenvalues. We will also show how the linking of clusters from different tables can be used to form a ``supernet'' of all numerical information supporting new initiatives in AI.

  9. The expansion of neighborhood and pattern formation on spatial prisoner's dilemma

    NASA Astrophysics Data System (ADS)

    Qian, Xiaolan; Xu, Fangqian; Yang, Junzhong; Kurths, Jürgen

    2015-04-01

    The prisoner's dilemma (PD), in which players can either cooperate or defect, is considered a paradigm for studying the evolution of cooperation in spatially structured populations. There the compact cooperator cluster is identified as a characteristic pattern and the probability of forming such pattern in turn depends on the features of the networks. In this paper, we investigate the influence of expansion of neighborhood on pattern formation by taking a weak PD game with one free parameter T, the temptation to defect. Two different expansion methods of neighborhood are considered. One is based on a square lattice and expanses along four directions generating networks with degree increasing with K = 4 m . The other is based on a lattice with Moore neighborhood and expanses along eight directions, generating networks with degree of K = 8 m . Individuals are placed on the nodes of the networks, interact with their neighbors and learn from the better one. We find that cooperator can survive for a broad degree 4 ≤ K ≤ 70 by taking a loose type of cooperator clusters. The former simple corresponding relationship between macroscopic patterns and the microscopic PD interactions is broken. Under a condition that is unfavorable for cooperators such as large T and K, systems prefer to evolve to a loose type of cooperator clusters to support cooperation. However, compared to the well-known compact pattern, it is a suboptimal strategy because it cannot help cooperators dominating the population and always corresponding to a low cooperation level.

  10. Musical expertise is related to altered functional connectivity during audiovisual integration

    PubMed Central

    Paraskevopoulos, Evangelos; Kraneburg, Anja; Herholz, Sibylle Cornelia; Bamidis, Panagiotis D.; Pantev, Christo

    2015-01-01

    The present study investigated the cortical large-scale functional network underpinning audiovisual integration via magnetoencephalographic recordings. The reorganization of this network related to long-term musical training was investigated by comparing musicians to nonmusicians. Connectivity was calculated on the basis of the estimated mutual information of the sources’ activity, and the corresponding networks were statistically compared. Nonmusicians’ results indicated that the cortical network associated with audiovisual integration supports visuospatial processing and attentional shifting, whereas a sparser network, related to spatial awareness supports the identification of audiovisual incongruences. In contrast, musicians’ results showed enhanced connectivity in regions related to the identification of auditory pattern violations. Hence, nonmusicians rely on the processing of visual clues for the integration of audiovisual information, whereas musicians rely mostly on the corresponding auditory information. The large-scale cortical network underpinning multisensory integration is reorganized due to expertise in a cognitive domain that largely involves audiovisual integration, indicating long-term training-related neuroplasticity. PMID:26371305

  11. Mnemonic training reshapes brain networks to support superior memory

    PubMed Central

    Dresler, Martin; Shirer, William R.; Konrad, Boris N.; Müller, Nils C.J.; Wagner, Isabella C.; Fernández, Guillén; Czisch, Michael; Greicius, Michael D.

    2017-01-01

    Summary Memory skills strongly differ across the general population, however little is known about the brain characteristics supporting superior memory performance. Here, we assess functional brain network organization of 23 of the world’s most successful memory athletes and matched controls by fMRI during both task-free resting state baseline and active memory encoding. We demonstrate that in a group of naïve controls, functional connectivity changes induced by six weeks of mnemonic training were correlated with the network organization that distinguishes athletes from controls. During rest, this effect was mainly driven by connections between rather than within the visual, medial temporal lobe and default mode networks, whereas during task it was driven by connectivity within these networks. Similarity with memory athlete connectivity patterns predicted memory improvements up to 4 months after training. In conclusion, mnemonic training drives distributed rather than regional changes, reorganizing the brain’s functional network organization to enable superior memory performance. PMID:28279356

  12. Essential Points of a Support Network Approach for School Counselors Working with Children Diagnosed with Asperger's

    ERIC Educational Resources Information Center

    Guo, Yuh-Jen; Wang, Shu-Ching; Corbin-Burdick, Marilyn F.; Statz, Shelly R.

    2013-01-01

    Asperger Syndrome (AS) presents unique challenges to both families and schools. Children diagnosed with Asperger's possess unparalleled characteristics in cognitive functioning and behavioral pattern. These children need extra attention and assistance in schools. School counselors require a strategy to successfully engage and support these…

  13. Pattern dynamics of network-organized system with cross-diffusion

    NASA Astrophysics Data System (ADS)

    Zheng, Qianqian; Wang, Zhijie; Shen, Jianwei

    2017-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11272277, 11572278, and 11572084) and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (Grant No. 2017JR0013).

  14. Hysteresis, neural avalanches, and critical behavior near a first-order transition of a spiking neural network

    NASA Astrophysics Data System (ADS)

    Scarpetta, Silvia; Apicella, Ilenia; Minati, Ludovico; de Candia, Antonio

    2018-06-01

    Many experimental results, both in vivo and in vitro, support the idea that the brain cortex operates near a critical point and at the same time works as a reservoir of precise spatiotemporal patterns. However, the mechanism at the basis of these observations is still not clear. In this paper we introduce a model which combines both these features, showing that scale-free avalanches are the signature of a system posed near the spinodal line of a first-order transition, with many spatiotemporal patterns stored as dynamical metastable attractors. Specifically, we studied a network of leaky integrate-and-fire neurons whose connections are the result of the learning of multiple spatiotemporal dynamical patterns, each with a randomly chosen ordering of the neurons. We found that the network shows a first-order transition between a low-spiking-rate disordered state (down), and a high-rate state characterized by the emergence of collective activity and the replay of one of the stored patterns (up). The transition is characterized by hysteresis, or alternation of up and down states, depending on the lifetime of the metastable states. In both cases, critical features and neural avalanches are observed. Notably, critical phenomena occur at the edge of a discontinuous phase transition, as recently observed in a network of glow lamps.

  15. A Security Architecture for Health Information Networks

    PubMed Central

    Kailar, Rajashekar

    2007-01-01

    Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today’s healthcare enterprise. Recent work on ‘nationwide health information network’ architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately. PMID:18693862

  16. A text-based data mining and toxicity prediction modeling system for a clinical decision support in radiation oncology: A preliminary study

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Chang, Kyung Hwan; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie

    2017-08-01

    The aim of this study is an integrated research for text-based data mining and toxicity prediction modeling system for clinical decision support system based on big data in radiation oncology as a preliminary research. The structured and unstructured data were prepared by treatment plans and the unstructured data were extracted by dose-volume data image pattern recognition of prostate cancer for research articles crawling through the internet. We modeled an artificial neural network to build a predictor model system for toxicity prediction of organs at risk. We used a text-based data mining approach to build the artificial neural network model for bladder and rectum complication predictions. The pattern recognition method was used to mine the unstructured toxicity data for dose-volume at the detection accuracy of 97.9%. The confusion matrix and training model of the neural network were achieved with 50 modeled plans (n = 50) for validation. The toxicity level was analyzed and the risk factors for 25% bladder, 50% bladder, 20% rectum, and 50% rectum were calculated by the artificial neural network algorithm. As a result, 32 plans could cause complication but 18 plans were designed as non-complication among 50 modeled plans. We integrated data mining and a toxicity modeling method for toxicity prediction using prostate cancer cases. It is shown that a preprocessing analysis using text-based data mining and prediction modeling can be expanded to personalized patient treatment decision support based on big data.

  17. Friendship networks of inner-city adults: a latent class analysis and multi-level regression of supporter types and the association of supporter latent class membership with supporter and recipient drug use.

    PubMed

    Bohnert, Amy S B; German, Danielle; Knowlton, Amy R; Latkin, Carl A

    2010-03-01

    Social support is a multi-dimensional construct that is important to drug use cessation. The present study identified types of supportive friends among the social network members in a community-based sample and examined the relationship of supporter-type classes with supporter, recipient, and supporter-recipient relationship characteristics. We hypothesized that the most supportive network members and their support recipients would be less likely to be current heroin/cocaine users. Participants (n=1453) were recruited from low-income neighborhoods with a high prevalence of drug use. Participants identified their friends via a network inventory, and all nominated friends were included in a latent class analysis and grouped based on their probability of providing seven types of support. These latent classes were included as the dependent variable in a multi-level regression of supporter drug use, recipient drug use, and other characteristics. The best-fitting latent class model identified five support patterns: friends who provided Little/No Support, Low/Moderate Support, High Support, Socialization Support, and Financial Support. In bivariate models, friends in the High, Low/Moderate, and Financial Support were less likely to use heroin or cocaine and had less conflict with and were more trusted by the support recipient than friends in the Low/No Support class. Individuals with supporters in those same support classes compared to the Low/No Support class were less likely to use heroin or cocaine, or to be homeless or female. Multivariable models suggested similar trends. Those with current heroin/cocaine use were less likely to provide or receive comprehensive support from friends. Published by Elsevier Ireland Ltd.

  18. Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems.

    PubMed

    Kim, Jason Z; Soffer, Jonathan M; Kahn, Ari E; Vettel, Jean M; Pasqualetti, Fabio; Bassett, Danielle S

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  19. Role of graph architecture in controlling dynamical networks with applications to neural systems

    NASA Astrophysics Data System (ADS)

    Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  20. Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion.

    PubMed

    Sotiras, Aristeidis; Toledo, Jon B; Gur, Raquel E; Gur, Ruben C; Satterthwaite, Theodore D; Davatzikos, Christos

    2017-03-28

    During adolescence, the human cortex undergoes substantial remodeling to support a rapid expansion of behavioral repertoire. Accurately quantifying these changes is a prerequisite for understanding normal brain development, as well as the neuropsychiatric disorders that emerge in this vulnerable period. Past accounts have demonstrated substantial regional heterogeneity in patterns of brain development, but frequently have been limited by small samples and analytics that do not evaluate complex multivariate imaging patterns. Capitalizing on recent advances in multivariate analysis methods, we used nonnegative matrix factorization (NMF) to uncover coordinated patterns of cortical development in a sample of 934 youths ages 8-20, who completed structural neuroimaging as part of the Philadelphia Neurodevelopmental Cohort. Patterns of structural covariance (PSCs) derived by NMF were highly reproducible over a range of resolutions, and differed markedly from common gyral-based structural atlases. Moreover, PSCs were largely symmetric and showed correspondence to specific large-scale functional networks. The level of correspondence was ordered according to their functional role and position in the evolutionary hierarchy, being high in lower-order visual and somatomotor networks and diminishing in higher-order association cortex. Furthermore, PSCs showed divergent developmental associations, with PSCs in higher-order association cortex networks showing greater changes with age than primary somatomotor and visual networks. Critically, such developmental changes within PSCs were significantly associated with the degree of evolutionary cortical expansion. Together, our findings delineate a set of structural brain networks that undergo coordinated cortical thinning during adolescence, which is in part governed by evolutionary novelty and functional specialization.

  1. Grammatical analysis as a distributed neurobiological function.

    PubMed

    Bozic, Mirjana; Fonteneau, Elisabeth; Su, Li; Marslen-Wilson, William D

    2015-03-01

    Language processing engages large-scale functional networks in both hemispheres. Although it is widely accepted that left perisylvian regions have a key role in supporting complex grammatical computations, patient data suggest that some aspects of grammatical processing could be supported bilaterally. We investigated the distribution and the nature of grammatical computations across language processing networks by comparing two types of combinatorial grammatical sequences--inflectionally complex words and minimal phrases--and contrasting them with grammatically simple words. Novel multivariate analyses revealed that they engage a coalition of separable subsystems: inflected forms triggered left-lateralized activation, dissociable into dorsal processes supporting morphophonological parsing and ventral, lexically driven morphosyntactic processes. In contrast, simple phrases activated a consistently bilateral pattern of temporal regions, overlapping with inflectional activations in L middle temporal gyrus. These data confirm the role of the left-lateralized frontotemporal network in supporting complex grammatical computations. Critically, they also point to the capacity of bilateral temporal regions to support simple, linear grammatical computations. This is consistent with a dual neurobiological framework where phylogenetically older bihemispheric systems form part of the network that supports language function in the modern human, and where significant capacities for language comprehension remain intact even following severe left hemisphere damage. Copyright © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum.

    PubMed

    Jones, David T; Graff-Radford, Jonathan; Lowe, Val J; Wiste, Heather J; Gunter, Jeffrey L; Senjem, Matthew L; Botha, Hugo; Kantarci, Kejal; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Jack, Clifford R

    2017-12-01

    Functionally related brain regions are selectively vulnerable to Alzheimer's disease pathophysiology. However, molecular markers of this pathophysiology (i.e., beta-amyloid and tau aggregates) have discrepant spatial and temporal patterns of progression within these selectively vulnerable brain regions. Existing reductionist pathophysiologic models cannot account for these large-scale spatiotemporal inconsistencies. Within the framework of the recently proposed cascading network failure model of Alzheimer's disease, however, these large-scale patterns are to be expected. This model postulates the following: 1) a tau-associated, circumscribed network disruption occurs in brain regions specific to a given phenotype in clinically normal individuals; 2) this disruption can trigger phenotype independent, stereotypic, and amyloid-associated compensatory brain network changes indexed by changes in the default mode network; 3) amyloid deposition marks a saturation of functional compensation and portends an acceleration of the inciting phenotype specific, and tau-associated, network failure. With the advent of in vivo molecular imaging of tau pathology, combined with amyloid and functional network imaging, it is now possible to investigate the relationship between functional brain networks, tau, and amyloid across the disease spectrum within these selectively vulnerable brain regions. In a large cohort (n = 218) spanning the Alzheimer's disease spectrum from young, amyloid negative, cognitively normal subjects to Alzheimer's disease dementia, we found several distinct spatial patterns of tau deposition, including 'Braak-like' and 'non-Braak-like', across functionally related brain regions. Rather than arising focally and spreading sequentially, elevated tau signal seems to occur system-wide based on inferences made from multiple cross-sectional analyses we conducted looking at regional patterns of tau signal. Younger age-of-disease-onset was associated with 'non-Braak-like' patterns of tau, suggesting an association with atypical clinical phenotypes. As predicted by the cascading network failure model of Alzheimer's disease, we found that amyloid is a partial mediator of the relationship between functional network failure and tau deposition in functionally connected brain regions. This study implicates large-scale brain networks in the pathophysiology of tau deposition and offers support to models incorporating large-scale network physiology into disease models linking tau and amyloid, such as the cascading network failure model of Alzheimer's disease. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Decoding the Formation of New Semantics: MVPA Investigation of Rapid Neocortical Plasticity during Associative Encoding through Fast Mapping.

    PubMed

    Atir-Sharon, Tali; Gilboa, Asaf; Hazan, Hananel; Koilis, Ester; Manevitz, Larry M

    2015-01-01

    Neocortical structures typically only support slow acquisition of declarative memory; however, learning through fast mapping may facilitate rapid learning-induced cortical plasticity and hippocampal-independent integration of novel associations into existing semantic networks. During fast mapping the meaning of new words and concepts is inferred, and durable novel associations are incidentally formed, a process thought to support early childhood's exuberant learning. The anterior temporal lobe, a cortical semantic memory hub, may critically support such learning. We investigated encoding of semantic associations through fast mapping using fMRI and multivoxel pattern analysis. Subsequent memory performance following fast mapping was more efficiently predicted using anterior temporal lobe than hippocampal voxels, while standard explicit encoding was best predicted by hippocampal activity. Searchlight algorithms revealed additional activity patterns that predicted successful fast mapping semantic learning located in lateral occipitotemporal and parietotemporal neocortex and ventrolateral prefrontal cortex. By contrast, successful explicit encoding could be classified by activity in medial and dorsolateral prefrontal and parahippocampal cortices. We propose that fast mapping promotes incidental rapid integration of new associations into existing neocortical semantic networks by activating related, nonoverlapping conceptual knowledge. In healthy adults, this is better captured by unique anterior and lateral temporal lobe activity patterns, while hippocampal involvement is less predictive of this kind of learning.

  4. Going the Extra Mile: Enabling Joint Logistics for the Tactical War Fighter

    DTIC Science & Technology

    2010-05-04

    few of the links when relocating hubs. Chains v. Networks Supply Chain Too brittle , long CPL, low clustering, simple pattern, simple control...Mass Service Perspective Efficiency Highly Optimized Brittle , Rigid Supply Chains vs Networked Cross-Service Mutual Support Cross-Enterprise...Storage and Distribution Centei\\" Army Logistician 39, no. 6 (November-December 2007): 40. 68 Glen R Dowling, "Army and Marine Joint Ammunition

  5. A comparative study of 11 local health department organizational networks.

    PubMed

    Merrill, Jacqueline; Keeling, Jonathan W; Carley, Kathleen M

    2010-01-01

    Although the nation's local health departments (LHDs) share a common mission, variability in administrative structures is a barrier to identifying common, optimal management strategies. There is a gap in understanding what unifying features LHDs share as organizations that could be leveraged systematically for achieving high performance. To explore sources of commonality and variability in a range of LHDs by comparing intraorganizational networks. We used organizational network analysis to document relationships between employees, tasks, knowledge, and resources within LHDs, which may exist regardless of formal administrative structure. A national sample of 11 LHDs from seven states that differed in size, geographic location, and governance. Relational network data were collected via an on-line survey of all employees in 11 LHDs. A total of 1062 out of 1239 employees responded (84% response rate). Network measurements were compared using coefficient of variation. Measurements were correlated with scores from the National Public Health Performance Assessment and with LHD demographics. Rankings of tasks, knowledge, and resources were correlated across pairs of LHDs. We found that 11 LHDs exhibited compound organizational structures in which centralized hierarchies were coupled with distributed networks at the point of service. Local health departments were distinguished from random networks by a pattern of high centralization and clustering. Network measurements were positively associated with performance for 3 of 10 essential services (r > 0.65). Patterns in the measurements suggest how LHDs adapt to the population served. Shared network patterns across LHDs suggest where common organizational management strategies are feasible. This evidence supports national efforts to promote uniform standards for service delivery to diverse populations.

  6. Social Network Behavior and Engagement Within a Smoking Cessation Facebook Page

    PubMed Central

    Cole-Lewis, Heather; Perotte, Adler; Galica, Kasia; Dreyer, Lindy; Griffith, Christopher; Schwarz, Mary; Yun, Christopher; Patrick, Heather; Coa, Kisha

    2016-01-01

    Background Social media platforms are increasingly being used to support individuals in behavior change attempts, including smoking cessation. Examining the interactions of participants in health-related social media groups can help inform our understanding of how these groups can best be leveraged to facilitate behavior change. Objective The aim of this study was to analyze patterns of participation, self-reported smoking cessation length, and interactions within the National Cancer Institutes’ Facebook community for smoking cessation support. Methods Our sample consisted of approximately 4243 individuals who interacted (eg, posted, commented) on the public Smokefree Women Facebook page during the time of data collection. In Phase 1, social network visualizations and centrality measures were used to evaluate network structure and engagement. In Phase 2, an inductive, thematic qualitative content analysis was conducted with a subsample of 500 individuals, and correlational analysis was used to determine how participant engagement was associated with self-reported session length. Results Between February 2013 and March 2014, there were 875 posts and 4088 comments from approximately 4243 participants. Social network visualizations revealed the moderator’s role in keeping the community together and distributing the most active participants. Correlation analyses suggest that engagement in the network was significantly inversely associated with cessation status (Spearman correlation coefficient = −0.14, P=.03, N=243). The content analysis of 1698 posts from 500 randomly selected participants identified the most frequent interactions in the community as providing support (43%, n=721) and announcing number of days smoke free (41%, n=689). Conclusions These findings highlight the importance of the moderator for network engagement and provide helpful insights into the patterns and types of interactions participants are engaging in. This study adds knowledge of how the social network of a smoking cessation community behaves within the confines of a Facebook group. PMID:27485315

  7. Brain anatomical networks in early human brain development.

    PubMed

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  8. On the role of sparseness in the evolution of modularity in gene regulatory networks

    PubMed Central

    2018-01-01

    Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases. PMID:29775459

  9. On the role of sparseness in the evolution of modularity in gene regulatory networks.

    PubMed

    Espinosa-Soto, Carlos

    2018-05-01

    Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.

  10. Social networks and patterns of health risk behaviours over two decades: A multi-cohort study.

    PubMed

    Kauppi, Maarit; Elovainio, Marko; Stenholm, Sari; Virtanen, Marianna; Aalto, Ville; Koskenvuo, Markku; Kivimäki, Mika; Vahtera, Jussi

    2017-08-01

    To determine the associations between social network size and subsequent long-term health behaviour patterns, as indicated by alcohol use, smoking, and physical activity. Repeat data from up to six surveys over a 15- or 20-year follow-up were drawn from the Finnish Public Sector study (Raisio-Turku cohort, n=986; Hospital cohort, n=7307), and the Health and Social Support study (n=20,115). Social network size was determined at baseline, and health risk behaviours were assessed using repeated data from baseline and follow-up. We pooled cohort-specific results from repeated-measures log-binomial regression with the generalized estimating equations (GEE) method using fixed-effects meta-analysis. Participants with up to 10 members in their social network at baseline had an unhealthy risk factor profile throughout the follow-up. The pooled relative risks adjusted for age, gender, survey year, chronic conditions and education were 1.15 for heavy alcohol use (95% CI: 1.06-1.24), 1.19 for smoking (95% CI: 1.12-1.27), and 1.25 for low physical activity (95% CI: 1.21-1.29), as compared with those with >20 members in their social network. These associations appeared to be similar in subgroups stratified according to gender, age and education. Social network size predicted persistent behaviour-related health risk patterns up to at least two decades. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Resting state network topology of the ferret brain.

    PubMed

    Zhou, Zhe Charles; Salzwedel, Andrew P; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K; Gilmore, John H; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-12-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Rural health network development: public policy issues and state initiatives.

    PubMed

    Casey, M M; Wellever, A; Moscovice, I

    1997-02-01

    Rural health networks are a potential way for rural health care systems to improve access to care, reduce costs, and enhance quality of care. Networks provide a means for rural providers to contract with managed care organizations, develop their own managed care entities, share resources, and structure practice opportunities to support recruitment and retention of rural physicians and other health care professionals. The results of early network development initiatives indicate a need for state officials and others interested in encouraging network development to agree on common rural health network definitions, to identify clearly the goals of network development programs, and to document and analyze program outcomes. Future network development efforts need to be much more comprehensive if they are to have a significant impact on rural health care. This article analyzes public policy issues related to integrated rural health network development, discusses current efforts to encourage network development in rural areas, and suggests actions that states may take if they desire to support rural health network development. These actions include adopting a formal rural health network definition, providing networks with alternatives to certain regulatory requirements, and providing incentives such as matching grants, loans, or technical assistance. Without public sector support for networks, managed care options may continue to be unavailable in many less densely populated rural areas of the country, and locally controlled rural health networks are unlikely to develop as an alternative to the dominant pattern of managed care expansion by large urban entities. Implementation of Medicare reform legislation could provide significant incentives for the development of rural health networks, depending on the reimbursement provisions, financial solvency standards, and antitrust exemptions for provider-sponsored networks in the final legislation and federal regulations.

  13. Default and Executive Network Coupling Supports Creative Idea Production

    PubMed Central

    Beaty, Roger E.; Benedek, Mathias; Barry Kaufman, Scott; Silvia, Paul J.

    2015-01-01

    The role of attention in creative cognition remains controversial. Neuroimaging studies have reported activation of brain regions linked to both cognitive control and spontaneous imaginative processes, raising questions about how these regions interact to support creative thought. Using functional magnetic resonance imaging (fMRI), we explored this question by examining dynamic interactions between brain regions during a divergent thinking task. Multivariate pattern analysis revealed a distributed network associated with divergent thinking, including several core hubs of the default (posterior cingulate) and executive (dorsolateral prefrontal cortex) networks. The resting-state network affiliation of these regions was confirmed using data from an independent sample of participants. Graph theory analysis assessed global efficiency of the divergent thinking network, and network efficiency was found to increase as a function of individual differences in divergent thinking ability. Moreover, temporal connectivity analysis revealed increased coupling between default and salience network regions (bilateral insula) at the beginning of the task, followed by increased coupling between default and executive network regions at later stages. Such dynamic coupling suggests that divergent thinking involves cooperation between brain networks linked to cognitive control and spontaneous thought, which may reflect focused internal attention and the top-down control of spontaneous cognition during creative idea production. PMID:26084037

  14. Phase-locked patterns of the Kuramoto model on 3-regular graphs

    NASA Astrophysics Data System (ADS)

    DeVille, Lee; Ermentrout, Bard

    2016-09-01

    We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.

  15. Phase-locked patterns of the Kuramoto model on 3-regular graphs.

    PubMed

    DeVille, Lee; Ermentrout, Bard

    2016-09-01

    We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.

  16. Playgroup Participation and Social Support Outcomes for Mothers of Young Children: A Longitudinal Cohort Study

    PubMed Central

    Hancock, Kirsten J.; Cunningham, Nadia K.; Lawrence, David; Zarb, David; Zubrick, Stephen R.

    2015-01-01

    Objective This study aimed to examine friendship networks and social support outcomes for mothers according to patterns of playgroup participation. Methods Data from the Longitudinal Study of Australian Children were used to examine the extent to which patterns of playgroup participation across the ages of 3–19 months (Wave 1) and 2–3 years (Wave 2) were associated with social support outcomes for mothers at Wave 3 (4–5 years) and four years later at Wave 5 (8–9 years). Analyses were adjusted for initial friendship attachments at Wave 1 and other socio-demographic characteristics. Results Log-binomial regression models estimating relative risks showed that mothers who never participated in a playgroup, or who participated at either Wave 1 or Wave 2 only, were 1.7 and 1.8 times as likely to report having no support from friends when the child was 4–5 years, and 2.0 times as likely to have no support at age 8–9 years, compared with mothers who persistently participated in playgroup at both Wave 1 and Wave 2. Conclusion These results provide evidence that persistent playgroup participation may acts as a protective factor against poor social support outcomes. Socially isolated parents may find playgroups a useful resource to build their social support networks. PMID:26181426

  17. Subsurface to substrate: dual-scale micro/nanofluidic networks for investigating transport anomalies in tight porous media.

    PubMed

    Kelly, Shaina A; Torres-Verdín, Carlos; Balhoff, Matthew T

    2016-08-07

    Micro/nanofluidic experiments in synthetic representations of tight porous media, often referred to as "reservoir-on-a-chip" devices, are an emerging approach to researching anomalous fluid transport trends in energy-bearing and fluid-sequestering geologic porous media. We detail, for the first time, the construction of dual-scale micro/nanofluidic devices that are relatively large-scale, two-dimensional network representations of granular and fractured nanoporous media. The fabrication scheme used in the development of the networks on quartz substrates (master patterns) is facile and replicable: transmission electron microscopy (TEM) grids with lacey carbon support film were used as shadow masks in thermal evaporation/deposition and reactive ion etch (RIE) was used for hardmask pattern transfer. The reported nanoscale network geometries are heterogeneous and composed of hydraulically resistive paths (throats) meeting at junctures (pores) to mimic the low topological connectivity of nanoporous sedimentary rocks such as shale. The geometry also includes homogenous microscale grid patterns that border the nanoscale networks and represent microfracture pathways. Master patterns were successfully replicated with a sequence of polydimethylsiloxane (PDMS) and Norland Optical Adhesive (NOA) 63 polymers. The functionality of the fabricated quartz and polymer nanofluidic devices was validated with aqueous imbibition experiments and differential interference contrast microscopy. These dual-scale fluidic devices are promising predictive tools for hypothesis testing and calibration against bulk fluid measurements in tight geologic, biologic, and synthetic porous material of similar dual-scale pore structure. Applications to shale/mudrock transport studies in particular are focused on herein.

  18. Mixed reality framework for collective motion patterns of swarms with delay coupling

    NASA Astrophysics Data System (ADS)

    Szwaykowska, Klementyna; Schwartz, Ira

    The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is an important subject for many applications within the field of distributed robotic systems. However, there are significant logistical challenges associated with testing fully distributed systems in real-world settings. In this paper, we provide a rigorous theoretical justification for the use of mixed-reality experiments as a stepping stone to fully physical testing of distributed robotic systems. We also model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. Our analyses, assuming agents communicating over an Erdos-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm. K. S. was a National Research Council postdoctoral fellow. I.B.S was supported by the U.S. Naval Research Laboratory funding (N0001414WX00023) and office of Naval Research (N0001414WX20610).

  19. An open source high-performance solution to extract surface water drainage networks from diverse terrain conditions

    USGS Publications Warehouse

    Stanislawski, Larry V.; Survila, Kornelijus; Wendel, Jeffrey; Liu, Yan; Buttenfield, Barbara P.

    2018-01-01

    This paper describes a workflow for automating the extraction of elevation-derived stream lines using open source tools with parallel computing support and testing the effectiveness of procedures in various terrain conditions within the conterminous United States. Drainage networks are extracted from the US Geological Survey 1/3 arc-second 3D Elevation Program elevation data having a nominal cell size of 10 m. This research demonstrates the utility of open source tools with parallel computing support for extracting connected drainage network patterns and handling depressions in 30 subbasins distributed across humid, dry, and transitional climate regions and in terrain conditions exhibiting a range of slopes. Special attention is given to low-slope terrain, where network connectivity is preserved by generating synthetic stream channels through lake and waterbody polygons. Conflation analysis compares the extracted streams with a 1:24,000-scale National Hydrography Dataset flowline network and shows that similarities are greatest for second- and higher-order tributaries.

  20. Analysis of stakeholders networks of infant and young child nutrition programmes in Sri Lanka, India, Nepal, Bangladesh and Pakistan.

    PubMed

    Uddin, Shahadat; Mahmood, Hana; Senarath, Upul; Zahiruddin, Quazi; Karn, Sumit; Rasheed, Sabrina; Dibley, Michael

    2017-06-13

    Effective public policies are needed to support appropriate infant and young child feeding (IYCF) to ensure adequate child growth and development, especially in low and middle income countries. The aim of this study was to: (i) capture stakeholder networks in relation to funding and technical support for IYCF policy across five countries in South Asia (i.e. Sri Lanka, India, Nepal, Bangladesh and Pakistan); and (ii) understand how stakeholder networks differed between countries, and identify common actors and their patterns in network engagement across the region. The Net-Map method, which is an interview-based mapping technique to visualise and capture connections among different stakeholders that collaborate towards achieving a focused goal, has been used to map funding and technical support networks in all study sites. Our study was conducted at the national level in Bangladesh, India, Nepal, and Sri Lanka, as well as in selected states or provinces in India and Pakistan during 2013-2014. We analysed the network data using a social network analysis software (NodeXL). The number of stakeholders identified as providing technical support was higher than the number of stakeholders providing funding support, across all study sites. India (New Delhi site - national level) site had the highest number of influential stakeholders for both funding (43) and technical support (86) activities. Among all nine study sites, India (New Delhi - national level) and Sri Lanka had the highest number of participating government stakeholders (22) in their respective funding networks. Sri Lanka also had the highest number of participating government stakeholders for technical support (34) among all the study sites. Government stakeholders are more engaged in technical support activities compared with their involvement in funding activities. The United Nations Children's Emergency Fund (UNICEF) and the World Health Organization (WHO) were highly engaged stakeholders for both funding and technical support activities across all study sites. International stakeholders were highly involved in both the funding and technical support activities related to IYCF practices across these nine study sites. Government stakeholders received more support for funding and technical support activities from other stakeholders compared with the support that they offered. Stakeholders were, in general, more engaged for technical support activities compared with the funding activities.

  1. The neural basis of visual word form processing: a multivariate investigation.

    PubMed

    Nestor, Adrian; Behrmann, Marlene; Plaut, David C

    2013-07-01

    Current research on the neurobiological bases of reading points to the privileged role of a ventral cortical network in visual word processing. However, the properties of this network and, in particular, its selectivity for orthographic stimuli such as words and pseudowords remain topics of significant debate. Here, we approached this issue from a novel perspective by applying pattern-based analyses to functional magnetic resonance imaging data. Specifically, we examined whether, where and how, orthographic stimuli elicit distinct patterns of activation in the human cortex. First, at the category level, multivariate mapping found extensive sensitivity throughout the ventral cortex for words relative to false-font strings. Secondly, at the identity level, the multi-voxel pattern classification provided direct evidence that different pseudowords are encoded by distinct neural patterns. Thirdly, a comparison of pseudoword and face identification revealed that both stimulus types exploit common neural resources within the ventral cortical network. These results provide novel evidence regarding the involvement of the left ventral cortex in orthographic stimulus processing and shed light on its selectivity and discriminability profile. In particular, our findings support the existence of sublexical orthographic representations within the left ventral cortex while arguing for the continuity of reading with other visual recognition skills.

  2. Classification of epileptiform and wicket spike of EEG pattern using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Puspita, Juni Wijayanti; Jaya, Agus Indra; Gunadharma, Suryani

    2017-03-01

    Epilepsy is characterized by recurrent seizures that is resulted by permanent brain abnormalities. One of tools to support the diagnosis of epilepsy is Electroencephalograph (EEG), which describes the recording of brain electrical activity. Abnormal EEG patterns in epilepsy patients consist of Spike and Sharp waves. While both waves, there is a normal pattern that sometimes misinterpreted as epileptiform by electroenchepalographer (EEGer), namely Wicket Spike. The main difference of the three waves are on the time duration that related to the frequency. In this study, we proposed a method to classify a EEG wave into Sharp wave, Spike wave or Wicket spike group using Backpropagation Neural Network based on the frequency and amplitude of each wave. The results show that the proposed method can classifies the three group of waves with good accuracy.

  3. Signal propagation and logic gating in networks of integrate-and-fire neurons.

    PubMed

    Vogels, Tim P; Abbott, L F

    2005-11-16

    Transmission of signals within the brain is essential for cognitive function, but it is not clear how neural circuits support reliable and accurate signal propagation over a sufficiently large dynamic range. Two modes of propagation have been studied: synfire chains, in which synchronous activity travels through feedforward layers of a neuronal network, and the propagation of fluctuations in firing rate across these layers. In both cases, a sufficient amount of noise, which was added to previous models from an external source, had to be included to support stable propagation. Sparse, randomly connected networks of spiking model neurons can generate chaotic patterns of activity. We investigate whether this activity, which is a more realistic noise source, is sufficient to allow for signal transmission. We find that, for rate-coded signals but not for synfire chains, such networks support robust and accurate signal reproduction through up to six layers if appropriate adjustments are made in synaptic strengths. We investigate the factors affecting transmission and show that multiple signals can propagate simultaneously along different pathways. Using this feature, we show how different types of logic gates can arise within the architecture of the random network through the strengthening of specific synapses.

  4. A Dynamic Optimization Technique for Siting the NASA-Clark Atlanta Urban Rain Gauge Network (NCURN)

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Taylor, Layi

    2003-01-01

    NASA satellites and ground instruments have indicated that cities like Atlanta, Georgia may create or alter rainfall. Scientists speculate that the urban heat island caused by man-made surfaces in cities impact the heat and wind patterns that form clouds and rainfall. However, more conclusive evidence is required to substantiate findings from satellites. NASA, along with scientists at Clark Atlanta University, are implementing a dense, urban rain gauge network in the metropolitan Atlanta area to support a satellite validation program called Studies of PRecipitation Anomalies from Widespread Urban Landuse (SPRAWL). SPRAWL will be conducted during the summer of 2003 to further identify and understand the impact of urban Atlanta on precipitation variability. The paper provides an. overview of SPRAWL, which represents one of the more comprehensive efforts in recent years to focus exclusively on urban-impacted rainfall. The paper also introduces a novel technique for deploying rain gauges for SPRAWL. The deployment of the dense Atlanta network is unique because it utilizes Geographic Information Systems (GIS) and Decision Support Systems (DSS) to optimize deployment of the rain gauges. These computer aided systems consider access to roads, drainage systems, tree cover, and other factors in guiding the deployment of the gauge network. GIS and DSS also provide decision-makers with additional resources and flexibility to make informed decisions while considering numerous factors. Also, the new Atlanta network and SPRAWL provide a unique opportunity to merge the high-resolution, urban rain gauge network with satellite-derived rainfall products to understand how cities are changing rainfall patterns, and possibly climate.

  5. A Comparative Study of 11 Local Health Department Organizational Networks

    PubMed Central

    Merrill, Jacqueline; Keeling, Jonathan W.; Carley, Kathleen M.

    2013-01-01

    Context Although the nation’s local health departments (LHDs) share a common mission, variability in administrative structures is a barrier to identifying common, optimal management strategies. There is a gap in understanding what unifying features LHDs share as organizations that could be leveraged systematically for achieving high performance. Objective To explore sources of commonality and variability in a range of LHDs by comparing intraorganizational networks. Intervention We used organizational network analysis to document relationships between employees, tasks, knowledge, and resources within LHDs, which may exist regardless of formal administrative structure. Setting A national sample of 11 LHDs from seven states that differed in size, geographic location, and governance. Participants Relational network data were collected via an on-line survey of all employees in 11 LHDs. A total of 1 062 out of 1 239 employees responded (84% response rate). Outcome Measures Network measurements were compared using coefficient of variation. Measurements were correlated with scores from the National Public Health Performance Assessment and with LHD demographics. Rankings of tasks, knowledge, and resources were correlated across pairs of LHDs. Results We found that 11 LHDs exhibited compound organizational structures in which centralized hierarchies were coupled with distributed networks at the point of service. Local health departments were distinguished from random networks by a pattern of high centralization and clustering. Network measurements were positively associated with performance for 3 of 10 essential services (r > 0.65). Patterns in the measurements suggest how LHDs adapt to the population served. Conclusions Shared network patterns across LHDs suggest where common organizational management strategies are feasible. This evidence supports national efforts to promote uniform standards for service delivery to diverse populations. PMID:20445462

  6. The Interaction Network Ontology-supported modeling and mining of complex interactions represented with multiple keywords in biomedical literature.

    PubMed

    Özgür, Arzucan; Hur, Junguk; He, Yongqun

    2016-01-01

    The Interaction Network Ontology (INO) logically represents biological interactions, pathways, and networks. INO has been demonstrated to be valuable in providing a set of structured ontological terms and associated keywords to support literature mining of gene-gene interactions from biomedical literature. However, previous work using INO focused on single keyword matching, while many interactions are represented with two or more interaction keywords used in combination. This paper reports our extension of INO to include combinatory patterns of two or more literature mining keywords co-existing in one sentence to represent specific INO interaction classes. Such keyword combinations and related INO interaction type information could be automatically obtained via SPARQL queries, formatted in Excel format, and used in an INO-supported SciMiner, an in-house literature mining program. We studied the gene interaction sentences from the commonly used benchmark Learning Logic in Language (LLL) dataset and one internally generated vaccine-related dataset to identify and analyze interaction types containing multiple keywords. Patterns obtained from the dependency parse trees of the sentences were used to identify the interaction keywords that are related to each other and collectively represent an interaction type. The INO ontology currently has 575 terms including 202 terms under the interaction branch. The relations between the INO interaction types and associated keywords are represented using the INO annotation relations: 'has literature mining keywords' and 'has keyword dependency pattern'. The keyword dependency patterns were generated via running the Stanford Parser to obtain dependency relation types. Out of the 107 interactions in the LLL dataset represented with two-keyword interaction types, 86 were identified by using the direct dependency relations. The LLL dataset contained 34 gene regulation interaction types, each of which associated with multiple keywords. A hierarchical display of these 34 interaction types and their ancestor terms in INO resulted in the identification of specific gene-gene interaction patterns from the LLL dataset. The phenomenon of having multi-keyword interaction types was also frequently observed in the vaccine dataset. By modeling and representing multiple textual keywords for interaction types, the extended INO enabled the identification of complex biological gene-gene interactions represented with multiple keywords.

  7. Symmetry in locomotor central pattern generators and animal gaits

    NASA Astrophysics Data System (ADS)

    Golubitsky, Martin; Stewart, Ian; Buono, Pietro-Luciano; Collins, J. J.

    1999-10-01

    Animal locomotion is controlled, in part, by a central pattern generator (CPG), which is an intraspinal network of neurons capable of generating a rhythmic output. The spatio-temporal symmetries of the quadrupedal gaits walk, trot and pace lead to plausible assumptions about the symmetries of locomotor CPGs. These assumptions imply that the CPG of a quadruped should consist of eight nominally identical subcircuits, arranged in an essentially unique matter. Here we apply analogous arguments to myriapod CPGs. Analyses based on symmetry applied to these networks lead to testable predictions, including a distinction between primary and secondary gaits, the existence of a new primary gait called `jump', and the occurrence of half-integer wave numbers in myriapod gaits. For bipeds, our analysis also predicts two gaits with the out-of-phase symmetry of the walk and two gaits with the in-phase symmetry of the hop. We present data that support each of these predictions. This work suggests that symmetry can be used to infer a plausible class of CPG network architectures from observed patterns of animal gaits.

  8. Differential Tuning of Ventral and Dorsal Streams during the Generation of Common and Uncommon Tool Uses.

    PubMed

    Matheson, Heath E; Buxbaum, Laurel J; Thompson-Schill, Sharon L

    2017-11-01

    Our use of tools is situated in different contexts. Prior evidence suggests that diverse regions within the ventral and dorsal streams represent information supporting common tool use. However, given the flexibility of object concepts, these regions may be tuned to different types of information when generating novel or uncommon uses of tools. To investigate this, we collected fMRI data from participants who reported common or uncommon tool uses in response to visually presented familiar objects. We performed a pattern dissimilarity analysis in which we correlated cortical patterns with behavioral measures of visual, action, and category information. The results showed that evoked cortical patterns within the dorsal tool use network reflected action and visual information to a greater extent in the uncommon use group, whereas evoked neural patterns within the ventral tool use network reflected categorical information more strongly in the common use group. These results reveal the flexibility of cortical representations of tool use and the situated nature of cortical representations more generally.

  9. Cholinergic Plasticity of Oscillating Neuronal Assemblies in Mouse Hippocampal Slices

    PubMed Central

    Zylla, Maura M.; Zhang, Xiaomin; Reichinnek, Susanne; Draguhn, Andreas; Both, Martin

    2013-01-01

    The mammalian hippocampus expresses several types of network oscillations which entrain neurons into transiently stable assemblies. These groups of co-active neurons are believed to support the formation, consolidation and recall of context-dependent memories. Formation of new assemblies occurs during theta- and gamma-oscillations under conditions of high cholinergic activity. Memory consolidation is linked to sharp wave-ripple oscillations (SPW-R) during decreased cholinergic tone. We hypothesized that increased cholinergic tone supports plastic changes of assemblies while low cholinergic tone favors their stability. Coherent spatiotemporal network patterns were measured during SPW-R activity in mouse hippocampal slices. We compared neuronal activity within the oscillating assemblies before and after a transient phase of carbachol-induced gamma oscillations. Single units maintained their coupling to SPW-R throughout the experiment and could be re-identified after the transient phase of gamma oscillations. However, the frequency of SPW-R-related unit firing was enhanced after muscarinic stimulation. At the network level, these changes resulted in altered patterns of extracellularly recorded SPW-R waveforms. In contrast, recording of ongoing SPW-R activity without intermittent cholinergic stimulation revealed remarkably stable repetitive activation of assemblies. These results show that activation of cholinergic receptors induces plasticity at the level of oscillating hippocampal assemblies, in line with the different role of gamma- and SPW-R network activity for memory formation and –consolidation, respectively. PMID:24260462

  10. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  11. Linking actin networks and cell membrane via a reaction-diffusion-elastic description of nonlinear filopodia initiation.

    PubMed

    Ben Isaac, Eyal; Manor, Uri; Kachar, Bechara; Yochelis, Arik; Gov, Nir S

    2013-08-01

    Reaction-diffusion models have been used to describe pattern formation on the cellular scale, and traditionally do not include feedback between cellular shape changes and biochemical reactions. We introduce here a distinct reaction-diffusion-elasticity approach: The reaction-diffusion part describes bistability between two actin orientations, coupled to the elastic energy of the cell membrane deformations. This coupling supports spatially localized patterns, even when such solutions do not exist in the uncoupled self-inhibited reaction-diffusion system. We apply this concept to describe the nonlinear (threshold driven) initiation mechanism of actin-based cellular protrusions and provide support by several experimental observations.

  12. Software-codec-based full motion video conferencing on the PC using visual pattern image sequence coding

    NASA Astrophysics Data System (ADS)

    Barnett, Barry S.; Bovik, Alan C.

    1995-04-01

    This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.

  13. Classification of neck movement patterns related to whiplash-associated disorders using neural networks.

    PubMed

    Grip, Helena; Ohberg, Fredrik; Wiklund, Urban; Sterner, Ylva; Karlsson, J Stefan; Gerdle, Björn

    2003-12-01

    This paper presents a new method for classification of neck movement patterns related to Whiplash-associated disorders (WAD) using a resilient backpropagation neural network (BPNN). WAD are a common diagnosis after neck trauma, typically caused by rear-end car accidents. Since physical injuries seldom are found with present imaging techniques, the diagnosis can be difficult to make. The active range of the neck is often visually inspected in patients with neck pain, but this is a subjective measure, and a more objective decision support system, that gives a reliable and more detailed analysis of neck movement pattern, is needed. The objective of this study was to evaluate the predictive ability of a BPNN, using neck movement variables as input. Three-dimensional (3-D) neck movement data from 59 subjects with WAD and 56 control subjects were collected with a ProReflex system. Rotation angle and angle velocity were calculated using the instantaneous helical axis method and motion variables were extracted. A principal component analysis was performed in order to reduce data and improve the BPNN performance. BPNNs with six hidden nodes had a predictivity of 0.89, a sensitivity of 0.90 and a specificity of 0.88, which are very promising results. This shows that neck movement analysis combined with a neural network could build the basis of a decision support system for classifying suspected WAD, even though further evaluation of the method is needed.

  14. Eliciting design patterns for e-learning systems

    NASA Astrophysics Data System (ADS)

    Retalis, Symeon; Georgiakakis, Petros; Dimitriadis, Yannis

    2006-06-01

    Design pattern creation, especially in the e-learning domain, is a highly complex process that has not been sufficiently studied and formalized. In this paper, we propose a systematic pattern development cycle, whose most important aspects focus on reverse engineering of existing systems in order to elicit features that are cross-validated through the use of appropriate, authentic scenarios. However, an iterative pattern process is proposed that takes advantage of multiple data sources, thus emphasizing a holistic view of the teaching learning processes. The proposed schema of pattern mining has been extensively validated for Asynchronous Network Supported Collaborative Learning (ANSCL) systems, as well as for other types of tools in a variety of scenarios, with promising results.

  15. Understanding emotion with brain networks.

    PubMed

    Pessoa, Luiz

    2018-02-01

    Emotional processing appears to be interlocked with perception, cognition, motivation, and action. These interactions are supported by the brain's large-scale non-modular anatomical and functional architectures. An important component of this organization involves characterizing the brain in terms of networks. Two aspects of brain networks are discussed: brain networks should be considered as inherently overlapping (not disjoint) and dynamic (not static). Recent work on multivariate pattern analysis shows that affective dimensions can be detected in the activity of distributed neural systems that span cortical and subcortical regions. More broadly, the paper considers how we should think of causation in complex systems like the brain, so as to inform the relationship between emotion and other mental aspects, such as cognition.

  16. Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses

    PubMed Central

    Yu, Cheng-han; Wu, Hung-Jen; Kaizuka, Yoshihisa; Vale, Ronald D.; Groves, Jay T.

    2010-01-01

    Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3ε on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network. PMID:20686692

  17. External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network.

    PubMed

    Vitek, Jerrold L; Zhang, Jianyu; Hashimoto, Takao; Russo, Gary S; Baker, Kenneth B

    2012-01-01

    Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) and the subthalamic nucleus (STN) are effective for the treatment of advanced Parkinson's disease (PD). We have shown previously that DBS of the external segment of the globus pallidus (GPe) is associated with improvements in parkinsonian motor signs; however, the mechanism of this effect is not known. In this study, we extend our findings on the effect of STN and GPi DBS on neuronal activity in the basal ganglia thalamic network to include GPe DBS using the 1-methyl-4-phenyl-1.2.3.6-tetrahydropyridine (MPTP) monkey model. Stimulation parameters that improved bradykinesia were associated with changes in the pattern and mean discharge rate of neuronal activity in the GPi, STN, and the pallidal [ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)] and cerebellar [ventralis lateralis posterior pars oralis (VPLo)] receiving areas of the motor thalamus. Population post-stimulation time histograms revealed a complex pattern of stimulation-related inhibition and excitation for the GPi and VA/VLo, with a more consistent pattern of inhibition in STN and excitation in VPLo. Mean discharge rate was reduced in the GPi and STN and increased in the VPLo. Effective GPe DBS also reduced bursting in the STN and GPi. These data support the hypothesis that therapeutic DBS activates output from the stimulated structure and changes the temporal pattern of neuronal activity throughout the basal ganglia thalamic network and provide further support for GPe as a potential therapeutic target for DBS in the treatment of PD. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Automatic classification of thermal patterns in diabetic foot based on morphological pattern spectrum

    NASA Astrophysics Data System (ADS)

    Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Ramirez-Cortes, J.; Renero-Carrillo, F.

    2015-11-01

    This paper presents a novel approach to characterize and identify patterns of temperature in thermographic images of the human foot plant in support of early diagnosis and follow-up of diabetic patients. Composed feature vectors based on 3D morphological pattern spectrum (pecstrum) and relative position, allow the system to quantitatively characterize and discriminate non-diabetic (control) and diabetic (DM) groups. Non-linear classification using neural networks is used for that purpose. A classification rate of 94.33% in average was obtained with the composed feature extraction process proposed in this paper. Performance evaluation and obtained results are presented.

  19. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease.

    PubMed

    Melzer, Tracy R; Watts, Richard; MacAskill, Michael R; Pearson, John F; Rüeger, Sina; Pitcher, Toni L; Livingston, Leslie; Graham, Charlotte; Keenan, Ross; Shankaranarayanan, Ajit; Alsop, David C; Dalrymple-Alford, John C; Anderson, Tim J

    2011-03-01

    There is a need for objective imaging markers of Parkinson's disease status and progression. Positron emission tomography and single photon emission computed tomography studies have suggested patterns of abnormal cerebral perfusion in Parkinson's disease as potential functional biomarkers. This study aimed to identify an arterial spin labelling magnetic resonance-derived perfusion network as an accessible, non-invasive alternative. We used pseudo-continuous arterial spin labelling to measure cerebral grey matter perfusion in 61 subjects with Parkinson's disease with a range of motor and cognitive impairment, including patients with dementia and 29 age- and sex-matched controls. Principal component analysis was used to derive a Parkinson's disease-related perfusion network via logistic regression. Region of interest analysis of absolute perfusion values revealed that the Parkinson's disease pattern was characterized by decreased perfusion in posterior parieto-occipital cortex, precuneus and cuneus, and middle frontal gyri compared with healthy controls. Perfusion was preserved in globus pallidus, putamen, anterior cingulate and post- and pre-central gyri. Both motor and cognitive statuses were significant factors related to network score. A network approach, supported by arterial spin labelling-derived absolute perfusion values may provide a readily accessible neuroimaging method to characterize and track progression of both motor and cognitive status in Parkinson's disease.

  20. Application of Classification Models to Pharyngeal High-Resolution Manometry

    ERIC Educational Resources Information Center

    Mielens, Jason D.; Hoffman, Matthew R.; Ciucci, Michelle R.; McCulloch, Timothy M.; Jiang, Jack J.

    2012-01-01

    Purpose: The authors present 3 methods of performing pattern recognition on spatiotemporal plots produced by pharyngeal high-resolution manometry (HRM). Method: Classification models, including the artificial neural networks (ANNs) multilayer perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines (SVM), were…

  1. Modeling of workflow-engaged networks on radiology transfers across a metro network.

    PubMed

    Camorlinga, Sergio; Schofield, Bruce

    2006-04-01

    Radiology metro networks bear the challenging proposition of interconnecting several hospitals in a region to provide a comprehensive diagnostic imaging service. Consequences of a poorly designed and implemented metro network could cause delays or no access at all when health care providers try to retrieve medical cases across the network. This could translate into limited diagnostic services to patients, resulting in negative impacts to the patients' medical treatment. A workflow-engaged network (WEN) is a new network paradigm. A WEN appreciates radiology workflows and priorities in using the network. A WEN greatly improves the network performance by guaranteeing that critical image transfers experience minimal delay. It adjusts network settings to ensure the application's requirements are met. This means that high-priority image transfers will have guaranteed and known delay times, whereas lower-priority traffic will have increased delays. This paper introduces a modeling to understand the benefits that WEN brings to a radiology metro network. The modeling uses actual data patterns and flows found in a hospital metro region. The workflows considered are based on the Integrating the Healthcare Enterprise profiles. This modeling has been applied to metropolitan workflows of a health region. The modeling helps identify the kind of metro network that supports data patterns and flows in a metro area. The results of the modeling show that a 155-Mb/s metropolitan area network (MAN) with WEN operates virtually equal to a normal 622-Mb/s MAN without WEN, with potential cost savings for leased line services measured in the millions of dollars per year.

  2. Fluctuating interaction network and time-varying stability of a natural fish community

    NASA Astrophysics Data System (ADS)

    Ushio, Masayuki; Hsieh, Chih-Hao; Masuda, Reiji; Deyle, Ethan R.; Ye, Hao; Chang, Chun-Wei; Sugihara, George; Kondoh, Michio

    2018-02-01

    Ecological theory suggests that large-scale patterns such as community stability can be influenced by changes in interspecific interactions that arise from the behavioural and/or physiological responses of individual species varying over time. Although this theory has experimental support, evidence from natural ecosystems is lacking owing to the challenges of tracking rapid changes in interspecific interactions (known to occur on timescales much shorter than a generation time) and then identifying the effect of such changes on large-scale community dynamics. Here, using tools for analysing nonlinear time series and a 12-year-long dataset of fortnightly collected observations on a natural marine fish community in Maizuru Bay, Japan, we show that short-term changes in interaction networks influence overall community dynamics. Among the 15 dominant species, we identify 14 interspecific interactions to construct a dynamic interaction network. We show that the strengths, and even types, of interactions change with time; we also develop a time-varying stability measure based on local Lyapunov stability for attractor dynamics in non-equilibrium nonlinear systems. We use this dynamic stability measure to examine the link between the time-varying interaction network and community stability. We find seasonal patterns in dynamic stability for this fish community that broadly support expectations of current ecological theory. Specifically, the dominance of weak interactions and higher species diversity during summer months are associated with higher dynamic stability and smaller population fluctuations. We suggest that interspecific interactions, community network structure and community stability are dynamic properties, and that linking fluctuating interaction networks to community-level dynamic properties is key to understanding the maintenance of ecological communities in nature.

  3. Semantic disturbance in schizophrenia and its relationship to the cognitive neuroscience of attention

    PubMed Central

    Nestor, P.G.; Han, S.D.; Niznikiewicz, M.; Salisbury, D.; Spencer, K.; Shenton, M.E.; McCarley, R.W.

    2010-01-01

    We view schizophrenia as producing a failure of attentional modulation that leads to a breakdown in the selective enhancement or inhibition of semantic/lexical representations whose biological substrata are widely distributed across left (dominant) temporal and frontal lobes. Supporting behavioral evidence includes word recall studies that have pointed to a disturbance in connectivity (associative strength) but not network size (number of associates) in patients with schizophrenia. Paralleling these findings are recent neural network simulation studies of the abnormal connectivity effect in schizophrenia through ‘lesioning’ network connection weights while holding constant network size. Supporting evidence at the level of biology are in vitro studies examining N-methyl-d-aspartate (NMDA) receptor antagonists on recurrent inhibition; simulations in neural populations with realistically modeled biophysical properties show NMDA antagonists produce a schizophrenia-like disturbance in pattern association. We propose a similar failure of NMDA-mediated recurrent inhibition as a candidate biological substrate for attention and semantic anomalies of schizophrenia. PMID:11454433

  4. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    PubMed

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  5. Beyond localized and distributed accounts of brain functions. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Cauda, Franco; Costa, Tommaso; Tamietto, Marco

    2014-09-01

    Recent evidence in cognitive neuroscience lends support to the idea that network models of brain architecture provide a privileged access to the understanding of the relation between brain organization and cognitive processes [1]. The core perspective holds that cognitive processes depend on the interactions among distributed neuronal populations and brain structures, and that the impact of a given region on behavior largely depends on its pattern of anatomical and functional connectivity [2,3].

  6. Shaping Neuronal Network Activity by Presynaptic Mechanisms

    PubMed Central

    Ashery, Uri

    2015-01-01

    Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level. PMID:26372048

  7. Network Sampling and Classification:An Investigation of Network Model Representations

    PubMed Central

    Airoldi, Edoardo M.; Bai, Xue; Carley, Kathleen M.

    2011-01-01

    Methods for generating a random sample of networks with desired properties are important tools for the analysis of social, biological, and information networks. Algorithm-based approaches to sampling networks have received a great deal of attention in recent literature. Most of these algorithms are based on simple intuitions that associate the full features of connectivity patterns with specific values of only one or two network metrics. Substantive conclusions are crucially dependent on this association holding true. However, the extent to which this simple intuition holds true is not yet known. In this paper, we examine the association between the connectivity patterns that a network sampling algorithm aims to generate and the connectivity patterns of the generated networks, measured by an existing set of popular network metrics. We find that different network sampling algorithms can yield networks with similar connectivity patterns. We also find that the alternative algorithms for the same connectivity pattern can yield networks with different connectivity patterns. We argue that conclusions based on simulated network studies must focus on the full features of the connectivity patterns of a network instead of on the limited set of network metrics for a specific network type. This fact has important implications for network data analysis: for instance, implications related to the way significance is currently assessed. PMID:21666773

  8. Language differences in the brain network for reading in naturalistic story reading and lexical decision.

    PubMed

    Wang, Xiaojuan; Yang, Jianfeng; Yang, Jie; Mencl, W Einar; Shu, Hua; Zevin, Jason David

    2015-01-01

    Differences in how writing systems represent language raise important questions about whether there could be a universal functional architecture for reading across languages. In order to study potential language differences in the neural networks that support reading skill, we collected fMRI data from readers of alphabetic (English) and morpho-syllabic (Chinese) writing systems during two reading tasks. In one, participants read short stories under conditions that approximate natural reading, and in the other, participants decided whether individual stimuli were real words or not. Prior work comparing these two writing systems has overwhelmingly used meta-linguistic tasks, generally supporting the conclusion that the reading system is organized differently for skilled readers of Chinese and English. We observed that language differences in the reading network were greatly dependent on task. In lexical decision, a pattern consistent with prior research was observed in which the Middle Frontal Gyrus (MFG) and right Fusiform Gyrus (rFFG) were more active for Chinese than for English, whereas the posterior temporal sulcus was more active for English than for Chinese. We found a very different pattern of language effects in a naturalistic reading paradigm, during which significant differences were only observed in visual regions not typically considered specific to the reading network, and the middle temporal gyrus, which is thought to be important for direct mapping of orthography to semantics. Indeed, in areas that are often discussed as supporting distinct cognitive or linguistic functions between the two languages, we observed interaction. Specifically, language differences were most pronounced in MFG and rFFG during the lexical decision task, whereas no language differences were observed in these areas during silent reading of text for comprehension.

  9. Large-scale cortical volume correlation networks reveal disrupted small world patterns in Parkinson's disease.

    PubMed

    Wu, Qiong; Gao, Yang; Liu, Ai-Shi; Xie, Li-Zhi; Qian, Long; Yang, Xiao-Guang

    2018-01-01

    To date, the most frequently reported neuroimaging biomarkers in Parkinson's disease (PD) are direct brain imaging measurements focusing on local disrupted regions. However, the notion that PD is related to abnormal functional and structural connectivity has received support in the past few years. Here, we employed graph theory to analyze the structural co-variance networks derived from 50 PD patients and 48 normal controls (NC). Then, the small world properties of brain networks were assessed in the structural networks that were constructed based on cortical volume data. Our results showed that both the PD and NC groups had a small world architecture in brain structural networks. However, the PD patients had a higher characteristic path length and clustering coefficients compared with the NC group. With regard to the nodal centrality, 11 regions, including 3 association cortices, 5 paralimbic cortices, and 3 subcortical regions were identified as hubs in the PD group. In contrast, 10 regions, including 7 association cortical regions, 2 paralimbic cortical regions, and the primary motor cortex region, were identified as hubs. Moreover, the regional centrality was profoundly affected in PD patients, including decreased nodal centrality in the right inferior occipital gyrus and the middle temporal gyrus and increased nodal centrality in the right amygdala, the left caudate and the superior temporal gyrus. In addition, the structural cortical network of PD showed reduced topological stability for targeted attacks. Together, this study shows that the coordinated patterns of cortical volume network are widely altered in PD patients with a decrease in the efficiency of parallel information processing. These changes provide structural evidence to support the concept that the core pathophysiology of PD is associated with disruptive alterations in the coordination of large-scale brain networks that underlie high-level cognition. Copyright © 2017. Published by Elsevier B.V.

  10. A systematic review of the impact of stroke on social support and social networks: associated factors and patterns of change.

    PubMed

    Northcott, Sarah; Moss, Becky; Harrison, Kirsty; Hilari, Katerina

    2016-08-01

    Identify what factors are associated with functional social support and social network post stroke; explore stroke survivors' perspectives on what changes occur and how they are perceived. The following electronic databases were systematically searched up to May 2015: Academic Search Complete; CINAHL Plus; E-journals; Health Policy Reference Centre; MEDLINE; PsycARTICLES; PsycINFO; and SocINDEX. PRISMA guidelines were followed in the conduct and reporting of this review. All included studies were critically appraised using the Critical Appraisal Skills Program tools. Meta-ethnographic techniques were used to integrate findings from the qualitative studies. Given the heterogeneous nature of the quantitative studies, data synthesis was narrative. Seventy research reports met the eligibility criteria: 22 qualitative and 48 quantitative reporting on 4,816 stroke survivors. The qualitative studies described a contraction of the social network, with non-kin contact being vulnerable. Although family were more robust network members, significant strain was observed within the family unit. In the quantitative studies, poor functional social support was associated with depression (13/14 studies), reduced quality of life (6/6 studies) and worse physical recovery (2/2 studies). Reduced social network was associated with depression (7/8 studies), severity of disability (2/2 studies) and aphasia (2/2 studies). Although most indicators of social network reduced post stroke (for example, contact with friends, 5/5 studies), the perception of feeling supported remained relatively stable (4/4 studies). Following a stroke non-kin contact is vulnerable, strain is observed within the family unit, and poor social support is associated with depressive symptoms. © The Author(s) 2015.

  11. Teaching Practices and Elementary Classroom Peer Ecologies

    ERIC Educational Resources Information Center

    Gest, Scott D.; Rodkin, Philip C.

    2011-01-01

    Teachers and students in 39 1st, 3rd and 5th grade classrooms participated in a study of teaching practices and classroom peer networks. Teachers reported on their attitudes towards aggression and withdrawal, provided rationales for their seating arrangements, and were observed on patterns of emotional and instructional support and classroom…

  12. Quick fuzzy backpropagation algorithm.

    PubMed

    Nikov, A; Stoeva, S

    2001-03-01

    A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.

  13. The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness

    PubMed Central

    Mangus, J Michael; Turner, Benjamin O

    2017-01-01

    Abstract While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. PMID:29140500

  14. Monitoring of Students' Interaction in Online Learning Settings by Structural Network Analysis and Indicators.

    PubMed

    Ammenwerth, Elske; Hackl, Werner O

    2017-01-01

    Learning as a constructive process works best in interaction with other learners. Support of social interaction processes is a particular challenge within online learning settings due to the spatial and temporal distribution of participants. It should thus be carefully monitored. We present structural network analysis and related indicators to analyse and visualize interaction patterns of participants in online learning settings. We validate this approach in two online courses and show how the visualization helps to monitor interaction and to identify activity profiles of learners. Structural network analysis is a feasible approach for an analysis of the intensity and direction of interaction in online learning settings.

  15. Verification of S&D Solutions for Network Communications and Devices

    NASA Astrophysics Data System (ADS)

    Rudolph, Carsten; Compagna, Luca; Carbone, Roberto; Muñoz, Antonio; Repp, Jürgen

    This chapter describes the tool-supported verification of S&D Solutions on the level of network communications and devices. First, the general goals and challenges of verification in the context of AmI systems are highlighted and the role of verification and validation within the SERENITY processes is explained.Then, SERENITY extensions to the SH VErification tool are explained using small examples. Finally, the applicability of existing verification tools is discussed in the context of the AVISPA toolset. The two different tools show that for the security analysis of network and devices S&D Patterns relevant complementary approachesexist and can be used.

  16. Situating emotional experience

    PubMed Central

    Wilson-Mendenhall, Christine D.; Barrett, Lisa Feldman; Barsalou, Lawrence W.

    2013-01-01

    Psychological construction approaches to emotion suggest that emotional experience is situated and dynamic. Fear, for example, is typically studied in a physical danger context (e.g., threatening snake), but in the real world, it often occurs in social contexts, especially those involving social evaluation (e.g., public speaking). Understanding situated emotional experience is critical because adaptive responding is guided by situational context (e.g., inferring the intention of another in a social evaluation situation vs. monitoring the environment in a physical danger situation). In an fMRI study, we assessed situated emotional experience using a newly developed paradigm in which participants vividly imagine different scenarios from a first-person perspective, in this case scenarios involving either social evaluation or physical danger. We hypothesized that distributed neural patterns would underlie immersion in social evaluation and physical danger situations, with shared activity patterns across both situations in multiple sensory modalities and in circuitry involved in integrating salient sensory information, and with unique activity patterns for each situation type in coordinated large-scale networks that reflect situated responding. More specifically, we predicted that networks underlying the social inference and mentalizing involved in responding to a social threat (in regions that make up the “default mode” network) would be reliably more active during social evaluation situations. In contrast, networks underlying the visuospatial attention and action planning involved in responding to a physical threat would be reliably more active during physical danger situations. The results supported these hypotheses. In line with emerging psychological construction approaches, the findings suggest that coordinated brain networks offer a systematic way to interpret the distributed patterns that underlie the diverse situational contexts characterizing emotional life. PMID:24324420

  17. Ultra-thin microporous/hybrid materials

    DOEpatents

    Jiang, Ying-Bing [Albuquerque, NM; Cecchi, Joseph L [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM

    2012-05-29

    Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.

  18. A common brain network links development, aging, and vulnerability to disease.

    PubMed

    Douaud, Gwenaëlle; Groves, Adrian R; Tamnes, Christian K; Westlye, Lars Tjelta; Duff, Eugene P; Engvig, Andreas; Walhovd, Kristine B; James, Anthony; Gass, Achim; Monsch, Andreas U; Matthews, Paul M; Fjell, Anders M; Smith, Stephen M; Johansen-Berg, Heidi

    2014-12-09

    Several theories link processes of development and aging in humans. In neuroscience, one model posits for instance that healthy age-related brain degeneration mirrors development, with the areas of the brain thought to develop later also degenerating earlier. However, intrinsic evidence for such a link between healthy aging and development in brain structure remains elusive. Here, we show that a data-driven analysis of brain structural variation across 484 healthy participants (8-85 y) reveals a largely--but not only--transmodal network whose lifespan pattern of age-related change intrinsically supports this model of mirroring development and aging. We further demonstrate that this network of brain regions, which develops relatively late during adolescence and shows accelerated degeneration in old age compared with the rest of the brain, characterizes areas of heightened vulnerability to unhealthy developmental and aging processes, as exemplified by schizophrenia and Alzheimer's disease, respectively. Specifically, this network, while derived solely from healthy subjects, spatially recapitulates the pattern of brain abnormalities observed in both schizophrenia and Alzheimer's disease. This network is further associated in our large-scale healthy population with intellectual ability and episodic memory, whose impairment contributes to key symptoms of schizophrenia and Alzheimer's disease. Taken together, our results suggest that the common spatial pattern of abnormalities observed in these two disorders, which emerge at opposite ends of the life spectrum, might be influenced by the timing of their separate and distinct pathological processes in disrupting healthy cerebral development and aging, respectively.

  19. Heuristic pattern correction scheme using adaptively trained generalized regression neural networks.

    PubMed

    Hoya, T; Chambers, J A

    2001-01-01

    In many pattern classification problems, an intelligent neural system is required which can learn the newly encountered but misclassified patterns incrementally, while keeping a good classification performance over the past patterns stored in the network. In the paper, an heuristic pattern correction scheme is proposed using adaptively trained generalized regression neural networks (GRNNs). The scheme is based upon both network growing and dual-stage shrinking mechanisms. In the network growing phase, a subset of the misclassified patterns in each incoming data set is iteratively added into the network until all the patterns in the incoming data set are classified correctly. Then, the redundancy in the growing phase is removed in the dual-stage network shrinking. Both long- and short-term memory models are considered in the network shrinking, which are motivated from biological study of the brain. The learning capability of the proposed scheme is investigated through extensive simulation studies.

  20. Simulation studies of a wide area health care network.

    PubMed Central

    McDaniel, J. G.

    1994-01-01

    There is an increasing number of efforts to install wide area health care networks. Some of these networks are being built to support several applications over a wide user base consisting primarily of medical practices, hospitals, pharmacies, medical laboratories, payors, and suppliers. Although on-line, multi-media telecommunication is desirable for some purposes such as cardiac monitoring, store-and-forward messaging is adequate for many common, high-volume applications. Laboratory test results and payment claims, for example, can be distributed using electronic messaging networks. Several network prototypes have been constructed to determine the technical problems and to assess the effectiveness of electronic messaging in wide area health care networks. Our project, Health Link, developed prototype software that was able to use the public switched telephone network to exchange messages automatically, reliably and securely. The network could be configured to accommodate the many different traffic patterns and cost constraints of its users. Discrete event simulations were performed on several network models. Canonical star and mesh networks, that were composed of nodes operating at steady state under equal loads, were modeled. Both topologies were found to support the throughput of a generic wide area health care network. The mean message delivery time of the mesh network was found to be less than that of the star network. Further simulations were conducted for a realistic large-scale health care network consisting of 1,553 doctors, 26 hospitals, four medical labs, one provincial lab and one insurer. Two network topologies were investigated: one using predominantly peer-to-peer communication, the other using client-server communication.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7949966

  1. Optical signal processing techniques and applications of optical phase modulation in high-speed communication systems

    NASA Astrophysics Data System (ADS)

    Deng, Ning

    In recent years, optical phase modulation has attracted much research attention in the field of fiber optic communications. Compared with the traditional optical intensity-modulated signal, one of the main merits of the optical phase-modulated signal is the better transmission performance. For optical phase modulation, in spite of the comprehensive study of its transmission performance, only a little research has been carried out in terms of its functions, applications and signal processing for future optical networks. These issues are systematically investigated in this thesis. The research findings suggest that optical phase modulation and its signal processing can greatly facilitate flexible network functions and high bandwidth which can be enjoyed by end users. In the thesis, the most important physical-layer technology, signal processing and multiplexing, are investigated with optical phase-modulated signals. Novel and advantageous signal processing and multiplexing approaches are proposed and studied. Experimental investigations are also reported and discussed in the thesis. Optical time-division multiplexing and demultiplexing. With the ever-increasing demand on communication bandwidth, optical time division multiplexing (OTDM) is an effective approach to upgrade the capacity of each wavelength channel in current optical systems. OTDM multiplexing can be simply realized, however, the demultiplexing requires relatively complicated signal processing and stringent timing control, and thus hinders its practicability. To tackle this problem, in this thesis a new OTDM scheme with hybrid DPSK and OOK signals is proposed. Experimental investigation shows this scheme can greatly enhance the demultiplexing timing misalignment and improve the demultiplexing performance, and thus make OTDM more practical and cost effective. All-optical signal processing. In current and future optical communication systems and networks, the data rate per wavelength has been approaching the speed limitation of electronics. Thus, all-optical signal processing techniques are highly desirable to support the necessary optical switching functionalities in future ultrahigh-speed optical packet-switching networks. To cope with the wide use of optical phase-modulated signals, in the thesis, an all-optical logic for DPSK or PSK input signals is developed, for the first time. Based on four-wave mixing in semiconductor optical amplifier, the structure of the logic gate is simple, compact, and capable of supporting ultrafast operation. In addition to the general logic processing, a simple label recognition scheme, as a specific signal processing function, is proposed for phase-modulated label signals. The proposed scheme can recognize any incoming label pattern according to the local pattern, and is potentially capable of handling variable-length label patterns. Optical access network with multicast overlay and centralized light sources. In the arena of optical access networks, wavelength division multiplexing passive optical network (WDM-PON) is a promising technology to deliver high-speed data traffic. However, most of proposed WDM-PONs only support conventional point-to-point service, and cannot meet the requirement of increasing demand on broadcast and multicast service. In this thesis, a simple network upgrade is proposed based on the traditional PON architecture to support both point-to-point and multicast service. In addition, the two service signals are modulated on the same lightwave carrier. The upstream signal is also remodulated on the same carrier at the optical network unit, which can significantly relax the requirement on wavelength management at the network unit.

  2. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.

    PubMed

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-22

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  3. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    PubMed Central

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-01-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024

  4. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    NASA Astrophysics Data System (ADS)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  5. Algebraic connectivity of brain networks shows patterns of segregation leading to reduced network robustness in Alzheimer's disease

    PubMed Central

    Daianu, Madelaine; Jahanshad, Neda; Nir, Talia M.; Leonardo, Cassandra D.; Jack, Clifford R.; Weiner, Michael W.; Bernstein, Matthew A.; Thompson, Paul M.

    2015-01-01

    Measures of network topology and connectivity aid the understanding of network breakdown as the brain degenerates in Alzheimer's disease (AD). We analyzed 3-Tesla diffusion-weighted images from 202 patients scanned by the Alzheimer's Disease Neuroimaging Initiative – 50 healthy controls, 72 with early- and 38 with late-stage mild cognitive impairment (eMCI/lMCI) and 42 with AD. Using whole-brain tractography, we reconstructed structural connectivity networks representing connections between pairs of cortical regions. We examined, for the first time in this context, the network's Laplacian matrix and its Fiedler value, describing the network's algebraic connectivity, and the Fiedler vector, used to partition a graph. We assessed algebraic connectivity and four additional supporting metrics, revealing a decrease in network robustness and increasing disarray among nodes as dementia progressed. Network components became more disconnected and segregated, and their modularity increased. These measures are sensitive to diagnostic group differences, and may help understand the complex changes in AD. PMID:26640830

  6. Optimization of Actuating Origami Networks

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  7. Flow pattern in the ventricle of brain with cilia beating and CSF circulation

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Westendorf, Christian; Faubel, Regina; Eichele, Gregor; Bodenschatz, Eberhard

    We recently discovered that cilia of the ventral third ventricle (v3V) of mammalian brain generate a complex flow network close to the wall. However, the flow pattern in the overall three dimensional v3V, especially under physiological condition, remains to be investigated. Computational fluid dynamics is arguably the best approach for such investigations. Several v3V geometries are reconstructed from different data for comparison study. The lattice Boltzmann method and immersed boundary method are used to reproduce the experimental set-up for an opened v3V firstly. The experimentally recorded cilia induced flow network is projected on the curved v3V wall. The flow maps obtained numerically at different heights from the v3V wall agree with the experimental data qualitatively. We then consider the entire v3V with ciliary flow network along the wall for boundary condition. Moreover, we add a time dependent flow rate to represent the CSF circulation, and study flow pattern in the ventricle. We thank the Max Planck Society (MPG) for financial support. This work is conducted within the Physics and Medicine Initiative at Goettingen Campus between MPG and University Medical Center.

  8. Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus

    PubMed Central

    Itskov, Vladimir; Curto, Carina; Pastalkova, Eva; Buzsáki, György

    2011-01-01

    Hippocampal neurons can display reliable and long-lasting sequences of transient firing patterns, even in the absence of changing external stimuli. We suggest that time-keeping is an important function of these sequences, and propose a network mechanism for their generation. We show that sequences of neuronal assemblies recorded from rat hippocampal CA1 pyramidal cells can reliably predict elapsed time (15-20 sec) during wheel running with a precision of 0.5sec. In addition, we demonstrate the generation of multiple reliable, long-lasting sequences in a recurrent network model. These sequences are generated in the presence of noisy, unstructured inputs to the network, mimicking stationary sensory input. Identical initial conditions generate similar sequences, whereas different initial conditions give rise to distinct sequences. The key ingredients responsible for sequence generation in the model are threshold-adaptation and a Mexican-hat-like pattern of connectivity among pyramidal cells. This pattern may arise from recurrent systems such as the hippocampal CA3 region or the entorhinal cortex. We hypothesize that mechanisms that evolved for spatial navigation also support tracking of elapsed time in behaviorally relevant contexts. PMID:21414904

  9. Patterns of Metabolite Changes Identified from Large-Scale Gene Perturbations in Arabidopsis Using a Genome-Scale Metabolic Network1[OPEN

    PubMed Central

    Kim, Taehyong; Dreher, Kate; Nilo-Poyanco, Ricardo; Lee, Insuk; Fiehn, Oliver; Lange, Bernd Markus; Nikolau, Basil J.; Sumner, Lloyd; Welti, Ruth; Wurtele, Eve S.; Rhee, Seung Y.

    2015-01-01

    Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes. PMID:25670818

  10. The Role of the Social Network in Access to Psychosocial Services for Migrant Elderly—A Qualitative Study

    PubMed Central

    Schoenmakers, Daphne; Lamkaddem, Majda; Suurmond, Jeanine

    2017-01-01

    Background: Despite high prevalence of mental problems among elderly migrants in The Netherlands, the use of psychosocial care services by this group is low. Scientific evidence points at the crucial role of social support for mental health and the use of psychosocial services. We therefore explored the role of social networks in the access to psychosocial care among elderly migrants in The Netherlands. Methods: A qualitative study was conducted using semi-structured group interviews and individual interviews. The eight group and eleven individual interviews (respectively n = 58 and n = 11) were conducted in The Netherlands with Turkish, Moroccan, Surinamese, and Dutch elderly. The data were analysed through coding and comparing fragments and recognizing patterns. Results: Support of the social network is important to navigate to psychosocial care and is most frequently provided by children. However, the social network of elderly migrants is generally not able to meet the needs of the elderly. This is mostly due to poor mental health literacy of the social network, taboo, and stigma around mental illness and the busy lives of the social network members. Conclusions: Strategies to address help-seeking barriers should consider mental health literacy in elderly migrants as well as their social networks, and counteract taboos and stigma of mental health problems. PMID:29019961

  11. The Role of the Social Network in Access to Psychosocial Services for Migrant Elderly-A Qualitative Study.

    PubMed

    Schoenmakers, Daphne; Lamkaddem, Majda; Suurmond, Jeanine

    2017-10-11

    Abstract : Background: Despite high prevalence of mental problems among elderly migrants in The Netherlands, the use of psychosocial care services by this group is low. Scientific evidence points at the crucial role of social support for mental health and the use of psychosocial services. We therefore explored the role of social networks in the access to psychosocial care among elderly migrants in The Netherlands. Methods: A qualitative study was conducted using semi-structured group interviews and individual interviews. The eight group and eleven individual interviews (respectively n = 58 and n = 11) were conducted in The Netherlands with Turkish, Moroccan, Surinamese, and Dutch elderly. The data were analysed through coding and comparing fragments and recognizing patterns. Results: Support of the social network is important to navigate to psychosocial care and is most frequently provided by children. However, the social network of elderly migrants is generally not able to meet the needs of the elderly. This is mostly due to poor mental health literacy of the social network, taboo, and stigma around mental illness and the busy lives of the social network members. Conclusion s : Strategies to address help-seeking barriers should consider mental health literacy in elderly migrants as well as their social networks, and counteract taboos and stigma of mental health problems.

  12. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    NASA Astrophysics Data System (ADS)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  13. Talking the talk, walking the walk: social network norms, communication patterns, and condom use among the male partners of female sex workers in La Romana, Dominican Republic.

    PubMed

    Barrington, Clare; Latkin, Carl; Sweat, Michael D; Moreno, Luis; Ellen, Jonathan; Kerrigan, Deanna

    2009-06-01

    Male partners of female sex workers are rarely targeted by HIV prevention interventions in the commercial sex industry, despite recognition of their central role and power in condom use negotiation. Social networks offer a naturally existing social structure to increase male participation in preventing HIV. The purpose of this study was to explore the relationship between social network norms and condom use among male partners of female sex workers in La Romana, Dominican Republic. Male partners (N =318) were recruited from 36 sex establishments to participate in a personal network survey. Measures of social network norms included 1) perceived condom use by male social network members and 2) encouragement to use condoms from social network members. Other social network characteristics included composition, density, social support, and communication. The primary behavioral outcome was consistent condom use by male partners with their most recent female sex worker partner during the last 3 months. In general, men reported small, dense networks with high levels of communication about condoms and consistent condom use. Multivariate logistic regression revealed consistent condom use was significantly more likely among male partners who perceived that some or all of their male social network members used condoms consistently. Perceived condom use was, in turn, significantly associated with dense networks, expressing dislike for condoms, and encouragement to use condoms from social network members. Findings suggest that the tight social networks of male partners may help to explain the high level of condom use and could provide an entry point for HIV prevention efforts with men. Such efforts should tap into existing social dynamics and patterns of communication to promote pro-condom norms and reduce HIV-related vulnerability among men and their sexual partners.

  14. Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance.

    PubMed

    Keerativittayayut, Ruedeerat; Aoki, Ryuta; Sarabi, Mitra Taghizadeh; Jimura, Koji; Nakahara, Kiyoshi

    2018-06-18

    Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30-40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding. © 2018, Keerativittayayut et al.

  15. Network structure of brain atrophy in de novo Parkinson's disease

    PubMed Central

    Zeighami, Yashar; Ulla, Miguel; Iturria-Medina, Yasser; Dadar, Mahsa; Zhang, Yu; Larcher, Kevin Michel-Herve; Fonov, Vladimir; Evans, Alan C; Collins, D Louis; Dagher, Alain

    2015-01-01

    We mapped the distribution of atrophy in Parkinson's disease (PD) using magnetic resonance imaging (MRI) and clinical data from 232 PD patients and 117 controls from the Parkinson's Progression Markers Initiative. Deformation-based morphometry and independent component analysis identified PD-specific atrophy in the midbrain, basal ganglia, basal forebrain, medial temporal lobe, and discrete cortical regions. The degree of atrophy reflected clinical measures of disease severity. The spatial pattern of atrophy demonstrated overlap with intrinsic networks present in healthy brain, as derived from functional MRI. Moreover, the degree of atrophy in each brain region reflected its functional and anatomical proximity to a presumed disease epicenter in the substantia nigra, compatible with a trans-neuronal spread of the disease. These results support a network-spread mechanism in PD. Finally, the atrophy pattern in PD was also seen in healthy aging, where it also correlated with the loss of striatal dopaminergic innervation. DOI: http://dx.doi.org/10.7554/eLife.08440.001 PMID:26344547

  16. Me and my 400 friends: the anatomy of college students' Facebook networks, their communication patterns, and well-being.

    PubMed

    Manago, Adriana M; Taylor, Tamara; Greenfield, Patricia M

    2012-03-01

    Is there a trade-off between having large networks of social connections on social networking sites such as Facebook and the development of intimacy and social support among today's generation of emerging adults? To understand the socialization context of Facebook during the transition to adulthood, an online survey was distributed to college students at a large urban university; participants answered questions about their relationships by systematically sampling their Facebook contacts while viewing their Facebook profiles online. Results confirmed that Facebook facilitates expansive social networks that grow disproportionately through distant kinds of relationship (acquaintances and activity connections), while also expanding the number of close relationships and stranger relationships, albeit at slower rates. Those with larger networks estimated that larger numbers of contacts in their networks were observing their status updates, a form of public communication to one's entire contact list. The major function of status updates was emotional disclosure, the key feature of intimacy. This finding indicates the transformation of the nature of intimacy in the environment of a social network site. In addition, larger networks and larger estimated audiences predicted higher levels of life satisfaction and perceived social support on Facebook. These findings emphasize the psychological importance of audience in the Facebook environment. Findings also suggest that social networking sites help youth to satisfy enduring human psychosocial needs for permanent relations in a geographically mobile world--college students with higher proportions of maintained contacts from the past (primarily high school friends) perceived Facebook as a more useful tool for procuring social support. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  17. Social Network Concordance in Food Choice Among Spouses, Friends, and Siblings

    PubMed Central

    Jacques, Paul F.; Christakis, Nicholas A.

    2011-01-01

    Objectives. We investigated whether eating behaviors were concordant among diverse sets of social ties. Methods. We analyzed the socioeconomic and demographic distribution of eating among 3418 members of the Framingham Heart Study observed from 1991 to 2001. We used a data-classification procedure to simplify choices into 7 nonoverlapping patterns that we matched with information on social network ties. We used correlation analysis to examine eating associations among 4 types of peers (spouses, friends, brothers, and sisters). Longitudinal multiple logistic regression was used to evaluate evidence for peer influences on eating. Results. Of all peer types, spouses showed the strongest concordances in eating patterns over time after adjustment for social contextual factors. Across all peers, the eating pattern most likely to be shared by socially connected individuals was “alcohol and snacks.” Models estimating one's current eating pattern on the basis of a peer's prior eating provided supportive evidence of a social influence process. Conclusions. Certain eating patterns appeared to be socially transmissible across different kinds of relationships. These findings represent an important step in specifying the relevant social environment in the study of health behaviors to include eating. PMID:21940920

  18. Videodermoscopy and doppler-ultrasound in spider naevi: towards a new classification?

    PubMed

    Alegre-Sánchez, A; Bernárdez, C; Fonda-Pascual, P; Moreno-Arrones, O M; López-Gutiérrez, J C; Jaén-Olasolo, P; Boixeda, P

    2018-01-01

    Spider naevi (SN) are considered a subtype of telangiectasias, currently classified as low-flow vascular malformations. To describe the videodermoscopy and Doppler-ultrasound (US) features of a large group of SN. A retrospective study of cases of SN collected at our Dermatology department during the period between June 2015 and June 2017 was performed. Clinical images, dermoscopic, videodermoscopic and Doppler-US files were reviewed. For each case, the age of the patient, time since onset, size and dermoscopic pattern of the lesions were recorded. The presence of pulsatility was also evaluated visually on the videodermoscopy. Two hundred and thirty-three SN in 189 patients were included. The mean age was 39.5 years (range: 10-76 years). Mean size of the lesions was 4.1 ± 2.0 mm. We described three dermoscopic patterns: network, star and looping. Older age, longer time since onset and larger size were found associated with higher frequency of the looping and star patterns compared to that of network pattern (P < 0.01). Pulsatility during videodermoscopy was found in 88 patients (37%). This pulsatility phenomenon was more commonly associated with the looping pattern (64.7%) than star- (40.3%) or network-like patterns (29.9%) (P < 0.001). In Doppler-US studies, a high-flow with arterial biphasic waveform was found. In the light of the results, we support that SN could be reconsidered in upcoming classifications as lesions closer to the group of high-flow arteriovenous malformations. © 2017 European Academy of Dermatology and Venereology.

  19. Reference ability neural networks and behavioral performance across the adult life span.

    PubMed

    Habeck, Christian; Eich, Teal; Razlighi, Ray; Gazes, Yunglin; Stern, Yaakov

    2018-05-15

    To better understand the impact of aging, along with other demographic and brain health variables, on the neural networks that support different aspects of cognitive performance, we applied a brute-force search technique based on Principal Components Analysis to derive 4 corresponding spatial covariance patterns (termed Reference Ability Neural Networks -RANNs) from a large sample of participants across the age range. 255 clinically healthy, community-dwelling adults, aged 20-77, underwent fMRI while performing 12 tasks, 3 tasks for each of the following cognitive reference abilities: Episodic Memory, Reasoning, Perceptual Speed, and Vocabulary. The derived RANNs (1) showed selective activation to their specific cognitive domain and (2) correlated with behavioral performance. Quasi out-of-sample replication with Monte-Carlo 5-fold cross validation was built into our approach, and all patterns indicated their corresponding reference ability and predicted performance in held-out data to a degree significantly greater than chance level. RANN-pattern expression for Episodic Memory, Reasoning and Vocabulary were associated selectively with age, while the pattern for Perceptual Speed showed no such age-related influences. For each participant we also looked at residual activity unaccounted for by the RANN-pattern derived for the cognitive reference ability. Higher residual activity was associated with poorer brain-structural health and older age, but -apart from Vocabulary-not with cognitive performance, indicating that older participants with worse brain-structural health might recruit alternative neural resources to maintain performance levels. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Online Social Networks - Opportunities for Empowering Cancer Patients.

    PubMed

    Mohammadzadeh, Zeinab; Davoodi, Somayeh; Ghazisaeidi, Marjan

    2016-01-01

    Online social network technologies have become important to health and apply in most health care areas. Particularly in cancer care, because it is a disease which involves many social aspects, online social networks can be very useful. Use of online social networks provides a suitable platform for cancer patients and families to present and share information about their medical conditions, address their educational needs, support decision making, and help to coping with their disease and improve their own outcomes. Like any other new technologies, online social networks, along with many benefits, have some negative effects such as violation of privacy and publication of incorrect information. However, if these effects are managed properly, they can empower patients to manage cancer through changing behavioral patterns and enhancing the quality of cancer patients lives This paper explains some application of online social networks in the cancer patient care process. It also covers advantages and disadvantages of related technologies.

  1. African American women's preventative care usage: the role of social support and racial experiences and attitudes.

    PubMed

    Pullen, Erin; Perry, Brea; Oser, Carrie

    2014-09-01

    Research suggests that African Americans are less likely to utilise preventative care services than Americans of European descent, and that these patterns may contribute to racial health disparities in the United States. Despite the persistence of inequalities in preventative care utilisation, culturally relevant factors influencing the use of these gateway health services have been understudied among marginalised groups. Using a stratified sample of 205 low-income African American women, this research examines the predictors of receiving a physical exam, with a particular emphasis on how differing levels of social support from friend and family networks and experiences of racial discrimination and cultural mistrust shape utilisation. The findings underscore the importance of traditional predictors of utilisation, including insurance status and having a usual physician. However, they also indicate that supportive ties to friendship networks are associated with higher predicted rates of having an annual physical exam, while social support from family and sentiments of cultural mistrust are associated with lower rates of utilisation. Broadly, the findings indicate that even as traditional predictors of help-seeking become less relevant, it will be critical to explore how variations in discrimination experiences and social relationships across marginalised groups drive patterns of preventative care utilisation. © 2014 The Authors. Sociology of Health & Illness © 2014 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.

  2. The Workplace and Mental Health.

    ERIC Educational Resources Information Center

    Pierre, Karin Domnick

    1986-01-01

    Findings of the Canadian Mental Health and the Workplace Project are that (1) the quality of interpersonal relations in the workplace is a major factor in emotional well-being and (2) work must be balanced with other parts of one's life. These findings imply the need for social support networks and alternative work patterns. (SK)

  3. Building New Networks from the Old: Women's Experiences with Electronic Communications.

    ERIC Educational Resources Information Center

    Takayoshi, Pamela

    1994-01-01

    Presents research to support the argument that patterns of interaction deeply entrenched within a patriarchal system cannot be undermined simply by offering access to a new medium such as computer-mediated communication. Claims that, in moving away from traditional discourse forms that oppress and marginalize women, scholars run the risk of those…

  4. Someone to Count On: Homeless, Male Drug Users and Their Friendship Relations.

    ERIC Educational Resources Information Center

    Sterk-Elifson, Claire; Elifson, Kirk W.

    1992-01-01

    A study exploring friendship relations of homeless, male drug users (aged between 21 and 50 years) through 27 in-depth interviews in Atlanta (Georgia) found that subjects were engaged in friendship networks that offered social support and that there was a relationship between friendships and patterns of crack cocaine use. (JB)

  5. Desynchronization and Plasticity of Striato-frontal Connectivity in Major Depressive Disorder.

    PubMed

    Leaver, Amber M; Espinoza, Randall; Joshi, Shantanu H; Vasavada, Megha; Njau, Stephanie; Woods, Roger P; Narr, Katherine L

    2016-10-17

    Major depressive disorder (MDD) is associated with dysfunctional corticolimbic networks, making functional connectivity studies integral for understanding the mechanisms underlying MDD pathophysiology and treatment. Resting-state functional connectivity (RSFC) studies analyze patterns of temporally coherent intrinsic brain activity in "resting-state networks" (RSNs). The default-mode network (DMN) has been of particular interest to depression research; however, a single RSN is unlikely to capture MDD pathophysiology in its entirety, and the DMN itself can be characterized by multiple RSNs. This, coupled with conflicting previous results, underscores the need for further research. Here, we measured RSFC in MDD by targeting RSNs overlapping with corticolimbic regions and further determined whether altered patterns of RSFC were restored with electroconvulsive therapy (ECT). MDD patients exhibited hyperconnectivity between ventral striatum (VS) and the ventral default-mode network (vDMN), while simultaneously demonstrating hypoconnectivity with the anterior DMN (aDMN). ECT influenced this pattern: VS-vDMN hyperconnectivity was significantly reduced while VS-aDMN hypoconnectivity only modestly improved. RSFC between the salience RSN and dorsomedial prefrontal cortex was also reduced in MDD, but was not affected by ECT. Taken together, our results support a model of ventral/dorsal imbalance in MDD and further suggest that the VS is a key structure contributing to this desynchronization. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Structural disconnection is responsible for increased functional connectivity in multiple sclerosis.

    PubMed

    Patel, Kevin R; Tobyne, Sean; Porter, Daria; Bireley, John Daniel; Smith, Victoria; Klawiter, Eric

    2018-06-01

    Increased synchrony within neuroanatomical networks is often observed in neurophysiologic studies of human brain disease. Most often, this phenomenon is ascribed to a compensatory process in the face of injury, though evidence supporting such accounts is limited. Given the known dependence of resting-state functional connectivity (rsFC) on underlying structural connectivity (SC), we examine an alternative hypothesis: that topographical changes in SC, specifically particular patterns of disconnection, contribute to increased network rsFC. We obtain measures of rsFC using fMRI and SC using probabilistic tractography in 50 healthy and 28 multiple sclerosis subjects. Using a computational model of neuronal dynamics, we simulate BOLD using healthy subject SC to couple regions. We find that altering the model by introducing structural disconnection patterns observed in those multiple sclerosis subjects with high network rsFC generates simulations with high rsFC as well, suggesting that disconnection itself plays a role in producing high network functional connectivity. We then examine SC data in individuals. In multiple sclerosis subjects with high network rsFC, we find a preferential disconnection between the relevant network and wider system. We examine the significance of such network isolation by introducing random disconnection into the model. As observed empirically, simulated network rsFC increases with removal of connections bridging a community with the remainder of the brain. We thus show that structural disconnection known to occur in multiple sclerosis contributes to network rsFC changes in multiple sclerosis and further that community isolation is responsible for elevated network functional connectivity.

  7. Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support

    PubMed Central

    Camargo, João; Rochol, Juergen; Gerla, Mario

    2018-01-01

    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends. PMID:29364172

  8. Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    PubMed

    Rosário, Denis; Schimuneck, Matias; Camargo, João; Nobre, Jéferson; Both, Cristiano; Rochol, Juergen; Gerla, Mario

    2018-01-24

    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends.

  9. Caregiving and Social Support for Gay and Bisexual Men with Prostate Cancer

    PubMed Central

    Capistrant, Benjamin D.; Torres, Beatriz; Merengwa, Enyinnaya; West, William G.; Mitteldorf, Darryl; Simon Rosser, B. R.

    2017-01-01

    Objective Prostate cancer, the second most common cancer among men, typically onsets in middle or older age. Gay/bisexual men have different social networks and unique social support needs, particularly as it pertains to health care access and prostate side effects. Few studies have investigated the availability and provision of social support for gay and bisexual men with prostate cancer (GBMPCa). Methods This study used qualitative data from in-depth, semi-structured, one-on-one telephone interviews with 30 GBMPCa recruited from a national cancer support group network, Malecare. Inductive and deductive coding were used to identify themes about social support provided to GBMPCa during diagnosis and treatment. Results GBMPCa reported help from friends, family (parents, siblings), ex-partners, and paid caregivers. Men in relationships reported varying levels of reliance on their partners for support, in part due to relationship dynamics and living arrangements. Single men showed a theme of independence (“I turned down all help”, “my friends don’t want to be bothered”). After diagnosis, many men reported seeking informational and emotional support from prostate cancer support groups; most expressed wanting more support groups specifically for GBMPCa. During or after treatment, men reported receiving a range of instrumental support, largely a function of relationship status and treatment type. Conclusions GBMPCa received variable, but generally low, social support during diagnosis and treatment and from a diverse social network, including a prominence of friends and family. Clinicians should be aware of GBMPCa’s distinct patterns of social support needs and providers. PMID:27530377

  10. Caregiving and social support for gay and bisexual men with prostate cancer.

    PubMed

    Capistrant, Benjamin D; Torres, Beatriz; Merengwa, Enyinnaya; West, William G; Mitteldorf, Darryl; Rosser, B R Simon

    2016-11-01

    Prostate cancer, the second most common cancer among men, typically onsets in middle or older age. Gay/bisexual men have different social networks and unique social support needs, particularly as it pertains to health care access and prostate side effects. Few studies have investigated the availability and provision of social support for gay and bisexual men with prostate cancer (GBMPCa). This study used qualitative data from in-depth, semistructured, one-on-one telephone interviews with 30 GBMPCa recruited from a national cancer support group network, Malecare. Inductive and deductive codes were used to identify themes about social support provided to GBMPCa during diagnosis and treatment. GBMPCa reported help from friends, family (parents and siblings), ex-partners, and paid caregivers. Men in relationships reported varying levels of reliance on their partners for support, in part due to relationship dynamics and living arrangements. Single men showed a theme of independence ("I turned down all help," "My friends don't want to be bothered"). After diagnosis, many men reported seeking informational and emotional support from prostate cancer support groups; most expressed wanting more support groups specifically for GBMPCa. During or after treatment, men reported receiving a range of instrumental support, largely a function of relationship status and treatment type. GBMPCa received variable, but generally low, social support during diagnosis and treatment and from a diverse social network, including a prominence of friends and family. Clinicians should be aware of GBMPCa's distinct patterns of social support needs and providers. Copyright © 2016 John Wiley & Sons, Ltd.

  11. The role of social networks in the development of overweight and obesity among adults: a scoping review.

    PubMed

    Powell, Katie; Wilcox, John; Clonan, Angie; Bissell, Paul; Preston, Louise; Peacock, Marian; Holdsworth, Michelle

    2015-09-30

    Although it is increasingly acknowledged that social networks are important to our understanding ofoverweight and obesity, there is limited understanding about the processes by which such networks shapetheir progression. This paper reports the findings of a scoping review of the literature that sought to identify the key processes through which social networks are understood to influence the development of overweight and obesity. A scoping review was conducted. Forty five papers were included in the final review, the findings of which were synthesised to provide an overview of the main processes through which networks have been understood to influence the development of overweight and obesity. Included papers addressed a wide range of research questions framed around six types of networks: a paired network (one's spouse or intimate partner); friends and family (including work colleagues and people within social clubs); ephemeral networks in shared public spaces (such as fellow shoppers in a supermarket or diners in a restaurant); people living within the same geographical region; peers (including co-workers, fellow students, fellow participants in a weight loss programme); and cultural groups (often related toethnicity). As individuals are embedded in many of these different types of social networks at any one time, the pathways of influence from social networks to the development of patterns of overweight and obesity are likely to be complex and interrelated. Included papers addressed a diverse set of issues: body weight trends over time; body size norms or preferences; weight loss and management; physical activity patterns; and dietary patterns. Three inter-related processes were identified: social contagion (whereby the network in which people are embedded influences their weight or weight influencing behaviours), social capital (whereby sense of belonging and social support influence weight or weight influencing behaviours), and social selection (whereby a person's network might develop according to his or her weight). The findings have important implications for understanding about methods to target the spread of obesity, indicating that much greater attention needs to be paid to the social context in which people make decisions about their weight and weight influencing behaviours.

  12. Neural networks and traditional time series methods: a synergistic combination in state economic forecasts.

    PubMed

    Hansen, J V; Nelson, R D

    1997-01-01

    Ever since the initial planning for the 1997 Utah legislative session, neural-network forecasting techniques have provided valuable insights for analysts forecasting tax revenues. These revenue estimates are critically important since agency budgets, support for education, and improvements to infrastructure all depend on their accuracy. Underforecasting generates windfalls that concern taxpayers, whereas overforecasting produces budget shortfalls that cause inadequately funded commitments. The pattern finding ability of neural networks gives insightful and alternative views of the seasonal and cyclical components commonly found in economic time series data. Two applications of neural networks to revenue forecasting clearly demonstrate how these models complement traditional time series techniques. In the first, preoccupation with a potential downturn in the economy distracts analysis based on traditional time series methods so that it overlooks an emerging new phenomenon in the data. In this case, neural networks identify the new pattern that then allows modification of the time series models and finally gives more accurate forecasts. In the second application, data structure found by traditional statistical tools allows analysts to provide neural networks with important information that the networks then use to create more accurate models. In summary, for the Utah revenue outlook, the insights that result from a portfolio of forecasts that includes neural networks exceeds the understanding generated from strictly statistical forecasting techniques. In this case, the synergy clearly results in the whole of the portfolio of forecasts being more accurate than the sum of the individual parts.

  13. GEM-TREND: a web tool for gene expression data mining toward relevant network discovery.

    PubMed

    Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi

    2009-09-03

    DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically linked to external data repositories. GEM-TREND was developed to retrieve gene expression data by comparing query gene-expression pattern with those of GEO gene expression data. It could be a very useful resource for finding similar gene expression profiles and constructing its gene co-expression networks from a publicly available database. GEM-TREND was designed to be user-friendly and is expected to support knowledge discovery. GEM-TREND is freely available at http://cgs.pharm.kyoto-u.ac.jp/services/network.

  14. Noise-induced relations between network connectivity and dynamics

    NASA Astrophysics Data System (ADS)

    Ching, Emily Sc

    Many biological systems of interest can be represented as networks of many nodes that are interacting with one another. Often these systems are subject to external influence or noise. One of the central issues is to understand the relation between dynamics and the interaction pattern of the system or the connectivity structure of the network. In particular, a challenging problem is to infer the network connectivity structure from the dynamics. In this talk, we show that for stochastic dynamical systems subjected to noise, the presence of noise gives rise to mathematical relations between the network connectivity structure and quantities that can be calculated using solely the time-series measurements of the dynamics of the nodes. We present these relations for both undirected networks with bidirectional coupling and directed networks with directional coupling and discuss how such relations can be utilized to infer the network connectivity structure of the systems. Work supported by the Hong Kong Research Grants Council under Grant No. CUHK 14300914.

  15. Characteristics of pattern formation and evolution in approximations of Physarum transport networks.

    PubMed

    Jones, Jeff

    2010-01-01

    Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.

  16. Minimal perceptrons for memorizing complex patterns

    NASA Astrophysics Data System (ADS)

    Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo

    2016-11-01

    Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.

  17. Application of Natural Language Processing and Network Analysis Techniques to Post-market Reports for the Evaluation of Dose-related Anti-Thymocyte Globulin Safety Patterns.

    PubMed

    Botsis, Taxiarchis; Foster, Matthew; Arya, Nina; Kreimeyer, Kory; Pandey, Abhishek; Arya, Deepa

    2017-04-26

    To evaluate the feasibility of automated dose and adverse event information retrieval in supporting the identification of safety patterns. We extracted all rabbit Anti-Thymocyte Globulin (rATG) reports submitted to the United States Food and Drug Administration Adverse Event Reporting System (FAERS) from the product's initial licensure in April 16, 1984 through February 8, 2016. We processed the narratives using the Medication Extraction (MedEx) and the Event-based Text-mining of Health Electronic Records (ETHER) systems and retrieved the appropriate medication, clinical, and temporal information. When necessary, the extracted information was manually curated. This process resulted in a high quality dataset that was analyzed with the Pattern-based and Advanced Network Analyzer for Clinical Evaluation and Assessment (PANACEA) to explore the association of rATG dosing with post-transplant lymphoproliferative disorder (PTLD). Although manual curation was necessary to improve the data quality, MedEx and ETHER supported the extraction of the appropriate information. We created a final dataset of 1,380 cases with complete information for rATG dosing and date of administration. Analysis in PANACEA found that PTLD was associated with cumulative doses of rATG >8 mg/kg, even in periods where most of the submissions to FAERS reported low doses of rATG. We demonstrated the feasibility of investigating a dose-related safety pattern for a particular product in FAERS using a set of automated tools.

  18. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain.

    PubMed

    Fridman, Esteban A; Beattie, Bradley J; Broft, Allegra; Laureys, Steven; Schiff, Nicholas D

    2014-04-29

    Although disorders of consciousness (DOCs) demonstrate widely varying clinical presentations and patterns of structural injury, global down-regulation and bilateral reductions in metabolism of the thalamus and frontoparietal network are consistent findings. We test the hypothesis that global reductions of background synaptic activity in DOCs will associate with changes in the pattern of metabolic activity in the central thalamus and globus pallidus. We compared 32 [(18)F]fluorodeoxyglucose PETs obtained from severely brain-injured patients (BIs) and 10 normal volunteers (NVs). We defined components of the anterior forebrain mesocircuit on high-resolution T1-MRI (ventral, associative, and sensorimotor striatum; globus pallidus; central thalamus and noncentral thalamus). Metabolic profiles for BI and NV demonstrated distinct changes in the pattern of uptake: ventral and association striatum (but not sensorimotor) were significantly reduced relative to global mean uptake after BI; a relative increase in globus pallidus metabolism was evident in BI subjects who also showed a relative reduction of metabolism in the central thalamus. The reversal of globus pallidus and central thalamus profiles across BIs and NVs supports the mesocircuit hypothesis that broad functional (or anatomic) deafferentation may combine to reduce central thalamus activity and release globus pallidus activity in DOCs. In addition, BI subjects showed broad frontoparietal metabolic down-regulation consistent with prior studies supporting the link between central thalamic/pallidal metabolism and down-regulation of the frontoparietal network. Recovery of left hemisphere frontoparietal metabolic activity was further associated with command following.

  19. An initial log analysis of usage patterns on a research networking system.

    PubMed

    Boland, Mary Regina; Trembowelski, Sylvia; Bakken, Suzanne; Weng, Chunhua

    2012-08-01

    Usage data for research networking systems (RNSs) are valuable but generally unavailable for understanding scientific professionals' information needs and online collaborator seeking behaviors. This study contributes a method for evaluating RNSs and initial usage knowledge of one RNS obtained from using this method. We designed a log for an institutional RNS, defined categories of users and tasks, and analyzed correlations between usage patterns and user and query types. Our results show that scientific professionals spend more time performing deep Web searching on RNSs than generic Google users and we also show that retrieving scientist profiles is faster on an RNS than on Google (3.5 seconds vs. 34.2 seconds) whereas organization-specific browsing on a RNS takes longer than on Google (117.0 seconds vs. 34.2 seconds). Usage patterns vary by user role, e.g., faculty performed more informational queries than administrators, which implies role-specific user support is needed for RNSs. © 2012 Wiley Periodicals, Inc.

  20. An Initial Log Analysis of Usage Patterns on a Research Networking System

    PubMed Central

    Boland, Mary Regina; Trembowelski, Sylvia; Bakken, Suzanne; Weng, Chunhua

    2012-01-01

    Abstract Usage data for research networking systems (RNSs) are valuable but generally unavailable for understanding scientific professionals’ information needs and online collaborator seeking behaviors. This study contributes a method for evaluating RNSs and initial usage knowledge of one RNS obtained from using this method. We designed a log for an institutional RNS, defined categories of users and tasks, and analyzed correlations between usage patterns and user and query types. Our results show that scientific professionals spend more time performing deep Web searching on RNSs than generic Google users and we also show that retrieving scientist profiles is faster on an RNS than on Google (3.5 seconds vs. 34.2 seconds) whereas organization‐specific browsing on a RNS takes longer than on Google (117.0 seconds vs. 34.2 seconds). Usage patterns vary by user role, e.g., faculty performed more informational queries than administrators, which implies role‐specific user support is needed for RNSs. Clin Trans Sci 2012; Volume 5: 340–347 PMID:22883612

  1. Posting behaviour patterns in an online smoking cessation social network: implications for intervention design and development.

    PubMed

    Healey, Benjamin; Hoek, Janet; Edwards, Richard

    2014-01-01

    Online Cessation Support Networks (OCSNs) are associated with increased quit success rates, but few studies have examined their use over time. We identified usage patterns in New Zealand's largest OCSN over two years and explored implications for OCSN intervention design and evaluation. We analysed metadata relating to 133,096 OCSN interactions during 2011 and 2012. Metrics covered aggregate network activity, user posting activity and longevity, and between-user commenting. Binary logistic regression models were estimated to investigate the feasibility of predicting low user engagement using early interaction data. Repeating periodic peaks and troughs in aggregate activity related not only to seasonality (e.g., New Year), but also to day of the week. Out of 2,062 unique users, 69 Highly Engaged Users (180+ interactions each) contributed 69% of all OCSN interactions in 2012 compared to 1.3% contributed by 864 Minimally Engaged Users (< = 2 items each). The proportion of Highly Engaged Users increased with network growth between 2011 and 2012 (with marginal significance), but the proportion of Minimally Engaged Users did not decline substantively. First week interaction data enabled identification of Minimally Engaged Users with high specificity and sensitivity (AUROC= 0.94). Results suggest future research should develop and test interventions that promote activity, and hence cessation support, amongst specific user groups or at key time points. For example, early usage information could help identify Minimally Engaged Users for tests of targeted messaging designed to improve their integration into, or re-engagement with, the OCSN. Furthermore, although we observed strong growth over time on varied metrics including posts and comments, this change did not coincide with large gains in first-time user persistence. Researchers assessing intervention effects should therefore examine multiple measures when evaluating changes in network dynamics over time.

  2. Synchronization and spatiotemporal patterns in coupled phase oscillators on a weighted planar network

    NASA Astrophysics Data System (ADS)

    Kagawa, Yuki; Takamatsu, Atsuko

    2009-04-01

    To reveal the relation between network structures found in two-dimensional biological systems, such as protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investigated their dynamics. Results showed that the distribution of edge weights in the networks strongly affects (i) the propensity for global synchronization and (ii) emerging ratios of oscillation patterns, such as traveling and concentric waves, even if the total weight is fixed. In-phase locking, traveling wave, and concentric wave patterns were, respectively, observed most frequently in uniformly weighted, center weighted treelike, and periphery weighted ring-shaped networks. Controlling the global spatiotemporal patterns with the weight distribution given by the local weighting (coupling) rules might be useful in biological network systems including the plasmodial networks and neural networks in the brain.

  3. Disassortative mixing patterns of drug-using and sex networks on HIV risk behaviour among young drug users in Yunnan, China.

    PubMed

    Li, J; Luo, J; Li, J; Liu, H

    2015-09-01

    The dominant mode of HIV transmission in China has changed from injection drug use to sexual contact. The objectives of this study were to describe the disassortative and assortative mixing patterns of drug-using and sex networks among young drug users in China. Cross-sectional study. Respondent-driven sampling (RDS) was used to recruit young drug users in an egocentric network study in Yunnan, China. Egos were categorized as having disassortative mixing network patterns if they reported both sex and drug-using networks. Egos who only had a sex network (no drug-using network), or only a drug-using network (no sex network) were categorized as having assortative mixing network patterns. Multiple logistic regression was performed to analyze the relationships between disassortative patterns with risky sexual behaviour and drug-using practices. A total of 426 participants were recruited into the study. Two hundred forty-two egos reported disassortative mixing patterns and 139 egos had assortative patterns. The RDS-adjusted proportion of having a disassortative pattern was 53.2%. Participants with disassortative patterns were more likely to engage in HIV risk behaviour compared to those with assortative patterns. Specifically, drug users with disassortative patterns reported more multiple sex partners (31.4% vs 19.6%), concurrent partnerships (52.1% vs 39.0%), non-regular sex partners (12.0% vs 4.3%), and sex partners who were IDUs (24.9% vs 12.5%). Consistent condom use with regular or non-regular partners was low (between 18.9% and 47.2%) regardless of the mixing pattern. However, parenteral risk for HIV transmission was relatively low in both groups. The transition of the HIV epidemic in China from injection drug use to sexual contact may be attributed to disassortative mixing in drug-use and sexual networks. HIV programs should consider disassortative mixing patterns when designing new behavioural interventions. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  4. Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    NASA Astrophysics Data System (ADS)

    Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; Del Giudice, Paolo

    2015-10-01

    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a ‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.

  5. Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems.

    PubMed

    Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; del Giudice, Paolo

    2015-10-14

    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a 'basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.

  6. Evaluation of partnership working in cities in phase IV of the WHO Healthy Cities Network.

    PubMed

    Lipp, Alistair; Winters, Tim; de Leeuw, Evelyne

    2013-10-01

    An intersectoral partnership for health improvement is a requirement of the WHO European Healthy Cities Network of municipalities. A review was undertaken in 59 cities based on responses to a structured questionnaire covering phase IV of the network (2003-2008). Cities usually combined formal and informal working partnerships in a pattern seen in previous phases. However, these encompassed more sectors than previously and achieved greater degrees of collaborative planning and implementation. Additional WHO technical support and networking in phase IV significantly enhanced collaboration with the urban planning sector. Critical success factors were high-level political commitment and a well-organized Healthy City office. Partnerships remain a successful component of Healthy City working. The core principles, purpose and intellectual rationale for intersectoral partnerships remain valid and fit for purpose. This applied to long-established phase III cities as well as newcomers to phase IV. The network, and in particular the WHO brand, is well regarded and encourages political and organizational engagement and is a source of support and technical expertise. A key challenge is to apply a more rigorous analytical framework and theory-informed approach to reviewing partnership and collaboration parameters.

  7. Method and system for pattern analysis using a coarse-coded neural network

    NASA Technical Reports Server (NTRS)

    Spirkovska, Liljana (Inventor); Reid, Max B. (Inventor)

    1994-01-01

    A method and system for performing pattern analysis with a neural network coarse-coding a pattern to be analyzed so as to form a plurality of sub-patterns collectively defined by data. Each of the sub-patterns comprises sets of pattern data. The neural network includes a plurality fields, each field being associated with one of the sub-patterns so as to receive the sub-pattern data therefrom. Training and testing by the neural network then proceeds in the usual way, with one modification: the transfer function thresholds the value obtained from summing the weighted products of each field over all sub-patterns associated with each pattern being analyzed by the system.

  8. Reduced integration and differentiation of the imitation network in autism: A combined functional connectivity magnetic resonance imaging and diffusion-weighted imaging study.

    PubMed

    Fishman, Inna; Datko, Michael; Cabrera, Yuliana; Carper, Ruth A; Müller, Ralph-Axel

    2015-12-01

    Converging evidence indicates that brain abnormalities in autism spectrum disorder (ASD) involve atypical network connectivity, but few studies have integrated functional with structural connectivity measures. This multimodal investigation examined functional and structural connectivity of the imitation network in children and adolescents with ASD, and its links with clinical symptoms. Resting state functional magnetic resonance imaging and diffusion-weighted imaging were performed in 35 participants with ASD and 35 typically developing controls, aged 8 to 17 years, matched for age, gender, intelligence quotient, and head motion. Within-network analyses revealed overall reduced functional connectivity (FC) between distributed imitation regions in the ASD group. Whole brain analyses showed that underconnectivity in ASD occurred exclusively in regions belonging to the imitation network, whereas overconnectivity was observed between imitation nodes and extraneous regions. Structurally, reduced fractional anisotropy and increased mean diffusivity were found in white matter tracts directly connecting key imitation regions with atypical FC in ASD. These differences in microstructural organization of white matter correlated with weaker FC and greater ASD symptomatology. Findings demonstrate atypical connectivity of the brain network supporting imitation in ASD, characterized by a highly specific pattern. This pattern of underconnectivity within, but overconnectivity outside the functional network is in contrast with typical development and suggests reduced network integration and differentiation in ASD. Our findings also indicate that atypical connectivity of the imitation network may contribute to ASD clinical symptoms, highlighting the role of this fundamental social cognition ability in the pathophysiology of ASD. © 2015 American Neurological Association.

  9. Family ties: the multilevel effects of households and kinship on the networks of individuals.

    PubMed

    Koster, Jeremy

    2018-04-01

    Among social mammals, humans uniquely organize themselves into communities of households that are centred around enduring, predominantly monogamous unions of men and women. As a consequence of this social organization, individuals maintain social relationships both within and across households, and potentially there is conflict among household members about which social ties to prioritize or de-emphasize. Extending the logic of structural balance theory, I predict that there will be considerable overlap in the social networks of individual household members, resulting in a pattern of group-level reciprocity. To test this prediction, I advance the Group-Structured Social Relations Model, a generalized linear mixed model that tests for group-level effects in the inter-household social networks of individuals. The empirical data stem from social support interviews conducted in a community of indigenous Nicaraguan horticulturalists, and model results show high group-level reciprocity among households. Although support networks are organized around kinship, covariates that test predictions of kin selection models do not receive strong support, potentially because most kin-directed altruism occurs within households, not between households. In addition, the models show that households with high genetic relatedness in part from children born to adulterous relationships are less likely to assist each other.

  10. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding

    PubMed Central

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule’s error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism. PMID:27532262

  11. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    PubMed

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  12. The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness.

    PubMed

    Huskey, Richard; Mangus, J Michael; Turner, Benjamin O; Weber, René

    2017-12-01

    While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. © The Author (2017). Published by Oxford University Press.

  13. Describing spatial pattern in stream networks: A practical approach

    USGS Publications Warehouse

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  14. A geostatistical approach for describing spatial pattern in stream networks

    USGS Publications Warehouse

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  15. Reconfiguration of brain network architecture to support executive control in aging.

    PubMed

    Gallen, Courtney L; Turner, Gary R; Adnan, Areeba; D'Esposito, Mark

    2016-08-01

    Aging is accompanied by declines in executive control abilities and changes in underlying brain network architecture. Here, we examined brain networks in young and older adults during a task-free resting state and an N-back task and investigated age-related changes in the modular network organization of the brain. Compared with young adults, older adults showed larger changes in network organization between resting state and task. Although young adults exhibited increased connectivity between lateral frontal regions and other network modules during the most difficult task condition, older adults also exhibited this pattern of increased connectivity during less-demanding task conditions. Moreover, the increase in between-module connectivity in older adults was related to faster task performance and greater fractional anisotropy of the superior longitudinal fasciculus. These results demonstrate that older adults who exhibit more pronounced network changes between a resting state and task have better executive control performance and greater structural connectivity of a core frontal-posterior white matter pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Ubiquitousness of link-density and link-pattern communities in real-world networks

    NASA Astrophysics Data System (ADS)

    Šubelj, L.; Bajec, M.

    2012-01-01

    Community structure appears to be an intrinsic property of many complex real-world networks. However, recent work shows that real-world networks reveal even more sophisticated modules than classical cohesive (link-density) communities. In particular, networks can also be naturally partitioned according to similar patterns of connectedness among the nodes, revealing link-pattern communities. We here propose a propagation based algorithm that can extract both link-density and link-pattern communities, without any prior knowledge of the true structure. The algorithm was first validated on different classes of synthetic benchmark networks with community structure, and also on random networks. We have further applied the algorithm to different social, information, technological and biological networks, where it indeed reveals meaningful (composites of) link-density and link-pattern communities. The results thus seem to imply that, similarly as link-density counterparts, link-pattern communities appear ubiquitous in nature and design.

  17. Effects of traffic generation patterns on the robustness of complex networks

    NASA Astrophysics Data System (ADS)

    Wu, Jiajing; Zeng, Junwen; Chen, Zhenhao; Tse, Chi K.; Chen, Bokui

    2018-02-01

    Cascading failures in communication networks with heterogeneous node functions are studied in this paper. In such networks, the traffic dynamics are highly dependent on the traffic generation patterns which are in turn determined by the locations of the hosts. The data-packet traffic model is applied to Barabási-Albert scale-free networks to study the cascading failures in such networks and to explore the effects of traffic generation patterns on network robustness. It is found that placing the hosts at high-degree nodes in a network can make the network more robust against both intentional attacks and random failures. It is also shown that the traffic generation pattern plays an important role in network design.

  18. Individualism-Collectivism, Social-Network Orientation, and Acculturation as Predictors of Attitudes toward Seeking Professional Psychological Help among Chinese Americans.

    ERIC Educational Resources Information Center

    Tata, Shiraz Piroshaw; Leong, Frederick T. L.

    1994-01-01

    Used several culturally based variables (individualism-collectivism, social support attitudes, acculturation) and gender to predict patterns of help-seeking attitudes among Chinese American college students (n=219). Each of the independent variables was found to be a significant predictor of attitudes toward seeking professional psychological…

  19. Personal social networks and organizational affiliation of South Asians in the United States.

    PubMed

    Kandula, Namratha R; Cooper, Andrew J; Schneider, John A; Fujimoto, Kayo; Kanaya, Alka M; Van Horn, Linda; deKoning, Lawrence; Siddique, Juned

    2018-02-05

    Understanding the social lives of South Asian immigrants in the United States (U.S) and their influence on health can inform interpersonal and community-level health interventions for this growing community. This paper describe the rationale, survey design, measurement, and network properties of 700 South Asian individuals in the Mediators of Atherosclerosis in South Asians Living in America (MASALA) social networks ancillary study. MASALA is a community-based cohort, established in 2010, to understand risk factors for cardiovascular disease among South Asians living in the U.S. Survey data collection on personal social networks occurred between 2014 and 2017. Network measurements included size, composition, density, and organizational affiliations. Data on participants' self-rated health and social support functions and health-related discussions among network members were also collected. Participants' age ranged from 44 to 84 (average 59 years), and 57% were men. South Asians had large (size=5.6, SD=2.6), kin-centered (proportion kin=0.71, SD=0.28), and dense networks. Affiliation with religious and spiritual organizations was perceived as beneficial to health. Emotional closeness with network members was positively associated with participants' self-rated health (p-value <0.001), and networks with higher density and more kin were significantly associated with health-related discussions. The MASALA networks study advances research on the cultural patterning of social relationships and sources of social support in South Asians living in the U.S. Future analyses will examine how personal social networks and organizational affiliations influence South Asians' health behaviors and outcomes. ClinicalTrials.gov identifier: NCT02268513.

  20. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity

    PubMed Central

    Weaver, Kurt E.; Wander, Jeremiah D.; Ko, Andrew L.; Casimo, Kaitlyn; Grabowski, Thomas J.; Ojemann, Jeffrey G.; Darvas, Felix

    2016-01-01

    Functional imaging investigations into the brain's resting state interactions have yielded a wealth of insight into the intrinsic and dynamic neural architecture supporting cognition and behavior. Electrophysiological studies however have highlighted the fact that synchrony across large-scale cortical systems is composed of spontaneous interactions occurring at timescales beyond the traditional resolution of fMRI, a feature that limits the capacity of fMRI to draw inference on the true directional relationship between network nodes. To approach the question of directionality in resting state signals, we recorded resting state functional MRI (rsfMRI) and electrocorticography (ECoG) from four human subjects undergoing invasive epilepsy monitoring. Using a seed-point based approach, we employed phase-amplitude coupling (PAC) and biPhase Locking Values (bPLV), two measures of cross-frequency coupling (CFC) to explore both outgoing and incoming connections between the seed and all non-seed, site electrodes. We observed robust PAC between a wide range of low-frequency phase and high frequency amplitude estimates. However, significant bPLV, a CFC measure of phase-phase synchrony, was only observed at specific narrow low and high frequency bandwidths. Furthermore, the spatial patterns of outgoing PAC connectivity were most closely associated with the rsfMRI connectivity maps. Our results support the hypothesis that PAC is relatively ubiquitous phenomenon serving as a mechanism for coordinating high-frequency amplitudes across distant neuronal assemblies even in absence of overt task structure. Additionally, we demonstrate that the spatial distribution of a seed-point rsfMRI sensorimotor network is strikingly similar to specific patterns of directional PAC. Specifically, the high frequency activities of distal patches of cortex owning membership in a rsfMRI sensorimotor network were most likely to be entrained to the phase of a low frequency rhythm engendered from the neural populations at the seed-point, suggestive of greater directional coupling from the seed out to the site electrodes. PMID:26747745

  1. Graphical modeling of gene expression in monocytes suggests molecular mechanisms explaining increased atherosclerosis in smokers.

    PubMed

    Verdugo, Ricardo A; Zeller, Tanja; Rotival, Maxime; Wild, Philipp S; Münzel, Thomas; Lackner, Karl J; Weidmann, Henri; Ninio, Ewa; Trégouët, David-Alexandre; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2013-01-01

    Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA) and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path "smoking→gene expression→plaques". Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the "smoking→gene expression→plaques" causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts. Inspection of correlation structure revealed candidates that would be missed by expression-phenotype association analysis alone.

  2. Graphical Modeling of Gene Expression in Monocytes Suggests Molecular Mechanisms Explaining Increased Atherosclerosis in Smokers

    PubMed Central

    Verdugo, Ricardo A.; Zeller, Tanja; Rotival, Maxime; Wild, Philipp S.; Münzel, Thomas; Lackner, Karl J.; Weidmann, Henri; Ninio, Ewa; Trégouët, David-Alexandre; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2013-01-01

    Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA) and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path “smoking→gene expression→plaques”. Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the “smoking→gene expression→plaques” causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts. Inspection of correlation structure revealed candidates that would be missed by expression-phenotype association analysis alone. PMID:23372645

  3. Everybody else is: Networks, power laws and peer contagion in the aggressive recess behavior of elementary school boys.

    PubMed

    Warren, Keith; Craciun, Gheorghe; Anderson-Butcher, Dawn

    2005-04-01

    This paper develops a simple random network model of peer contagion in aggressive behavior among inner-city elementary school boys during recess periods. The model predicts a distribution of aggressive behaviors per recess period with a power law tail beginning at two aggressive behaviors and having a slope of approximately -1.5. Comparison of these values with values derived from observations of aggressive behaviors during recess at an inner-city elementary school provides empirical support for the model. These results suggest that fluctuations in aggressive behaviors during recess arise from the interactions between students, rather than from variations in the behavior of individual students. The results therefore support those interventions that aim to change the pattern of interaction between students.

  4. Evidence for hubs in human functional brain networks

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Lessov-Schlaggar, Christina N; Petersen, Steven E

    2013-01-01

    Summary Hubs integrate and distribute information in powerful ways due to the number and positioning of their contacts in a network. Several resting state functional connectivity MRI reports have implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-based approaches to hub identification may have identified portions of large brain systems rather than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: 1) finding network nodes that participate in multiple sub-networks of the brain, and 2) finding spatial locations where several systems are represented within a small volume. These methods converge on a distributed set of regions that differ from previous reports on hubs. This work identifies regions that support multiple systems, leading to spatially constrained predictions about brain function that may be tested in terms of lesions, evoked responses, and dynamic patterns of activity. PMID:23972601

  5. Simulating Social Networks of Online Communities: Simulation as a Method for Sociability Design

    NASA Astrophysics Data System (ADS)

    Ang, Chee Siang; Zaphiris, Panayiotis

    We propose the use of social simulations to study and support the design of online communities. In this paper, we developed an Agent-Based Model (ABM) to simulate and study the formation of social networks in a Massively Multiplayer Online Role Playing Game (MMORPG) guild community. We first analyzed the activities and the social network (who-interacts-with-whom) of an existing guild community to identify its interaction patterns and characteristics. Then, based on the empirical results, we derived and formalized the interaction rules, which were implemented in our simulation. Using the simulation, we reproduced the observed social network of the guild community as a means of validation. The simulation was then used to examine how various parameters of the community (e.g. the level of activity, the number of neighbors of each agent, etc) could potentially influence the characteristic of the social networks.

  6. Technology acceptance perception for promotion of sustainable consumption.

    PubMed

    Biswas, Aindrila; Roy, Mousumi

    2018-03-01

    Economic growth in the past decades has resulted in change in consumption pattern and emergence of tech-savvy generation with unprecedented increase in the usage of social network technology. In this paper, the technology acceptance value gap adapted from the technology acceptance model has been applied as a tool supporting social network technology usage and subsequent promotion of sustainable consumption. The data generated through the use of structured questionnaires have been analyzed using structural equation modeling. The validity of the model and path estimates signifies the robustness of Technology Acceptance value gap in adjudicating the efficiency of social network technology usage in augmentation of sustainable consumption and awareness. The results indicate that subjective norm gap, ease-of-operation gap, and quality of green information gap have the most adversarial impact on social network technology usage. Eventually social networking technology usage has been identified as a significant antecedent of sustainable consumption.

  7. Higher-Order Neural Networks Recognize Patterns

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly; Ochoa, Ellen

    1996-01-01

    Networks of higher order have enhanced capabilities to distinguish between different two-dimensional patterns and to recognize those patterns. Also enhanced capabilities to "learn" patterns to be recognized: "trained" with far fewer examples and, therefore, in less time than necessary to train comparable first-order neural networks.

  8. Enabling Community Through Social Media

    PubMed Central

    Haythornthwaite, Caroline

    2013-01-01

    Background Social network analysis provides a perspective and method for inquiring into the structures that comprise online groups and communities. Traces from interaction via social media provide the opportunity for understanding how a community is formed and maintained online. Objective The paper aims to demonstrate how social network analysis provides a vocabulary and set of techniques for examining interaction patterns via social media. Using the case of the #hcsmca online discussion forum, this paper highlights what has been and can be gained by approaching online community from a social network perspective, as well as providing an inside look at the structure of the #hcsmca community. Methods Social network analysis was used to examine structures in a 1-month sample of Twitter messages with the hashtag #hcsmca (3871 tweets, 486 unique posters), which is the tag associated with the social media–supported group Health Care Social Media Canada. Network connections were considered present if the individual was mentioned, replied to, or had a post retweeted. Results Network analyses revealed patterns of interaction that characterized the community as comprising one component, with a set of core participants prominent in the network due to their connections with others. Analysis showed the social media health content providers were the most influential group based on in-degree centrality. However, there was no preferential attachment among people in the same professional group, indicating that the formation of connections among community members was not constrained by professional status. Conclusions Network analysis and visualizations provide techniques and a vocabulary for understanding online interaction, as well as insights that can help in understanding what, and who, comprises and sustains a network, and whether community emerges from a network of online interactions. PMID:24176835

  9. Selective attention to temporal features on nested time scales.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2015-02-01

    Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Substrateless Welding of Self-Assembled Silver Nanowires at Air/Water Interface.

    PubMed

    Hu, Hang; Wang, Zhongyong; Ye, Qinxian; He, Jiaqing; Nie, Xiao; He, Gufeng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao

    2016-08-10

    Integrating connected silver nanowire networks with flexible polymers has appeared as a popular way to prepare flexible electronics. To reduce the contact resistance and enhance the connectivity between silver nanowires, various welding techniques have been developed. Herein, rather than welding on solid supporting substrates, which often requires complicated transferring operations and also may pose damage to heat-sensitive substrates, we report an alternative approach to prepare easily transferrable conductive networks through welding of self-assembled silver nanowires at the air/water interface using plasmonic heating. The intriguing welding behavior of partially aligned silver nanowires was analyzed with combined experimental observation and theoretical modeling. The underlying water not only physically supports the assembled silver nanowires but also buffers potential overheating during the welding process, thereby enabling effective welding within a broad range of illumination power density and illumination duration. The welded networks could be directly integrated with PDMS substrates to prepare high-performance stable flexible heaters that are stretchable, bendable, and can be easily patterned to explore selective heating applications.

  11. Orthogonal Patterns In A Binary Neural Network

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1991-01-01

    Report presents some recent developments in theory of binary neural networks. Subject matter relevant to associate (content-addressable) memories and to recognition of patterns - both of considerable importance in advancement of robotics and artificial intelligence. When probed by any pattern, network converges to one of stored patterns.

  12. Convergence and divergence across construction methods for human brain white matter networks: an assessment based on individual differences.

    PubMed

    Zhong, Suyu; He, Yong; Gong, Gaolang

    2015-05-01

    Using diffusion MRI, a number of studies have investigated the properties of whole-brain white matter (WM) networks with differing network construction methods (node/edge definition). However, how the construction methods affect individual differences of WM networks and, particularly, if distinct methods can provide convergent or divergent patterns of individual differences remain largely unknown. Here, we applied 10 frequently used methods to construct whole-brain WM networks in a healthy young adult population (57 subjects), which involves two node definitions (low-resolution and high-resolution) and five edge definitions (binary, FA weighted, fiber-density weighted, length-corrected fiber-density weighted, and connectivity-probability weighted). For these WM networks, individual differences were systematically analyzed in three network aspects: (1) a spatial pattern of WM connections, (2) a spatial pattern of nodal efficiency, and (3) network global and local efficiencies. Intriguingly, we found that some of the network construction methods converged in terms of individual difference patterns, but diverged with other methods. Furthermore, the convergence/divergence between methods differed among network properties that were adopted to assess individual differences. Particularly, high-resolution WM networks with differing edge definitions showed convergent individual differences in the spatial pattern of both WM connections and nodal efficiency. For the network global and local efficiencies, low-resolution and high-resolution WM networks for most edge definitions consistently exhibited a highly convergent pattern in individual differences. Finally, the test-retest analysis revealed a decent temporal reproducibility for the patterns of between-method convergence/divergence. Together, the results of the present study demonstrated a measure-dependent effect of network construction methods on the individual difference of WM network properties. © 2015 Wiley Periodicals, Inc.

  13. Modelling innovation performance of European regions using multi-output neural networks

    PubMed Central

    Henriques, Roberto

    2017-01-01

    Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes. PMID:28968449

  14. Modelling innovation performance of European regions using multi-output neural networks.

    PubMed

    Hajek, Petr; Henriques, Roberto

    2017-01-01

    Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes.

  15. Antenna analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern shaping. The interesting thing about D-C synthesis is that the side lobes have the same amplitude. Five-element arrays were used. Again, 41 pattern samples were used for the input. Nine actual D-C patterns ranging from -10 dB to -30 dB side lobe levels were used to train the network. A comparison between simulated and actual D-C techniques for a pattern with -22 dB side lobe level is shown. The goal for this research was to evaluate the performance of neural network computing with antennas. Future applications will employ the backpropagation training algorithm to drastically reduce the computational complexity involved in performing EM compensation for surface errors in large space reflector antennas.

  16. Antenna analysis using neural networks

    NASA Astrophysics Data System (ADS)

    Smith, William T.

    1992-09-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary).

  17. Recognizing References to Physical Places Inside Short Texts by Using Patterns as a Sequence of Grammatical Categories

    NASA Astrophysics Data System (ADS)

    Romero, A.; Sol, D.

    2017-09-01

    Collecting data by crowdsourcing is an explored trend to support database population and update. This kind of data is unstructured and comes from text, in particular text in social networks. Geographic database is a particular case of database that can be populated by crowdsourcing which can be done when people report some urban event in a social network by writing a short message. An event can describe an accident or a non-functioning device in the urban area. The authorities then need to read and to interpret the message to provide some help for injured people or to fix a problem in a device installed in the urban area like a light or a problem on road. Our main interest is located on working with short messages organized in a collection. Most of the messages do not have geographical coordinates. The messages can then be classified by text patterns describing a location. In fact, people use a text pattern to describe an urban location. Our work tries to identify patterns inside a short text and to indicate when it describes a location. When a pattern is identified our approach look to describe the place where the event is located. The source messages used are tweets reporting events from several Mexican cities.

  18. Real-Time Analysis of a Sensor's Data for Automated Decision Making in an IoT-Based Smart Home.

    PubMed

    Khan, Nida Saddaf; Ghani, Sayeed; Haider, Sajjad

    2018-05-25

    IoT devices frequently generate large volumes of streaming data and in order to take advantage of this data, their temporal patterns must be learned and identified. Streaming data analysis has become popular after being successfully used in many applications including forecasting electricity load, stock market prices, weather conditions, etc. Artificial Neural Networks (ANNs) have been successfully utilized in understanding the embedded interesting patterns/behaviors in the data and forecasting the future values based on it. One such pattern is modelled and learned in the present study to identify the occurrence of a specific pattern in a Water Management System (WMS). This prediction aids in making an automatic decision support system, to switch OFF a hydraulic suction pump at the appropriate time. Three types of ANN, namely Multi-Input Multi-Output (MIMO), Multi-Input Single-Output (MISO), and Recurrent Neural Network (RNN) have been compared, for multi-step-ahead forecasting, on a sensor's streaming data. Experiments have shown that RNN has the best performance among three models and based on its prediction, a system can be implemented to make the best decision with 86% accuracy.

  19. Assortativity Patterns in Multi-dimensional Inter-organizational Networks: A Case Study of the Humanitarian Relief Sector

    NASA Astrophysics Data System (ADS)

    Zhao, Kang; Ngamassi, Louis-Marie; Yen, John; Maitland, Carleen; Tapia, Andrea

    We use computational tools to study assortativity patterns in multi-dimensional inter-organizational networks on the basis of different node attributes. In the case study of an inter-organizational network in the humanitarian relief sector, we consider not only macro-level topological patterns, but also assortativity on the basis of micro-level organizational attributes. Unlike assortative social networks, this inter-organizational network exhibits disassortative or random patterns on three node attributes. We believe organizations' seek of complementarity is one of the main reasons for the special patterns. Our analysis also provides insights on how to promote collaborations among the humanitarian relief organizations.

  20. Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks Track with Amyloid and Tau in Clinically Normal Individuals

    PubMed Central

    Hedden, Trey; Mormino, Elizabeth C.; Huijbers, Willem; LaPoint, Molly; Buckley, Rachel F.

    2017-01-01

    Alzheimer's disease (AD) is characterized by two hallmark molecular pathologies: amyloid aβ1–42 and Tau neurofibrillary tangles. To date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal (IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with connectivity in the DMN and salience. The interaction revealed that amyloid-positive (aβ+) individuals show increased connectivity in the DMN and salience when neocortical Tau levels are low, whereas aβ+ individuals demonstrate decreased connectivity in these networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase in the course of preclinical AD. SIGNIFICANCE STATEMENT This article offers a first look at the relationship between Tau-PET imaging with F18-AV1451 and functional connectivity MRI (fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports of associations between amyloid and fcMRI in individuals with preclinical Alzheimer's disease. PMID:28314821

  1. Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks Track with Amyloid and Tau in Clinically Normal Individuals.

    PubMed

    Schultz, Aaron P; Chhatwal, Jasmeer P; Hedden, Trey; Mormino, Elizabeth C; Hanseeuw, Bernard J; Sepulcre, Jorge; Huijbers, Willem; LaPoint, Molly; Buckley, Rachel F; Johnson, Keith A; Sperling, Reisa A

    2017-04-19

    Alzheimer's disease (AD) is characterized by two hallmark molecular pathologies: amyloid aβ 1-42 and Tau neurofibrillary tangles. To date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal (IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with connectivity in the DMN and salience. The interaction revealed that amyloid-positive (aβ + ) individuals show increased connectivity in the DMN and salience when neocortical Tau levels are low, whereas aβ + individuals demonstrate decreased connectivity in these networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase in the course of preclinical AD. SIGNIFICANCE STATEMENT This article offers a first look at the relationship between Tau-PET imaging with F 18 -AV1451 and functional connectivity MRI (fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports of associations between amyloid and fcMRI in individuals with preclinical Alzheimer's disease. Copyright © 2017 the authors 0270-6474/17/374324-09$15.00/0.

  2. Information and the Origin of Qualia

    PubMed Central

    Orpwood, Roger

    2017-01-01

    This article argues that qualia are a likely outcome of the processing of information in local cortical networks. It uses an information-based approach and makes a distinction between information structures (the physical embodiment of information in the brain, primarily patterns of action potentials), and information messages (the meaning of those structures to the brain, and the basis of qualia). It develops formal relationships between these two kinds of information, showing how information structures can represent messages, and how information messages can be identified from structures. The article applies this perspective to basic processing in cortical networks or ensembles, showing how networks can transform between the two kinds of information. The article argues that an input pattern of firing is identified by a network as an information message, and that the output pattern of firing generated is a representation of that message. If a network is encouraged to develop an attractor state through attention or other re-entrant processes, then the message identified each time physical information is cycled through the network becomes “representation of the previous message”. Using an example of olfactory perception, it is shown how this piggy-backing of messages on top of previous messages could lead to olfactory qualia. The message identified on each pass of information could evolve from inner identity, to inner form, to inner likeness or image. The outcome is an olfactory quale. It is shown that the same outcome could result from information cycled through a hierarchy of networks in a resonant state. The argument for qualia generation is applied to other sensory modalities, showing how, through a process of brain-wide constraint satisfaction, a particular state of consciousness could develop at any given moment. Evidence for some of the key predictions of the theory is presented, using ECoG data and studies of gamma oscillations and attractors, together with an outline of what further evidence is needed to provide support for the theory. PMID:28484376

  3. The Reference Ability Neural Network Study: Life-time stability of reference-ability neural networks derived from task maps of young adults.

    PubMed

    Habeck, C; Gazes, Y; Razlighi, Q; Steffener, J; Brickman, A; Barulli, D; Salthouse, T; Stern, Y

    2016-01-15

    Analyses of large test batteries administered to individuals ranging from young to old have consistently yielded a set of latent variables representing reference abilities (RAs) that capture the majority of the variance in age-related cognitive change: Episodic Memory, Fluid Reasoning, Perceptual Processing Speed, and Vocabulary. In a previous paper (Stern et al., 2014), we introduced the Reference Ability Neural Network Study, which administers 12 cognitive neuroimaging tasks (3 for each RA) to healthy adults age 20-80 in order to derive unique neural networks underlying these 4 RAs and investigate how these networks may be affected by aging. We used a multivariate approach, linear indicator regression, to derive a unique covariance pattern or Reference Ability Neural Network (RANN) for each of the 4 RAs. The RANNs were derived from the neural task data of 64 younger adults of age 30 and below. We then prospectively applied the RANNs to fMRI data from the remaining sample of 227 adults of age 31 and above in order to classify each subject-task map into one of the 4 possible reference domains. Overall classification accuracy across subjects in the sample age 31 and above was 0.80±0.18. Classification accuracy by RA domain was also good, but variable; memory: 0.72±0.32; reasoning: 0.75±0.35; speed: 0.79±0.31; vocabulary: 0.94±0.16. Classification accuracy was not associated with cross-sectional age, suggesting that these networks, and their specificity to the respective reference domain, might remain intact throughout the age range. Higher mean brain volume was correlated with increased overall classification accuracy; better overall performance on the tasks in the scanner was also associated with classification accuracy. For the RANN network scores, we observed for each RANN that a higher score was associated with a higher corresponding classification accuracy for that reference ability. Despite the absence of behavioral performance information in the derivation of these networks, we also observed some brain-behavioral correlations, notably for the fluid-reasoning network whose network score correlated with performance on the memory and fluid-reasoning tasks. While age did not influence the expression of this RANN, the slope of the association between network score and fluid-reasoning performance was negatively associated with higher ages. These results provide support for the hypothesis that a set of specific, age-invariant neural networks underlies these four RAs, and that these networks maintain their cognitive specificity and level of intensity across age. Activation common to all 12 tasks was identified as another activation pattern resulting from a mean-contrast Partial-Least-Squares technique. This common pattern did show associations with age and some subject demographics for some of the reference domains, lending support to the overall conclusion that aspects of neural processing that are specific to any cognitive reference ability stay constant across age, while aspects that are common to all reference abilities differ across age. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Big data, little security: Addressing security issues in your platform

    NASA Astrophysics Data System (ADS)

    Macklin, Thomas; Mathews, Joseph

    2017-05-01

    This paper describes some patterns for information security problems that consistently emerge among traditional enterprise networks and applications, both with respect to cyber threats and data sensitivity. We draw upon cases from qualitative studies and interviews of system developers, network operators, and certifiers of military applications. Specifically, the problems discussed involve sensitivity of data aggregates, training efficacy, and security decision support in the human machine interface. While proven techniques can address many enterprise security challenges, we provide additional recommendations on how to further improve overall security posture, and suggest additional research thrusts to address areas where known gaps remain.

  5. Mapping U.S. cattle shipment networks: Spatial and temporal patterns of trade communities from 2009 to 2011.

    PubMed

    Gorsich, Erin E; Luis, Angela D; Buhnerkempe, Michael G; Grear, Daniel A; Portacci, Katie; Miller, Ryan S; Webb, Colleen T

    2016-11-01

    The application of network analysis to cattle shipments broadens our understanding of shipment patterns beyond pairwise interactions to the network as a whole. Such a quantitative description of cattle shipments in the U.S. can identify trade communities, describe temporal shipment patterns, and inform the design of disease surveillance and control strategies. Here, we analyze a longitudinal dataset of beef and dairy cattle shipments from 2009 to 2011 in the United States to characterize communities within the broader cattle shipment network, which are groups of counties that ship mostly to each other. Because shipments occur over time, we aggregate the data at various temporal scales to examine the consistency of network and community structure over time. Our results identified nine large (>50 counties) communities based on shipments of beef cattle in 2009 aggregated into an annual network and nine large communities based on shipments of dairy cattle. The size and connectance of the shipment network was highly dynamic; monthly networks were smaller than yearly networks and revealed seasonal shipment patterns consistent across years. Comparison of the shipment network over time showed largely consistent shipping patterns, such that communities identified on annual networks of beef and diary shipments from 2009 still represented 41-95% of shipments in monthly networks from 2009 and 41-66% of shipments from networks in 2010 and 2011. The temporal aspects of cattle shipments suggest that future applications of the U.S. cattle shipment network should consider seasonal shipment patterns. However, the consistent within-community shipping patterns indicate that yearly communities could provide a reasonable way to group regions for management. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mashup Model and Verification Using Mashup Processing Network

    NASA Astrophysics Data System (ADS)

    Zahoor, Ehtesham; Perrin, Olivier; Godart, Claude

    Mashups are defined to be lightweight Web applications aggregating data from different Web services, built using ad-hoc composition and being not concerned with long term stability and robustness. In this paper we present a pattern based approach, called Mashup Processing Network (MPN). The idea is based on Event Processing Network and is supposed to facilitate the creation, modeling and the verification of mashups. MPN provides a view of how different actors interact for the mashup development namely the producer, consumer, mashup processing agent and the communication channels. It also supports modeling transformations and validations of data and offers validation of both functional and non-functional requirements, such as reliable messaging and security, that are key issues within the enterprise context. We have enriched the model with a set of processing operations and categorize them into data composition, transformation and validation categories. These processing operations can be seen as a set of patterns for facilitating the mashup development process. MPN also paves a way for realizing Mashup Oriented Architecture where mashups along with services are used as building blocks for application development.

  7. Creative Cognition and Brain Network Dynamics

    PubMed Central

    Beaty, Roger E.; Benedek, Mathias; Silvia, Paul J.; Schacter, Daniel L.

    2015-01-01

    Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relationship, actually cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. PMID:26553223

  8. Ocean plankton. Determinants of community structure in the global plankton interactome.

    PubMed

    Lima-Mendez, Gipsi; Faust, Karoline; Henry, Nicolas; Decelle, Johan; Colin, Sébastien; Carcillo, Fabrizio; Chaffron, Samuel; Ignacio-Espinosa, J Cesar; Roux, Simon; Vincent, Flora; Bittner, Lucie; Darzi, Youssef; Wang, Jun; Audic, Stéphane; Berline, Léo; Bontempi, Gianluca; Cabello, Ana M; Coppola, Laurent; Cornejo-Castillo, Francisco M; d'Ovidio, Francesco; De Meester, Luc; Ferrera, Isabel; Garet-Delmas, Marie-José; Guidi, Lionel; Lara, Elena; Pesant, Stéphane; Royo-Llonch, Marta; Salazar, Guillem; Sánchez, Pablo; Sebastian, Marta; Souffreau, Caroline; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Gorsky, Gabriel; Not, Fabrice; Ogata, Hiroyuki; Speich, Sabrina; Stemmann, Lars; Weissenbach, Jean; Wincker, Patrick; Acinas, Silvia G; Sunagawa, Shinichi; Bork, Peer; Sullivan, Matthew B; Karsenti, Eric; Bowler, Chris; de Vargas, Colomban; Raes, Jeroen

    2015-05-22

    Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models. Copyright © 2015, American Association for the Advancement of Science.

  9. Performance of a Regional Aeronautical Telecommunications Network

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Ripamonti, Claudio; Konangi, Vijay K.; Kerczewski, Robert J.

    2001-01-01

    This paper reports the findings of the simulation of the ATN (Aeronautical Telecommunications Network) for three typical average-sized U.S. airports and their associated air traffic patterns. The models of the protocols were designed to achieve the same functionality and meet the ATN specifications. The focus of this project is on the subnetwork and routing aspects of the simulation. To maintain continuous communication between the aircrafts and the ground facilities, a model based on mobile IP is used. The results indicate that continuous communication is indeed possible. The network can support two applications of significance in the immediate future FTP and HTTP traffic. Results from this simulation prove the feasibility of development of the ATN concept for AC/ATM (Advanced Communications for Air Traffic Management).

  10. Privacy-preserving discovery of topic-based events from social sensor signals: an experimental study on Twitter.

    PubMed

    Nguyen, Duc T; Jung, Jai E

    2014-01-01

    Social network services (e.g., Twitter and Facebook) can be regarded as social sensors which can capture a number of events in the society. Particularly, in terms of time and space, various smart devices have improved the accessibility to the social network services. In this paper, we present a social software platform to detect a number of meaningful events from information diffusion patterns on such social network services. The most important feature is to process the social sensor signal for understanding social events and to support users to share relevant information along the social links. The platform has been applied to fetch and cluster tweets from Twitter into relevant categories to reveal hot topics.

  11. Technology use and reasons to participate in online social networking websites for people living with HIV in the US

    PubMed Central

    Horvath, Keith J.; Danilenko, Gene P.; Williams, Mark L.; Simoni, Jane; Amico, K. Rivet; Oakes, J. Michael; Rosser, B.R. Simon

    2012-01-01

    It is unknown if online social networking technologies are already highly integrated among some people living with HIV (PLWH) or have yet to be adopted. To fill this gap in understanding, 312 PLWH (84% male, 69% white) residing in the US completed on online survey in 2009 of their patterns of social networking and mobile phone use. Twenty-two persons also participated in one of two online focus groups. Results showed that 76% of participants with lower adherence to HIV medication used social networking websites/features at least once a week. Their ideal online social networking health websites included one that facilitated socializing with others (45% of participants) and relevant informational content (22%), although privacy was a barrier to use (26%). Texting (81%), and to a lesser extent mobile web-access (51%), was widely used among participants. Results support the potential reach of online social networking and text messaging intervention approaches. PMID:22350832

  12. Seepage Bifurcation as a Critical Process

    NASA Astrophysics Data System (ADS)

    Yi, R.; Rothman, D.

    2015-12-01

    Channel networks form beautiful and surprisingly intricate geometries, yet diligently evade comprehensive mathematical understanding. Work in recent years has shed light on this problem. Networks driven by seepage flow, in particular, have been shown to grow in a field that can be described by the Laplace equation, providing us with an understanding of valley growth and shape. However, the process by which such networks branch to form these ramified shapes is yet a mystery. We focus our attention on a highly ramified seepage valley network in Bristol, Florida. We study the behavior of flux to valley heads as a function of valley length, and use this result to motivate our discussion of branch formation. We then hypothesize that a critical groundwater flux demarcates a transition point where topographic diffusion is overcome by branching processes, and we present network-wide flux calculations, cosmogenic data, and simulation to support our claim. Our results ultimately suggest a mechanism for seepage bifurcation, and inform our understanding of pattern formation in river networks.

  13. Functional Characterization of the Cingulo-Opercular Network in the Maintenance of Tonic Alertness

    PubMed Central

    Sadaghiani, Sepideh; D'Esposito, Mark

    2015-01-01

    The complex processing architecture underlying attentional control requires delineation of the functional role of different control-related brain networks. A key component is the cingulo-opercular (CO) network composed of anterior insula/operculum, dorsal anterior cingulate cortex, and thalamus. Its function has been particularly difficult to characterize due to the network's pervasive activity and frequent co-activation with other control-related networks. We previously suggested this network to underlie intrinsically maintained tonic alertness. Here, we tested this hypothesis by separately manipulating the demand for selective attention and for tonic alertness in a two-factorial, continuous pitch discrimination paradigm. The 2 factors had independent behavioral effects. Functional imaging revealed that activity as well as functional connectivity in the CO network increased when the task required more tonic alertness. Conversely, heightened selective attention to pitch increased activity in the dorsal attention (DAT) network but not in the CO network. Across participants, performance accuracy showed dissociable correlation patterns with activity in the CO, DAT, and fronto-parietal (FP) control networks. These results support tonic alertness as a fundamental function of the CO network. They further the characterization of this function as the effortful process of maintaining cognitive faculties available for current processing requirements. PMID:24770711

  14. Stressors, Resources, and Stress Responses in Pregnant African American Women

    PubMed Central

    Giurgescu, Carmen; Kavanaugh, Karen; Norr, Kathleen F.; Dancy, Barbara L.; Twigg, Naomi; McFarlin, Barbara L.; Engeland, Christopher G.; Hennessy, Mary Dawn; White-Traut, Rosemary C.

    2013-01-01

    This research aimed to develop an initial understanding of the stressors, stress responses, and personal resources that impact African American women during pregnancy, potentially leading to preterm birth. Guided by the ecological model, a prospective, mixed-methods, complementarity design was used with 11 pregnant women and 8 of their significant others. Our integrated analysis of quantitative and qualitative data revealed 2 types of stress responses: high stress responses (7 women) and low stress responses (4 women). Patterns of stress responses were seen in psychological stress and cervical remodeling (attenuation or cervical length). All women in the high stress responses group had high depression and/or low psychological well-being and abnormal cervical remodeling at one or both data collection times. All but 1 woman had at least 3 sources of stress (racial, neighborhood, financial, or network). In contrast, 3 of the 4 women in the low stress responses group had only 2 sources of stress (racial, neighborhood, financial, or network) and 1 had none; these women also reported higher perceived support. The findings demonstrate the importance of periodically assessing stress in African American women during pregnancy, particularly related to their support network as well as the positive supports they receive. PMID:23360946

  15. Using ordinal partition transition networks to analyze ECG data

    NASA Astrophysics Data System (ADS)

    Kulp, Christopher W.; Chobot, Jeremy M.; Freitas, Helena R.; Sprechini, Gene D.

    2016-07-01

    Electrocardiogram (ECG) data from patients with a variety of heart conditions are studied using ordinal pattern partition networks. The ordinal pattern partition networks are formed from the ECG time series by symbolizing the data into ordinal patterns. The ordinal patterns form the nodes of the network and edges are defined through the time ordering of the ordinal patterns in the symbolized time series. A network measure, called the mean degree, is computed from each time series-generated network. In addition, the entropy and number of non-occurring ordinal patterns (NFP) is computed for each series. The distribution of mean degrees, entropies, and NFPs for each heart condition studied is compared. A statistically significant difference between healthy patients and several groups of unhealthy patients with varying heart conditions is found for the distributions of the mean degrees, unlike for any of the distributions of the entropies or NFPs.

  16. Chimera states in networks of logistic maps with hierarchical connectivities

    NASA Astrophysics Data System (ADS)

    zur Bonsen, Alexander; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard

    2018-04-01

    Chimera states are complex spatiotemporal patterns consisting of coexisting domains of coherence and incoherence. We study networks of nonlocally coupled logistic maps and analyze systematically how the dilution of the network links influences the appearance of chimera patterns. The network connectivities are constructed using an iterative Cantor algorithm to generate fractal (hierarchical) connectivities. Increasing the hierarchical level of iteration, we compare the resulting spatiotemporal patterns. We demonstrate that a high clustering coefficient and symmetry of the base pattern promotes chimera states, and asymmetric connectivities result in complex nested chimera patterns.

  17. Family interaction and a supportive social network as salutogenic factors in childhood atopic illness.

    PubMed

    Gustafsson, Per A; Kjellman, N-I Max; Björkstén, Bengt

    2002-02-01

    The role of psycho-social factors in the development of allergy was studied prospectively in 82 infants with a family history of atopy. The family participated in a standardized family test when the children were 18 months old. The ability to adjust to demands of the situation ('adaptability'), and the balance between emotional closeness and distance ('cohesion'), were assessed from videotapes by independent raters. Families rated as functional in both of these aspects were classified as 'functional', otherwise as 'dysfunctional'. The social network, life events, atopic symptoms (based on postal inquiries regarding symptoms answered by the parents, and on physical examinations), psychiatric symptoms, and socio-economic circumstances of the families were evaluated when the children were 18 months and 3 years of age. The children were classified as atopic (asthmatic symptoms or eczema) or as non-atopic. All but two children with atopic disease at 3 years of age had atopic disease before 18 months of age, while 32 of 60 children with atopic disease at 18 months of age had no problems by 3 years of age. An unbalanced family interplay at 18 months was associated with a relative risk (RR) of 1.99 for continuing atopic illness at 3 years of age (1.18 < RR < 3.37, p = 0.01). There was a weak positive confounding effect for smoking (RR reduced by 7%), eczema on three or more localizations (RR reduced by 4.5%), and the amount of cat allergen in household dust (RR reduced by 3%). Recovery from atopic illness between 18 months and 3 years of age was four times as probable in families with functional interaction and a good social supportive network when children were 18 months of age, than in dysfunctional families with a poor social network (74% versus 20% p < 0.01). Children with asthmatic symptoms showed more signs of emotional distress than did healthy children (p = 0.02). Dysfunctional family interaction patterns were more commonly observed in families of children who at 3 years of age still had atopic symptoms, than in children who had recovered. The patterns included expression of emotion and reaction to the needs of others, alternating between total disinterest and over-involvement (p = 0.02), lack of support and rejection of offered support (p = 0.01), a greater number of individual decisions without regard to the other family members (p = 0.04), and indistinct 'generational boundaries' (p = 0.04). We conclude that psychosocial factors, such as family interaction and a supportive social network, play a significant role in the course of atopic illness in early childhood and that measures which enhance family interaction and the social network could influence the course of the disease favorably.

  18. Army Communicator. Volume 34, Number 2

    DTIC Science & Technology

    2009-01-01

    tunneled into the NIPRNet traffic. The encryption hides the contents of the SIPRNet data through a process that randomizes the bit patterns...and technologies such as desktop applications, Virtual Private Network, Blackberry support, and the training and troubleshoot- ing of complex computer...to your own Standing Operating Procedure and then contract for services off the backside to a local Strategic Entry Point or tunnel through

  19. Protecting soil and water in forest road management

    Treesearch

    Johnny M. III Grace; Barton D. Clinton

    2007-01-01

    The National Forest road system is the network that supports public recreation, which has become the primary use of the public lands. The pattern of use of National Forest roads for recreation has increased dramatically since the late 1940s and is expected to continue to increase beyond the rates observed today. However, research over the past 60 years clearly presents...

  20. Adolescent Mothers in a Transitional Living Facility: An Exploratory Study of Support Networks and Attachment Patterns

    ERIC Educational Resources Information Center

    Schwartz, Ann E.; McRoy, Ruth G.; Downs, A. Chris

    2004-01-01

    Most of the research literature on attachment and adolescent transitions has addressed youth in family settings. This article explores these issues with a sample of 25 pregnant and parenting teens living in a transitional shelter. Using case records and interview data as well as results of standardized measures of depression, self-esteem, child…

  1. The Alignment of the Informal and Formal Organizational Supports for Reform: Implications for Improving Teaching in Schools

    ERIC Educational Resources Information Center

    Penuel, William R.; Riel, Margaret; Joshi, Aasha; Pearlman, Leslie; Kim, Chong Min; Frank, Kenneth A.

    2010-01-01

    Previous qualitative studies show that when the formal organization of a school and patterns of informal interaction are aligned, faculty and leaders in a school are better able to coordinate instructional change. This article combines social network analysis with interview data to analyze how well the formal and informal aspects of a school's…

  2. Unsupervised Neural Network Quantifies the Cost of Visual Information Processing.

    PubMed

    Orbán, Levente L; Chartier, Sylvain

    2015-01-01

    Untrained, "flower-naïve" bumblebees display behavioural preferences when presented with visual properties such as colour, symmetry, spatial frequency and others. Two unsupervised neural networks were implemented to understand the extent to which these models capture elements of bumblebees' unlearned visual preferences towards flower-like visual properties. The computational models, which are variants of Independent Component Analysis and Feature-Extracting Bidirectional Associative Memory, use images of test-patterns that are identical to ones used in behavioural studies. Each model works by decomposing images of floral patterns into meaningful underlying factors. We reconstruct the original floral image using the components and compare the quality of the reconstructed image to the original image. Independent Component Analysis matches behavioural results substantially better across several visual properties. These results are interpreted to support a hypothesis that the temporal and energetic costs of information processing by pollinators served as a selective pressure on floral displays: flowers adapted to pollinators' cognitive constraints.

  3. Firing patterns in the adaptive exponential integrate-and-fire model.

    PubMed

    Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram

    2008-11-01

    For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.

  4. Modelling Peri-Perceptual Brain Processes in a Deep Learning Spiking Neural Network Architecture.

    PubMed

    Gholami Doborjeh, Zohreh; Kasabov, Nikola; Gholami Doborjeh, Maryam; Sumich, Alexander

    2018-06-11

    Familiarity of marketing stimuli may affect consumer behaviour at a peri-perceptual processing level. The current study introduces a method for deep learning of electroencephalogram (EEG) data using a spiking neural network (SNN) approach that reveals the complexity of peri-perceptual processes of familiarity. The method is applied to data from 20 participants viewing familiar and unfamiliar logos. The results support the potential of SNN models as novel tools in the exploration of peri-perceptual mechanisms that respond differentially to familiar and unfamiliar stimuli. Specifically, the activation pattern of the time-locked response identified by the proposed SNN model at approximately 200 milliseconds post-stimulus suggests greater connectivity and more widespread dynamic spatio-temporal patterns for familiar than unfamiliar logos. The proposed SNN approach can be applied to study other peri-perceptual or perceptual brain processes in cognitive and computational neuroscience.

  5. Data Auditor: Analyzing Data Quality Using Pattern Tableaux

    NASA Astrophysics Data System (ADS)

    Srivastava, Divesh

    Monitoring databases maintain configuration and measurement tables about computer systems, such as networks and computing clusters, and serve important business functions, such as troubleshooting customer problems, analyzing equipment failures, planning system upgrades, etc. These databases are prone to many data quality issues: configuration tables may be incorrect due to data entry errors, while measurement tables may be affected by incorrect, missing, duplicate and delayed polls. We describe Data Auditor, a tool for analyzing data quality and exploring data semantics of monitoring databases. Given a user-supplied constraint, such as a boolean predicate expected to be satisfied by every tuple, a functional dependency, or an inclusion dependency, Data Auditor computes "pattern tableaux", which are concise summaries of subsets of the data that satisfy or fail the constraint. We discuss the architecture of Data Auditor, including the supported types of constraints and the tableau generation mechanism. We also show the utility of our approach on an operational network monitoring database.

  6. Hydroclimatology of Dual-Peak Annual Cholera Incidence: Insights from a Spatially Explicit Model

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2012-12-01

    Cholera incidence in some regions of the Indian subcontinent may exhibit two annual peaks although the main environmental drivers that have been linked to the disease (e.g. sea surface temperature, zooplankton abundance, river discharge) peak once per year during the summer. An empirical hydroclimatological explanation relating cholera transmission to river flows and to the disease spatial spreading has been recently proposed. We specifically support and substantiate mechanistically such hypothesis by means of a spatially explicit model of cholera transmission. Our framework directly accounts for the role of the river network in transporting and redistributing cholera bacteria among human communities as well as for spatial and temporal annual fluctuations of precipitation and river flows. To single out the single out the hydroclimatologic controls on the prevalence patterns in a non-specific geographical context, we first apply the model to Optimal Channel Networks as a general model of hydrological networks. Moreover, we impose a uniform distribution of population. The model is forced by seasonal environmental drivers, namely precipitation, temperature and chlorophyll concentration in the coastal environment, a proxy for Vibrio cholerae concentration. Our results show that these drivers may suffice to generate dual-peak cholera prevalence patterns for proper combinations of timescales involved in pathogen transport, hydrologic variability and disease unfolding. The model explains the possible occurrence of spatial patterns of cholera incidence characterized by a spring peak confined to coastal areas and a fall peak involving inland regions. We then proceed applying the model to the specific settings of Bay of Bengal accounting for the actual river networks (derived from digital terrain map manipulations), the proper distribution of population (estimated from downscaling of census data based on remotely sensed features) and precipitation patterns. Overall our modeling framework suggests insights on how environmental drivers concert the generation of complex spatiotemporal infections and proposes an explanation for the different cholera patterns (dual or single annual peaks) exhibited by regions that share similar hydroclimatological forcings.

  7. Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data.

    PubMed

    Deshpande, Gopikrishna; Santhanam, Priya; Hu, Xiaoping

    2011-01-15

    Most neuroimaging studies of resting state networks have concentrated on functional connectivity (FC) based on instantaneous correlation in a single network. In this study we investigated both FC and effective connectivity (EC) based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data - default mode network (DMN), hippocampal cortical memory network (HCMN), dorsal attention network (DAN) and fronto-parietal control network (FPCN). A method called correlation-purged Granger causality analysis was used, not only enabling the simultaneous evaluation of FC and EC of all networks using a single multivariate model, but also accounting for the interaction between them resulting from the smoothing of neuronal activity by hemodynamics. FC was visualized using a force-directed layout upon which causal interactions were overlaid. FC results revealed that DAN is very tightly coupled compared to the other networks while the DMN forms the backbone around which the other networks amalgamate. The pattern of bidirectional causal interactions indicates that posterior cingulate and posterior inferior parietal lobule of DMN act as major hubs. The pattern of unidirectional causal paths revealed that hippocampus and anterior prefrontal cortex (aPFC) receive major inputs, likely reflecting memory encoding/retrieval and cognitive integration, respectively. Major outputs emanating from anterior insula and middle temporal area, which are directed at aPFC, may carry information about interoceptive awareness and external environment, respectively, into aPFC for integration, supporting the hypothesis that aPFC-seeded FPCN acts as a control network. Our findings indicate the following. First, regions whose activities are not synchronized interact via time-delayed causal influences. Second, the causal interactions are organized such that cingulo-parietal regions act as hubs. Finally, segregation of different resting state networks is not clear cut but only by soft boundaries. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    PubMed Central

    Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; del Giudice, Paolo

    2015-01-01

    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a ‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases. PMID:26463272

  9. Migration, social structure and old-age support networks: a comparison of three Indonesian communities

    PubMed Central

    KREAGER, PHILIP

    2007-01-01

    Contemporary trends in population ageing and urbanisation in the developing world imply that the extensive out-migration of young people from rural areas coincides with, and is likely to exacerbate, a rise in the older share of the rural population. This paper examines the impact of migration on vulnerability at older ages by drawing on the results of anthropological and demographic field studies in three Indonesian communities. The methodology for identifying vulnerable older people has a progressively sharper focus, beginning first with important differences between the communities, then examining variations by socio-economic strata, and finally the variability of older people's family networks. Comparative analysis indicates considerable heterogeneity in past and present migration patterns, both within and between villages. The migrants' contributions are a normal and important component of older people's support, often in combination with those of local family members. Higher status families are commonly able to reinforce their position by making better use of migration opportunities than the less advantaged. Although family networks in the poorer strata may effect some redistribution of the children's incomes, their social networks are smaller and insufficient to overcome their marked disadvantages. Vulnerability thus arises where several factors, including migration histories, result in unusually small networks, and when the migrations are within rural areas. PMID:23750063

  10. Phage-bacteria infection networks: From nestedness to modularity

    NASA Astrophysics Data System (ADS)

    Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.

    2013-03-01

    Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation

  11. Responses to a self-presented suicide attempt in social media: a social network analysis.

    PubMed

    Fu, King-Wa; Cheng, Qijin; Wong, Paul W C; Yip, Paul S F

    2013-01-01

    The self-presentation of suicidal acts in social media has become a public health concern. This article centers on a Chinese microblogger who posted a wrist-cutting picture that was widely circulated in Chinese social media in 2011. This exploratory study examines written reactions of a group of Chinese microbloggers exposed to the post containing a self-harming message and photo. In addition, we investigate the pattern of information diffusion via a social network. We systematically collected and analyzed 5,971 generated microblogs and the network of information diffusion. We found that a significant portion of written responses (36.6%) could help vulnerable netizens by providing peer-support and calls for help. These responses were reposted and diffused via an online social network with markedly more clusters of users--and at a faster pace-- than a set of randomly generated networks. We conclude that social media can be a double-edged sword: While it may contagiously affect others by spreading suicidal thoughts and acts, it may also play a positive role by assisting people at risk for suicide, providing rescue or support. More research is needed to learn how suicidally vulnerable people interact with online suicide information, and how we can effectively intervene.

  12. Shuttle radar DEM hydrological correction for erosion modelling in small catchments

    NASA Astrophysics Data System (ADS)

    Jarihani, Ben; Sidle, Roy; Bartley, Rebecca

    2016-04-01

    Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modelling of environmental processes. Catchment and hillslope scale runoff and sediment processes (i.e., patterns of overland flow, infiltration, subsurface stormflow and erosion) are all topographically mediated. In remote and data-scarce regions, high resolution DEMs (LiDAR) are often not available, and moderate to course resolution digital elevation models (e.g., SRTM) have difficulty replicating detailed hydrological patterns, especially in relatively flat landscapes. Several surface reconditioning algorithms (e.g., Smoothing) and "Stream burning" techniques (e.g., Agree or ANUDEM), in conjunction with representation of the known stream networks, have been used to improve DEM performance in replicating known hydrology. Detailed stream network data are not available at regional and national scales, but can be derived at local scales from remotely-sensed data. This research explores the implication of high resolution stream network data derived from Google Earth images for DEM hydrological correction, instead of using course resolution stream networks derived from topographic maps. The accuracy of implemented method in producing hydrological-efficient DEMs were assessed by comparing the hydrological parameters derived from modified DEMs and limited high-resolution airborne LiDAR DEMs. The degree of modification is dominated by the method used and availability of the stream network data. Although stream burning techniques improve DEMs hydrologically, these techniques alter DEM characteristics that may affect catchment boundaries, stream position and length, as well as secondary terrain derivatives (e.g., slope, aspect). Modification of a DEM to better reflect known hydrology can be useful, however, knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.

  13. How to Compress Sequential Memory Patterns into Periodic Oscillations: General Reduction Rules

    PubMed Central

    Zhang, Kechen

    2017-01-01

    A neural network with symmetric reciprocal connections always admits a Lyapunov function, whose minima correspond to the memory states stored in the network. Networks with suitable asymmetric connections can store and retrieve a sequence of memory patterns, but the dynamics of these networks cannot be characterized as readily as that of the symmetric networks due to the lack of established general methods. Here, a reduction method is developed for a class of asymmetric attractor networks that store sequences of activity patterns as associative memories, as in a Hopfield network. The method projects the original activity pattern of the network to a low-dimensional space such that sequential memory retrievals in the original network correspond to periodic oscillations in the reduced system. The reduced system is self-contained and provides quantitative information about the stability and speed of sequential memory retrievals in the original network. The time evolution of the overlaps between the network state and the stored memory patterns can also be determined from extended reduced systems. The reduction procedure can be summarized by a few reduction rules, which are applied to several network models, including coupled networks and networks with time-delayed connections, and the analytical solutions of the reduced systems are confirmed by numerical simulations of the original networks. Finally, a local learning rule that provides an approximation to the connection weights involving the pseudoinverse is also presented. PMID:24877729

  14. The super-Turing computational power of plastic recurrent neural networks.

    PubMed

    Cabessa, Jérémie; Siegelmann, Hava T

    2014-12-01

    We study the computational capabilities of a biologically inspired neural model where the synaptic weights, the connectivity pattern, and the number of neurons can evolve over time rather than stay static. Our study focuses on the mere concept of plasticity of the model so that the nature of the updates is assumed to be not constrained. In this context, we show that the so-called plastic recurrent neural networks (RNNs) are capable of the precise super-Turing computational power--as the static analog neural networks--irrespective of whether their synaptic weights are modeled by rational or real numbers, and moreover, irrespective of whether their patterns of plasticity are restricted to bi-valued updates or expressed by any other more general form of updating. Consequently, the incorporation of only bi-valued plastic capabilities in a basic model of RNNs suffices to break the Turing barrier and achieve the super-Turing level of computation. The consideration of more general mechanisms of architectural plasticity or of real synaptic weights does not further increase the capabilities of the networks. These results support the claim that the general mechanism of plasticity is crucially involved in the computational and dynamical capabilities of biological neural networks. They further show that the super-Turing level of computation reflects in a suitable way the capabilities of brain-like models of computation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welcome, Michael L.; Bell, Christian S.

    GASNet (Global-Address Space Networking) is a language-independent, low-level networking layer that provides network-independent, high-performance communication primitives tailored for implementing parallel global address space SPMD languages such as UPC and Titanium. The interface is primarily intended as a compilation target and for use by runtime library writers (as opposed to end users), and the primary goals are high performance, interface portability, and expressiveness. GASNet is designed specifically to support high-performance, portable implementations of global address space languages on modern high-end communication networks. The interface provides the flexibility and extensibility required to express a wide variety of communication patterns without sacrificing performancemore » by imposing large computational overheads in the interface. The design of the GASNet interface is partitioned into two layers to maximize porting ease without sacrificing performance: the lower level is a narrow but very general interface called the GASNet core API - the design is basedheavily on Active Messages, and is implemented directly on top of each individual network architecture. The upper level is a wider and more expressive interface called GASNet extended API, which provides high-level operations such as remote memory access and various collective operations. This release implements GASNet over MPI, the Quadrics "elan" API, the Myrinet "GM" API and the "LAPI" interface to the IBM SP switch. A template is provided for adding support for additional network interfaces.« less

  16. Sex differences in how social networks and relationship quality influence experimental pain sensitivity.

    PubMed

    Vigil, Jacob M; Rowell, Lauren N; Chouteau, Simone; Chavez, Alexandre; Jaramillo, Elisa; Neal, Michael; Waid, David

    2013-01-01

    This is the first study to examine how both structural and functional components of individuals' social networks may moderate the association between biological sex and experimental pain sensitivity. One hundred and fifty-two healthy adults (mean age = 22yrs., 53% males) were measured for cold pressor task (CPT) pain sensitivity (i.e., intensity ratings) and core aspects of social networks (e.g., proportion of friends vs. family, affection, affirmation, and aid). Results showed consistent sex differences in how social network structures and intimate relationship functioning modulated pain sensitivity. Females showed higher pain sensitivity when their social networks consisted of a higher proportion of intimate types of relationship partners (e.g., kin vs. non kin), when they had known their network partners for a longer period of time, and when they reported higher levels of logistical support from their significant other (e.g., romantic partner). Conversely, males showed distinct patterns in the opposite direction, including an association between higher levels of logistical support from one's significant other and lower CPT pain intensity. These findings show for the first time that the direction of sex differences in exogenous pain sensitivity is likely dependent on fundamental components of the individual's social environment. The utility of a social-signaling perspective of pain behaviors for examining, comparing, and interpreting individual and group differences in experimental and clinical pain reports is discussed.

  17. Functional Connectivity in Islets of Langerhans from Mouse Pancreas Tissue Slices

    PubMed Central

    Stožer, Andraž; Gosak, Marko; Dolenšek, Jurij; Perc, Matjaž; Marhl, Marko; Rupnik, Marjan Slak; Korošak, Dean

    2013-01-01

    We propose a network representation of electrically coupled beta cells in islets of Langerhans. Beta cells are functionally connected on the basis of correlations between calcium dynamics of individual cells, obtained by means of confocal laser-scanning calcium imaging in islets from acute mouse pancreas tissue slices. Obtained functional networks are analyzed in the light of known structural and physiological properties of islets. Focusing on the temporal evolution of the network under stimulation with glucose, we show that the dynamics are more correlated under stimulation than under non-stimulated conditions and that the highest overall correlation, largely independent of Euclidean distances between cells, is observed in the activation and deactivation phases when cells are driven by the external stimulus. Moreover, we find that the range of interactions in networks during activity shows a clear dependence on the Euclidean distance, lending support to previous observations that beta cells are synchronized via calcium waves spreading throughout islets. Most interestingly, the functional connectivity patterns between beta cells exhibit small-world properties, suggesting that beta cells do not form a homogeneous geometric network but are connected in a functionally more efficient way. Presented results provide support for the existing knowledge of beta cell physiology from a network perspective and shed important new light on the functional organization of beta cell syncitia whose structural topology is probably not as trivial as believed so far. PMID:23468610

  18. Sex Differences in How Social Networks and Relationship Quality Influence Experimental Pain Sensitivity

    PubMed Central

    Vigil, Jacob M.; Rowell, Lauren N.; Chouteau, Simone; Chavez, Alexandre; Jaramillo, Elisa; Neal, Michael; Waid, David

    2013-01-01

    This is the first study to examine how both structural and functional components of individuals’ social networks may moderate the association between biological sex and experimental pain sensitivity. One hundred and fifty-two healthy adults (mean age = 22yrs., 53% males) were measured for cold pressor task (CPT) pain sensitivity (i.e., intensity ratings) and core aspects of social networks (e.g., proportion of friends vs. family, affection, affirmation, and aid). Results showed consistent sex differences in how social network structures and intimate relationship functioning modulated pain sensitivity. Females showed higher pain sensitivity when their social networks consisted of a higher proportion of intimate types of relationship partners (e.g., kin vs. non kin), when they had known their network partners for a longer period of time, and when they reported higher levels of logistical support from their significant other (e.g., romantic partner). Conversely, males showed distinct patterns in the opposite direction, including an association between higher levels of logistical support from one’s significant other and lower CPT pain intensity. These findings show for the first time that the direction of sex differences in exogenous pain sensitivity is likely dependent on fundamental components of the individual’s social environment. The utility of a social-signaling perspective of pain behaviors for examining, comparing, and interpreting individual and group differences in experimental and clinical pain reports is discussed. PMID:24223836

  19. Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP.

    PubMed

    Twig, Gilad; Graf, Solomon A; Wikstrom, Jakob D; Mohamed, Hibo; Haigh, Sarah E; Elorza, Alvaro; Deutsch, Motti; Zurgil, Naomi; Reynolds, Nicole; Shirihai, Orian S

    2006-07-01

    Assembly of mitochondria into networks supports fuel metabolism and calcium transport and is involved in the cellular response to apoptotic stimuli. A mitochondrial network is defined as a continuous matrix lumen whose boundaries limit molecular diffusion. Observation of individual networks has proven challenging in live cells that possess dense populations of mitochondria. Investigation into the electrical and morphological properties of mitochondrial networks has therefore not yielded consistent conclusions. In this study we used matrix-targeted, photoactivatable green fluorescent protein to tag single mitochondrial networks. This approach, coupled with real-time monitoring of mitochondrial membrane potential, permitted the examination of matrix lumen continuity and fusion and fission events over time. We found that adjacent and intertwined mitochondrial structures often represent a collection of distinct networks. We additionally found that all areas of a single network are invariably equipotential, suggesting that a heterogeneous pattern of membrane potential within a cell's mitochondria represents differences between discrete networks. Interestingly, fission events frequently occurred without any gross morphological changes and particularly without fragmentation. These events, which are invisible under standard confocal microscopy, redefine the mitochondrial network boundaries and result in electrically disconnected daughter units.

  20. Design Patterns for Learning and Assessment: Facilitating the Introduction of a Complex Simulation-Based Learning Environment into a Community of Instructors

    NASA Astrophysics Data System (ADS)

    Frezzo, Dennis C.; Behrens, John T.; Mislevy, Robert J.

    2010-04-01

    Simulation environments make it possible for science and engineering students to learn to interact with complex systems. Putting these capabilities to effective use for learning, and assessing learning, requires more than a simulation environment alone. It requires a conceptual framework for the knowledge, skills, and ways of thinking that are meant to be developed, in order to design activities that target these capabilities. The challenges of using simulation environments effectively are especially daunting in dispersed social systems. This article describes how these challenges were addressed in the context of the Cisco Networking Academies with a simulation tool for computer networks called Packet Tracer. The focus is on a conceptual support framework for instructors in over 9,000 institutions around the world for using Packet Tracer in instruction and assessment, by learning to create problem-solving scenarios that are at once tuned to the local needs of their students and consistent with the epistemic frame of "thinking like a network engineer." We describe a layered framework of tools and interfaces above the network simulator that supports the use of Packet Tracer in the distributed community of instructors and students.

  1. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    NASA Astrophysics Data System (ADS)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.

  2. Development of neural network techniques for finger-vein pattern classification

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen

    2010-02-01

    A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.

  3. GEM-TREND: a web tool for gene expression data mining toward relevant network discovery

    PubMed Central

    Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi

    2009-01-01

    Background DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. Results GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically linked to external data repositories. Conclusion GEM-TREND was developed to retrieve gene expression data by comparing query gene-expression pattern with those of GEO gene expression data. It could be a very useful resource for finding similar gene expression profiles and constructing its gene co-expression networks from a publicly available database. GEM-TREND was designed to be user-friendly and is expected to support knowledge discovery. GEM-TREND is freely available at . PMID:19728865

  4. Hispanic perspectives on sexual harassment and social support.

    PubMed

    Cortina, Lilia M

    2004-05-01

    Bridging the social support, sexual victimization, and cultural psychology literatures, this study examines social-support processes in the context of sexual harassment and Hispanic American culture. Surveys were administered to a community sample of Hispanic American working women, 249 of whom described some encounter with sexual harassment at work. Regression results provided mixed backing for hypotheses about support-seeking behavior, which appeared largely dependent on the social power of the harassment perpetrator. Additional findings upheld predictions about support-perception patterns; harassed women perceived more supportive social reactions when they turned to informal networks of friends and family, but responses were less positive when they turned to formal, organizational sources. Finally, as expected, perceived support and acculturation interacted to moderate relations between sexual harassment and job satisfaction. The article concludes with implications for research and interventions related to social support and sexual harassment.

  5. Information processing architecture of functionally defined clusters in the macaque cortex.

    PubMed

    Shen, Kelly; Bezgin, Gleb; Hutchison, R Matthew; Gati, Joseph S; Menon, Ravi S; Everling, Stefan; McIntosh, Anthony R

    2012-11-28

    Computational and empirical neuroimaging studies have suggested that the anatomical connections between brain regions primarily constrain their functional interactions. Given that the large-scale organization of functional networks is determined by the temporal relationships between brain regions, the structural limitations may extend to the global characteristics of functional networks. Here, we explored the extent to which the functional network community structure is determined by the underlying anatomical architecture. We directly compared macaque (Macaca fascicularis) functional connectivity (FC) assessed using spontaneous blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) to directed anatomical connectivity derived from macaque axonal tract tracing studies. Consistent with previous reports, FC increased with increasing strength of anatomical connection, and FC was also present between regions that had no direct anatomical connection. We observed moderate similarity between the FC of each region and its anatomical connectivity. Notably, anatomical connectivity patterns, as described by structural motifs, were different within and across functional modules: partitioning of the functional network was supported by dense bidirectional anatomical connections within clusters and unidirectional connections between clusters. Together, our data directly demonstrate that the FC patterns observed in resting-state BOLD-fMRI are dictated by the underlying neuroanatomical architecture. Importantly, we show how this architecture contributes to the global organizational principles of both functional specialization and integration.

  6. Characterizing cartilage microarchitecture on phase-contrast x-ray computed tomography using deep learning with convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Deng, Botao; Abidin, Anas Z.; D'Souza, Adora M.; Nagarajan, Mahesh B.; Coan, Paola; Wismüller, Axel

    2017-03-01

    The effectiveness of phase contrast X-ray computed tomography (PCI-CT) in visualizing human patellar cartilage matrix has been demonstrated due to its ability to capture soft tissue contrast on a micrometer resolution scale. Recent studies have shown that off-the-shelf Convolutional Neural Network (CNN) features learned from a nonmedical data set can be used for medical image classification. In this paper, we investigate the ability of features extracted from two different CNNs for characterizing chondrocyte patterns in the cartilage matrix. We obtained features from 842 regions of interest annotated on PCI-CT images of human patellar cartilage using CaffeNet and Inception-v3 Network, which were then used in a machine learning task involving support vector machines with radial basis function kernel to classify the ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area (AUC) under the Receiver Operating Characteristic (ROC) curve. The best classification performance was observed with features from Inception-v3 network (AUC = 0.95), which outperforms features extracted from CaffeNet (AUC = 0.91). These results suggest that such characterization of chondrocyte patterns using features from internal layers of CNNs can be used to distinguish between healthy and osteoarthritic tissue with high accuracy.

  7. Determination of Vascular Dementia Brain in Distinct Frequency Bands with Whole Brain Functional Connectivity Patterns

    PubMed Central

    Zhang, Delong; Liu, Bo; Chen, Jun; Peng, Xiaoling; Liu, Xian; Fan, Yuanyuan; Liu, Ming; Huang, Ruiwang

    2013-01-01

    Recent studies have shown that multivariate pattern analysis (MVPA) can be useful for distinguishing brain disorders into categories. Such analyses can substantially enrich and facilitate clinical diagnoses. Using MPVA methods, whole brain functional networks, especially those derived using different frequency windows, can be applied to detect brain states. We constructed whole brain functional networks for groups of vascular dementia (VaD) patients and controls using resting state BOLD-fMRI (rsfMRI) data from three frequency bands - slow-5 (0.01∼0.027 Hz), slow-4 (0.027∼0.073 Hz), and whole-band (0.01∼0.073 Hz). Then we used the support vector machine (SVM), a type of MVPA classifier, to determine the patterns of functional connectivity. Our results showed that the brain functional networks derived from rsfMRI data (19 VaD patients and 20 controls) in these three frequency bands appear to reflect neurobiological changes in VaD patients. Such differences could be used to differentiate the brain states of VaD patients from those of healthy individuals. We also found that the functional connectivity patterns of the human brain in the three frequency bands differed, as did their ability to differentiate brain states. Specifically, the ability of the functional connectivity pattern to differentiate VaD brains from healthy ones was more efficient in the slow-5 (0.01∼0.027 Hz) band than in the other two frequency bands. Our findings suggest that the MVPA approach could be used to detect abnormalities in the functional connectivity of VaD patients in distinct frequency bands. Identifying such abnormalities may contribute to our understanding of the pathogenesis of VaD. PMID:23359801

  8. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Li

    2010-01-01

    We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.

  9. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, J.W.; Preston, S.D.

    2003-01-01

    The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.

  10. Effect of synapse dilution on the memory retrieval in structured attractor neural networks

    NASA Astrophysics Data System (ADS)

    Brunel, N.

    1993-08-01

    We investigate a simple model of structured attractor neural network (ANN). In this network a module codes for the category of the stored information, while another group of neurons codes for the remaining information. The probability distribution of stabilities of the patterns and the prototypes of the categories are calculated, for two different synaptic structures. The stability of the prototypes is shown to increase when the fraction of neurons coding for the category goes down. Then the effect of synapse destruction on the retrieval is studied in two opposite situations : first analytically in sparsely connected networks, then numerically in completely connected ones. In both cases the behaviour of the structured network and that of the usual homogeneous networks are compared. When lesions increase, two transitions are shown to appear in the behaviour of the structured network when one of the patterns is presented to the network. After the first transition the network recognizes the category of the pattern but not the individual pattern. After the second transition the network recognizes nothing. These effects are similar to syndromes caused by lesions in the central visual system, namely prosopagnosia and agnosia. In both types of networks (structured or homogeneous) the stability of the prototype is greater than the stability of individual patterns, however the first transition, for completely connected networks, occurs only when the network is structured.

  11. Parallel network simulations with NEURON.

    PubMed

    Migliore, M; Cannia, C; Lytton, W W; Markram, Henry; Hines, M L

    2006-10-01

    The NEURON simulation environment has been extended to support parallel network simulations. Each processor integrates the equations for its subnet over an interval equal to the minimum (interprocessor) presynaptic spike generation to postsynaptic spike delivery connection delay. The performance of three published network models with very different spike patterns exhibits superlinear speedup on Beowulf clusters and demonstrates that spike communication overhead is often less than the benefit of an increased fraction of the entire problem fitting into high speed cache. On the EPFL IBM Blue Gene, almost linear speedup was obtained up to 100 processors. Increasing one model from 500 to 40,000 realistic cells exhibited almost linear speedup on 2,000 processors, with an integration time of 9.8 seconds and communication time of 1.3 seconds. The potential for speed-ups of several orders of magnitude makes practical the running of large network simulations that could otherwise not be explored.

  12. Increasing Resilience to Traumatic Stress: Understanding the Protective Role of Well-Being.

    PubMed

    Tory Toole, J; Rice, Mark A; Cargill, Jordan; Craddock, Travis J A; Nierenberg, Barry; Klimas, Nancy G; Fletcher, Mary Ann; Morris, Mariana; Zysman, Joel; Broderick, Gordon

    2018-01-01

    The brain maintains homeostasis in part through a network of feedback and feed-forward mechanisms, where neurochemicals and immune markers act as mediators. Using a previously constructed model of biobehavioral feedback, we found that in addition to healthy equilibrium another stable regulatory program supported chronic depression and anxiety. Exploring mechanisms that might underlie the contributions of subjective well-being to improved therapeutic outcomes in depression, we iteratively screened 288 candidate feedback patterns linking well-being to molecular signaling networks for those that maintained the original homeostatic regimes. Simulating stressful trigger events on each candidate network while maintaining high levels of subjective well-being isolated a specific feedback network where well-being was promoted by dopamine and acetylcholine, and itself promoted norepinephrine while inhibiting cortisol expression. This biobehavioral feedback mechanism was especially effective in reproducing well-being's clinically documented ability to promote resilience and protect against onset of depression and anxiety.

  13. Care networking: a study of technical mediations in a home telecare service.

    PubMed

    Correa, Gonzalo; Domènech, Miquel

    2013-07-22

    This article examines the processes of technical mediation within familial care networks based on a study of home telecare targeted at older people. Supported by contributions from the actor-network theory as part of the social psychology of science and technology, these processes of technical mediation are analyzed using a qualitative approach. The data were gathered through six focus groups and four in-depth interviews; the participants in the study included users, relatives and formal carers. Thematic analysis techniques encompassing the information were used, revealing the effects on the patterns of caring relationships. The results show the interplay between presence-absence made possible by the devices; the two-way direction of care between the older people and the artifacts; and the process of sustaining care using the technology. We conclude that care should be seen as a socio-technical network where technology plays an active role in sustaining family relationships.

  14. Parallel Network Simulations with NEURON

    PubMed Central

    Migliore, M.; Cannia, C.; Lytton, W.W; Markram, Henry; Hines, M. L.

    2009-01-01

    The NEURON simulation environment has been extended to support parallel network simulations. Each processor integrates the equations for its subnet over an interval equal to the minimum (interprocessor) presynaptic spike generation to postsynaptic spike delivery connection delay. The performance of three published network models with very different spike patterns exhibits superlinear speedup on Beowulf clusters and demonstrates that spike communication overhead is often less than the benefit of an increased fraction of the entire problem fitting into high speed cache. On the EPFL IBM Blue Gene, almost linear speedup was obtained up to 100 processors. Increasing one model from 500 to 40,000 realistic cells exhibited almost linear speedup on 2000 processors, with an integration time of 9.8 seconds and communication time of 1.3 seconds. The potential for speed-ups of several orders of magnitude makes practical the running of large network simulations that could otherwise not be explored. PMID:16732488

  15. Care Networking: A Study of Technical Mediations in a Home Telecare Service

    PubMed Central

    Correa, Gonzalo; Domènech, Miquel

    2013-01-01

    This article examines the processes of technical mediation within familial care networks based on a study of home telecare targeted at older people. Supported by contributions from the actor—network theory as part of the social psychology of science and technology, these processes of technical mediation are analyzed using a qualitative approach. The data were gathered through six focus groups and four in-depth interviews; the participants in the study included users, relatives and formal carers. Thematic analysis techniques encompassing the information were used, revealing the effects on the patterns of caring relationships. The results show the interplay between presence-absence made possible by the devices; the two-way direction of care between the older people and the artifacts; and the process of sustaining care using the technology. We conclude that care should be seen as a socio-technical network where technology plays an active role in sustaining family relationships. PMID:23880730

  16. Competitive STDP Learning of Overlapping Spatial Patterns.

    PubMed

    Krunglevicius, Dalius

    2015-08-01

    Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet.

  17. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    PubMed

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  18. Core networks and their reconfiguration patterns across cognitive loads.

    PubMed

    Zuo, Nianming; Yang, Zhengyi; Liu, Yong; Li, Jin; Jiang, Tianzi

    2018-04-20

    Different cognitively demanding tasks recruit globally distributed but functionally specific networks. However, the configuration of core networks and their reconfiguration patterns across cognitive loads remain unclear, as does whether these patterns are indicators for the performance of cognitive tasks. In this study, we analyzed functional magnetic resonance imaging data of a large cohort of 448 subjects, acquired with the brain at resting state and executing N-back working memory (WM) tasks. We discriminated core networks by functional interaction strength and connection flexibility. Results demonstrated that the frontoparietal network (FPN) and default mode network (DMN) were core networks, but each exhibited different patterns across cognitive loads. The FPN and DMN both showed strengthened internal connections at the low demand state (0-back) compared with the resting state (control level); whereas, from the low (0-back) to high demand state (2-back), some connections to the FPN weakened and were rewired to the DMN (whose connections all remained strong). Of note, more intensive reconfiguration of both the whole brain and core networks (but no other networks) across load levels indicated relatively poor cognitive performance. Collectively these findings indicate that the FPN and DMN have distinct roles and reconfiguration patterns across cognitively demanding loads. This study advances our understanding of the core networks and their reconfiguration patterns across cognitive loads and provides a new feature to evaluate and predict cognitive capability (e.g., WM performance) based on brain networks. © 2018 Wiley Periodicals, Inc.

  19. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types.

    PubMed

    Dáttilo, Wesley; Lara-Rodríguez, Nubia; Jordano, Pedro; Guimarães, Paulo R; Thompson, John N; Marquis, Robert J; Medeiros, Lucas P; Ortiz-Pulido, Raul; Marcos-García, Maria A; Rico-Gray, Victor

    2016-11-30

    Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization. © 2016 The Author(s).

  20. Forest road management to protect soil and water

    Treesearch

    J. McFero Grace; Barton D. Clinton

    2006-01-01

    The National Forest road system is the network that supports recreation which has become the primary use of the public lands. The pattern of use of National Forest roads for recreation by the public has increased dramatically since the late 1940’s and is expected to continue to increase beyond the rates observed today. However, research over the past 60 years clearly...

  1. Effect of inhibitory firing pattern on coherence resonance in random neural networks

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Zhang, Lianghao; Guo, Xinmeng; Wang, Jiang; Cao, Yibin; Liu, Jing

    2018-01-01

    The effect of inhibitory firing patterns on coherence resonance (CR) in random neuronal network is systematically studied. Spiking and bursting are two main types of firing pattern considered in this work. Numerical results show that, irrespective of the inhibitory firing patterns, the regularity of network is maximized by an optimal intensity of external noise, indicating the occurrence of coherence resonance. Moreover, the firing pattern of inhibitory neuron indeed has a significant influence on coherence resonance, but the efficacy is determined by network property. In the network with strong coupling strength but weak inhibition, bursting neurons largely increase the amplitude of resonance, while they can decrease the noise intensity that induced coherence resonance within the neural system of strong inhibition. Different temporal windows of inhibition induced by different inhibitory neurons may account for the above observations. The network structure also plays a constructive role in the coherence resonance. There exists an optimal network topology to maximize the regularity of the neural systems.

  2. Posting Behaviour Patterns in an Online Smoking Cessation Social Network: Implications for Intervention Design and Development

    PubMed Central

    Healey, Benjamin; Hoek, Janet; Edwards, Richard

    2014-01-01

    Objectives Online Cessation Support Networks (OCSNs) are associated with increased quit success rates, but few studies have examined their use over time. We identified usage patterns in New Zealand's largest OCSN over two years and explored implications for OCSN intervention design and evaluation. Methods We analysed metadata relating to 133,096 OCSN interactions during 2011 and 2012. Metrics covered aggregate network activity, user posting activity and longevity, and between-user commenting. Binary logistic regression models were estimated to investigate the feasibility of predicting low user engagement using early interaction data. Results Repeating periodic peaks and troughs in aggregate activity related not only to seasonality (e.g., New Year), but also to day of the week. Out of 2,062 unique users, 69 Highly Engaged Users (180+ interactions each) contributed 69% of all OCSN interactions in 2012 compared to 1.3% contributed by 864 Minimally Engaged Users (< = 2 items each). The proportion of Highly Engaged Users increased with network growth between 2011 and 2012 (with marginal significance), but the proportion of Minimally Engaged Users did not decline substantively. First week interaction data enabled identification of Minimally Engaged Users with high specificity and sensitivity (AUROC  = 0.94). Implications Results suggest future research should develop and test interventions that promote activity, and hence cessation support, amongst specific user groups or at key time points. For example, early usage information could help identify Minimally Engaged Users for tests of targeted messaging designed to improve their integration into, or re-engagement with, the OCSN. Furthermore, although we observed strong growth over time on varied metrics including posts and comments, this change did not coincide with large gains in first-time user persistence. Researchers assessing intervention effects should therefore examine multiple measures when evaluating changes in network dynamics over time. PMID:25192174

  3. For everything a season? A month-by-month analysis of social network resources in later life.

    PubMed

    Upenieks, Laura; Settels, Jason; Schafer, Markus H

    2018-01-01

    It is widely acknowledged that informal social ties provide older persons with many resources that serve to protect and improve their levels of health and well-being. Most studies on this topic, however, ignore the month or season of the year during which data was accumulated. This study proposes two hypotheses to explain seniors' social network resources over the calendar year: the "fluctuation hypothesis", which proposes that seasonal variation, in the form of weather fluctuations, institutional calendars, and holidays, might influence the social lives and resources of older persons, and the "network stability" perspective, which, informed by tenets of convoy theory and socioemotional selectivity theory, emphasizes the increasing importance of close network ties as individuals age and the stability of these ties. Using two waves (2005-2006 and 2010-2011) of the National Social Life, Health, and Aging Project (NSHAP), a nationally representative sample of community-dwelling older adults aged 57-85 in the United States, we examine a diverse set of nine social connectedness outcomes. Results, overall, support the network stability perspective, as the only social connectedness outcome found to significantly vary by month of year was average closeness with network members. We conclude by suggesting some methodological considerations for survey research and by noting how these findings complement the growing literature on inter-year fluctuation in social networks and social support. Changes in older adults' networks, while frequently observable over the course of years, do not seem to be seasonally patterned. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Multiple brain networks for visual self-recognition with different sensitivity for motion and body part.

    PubMed

    Sugiura, Motoaki; Sassa, Yuko; Jeong, Hyeonjeong; Miura, Naoki; Akitsuki, Yuko; Horie, Kaoru; Sato, Shigeru; Kawashima, Ryuta

    2006-10-01

    Multiple brain networks may support visual self-recognition. It has been hypothesized that the left ventral occipito-temporal cortex processes one's own face as a symbol, and the right parieto-frontal network processes self-image in association with motion-action contingency. Using functional magnetic resonance imaging, we first tested these hypotheses based on the prediction that these networks preferentially respond to a static self-face and to moving one's whole body, respectively. Brain activation specifically related to self-image during familiarity judgment was compared across four stimulus conditions comprising a two factorial design: factor Motion contrasted picture (Picture) and movie (Movie), and factor Body part a face (Face) and whole body (Body). Second, we attempted to segregate self-specific networks using a principal component analysis (PCA), assuming an independent pattern of inter-subject variability in activation over the four stimulus conditions in each network. The bilateral ventral occipito-temporal and the right parietal and frontal cortices exhibited self-specific activation. The left ventral occipito-temporal cortex exhibited greater self-specific activation for Face than for Body, in Picture, consistent with the prediction for this region. The activation profiles of the right parietal and frontal cortices did not show preference for Movie Body predicted by the assumed roles of these regions. The PCA extracted two cortical networks, one with its peaks in the right posterior, and another in frontal cortices; their possible roles in visuo-spatial and conceptual self-representations, respectively, were suggested by previous findings. The results thus supported and provided evidence of multiple brain networks for visual self-recognition.

  5. Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.

    PubMed

    Liu, Feng; Duan, Yunsuo; Peterson, Bradley S; Asllani, Iris; Zelaya, Fernando; Lythgoe, David; Kangarlu, Alayar

    2018-07-01

    The development of brain circuits is coupled with changes in neurovascular coupling, which refers to the close relationship between neural activity and cerebral blood flow (CBF). Studying the characteristics of CBF during resting state in developing brain can be a complementary way to understand the functional connectivity of the developing brain. Arterial spin labeling (ASL), as a noninvasive MR technique, is particularly attractive for studying cerebral perfusion in children and even newborns. We have collected pulsed ASL data in resting state for 47 healthy subjects from young children to adolescence (aged from 6 to 20 years old). In addition to studying the developmental change of static CBF maps during resting state, we also analyzed the CBF time series to reveal the dynamic characteristics of CBF in differing age groups. We used the seed-based correlation analysis to examine the temporal relationship of CBF time series between the selected ROIs and other brain regions. We have shown the developmental patterns in both static CBF maps and dynamic characteristics of CBF. While higher CBF of default mode network (DMN) in all age groups supports that DMN is the prominent active network during the resting state, the CBF connectivity patterns of some typical resting state networks show distinct patterns of metabolic activity during the resting state in the developing brains. Copyright © 2018 European Paediatric Neurology Society. All rights reserved.

  6. Intergenerational transfers in the era of HIV/AIDS: Evidence from rural Malawi.

    PubMed

    Kohler, Iliana V; Kohler, Hans-Peter; Anglewicz, Philip; Behrman, Jere R

    2012-12-13

    Intergenerational transfer patterns in sub-Saharan Africa are poorly understood, despite the alleged importance of support networks to ameliorate the complex implications of the HIV/AIDS epidemic for families. There is a considerable need for research on intergenerational support networks and transfers to better understand the mechanisms through which extended families cope with the HIV/AIDS epidemic and potentially alleviate some of its consequences in sub-Saharan Africa, and to comprehend how transfers respond-or not-to perceptions about own and other family members' health. Using the 2008 round of the Malawi Longitudinal Study of Families and Health (MLSFH), we estimate the age patterns and the multiple directions of financial and non-financial transfer flows in rural Malawi-from prime-aged respondents to their elderly parents and adult children age 15 and up. We also estimate the social, demographic and economic correlates of financial and non-financial transfers of financial intergenerational transfers in this context. Our findings are that: (1) intergenerational financial and non-financial transfers are widespread and a key characteristic of family relationships in rural Malawi; (2) downward and upward transfers are importantly constrained and determined by the availability of transfer partners (parents or adult children); (3) financial net transfers are strongly age-patterned and the middle generations are net-providers of transfers; (4) non-financial transfers are based on mutual assistance rather than reallocation of resources; and (5) intergenerational transfers are generally not related to health status, including HIV positive status.

  7. Bio-inspired patterned networks (BIPS) for development of wearable/disposable biosensors

    NASA Astrophysics Data System (ADS)

    McLamore, E. S.; Convertino, M.; Hondred, John; Das, Suprem; Claussen, J. C.; Vanegas, D. C.; Gomes, C.

    2016-05-01

    Here we demonstrate a novel approach for fabricating point of care (POC) wearable electrochemical biosensors based on 3D patterning of bionanocomposite networks. To create Bio-Inspired Patterned network (BIPS) electrodes, we first generate fractal network in silico models that optimize transport of network fluxes according to an energy function. Network patterns are then inkjet printed onto flexible substrate using conductive graphene ink. We then deposit fractal nanometal structures onto the graphene to create a 3D nanocomposite network. Finally, we biofunctionalize the surface with biorecognition agents using covalent bonding. In this paper, BIPS are used to develop high efficiency, low cost biosensors for measuring glucose as a proof of concept. Our results on the fundamental performance of BIPS sensors show that the biomimetic nanostructures significantly enhance biosensor sensitivity, accuracy, response time, limit of detection, and hysteresis compared to conventional POC non fractal electrodes (serpentine, interdigitated, and screen printed electrodes). BIPs, in particular Apollonian patterned BIPS, represent a new generation of POC biosensors based on nanoscale and microscale fractal networks that significantly improve electrical connectivity, leading to enhanced sensor performance.

  8. Structural methodologies for auditing SNOMED.

    PubMed

    Wang, Yue; Halper, Michael; Min, Hua; Perl, Yehoshua; Chen, Yan; Spackman, Kent A

    2007-10-01

    SNOMED is one of the leading health care terminologies being used worldwide. As such, quality assurance is an important part of its maintenance cycle. Methodologies for auditing SNOMED based on structural aspects of its organization are presented. In particular, automated techniques for partitioning SNOMED into smaller groups of concepts based primarily on relationships patterns are defined. Two abstraction networks, the area taxonomy and p-area taxonomy, are derived from the partitions. The high-level views afforded by these abstraction networks form the basis for systematic auditing. The networks tend to highlight errors that manifest themselves as irregularities at the abstract level. They also support group-based auditing, where sets of purportedly similar concepts are focused on for review. The auditing methodologies are demonstrated on one of SNOMED's top-level hierarchies. Errors discovered during the auditing process are reported.

  9. Creative Cognition and Brain Network Dynamics.

    PubMed

    Beaty, Roger E; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L

    2016-02-01

    Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relation, tend to cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Stability and change in sustainability of daily routines and social networks in families of children with profound intellectual and multiple disabilities.

    PubMed

    Wilder, Jenny; Granlund, Mats

    2015-03-01

    Children with profound intellectual and multiple disabilities (PIMD) demand intense family accommodations from birth and onwards. This study used an exploratory and qualitative study design to investigate stability and change in sustainability of daily routines and social networks of Swedish families of children with PIMD. Eight families participated over two years in eco-cultural family interviews and social networks interviews collected at home visits. Data were analyzed descriptively and by manifest contents analysis. Results showed variations in sustainability of daily routines over time across families. The sustainability was linked to fathers' involvement, couples' connectedness and emotional support. Stability and change of social networks were characterized by low overlap between the child and family networks, the children's communicative dependency and low density of able communication partners. The results indicate that patterns of stability and change were linked both to family resources and child characteristics. © 2014 John Wiley & Sons Ltd.

  11. Optimization of Training Sets For Neural-Net Processing of Characteristic Patterns From Vibrating Solids

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J. (Inventor)

    2006-01-01

    An artificial neural network is disclosed that processes holography generated characteristic pattern of vibrating structures along with finite-element models. The present invention provides for a folding operation for conditioning training sets for optimally training forward-neural networks to process characteristic fringe pattern. The folding pattern increases the sensitivity of the feed-forward network for detecting changes in the characteristic pattern The folding routine manipulates input pixels so as to be scaled according to the location in an intensity range rather than the position in the characteristic pattern.

  12. Expert identification of visual primitives used by CNNs during mammogram classification

    NASA Astrophysics Data System (ADS)

    Wu, Jimmy; Peck, Diondra; Hsieh, Scott; Dialani, Vandana; Lehman, Constance D.; Zhou, Bolei; Syrgkanis, Vasilis; Mackey, Lester; Patterson, Genevieve

    2018-02-01

    This work interprets the internal representations of deep neural networks trained for classification of diseased tissue in 2D mammograms. We propose an expert-in-the-loop inter- pretation method to label the behavior of internal units in convolutional neural networks (CNNs). Expert radiologists identify that the visual patterns detected by the units are correlated with meaningful medical phenomena such as mass tissue and calcificated vessels. We demonstrate that several trained CNN models are able to produce explanatory descriptions to support the final classification decisions. We view this as an important first step toward interpreting the internal representations of medical classification CNNs and explaining their predictions.

  13. Flavor network and the principles of food pairing

    NASA Astrophysics Data System (ADS)

    Ahn, Yong-Yeol; Ahnert, Sebastian E.; Bagrow, James P.; Barabási, Albert-László

    2011-12-01

    The cultural diversity of culinary practice, as illustrated by the variety of regional cuisines, raises the question of whether there are any general patterns that determine the ingredient combinations used in food today or principles that transcend individual tastes and recipes. We introduce a flavor network that captures the flavor compounds shared by culinary ingredients. Western cuisines show a tendency to use ingredient pairs that share many flavor compounds, supporting the so-called food pairing hypothesis. By contrast, East Asian cuisines tend to avoid compound sharing ingredients. Given the increasing availability of information on food preparation, our data-driven investigation opens new avenues towards a systematic understanding of culinary practice.

  14. Synchronized and mixed outbreaks of coupled recurrent epidemics.

    PubMed

    Zheng, Muhua; Zhao, Ming; Min, Byungjoon; Liu, Zonghua

    2017-05-25

    Epidemic spreading has been studied for a long time and most of them are focused on the growing aspect of a single epidemic outbreak. Recently, we extended the study to the case of recurrent epidemics (Sci. Rep. 5, 16010 (2015)) but limited only to a single network. We here report from the real data of coupled regions or cities that the recurrent epidemics in two coupled networks are closely related to each other and can show either synchronized outbreak pattern where outbreaks occur simultaneously in both networks or mixed outbreak pattern where outbreaks occur in one network but do not in another one. To reveal the underlying mechanism, we present a two-layered network model of coupled recurrent epidemics to reproduce the synchronized and mixed outbreak patterns. We show that the synchronized outbreak pattern is preferred to be triggered in two coupled networks with the same average degree while the mixed outbreak pattern is likely to show for the case with different average degrees. Further, we show that the coupling between the two layers tends to suppress the mixed outbreak pattern but enhance the synchronized outbreak pattern. A theoretical analysis based on microscopic Markov-chain approach is presented to explain the numerical results. This finding opens a new window for studying the recurrent epidemics in multi-layered networks.

  15. Pursuit of comfort and pursuit of harmony: culture, relationships, and social support seeking.

    PubMed

    Kim, Heejung S; Sherman, David K; Ko, Deborah; Taylor, Shelley E

    2006-12-01

    This research examined whether people from collectivistic cultures are less likely to seek social support than are people from individualistic cultures because they are more cautious about potentially disturbing their social network. Study 1 found that Asian Americans from a more collectivistic culture sought social support less and found support seeking to be less effective than European Americans from a more individualistic culture. Study 2 found that European Americans' willingness to seek support was unaffected by relationship priming, whereas Asian Americans were willing to seek support less when the relationship primed was closer to the self. Study 3 replicated the results of Study 2 and found that the tendency to seek support and expect social support to be helpful as related to concerns about relationships. These findings underscore the importance of culturally divergent relationship patterns in understanding social support transactions.

  16. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity

    PubMed Central

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-01-01

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points. PMID:27212008

  17. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity.

    PubMed

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-05-23

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points.

  18. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep.

    PubMed

    Montgomery, Sean M; Sirota, Anton; Buzsáki, György

    2008-06-25

    Rapid eye movement (REM) sleep has been considered a paradoxical state because, despite the high behavioral threshold to arousing perturbations, gross physiological patterns in the forebrain resemble those of waking states. To understand how intrahippocampal networks interact during REM sleep, we used 96 site silicon probes to record from different hippocampal subregions and compared the patterns of activity during waking exploration and REM sleep. Dentate/CA3 theta and gamma synchrony was significantly higher during REM sleep compared with active waking. In contrast, gamma power in CA1 and CA3-CA1 gamma coherence showed significant decreases in REM sleep. Changes in unit firing rhythmicity and unit-field coherence specified the local generation of these patterns. Although these patterns of hippocampal network coordination characterized the more common tonic periods of REM sleep (approximately 95% of total REM), we also detected large phasic bursts of local field potential power in the dentate molecular layer that were accompanied by transient increases in the firing of dentate and CA1 neurons. In contrast to tonic REM periods, phasic REM epochs were characterized by higher theta and gamma synchrony among the dentate, CA3, and CA1 regions. These data suggest enhanced dentate processing, but limited CA3-CA1 coordination during tonic REM sleep. In contrast, phasic bursts of activity during REM sleep may provide windows of opportunity to synchronize the hippocampal trisynaptic loop and increase output to cortical targets. We hypothesize that tonic REM sleep may support off-line mnemonic processing, whereas phasic bursts of activity during REM may promote memory consolidation.

  19. Interactions of the Salience Network and Its Subsystems with the Default-Mode and the Central-Executive Networks in Normal Aging and Mild Cognitive Impairment.

    PubMed

    Chand, Ganesh B; Wu, Junjie; Hajjar, Ihab; Qiu, Deqiang

    2017-09-01

    Previous functional magnetic resonance imaging (fMRI) investigations suggest that the intrinsically organized large-scale networks and the interaction between them might be crucial for cognitive activities. A triple network model, which consists of the default-mode network, salience network, and central-executive network, has been recently used to understand the connectivity patterns of the cognitively normal brains versus the brains with disorders. This model suggests that the salience network dynamically controls the default-mode and central-executive networks in healthy young individuals. However, the patterns of interactions have remained largely unknown in healthy aging or those with cognitive decline. In this study, we assess the patterns of interactions between the three networks using dynamical causal modeling in resting state fMRI data and compare them between subjects with normal cognition and mild cognitive impairment (MCI). In healthy elderly subjects, our analysis showed that the salience network, especially its dorsal subnetwork, modulates the interaction between the default-mode network and the central-executive network (Mann-Whitney U test; p < 0.05), which was consistent with the pattern of interaction reported in young adults. In contrast, this pattern of modulation by salience network was disrupted in MCI (p < 0.05). Furthermore, the degree of disruption in salience network control correlated significantly with lower overall cognitive performance measured by Montreal Cognitive Assessment (r = 0.295; p < 0.05). This study suggests that a disruption of the salience network control, especially the dorsal salience network, over other networks provides a neuronal basis for cognitive decline and may be a candidate neuroimaging biomarker of cognitive impairment.

  20. Designing Next Generation Massively Multithreaded Architectures for Irregular Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Secchi, Simone; Villa, Oreste

    Irregular applications, such as data mining or graph-based computations, show unpredictable memory/network access patterns and control structures. Massively multi-threaded architectures with large node count, like the Cray XMT, have been shown to address their requirements better than commodity clusters. In this paper we present the approaches that we are currently pursuing to design future generations of these architectures. First, we introduce the Cray XMT and compare it to other multithreaded architectures. We then propose an evolution of the architecture, integrating multiple cores per node and next generation network interconnect. We advocate the use of hardware support for remote memory referencemore » aggregation to optimize network utilization. For this evaluation we developed a highly parallel, custom simulation infrastructure for multi-threaded systems. Our simulator executes unmodified XMT binaries with very large datasets, capturing effects due to contention and hot-spotting, while predicting execution times with greater than 90% accuracy. We also discuss the FPGA prototyping approach that we are employing to study efficient support for irregular applications in next generation manycore processors.« less

  1. Immune networks: multitasking capabilities near saturation

    NASA Astrophysics Data System (ADS)

    Agliari, E.; Annibale, A.; Barra, A.; Coolen, A. C. C.; Tantari, D.

    2013-10-01

    Pattern-diluted associative networks were recently introduced as models for the immune system, with nodes representing T-lymphocytes and stored patterns representing signalling protocols between T- and B-lymphocytes. It was shown earlier that in the regime of extreme pattern dilution, a system with NT T-lymphocytes can manage a number N_B={ {O}}(N_T^\\delta ) of B-lymphocytes simultaneously, with δ < 1. Here we study this model in the extensive load regime NB = αNT, with a high degree of pattern dilution, in agreement with immunological findings. We use graph theory and statistical mechanical analysis based on replica methods to show that in the finite-connectivity regime, where each T-lymphocyte interacts with a finite number of B-lymphocytes as NT → ∞, the T-lymphocytes can coordinate effective immune responses to an extensive number of distinct antigen invasions in parallel. As α increases, the system eventually undergoes a second order transition to a phase with clonal cross-talk interference, where the system’s performance degrades gracefully. Mathematically, the model is equivalent to a spin system on a finitely connected graph with many short loops, so one would expect the available analytical methods, which all assume locally tree-like graphs, to fail. Yet it turns out to be solvable. Our results are supported by numerical simulations.

  2. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    PubMed Central

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  3. Pattern reverberation in networks of excitable systems with connection delays

    NASA Astrophysics Data System (ADS)

    Lücken, Leonhard; Rosin, David P.; Worlitzer, Vasco M.; Yanchuk, Serhiy

    2017-01-01

    We consider the recurrent pulse-coupled networks of excitable elements with delayed connections, which are inspired by the biological neural networks. If the delays are tuned appropriately, the network can either stay in the steady resting state, or alternatively, exhibit a desired spiking pattern. It is shown that such a network can be used as a pattern-recognition system. More specifically, the application of the correct pattern as an external input to the network leads to a self-sustained reverberation of the encoded pattern. In terms of the coupling structure, the tolerance and the refractory time of the individual systems, we determine the conditions for the uniqueness of the sustained activity, i.e., for the functionality of the network as an unambiguous pattern detector. We point out the relation of the considered systems with cyclic polychronous groups and show how the assumed delay configurations may arise in a self-organized manner when a spike-time dependent plasticity of the connection delays is assumed. As excitable elements, we employ the simplistic coincidence detector models as well as the Hodgkin-Huxley neuron models. Moreover, the system is implemented experimentally on a Field-Programmable Gate Array.

  4. Midfrontal Theta and Posterior Parietal Alpha Band Oscillations Support Conflict Resolution in a Masked Affective Priming Task.

    PubMed

    Jiang, Jun; Bailey, Kira; Xiao, Xiao

    2018-01-01

    Past attempts to characterize the neural mechanisms of affective priming have conceptualized it in terms of classic cognitive conflict, but have not examined the neural oscillatory mechanisms of subliminal affective priming. Using behavioral and electroencephalogram (EEG) time frequency (TF) analysis, the current study examines the oscillatory dynamics of unconsciously triggered conflict in an emotional facial expressions version of the masked affective priming task. The results demonstrate that the power dynamics of conflict are characterized by increased midfrontal theta activity and suppressed parieto-occipital alpha activity. Across-subject and within-trial correlation analyses further confirmed this pattern. Phase synchrony and Granger causality analyses (GCAs) revealed that the fronto-parietal network was involved in unconscious conflict detection and resolution. Our findings support a response conflict account of affective priming, and reveal the role of the fronto-parietal network in unconscious conflict control.

  5. Deep learning of support vector machines with class probability output networks.

    PubMed

    Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho

    2015-04-01

    Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Dynamic reconfiguration of frontal brain networks during executive cognition in humans

    PubMed Central

    Braun, Urs; Schäfer, Axel; Walter, Henrik; Erk, Susanne; Romanczuk-Seiferth, Nina; Haddad, Leila; Schweiger, Janina I.; Grimm, Oliver; Heinz, Andreas; Tost, Heike; Meyer-Lindenberg, Andreas; Bassett, Danielle S.

    2015-01-01

    The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia. PMID:26324898

  7. Resting State Synchrony in Short-Term versus Long-Term Abstinent Alcoholics

    PubMed Central

    Camchong, Jazmin; Stenger, Victor Andrew; Fein, George

    2012-01-01

    BACKGROUND We previously reported that when compared to controls, long-term abstinent alcoholics (LTAA) have increased resting state synchrony (RSS) of the inhibitory control network and reduced synchrony of the appetitive drive network, and hypothesized that these levels of synchrony are adaptive, and support the behavioral changes required to maintain abstinence. In the current study, we investigate whether these RSS patterns can be identified in short-term abstinent alcoholics. METHODS Resting state functional magnetic resonance imaging data were collected from 27 short-term abstinent alcoholics (STAA), 23 LTAA and 23 non-substance abusing controls (NSAC). We examined baseline RSS using seed-based measures. RESULTS We found ordered RSS effects from NSAC to STAA and then to LTAA within both the appetitive drive and executive control networks: increasing RSS of the executive control network, and decreasing RSS of the reward processing network. Finally, we found significant correlations between strength of RSS in these networks and (a) cognitive flexibility and (b) current antisocial behavior. DISCUSSION Findings are consistent with an adaptive progression of RSS from short- to long-term abstinence so that, compared to normal controls, the synchrony (a) within the reward network progressively decreases and (b) within the executive control network progressively increases. PMID:23421812

  8. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    PubMed

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  9. A multi-scale automatic observatory of soil moisture and temperature served for satellite product validation in Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Tang, S.; Dong, L.; Lu, P.; Zhou, K.; Wang, F.; Han, S.; Min, M.; Chen, L.; Xu, N.; Chen, J.; Zhao, P.; Li, B.; Wang, Y.

    2016-12-01

    Due to the lack of observing data which match the satellite pixel size, the inversion accuracy of satellite products in Tibetan Plateau(TP) is difficult to be evaluated. Hence, the in situ observations are necessary to support the calibration and validation activities. Under the support of the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) projec a multi-scale automatic observatory of soil moisture and temperature served for satellite product validation (TIPEX-III-SMTN) were established in Tibetan Plateau. The observatory consists of two regional scale networks, including the Naqu network and the Geji network. The Naqu network is located in the north of TP, and characterized by alpine grasslands. The Geji network is located in the west of TP, and characterized by marshes. Naqu network includes 33 stations, which are deployed in a 75KM*75KM region according to a pre-designed pattern. At Each station, soil moisture and temperature are measured by five sensors at five soil depths. One sensor is vertically inserted into 0 2 cm depth to measure the averaged near-surface soil moisture and temperature. The other four sensors are horizontally inserted at 5, 10, 20, and 30 cm depths, respectively. The data are recorded every 10 minutes. A wireless transmission system is applied to transmit the data in real time, and a dual power supply system is adopted to keep the continuity of the observation. The construction of Naqu network has been accomplished in August, 2015, and Geji network will be established before Oct., 2016. Observations acquired from TIPEX-III-SMTN can be used to validate satellite products with different spatial resolution, and TIPEX-III-SMTN can also be used as a complementary of the existing similar networks in this area, such as CTP-SMTMN (the multiscale Soil Moistureand Temperature Monitoring Network on the central TP) . Keywords: multi-scale soil moisture soil temperature, Tibetan Plateau Acknowledgments: This work was jointly supported by CMA Special Fund for Scientific Research in the Public Interest (Grant No. GYHY201406001, GYHY201206008-01), and Climate change special fund (QHBH2014)'

  10. Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.

    PubMed

    Guidotti, Roberto; Del Gratta, Cosimo; Baldassarre, Antonello; Romani, Gian Luca; Corbetta, Maurizio

    2015-07-08

    When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity. Copyright © 2015 the authors 0270-6474/15/359786-13$15.00/0.

  11. Angle of Arrival Detection Through Artificial Neural Network Analysis of Optical Fiber Intensity Patterns

    DTIC Science & Technology

    1990-12-01

    ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS THESIS Scott Thomas Captain, USAF AFIT/GE/ENG/90D-62 DTIC...ELECTE ao • JAN08 1991 Approved for public release; distribution unlimited. AFIT/GE/ENG/90D-62 ANGLE OF ARRIVAL DETECTION THROUGH ARTIFICIAL NEURAL NETWORK ANALYSIS... ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS L Introduction The optical sensors of United States Air Force reconnaissance

  12. Artificial neural networks as quantum associative memory

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen; Schrock, Jonathan; Imam, Neena; Humble, Travis

    We present results related to the recall accuracy and capacity of Hopfield networks implemented on commercially available quantum annealers. The use of Hopfield networks and artificial neural networks as content-addressable memories offer robust storage and retrieval of classical information, however, implementation of these models using currently available quantum annealers faces several challenges: the limits of precision when setting synaptic weights, the effects of spurious spin-glass states and minor embedding of densely connected graphs into fixed-connectivity hardware. We consider neural networks which are less than fully-connected, and also consider neural networks which contain multiple sparsely connected clusters. We discuss the effect of weak edge dilution on the accuracy of memory recall, and discuss how the multiple clique structure affects the storage capacity. Our work focuses on storage of patterns which can be embedded into physical hardware containing n < 1000 qubits. This work was supported by the United States Department of Defense and used resources of the Computational Research and Development Programs as Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with the U. S. Department of Energy.

  13. Online Social Networks for Crowdsourced Multimedia-Involved Behavioral Testing: An Empirical Study

    PubMed Central

    Choi, Jun-Ho; Lee, Jong-Seok

    2016-01-01

    Online social networks have emerged as effective crowdsourcing media to recruit participants in recent days. However, issues regarding how to effectively exploit them have not been adequately addressed yet. In this paper, we investigate the reliability and effectiveness of multimedia-involved behavioral testing via social network-based crowdsourcing, especially focused on Facebook as a medium to recruit participants. We conduct a crowdsourcing-based experiment for a music recommendation problem. It is shown that different advertisement methods yield different degrees of efficiency and there exist significant differences in behavioral patterns across different genders and different age groups. In addition, we perform a comparison of our experiment with other multimedia-involved crowdsourcing experiments built on Amazon Mechanical Turk (MTurk), which suggests that crowdsourcing-based experiments using social networks for recruitment can achieve comparable efficiency. Based on the analysis results, advantages and disadvantages of social network-based crowdsourcing and suggestions for successful experiments are also discussed. We conclude that social networks have the potential to support multimedia-involved behavioral tests to gather in-depth data even for long-term periods. PMID:26793137

  14. The Social Origins of Networks and Diffusion.

    PubMed

    Centola, Damon

    2015-03-01

    Recent research on social contagion has demonstrated significant effects of network topology on the dynamics of diffusion. However, network topologies are not given a priori. Rather, they are patterns of relations that emerge from individual and structural features of society, such as population composition, group heterogeneity, homophily, and social consolidation. Following Blau and Schwartz, the author develops a model of social network formation that explores how social and structural constraints on tie formation generate emergent social topologies and then explores the effectiveness of these social networks for the dynamics of social diffusion. Results show that, at one extreme, high levels of consolidation can create highly balkanized communities with poor integration of shared norms and practices. As suggested by Blau and Schwartz, reducing consolidation creates more crosscutting circles and significantly improves the dynamics of social diffusion across the population. However, the author finds that further reducing consolidation creates highly intersecting social networks that fail to support the widespread diffusion of norms and practices, indicating that successful social diffusion can depend on moderate to high levels of structural consolidation.

  15. Online Social Networks for Crowdsourced Multimedia-Involved Behavioral Testing: An Empirical Study.

    PubMed

    Choi, Jun-Ho; Lee, Jong-Seok

    2015-01-01

    Online social networks have emerged as effective crowdsourcing media to recruit participants in recent days. However, issues regarding how to effectively exploit them have not been adequately addressed yet. In this paper, we investigate the reliability and effectiveness of multimedia-involved behavioral testing via social network-based crowdsourcing, especially focused on Facebook as a medium to recruit participants. We conduct a crowdsourcing-based experiment for a music recommendation problem. It is shown that different advertisement methods yield different degrees of efficiency and there exist significant differences in behavioral patterns across different genders and different age groups. In addition, we perform a comparison of our experiment with other multimedia-involved crowdsourcing experiments built on Amazon Mechanical Turk (MTurk), which suggests that crowdsourcing-based experiments using social networks for recruitment can achieve comparable efficiency. Based on the analysis results, advantages and disadvantages of social network-based crowdsourcing and suggestions for successful experiments are also discussed. We conclude that social networks have the potential to support multimedia-involved behavioral tests to gather in-depth data even for long-term periods.

  16. A modular architecture for transparent computation in recurrent neural networks.

    PubMed

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Internet use and web communication networks, sources of social support, and forms of suicidal and nonsuicidal self-injury among adolescents: different patterns between genders.

    PubMed

    Tseng, Fang-Yi; Yang, Hao-Jan

    2015-04-01

    The relationships of Internet use, web communication, and sources of social support with adolescent self-injurious thoughts and behaviors (SITBs) in Taiwan were investigated. The study sample of 391 12 to 18-year-olds was selected from nine public high schools. Findings show that girls are more likely to have SITBs, except for suicide gestures. Web communication is a risk factor for SITBs in boys but not in girls. Family support is protective in both genders. Support from friends is protective and support from significant others was a risk factor for suicide plans in girls. Support from virtual social communities can have both positive and negative effects on adolescent SITBs, with different effects by gender. © 2014 The American Association of Suicidology.

  18. Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury

    PubMed Central

    Dimitriadis, Stavros I.; Zouridakis, George; Rezaie, Roozbeh; Babajani-Feremi, Abbas; Papanicolaou, Andrew C.

    2015-01-01

    Mild traumatic brain injury (mTBI) may affect normal cognition and behavior by disrupting the functional connectivity networks that mediate efficient communication among brain regions. In this study, we analyzed brain connectivity profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 31 mTBI patients and 55 normal controls. We used phase-locking value estimates to compute functional connectivity graphs to quantify frequency-specific couplings between sensors at various frequency bands. Overall, normal controls showed a dense network of strong local connections and a limited number of long-range connections that accounted for approximately 20% of all connections, whereas mTBI patients showed networks characterized by weak local connections and strong long-range connections that accounted for more than 60% of all connections. Comparison of the two distinct general patterns at different frequencies using a tensor representation for the connectivity graphs and tensor subspace analysis for optimal feature extraction showed that mTBI patients could be separated from normal controls with 100% classification accuracy in the alpha band. These encouraging findings support the hypothesis that MEG-based functional connectivity patterns may be used as biomarkers that can provide more accurate diagnoses, help guide treatment, and monitor effectiveness of intervention in mTBI. PMID:26640764

  19. Topologically convergent and divergent functional connectivity patterns in unmedicated unipolar depression and bipolar disorder.

    PubMed

    Wang, Y; Wang, J; Jia, Y; Zhong, S; Zhong, M; Sun, Y; Niu, M; Zhao, L; Zhao, L; Pan, J; Huang, L; Huang, R

    2017-07-04

    Bipolar disorder (BD), particularly BD II, is frequently misdiagnosed as unipolar depression (UD), leading to inappropriate treatment and poor clinical outcomes. Although depressive symptoms may be expressed similarly in UD and BD, the similarities and differences in the architecture of brain functional networks between the two disorders are still unknown. In this study, we hypothesized that UD and BD II patients would show convergent and divergent patterns of disrupted topological organization of the functional connectome, especially in the default mode network (DMN) and the limbic network. Brain resting-state functional magnetic resonance imaging (fMRI) data were acquired from 32 UD-unmedicated patients, 31 unmedicated BD II patients (current episode depressed) and 43 healthy subjects. Using graph theory, we systematically studied the topological organization of their whole-brain functional networks at the following three levels: whole brain, modularity and node. First, both the UD and BD II patients showed increased characteristic path length and decreased global efficiency compared with the controls. Second, both the UD and BD II patients showed disrupted intramodular connectivity within the DMN and limbic system network. Third, decreased nodal characteristics (nodal strength and nodal efficiency) were found predominantly in brain regions in the DMN, limbic network and cerebellum of both the UD and BD II patients, whereas differences between the UD and BD II patients in the nodal characteristics were also observed in the precuneus and temporal pole. Convergent deficits in the topological organization of the whole brain, DMN and limbic networks may reflect overlapping pathophysiological processes in unipolar and bipolar depression. Our discovery of divergent regional connectivity that supports emotion processing could help to identify biomarkers that will aid in differentiating these disorders.

  20. Topologically convergent and divergent functional connectivity patterns in unmedicated unipolar depression and bipolar disorder

    PubMed Central

    Wang, Y; Wang, J; Jia, Y; Zhong, S; Zhong, M; Sun, Y; Niu, M; Zhao, L; Zhao, L; Pan, J; Huang, L; Huang, R

    2017-01-01

    Bipolar disorder (BD), particularly BD II, is frequently misdiagnosed as unipolar depression (UD), leading to inappropriate treatment and poor clinical outcomes. Although depressive symptoms may be expressed similarly in UD and BD, the similarities and differences in the architecture of brain functional networks between the two disorders are still unknown. In this study, we hypothesized that UD and BD II patients would show convergent and divergent patterns of disrupted topological organization of the functional connectome, especially in the default mode network (DMN) and the limbic network. Brain resting-state functional magnetic resonance imaging (fMRI) data were acquired from 32 UD-unmedicated patients, 31 unmedicated BD II patients (current episode depressed) and 43 healthy subjects. Using graph theory, we systematically studied the topological organization of their whole-brain functional networks at the following three levels: whole brain, modularity and node. First, both the UD and BD II patients showed increased characteristic path length and decreased global efficiency compared with the controls. Second, both the UD and BD II patients showed disrupted intramodular connectivity within the DMN and limbic system network. Third, decreased nodal characteristics (nodal strength and nodal efficiency) were found predominantly in brain regions in the DMN, limbic network and cerebellum of both the UD and BD II patients, whereas differences between the UD and BD II patients in the nodal characteristics were also observed in the precuneus and temporal pole. Convergent deficits in the topological organization of the whole brain, DMN and limbic networks may reflect overlapping pathophysiological processes in unipolar and bipolar depression. Our discovery of divergent regional connectivity that supports emotion processing could help to identify biomarkers that will aid in differentiating these disorders. PMID:28675389

  1. The independent influences of age and education on functional brain networks and cognition in healthy older adults.

    PubMed

    Perry, Alistair; Wen, Wei; Kochan, Nicole A; Thalamuthu, Anbupalam; Sachdev, Perminder S; Breakspear, Michael

    2017-10-01

    Healthy aging is accompanied by a constellation of changes in cognitive processes and alterations in functional brain networks. The relationships between brain networks and cognition during aging in later life are moderated by demographic and environmental factors, such as prior education, in a poorly understood manner. Using multivariate analyses, we identified three latent patterns (or modes) linking resting-state functional connectivity to demographic and cognitive measures in 101 cognitively normal elders. The first mode (P = 0.00043) captures an opposing association between age and core cognitive processes such as attention and processing speed on functional connectivity patterns. The functional subnetwork expressed by this mode links bilateral sensorimotor and visual regions through key areas such as the parietal operculum. A strong, independent association between years of education and functional connectivity loads onto a second mode (P = 0.012), characterized by the involvement of key hub regions. A third mode (P = 0.041) captures weak, residual brain-behavior relations. Our findings suggest that circuits supporting lower level cognitive processes are most sensitive to the influence of age in healthy older adults. Education, and to a lesser extent, executive functions, load independently onto functional networks-suggesting that the moderating effect of education acts upon networks distinct from those vulnerable with aging. This has important implications in understanding the contribution of education to cognitive reserve during healthy aging. Hum Brain Mapp 38:5094-5114, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Self-organizing neural network models for visual pattern recognition.

    PubMed

    Fukushima, K

    1987-01-01

    Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.

  3. Multistability, local pattern formation, and global collective firing in a small-world network of nonleaky integrate-and-fire neurons.

    PubMed

    Rothkegel, Alexander; Lehnertz, Klaus

    2009-03-01

    We investigate numerically the collective dynamical behavior of pulse-coupled nonleaky integrate-and-fire neurons that are arranged on a two-dimensional small-world network. To ensure ongoing activity, we impose a probability for spontaneous firing for each neuron. We study network dynamics evolving from different sets of initial conditions in dependence on coupling strength and rewiring probability. Besides a homogeneous equilibrium state for low coupling strength, we observe different local patterns including cyclic waves, spiral waves, and turbulentlike patterns, which-depending on network parameters-interfere with the global collective firing of the neurons. We attribute the various network dynamics to distinct regimes in the parameter space. For the same network parameters different network dynamics can be observed depending on the set of initial conditions only. Such a multistable behavior and the interplay between local pattern formation and global collective firing may be attributable to the spatiotemporal dynamics of biological networks.

  4. Effects of behavioral patterns and network topology structures on Parrondo’s paradox

    PubMed Central

    Ye, Ye; Cheong, Kang Hao; Cen, Yu-wan; Xie, Neng-gang

    2016-01-01

    A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed. PMID:27845430

  5. Effects of behavioral patterns and network topology structures on Parrondo’s paradox

    NASA Astrophysics Data System (ADS)

    Ye, Ye; Cheong, Kang Hao; Cen, Yu-Wan; Xie, Neng-Gang

    2016-11-01

    A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed.

  6. A host-endoparasite network of Neotropical marine fish: are there organizational patterns?

    PubMed

    Bellay, Sybelle; Lima, Dilermando P; Takemoto, Ricardo M; Luque, José L

    2011-12-01

    Properties of ecological networks facilitate the understanding of interaction patterns in host-parasite systems as well as the importance of each species in the interaction structure of a community. The present study evaluates the network structure, functional role of all species and patterns of parasite co-occurrence in a host-parasite network to determine the organization level of a host-parasite system consisting of 170 taxa of gastrointestinal metazoans of 39 marine fish species on the coast of Brazil. The network proved to be nested and modular, with a low degree of connectance. Host-parasite interactions were influenced by host phylogeny. Randomness in parasite co-occurrence was observed in most modules and component communities, although species segregation patterns were also observed. The low degree of connectance in the network may be the cause of properties such as nestedness and modularity, which indicate the presence of a high number of peripheral species. Segregation patterns among parasite species in modules underscore the role of host specificity. Knowledge of ecological networks allows detection of keystone species for the maintenance of biodiversity and the conduction of further studies on the stability of networks in relation to frequent environmental changes.

  7. A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns.

    PubMed

    Xu, W; LeBeau, J M

    2018-05-01

    We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the need for pretreating the data. With the aligned data, additional networks then measure the sample thickness and tilt. The performance of the network is explored as a function of a variety of variables including thickness, tilt, and dose. A methodology to explore the response of the neural network to various pattern features is also presented. Processing patterns at a rate of  ∼ 0.1 s/pattern, the network is shown to be orders of magnitude faster than a brute force method while maintaining accuracy. The approach is thus suitable for automatically processing big, 4D STEM data. We also discuss the generality of the method to other materials/orientations as well as a hybrid approach that combines the features of the neural network with least squares fitting for even more robust analysis. The source code is available at https://github.com/subangstrom/DeepDiffraction. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks

    PubMed Central

    Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-01-01

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid “particle degeneracy” problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network. PMID:29267252

  9. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks.

    PubMed

    Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-12-21

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.

  10. Expanding the PACS archive to support clinical review, research, and education missions

    NASA Astrophysics Data System (ADS)

    Honeyman-Buck, Janice C.; Frost, Meryll M.; Drane, Walter E.

    1999-07-01

    Designing an image archive and retrieval system that supports multiple users with many different requirements and patterns of use without compromising the performance and functionality required by diagnostic radiology is an intellectual and technical challenge. A diagnostic archive, optimized for performance when retrieving diagnostic images for radiologists needed to be expanded to support a growing clinical review network, the University of Florida Brain Institute's demands for neuro-imaging, Biomedical Engineering's imaging sciences, and an electronic teaching file. Each of the groups presented a different set of problems for the designers of the system. In addition, the radiologists did not want to see nay loss of performance as new users were added.

  11. Facile fabrication of networked patterns and their superior application to realize the virus immobilized networked pattern circuit.

    PubMed

    Choi, Kyung Min; Lee, Seok Jae; Choi, Jung Hoon; Park, Tae Jung; Park, Jong Wan; Shin, Weon Ho; Kang, Jeung Ku

    2010-12-07

    A facile route to fabricate a protein-immobilized network pattern circuit for rapid and highly sensitive diagnosis was developed via the evaporation directed impromptu patterning method and selective avian influenza virus (AIV) immobilization. The response to the 10 fg mL(-1) anti-AI antibody demonstrates that this easy and simple circuit has about 1000 times higher sensitivity compared to those of conventional approaches.

  12. Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks

    DTIC Science & Technology

    2015-12-31

    AFRL-RQ-WP-TP-2016-0079 FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING NEURAL NETWORKS (POSTPRINT) Abdeel J...Journal Article Postprint 01 October 2013 – 22 June 2015 4. TITLE AND SUBTITLE FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING...networks were used to automatically identify two-phase flow patterns for refrigerant R-134a flowing in a horizontal tube. In laboratory experiments

  13. Self-Supported Crack-Free Conducting Polymer Films with Stabilized Wrinkling Patterns and Their Applications

    PubMed Central

    Xie, Jixun; Han, Xue; Ji, Haipeng; Wang, Juanjuan; Zhao, Jingxin; Lu, Conghua

    2016-01-01

    Self-supported conducting polymer films with controlled microarchitectures are highly attractive from fundamental and applied points of view. Here a versatile strategy is demonstrated to fabricate thin free-standing crack-free polyaniline (PANI)-based films with stable wrinkling patterns. It is based on oxidization polymerization of pyrrole inside a pre-wrinkled PANI film, in which the wrinkled PANI film is used both as a template and oxidizing agent for the first time. The subsequently grown polypyrrole (PPy) and the formation of interpenetrated PANI/PPy networks play a decisive role in enhancing the film integrity and the stability of wrinkles. This enhancing effect is attributed to the modification of internal stresses by the interpenetrated PANI/PPy microstructures. Consequently, a crack-free film with stable controlled wrinkles such as the wavelength, orientation and spatial location has been achieved. Moreover, the wrinkling PANI/PPy film can be removed from the initially deposited substrate to become free-standing. It can be further transferred onto target substrates to fabricate hierarchical patterns and functional devices such as flexible electrodes, gas sensors, and surface-enhanced Raman scattering substrates. This simple universal enhancing strategy has been extended to fabrication of other PANI-based composite systems with crack-free film integrity and stabilized surface patterns, irrespective of pattern types and film geometries. PMID:27827459

  14. Neurovascular patterning cues and implications for central and peripheral neurological disease

    PubMed Central

    Gamboa, Nicholas T.; Taussky, Philipp; Park, Min S.; Couldwell, William T.; Mahan, Mark A.; Kalani, M. Yashar S.

    2017-01-01

    The highly branched nervous and vascular systems run along parallel trajectories throughout the human body. This stereotyped pattern of branching shared by the nervous and vascular systems stems from a common reliance on specific cues critical to both neurogenesis and angiogenesis. Continually emerging evidence supports the notion of later-evolving vascular networks co-opting neural molecular mechanisms to ensure close proximity and adequate delivery of oxygen and nutrients to nervous tissue. As our understanding of these biologic pathways and their phenotypic manifestations continues to advance, identification of where pathways go awry will provide critical insight into central and peripheral nervous system pathology. PMID:28966815

  15. Understanding Online Health Groups for Depression: Social Network and Linguistic Perspectives

    PubMed Central

    2016-01-01

    Background Mental health problems have become increasingly prevalent in the past decade. With the advance of Web 2.0 technologies, social media present a novel platform for Web users to form online health groups. Members of online health groups discuss health-related issues and mutually help one another by anonymously revealing their mental conditions, sharing personal experiences, exchanging health information, and providing suggestions and support. The conversations in online health groups contain valuable information to facilitate the understanding of their mutual help behaviors and their mental health problems. Objective We aimed to characterize the conversations in a major online health group for major depressive disorder (MDD) patients in a popular Chinese social media platform. In particular, we intended to explain how Web users discuss depression-related issues from the perspective of the social networks and linguistic patterns revealed by the members’ conversations. Methods Social network analysis and linguistic analysis were employed to characterize the social structure and linguistic patterns, respectively. Furthermore, we integrated both perspectives to exploit the hidden relations between them. Results We found an intensive use of self-focus words and negative affect words. In general, group members used a higher proportion of negative affect words than positive affect words. The social network of the MDD group for depression possessed small-world and scale-free properties, with a much higher reciprocity ratio and clustering coefficient value as compared to the networks of other social media platforms and classic network models. We observed a number of interesting relationships, either strong correlations or convergent trends, between the topological properties and linguistic properties of the MDD group members. Conclusions (1) The MDD group members have the characteristics of self-preoccupation and negative thought content, according to Beck’s cognitive theory of depression; (2) the social structure of the MDD group is much stickier than those of other social media groups, indicating the tendency of mutual communications and efficient spread of information in the MDD group; and (3) the linguistic patterns of MDD members are associated with their topological positions in the social network. PMID:26966078

  16. Understanding Online Health Groups for Depression: Social Network and Linguistic Perspectives.

    PubMed

    Xu, Ronghua; Zhang, Qingpeng

    2016-03-10

    Mental health problems have become increasingly prevalent in the past decade. With the advance of Web 2.0 technologies, social media present a novel platform for Web users to form online health groups. Members of online health groups discuss health-related issues and mutually help one another by anonymously revealing their mental conditions, sharing personal experiences, exchanging health information, and providing suggestions and support. The conversations in online health groups contain valuable information to facilitate the understanding of their mutual help behaviors and their mental health problems. We aimed to characterize the conversations in a major online health group for major depressive disorder (MDD) patients in a popular Chinese social media platform. In particular, we intended to explain how Web users discuss depression-related issues from the perspective of the social networks and linguistic patterns revealed by the members' conversations. Social network analysis and linguistic analysis were employed to characterize the social structure and linguistic patterns, respectively. Furthermore, we integrated both perspectives to exploit the hidden relations between them. We found an intensive use of self-focus words and negative affect words. In general, group members used a higher proportion of negative affect words than positive affect words. The social network of the MDD group for depression possessed small-world and scale-free properties, with a much higher reciprocity ratio and clustering coefficient value as compared to the networks of other social media platforms and classic network models. We observed a number of interesting relationships, either strong correlations or convergent trends, between the topological properties and linguistic properties of the MDD group members. (1) The MDD group members have the characteristics of self-preoccupation and negative thought content, according to Beck's cognitive theory of depression; (2) the social structure of the MDD group is much stickier than those of other social media groups, indicating the tendency of mutual communications and efficient spread of information in the MDD group; and (3) the linguistic patterns of MDD members are associated with their topological positions in the social network.

  17. Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.

    2015-03-01

    During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.

  18. Bifurcations: Focal Points of Particle Adhesion in Microvascular Networks

    PubMed Central

    Prabhakarpandian, Balabhaskar; Wang, Yi; Rea-Ramsey, Angela; Sundaram, Shivshankar; Kiani, Mohammad F.; Pant, Kapil

    2011-01-01

    Objective Particle adhesion in vivo is dependent on microcirculation environment which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called Synthetic Microvascular Network, for characterizing particle adhesion patterns in the microcirculation. Methods Synthetic microvascular networks were fabricated using soft lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD based modeling. Results Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5X) near bifurcations compared to the branches of the microvascular networks. Conclusion Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. Synthetic microvascular networks provide an in vitro framework for understanding particle adhesion. PMID:21418388

  19. The neural network classification of false killer whale (Pseudorca crassidens) vocalizations.

    PubMed

    Murray, S O; Mercado, E; Roitblat, H L

    1998-12-01

    This study reports the use of unsupervised, self-organizing neural network to categorize the repertoire of false killer whale vocalizations. Self-organizing networks are capable of detecting patterns in their input and partitioning those patterns into categories without requiring that the number or types of categories be predefined. The inputs for the neural networks were two-dimensional characterization of false killer whale vocalization, where each vocalization was characterized by a sequence of short-time measurements of duty cycle and peak frequency. The first neural network used competitive learning, where units in a competitive layer distributed themselves to recognize frequently presented input vectors. This network resulted in classes representing typical patterns in the vocalizations. The second network was a Kohonen feature map which organized the outputs topologically, providing a graphical organization of pattern relationships. The networks performed well as measured by (1) the average correlation between the input vectors and the weight vectors for each category, and (2) the ability of the networks to classify novel vocalizations. The techniques used in this study could easily be applied to other species and facilitate the development of objective, comprehensive repertoire models.

  20. Network structure of subway passenger flows

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  1. Support for an auto-associative model of spoken cued recall: evidence from fMRI.

    PubMed

    de Zubicaray, Greig; McMahon, Katie; Eastburn, Mathew; Pringle, Alan J; Lorenz, Lina; Humphreys, Michael S

    2007-03-02

    Cued recall and item recognition are considered the standard episodic memory retrieval tasks. However, only the neural correlates of the latter have been studied in detail with fMRI. Using an event-related fMRI experimental design that permits spoken responses, we tested hypotheses from an auto-associative model of cued recall and item recognition [Chappell, M., & Humphreys, M. S. (1994). An auto-associative neural network for sparse representations: Analysis and application to models of recognition and cued recall. Psychological Review, 101, 103-128]. In brief, the model assumes that cues elicit a network of phonological short term memory (STM) and semantic long term memory (LTM) representations distributed throughout the neocortex as patterns of sparse activations. This information is transferred to the hippocampus which converges upon the item closest to a stored pattern and outputs a response. Word pairs were learned from a study list, with one member of the pair serving as the cue at test. Unstudied words were also intermingled at test in order to provide an analogue of yes/no recognition tasks. Compared to incorrectly rejected studied items (misses) and correctly rejected (CR) unstudied items, correctly recalled items (hits) elicited increased responses in the left hippocampus and neocortical regions including the left inferior prefrontal cortex (LIPC), left mid lateral temporal cortex and inferior parietal cortex, consistent with predictions from the model. This network was very similar to that observed in yes/no recognition studies, supporting proposals that cued recall and item recognition involve common rather than separate mechanisms.

  2. Food Acquisition through Private and Public Social Networks and Its Relationship with Household Food Security among Various Socioeconomic Statuses in South Korea

    PubMed Central

    Park, Sohyun; Kim, Kirang

    2018-01-01

    This study was conducted to understand food acquisition practices from social networks and its relationship with household food security. In-depth interviews and a survey on food security were conducted with twenty-nine mothers and one father in metropolitan areas of South Korea. Many families acquired food from their extended families, mainly participants’ mothers. Between low-income and non-low-income households, there was a pattern of more active sharing of food through private networks among non-low-income households. Most of the low-income households received food support from public social networks, such as government and charity institutions. Despite the assistance, most of them perceived food insecurity. We hypothesized that the lack of private social support may exacerbate the food security status of low-income households, despite formal food assistance from government and social welfare institutions. Interviews revealed that certain food items were perceived as lacking, such as animal-based protein sources and fresh produce, which are relatively expensive in this setting. Future programs should consider what would alleviate food insecurity among low-income households and determine the right instruments and mode of resolving the unmet needs. Future research could evaluate the quantitative relationship between private resources and food insecurity in households with various income statuses. PMID:29370127

  3. Large-scale coupling dynamics of instructed reversal learning.

    PubMed

    Mohr, Holger; Wolfensteller, Uta; Ruge, Hannes

    2018-02-15

    The ability to rapidly learn from others by instruction is an important characteristic of human cognition. A recent study found that the rapid transfer from initial instructions to fluid behavior is supported by changes of functional connectivity between and within several large-scale brain networks, and particularly by the coupling of the dorsal attention network (DAN) with the cingulo-opercular network (CON). In the present study, we extended this approach to investigate how these brain networks interact when stimulus-response mappings are altered by novel instructions. We hypothesized that residual stimulus-response associations from initial practice might negatively impact the ability to implement novel instructions. Using functional imaging and large-scale connectivity analysis, we found that functional coupling between the CON and DAN was generally at a higher level during initial than reversal learning. Examining the learning-related connectivity dynamics between the CON and DAN in more detail by means of multivariate patterns analyses, we identified a specific subset of connections which showed a particularly high increase in connectivity during initial learning compared to reversal learning. This finding suggests that the CON-DAN connections can be separated into two functionally dissociable yet spatially intertwined subsystems supporting different aspects of short-term task automatization. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Responses to a Self-Presented Suicide Attempt in Social Media

    PubMed Central

    Fu, King-wa; Cheng, Qijin; Wong, Paul W.C.; Yip, Paul S. F.

    2014-01-01

    Background The self-presentation of suicidal acts in social media has become a public health concern. Aims This article centers on a Chinese microblogger who posted a wrist-cutting picture that was widely circulated in Chinese social media in 2011. This exploratory study examines written reactions of a group of Chinese microbloggers exposed to the post containing a self-harming message and photo. In addition, we investigate the pattern of information diffusion via a social network. Methods We systematically collected and analyzed 5,971 generated microblogs and the network of information diffusion. Results We found that a significant portion of written responses (36.6%) could help vulnerable netizens by providing peer-support and calls for help. These responses were reposted and diffused via an online social network with markedly more clusters of users – and at a faster pace – than a set of randomly generated networks. Conclusions We conclude that social media can be a double-edged sword: While it may contagiously affect others by spreading suicidal thoughts and acts, it may also play a positive role by assisting people at risk for suicide, providing rescue or support. More research is needed to learn how suicidally vulnerable people interact with online suicide information, and how we can effectively intervene. PMID:23871954

  5. Food Acquisition through Private and Public Social Networks and Its Relationship with Household Food Security among Various Socioeconomic Statuses in South Korea.

    PubMed

    Park, Sohyun; Kim, Kirang

    2018-01-25

    This study was conducted to understand food acquisition practices from social networks and its relationship with household food security. In-depth interviews and a survey on food security were conducted with twenty-nine mothers and one father in metropolitan areas of South Korea. Many families acquired food from their extended families, mainly participants' mothers. Between low-income and non-low-income households, there was a pattern of more active sharing of food through private networks among non-low-income households. Most of the low-income households received food support from public social networks, such as government and charity institutions. Despite the assistance, most of them perceived food insecurity. We hypothesized that the lack of private social support may exacerbate the food security status of low-income households, despite formal food assistance from government and social welfare institutions. Interviews revealed that certain food items were perceived as lacking, such as animal-based protein sources and fresh produce, which are relatively expensive in this setting. Future programs should consider what would alleviate food insecurity among low-income households and determine the right instruments and mode of resolving the unmet needs. Future research could evaluate the quantitative relationship between private resources and food insecurity in households with various income statuses.

  6. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    PubMed

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  7. Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos

    2013-02-01

    Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.

  8. Control strategies of 3-cell Central Pattern Generator via global stimuli

    NASA Astrophysics Data System (ADS)

    Lozano, Álvaro; Rodríguez, Marcos; Barrio, Roberto

    2016-03-01

    The study of the synchronization patterns of small neuron networks that control several biological processes has become an interesting growing discipline. Some of these synchronization patterns of individual neurons are related to some undesirable neurological diseases, and they are believed to play a crucial role in the emergence of pathological rhythmic brain activity in different diseases, like Parkinson’s disease. We show how, with a suitable combination of short and weak global inhibitory and excitatory stimuli over the whole network, we can switch between different stable bursting patterns in small neuron networks (in our case a 3-neuron network). We develop a systematic study showing and explaining the effects of applying the pulses at different moments. Moreover, we compare the technique on a completely symmetric network and on a slightly perturbed one (a much more realistic situation). The present approach of using global stimuli may allow to avoid undesirable synchronization patterns with nonaggressive stimuli.

  9. Direct Associations or Internal Transformations? Exploring the Mechanisms Underlying Sequential Learning Behavior

    PubMed Central

    Gureckis, Todd M.; Love, Bradley C.

    2009-01-01

    We evaluate two broad classes of cognitive mechanisms that might support the learning of sequential patterns. According to the first, learning is based on the gradual accumulation of direct associations between events based on simple conditioning principles. The other view describes learning as the process of inducing the transformational structure that defines the material. Each of these learning mechanisms predict differences in the rate of acquisition for differently organized sequences. Across a set of empirical studies, we compare the predictions of each class of model with the behavior of human subjects. We find that learning mechanisms based on transformations of an internal state, such as recurrent network architectures (e.g., Elman, 1990), have difficulty accounting for the pattern of human results relative to a simpler (but more limited) learning mechanism based on learning direct associations. Our results suggest new constraints on the cognitive mechanisms supporting sequential learning behavior. PMID:20396653

  10. A brain network instantiating approach and avoidance motivation.

    PubMed

    Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Banich, Marie T; Sutton, Bradley P; Heller, Wendy

    2012-09-01

    Research indicates that dorsolateral prefrontal cortex (DLPFC) is important for pursuing goals, and areas of DLPFC are differentially involved in approach and avoidance motivation. Given the complexity of the processes involved in goal pursuit, DLPFC is likely part of a network that includes orbitofrontal cortex (OFC), cingulate, amygdala, and basal ganglia. This hypothesis was tested with regard to one component of goal pursuit, the maintenance of goals in the face of distraction. Examination of connectivity with motivation-related areas of DLPFC supported the network hypothesis. Differential patterns of connectivity suggest a distinct role for DLPFC areas, with one involved in selecting approach goals, one in selecting avoidance goals, and one in selecting goal pursuit strategies. Finally, differences in trait motivation moderated connectivity between DLPFC and OFC, suggesting that this connectivity is important for instantiating motivation. Copyright © 2012 Society for Psychophysiological Research.

  11. A Brain Network Instantiating Approach and Avoidance Motivation

    PubMed Central

    Spielberg, Jeffrey M.; Miller, Gregory A.; Warren, Stacie L.; Engels, Anna S.; Crocker, Laura D.; Banich, Marie T.; Sutton, Bradley P.; Heller, Wendy

    2015-01-01

    Research indicates that dorsolateral prefrontal cortex (DLPFC) is important for pursuing goals, and areas of DLPFC are differentially involved in approach and avoidance motivation. Given the complexity of the processes involved in goal pursuit, DLPFC is likely part of a network that includes orbitofrontal cortex (OFC), cingulate, amygdala, and basal ganglia. This hypothesis was tested with regard to one component of goal pursuit, the maintenance of goals in the face of distraction. Examination of connectivity with motivation-related areas of DLPFC supported the network hypothesis. Differential patterns of connectivity suggest a distinct role for DLPFC areas, with one involved in selecting approach goals, one in selecting avoidance goals, and one in selecting goal pursuit strategies. Finally, differences in trait motivation moderated connectivity between DLPFC and OFC, suggesting that this connectivity is important for instantiating motivation. PMID:22845892

  12. Diversity of multilayer networks and its impact on collaborating epidemics

    NASA Astrophysics Data System (ADS)

    Min, Yong; Hu, Jiaren; Wang, Weihong; Ge, Ying; Chang, Jie; Jin, Xiaogang

    2014-12-01

    Interacting epidemics on diverse multilayer networks are increasingly important in modeling and analyzing the diffusion processes of real complex systems. A viral agent spreading on one layer of a multilayer network can interact with its counterparts by promoting (cooperative interaction), suppressing (competitive interaction), or inducing (collaborating interaction) its diffusion on other layers. Collaborating interaction displays different patterns: (i) random collaboration, where intralayer or interlayer induction has the same probability; (ii) concentrating collaboration, where consecutive intralayer induction is guaranteed with a probability of 1; and (iii) cascading collaboration, where consecutive intralayer induction is banned with a probability of 0. In this paper, we develop a top-bottom framework that uses only two distributions, the overlaid degree distribution and edge-type distribution, to model collaborating epidemics on multilayer networks. We then state the response of three collaborating patterns to structural diversity (evenness and difference of network layers). For viral agents with small transmissibility, we find that random collaboration is more effective in networks with higher diversity (high evenness and difference), while the concentrating pattern is more suitable in uneven networks. Interestingly, the cascading pattern requires a network with moderate difference and high evenness, and the moderately uneven coupling of multiple network layers can effectively increase robustness to resist cascading failure. With large transmissibility, however, we find that all collaborating patterns are more effective in high-diversity networks. Our work provides a systemic analysis of collaborating epidemics on multilayer networks. The results enhance our understanding of biotic and informative diffusion through multiple vectors.

  13. Aging does not affect brain patterns of repetition effects associated with perceptual priming of novel objects.

    PubMed

    Soldan, Anja; Gazes, Yunglin; Hilton, H John; Stern, Yaakov

    2008-10-01

    This study examined how aging affects the spatial patterns of repetition effects associated with perceptual priming of unfamiliar visual objects. Healthy young (n = 14) and elderly adults (n = 13) viewed four repetitions of structurally possible and impossible figures while being scanned with blood oxygenation level-dependent functional magnetic resonance imaging. Although explicit recognition memory for the figures was reduced in the elder subjects, repetition priming did not differ across the two age groups. Using multivariate linear modeling, we found that the spatial networks of regions that demonstrated repetition-related increases and decreases in activity were identical in both age groups, although there was a trend for smaller magnitude repetition effects in these networks in the elder adults for objects that had been repeated thrice. Furthermore, repetition-related reductions in activity in the left inferior frontal cortex for possible objects correlated with repetition-related facilitation in reaction time across both young and elder subjects. Repetition-related increases of an initially negative response were observed for both object types in both age groups in parts of the default network, suggesting that less attention was required for processing repeated stimuli. These findings extend prior studies using verbal and semantic picture priming tasks and support the view that perceptual repetition priming remains intact in later adulthood because the same spatial networks of regions continue to show repetition-related neural plasticity across the adult life span.

  14. MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification.

    PubMed

    Burgess, K E V; Borutzki, Y; Rankin, N; Daly, R; Jourdan, F

    2017-12-15

    Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise, adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between detected compounds can provide a wealth of information about the nature of the samples and the biochemistry that gave rise to them. We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape plugin that creates ab initio networks. The new version supports two major improvements: the generation of adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples, providing a readout of compound relationships. We have applied this tool to the analysis of adduct patterns in the same sample separated under two different chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct detection, and the application of the chemical transformation analysis to both a single fragmentation analysis and an all-ions fragmentation dataset. Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism Staphylococcus aureus demonstrating the utility of the tool for biological analysis. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators.

    PubMed

    Wei, Ruihan; Parsons, Sean P; Huizinga, Jan D

    2017-03-01

    What is the central question of this study? What are the effects of interstitial cells of Cajal (ICC) network perturbations on intestinal pacemaker activity and motor patterns? What is the main finding and its importance? Two-dimensional modelling of the ICC pacemaker activity according to a phase model of weakly coupled oscillators showed that network properties (coupling strength between oscillators, frequency gradient and frequency noise) strongly influence pacemaker network activity and subsequent motor patterns. The model explains motor patterns observed in physiological conditions and provides predictions and testable hypotheses for effects of ICC loss and frequency modulation on the motor patterns. Interstitial cells of Cajal (ICC) are the pacemaker cells of gut motility and are associated with motility disorders. Interstitial cells of Cajal form a network, but the contributions of its network properties to gut physiology and dysfunction are poorly understood. We modelled an ICC network as a two-dimensional network of weakly coupled oscillators with a frequency gradient and showed changes over time in video and graphical formats. Model parameters were obtained from slow-wave-driven contraction patterns in the mouse intestine and pacemaker slow-wave activities from the cat intestine. Marked changes in propagating oscillation patterns (including changes from propagation to non-propagating) were observed by changing network parameters (coupling strength between oscillators, the frequency gradient and frequency noise), which affected synchronization, propagation velocity and occurrence of dislocations (termination of an oscillation). Complete uncoupling of a circumferential ring of oscillators caused the proximal and distal section to desynchronize, but complete synchronization was maintained with only a single oscillator connecting the sections with high enough coupling. The network of oscillators could withstand loss; even with 40% of oscillators lost randomly within the network, significant synchronization and anterograde propagation remained. A local increase in pacemaker frequency diminished anterograde propagation; the effects were strongly dependent on location, frequency gradient and coupling strength. In summary, the model puts forth the hypothesis that fundamental changes in oscillation patterns (ICC slow-wave activity or circular muscle contractions) can occur through physiological modulation of network properties. Strong evidence is provided to accept the ICC network as a system of coupled oscillators. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  16. Pulse patterning effect in optical pulse division multiplexing for flexible single wavelength multiple access optical network

    NASA Astrophysics Data System (ADS)

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-01

    A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.

  17. Defined types of cortical interneurone structure space and spike timing in the hippocampus

    PubMed Central

    Somogyi, Peter; Klausberger, Thomas

    2005-01-01

    The cerebral cortex encodes, stores and combines information about the internal and external environment in rhythmic activity of multiple frequency ranges. Neurones of the cortex can be defined, recognized and compared on the comprehensive application of the following measures: (i) brain area- and cell domain-specific distribution of input and output synapses, (ii) expression of molecules involved in cell signalling, (iii) membrane and synaptic properties reflecting the expression of membrane proteins, (iv) temporal structure of firing in vivo, resulting from (i)–(iii). Spatial and temporal measures of neurones in the network reflect an indivisible unity of evolutionary design, i.e. neurones do not have separate structure or function. The blueprint of this design is most easily accessible in the CA1 area of the hippocampus, where a relatively uniform population of pyramidal cells and their inputs follow an instantly recognizable laminated pattern and act within stereotyped network activity patterns. Reviewing the cell types and their spatio-temporal interactions, we suggest that CA1 pyramidal cells are supported by at least 16 distinct types of GABAergic neurone. During a given behaviour-contingent network oscillation, interneurones of a given type exhibit similar firing patterns. During different network oscillations representing two distinct brain states, interneurones of the same class show different firing patterns modulating their postsynaptic target-domain in a brain-state-dependent manner. These results suggest roles for specific interneurone types in structuring the activity of pyramidal cells via their respective target domains, and accurately timing and synchronizing pyramidal cell discharge, rather than providing generalized inhibition. Finally, interneurones belonging to different classes may fire preferentially at distinct time points during a given oscillation. As different interneurones innervate distinct domains of the pyramidal cells, the different compartments will receive GABAergic input differentiated in time. Such a dynamic, spatio-temporal, GABAergic control, which evolves distinct patterns during different brain states, is ideally suited to regulating the input integration of individual pyramidal cells contributing to the formation of cell assemblies and representations in the hippocampus and, probably, throughout the cerebral cortex. PMID:15539390

  18. Patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks.

    PubMed

    Aguiar, Manuela A D; Dias, Ana Paula S; Ferreira, Flora

    2017-01-01

    We consider feed-forward and auto-regulation feed-forward neural (weighted) coupled cell networks. In feed-forward neural networks, cells are arranged in layers such that the cells of the first layer have empty input set and cells of each other layer receive only inputs from cells of the previous layer. An auto-regulation feed-forward neural coupled cell network is a feed-forward neural network where additionally some cells of the first layer have auto-regulation, that is, they have a self-loop. Given a network structure, a robust pattern of synchrony is a space defined in terms of equalities of cell coordinates that is flow-invariant for any coupled cell system (with additive input structure) associated with the network. In this paper, we describe the robust patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks. Regarding feed-forward neural networks, we show that only cells in the same layer can synchronize. On the other hand, in the presence of auto-regulation, we prove that cells in different layers can synchronize in a robust way and we give a characterization of the possible patterns of synchrony that can occur for auto-regulation feed-forward neural networks.

  19. River delta network hydraulic residence time distributions and their role in coastal nutrient biogeochemistry

    NASA Astrophysics Data System (ADS)

    Hiatt, M. R.; Castaneda, E.; Twilley, R.; Hodges, B. R.; Passalacqua, P.

    2015-12-01

    River deltas have the potential to mitigate increased nutrient loading to coastal waters by acting as biofilters that reduce the impact of nutrient enrichment on downstream ecosystems. Hydraulic residence time (HRT) is known to be a major control on biogeochemical processes and deltaic floodplains are hypothesized to have relatively long HRTs. Hydrological connectivity and delta floodplain inundation induced by riverine forces, tides, and winds likely alter surface water flow patterns and HRTs. Since deltaic floodplains are important elements of delta networks and receive significant fluxes of water, sediment, and nutrients from distributary channels, biogeochemical transformations occurring within these zones could significantly reduce nutrient loading to coastal receiving waters. However, network-scale estimates of HRT in river deltas are lacking and little is known about the effects of tides, wind, and the riverine input on the HRT distribution. Subsequently, there lacks a benchmark for evaluating the impact of engineered river diversions on coastal nutrient ecology. In this study, we estimate the HRT of a coastal river delta by using hydrodynamic modeling supported by field data and relate the HRT to spatial and temporal patterns in nitrate levels measured at discrete stations inside a delta island at Wax Lake Delta. We highlight the control of the degree of hydrological connectivity between distributary channels and interdistributary islands on the network HRT distribution and address the roles of tides and wind on altering the shape of the distribution. We compare the observed nitrate concentrations to patterns of channel-floodplain hydrological connectivity and find this connectivity to play a significant role in the nutrient removal. Our results provide insight into the potential role of deltaic wetlands in reducing the nutrient loading to near-shore waters in response to large-scale river diversions.

  20. Abnormal hubs of white matter networks in the frontal-parieto circuit contribute to depression discrimination via pattern classification.

    PubMed

    Qin, Jiaolong; Wei, Maobin; Liu, Haiyan; Chen, Jianhuai; Yan, Rui; Hua, Lingling; Zhao, Ke; Yao, Zhijian; Lu, Qing

    2014-12-01

    Previous studies had explored the diagnostic and prognostic value of the structural neuroimaging data of MDD and treated the whole brain voxels, the fractional anisotropy and the structural connectivity as classification features. To our best knowledge, no study examined the potential diagnostic value of the hubs of anatomical brain networks in MDD. The purpose of the current study was to provide an exploratory examination of the potential diagnostic and prognostic values of hubs of white matter brain networks in MDD discrimination and the corresponding impaired hub pattern via a multi-pattern analysis. We constructed white matter brain networks from 29 depressions and 30 healthy controls based on diffusion tensor imaging data, calculated nodal measures and identified hubs. Using these measures as features, two types of feature architectures were established, one only included hubs (HUB) and the other contained both hubs and non hubs. The support vector machine classifiers with Gaussian radial basis kernel were used after the feature selection. Moreover, the relative contribution of the features was estimated by means of the consensus features. Our results presented that the hubs (including the bilateral dorsolateral part of superior frontal gyrus, the left middle frontal gyrus, the bilateral middle temporal gyrus, and the bilateral inferior temporal gyrus) played an important role in distinguishing the depressions from healthy controls with the best accuracy of 83.05%. Moreover, most of the HUB consensus features located in the frontal-parieto circuit. These findings provided evidence that the hubs could be served as valuable potential diagnostic measure for MDD, and the hub-concentrated lesion distribution of MDD was primarily anchored within the frontal-parieto circuit. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Comparative analyses of population-scale phenomic data in electronic medical records reveal race-specific disease networks

    PubMed Central

    Glicksberg, Benjamin S.; Li, Li; Badgeley, Marcus A.; Shameer, Khader; Kosoy, Roman; Beckmann, Noam D.; Pho, Nam; Hakenberg, Jörg; Ma, Meng; Ayers, Kristin L.; Hoffman, Gabriel E.; Dan Li, Shuyu; Schadt, Eric E.; Patel, Chirag J.; Chen, Rong; Dudley, Joel T.

    2016-01-01

    Motivation: Underrepresentation of racial groups represents an important challenge and major gap in phenomics research. Most of the current human phenomics research is based primarily on European populations; hence it is an important challenge to expand it to consider other population groups. One approach is to utilize data from EMR databases that contain patient data from diverse demographics and ancestries. The implications of this racial underrepresentation of data can be profound regarding effects on the healthcare delivery and actionability. To the best of our knowledge, our work is the first attempt to perform comparative, population-scale analyses of disease networks across three different populations, namely Caucasian (EA), African American (AA) and Hispanic/Latino (HL). Results: We compared susceptibility profiles and temporal connectivity patterns for 1988 diseases and 37 282 disease pairs represented in a clinical population of 1 025 573 patients. Accordingly, we revealed appreciable differences in disease susceptibility, temporal patterns, network structure and underlying disease connections between EA, AA and HL populations. We found 2158 significantly comorbid diseases for the EA cohort, 3265 for AA and 672 for HL. We further outlined key disease pair associations unique to each population as well as categorical enrichments of these pairs. Finally, we identified 51 key ‘hub’ diseases that are the focal points in the race-centric networks and of particular clinical importance. Incorporating race-specific disease comorbidity patterns will produce a more accurate and complete picture of the disease landscape overall and could support more precise understanding of disease relationships and patient management towards improved clinical outcomes. Contacts: rong.chen@mssm.edu or joel.dudley@mssm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307606

  2. Social Relations in Lebanon: Convoys Across the Life Course

    PubMed Central

    Antonucci, Toni C.; Ajrouch, Kristine J.; Abdulrahim, Sawsan

    2015-01-01

    Objectives: This study systematically analyzed convoys of social relations to investigate the ways in which gender and income shape patterns of social relations across the life course in Lebanon. Methods: Data were drawn from a representative sample of adults aged 18 and older in Greater Beirut, Lebanon (N = 500). Multiple linear regression and multilevel models were conducted to examine main and interactive effects of age, gender, and income on social relations. Results: Findings indicate main effects of age, income, and gender on network structure and relationship quality. Older age was associated with larger network size, greater proportion of kin in network, higher positive and lower negative relationship quality. Higher income was associated with larger network size and decreased contact frequency. Female gender was also associated with decreased contact frequency. Gender interacted with income to influence network size and network composition. Higher income was associated with a larger network size and higher proportion of kin for women. Discussion: Findings suggest diversity in the experience of social relations. Such nuance is particularly relevant to the Lebanese context where family is the main source of support in old age. Policy makers and program planners may need to refrain from viewing social relations simplistically. PMID:24501252

  3. Networked dynamical systems with linear coupling: synchronisation patterns, coherence and other behaviours.

    PubMed

    Judd, Kevin

    2013-12-01

    Many physical and biochemical systems are well modelled as a network of identical non-linear dynamical elements with linear coupling between them. An important question is how network structure affects chaotic dynamics, for example, by patterns of synchronisation and coherence. It is shown that small networks can be characterised precisely into patterns of exact synchronisation and large networks characterised by partial synchronisation at the local and global scale. Exact synchronisation modes are explained using tools of symmetry groups and invariance, and partial synchronisation is explained by finite-time shadowing of exact synchronisation modes.

  4. Altered intra- and inter-network functional coupling of resting-state networks associated with motor dysfunction in stroke.

    PubMed

    Zhao, Zhiyong; Wu, Jie; Fan, Mingxia; Yin, Dazhi; Tang, Chaozheng; Gong, Jiayu; Xu, Guojun; Gao, Xinjie; Yu, Qiurong; Yang, Hao; Sun, Limin; Jia, Jie

    2018-04-24

    Motor functions are supported through functional integration across the extended motor system network. Individuals following stroke often show deficits on motor performance requiring coordination of multiple brain networks; however, the assessment of connectivity patterns after stroke was still unclear. This study aimed to investigate the changes in intra- and inter-network functional connectivity (FC) of multiple networks following stroke and further correlate FC with motor performance. Thirty-three left subcortical chronic stroke patients and 34 healthy controls underwent resting-state functional magnetic resonance imaging. Eleven resting-state networks were identified via independent component analysis (ICA). Compared with healthy controls, the stroke group showed abnormal FC within the motor network (MN), visual network (VN), dorsal attention network (DAN), and executive control network (ECN). Additionally, the FC values of the ipsilesional inferior parietal lobule (IPL) within the ECN were negatively correlated with the Fugl-Meyer Assessment (FMA) scores (hand + wrist). With respect to inter-network interactions, the ipsilesional frontoparietal network (FPN) decreased FC with the MN and DAN; the contralesional FPN decreased FC with the ECN, but it increased FC with the default mode network (DMN); and the posterior DMN decreased FC with the VN. In sum, this study demonstrated the coexistence of intra- and inter-network alterations associated with motor-visual attention and high-order cognitive control function in chronic stroke, which might provide insights into brain network plasticity following stroke. © 2018 Wiley Periodicals, Inc.

  5. Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine

    PubMed Central

    Palma, Jesse; Grossberg, Stephen; Versace, Massimiliano

    2012-01-01

    Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM). Theorems in the 1970's showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP) currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh) can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 ms or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all (WTA) stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners when the network stabilizes. PMID:22754524

  6. Pattern learning with deep neural networks in EMG-based speech recognition.

    PubMed

    Wand, Michael; Schultz, Tanja

    2014-01-01

    We report on classification of phones and phonetic features from facial electromyographic (EMG) data, within the context of our EMG-based Silent Speech interface. In this paper we show that a Deep Neural Network can be used to perform this classification task, yielding a significant improvement over conventional Gaussian Mixture models. Our central contribution is the visualization of patterns which are learned by the neural network. With increasing network depth, these patterns represent more and more intricate electromyographic activity.

  7. Biolithography: Slime mould patterning of polyaniline

    NASA Astrophysics Data System (ADS)

    Berzina, Tatiana; Dimonte, Alice; Adamatzky, Andrew; Erokhin, Victor; Iannotta, Salvatore

    2018-03-01

    Slime mould Physarum polycephalum develops intricate patterns of protoplasmic networks when foraging on a non-nutrient substrates. The networks are optimised for spanning larger spaces with minimum body mass and for quick transfer of nutrients and metabolites inside the slime mould's body. We hybridise the slime mould's networks with conductive polymer polyaniline and thus produce micro-patterns of conductive networks. This unconventional lithographic method opens new perspectives in development of living technology devices, biocompatible non-silicon hardware for applications in integrated circuits, bioelectronics, and biosensing.

  8. 47 CFR 36.311 - Network Support/General Support Expenses-Accounts 6110 and 6120 (Class B Telephone Companies...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Network Support/General Support Expenses... Operating Expenses and Taxes Network Support/general Support Expenses § 36.311 Network Support/General..., 6122, 6123, and 6124 (Class A Telephone Companies). (a) Network Support Expenses are expenses...

  9. 47 CFR 36.311 - Network Support/General Support Expenses-Accounts 6110 and 6120 (Class B Telephone Companies...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Network Support/General Support Expenses... Operating Expenses and Taxes Network Support/general Support Expenses § 36.311 Network Support/General..., 6122, 6123, and 6124 (Class A Telephone Companies). (a) Network Support Expenses are expenses...

  10. Collective ritual and social support networks in rural South India

    PubMed Central

    2018-01-01

    The scholarship on religion has long argued that collective worship helps foster social cohesion. Despite the pervasiveness of this contention, rigorous quantitative evaluations of it have been surprisingly limited. Here, I draw on network data representing the ties of social support among Hindu residents of a South Indian village to evaluate the association between collective religious ritual and social cohesion. I find that those who partake in collective religious rituals together have a higher probability of having a supportive relationship than those who do not. At the structural level, this corresponds to denser connections among co-participants. At the individual level, participants are more embedded in the local community of co-religionists, but are not disassociating themselves from members of other religious denominations. These patterns hold most strongly for co-participation in the recurrent, low-arousal monthly worships at the temple, and are suggestive for co-participation in the intense and dysphoric ritual acts carried out as part of an annual festival. Together, these findings provide clear empirical evidence of the lasting relationship between collective religious ritual and social cohesion. PMID:29794040

  11. Information recall using relative spike timing in a spiking neural network.

    PubMed

    Sterne, Philip

    2012-08-01

    We present a neural network that is capable of completing and correcting a spiking pattern given only a partial, noisy version. It operates in continuous time and represents information using the relative timing of individual spikes. The network is capable of correcting and recalling multiple patterns simultaneously. We analyze the network's performance in terms of information recall. We explore two measures of the capacity of the network: one that values the accurate recall of individual spike times and another that values only the presence or absence of complete patterns. Both measures of information are found to scale linearly in both the number of neurons and the period of the patterns, suggesting these are natural measures of network information. We show a smooth transition from encodings that provide precise spike times to flexible encodings that can encode many scenes. This makes it plausible that many diverse tasks could be learned with such an encoding.

  12. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.

    PubMed

    Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn

    2014-01-01

    Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. © 2013.

  13. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity

    PubMed Central

    Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn

    2013-01-01

    Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. PMID:24071524

  14. Flavor network and the principles of food pairing

    PubMed Central

    Ahn, Yong-Yeol; Ahnert, Sebastian E.; Bagrow, James P.; Barabási, Albert-László

    2011-01-01

    The cultural diversity of culinary practice, as illustrated by the variety of regional cuisines, raises the question of whether there are any general patterns that determine the ingredient combinations used in food today or principles that transcend individual tastes and recipes. We introduce a flavor network that captures the flavor compounds shared by culinary ingredients. Western cuisines show a tendency to use ingredient pairs that share many flavor compounds, supporting the so-called food pairing hypothesis. By contrast, East Asian cuisines tend to avoid compound sharing ingredients. Given the increasing availability of information on food preparation, our data-driven investigation opens new avenues towards a systematic understanding of culinary practice. PMID:22355711

  15. Master-slave mixed arrays for data-flow computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, T.L.; Fisher, P.D.

    1983-01-01

    Control cells (masters) and computation cells (slaves) are mixed in regular geometric patterns to form reconfigurable arrays known as master-slave mixed arrays (MSMAS). Interconnections of the corners and edges of the hexagonal control cells and the edges of the hexagonal computation cells are used to construct synchronous and asynchronous communication networks, which support local computation and local communication. Data-driven computations result in self-directed ring pipelines within the MSMA, and composite data-flow computations are executed in a pipelined fashion. By viewing an MSMA as a computing network of tightly-linked ring pipelines, data-flow programs can be uniformly distributed over these pipelines formore » efficient resource utilisation. 9 references.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okhravi, Hamed; Sheldon, Frederick T.; Haines, Joshua

    Data diodes provide protection of critical cyber assets by the means of physically enforcing traffic direction on the network. In order to deploy data diodes effectively, it is imperative to understand the protection they provide, the protection they do not provide, their limitations, and their place in the larger security infrastructure. In this work, we study data diodes, their functionalities and limitations. We then propose two critical infrastructure systems that can benefit from the additional protection offered by data diodes: process control networks and net-centric cyber decision support systems. We review the security requirements of these systems, describe the architectures,more » and study the trade-offs. Finally, the architectures are evaluated against different attack patterns.« less

  17. Pattern Activity Clustering and Evaluation (PACE)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Banas, Christopher; Paul, Michael; Bussjager, Becky; Seetharaman, Guna

    2012-06-01

    With the vast amount of network information available on activities of people (i.e. motions, transportation routes, and site visits) there is a need to explore the salient properties of data that detect and discriminate the behavior of individuals. Recent machine learning approaches include methods of data mining, statistical analysis, clustering, and estimation that support activity-based intelligence. We seek to explore contemporary methods in activity analysis using machine learning techniques that discover and characterize behaviors that enable grouping, anomaly detection, and adversarial intent prediction. To evaluate these methods, we describe the mathematics and potential information theory metrics to characterize behavior. A scenario is presented to demonstrate the concept and metrics that could be useful for layered sensing behavior pattern learning and analysis. We leverage work on group tracking, learning and clustering approaches; as well as utilize information theoretical metrics for classification, behavioral and event pattern recognition, and activity and entity analysis. The performance evaluation of activity analysis supports high-level information fusion of user alerts, data queries and sensor management for data extraction, relations discovery, and situation analysis of existing data.

  18. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons.

    PubMed

    Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K

    2018-02-01

    Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.

  19. A gossip based information fusion protocol for distributed frequent itemset mining

    NASA Astrophysics Data System (ADS)

    Sohrabi, Mohammad Karim

    2018-07-01

    The computational complexity, huge memory space requirement, and time-consuming nature of frequent pattern mining process are the most important motivations for distribution and parallelization of this mining process. On the other hand, the emergence of distributed computational and operational environments, which causes the production and maintenance of data on different distributed data sources, makes the parallelization and distribution of the knowledge discovery process inevitable. In this paper, a gossip based distributed itemset mining (GDIM) algorithm is proposed to extract frequent itemsets, which are special types of frequent patterns, in a wireless sensor network environment. In this algorithm, local frequent itemsets of each sensor are extracted using a bit-wise horizontal approach (LHPM) from the nodes which are clustered using a leach-based protocol. Heads of clusters exploit a gossip based protocol in order to communicate each other to find the patterns which their global support is equal to or more than the specified support threshold. Experimental results show that the proposed algorithm outperforms the best existing gossip based algorithm in term of execution time.

  20. Geovisualization to support the exploration of large health and demographic survey data

    PubMed Central

    Koua, Etien L; Kraak, Menno-Jan

    2004-01-01

    Background Survey data are increasingly abundant from many international projects and national statistics. They are generally comprehensive and cover local, regional as well as national levels census in many domains including health, demography, human development, and economy. These surveys result in several hundred indicators. Geographical analysis of such large amount of data is often a difficult task and searching for patterns is particularly a difficult challenge. Geovisualization research is increasingly dealing with the exploration of patterns and relationships in such large datasets for understanding underlying geographical processes. One of the attempts has been to use Artificial Neural Networks as a technology especially useful in situations where the numbers are vast and the relationships are often unclear or even hidden. Results We investigate ways to integrate computational analysis based on a Self-Organizing Map neural network, with visual representations of derived structures and patterns in a framework for exploratory visualization to support visual data mining and knowledge discovery. The framework suggests ways to explore the general structure of the dataset in its multidimensional space in order to provide clues for further exploration of correlations and relationships. Conclusion In this paper, the proposed framework is used to explore a demographic and health survey data. Several graphical representations (information spaces) are used to depict the general structure and clustering of the data and get insight about the relationships among the different variables. Detail exploration of correlations and relationships among the attributes is provided. Results of the analysis are also presented in maps and other graphics. PMID:15180898

  1. Disease registries on the nationwide health information network.

    PubMed

    Russler, Daniel

    2011-05-01

    Donation by individuals of their protected health information (PHI) for evidence-based research potentially benefits all individuals with disease through improved understandings of disease patterns. In the future, a better understanding of how disease features combine into unique patterns of disease will generate new disease classifications, supporting greater specificity in health management techniques. However, without large numbers of people who donate their PHI to disease registries designed for research, it is difficult for researchers to discover the existence of complex patterns or to create more specific evidence-based management techniques. In order to identify new opportunities in disease registry design, an analysis of the current stage of maturity of the newly created U.S. Nationwide Health Information Network (NwHIN) related to large-scale consumer donation of PHI is presented. Utilizing a use-case analysis methodology, the consumer-centric designs of the policies and technologies created for the NwHIN were examined for the potential to support consumer donations of PHI to research. The NwHIN design has placed the enforcement point for the policy-based release of PHI over the Internet into a specialized gateway accessible to consumer authorization. However, current NwHIN policies leave the final decision regarding release of PHI for research to the health care providers rather than to the consumers themselves. Should disease registries designed for research be established on the NwHIN, consumers might then directly authorize the donation of their PHI to these disease registries. However, under current NwHIN policies, consumer authorization does not guarantee release of PHI by health providers. © 2011 Diabetes Technology Society.

  2. Intergenerational transfers in the era of HIV/AIDS: Evidence from rural Malawi

    PubMed Central

    Kohler, Iliana V.; Kohler, Hans-Peter; Anglewicz, Philip; Behrman, Jere R.

    2013-01-01

    BACKGROUND Intergenerational transfer patterns in sub-Saharan Africa are poorly understood, despite the alleged importance of support networks to ameliorate the complex implications of the HIV/AIDS epidemic for families. OBJECTIVE There is a considerable need for research on intergenerational support networks and transfers to better understand the mechanisms through which extended families cope with the HIV/AIDS epidemic and potentially alleviate some of its consequences in sub-Saharan Africa, and to comprehend how transfers respond—or not—to perceptions about own and other family members' health. METHODS Using the 2008 round of the Malawi Longitudinal Study of Families and Health (MLSFH), we estimate the age patterns and the multiple directions of financial and non-financial transfer flows in rural Malawi—from prime-aged respondents to their elderly parents and adult children age 15 and up. We also estimate the social, demographic and economic correlates of financial and non-financial transfers of financial intergenerational transfers in this context. RESULTS AND CONCLUSIONS Our findings are that: (1) intergenerational financial and non-financial transfers are widespread and a key characteristic of family relationships in rural Malawi; (2) downward and upward transfers are importantly constrained and determined by the availability of transfer partners (parents or adult children); (3) financial net transfers are strongly age-patterned and the middle generations are net-providers of transfers; (4) non-financial transfers are based on mutual assistance rather than reallocation of resources; and (5) intergenerational transfers are generally not related to health status, including HIV positive status. PMID:23606809

  3. Prediction of brain maturity in infants using machine-learning algorithms.

    PubMed

    Smyser, Christopher D; Dosenbach, Nico U F; Smyser, Tara A; Snyder, Abraham Z; Rogers, Cynthia E; Inder, Terrie E; Schlaggar, Bradley L; Neil, Jeffrey J

    2016-08-01

    Recent resting-state functional MRI investigations have demonstrated that much of the large-scale functional network architecture supporting motor, sensory and cognitive functions in older pediatric and adult populations is present in term- and prematurely-born infants. Application of new analytical approaches can help translate the improved understanding of early functional connectivity provided through these studies into predictive models of neurodevelopmental outcome. One approach to achieving this goal is multivariate pattern analysis, a machine-learning, pattern classification approach well-suited for high-dimensional neuroimaging data. It has previously been adapted to predict brain maturity in children and adolescents using structural and resting state-functional MRI data. In this study, we evaluated resting state-functional MRI data from 50 preterm-born infants (born at 23-29weeks of gestation and without moderate-severe brain injury) scanned at term equivalent postmenstrual age compared with data from 50 term-born control infants studied within the first week of life. Using 214 regions of interest, binary support vector machines distinguished term from preterm infants with 84% accuracy (p<0.0001). Inter- and intra-hemispheric connections throughout the brain were important for group categorization, indicating that widespread changes in the brain's functional network architecture associated with preterm birth are detectable by term equivalent age. Support vector regression enabled quantitative estimation of birth gestational age in single subjects using only term equivalent resting state-functional MRI data, indicating that the present approach is sensitive to the degree of disruption of brain development associated with preterm birth (using gestational age as a surrogate for the extent of disruption). This suggests that support vector regression may provide a means for predicting neurodevelopmental outcome in individual infants. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Prediction of brain maturity in infants using machine-learning algorithms

    PubMed Central

    Smyser, Christopher D.; Dosenbach, Nico U.F.; Smyser, Tara A.; Snyder, Abraham Z.; Rogers, Cynthia E.; Inder, Terrie E.; Schlaggar, Bradley L.; Neil, Jeffrey J.

    2016-01-01

    Recent resting-state functional MRI investigations have demonstrated that much of the large-scale functional network architecture supporting motor, sensory and cognitive functions in older pediatric and adult populations is present in term- and prematurely-born infants. Application of new analytical approaches can help translate the improved understanding of early functional connectivity provided through these studies into predictive models of neurodevelopmental outcome. One approach to achieving this goal is multivariate pattern analysis, a machine-learning, pattern classification approach well-suited for high-dimensional neuroimaging data. It has previously been adapted to predict brain maturity in children and adolescents using structural and resting state-functional MRI data. In this study, we evaluated resting state-functional MRI data from 50 preterm-born infants (born at 23–29 weeks of gestation and without moderate–severe brain injury) scanned at term equivalent postmenstrual age compared with data from 50 term-born control infants studied within the first week of life. Using 214 regions of interest, binary support vector machines distinguished term from preterm infants with 84% accuracy (p < 0.0001). Inter- and intra-hemispheric connections throughout the brain were important for group categorization, indicating that widespread changes in the brain's functional network architecture associated with preterm birth are detectable by term equivalent age. Support vector regression enabled quantitative estimation of birth gestational age in single subjects using only term equivalent resting state-functional MRI data, indicating that the present approach is sensitive to the degree of disruption of brain development associated with preterm birth (using gestational age as a surrogate for the extent of disruption). This suggests that support vector regression may provide a means for predicting neurodevelopmental outcome in individual infants. PMID:27179605

  5. A review and guidance for pattern selection in spatiotemporal system

    NASA Astrophysics Data System (ADS)

    Wang, Chunni; Ma, Jun

    2018-03-01

    Pattern estimation and selection in media can give important clues to understand the collective response to external stimulus by detecting the observable variables. Both reaction-diffusion systems (RDs) and neuronal networks can be treated as multi-agent systems from molecular level, intrinsic cooperation, competition. An external stimulus or attack can cause collapse of spatial order and distribution, while appropriate noise can enhance the consensus in the spatiotemporal systems. Pattern formation and synchronization stability can bridge isolated oscillators and the network by coupling these nodes with appropriate connection types. As a result, the dynamical behaviors can be detected and discussed by developing different spatial patterns and realizing network synchronization. Indeed, the collective response of network and multi-agent system depends on the local kinetics of nodes and cells. It is better to know the standard bifurcation analysis and stability control schemes before dealing with network problems. In this review, dynamics discussion and synchronization control on low-dimensional systems, pattern formation and synchronization stability on network, wave stability in RDs and neuronal network are summarized. Finally, possible guidance is presented when some physical effects such as polarization field and electromagnetic induction are considered.

  6. Deep learning based classification of morphological patterns in RCM to guide noninvasive diagnosis of melanocytic lesions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kose, Kivanc; Bozkurt, Alican; Ariafar, Setareh; Alessi-Fox, Christi A.; Gill, Melissa; Dy, Jennifer G.; Brooks, Dana H.; Rajadhyaksha, Milind

    2017-02-01

    In this study we present a deep learning based classification algorithm for discriminating morphological patterns that appear in RCM mosaics of melanocytic lesions collected at the dermal epidermal junction (DEJ). These patterns are classified into 6 distinct types in the literature: background, meshwork, ring, clod, mixed, and aspecific. Clinicians typically identify these morphological patterns by examination of their textural appearance at 10X magnification. To mimic this process we divided mosaics into smaller regions, which we call tiles, and classify each tile in a deep learning framework. We used previously acquired DEJ mosaics of lesions deemed clinically suspicious, from 20 different patients, which were then labelled according to those 6 types by 2 expert users. We tried three different approaches for classification, all starting with a publicly available convolutional neural network (CNN) trained on natural image, consisting of a series of convolutional layers followed by a series of fully connected layers: (1) We fine-tuned this network using training data from the dataset. (2) Instead, we added an additional fully connected layer before the output layer network and then re-trained only last two layers, (3) We used only the CNN convolutional layers as a feature extractor, encoded the features using a bag of words model, and trained a support vector machine (SVM) classifier. Sensitivity and specificity were generally comparable across the three methods, and in the same ranges as our previous work using SURF features with SVM . Approach (3) was less computationally intensive to train but more sensitive to unbalanced representation of the 6 classes in the training data. However we expect CNN performance to improve as we add more training data because both the features and the classifier are learned jointly from the data. *First two authors share first authorship.

  7. [Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis.

    PubMed

    Yu, Ya Ping; Yin, Hai Wei; Kong, Fan Hua; Wang, Jing Jing; Xu, Wen Bin

    2016-07-01

    Based on ArcGIS, Erdas, GuidosToolbox, Conefor and other software platforms, using morphological spatial pattern analysis (MSPA) and landscape connectivity analysis methods, this paper quantitatively analysed the scale effect, edge effect and distance effect of the Nanjing urban green infrastructure network pattern in 2013 by setting different pixel sizes (P) and edge widths in MSPA analysis, and setting different dispersal distance thresholds in landscape connectivity analysis. The results showed that the type of landscape acquired based on the MSPA had a clear scale effect and edge effect, and scale effects only slightly affected landscape types, whereas edge effects were more obvious. Different dispersal distances had a great impact on the landscape connectivity, 2 km or 2.5 km dispersal distance was a critical threshold for Nanjing. When selecting the pixel size 30 m of the input data and the edge wide 30 m used in the morphological model, we could get more detailed landscape information of Nanjing UGI network. Based on MSPA and landscape connectivity, analysis of the scale effect, edge effect, and distance effect on the landscape types of the urban green infrastructure (UGI) network was helpful for selecting the appropriate size, edge width, and dispersal distance when developing these networks, and for better understanding the spatial pattern of UGI networks and the effects of scale and distance on the ecology of a UGI network. This would facilitate a more scientifically valid set of design parameters for UGI network spatiotemporal pattern analysis. The results of this study provided an important reference for Nanjing UGI networks and a basis for the analysis of the spatial and temporal patterns of medium-scale UGI landscape networks in other regions.

  8. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity

    PubMed Central

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns—both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity. PMID:25566045

  9. PatterNet: a system to learn compact physical design pattern representations for pattern-based analytics

    NASA Astrophysics Data System (ADS)

    Lutich, Andrey

    2017-07-01

    This research considers the problem of generating compact vector representations of physical design patterns for analytics purposes in semiconductor patterning domain. PatterNet uses a deep artificial neural network to learn mapping of physical design patterns to a compact Euclidean hyperspace. Distances among mapped patterns in this space correspond to dissimilarities among patterns defined at the time of the network training. Once the mapping network has been trained, PatterNet embeddings can be used as feature vectors with standard machine learning algorithms, and pattern search, comparison, and clustering become trivial problems. PatterNet is inspired by the concepts developed within the framework of generative adversarial networks as well as the FaceNet. Our method facilitates a deep neural network (DNN) to learn directly the compact representation by supplying it with pairs of design patterns and dissimilarity among these patterns defined by a user. In the simplest case, the dissimilarity is represented by an area of the XOR of two patterns. Important to realize that our PatterNet approach is very different to the methods developed for deep learning on image data. In contrast to "conventional" pictures, the patterns in the CAD world are the lists of polygon vertex coordinates. The method solely relies on the promise of deep learning to discover internal structure of the incoming data and learn its hierarchical representations. Artificial intelligence arising from the combination of PatterNet and clustering analysis very precisely follows intuition of patterning/optical proximity correction experts paving the way toward human-like and human-friendly engineering tools.

  10. Neural-Net Processing of Characteristic Patterns From Electronic Holograms of Vibrating Blades

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    1999-01-01

    Finite-element-model-trained artificial neural networks can be used to process efficiently the characteristic patterns or mode shapes from electronic holograms of vibrating blades. The models used for routine design may not yet be sufficiently accurate for this application. This document discusses the creation of characteristic patterns; compares model generated and experimental characteristic patterns; and discusses the neural networks that transform the characteristic patterns into strain or damage information. The current potential to adapt electronic holography to spin rigs, wind tunnels and engines provides an incentive to have accurate finite element models lor training neural networks.

  11. Model for collaboration: a rural medicine and academic health center teleradiology project

    NASA Astrophysics Data System (ADS)

    Van Slyke, Mark A.; Eggli, Douglas F.; Prior, Fred W.; Salmon, William; Pappas, Gregory; Vanatta, Fred; Goldfetter, Warren; Hashem, Said

    1996-05-01

    A pilot project was developed to explore the role of subspecialty radiology support to rural medicine sites over a long-distance network. A collaborative relationship between 2 rural radiology practices and an academic health was established. Project objectives included: (1) Does the subspecialty consultation significantly change diagnosis patterns at the rural site? (2) Is there value added as measured by improved clinical care or an overall decreased cost of care? (3) Can a collaborative model be economically self-supportive? (4) Does the collaborative model encourage and support education and collegial relationships? Two rural hospitals were selected based on the level of imaging technology and willingness to cooperate. Image capture and network technology was chosen to make the network process transparent to the users. DICOM standard interfaces were incorporated into existing CT and MRI scanners and a film digitizer. Nuclear medicine images were transferred and viewed using a proprietary vendor protocol. Relevant clinical data was managed by a custom designed PC based Lotus Notes application (Patient Study Tracking System: PaSTS) (Pennsylvania Blue Shield Institute). All data was transferred over a Frame Relay network and managed by the Pennsylvania Commonwealth sponsored PA Health Net. Images, other than nuclear medicine, were viewed on a GE Advantage viewing station using a pair of 2 X 2.5 K gray scale monitors. Patient text data was managed by the PaSTS PC and displayed on a separate 15' color monitor. A total of 476 radiology studies were networked into the AHC. Randomly chosen research studies comprised 82% of the case work. Consultative and primary read cases comprised 17% and 1% respectively. The exercise was judged effective by both rural sites. Significant findings and diagnoses were confirmed in 73% of cases with discrepant findings in only 4%. One site benefited by adopting more advanced imaging techniques increasing the sophistication of radiology services. The primary value for the referring sites was the added confidence provided by the subspecialty overreads. An educational value was recognized by all. In conclusion, the networking of rural health care sites to an AHC subspecialty radiology practice was successful primarily in increasing the diagnostic confidence at the rural site. Other benefits included: education; increased rural imaging and an opportunity to provide primary interpretation when the rural radiologist is not available. However, the rate of rural generated consultation was low (17%) and is unlikely to support the costs of a high speed network. To support, rather than replace, rural radiology requires a lower cost network and a mechanism for payment for these services.

  12. Transitions between Multiband Oscillatory Patterns Characterize Memory-Guided Perceptual Decisions in Prefrontal Circuits.

    PubMed

    Wimmer, Klaus; Ramon, Marc; Pasternak, Tatiana; Compte, Albert

    2016-01-13

    Neuronal activity in the lateral prefrontal cortex (LPFC) reflects the structure and cognitive demands of memory-guided sensory discrimination tasks. However, we still do not know how neuronal activity articulates in network states involved in perceiving, remembering, and comparing sensory information during such tasks. Oscillations in local field potentials (LFPs) provide fingerprints of such network dynamics. Here, we examined LFPs recorded from LPFC of macaques while they compared the directions or the speeds of two moving random-dot patterns, S1 and S2, separated by a delay. LFP activity in the theta, beta, and gamma bands tracked consecutive components of the task. In response to motion stimuli, LFP theta and gamma power increased, and beta power decreased, but showed only weak motion selectivity. In the delay, LFP beta power modulation anticipated the onset of S2 and encoded the task-relevant S1 feature, suggesting network dynamics associated with memory maintenance. After S2 onset the difference between the current stimulus S2 and the remembered S1 was strongly reflected in broadband LFP activity, with an early sensory-related component proportional to stimulus difference and a later choice-related component reflecting the behavioral decision buildup. Our results demonstrate that individual LFP bands reflect both sensory and cognitive processes engaged independently during different stages of the task. This activation pattern suggests that during elementary cognitive tasks, the prefrontal network transitions dynamically between states and that these transitions are characterized by the conjunction of LFP rhythms rather than by single LFP bands. Neurons in the brain communicate through electrical impulses and coordinate this activity in ensembles that pulsate rhythmically, very much like musical instruments in an orchestra. These rhythms change with "brain state," from sleep to waking, but also signal with different oscillation frequencies rapid changes between sensory and cognitive processing. Here, we studied rhythmic electrical activity in the monkey prefrontal cortex, an area implicated in working memory, decision making, and executive control. Monkeys had to identify and remember a visual motion pattern and compare it to a second pattern. We found orderly transitions between rhythmic activity where the same frequency channels were active in all ongoing prefrontal computations. This supports prefrontal circuit dynamics that transitions rapidly between complex rhythmic patterns during structured cognitive tasks. Copyright © 2016 the authors 0270-6474/16/360489-17$15.00/0.

  13. Scaling properties in time-varying networks with memory

    NASA Astrophysics Data System (ADS)

    Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong

    2015-12-01

    The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.

  14. Orthogonal patterns in binary neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1988-01-01

    A binary neural network that stores only mutually orthogonal patterns is shown to converge, when probed by any pattern, to a pattern in the memory space, i.e., the space spanned by the stored patterns. The latter are shown to be the only members of the memory space under a certain coding condition, which allows maximum storage of M=(2N) sup 0.5 patterns, where N is the number of neurons. The stored patterns are shown to have basins of attraction of radius N/(2M), within which errors are corrected with probability 1 in a single update cycle. When the probe falls outside these regions, the error correction capability can still be increased to 1 by repeatedly running the network with the same probe.

  15. A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems

    NASA Astrophysics Data System (ADS)

    Pawlicki, Ted

    1988-03-01

    Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions of hierarchical indexing. (i.e. the specificity, adjunct, and parent indices) It supports the notion that multiple canonical views of an object may have to be stored in memory to enable its efficient identification. The use of variable fields in the state space vectors appears to keep the number of required nodes in the network down to a tractable number while imposing a semantic value on different areas of the state space. This semantic imposition supports an interface between the analogical aspects of neural networks and the propositional paradigms of symbolic processing.

  16. Network Catastrophe: Self-Organized Patterns Reveal both the Instability and the Structure of Complex Networks

    PubMed Central

    Moon, Hankyu; Lu, Tsai-Ching

    2015-01-01

    Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of—how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description — of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible. PMID:25822423

  17. Network Catastrophe: Self-Organized Patterns Reveal both the Instability and the Structure of Complex Networks

    NASA Astrophysics Data System (ADS)

    Moon, Hankyu; Lu, Tsai-Ching

    2015-03-01

    Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of--how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description -- of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible.

  18. Study on Dissemination Patterns in Location-Aware Gossiping Networks

    NASA Astrophysics Data System (ADS)

    Kami, Nobuharu; Baba, Teruyuki; Yoshikawa, Takashi; Morikawa, Hiroyuki

    We study the properties of information dissemination over location-aware gossiping networks leveraging location-based real-time communication applications. Gossiping is a promising method for quickly disseminating messages in a large-scale system, but in its application to information dissemination for location-aware applications, it is important to consider the network topology and patterns of spatial dissemination over the network in order to achieve effective delivery of messages to potentially interested users. To this end, we propose a continuous-space network model extended from Kleinberg's small-world model applicable to actual location-based applications. Analytical and simulation-based study shows that the proposed network achieves high dissemination efficiency resulting from geographically neutral dissemination patterns as well as selective dissemination to proximate users. We have designed a highly scalable location management method capable of promptly updating the network topology in response to node movement and have implemented a distributed simulator to perform dynamic target pursuit experiments as one example of applications that are the most sensitive to message forwarding delay. The experimental results show that the proposed network surpasses other types of networks in pursuit efficiency and achieves the desirable dissemination patterns.

  19. Complete characterization of the stability of cluster synchronization in complex dynamical networks.

    PubMed

    Sorrentino, Francesco; Pecora, Louis M; Hagerstrom, Aaron M; Murphy, Thomas E; Roy, Rajarshi

    2016-04-01

    Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based on the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. Understanding how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an optoelectronic experiment on a five-node network that confirms the synchronization patterns predicted by the theory.

  20. Parallelization of Nullspace Algorithm for the computation of metabolic pathways

    PubMed Central

    Jevremović, Dimitrije; Trinh, Cong T.; Srienc, Friedrich; Sosa, Carlos P.; Boley, Daniel

    2011-01-01

    Elementary mode analysis is a useful metabolic pathway analysis tool in understanding and analyzing cellular metabolism, since elementary modes can represent metabolic pathways with unique and minimal sets of enzyme-catalyzed reactions of a metabolic network under steady state conditions. However, computation of the elementary modes of a genome- scale metabolic network with 100–1000 reactions is very expensive and sometimes not feasible with the commonly used serial Nullspace Algorithm. In this work, we develop a distributed memory parallelization of the Nullspace Algorithm to handle efficiently the computation of the elementary modes of a large metabolic network. We give an implementation in C++ language with the support of MPI library functions for the parallel communication. Our proposed algorithm is accompanied with an analysis of the complexity and identification of major bottlenecks during computation of all possible pathways of a large metabolic network. The algorithm includes methods to achieve load balancing among the compute-nodes and specific communication patterns to reduce the communication overhead and improve efficiency. PMID:22058581

  1. River network architecture, genetic effective size and distributional patterns predict differences in genetic structure across species in a dryland stream fish community.

    PubMed

    Pilger, Tyler J; Gido, Keith B; Propst, David L; Whitney, James E; Turner, Thomas F

    2017-05-01

    Dendritic ecological network (DEN) architecture can be a strong predictor of spatial genetic patterns in theoretical and simulation studies. Yet, interspecific differences in dispersal capabilities and distribution within the network may equally affect species' genetic structuring. We characterized patterns of genetic variation from up to ten microsatellite loci for nine numerically dominant members of the upper Gila River fish community, New Mexico, USA. Using comparative landscape genetics, we evaluated the role of network architecture for structuring populations within species (pairwise F ST ) while explicitly accounting for intraspecific demographic influences on effective population size (N e ). Five species exhibited patterns of connectivity and/or genetic diversity gradients that were predicted by network structure. These species were generally considered to be small-bodied or habitat specialists. Spatial variation of N e was a strong predictor of pairwise F ST for two species, suggesting patterns of connectivity may also be influenced by genetic drift independent of network properties. Finally, two study species exhibited genetic patterns that were unexplained by network properties and appeared to be related to nonequilibrium processes. Properties of DENs shape community-wide genetic structure but effects are modified by intrinsic traits and nonequilibrium processes. Further theoretical development of the DEN framework should account for such cases. © 2017 John Wiley & Sons Ltd.

  2. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals.

    PubMed

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-04-08

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.

  3. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals

    PubMed Central

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-01-01

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems. DOI: http://dx.doi.org/10.7554/eLife.14022.001 PMID:27058171

  4. A probabilistic approach to quantifying spatial patterns of flow regimes and network-scale connectivity

    NASA Astrophysics Data System (ADS)

    Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca

    2017-04-01

    The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.

  5. Do learning collaboratives strengthen communication? A comparison of organizational team communication networks over time.

    PubMed

    Bunger, Alicia C; Lengnick-Hall, Rebecca

    Collaborative learning models were designed to support quality improvements, such as innovation implementation by promoting communication within organizational teams. Yet the effect of collaborative learning approaches on organizational team communication during implementation is untested. The aim of this study was to explore change in communication patterns within teams from children's mental health organizations during a year-long learning collaborative focused on implementing a new treatment. We adopt a social network perspective to examine intraorganizational communication within each team and assess change in (a) the frequency of communication among team members, (b) communication across organizational hierarchies, and (c) the overall structure of team communication networks. A pretest-posttest design compared communication among 135 participants from 21 organizational teams at the start and end of a learning collaborative. At both time points, participants were asked to list the members of their team and rate the frequency of communication with each along a 7-point Likert scale. Several individual, pair-wise, and team level communication network metrics were calculated and compared over time. At the individual level, participants reported communicating with more team members by the end of the learning collaborative. Cross-hierarchical communication did not change. At the team level, these changes manifested differently depending on team size. In large teams, communication frequency increased, and networks grew denser and slightly less centralized. In small teams, communication frequency declined, growing more sparse and centralized. Results suggest that team communication patterns change minimally but evolve differently depending on size. Learning collaboratives may be more helpful for enhancing communication among larger teams; thus, managers might consider selecting and sending larger staff teams to learning collaboratives. This study highlights key future research directions that can disentangle the relationship between learning collaboratives and team networks.

  6. Age and amyloid-related alterations in default network habituation to stimulus repetition

    PubMed Central

    Vannini, Patrizia; Hedden, Trey; Becker, John A.; Sullivan, Caroline; Putcha, Deepti; Rentz, Dorene; Johnson, Keith A.; Sperling, Reisa. A.

    2011-01-01

    The neural networks supporting encoding of new information are thought to decline with age, although mnemonic techniques such as repetition may enhance performance in older individuals. Accumulation of amyloid-β, one hallmark pathology of Alzheimer’s disease (AD), may contribute to functional alterations in memory networks measured with functional magnetic resonance imaging (fMRI) prior to onset of cognitive impairment. We investigated the effects of age and amyloid burden on fMRI activity in the default network and hippocampus during repetitive encoding. Older individuals, particularly those with high amyloid burden, demonstrated decreased task-induced deactivation in the posteromedial cortices during initial stimulus presentation and failed to modulate fMRI activity in response to repeated trials, whereas young subjects demonstrated a stepwise decrease in deactivation with repetition. The hippocampus demonstrated similar patterns across the groups, showing task-induced activity that decreased in response to repetition. These findings demonstrate that age and amyloid have dissociable functional effects on specific nodes within a distributed memory network, and suggest that functional brain changes may begin far in advance of symptomatic AD. PMID:21334099

  7. Application-driven strategies for efficient transfer of medical images over very high speed networks

    NASA Astrophysics Data System (ADS)

    Alsafadi, Yasser H.; McNeill, Kevin M.; Martinez, Ralph

    1993-09-01

    The American College of Radiology (ACR) and the National Electrical Manufacturing Association (NEMA) in 1982 formed the ACR-NEMA committee to develop a standard to enable equipment from different vendors to communicate and participate in a picture archiving and communications system (PACS). The standard focused mostly on interconnectivity issues and communication needs of PACS. It was patterned after the international standards organization open systems interconnection (ISO/OSI) reference model. Three versions of the standard appeared, evolving from simple point-to-point specification of connection between two medical devices to a complex standard of a network environment. However, fast changes in network software and hardware technologies makes it difficult for the standard to keep pace. This paper compares two versions of the ACR-NEMA standard and then describes a system that is used at the University of Arizona Intensive Care Unit. In this system, the application should specify the interface to network services and grade of service required. These provisions are suggested to make the application independent from evolving network technology and support true open systems.

  8. Robust autoassociative memory with coupled networks of Kuramoto-type oscillators

    NASA Astrophysics Data System (ADS)

    Heger, Daniel; Krischer, Katharina

    2016-08-01

    Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.

  9. Synchronization transmission of laser pattern signal within uncertain switched network

    NASA Astrophysics Data System (ADS)

    Lü, Ling; Li, Chengren; Li, Gang; Sun, Ao; Yan, Zhe; Rong, Tingting; Gao, Yan

    2017-06-01

    We propose a new technology for synchronization transmission of laser pattern signal within uncertain network with controllable topology. In synchronization process, the connection of dynamic network can vary at all time according to different demands. Especially, we construct the Lyapunov function of network through designing a special semi-positive definite function, and the synchronization transmission of laser pattern signal within uncertain network with controllable topology can be realized perfectly, which effectively avoids the complicated calculation for solving the second largest eignvalue of the coupling matrix of the dynamic network in order to obtain the network synchronization condition. At the same time, the uncertain parameters in dynamic equations belonging to network nodes can also be identified accurately via designing the identification laws of uncertain parameters. In addition, there are not any limitations for the synchronization target of network in the new technology, in other words, the target can either be a state variable signal of an arbitrary node within the network or an exterior signal.

  10. Inferring tectonic activity using drainage network and RT model: an example from the western Himalayas, India

    NASA Astrophysics Data System (ADS)

    Sahoo, Ramendra; Jain, Vikrant

    2017-04-01

    Morphology of the landscape and derived features are regarded to be an important tool for inferring about tectonic activity in an area, since surface exposures of these subsurface processes may not be available or may get eroded away over time. This has led to an extensive research in application of the non-planar morphological attributes like river long profile and hypsometry for tectonic studies, whereas drainage network as a proxy for tectonic activity has not been explored greatly. Though, significant work has been done on drainage network pattern which started in a qualitative manner and over the years, has evolved to incorporate more quantitative aspects, like studying the evolution of a network under the influence of external and internal controls. Random Topology (RT) model is one of these concepts, which elucidates the connection between evolution of a drainage network pattern and the entropy of the drainage system and it states that in absence of any geological controls, a natural population of channel networks will be topologically random. We have used the entropy maximization principle to provide a theoretical structure for the RT model. Furthermore, analysis was carried out on the drainage network structures around Jwalamukhi thrust in the Kangra reentrant in western Himalayas, India, to investigate the tectonic activity in the region. Around one thousand networks were extracted from the foot-wall (fw) and hanging-wall (hw) region of the thrust sheet and later categorized based on their magnitudes. We have adopted the goodness of fit test for comparing the network patterns in fw and hw drainage with those derived using the RT model. The null hypothesis for the test was, the drainage networks in the fw are statistically more similar than those on the hw, to the network patterns derived using the RT model for any given magnitude. The test results are favorable to our null hypothesis for networks with smaller magnitudes (< 9), whereas for larger magnitudes, both hw and fw networks were found to be statistically not similar to the model network patterns. Calculation of pattern frequency for each magnitude and subsequent hypothesis testing were carried out using Matlab (v R2015a). Our results will help to define drainage network pattern as one of the geomorphic proxy to identify tectonically active area. This study also serve as a supplementary proof of the neo-tectonic control on the morphology of landscape and its derivatives around the Jwalamukhi thrust. Additionally, it will help to verify the theory of probabilistic evolution of drainage networks.

  11. Creative-Dynamics Approach To Neural Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1992-01-01

    Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.

  12. Using network projections to explore co-incidence and context in large clinical datasets: Application to homelessness among U.S. Veterans.

    PubMed

    Pettey, Warren B P; Toth, Damon J A; Redd, Andrew; Carter, Marjorie E; Samore, Matthew H; Gundlapalli, Adi V

    2016-06-01

    Network projections of data can provide an efficient format for data exploration of co-incidence in large clinical datasets. We present and explore the utility of a network projection approach to finding patterns in health care data that could be exploited to prevent homelessness among U.S. Veterans. We divided Veteran ICD-9-CM (ICD9) data into two time periods (0-59 and 60-364days prior to the first evidence of homelessness) and then used Pajek social network analysis software to visualize these data as three different networks. A multi-relational network simultaneously displayed the magnitude of ties between the most frequent ICD9 pairings. A new association network visualized ICD9 pairings that greatly increased or decreased. A signed, subtraction network visualized the presence, absence, and magnitude difference between ICD9 associations by time period. A cohort of 9468 U.S. Veterans was identified as having administrative evidence of homelessness and visits in both time periods. They were seen in 222,599 outpatient visits that generated 484,339 ICD9 codes (average of 11.4 (range 1-23) visits and 2.2 (range 1-60) ICD9 codes per visit). Using the three network projection methods, we were able to show distinct differences in the pattern of co-morbidities in the two time periods. In the more distant time period preceding homelessness, the network was dominated by routine health maintenance visits and physical ailment diagnoses. In the 59days immediately prior to the homelessness identification, alcohol related diagnoses along with economic circumstances such as unemployment, legal circumstances, along with housing instability were noted. Network visualizations of large clinical datasets traditionally treated as tabular and difficult to manipulate reveal rich, previously hidden connections between data variables related to homelessness. A key feature is the ability to visualize changes in variables with temporality and in proximity to the event of interest. These visualizations lend support to cognitive tasks such as exploration of large clinical datasets as a prelude to hypothesis generation. Published by Elsevier Inc.

  13. Boolean network representation of contagion dynamics during a financial crisis

    NASA Astrophysics Data System (ADS)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-01-01

    This work presents a network model for representation of the evolution of certain patterns of economic behavior. More specifically, after representing the agents as points in a space in which each dimension associated to a relevant economic variable, their relative "motions" that can be either stationary or discordant, are coded into a boolean network. Patterns with stationary averages indicate the maintenance of status quo, whereas discordant patterns represent aggregation of new agent into the cluster or departure from the former policies. The changing patterns can be embedded into a network representation, particularly using the concept of autocatalytic boolean networks. As a case study, the economic tendencies of the BRIC countries + Argentina were studied. Although Argentina is not included in the cluster formed by BRIC countries, it tends to follow the BRIC members because of strong commercial ties.

  14. Generalised power graph compression reveals dominant relationship patterns in complex networks

    PubMed Central

    Ahnert, Sebastian E.

    2014-01-01

    We introduce a framework for the discovery of dominant relationship patterns in complex networks, by compressing the networks into power graphs with overlapping power nodes. When paired with enrichment analysis of node classification terms, the most compressible sets of edges provide a highly informative sketch of the dominant relationship patterns that define the network. In addition, this procedure also gives rise to a novel, link-based definition of overlapping node communities in which nodes are defined by their relationships with sets of other nodes, rather than through connections within the community. We show that this completely general approach can be applied to undirected, directed, and bipartite networks, yielding valuable insights into the large-scale structure of real-world networks, including social networks and food webs. Our approach therefore provides a novel way in which network architecture can be studied, defined and classified. PMID:24663099

  15. How gender affects patterns of social relations and their impact on health: a comparison of one or multiple sources of support from "close persons".

    PubMed

    Fuhrer, R; Stansfeld, S A

    2002-03-01

    Numerous studies have reported gender differences in the effects of social relations on morbidity and mortality. When studying health and associated factors, one cannot ignore that sex differences exist and methods that are not "gender-fair" may lead to erroneous conclusions. This paper presents a critical analysis of the health/social relations association from a measurement perspective, including the definitions of people's networks and how they differ by gender. Findings from the Whitehall II Study of Civil Servants illustrate that women report more close persons in their primary networks, and are less likely to nominate their spouse as the closest person, but both men and women report the same proportion of women among their four closest persons. Women have a wider range of sources of emotional support. To date, most epidemiological studies have habitually analysed support provided by the closest person or confidant(e). We compared the health effects of social support when measured for the closest person only and when information from up to four close persons was incorporated into a weighted index. Information from up to four close persons offered a more accurate portrayal of support exchanged, and gender differences were attenuated, if not eliminated, when this support index was used to predict physical and psychological health.

  16. Brain network dysfunction in youth with obsessive-compulsive disorder induced by simple uni-manual behavior: The role of the dorsal anterior cingulate cortex

    PubMed Central

    Friedman, Amy L.; Burgess, Ashley; Ramaseshan, Karthik; Easter, Phil; Khatib, Dalal; Chowdury, Asadur; Arnold, Paul D.; Hanna, Gregory L.; Rosenberg, David R.; Diwadkar, Vaibhav A.

    2017-01-01

    In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a “motor set”) or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD. PMID:27992792

  17. Pseudo-orthogonalization of memory patterns for associative memory.

    PubMed

    Oku, Makito; Makino, Takaki; Aihara, Kazuyuki

    2013-11-01

    A new method for improving the storage capacity of associative memory models on a neural network is proposed. The storage capacity of the network increases in proportion to the network size in the case of random patterns, but, in general, the capacity suffers from correlation among memory patterns. Numerous solutions to this problem have been proposed so far, but their high computational cost limits their scalability. In this paper, we propose a novel and simple solution that is locally computable without any iteration. Our method involves XNOR masking of the original memory patterns with random patterns, and the masked patterns and masks are concatenated. The resulting decorrelated patterns allow higher storage capacity at the cost of the pattern length. Furthermore, the increase in the pattern length can be reduced through blockwise masking, which results in a small amount of capacity loss. Movie replay and image recognition are presented as examples to demonstrate the scalability of the proposed method.

  18. Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions.

    PubMed

    De Barro, Paul; Ahmed, Muhammad Z

    2011-01-01

    A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East - Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available genetic diversity.

  19. An algorithm of opinion leaders mining based on signed network

    NASA Astrophysics Data System (ADS)

    Cao, Linlin; Zheng, Mingchun; Zhang, Yuanyuan; Zhang, Fuming

    2018-04-01

    With the rapid development of mobile Internet, user gradually become the leader of social media, the abruptly rise of new media has changed the traditional information's dissemination pattern and regularity. There is new era significance of opinion leaders, gatekeepers in the classical theory of mass communication, and it has further expansion and extension to a certain extent. In the existing mining of opinion leaders, it is mainly from the research of network structure and user behavior without considering an important attribute: whether the user has a real impact. In this paper, we take the symbolic network as the research tool, by giving symbol which correspondingly represents support or oppose to the link about point of view relationship between users and combining traditional algorithms of mining with symbolism which can describe the change of view between users, we will get the opinion leader who has real impact on users, then the result is more accurate and effective.

  20. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

    PubMed Central

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms. PMID:22408487

  1. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.

    PubMed

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  2. Novel transcriptional networks regulated by CLOCK in human neurons.

    PubMed

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Cognitive Control Network Contributions to Memory-Guided Visual Attention

    PubMed Central

    Rosen, Maya L.; Stern, Chantal E.; Michalka, Samantha W.; Devaney, Kathryn J.; Somers, David C.

    2016-01-01

    Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network (CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. PMID:25750253

  4. Distinct hippocampal functional networks revealed by tractography-based parcellation.

    PubMed

    Adnan, Areeba; Barnett, Alexander; Moayedi, Massieh; McCormick, Cornelia; Cohn, Melanie; McAndrews, Mary Pat

    2016-07-01

    Recent research suggests the anterior and posterior hippocampus form part of two distinct functional neural networks. Here we investigate the structural underpinnings of this functional connectivity difference using diffusion-weighted imaging-based parcellation. Using this technique, we substantiated that the hippocampus can be parcellated into distinct anterior and posterior segments. These structurally defined segments did indeed show different patterns of resting state functional connectivity, in that the anterior segment showed greater connectivity with temporal and orbitofrontal cortex, whereas the posterior segment was more highly connected to medial and lateral parietal cortex. Furthermore, we showed that the posterior hippocampal connectivity to memory processing regions, including the dorsolateral prefrontal cortex, parahippocampal, inferior temporal and fusiform gyri and the precuneus, predicted interindividual relational memory performance. These findings provide important support for the integration of structural and functional connectivity in understanding the brain networks underlying episodic memory.

  5. A Multi-Technology Communication Platform for Urban Mobile Sensing.

    PubMed

    Almeida, Rodrigo; Oliveira, Rui; Luís, Miguel; Senna, Carlos; Sargento, Susana

    2018-04-12

    A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network.

  6. Evidence for acid-precipitation-induced trends in stream chemistry at hydrologic bench-mark stations

    USGS Publications Warehouse

    Smith, Richard A.; Alexander, Richard B.

    1983-01-01

    Ten- to 15-year water-quality records from a network of headwater sampling stations show small declines in stream sulfate concentrations at stations in the northeastern quarter of the Nation and small increases in sulfate at most southeastern and western sites. The regional pattern of stream sulfate trends is similar to that reported for trends in S02 emissions to the atmosphere during the same period. Trends in the ratio of alkalinity to total major cation concentrations at the stations follow an inverse pattern of small increases in the Northeast and small, but widespread decreases elsewhere. The undeveloped nature of the sampled basins and the magnitude and direction of observed changes in relation to SO2 emissions support the hypothesis that the observed patterns in water quality trends reflect regional changes in the rates of acid deposition.

  7. Online social and professional support for smokers trying to quit: an exploration of first time posts from 2562 members.

    PubMed

    Selby, Peter; van Mierlo, Trevor; Voci, Sabrina C; Parent, Danielle; Cunningham, John A

    2010-08-18

    Both intratreatment and extratreatment social support are associated with increased rates of smoking cessation. Internet-based social support groups have the capability of connecting widely dispersed groups of people trying to quit smoking, making social support available 24 hours a day, seven days a week, at minimal cost. However, to date there has been little research to guide development of this particular feature of Web-assisted tobacco interventions (WATIs). Our objectives were to compare the characteristics of smokers who post in an online smoking cessation support group with smokers who do not post, conduct a qualitative analysis of discussion board content, and determine the time it takes for new users to receive feedback from existing members or moderators. Data were collected from StopSmokingCenter.net version 5.0, a WATI equipped with an online social support network moderated by trained program health educators that was operational from November 6, 2004, to May 15, 2007. Demographic and smoking characteristics for both users and nonusers of the online social support network were analyzed, and qualitative analyses were conducted to explore themes in message content. Posting patterns and their frequency were also analyzed. During the study period, 16,764 individuals registered; of these, 70% (11,723) reported being American. The mean age of registrants was 38.9 years and 65% (10,965) were female. The mean number of cigarettes smoked was 20.6 per day. The mean score for the 41% (6849) of users who completed the Fagerström Test for Nicotine Dependence was 5.6. Of all registered members, 15% (2562) made at least one post in the online social support network; 25% of first posts received a response from another member within 12 minutes, 50% within 29 minutes. The most frequent first posts were from recent quitters who were struggling with their quit attempts, and most responses were from members who had quit for a month or more. Differences in demographic and smoking characteristics between members who posted on the support group board at least once and those who did not post were statistically but not clinically significant. Peer responses to new users were rapid, indicating that online social support networks may be particularly beneficial to smokers requiring more immediate assistance with their cessation attempt. This function may be especially advantageous for relapse prevention. Accessing this kind of rapid in-person support from a professional would take an inordinate amount of time and money. Further research regarding the effectiveness of WATIs with online social support networks is required to better understand the contribution of this feature to cessation, for both active users (posters) and passive users ("lurkers") alike.

  8. Methylphenidate Modulates Functional Network Connectivity to Enhance Attention

    PubMed Central

    Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Constable, R. Todd; Li, Chiang-Shan R.; Chun, Marvin M.

    2016-01-01

    Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. SIGNIFICANCE STATEMENT Recent work identified a promising neuromarker of sustained attention based on whole-brain functional connectivity networks. To investigate the causal role of these networks in attention, we examined their response to a dose of methylphenidate, a common and effective treatment for attention-deficit/hyperactivity disorder, in healthy adults. As predicted, individuals on methylphenidate showed connectivity signatures of better sustained attention: higher high-attention and lower low-attention network strength than controls. These results suggest that methylphenidate acts by modulating strength in functional brain networks related to attention, and that changing whole-brain connectivity patterns may improve attention. PMID:27629707

  9. Methylphenidate Modulates Functional Network Connectivity to Enhance Attention.

    PubMed

    Rosenberg, Monica D; Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S; Shen, Xilin; Constable, R Todd; Li, Chiang-Shan R; Chun, Marvin M

    2016-09-14

    Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. Recent work identified a promising neuromarker of sustained attention based on whole-brain functional connectivity networks. To investigate the causal role of these networks in attention, we examined their response to a dose of methylphenidate, a common and effective treatment for attention-deficit/hyperactivity disorder, in healthy adults. As predicted, individuals on methylphenidate showed connectivity signatures of better sustained attention: higher high-attention and lower low-attention network strength than controls. These results suggest that methylphenidate acts by modulating strength in functional brain networks related to attention, and that changing whole-brain connectivity patterns may improve attention. Copyright © 2016 the authors 0270-6474/16/369547-11$15.00/0.

  10. Neutral Community Dynamics and the Evolution of Species Interactions.

    PubMed

    Coelho, Marco Túlio P; Rangel, Thiago F

    2018-04-01

    A contemporary goal in ecology is to determine the ecological and evolutionary processes that generate recurring structural patterns in mutualistic networks. One of the great challenges is testing the capacity of neutral processes to replicate observed patterns in ecological networks, since the original formulation of the neutral theory lacks trophic interactions. Here, we develop a stochastic-simulation neutral model adding trophic interactions to the neutral theory of biodiversity. Without invoking ecological differences among individuals of different species, and assuming that ecological interactions emerge randomly, we demonstrate that a spatially explicit multitrophic neutral model is able to capture the recurrent structural patterns of mutualistic networks (i.e., degree distribution, connectance, nestedness, and phylogenetic signal of species interactions). Nonrandom species distribution, caused by probabilistic events of migration and speciation, create nonrandom network patterns. These findings have broad implications for the interpretation of niche-based processes as drivers of ecological networks, as well as for the integration of network structures with demographic stochasticity.

  11. Systematic Conservation Planning in the Face of Climate Change: Bet-Hedging on the Columbia Plateau

    PubMed Central

    Schloss, Carrie A.; Lawler, Joshua J.; Larson, Eric R.; Papendick, Hilary L.; Case, Michael J.; Evans, Daniel M.; DeLap, Jack H.; Langdon, Jesse G. R.; Hall, Sonia A.; McRae, Brad H.

    2011-01-01

    Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts. PMID:22174897

  12. A deep learning framework for causal shape transformation.

    PubMed

    Lore, Kin Gwn; Stoecklein, Daniel; Davies, Michael; Ganapathysubramanian, Baskar; Sarkar, Soumik

    2018-02-01

    Recurrent neural network (RNN) and Long Short-term Memory (LSTM) networks are the common go-to architecture for exploiting sequential information where the output is dependent on a sequence of inputs. However, in most considered problems, the dependencies typically lie in the latent domain which may not be suitable for applications involving the prediction of a step-wise transformation sequence that is dependent on the previous states only in the visible domain with a known terminal state. We propose a hybrid architecture of convolution neural networks (CNN) and stacked autoencoders (SAE) to learn a sequence of causal actions that nonlinearly transform an input visual pattern or distribution into a target visual pattern or distribution with the same support and demonstrated its practicality in a real-world engineering problem involving the physics of fluids. We solved a high-dimensional one-to-many inverse mapping problem concerning microfluidic flow sculpting, where the use of deep learning methods as an inverse map is very seldom explored. This work serves as a fruitful use-case to applied scientists and engineers in how deep learning can be beneficial as a solution for high-dimensional physical problems, and potentially opening doors to impactful advance in fields such as material sciences and medical biology where multistep topological transformations is a key element. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Deinterlacing using modular neural network

    NASA Astrophysics Data System (ADS)

    Woo, Dong H.; Eom, Il K.; Kim, Yoo S.

    2004-05-01

    Deinterlacing is the conversion process from the interlaced scan to progressive one. While many previous algorithms that are based on weighted-sum cause blurring in edge region, deinterlacing using neural network can reduce the blurring through recovering of high frequency component by learning process, and is found robust to noise. In proposed algorithm, input image is divided into edge and smooth region, and then, to each region, one neural network is assigned. Through this process, each neural network learns only patterns that are similar, therefore it makes learning more effective and estimation more accurate. But even within each region, there are various patterns such as long edge and texture in edge region. To solve this problem, modular neural network is proposed. In proposed modular neural network, two modules are combined in output node. One is for low frequency feature of local area of input image, and the other is for high frequency feature. With this structure, each modular neural network can learn different patterns with compensating for drawback of counterpart. Therefore it can adapt to various patterns within each region effectively. In simulation, the proposed algorithm shows better performance compared with conventional deinterlacing methods and single neural network method.

  14. Friendship Group Composition and Juvenile Institutional Misconduct.

    PubMed

    Reid, Shannon E

    2017-02-01

    The present study examines both the patterns of friendship networks and how these network characteristics relate to the risk factors of institutional misconduct for incarcerated youth. Using friendship networks collected from males incarcerated with California's Division of Juvenile Justice (DJJ), latent profile analysis was utilized to create homogeneous groups of friendship patterns based on alter attributes and network structure. The incarcerated youth provided 144 egocentric networks reporting 558 social network relationships. Latent profile analysis identified three network profiles: expected group (67%), new breed group (20%), and model citizen group (13%). The three network profiles were integrated into a multiple group analysis framework to examine the relative influence of individual-level risk factors on their rate of institutional misconduct. The analysis finds variation in predictors of institutional misconduct across profile types. These findings suggest that the close friendships of incarcerated youth are patterned across the individual characteristics of the youth's friends and that the friendship network can act as a moderator for individual risk factors for institutional misconduct.

  15. Functional genomics annotation of a statistical epistasis network associated with bladder cancer susceptibility.

    PubMed

    Hu, Ting; Pan, Qinxin; Andrew, Angeline S; Langer, Jillian M; Cole, Michael D; Tomlinson, Craig R; Karagas, Margaret R; Moore, Jason H

    2014-04-11

    Several different genetic and environmental factors have been identified as independent risk factors for bladder cancer in population-based studies. Recent studies have turned to understanding the role of gene-gene and gene-environment interactions in determining risk. We previously developed the bioinformatics framework of statistical epistasis networks (SEN) to characterize the global structure of interacting genetic factors associated with a particular disease or clinical outcome. By applying SEN to a population-based study of bladder cancer among Caucasians in New Hampshire, we were able to identify a set of connected genetic factors with strong and significant interaction effects on bladder cancer susceptibility. To support our statistical findings using networks, in the present study, we performed pathway enrichment analyses on the set of genes identified using SEN, and found that they are associated with the carcinogen benzo[a]pyrene, a component of tobacco smoke. We further carried out an mRNA expression microarray experiment to validate statistical genetic interactions, and to determine if the set of genes identified in the SEN were differentially expressed in a normal bladder cell line and a bladder cancer cell line in the presence or absence of benzo[a]pyrene. Significant nonrandom sets of genes from the SEN were found to be differentially expressed in response to benzo[a]pyrene in both the normal bladder cells and the bladder cancer cells. In addition, the patterns of gene expression were significantly different between these two cell types. The enrichment analyses and the gene expression microarray results support the idea that SEN analysis of bladder in population-based studies is able to identify biologically meaningful statistical patterns. These results bring us a step closer to a systems genetic approach to understanding cancer susceptibility that integrates population and laboratory-based studies.

  16. Co-expression networks reveal the tissue-specific regulation of transcription and splicing

    PubMed Central

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D.H.; Jo, Brian; Gao, Chuan; McDowell, Ian C.; Engelhardt, Barbara E.

    2017-01-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. PMID:29021288

  17. Flexible establishment of functional brain networks supports attentional modulation of unconscious cognition.

    PubMed

    Ulrich, Martin; Adams, Sarah C; Kiefer, Markus

    2014-11-01

    In classical theories of attention, unconscious automatic processes are thought to be independent of higher-level attentional influences. Here, we propose that unconscious processing depends on attentional enhancement of task-congruent processing pathways implemented by a dynamic modulation of the functional communication between brain regions. Using functional magnetic resonance imaging, we tested our model with a subliminally primed lexical decision task preceded by an induction task preparing either a semantic or a perceptual task set. Subliminal semantic priming was significantly greater after semantic compared to perceptual induction in ventral occipito-temporal (vOT) and inferior frontal cortex, brain areas known to be involved in semantic processing. The functional connectivity pattern of vOT varied depending on the induction task and successfully predicted the magnitude of behavioral and neural priming. Together, these findings support the proposal that dynamic establishment of functional networks by task sets is an important mechanism in the attentional control of unconscious processing. © 2014 Wiley Periodicals, Inc.

  18. Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task

    PubMed Central

    2017-01-01

    Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP) are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The network utilized both reward modulated and non-reward modulated STDP and implemented multiple mechanisms for homeostatic regulation of synaptic efficacy, including heterosynaptic plasticity, gain control, output balancing, activity normalization of rewarded STDP and hard limits on synaptic strength. We found that addition of a hidden layer of neurons employing non-rewarded STDP created neurons that responded to the specific combinations of inputs and thus performed basic classification of the input patterns. When combined with a following layer of neurons implementing rewarded STDP, the network was able to learn, despite the absence of labeled training data, discrimination between rewarding patterns and the patterns designated as punishing. Synaptic noise allowed for trial-and-error learning that helped to identify the goal-oriented strategies which were effective in task solving. The study predicts a critical set of properties of the spiking neuronal network with STDP that was sufficient to solve a complex foraging task involving pattern classification and decision making. PMID:28961245

  19. Long-Term Memory Stabilized by Noise-Induced Rehearsal

    PubMed Central

    Wei, Yi

    2014-01-01

    Cortical networks can maintain memories for decades despite the short lifetime of synaptic strengths. Can a neural network store long-lasting memories in unstable synapses? Here, we study the effects of ongoing spike-timing-dependent plasticity (STDP) on the stability of memory patterns stored in synapses of an attractor neural network. We show that certain classes of STDP rules can stabilize all stored memory patterns despite a short lifetime of synapses. In our model, unstructured neural noise, after passing through the recurrent network connections, carries the imprint of all memory patterns in temporal correlations. STDP, combined with these correlations, leads to reinforcement of all stored patterns, even those that are never explicitly visited. Our findings may provide the functional reason for irregular spiking displayed by cortical neurons and justify models of system memory consolidation. Therefore, we propose that irregular neural activity is the feature that helps cortical networks maintain stable connections. PMID:25411507

  20. Electronic system with memristive synapses for pattern recognition

    PubMed Central

    Park, Sangsu; Chu, Myonglae; Kim, Jongin; Noh, Jinwoo; Jeon, Moongu; Hun Lee, Byoung; Hwang, Hyunsang; Lee, Boreom; Lee, Byung-geun

    2015-01-01

    Memristive synapses, the most promising passive devices for synaptic interconnections in artificial neural networks, are the driving force behind recent research on hardware neural networks. Despite significant efforts to utilize memristive synapses, progress to date has only shown the possibility of building a neural network system that can classify simple image patterns. In this article, we report a high-density cross-point memristive synapse array with improved synaptic characteristics. The proposed PCMO-based memristive synapse exhibits the necessary gradual and symmetrical conductance changes, and has been successfully adapted to a neural network system. The system learns, and later recognizes, the human thought pattern corresponding to three vowels, i.e. /a /, /i /, and /u/, using electroencephalography signals generated while a subject imagines speaking vowels. Our successful demonstration of a neural network system for EEG pattern recognition is likely to intrigue many researchers and stimulate a new research direction. PMID:25941950

  1. Research on the Spatial-Temporal Distribution Pattern of the Network Attention of Fog and Haze in China

    NASA Astrophysics Data System (ADS)

    Weng, Lingyan; Han, Xugao

    2018-01-01

    Understanding the spatial-temporal distribution pattern of fog and haze is the base to deal with them by adjusting measures to local conditions. Taking 31 provinces in China mainland as the research areas, this paper collected data from Baidu index on the network attention of fog and haze in relevant areas from 2011 to 2016, and conducted an analysis of their spatial-temporal distribution pattern by using autocorrelation analysis. The results show that the network attention of fog and haze has an overall spatial distribution pattern of “higher in the eastern and central, lower in the western China”. There are regional differences in different provinces in terms of network attention. Network attention of fog and haze indicates an obvious geographical agglomeration phenomenon, which is a gradual enlargement of the agglomeration area of higher value with a slight shrinking of those lower value agglomeration areas.

  2. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1997-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  3. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  4. External modulation of the sustained attention network in traumatic brain injury.

    PubMed

    Richard, Nadine M; O'Connor, Charlene; Dey, Ayan; Robertson, Ian H; Levine, Brian

    2018-05-07

    Traumatic brain injury (TBI) is associated with impairments in processing speed as well as higher-level cognitive functions that depend on distributed neural networks, such as regulating and sustaining attention. Although exogenous alerting cues have been shown to support patients in sustaining attentive, goal-directed behavior, the neural correlates of this rehabilitative effect are unclear. The purpose of this study was to explore the effects of moderate to severe TBI on activity and functional connectivity in the well-documented right-lateralized frontal-subcortical-parietal sustained attention network, and to assess the effects of alerting cues. Using multivariate analysis of fMRI data, TBI patients and matched neurologically healthy (NH) comparison participants were scanned as they performed the Sustained Attention to Response Task (SART) in 60-s blocks, with or without exogenous cueing through brief auditory alerting tones. Results documented inefficient voluntary control of attention in the TBI patients, with reduced functional connectivity in the sustained attention network relative to NH participants. When alerting cues were present during the SART, however, functional connectivity increased and became comparable to activity patterns seen in the NH group. These findings provide novel evidence of a neural mechanism for the facilitatory effects of alerting cues on goal-directed behavior in patients with damaged attentional brain systems, and support their use in cognitive rehabilitation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Patterns recognition of electric brain activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  6. Dynamic states of a unidirectional ring of chen oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, Ana; Pinto, Carla M.A.

    2015-03-10

    We study curious dynamical patterns appearing in a network of a unidirectional ring of Chen oscillators coupled to a ‘buffer’ cell. The network has Z{sub 3} exact symmetry group. We simulate the coupled cell systems associated to the two networks and obtain steady-states, rotating waves, quasiperiodic behavior, and chaos. The different patterns appear to arise through a sequence of Hopf, period-doubling and period-halving bifurcations. The network architecture appears to explain some patterns, whereas the properties of the chaotic oscillator may explain others. We use XPPAUT and MATLAB to compute numerically the relevant states.

  7. Mapping the Alzheimer’s Brain with Connectomics

    PubMed Central

    Xie, Teng; He, Yong

    2012-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. As an incurable, progressive, and neurodegenerative disease, it causes cognitive and memory deficits. However, the biological mechanisms underlying the disease are not thoroughly understood. In recent years, non-invasive neuroimaging and neurophysiological techniques [e.g., structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, and EEG/MEG] and graph theory based network analysis have provided a new perspective on structural and functional connectivity patterns of the human brain (i.e., the human connectome) in health and disease. Using these powerful approaches, several recent studies of patients with AD exhibited abnormal topological organization in both global and regional properties of neuronal networks, indicating that AD not only affects specific brain regions, but also alters the structural and functional associations between distinct brain regions. Specifically, disruptive organization in the whole-brain networks in AD is involved in the loss of small-world characters and the re-organization of hub distributions. These aberrant neuronal connectivity patterns were associated with cognitive deficits in patients with AD, even with genetic factors in healthy aging. These studies provide empirical evidence to support the existence of an aberrant connectome of AD. In this review we will summarize recent advances discovered in large-scale brain network studies of AD, mainly focusing on graph theoretical analysis of brain connectivity abnormalities. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis and monitoring. PMID:22291664

  8. Emotional faces and the default mode network.

    PubMed

    Sreenivas, S; Boehm, S G; Linden, D E J

    2012-01-11

    The default-mode network (DMN) of the human brain has become a central topic of cognitive neuroscience research. Although alterations in its resting state activity and in its recruitment during tasks have been reported for several mental and neurodegenerative disorders, its role in emotion processing has received relatively little attention. We investigated brain responses to different categories of emotional faces with functional magnetic resonance imaging (fMRI) and found deactivation in ventromedial prefrontal cortex (VMPFC), posterior cingulate gyrus (PC) and cuneus. This deactivation was modulated by emotional category and was less prominent for happy than for sad faces. These deactivated areas along the midline conformed to areas of the DMN. We also observed emotion-dependent deactivation of the left middle frontal gyrus, which is not a classical component of the DMN. Conversely, several areas in a fronto-parietal network commonly linked with attention were differentially activated by emotion categories. Functional connectivity patterns, as obtained by correlation of activation levels, also varied between emotions. VMPFC, PC or cuneus served as hubs between the DMN-type areas and the fronto-parietal network. These data support recent suggestions that the DMN is not a unitary system but differentiates according to task and even type of stimulus. The emotion-specific differential pattern of DMN deactivation may be explored further in patients with mood disorder, where the quest for biological markers of emotional biases is still ongoing. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Generation of Adaptive Gait Patterns for Quadruped Robot with CPG Network including Motor Dynamic Model

    NASA Astrophysics Data System (ADS)

    Son, Yurak; Kamano, Takuya; Yasuno, Takashi; Suzuki, Takayuki; Harada, Hironobu

    This paper describes the generation of adaptive gait patterns using new Central Pattern Generators (CPGs) including motor dynamic models for a quadruped robot under various environment. The CPGs act as the flexible oscillators of the joints and make the desired angle of the joints. The CPGs are mutually connected each other, and the sets of their coupling parameters are adjusted by genetic algorithm so that the quadruped robot can realize the stable and adequate gait patterns. As a result of generation, the suitable CPG networks for not only a walking straight gait pattern but also rotation gait patterns are obtained. Experimental results demonstrate that the proposed CPG networks are effective to automatically adjust the adaptive gait patterns for the tested quadruped robot under various environment. Furthermore, the target tracking control based on image processing is achieved by combining the generated gait patterns.

  10. Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients.

    PubMed

    Raspopovic, J; Marcon, L; Russo, L; Sharpe, J

    2014-08-01

    During limb development, digits emerge from the undifferentiated mesenchymal tissue that constitutes the limb bud. It has been proposed that this process is controlled by a self-organizing Turing mechanism, whereby diffusible molecules interact to produce a periodic pattern of digital and interdigital fates. However, the identities of the molecules remain unknown. By combining experiments and modeling, we reveal evidence that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification. We develop a realistic two-dimensional simulation of digit patterning and show that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments. Our systems biology approach reveals how a combination of growth, morphogen gradients, and a self-organizing Turing network can achieve robust and reproducible pattern formation. Copyright © 2014, American Association for the Advancement of Science.

  11. Dynamic information routing in complex networks

    PubMed Central

    Kirst, Christoph; Timme, Marc; Battaglia, Demian

    2016-01-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function. PMID:27067257

  12. Signaling mechanisms underlying the robustness and tunability of the plant immune network

    PubMed Central

    Kim, Yungil; Tsuda, Kenichi; Igarashi, Daisuke; Hillmer, Rachel A.; Sakakibara, Hitoshi; Myers, Chad L.; Katagiri, Fumiaki

    2014-01-01

    Summary How does robust and tunable behavior emerge in a complex biological network? We sought to understand this for the signaling network controlling pattern-triggered immunity (PTI) in Arabidopsis. A dynamic network model containing four major signaling sectors, the jasmonate, ethylene, PAD4, and salicylate sectors, which together explain up to 80% of the PTI level, was built using data for dynamic sector activities and PTI levels under exhaustive combinatorial sector perturbations. Our regularized multiple regression model had a high level of predictive power and captured known and unexpected signal flows in the network. The sole inhibitory sector in the model, the ethylene sector, was central to the network robustness via its inhibition of the jasmonate sector. The model's multiple input sites linked specific signal input patterns varying in strength and timing to different network response patterns, indicating a mechanism enabling tunability. PMID:24439900

  13. Symmetries and synchronization in multilayer random networks

    NASA Astrophysics Data System (ADS)

    Saa, Alberto

    2018-04-01

    In the light of the recently proposed scenario of asymmetry-induced synchronization (AISync), in which dynamical uniformity and consensus in a distributed system would demand certain asymmetries in the underlying network, we investigate here the influence of some regularities in the interlayer connection patterns on the synchronization properties of multilayer random networks. More specifically, by considering a Stuart-Landau model of complex oscillators with random frequencies, we report for multilayer networks a dynamical behavior that could be also classified as a manifestation of AISync. We show, namely, that the presence of certain symmetries in the interlayer connection pattern tends to diminish the synchronization capability of the whole network or, in other words, asymmetries in the interlayer connections would enhance synchronization in such structured networks. Our results might help the understanding not only of the AISync mechanism itself but also its possible role in the determination of the interlayer connection pattern of multilayer and other structured networks with optimal synchronization properties.

  14. An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation.

    PubMed

    Wang, Runchun; Cohen, Gregory; Stiefel, Klaus M; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, André

    2013-01-01

    We present an FPGA implementation of a re-configurable, polychronous spiking neural network with a large capacity for spatial-temporal patterns. The proposed neural network generates delay paths de novo, so that only connections that actually appear in the training patterns will be created. This allows the proposed network to use all the axons (variables) to store information. Spike Timing Dependent Delay Plasticity is used to fine-tune and add dynamics to the network. We use a time multiplexing approach allowing us to achieve 4096 (4k) neurons and up to 1.15 million programmable delay axons on a Virtex 6 FPGA. Test results show that the proposed neural network is capable of successfully recalling more than 95% of all spikes for 96% of the stored patterns. The tests also show that the neural network is robust to noise from random input spikes.

  15. Dynamics and nature of support in the personal networks of people with type 2 diabetes living in Europe: qualitative analysis of network properties.

    PubMed

    Kennedy, Anne; Rogers, Anne; Vassilev, Ivaylo; Todorova, Elka; Roukova, Poli; Foss, Christina; Knutsen, Ingrid; Portillo, Mari Carmen; Mujika, Agurtzane; Serrano-Gil, Manuel; Lionis, Christos; Angelaki, Agapi; Ratsika, Nikoleta; Koetsenruijter, Jan; Wensing, Michel

    2015-12-01

    Living with and self-managing a long-term condition implicates a diversity of networked relationships. This qualitative study examines the personal communities of support of people with type 2 diabetes. We conducted 170 biographical interviews in six European countries (Bulgaria, Greece, the Netherlands, Norway, Spain and UK) to explore social support and networks. Analysis was framed with reference to three predetermined social support mechanisms: the negotiation of support enabling engagement with healthy practices, navigation to sources of support and collective efficacy. Each interview was summarized to describe navigation and negotiation of participants' networks and the degree of collective efficacy. Analysis highlighted the similarities and differences between countries and provided insights into capacities of networks to support self-management. The network support mechanisms were identified in all interviews, and losses and gains in networks impacted on diabetes management. There were contextual differences between countries, most notably the impact of financial austerity on network dynamics. Four types of network are suggested: generative, diverse and beneficial to individuals; proxy, network members undertook diabetes management work; avoidant, support not engaged with; and struggling, diabetes management a struggle or not prioritized. It is possible to differentiate types of network input to living with and managing diabetes. Recognizing the nature of active, generative aspects of networks support is likely to have relevance for self-management support interventions either through encouraging continuing development and maintenance of these contacts or intervening to address struggling networks through introducing the means to connect people to additional sources of support. © 2014 John Wiley & Sons Ltd.

  16. Decoding the spatial signatures of multi-scale climate variability - a climate network perspective

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.

    2017-12-01

    During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.

  17. A geovisual analytic approach to understanding geo-social relationships in the international trade network.

    PubMed

    Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M

    2014-01-01

    The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly 'balkanized' (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above.

  18. Supply network science: Emergence of a new perspective on a classical field

    NASA Astrophysics Data System (ADS)

    Brintrup, Alexandra; Ledwoch, Anna

    2018-03-01

    Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research.

  19. Supply network science: Emergence of a new perspective on a classical field.

    PubMed

    Brintrup, Alexandra; Ledwoch, Anna

    2018-03-01

    Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research.

  20. Superframe Duration Allocation Schemes to Improve the Throughput of Cluster-Tree Wireless Sensor Networks

    PubMed Central

    Leão, Erico; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-01-01

    The use of Wireless Sensor Network (WSN) technologies is an attractive option to support wide-scale monitoring applications, such as the ones that can be found in precision agriculture, environmental monitoring and industrial automation. The IEEE 802.15.4/ZigBee cluster-tree topology is a suitable topology to build wide-scale WSNs. Despite some of its known advantages, including timing synchronisation and duty-cycle operation, cluster-tree networks may suffer from severe network congestion problems due to the convergecast pattern of its communication traffic. Therefore, the careful adjustment of transmission opportunities (superframe durations) allocated to the cluster-heads is an important research issue. This paper proposes a set of proportional Superframe Duration Allocation (SDA) schemes, based on well-defined protocol and timing models, and on the message load imposed by child nodes (Load-SDA scheme), or by number of descendant nodes (Nodes-SDA scheme) of each cluster-head. The underlying reasoning is to adequately allocate transmission opportunities (superframe durations) and parametrize buffer sizes, in order to improve the network throughput and avoid typical problems, such as: network congestion, high end-to-end communication delays and discarded messages due to buffer overflows. Simulation assessments show how proposed allocation schemes may clearly improve the operation of wide-scale cluster-tree networks. PMID:28134822

Top