Sample records for network performance analysis

  1. Network analysis of patient flow in two UK acute care hospitals identifies key sub-networks for A&E performance

    PubMed Central

    Stringer, Clive; Beeknoo, Neeraj

    2017-01-01

    The topology of the patient flow network in a hospital is complex, comprising hundreds of overlapping patient journeys, and is a determinant of operational efficiency. To understand the network architecture of patient flow, we performed a data-driven network analysis of patient flow through two acute hospital sites of King’s College Hospital NHS Foundation Trust. Administration databases were queried for all intra-hospital patient transfers in an 18-month period and modelled as a dynamic weighted directed graph. A ‘core’ subnetwork containing only 13–17% of all edges channelled 83–90% of the patient flow, while an ‘ephemeral’ network constituted the remainder. Unsupervised cluster analysis and differential network analysis identified sub-networks where traffic is most associated with A&E performance. Increased flow to clinical decision units was associated with the best A&E performance in both sites. The component analysis also detected a weekend effect on patient transfers which was not associated with performance. We have performed the first data-driven hypothesis-free analysis of patient flow which can enhance understanding of whole healthcare systems. Such analysis can drive transformation in healthcare as it has in industries such as manufacturing. PMID:28968472

  2. The Current State of Human Performance Technology: A Citation Network Analysis of "Performance Improvement Quarterly," 1988-2010

    ERIC Educational Resources Information Center

    Cho, Yonjoo; Jo, Sung Jun; Park, Sunyoung; Kang, Ingu; Chen, Zengguan

    2011-01-01

    This study conducted a citation network analysis (CNA) of human performance technology (HPT) to examine its current state of the field. Previous reviews of the field have used traditional research methods, such as content analysis, survey, Delphi, and citation analysis. The distinctive features of CNA come from using a social network analysis…

  3. Multiplex network analysis of employee performance and employee social relationships

    NASA Astrophysics Data System (ADS)

    Cai, Meng; Wang, Wei; Cui, Ying; Stanley, H. Eugene

    2018-01-01

    In human resource management, employee performance is strongly affected by both formal and informal employee networks. Most previous research on employee performance has focused on monolayer networks that can represent only single categories of employee social relationships. We study employee performance by taking into account the entire multiplex structure of underlying employee social networks. We collect three datasets consisting of five different employee relationship categories in three firms, and predict employee performance using degree centrality and eigenvector centrality in a superimposed multiplex network (SMN) and an unfolded multiplex network (UMN). We use a quadratic assignment procedure (QAP) analysis and a regression analysis to demonstrate that the different categories of relationship are mutually embedded and that the strength of their impact on employee performance differs. We also use weighted/unweighted SMN/UMN to measure the predictive accuracy of this approach and find that employees with high centrality in a weighted UMN are more likely to perform well. Our results shed new light on how social structures affect employee performance.

  4. Use of model calibration to achieve high accuracy in analysis of computer networks

    DOEpatents

    Frogner, Bjorn; Guarro, Sergio; Scharf, Guy

    2004-05-11

    A system and method are provided for creating a network performance prediction model, and calibrating the prediction model, through application of network load statistical analyses. The method includes characterizing the measured load on the network, which may include background load data obtained over time, and may further include directed load data representative of a transaction-level event. Probabilistic representations of load data are derived to characterize the statistical persistence of the network performance variability and to determine delays throughout the network. The probabilistic representations are applied to the network performance prediction model to adapt the model for accurate prediction of network performance. Certain embodiments of the method and system may be used for analysis of the performance of a distributed application characterized as data packet streams.

  5. Performance analysis of LAN bridges and routers

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.

    1991-01-01

    Bridges and routers are used to interconnect Local Area Networks (LANs). The performance of these devices is important since they can become bottlenecks in large multi-segment networks. Performance metrics and test methodology for bridges and routers were not standardized. Performance data reported by vendors is not applicable to the actual scenarios encountered in an operational network. However, vendor-provided data can be used to calibrate models of bridges and routers that, along with other models, yield performance data for a network. Several tools are available for modeling bridges and routers - Network II.5 was used. The results of the analysis of some bridges and routers are presented.

  6. Visualizing weighted networks: a performance comparison of adjacency matrices versus node-link diagrams

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Osesina, O. Isaac; Bartley, Cecilia; Tudoreanu, M. Eduard; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    Ensuring the proper and effective ways to visualize network data is important for many areas of academia, applied sciences, the military, and the public. Fields such as social network analysis, genetics, biochemistry, intelligence, cybersecurity, neural network modeling, transit systems, communications, etc. often deal with large, complex network datasets that can be difficult to interact with, study, and use. There have been surprisingly few human factors performance studies on the relative effectiveness of different graph drawings or network diagram techniques to convey information to a viewer. This is particularly true for weighted networks which include the strength of connections between nodes, not just information about which nodes are linked to other nodes. We describe a human factors study in which participants performed four separate network analysis tasks (finding a direct link between given nodes, finding an interconnected node between given nodes, estimating link strengths, and estimating the most densely interconnected nodes) on two different network visualizations: an adjacency matrix with a heat-map versus a node-link diagram. The results should help shed light on effective methods of visualizing network data for some representative analysis tasks, with the ultimate goal of improving usability and performance for viewers of network data displays.

  7. Network meta-analyses performed by contracting companies and commissioned by industry.

    PubMed

    Schuit, Ewoud; Ioannidis, John Pa

    2016-11-25

    Industry commissions contracting companies to perform network meta-analysis for health technology assessment (HTA) and reimbursement submissions. Our objective was to estimate the number of network meta-analyses performed by consulting companies contracted by industry, to assess whether they were published, and to explore reasons for non-publication. We searched MEDLINE for network meta-analyses of randomized trials. Papers were included if they had authors affiliated with any contracting company. All identified contracting companies as well as additional ones from the list of the exhibitors at the International Society for Pharmacoeconomics and Outcomes Research, an annual meeting that representatives from many contracting companies attend and exhibit at, were surveyed regarding conduct and publication of network meta-analyses. In 162 of 822 (20%) network meta-analysis papers, authors were affiliated to 66 contracting companies. Another 36 contracting companies were identified by the exhibitors list. Three companies had no contact information and six merged with others, therefore 93 companies were contacted. Thirty seven out of ninety three (40%) companies responded, and 19 indicated that they had performed a total of 476 network meta-analyses, but only 102 (21%) papers were published. Thirteen companies that disclosed to have conducted 174 network meta-analyses (45 published) provided reasons for non-publication. Of the 129 still unpublished meta-analyses, for 40 there were plans for future publication, for 37 the sponsor did not allow publication, for 16 the contracting companies did not plan to publish the meta-analysis, for another 23 plans were unclear, and the remaining 13 were used as HTA submission. The protocol of the network meta-analysis was publically available from 11/162 (6.8%) network meta-analyses published by authors affiliated with contracting companies. There is a prolific sector of professional contracting companies that perform network meta-analyses. Industry commissions many network meta-analyses, but most are not registered before or published after analyses in the scientific literature. Mechanisms to improve publication rates of network meta-analysis commissioned by industry are warranted.

  8. DistributedFBA.jl: High-level, high-performance flux balance analysis in Julia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heirendt, Laurent; Thiele, Ines; Fleming, Ronan M. T.

    Flux balance analysis and its variants are widely used methods for predicting steady-state reaction rates in biochemical reaction networks. The exploration of high dimensional networks with such methods is currently hampered by software performance limitations. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on a subset or all the reactions of large and huge-scale networks, on any number of threads or nodes. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on amore » subset or all the reactions of large and huge-scale networks, on any number of threads or nodes.« less

  9. DistributedFBA.jl: High-level, high-performance flux balance analysis in Julia

    DOE PAGES

    Heirendt, Laurent; Thiele, Ines; Fleming, Ronan M. T.

    2017-01-16

    Flux balance analysis and its variants are widely used methods for predicting steady-state reaction rates in biochemical reaction networks. The exploration of high dimensional networks with such methods is currently hampered by software performance limitations. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on a subset or all the reactions of large and huge-scale networks, on any number of threads or nodes. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on amore » subset or all the reactions of large and huge-scale networks, on any number of threads or nodes.« less

  10. Performance analysis of Aloha networks with power capture and near/far effect

    NASA Astrophysics Data System (ADS)

    McCartin, Joseph T.

    1989-06-01

    An analysis is presented for the throughput characteristics for several classes of Aloha packet networks. Specifically, the throughput for variable packet length Aloha utilizing multiple power levels to induce receiver capture is derived. The results are extended to an analysis of a selective-repeat ARQ Aloha network. Analytical results are presented which indicate a significant increase in throughput for a variable packet network implementing a random two power level capture scheme. Further research into the area of the near/far effect on Aloha networks is included. Improvements in throughput for mobile radio Aloha networks which are subject to the near/far effect are presented. Tactical Command, Control and Communications (C3) systems of the future will rely on Aloha ground mobile data networks. The incorporation of power capture and the near/far effect into future tactical networks will result in improved system analysis, design, and performance.

  11. NASCOM network: Ground communications reliability report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A reliability performance analysis of the NASCOM Network circuits is reported. Network performance narrative summary is presented to include significant changes in circuit configurations, current figures, and trends in each trouble category with notable circuit totals specified. Lost time and interruption tables listing circuits which were affected by outages showing their totals category are submitted. A special analysis of circuits with low reliabilities is developed with tables depicting the performance and graphs for individual reliabilities.

  12. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Transport Protocol (Transmission Control Protocol/User Datagram Protocol [TCP/UDP]) Analysis

    DTIC Science & Technology

    2015-09-01

    the network Mac8 Medium Access Control ( Mac ) (Ethernet) address observed as destination for outgoing packets subsessionid8 Zero-based index of...15. SUBJECT TERMS tactical networks, data reduction, high-performance computing, data analysis, big data 16. SECURITY CLASSIFICATION OF: 17...Integer index of row cts_deid Device (instrument) Identifier where observation took place cts_collpt Collection point or logical observation point on

  13. Topology design and performance analysis of an integrated communication network

    NASA Technical Reports Server (NTRS)

    Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.

    1985-01-01

    A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.

  14. Neural Networks for Readability Analysis.

    ERIC Educational Resources Information Center

    McEneaney, John E.

    This paper describes and reports on the performance of six related artificial neural networks that have been developed for the purpose of readability analysis. Two networks employ counts of linguistic variables that simulate a traditional regression-based approach to readability. The remaining networks determine readability from "visual…

  15. Software Defined Network Monitoring Scheme Using Spectral Graph Theory and Phantom Nodes

    DTIC Science & Technology

    2014-09-01

    networks is the emergence of software - defined networking ( SDN ) [1]. SDN has existed for the...Chapter III for network monitoring. A. SOFTWARE DEFINED NETWORKS SDNs provide a new and innovative method to simplify network hardware by logically...and R. Giladi, “Performance analysis of software - defined networking ( SDN ),” in Proc. of IEEE 21st International Symposium on Modeling, Analysis

  16. How the study of online collaborative learning can guide teachers and predict students' performance in a medical course.

    PubMed

    Saqr, Mohammed; Fors, Uno; Tedre, Matti

    2018-02-06

    Collaborative learning facilitates reflection, diversifies understanding and stimulates skills of critical and higher-order thinking. Although the benefits of collaborative learning have long been recognized, it is still rarely studied by social network analysis (SNA) in medical education, and the relationship of parameters that can be obtained via SNA with students' performance remains largely unknown. The aim of this work was to assess the potential of SNA for studying online collaborative clinical case discussions in a medical course and to find out which activities correlate with better performance and help predict final grade or explain variance in performance. Interaction data were extracted from the learning management system (LMS) forum module of the Surgery course in Qassim University, College of Medicine. The data were analyzed using social network analysis. The analysis included visual as well as a statistical analysis. Correlation with students' performance was calculated, and automatic linear regression was used to predict students' performance. By using social network analysis, we were able to analyze a large number of interactions in online collaborative discussions and gain an overall insight of the course social structure, track the knowledge flow and the interaction patterns, as well as identify the active participants and the prominent discussion moderators. When augmented with calculated network parameters, SNA offered an accurate view of the course network, each user's position, and level of connectedness. Results from correlation coefficients, linear regression, and logistic regression indicated that a student's position and role in information relay in online case discussions, combined with the strength of that student's network (social capital), can be used as predictors of performance in relevant settings. By using social network analysis, researchers can analyze the social structure of an online course and reveal important information about students' and teachers' interactions that can be valuable in guiding teachers, improve students' engagement, and contribute to learning analytics insights.

  17. Performance Analysis of MIMO Relay Network via Propagation Measurement in L-Shaped Corridor Environment

    NASA Astrophysics Data System (ADS)

    Lertwiram, Namzilp; Tran, Gia Khanh; Mizutani, Keiichi; Sakaguchi, Kei; Araki, Kiyomichi

    Setting relays can address the shadowing problem between a transmitter (Tx) and a receiver (Rx). Moreover, the Multiple-Input Multiple-Output (MIMO) technique has been introduced to improve wireless link capacity. The MIMO technique can be applied in relay network to enhance system performance. However, the efficiency of relaying schemes and relay placement have not been well investigated with experiment-based study. This paper provides a propagation measurement campaign of a MIMO two-hop relay network in 5GHz band in an L-shaped corridor environment with various relay locations. Furthermore, this paper proposes a Relay Placement Estimation (RPE) scheme to identify the optimum relay location, i.e. the point at which the network performance is highest. Analysis results of channel capacity show that relaying technique is beneficial over direct transmission in strong shadowing environment while it is ineffective in non-shadowing environment. In addition, the optimum relay location estimated with the RPE scheme also agrees with the location where the network achieves the highest performance as identified by network capacity. Finally, the capacity analysis shows that two-way MIMO relay employing network coding has the best performance while cooperative relaying scheme is not effective due to shadowing effect weakening the signal strength of the direct link.

  18. An Investigation of Synchrony in Transport Networks

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Alexandrov, Natalia M.; Holroyd, Michael J.

    2007-01-01

    The cumulative degree distributions of transport networks, such as air transportation networks and respiratory neuronal networks, follow power laws. The significance of power laws with respect to other network performance measures, such as throughput and synchronization, remains an open question. Evolving methods for the analysis and design of air transportation networks must address network performance in the face of increasing demands and the need to contain and control local network disturbances, such as congestion. Toward this end, we investigate functional relationships that govern the performance of transport networks; for example, the links between the first nontrivial eigenvalue of a network's Laplacian matrix - a quantitative measure of network synchronizability - and other global network parameters. In particular, among networks with a fixed degree distribution and fixed network assortativity (a measure of a network's preference to attach nodes based on a similarity or difference), those with the small eigenvalue are shown to be poor synchronizers, to have much longer shortest paths and to have greater clustering in comparison to those with large. A simulation of a respiratory network adds data to our investigation. This study is a beginning step in developing metrics and design variables for the analysis and active design of air transport networks.

  19. Applying a social network analysis (SNA) approach to understanding radiologists' performance in reading mammograms

    NASA Astrophysics Data System (ADS)

    Tavakoli Taba, Seyedamir; Hossain, Liaquat; Heard, Robert; Brennan, Patrick; Lee, Warwick; Lewis, Sarah

    2017-03-01

    Rationale and objectives: Observer performance has been widely studied through examining the characteristics of individuals. Applying a systems perspective, while understanding of the system's output, requires a study of the interactions between observers. This research explains a mixed methods approach to applying a social network analysis (SNA), together with a more traditional approach of examining personal/ individual characteristics in understanding observer performance in mammography. Materials and Methods: Using social networks theories and measures in order to understand observer performance, we designed a social networks survey instrument for collecting personal and network data about observers involved in mammography performance studies. We present the results of a study by our group where 31 Australian breast radiologists originally reviewed 60 mammographic cases (comprising of 20 abnormal and 40 normal cases) and then completed an online questionnaire about their social networks and personal characteristics. A jackknife free response operating characteristic (JAFROC) method was used to measure performance of radiologists. JAFROC was tested against various personal and network measures to verify the theoretical model. Results: The results from this study suggest a strong association between social networks and observer performance for Australian radiologists. Network factors accounted for 48% of variance in observer performance, in comparison to 15.5% for the personal characteristics for this study group. Conclusion: This study suggest a strong new direction for research into improving observer performance. Future studies in observer performance should consider social networks' influence as part of their research paradigm, with equal or greater vigour than traditional constructs of personal characteristics.

  20. Improving Department of Defense Global Distribution Performance Through Network Analysis

    DTIC Science & Technology

    2016-06-01

    network performance increase. 14. SUBJECT TERMS supply chain metrics, distribution networks, requisition shipping time, strategic distribution database...peace and war” (p. 4). USTRANSCOM Metrics and Analysis Branch defines, develops, tracks, and maintains outcomes- based supply chain metrics to...2014a, p. 8). The Joint Staff defines a TDD standard as the maximum number of days the supply chain can take to deliver requisitioned materiel

  1. Prediction of Biological Motion Perception Performance from Intrinsic Brain Network Regional Efficiency

    PubMed Central

    Wang, Zengjian; Zhang, Delong; Liang, Bishan; Chang, Song; Pan, Jinghua; Huang, Ruiwang; Liu, Ming

    2016-01-01

    Biological motion perception (BMP) refers to the ability to perceive the moving form of a human figure from a limited amount of stimuli, such as from a few point lights located on the joints of a moving body. BMP is commonplace and important, but there is great inter-individual variability in this ability. This study used multiple regression model analysis to explore the association between BMP performance and intrinsic brain activity, in order to investigate the neural substrates underlying inter-individual variability of BMP performance. The resting-state functional magnetic resonance imaging (rs-fMRI) and BMP performance data were collected from 24 healthy participants, for whom intrinsic brain networks were constructed, and a graph-based network efficiency metric was measured. Then, a multiple linear regression model was used to explore the association between network regional efficiency and BMP performance. We found that the local and global network efficiency of many regions was significantly correlated with BMP performance. Further analysis showed that the local efficiency rather than global efficiency could be used to explain most of the BMP inter-individual variability, and the regions involved were predominately located in the Default Mode Network (DMN). Additionally, discrimination analysis showed that the local efficiency of certain regions such as the thalamus could be used to classify BMP performance across participants. Notably, the association pattern between network nodal efficiency and BMP was different from the association pattern of static directional/gender information perception. Overall, these findings show that intrinsic brain network efficiency may be considered a neural factor that explains BMP inter-individual variability. PMID:27853427

  2. Measuring Road Network Vulnerability with Sensitivity Analysis

    PubMed Central

    Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin

    2017-01-01

    This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706

  3. Performance Analysis of Hierarchical Group Key Management Integrated with Adaptive Intrusion Detection in Mobile ad hoc Networks

    DTIC Science & Technology

    2016-04-05

    applications in wireless networks such as military battlefields, emergency response, mobile commerce , online gaming, and collaborative work are based on the...www.elsevier.com/locate/peva Performance analysis of hierarchical group key management integrated with adaptive intrusion detection in mobile ad hoc...Accepted 19 September 2010 Available online 26 September 2010 Keywords: Mobile ad hoc networks Intrusion detection Group communication systems Group

  4. Supporting performance and configuration management of GTE cellular networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ming; Lafond, C.; Jakobson, G.

    GTE Laboratories, in cooperation with GTE Mobilnet, has developed and deployed PERFFEX (PERFormance Expert), an intelligent system for performance and configuration management of cellular networks. PERFEX assists cellular network performance and radio engineers in the analysis of large volumes of cellular network performance and configuration data. It helps them locate and determine the probable causes of performance problems, and provides intelligent suggestions about how to correct them. The system combines an expert cellular network performance tuning capability with a map-based graphical user interface, data visualization programs, and a set of special cellular engineering tools. PERFEX is in daily use atmore » more than 25 GTE Mobile Switching Centers. Since the first deployment of the system in late 1993, PERFEX has become a major GTE cellular network performance optimization tool.« less

  5. Analysis and Testing of Mobile Wireless Networks

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  6. Node fingerprinting: an efficient heuristic for aligning biological networks.

    PubMed

    Radu, Alex; Charleston, Michael

    2014-10-01

    With the continuing increase in availability of biological data and improvements to biological models, biological network analysis has become a promising area of research. An emerging technique for the analysis of biological networks is through network alignment. Network alignment has been used to calculate genetic distance, similarities between regulatory structures, and the effect of external forces on gene expression, and to depict conditional activity of expression modules in cancer. Network alignment is algorithmically complex, and therefore we must rely on heuristics, ideally as efficient and accurate as possible. The majority of current techniques for network alignment rely on precomputed information, such as with protein sequence alignment, or on tunable network alignment parameters, which may introduce an increased computational overhead. Our presented algorithm, which we call Node Fingerprinting (NF), is appropriate for performing global pairwise network alignment without precomputation or tuning, can be fully parallelized, and is able to quickly compute an accurate alignment between two biological networks. It has performed as well as or better than existing algorithms on biological and simulated data, and with fewer computational resources. The algorithmic validation performed demonstrates the low computational resource requirements of NF.

  7. A methodological approach to the analysis of egocentric social networks in public health research: a practical example.

    PubMed

    Djomba, Janet Klara; Zaletel-Kragelj, Lijana

    2016-12-01

    Research on social networks in public health focuses on how social structures and relationships influence health and health-related behaviour. While the sociocentric approach is used to study complete social networks, the egocentric approach is gaining popularity because of its focus on individuals, groups and communities. One of the participants of the healthy lifestyle health education workshop 'I'm moving', included in the study of social support for exercise was randomly selected. The participant was denoted as the ego and members of her/his social network as the alteri. Data were collected by personal interviews using a self-made questionnaire. Numerical methods and computer programmes for the analysis of social networks were used for the demonstration of analysis. The size, composition and structure of the egocentric social network were obtained by a numerical analysis. The analysis of composition included homophily and homogeneity. Moreover, the analysis of the structure included the degree of the egocentric network, the strength of the ego-alter ties and the average strength of ties. Visualisation of the network was performed by three freely available computer programmes, namely: Egonet.QF, E-net and Pajek. The computer programmes were described and compared by their usefulness. Both numerical analysis and visualisation have their benefits. The decision what approach to use is depending on the purpose of the social network analysis. While the numerical analysis can be used in large-scale population-based studies, visualisation of personal networks can help health professionals at creating, performing and evaluation of preventive programmes, especially if focused on behaviour change.

  8. Network meta-analysis: an introduction for clinicians.

    PubMed

    Rouse, Benjamin; Chaimani, Anna; Li, Tianjing

    2017-02-01

    Network meta-analysis is a technique for comparing multiple treatments simultaneously in a single analysis by combining direct and indirect evidence within a network of randomized controlled trials. Network meta-analysis may assist assessing the comparative effectiveness of different treatments regularly used in clinical practice and, therefore, has become attractive among clinicians. However, if proper caution is not taken in conducting and interpreting network meta-analysis, inferences might be biased. The aim of this paper is to illustrate the process of network meta-analysis with the aid of a working example on first-line medical treatment for primary open-angle glaucoma. We discuss the key assumption of network meta-analysis, as well as the unique considerations for developing appropriate research questions, conducting the literature search, abstracting data, performing qualitative and quantitative synthesis, presenting results, drawing conclusions, and reporting the findings in a network meta-analysis.

  9. Metrics for evaluating performance and uncertainty of Bayesian network models

    Treesearch

    Bruce G. Marcot

    2012-01-01

    This paper presents a selected set of existing and new metrics for gauging Bayesian network model performance and uncertainty. Selected existing and new metrics are discussed for conducting model sensitivity analysis (variance reduction, entropy reduction, case file simulation); evaluating scenarios (influence analysis); depicting model complexity (numbers of model...

  10. Performance analysis and improvement of WPAN MAC for home networks.

    PubMed

    Mehta, Saurabh; Kwak, Kyung Sup

    2010-01-01

    The wireless personal area network (WPAN) is an emerging wireless technology for future short range indoor and outdoor communication applications. The IEEE 802.15.3 medium access control (MAC) is proposed to coordinate the access to the wireless medium among the competing devices, especially for short range and high data rate applications in home networks. In this paper we use analytical modeling to study the performance analysis of WPAN (IEEE 802.15.3) MAC in terms of throughput, efficient bandwidth utilization, and delay with various ACK policies under error channel condition. This allows us to introduce a K-Dly-ACK-AGG policy, payload size adjustment mechanism, and Improved Backoff algorithm to improve the performance of the WPAN MAC. Performance evaluation results demonstrate the impact of our improvements on network capacity. Moreover, these results can be very useful to WPAN application designers and protocol architects to easily and correctly implement WPAN for home networking.

  11. Performance Analysis and Improvement of WPAN MAC for Home Networks

    PubMed Central

    Mehta, Saurabh; Kwak, Kyung Sup

    2010-01-01

    The wireless personal area network (WPAN) is an emerging wireless technology for future short range indoor and outdoor communication applications. The IEEE 802.15.3 medium access control (MAC) is proposed to coordinate the access to the wireless medium among the competing devices, especially for short range and high data rate applications in home networks. In this paper we use analytical modeling to study the performance analysis of WPAN (IEEE 802.15.3) MAC in terms of throughput, efficient bandwidth utilization, and delay with various ACK policies under error channel condition. This allows us to introduce a K-Dly-ACK-AGG policy, payload size adjustment mechanism, and Improved Backoff algorithm to improve the performance of the WPAN MAC. Performance evaluation results demonstrate the impact of our improvements on network capacity. Moreover, these results can be very useful to WPAN application designers and protocol architects to easily and correctly implement WPAN for home networking. PMID:22319274

  12. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    PubMed Central

    Goel, Shivali; Abawajy, Jemal H.; Kim, Tai-hoon

    2010-01-01

    Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained. PMID:22163510

  13. A performance analysis of DS-CDMA and SCPC VSAT networks

    NASA Technical Reports Server (NTRS)

    Hayes, David P.; Ha, Tri T.

    1990-01-01

    Spread-spectrum and single-channel-per-carrier (SCPC) transmission techniques work well in very small aperture terminal (VSAT) networks for multiple-access purposes while allowing the earth station antennas to remain small. Direct-sequence code-division multiple-access (DS-CDMA) is the simplest spread-spectrum technique to use in a VSAT network since a frequency synthesizer is not required for each terminal. An examination is made of the DS-CDMA and SCPC Ku-band VSAT satellite systems for low-density (64-kb/s or less) communications. A method for improving the standardf link analysis of DS-CDMA satellite-switched networks by including certain losses is developed. The performance of 50-channel full mesh and star network architectures is analyzed. The selection of operating conditions producing optimum performance is demonstrated.

  14. PyPathway: Python Package for Biological Network Analysis and Visualization.

    PubMed

    Xu, Yang; Luo, Xiao-Chun

    2018-05-01

    Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.

  15. Diversity Performance Analysis on Multiple HAP Networks.

    PubMed

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-06-30

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.

  16. Performance Analysis of a NASA Integrated Network Array

    NASA Technical Reports Server (NTRS)

    Nessel, James A.

    2012-01-01

    The Space Communications and Navigation (SCaN) Program is planning to integrate its individual networks into a unified network which will function as a single entity to provide services to user missions. This integrated network architecture is expected to provide SCaN customers with the capabilities to seamlessly use any of the available SCaN assets to support their missions to efficiently meet the collective needs of Agency missions. One potential optimal application of these assets, based on this envisioned architecture, is that of arraying across existing networks to significantly enhance data rates and/or link availabilities. As such, this document provides an analysis of the transmit and receive performance of a proposed SCaN inter-network antenna array. From the study, it is determined that a fully integrated internetwork array does not provide any significant advantage over an intra-network array, one in which the assets of an individual network are arrayed for enhanced performance. Therefore, it is the recommendation of this study that NASA proceed with an arraying concept, with a fundamental focus on a network-centric arraying.

  17. Resting State Network Topology of the Ferret Brain

    PubMed Central

    Zhou, Zhe Charles; Salzwedel, Andrew P.; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K.; Gilmore, John H.; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-01-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. PMID:27596024

  18. Analysis of multiuser mixed RF/FSO relay networks for performance improvements in Cloud Computing-Based Radio Access Networks (CC-RANs)

    NASA Astrophysics Data System (ADS)

    Alimi, Isiaka A.; Monteiro, Paulo P.; Teixeira, António L.

    2017-11-01

    The key paths toward the fifth generation (5G) network requirements are towards centralized processing and small-cell densification systems that are implemented on the cloud computing-based radio access networks (CC-RANs). The increasing recognitions of the CC-RANs can be attributed to their valuable features regarding system performance optimization and cost-effectiveness. Nevertheless, realization of the stringent requirements of the fronthaul that connects the network elements is highly demanding. In this paper, considering the small-cell network architectures, we present multiuser mixed radio-frequency/free-space optical (RF/FSO) relay networks as feasible technologies for the alleviation of the stringent requirements in the CC-RANs. In this study, we use the end-to-end (e2e) outage probability, average symbol error probability (ASEP), and ergodic channel capacity as the performance metrics in our analysis. Simulation results show the suitability of deployment of mixed RF/FSO schemes in the real-life scenarios.

  19. Social Networks, Communication Styles, and Learning Performance in a CSCL Community

    ERIC Educational Resources Information Center

    Cho, Hichang; Gay, Geri; Davidson, Barry; Ingraffea, Anthony

    2007-01-01

    The aim of this study is to empirically investigate the relationships between communication styles, social networks, and learning performance in a computer-supported collaborative learning (CSCL) community. Using social network analysis (SNA) and longitudinal survey data, we analyzed how 31 distributed learners developed collaborative learning…

  20. Analysis of complex network performance and heuristic node removal strategies

    NASA Astrophysics Data System (ADS)

    Jahanpour, Ehsan; Chen, Xin

    2013-12-01

    Removing important nodes from complex networks is a great challenge in fighting against criminal organizations and preventing disease outbreaks. Six network performance metrics, including four new metrics, are applied to quantify networks' diffusion speed, diffusion scale, homogeneity, and diameter. In order to efficiently identify nodes whose removal maximally destroys a network, i.e., minimizes network performance, ten structured heuristic node removal strategies are designed using different node centrality metrics including degree, betweenness, reciprocal closeness, complement-derived closeness, and eigenvector centrality. These strategies are applied to remove nodes from the September 11, 2001 hijackers' network, and their performance are compared to that of a random strategy, which removes randomly selected nodes, and the locally optimal solution (LOS), which removes nodes to minimize network performance at each step. The computational complexity of the 11 strategies and LOS is also analyzed. Results show that the node removal strategies using degree and betweenness centralities are more efficient than other strategies.

  1. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    NASA Astrophysics Data System (ADS)

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  2. A reliability analysis tool for SpaceWire network

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  3. Modeling and performance analysis using extended fuzzy-timing Petri nets for networked virtual environments.

    PubMed

    Zhou, Y; Murata, T; Defanti, T A

    2000-01-01

    Despite their attractive properties, networked virtual environments (net-VEs) are notoriously difficult to design, implement, and test due to the concurrency, real-time and networking features in these systems. Net-VEs demand high quality-of-service (QoS) requirements on the network to maintain natural and real-time interactions among users. The current practice for net-VE design is basically trial and error, empirical, and totally lacks formal methods. This paper proposes to apply a Petri net formal modeling technique to a net-VE-NICE (narrative immersive constructionist/collaborative environment), predict the net-VE performance based on simulation, and improve the net-VE performance. NICE is essentially a network of collaborative virtual reality systems called the CAVE-(CAVE automatic virtual environment). First, we introduce extended fuzzy-timing Petri net (EFTN) modeling and analysis techniques. Then, we present EFTN models of the CAVE, NICE, and transport layer protocol used in NICE: transmission control protocol (TCP). We show the possibility analysis based on the EFTN model for the CAVE. Then, by using these models and design/CPN as the simulation tool, we conducted various simulations to study real-time behavior, network effects and performance (latencies and jitters) of NICE. Our simulation results are consistent with experimental data.

  4. Prediction of Welded Joint Strength in Plasma Arc Welding: A Comparative Study Using Back-Propagation and Radial Basis Neural Networks

    NASA Astrophysics Data System (ADS)

    Srinivas, Kadivendi; Vundavilli, Pandu R.; Manzoor Hussain, M.; Saiteja, M.

    2016-09-01

    Welding input parameters such as current, gas flow rate and torch angle play a significant role in determination of qualitative mechanical properties of weld joint. Traditionally, it is necessary to determine the weld input parameters for every new welded product to obtain a quality weld joint which is time consuming. In the present work, the effect of plasma arc welding parameters on mild steel was studied using a neural network approach. To obtain a response equation that governs the input-output relationships, conventional regression analysis was also performed. The experimental data was constructed based on Taguchi design and the training data required for neural networks were randomly generated, by varying the input variables within their respective ranges. The responses were calculated for each combination of input variables by using the response equations obtained through the conventional regression analysis. The performances in Levenberg-Marquardt back propagation neural network and radial basis neural network (RBNN) were compared on various randomly generated test cases, which are different from the training cases. From the results, it is interesting to note that for the above said test cases RBNN analysis gave improved training results compared to that of feed forward back propagation neural network analysis. Also, RBNN analysis proved a pattern of increasing performance as the data points moved away from the initial input values.

  5. Cancer Transcriptome Dataset Analysis: Comparing Methods of Pathway and Gene Regulatory Network-Based Cluster Identification.

    PubMed

    Nam, Seungyoon

    2017-04-01

    Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data analytics context, the value of network generation and algorithms has been widely underscored for addressing the salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks where identification of network modularity remains critical, for example, in delineating the "druggable" molecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the performance of different network-generating tools for network cluster (NC) identification has been little investigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and biomarkers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery, and rational development of new analysis tools for optimal harnessing of omics data.

  6. Generalization of Clustering Coefficients to Signed Correlation Networks

    PubMed Central

    Costantini, Giulio; Perugini, Marco

    2014-01-01

    The recent interest in network analysis applications in personality psychology and psychopathology has put forward new methodological challenges. Personality and psychopathology networks are typically based on correlation matrices and therefore include both positive and negative edge signs. However, some applications of network analysis disregard negative edges, such as computing clustering coefficients. In this contribution, we illustrate the importance of the distinction between positive and negative edges in networks based on correlation matrices. The clustering coefficient is generalized to signed correlation networks: three new indices are introduced that take edge signs into account, each derived from an existing and widely used formula. The performances of the new indices are illustrated and compared with the performances of the unsigned indices, both on a signed simulated network and on a signed network based on actual personality psychology data. The results show that the new indices are more resistant to sample variations in correlation networks and therefore have higher convergence compared with the unsigned indices both in simulated networks and with real data. PMID:24586367

  7. An efficient management system for wireless sensor networks.

    PubMed

    Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu

    2010-01-01

    Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.

  8. Diversity Performance Analysis on Multiple HAP Networks

    PubMed Central

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-01-01

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102

  9. Temporal Comparisons of Internet Topology

    DTIC Science & Technology

    2014-06-01

    Number CAIDA Cooperative Association of Internet Data Analysis CDN Content Delivery Network CI Confidence Interval DoS denial of service GMT Greenwich...the CAIDA data. Our methods include analysis of graph theoretical measures as well as complex network and statistical measures that will quantify the...tool that probes the Internet for topology analysis and performance [26]. Scamper uses network diagnostic tools, such as traceroute and ping, to probe

  10. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels †

    PubMed Central

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-01-01

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source’s radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks. PMID:26927119

  11. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels.

    PubMed

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-02-26

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks.

  12. Resting state network topology of the ferret brain.

    PubMed

    Zhou, Zhe Charles; Salzwedel, Andrew P; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K; Gilmore, John H; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-12-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Fault detection and classification in electrical power transmission system using artificial neural network.

    PubMed

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  14. Networks for image acquisition, processing and display

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1990-01-01

    The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.

  15. Bank-firm credit network in Japan: an analysis of a bipartite network.

    PubMed

    Marotta, Luca; Miccichè, Salvatore; Fujiwara, Yoshi; Iyetomi, Hiroshi; Aoyama, Hideaki; Gallegati, Mauro; Mantegna, Rosario N

    2015-01-01

    We investigate the networked nature of the Japanese credit market. Our investigation is performed with tools of network science. In our investigation we perform community detection with an algorithm which is identifying communities composed of both banks and firms. We show that the communities obtained by directly working on the bipartite network carry information about the networked nature of the Japanese credit market. Our analysis is performed for each calendar year during the time period from 1980 to 2011. To investigate the time evolution of the networked structure of the credit market we introduce a new statistical method to track the time evolution of detected communities. We then characterize the time evolution of communities by detecting for each time evolving set of communities the over-expression of attributes of firms and banks. Specifically, we consider as attributes the economic sector and the geographical location of firms and the type of banks. In our 32-year-long analysis we detect a persistence of the over-expression of attributes of communities of banks and firms together with a slow dynamic of changes from some specific attributes to new ones. Our empirical observations show that the credit market in Japan is a networked market where the type of banks, geographical location of firms and banks, and economic sector of the firm play a role in shaping the credit relationships between banks and firms.

  16. Bank-Firm Credit Network in Japan: An Analysis of a Bipartite Network

    PubMed Central

    Marotta, Luca; Miccichè, Salvatore; Fujiwara, Yoshi; Iyetomi, Hiroshi; Aoyama, Hideaki; Gallegati, Mauro; Mantegna, Rosario N.

    2015-01-01

    We investigate the networked nature of the Japanese credit market. Our investigation is performed with tools of network science. In our investigation we perform community detection with an algorithm which is identifying communities composed of both banks and firms. We show that the communities obtained by directly working on the bipartite network carry information about the networked nature of the Japanese credit market. Our analysis is performed for each calendar year during the time period from 1980 to 2011. To investigate the time evolution of the networked structure of the credit market we introduce a new statistical method to track the time evolution of detected communities. We then characterize the time evolution of communities by detecting for each time evolving set of communities the over-expression of attributes of firms and banks. Specifically, we consider as attributes the economic sector and the geographical location of firms and the type of banks. In our 32-year-long analysis we detect a persistence of the over-expression of attributes of communities of banks and firms together with a slow dynamic of changes from some specific attributes to new ones. Our empirical observations show that the credit market in Japan is a networked market where the type of banks, geographical location of firms and banks, and economic sector of the firm play a role in shaping the credit relationships between banks and firms. PMID:25933413

  17. What's Next in Complex Networks? Capturing the Concept of Attacking Play in Invasive Team Sports.

    PubMed

    Ramos, João; Lopes, Rui J; Araújo, Duarte

    2018-01-01

    The evolution of performance analysis within sports sciences is tied to technology development and practitioner demands. However, how individual and collective patterns self-organize and interact in invasive team sports remains elusive. Social network analysis has been recently proposed to resolve some aspects of this problem, and has proven successful in capturing collective features resulting from the interactions between team members as well as a powerful communication tool. Despite these advances, some fundamental team sports concepts such as an attacking play have not been properly captured by the more common applications of social network analysis to team sports performance. In this article, we propose a novel approach to team sports performance centered on sport concepts, namely that of an attacking play. Network theory and tools including temporal and bipartite or multilayered networks were used to capture this concept. We put forward eight questions directly related to team performance to discuss how common pitfalls in the use of network tools for capturing sports concepts can be avoided. Some answers are advanced in an attempt to be more precise in the description of team dynamics and to uncover other metrics directly applied to sport concepts, such as the structure and dynamics of attacking plays. Finally, we propose that, at this stage of knowledge, it may be advantageous to build up from fundamental sport concepts toward complex network theory and tools, and not the other way around.

  18. Statistical modelling of networked human-automation performance using working memory capacity.

    PubMed

    Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja

    2014-01-01

    This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.

  19. Science and ethics meet: a mathematical view on one kind of violation of publication ethics

    NASA Astrophysics Data System (ADS)

    Shinyaeva, Taisiya S.; Tarasevich, Yuri Yu

    2018-01-01

    When a person who did not make a significant intellectual contribution to a published research is included into the co-author list, the person is called gift or guest author depending on the reason why the person has been added to the co-authors. Essential deviation of properties of a particular co-author network from typical values may evidenced that the network is artificial. Using network analysis, we have performed an attempt to characterize a typical co-author network. We performed analysis of the co-author networks using references in the thesis on Physics and Mathematics, Economics defended from 2012 to 2017 and planned to be defended in 2017 and 2018 in Russia. Properties of the co-author networks are expected to be a reference sample in future research.

  20. Comparative analysis of the performance of One-Way and Two-Way urban road networks

    NASA Astrophysics Data System (ADS)

    Gheorghe, Carmen

    2017-10-01

    The fact that the number of vehicles is increasing year after year represents a challenge in road traffic management because it is necessary to adjust the road traffic, in order to prevent any incidents, using mostly the same road infrastructure. At this moment one-way road network provides efficient traffic flow for vehicles but it is not ideal for pedestrians. Therefore, a proper solution must be found and applied when and where it is necessary. Replacing one-way road network with two-way road network may be a viable solution especially if in the area is high pedestrian traffic. The paper aims to highlight the influence of both, one-way and two-way urban road networks through an experimental research which was performed by using traffic data collected in the field. Each of the two scenarios analyzed were based on the same traffic data, the same geometrical conditions of the road (lane width, total road segment width, road slopes, total length of the road network) and also the same signaling conditions (signalised intersection or roundabout). The analysis which involves two-way scenario reveals changes in the performance parameters like delay average, stops average, delay stop average and vehicle speed average. Based on the values obtained, it was possible to perform a comparative analysis between the real, one-way, scenario and the theoretical, two-way, scenario.

  1. Fluid Centrality: A Social Network Analysis of Social-Technical Relations in Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Enriquez, Judith Guevarra

    2010-01-01

    In this article, centrality is explored as a measure of computer-mediated communication (CMC) in networked learning. Centrality measure is quite common in performing social network analysis (SNA) and in analysing social cohesion, strength of ties and influence in CMC, and computer-supported collaborative learning research. It argues that measuring…

  2. Temporal Sequence of Hemispheric Network Activation during Semantic Processing: A Functional Network Connectivity Analysis

    ERIC Educational Resources Information Center

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey

    2009-01-01

    To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…

  3. Battle of Narratives

    DTIC Science & Technology

    2012-06-01

    18 De Nooy, Wouter, Andrej Mrvar , and Vladimir Batagelj , Exploratory Social Network Analysis with Pajek (New York: Cambridge University Press, 2005... Mrvar , and Vladimir Batagelj . Exploratory Social Network Analysis with Pajek. New York: Cambridge University Press, 2005. Democratic National...Review 54(1):33-48; Brian Uzzi. 1996 . "The Sources and Consequences of Embeddedness for the Economic Performance of Organizations: The Network Effect

  4. An exact computational method for performance analysis of sequential test algorithms for detecting network intrusions

    NASA Astrophysics Data System (ADS)

    Chen, Xinjia; Lacy, Fred; Carriere, Patrick

    2015-05-01

    Sequential test algorithms are playing increasingly important roles for quick detecting network intrusions such as portscanners. In view of the fact that such algorithms are usually analyzed based on intuitive approximation or asymptotic analysis, we develop an exact computational method for the performance analysis of such algorithms. Our method can be used to calculate the probability of false alarm and average detection time up to arbitrarily pre-specified accuracy.

  5. Top-down network analysis characterizes hidden termite-termite interactions.

    PubMed

    Campbell, Colin; Russo, Laura; Marins, Alessandra; DeSouza, Og; Schönrogge, Karsten; Mortensen, David; Tooker, John; Albert, Réka; Shea, Katriona

    2016-09-01

    The analysis of ecological networks is generally bottom-up, where networks are established by observing interactions between individuals. Emergent network properties have been indicated to reflect the dominant mode of interactions in communities that might be mutualistic (e.g., pollination) or antagonistic (e.g., host-parasitoid communities). Many ecological communities, however, comprise species interactions that are difficult to observe directly. Here, we propose that a comparison of the emergent properties from detail-rich reference communities with known modes of interaction can inform our understanding of detail-sparse focal communities. With this top-down approach, we consider patterns of coexistence between termite species that live as guests in mounds built by other host termite species as a case in point. Termite societies are extremely sensitive to perturbations, which precludes determining the nature of their interactions through direct observations. We perform a literature review to construct two networks representing termite mound cohabitation in a Brazilian savanna and in the tropical forest of Cameroon. We contrast the properties of these cohabitation networks with a total of 197 geographically diverse mutualistic plant-pollinator and antagonistic host-parasitoid networks. We analyze network properties for the networks, perform a principal components analysis (PCA), and compute the Mahalanobis distance of the termite networks to the cloud of mutualistic and antagonistic networks to assess the extent to which the termite networks overlap with the properties of the reference networks. Both termite networks overlap more closely with the mutualistic plant-pollinator communities than the antagonistic host-parasitoid communities, although the Brazilian community overlap with mutualistic communities is stronger. The analysis raises the hypothesis that termite-termite cohabitation networks may be overall mutualistic. More broadly, this work provides support for the argument that cryptic communities may be analyzed via comparison to well-characterized communities.

  6. Analysis of interference performance of tactical radio network

    NASA Astrophysics Data System (ADS)

    Nie, Hao; Cai, Xiaoxia; Chen, Hong

    2017-08-01

    Mobile Ad hoc network has a strong military background for its development as the core technology of the backbone network of US tactical Internet. And which tactical radio network, is the war in today's tactical use of the Internet more mature form of networking, mainly used in brigade and brigade following forces. This paper analyzes the typical protocol AODV in the tactical radio network, and then carries on the networking. By adding the interference device to the whole network, the battlefield environment is simulated, and then the throughput, delay and packet loss rate are analyzed, and the performance of the whole network and the single node before and after the interference is obtained.

  7. A method for independent component graph analysis of resting-state fMRI.

    PubMed

    Ribeiro de Paula, Demetrius; Ziegler, Erik; Abeyasinghe, Pubuditha M; Das, Tushar K; Cavaliere, Carlo; Aiello, Marco; Heine, Lizette; di Perri, Carol; Demertzi, Athena; Noirhomme, Quentin; Charland-Verville, Vanessa; Vanhaudenhuyse, Audrey; Stender, Johan; Gomez, Francisco; Tshibanda, Jean-Flory L; Laureys, Steven; Owen, Adrian M; Soddu, Andrea

    2017-03-01

    Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. First, ICA was performed at the single-subject level in 15 healthy volunteers using a 3T MRI scanner. The identification of nine networks was performed by a multiple-template matching procedure and a subsequent component classification based on the network "neuronal" properties. Second, for each of the identified networks, the nodes were defined as 1,015 anatomically parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. Network graph comparison between the classically constructed network and the nine networks showed significant differences in the auditory and visual medial networks with regard to the average degree and the number of edges, while the visual lateral network showed a significant difference in the small-worldness. This novel approach permits us to take advantage of the well-recognized power of ICA in BOLD signal decomposition and, at the same time, to make use of well-established graph measures to evaluate connectivity differences. Moreover, by providing a graph for each separate network, it can offer the possibility to extract graph measures in a specific way for each network. This increased specificity could be relevant for studying pathological brain activity or altered states of consciousness as induced by anesthesia or sleep, where specific networks are known to be altered in different strength.

  8. The relative efficiency of modular and non-modular networks of different size

    PubMed Central

    Tosh, Colin R.; McNally, Luke

    2015-01-01

    Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: ‘small’ and ‘large’, and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity. PMID:25631996

  9. Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis.

    PubMed

    López-Barroso, Diana; Ripollés, Pablo; Marco-Pallarés, Josep; Mohammadi, Bahram; Münte, Thomas F; Bachoud-Lévi, Anne-Catherine; Rodriguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2015-04-15

    Although neuroimaging studies using standard subtraction-based analysis from functional magnetic resonance imaging (fMRI) have suggested that frontal and temporal regions are involved in word learning from fluent speech, the possible contribution of different brain networks during this type of learning is still largely unknown. Indeed, univariate fMRI analyses cannot identify the full extent of distributed networks that are engaged by a complex task such as word learning. Here we used Independent Component Analysis (ICA) to characterize the different brain networks subserving word learning from an artificial language speech stream. Results were replicated in a second cohort of participants with a different linguistic background. Four spatially independent networks were associated with the task in both cohorts: (i) a dorsal Auditory-Premotor network; (ii) a dorsal Sensory-Motor network; (iii) a dorsal Fronto-Parietal network; and (iv) a ventral Fronto-Temporal network. The level of engagement of these networks varied through the learning period with only the dorsal Auditory-Premotor network being engaged across all blocks. In addition, the connectivity strength of this network in the second block of the learning phase correlated with the individual variability in word learning performance. These findings suggest that: (i) word learning relies on segregated connectivity patterns involving dorsal and ventral networks; and (ii) specifically, the dorsal auditory-premotor network connectivity strength is directly correlated with word learning performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Analysis of metro network performance from a complex network perspective

    NASA Astrophysics Data System (ADS)

    Wu, Xingtang; Dong, Hairong; Tse, Chi Kong; Ho, Ivan W. H.; Lau, Francis C. M.

    2018-02-01

    In this paper, the performance of metro networks is studied from a network science perspective. We review the structural efficiency of metro networks on the basis of a passenger's intuitive routing strategy that optimizes the number of transfers and the distance traveled.A new node centrality measure, called node occupying probability, is introduced for evaluating the level of utilization of stations. The robustness of a metro network is analyzed under several attack scenarios. Six metro networks (Beijing, London, Paris, Hong Kong, Tokyo and New York) are compared in terms of the node occupying probability and a few other performance parameters. Simulation results show that the New York metro system has better topological efficiency, the Tokyo and Hong Kong systems are the most robust under random attack and target attack, respectively.

  11. Performance Evaluation of Reliable Multicast Protocol for Checkout and Launch Control Systems

    NASA Technical Reports Server (NTRS)

    Shu, Wei Wennie; Porter, John

    2000-01-01

    The overall objective of this project is to study reliability and performance of Real Time Critical Network (RTCN) for checkout and launch control systems (CLCS). The major tasks include reliability and performance evaluation of Reliable Multicast (RM) package and fault tolerance analysis and design of dual redundant network architecture.

  12. Performance management of multiple access communication networks

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Ray, Asok

    1993-12-01

    This paper focuses on conceptual design, development, and implementation of a performance management tool for computer communication networks to serve large-scale integrated systems. The objective is to improve the network performance in handling various types of messages by on-line adjustment of protocol parameters. The techniques of perturbation analysis of Discrete Event Dynamic Systems (DEDS), stochastic approximation (SA), and learning automata have been used in formulating the algorithm of performance management. The efficacy of the performance management tool has been demonstrated on a network testbed. The conceptual design presented in this paper offers a step forward to bridging the gap between management standards and users' demands for efficient network operations since most standards such as ISO (International Standards Organization) and IEEE address only the architecture, services, and interfaces for network management. The proposed concept of performance management can also be used as a general framework to assist design, operation, and management of various DEDS such as computer integrated manufacturing and battlefield C(sup 3) (Command, Control, and Communications).

  13. Stochastic Spiking Neural Networks Enabled by Magnetic Tunnel Junctions: From Nontelegraphic to Telegraphic Switching Regimes

    NASA Astrophysics Data System (ADS)

    Liyanagedera, Chamika M.; Sengupta, Abhronil; Jaiswal, Akhilesh; Roy, Kaushik

    2017-12-01

    Stochastic spiking neural networks based on nanoelectronic spin devices can be a possible pathway to achieving "brainlike" compact and energy-efficient cognitive intelligence. The computational model attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural components to perform learning or inference. However, there has been limited analysis on the scaling effect of stochastic spin devices and its impact on the operation of such stochastic networks at the system level. This work attempts to explore the design space and analyze the performance of nanomagnet-based stochastic neuromorphic computing architectures for magnets with different barrier heights. We illustrate how the underlying network architecture must be modified to account for the random telegraphic switching behavior displayed by magnets with low barrier heights as they are scaled into the superparamagnetic regime. We perform a device-to-system-level analysis on a deep neural-network architecture for a digit-recognition problem on the MNIST data set.

  14. Network propagation in the cytoscape cyberinfrastructure.

    PubMed

    Carlin, Daniel E; Demchak, Barry; Pratt, Dexter; Sage, Eric; Ideker, Trey

    2017-10-01

    Network propagation is an important and widely used algorithm in systems biology, with applications in protein function prediction, disease gene prioritization, and patient stratification. However, up to this point it has required significant expertise to run. Here we extend the popular network analysis program Cytoscape to perform network propagation as an integrated function. Such integration greatly increases the access to network propagation by putting it in the hands of biologists and linking it to the many other types of network analysis and visualization available through Cytoscape. We demonstrate the power and utility of the algorithm by identifying mutations conferring resistance to Vemurafenib.

  15. Cross Deployment Networking and Systematic Performance Analysis of Underwater Wireless Sensor Networks.

    PubMed

    Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Ma, Xuefei; Song, Houbing

    2017-07-12

    Underwater wireless sensor networks (UWSNs) have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL) has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM) for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM) is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM) for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs.

  16. Cross Deployment Networking and Systematic Performance Analysis of Underwater Wireless Sensor Networks

    PubMed Central

    Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Ma, Xuefei

    2017-01-01

    Underwater wireless sensor networks (UWSNs) have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL) has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM) for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM) is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM) for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs. PMID:28704959

  17. Interconnection network architectures based on integrated orbital angular momentum emitters

    NASA Astrophysics Data System (ADS)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  18. Disruptions of brain structural network in end-stage renal disease patients with long-term hemodialysis and normal-appearing brain tissues.

    PubMed

    Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi

    2018-05-04

    End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.

  19. Performing particle image velocimetry using artificial neural networks: a proof-of-concept

    NASA Astrophysics Data System (ADS)

    Rabault, Jean; Kolaas, Jostein; Jensen, Atle

    2017-12-01

    Traditional programs based on feature engineering are underperforming on a steadily increasing number of tasks compared with artificial neural networks (ANNs), in particular for image analysis. Image analysis is widely used in fluid mechanics when performing particle image velocimetry (PIV) and particle tracking velocimetry (PTV), and therefore it is natural to test the ability of ANNs to perform such tasks. We report for the first time the use of convolutional neural networks (CNNs) and fully connected neural networks (FCNNs) for performing end-to-end PIV. Realistic synthetic images are used for training the networks and several synthetic test cases are used to assess the quality of each network’s predictions and compare them with state-of-the-art PIV software. In addition, we present tests on real-world data that prove ANNs can be used not only with synthetic images but also with more noisy, imperfect images obtained in a real experimental setup. While the ANNs we present have slightly higher root mean square error than state-of-the-art cross-correlation methods, they perform better near edges and allow for higher spatial resolution than such methods. In addition, it is likely that one could with further work develop ANNs which perform better that the proof-of-concept we offer.

  20. Distinct Aging Effects on Functional Networks in Good and Poor Cognitive Performers

    PubMed Central

    Lee, Annie; Tan, Mingzhen; Qiu, Anqi

    2016-01-01

    Brain network hubs are susceptible to normal aging processes and disruptions of their functional connectivity are detrimental to decline in cognitive functions in older adults. However, it remains unclear how the functional connectivity of network hubs cope with cognitive heterogeneity in an aging population. This study utilized cognitive and resting-state functional magnetic resonance imaging data, cluster analysis, and graph network analysis to examine age-related alterations in the network hubs’ functional connectivity of good and poor cognitive performers. Our results revealed that poor cognitive performers showed age-dependent disruptions in the functional connectivity of the right insula and posterior cingulate cortex (PCC), while good cognitive performers showed age-related disruptions in the functional connectivity of the left insula and PCC. Additionally, the left PCC had age-related declines in the functional connectivity with the left medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). Most interestingly, good cognitive performers showed age-related declines in the functional connectivity of the left insula and PCC with their right homotopic structures. These results may provide insights of neuronal correlates for understanding individual differences in aging. In particular, our study suggests prominent protection roles of the left insula and PCC and bilateral ACC in good performers. PMID:27667972

  1. Comparative Performance of Broadcast Bus Local Area Networks with Voice and Data Traffic

    DTIC Science & Technology

    1987-03-01

    networks [Maxemchuk & Netravali 85, Weinstein & Forgie 831. Others have dealt with economic aspects of voice/data networks [ Gitman & Frank 78] and...88. North Holland, Amsterdam, 1981. [ Gitman & Frank 78] I. Gitman & H. Frank. Economic Analysis of Integrated Voice and Data Networks: A Case Study

  2. Performance analysis of SS7 congestion controls under sustained overload

    NASA Astrophysics Data System (ADS)

    Manfield, David R.; Millsteed, Gregory K.; Zukerman, Moshe

    1994-04-01

    Congestion controls are a key factor in achieving the robust performance required of common channel signaling (CCS) networks in the face of partial network failures and extreme traffic loads, especially as networks become large and carry high traffic volume. The CCITT recommendations define a number of types of congestion control, and the parameters of the controls must be well set in order to ensure their efficacy under transient and sustained signalling network overload. The objective of this paper is to present a modeling approach to the determination of the network parameters that govern the performance of the SS7 congestion controls under sustained overload. Results of the investigation by simulation are presented and discussed.

  3. Retina Image Analysis and Ocular Telehealth: The Oak Ridge National Laboratory-Hamilton Eye Institute Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnowski, Thomas Paul; Giancardo, Luca; Li, Yaquin

    2013-01-01

    Automated retina image analysis has reached a high level of maturity in recent years, and thus the question of how validation is performed in these systems is beginning to grow in importance. One application of retina image analysis is in telemedicine, where an automated system could enable the automated detection of diabetic retinopathy and other eye diseases as a low-cost method for broad-based screening. In this work we discuss our experiences in developing a telemedical network for retina image analysis, including our progression from a manual diagnosis network to a more fully automated one. We pay special attention to howmore » validations of our algorithm steps are performed, both using data from the telemedicine network and other public databases.« less

  4. Moving Large Data Sets Over High-Performance Long Distance Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodson, Stephen W; Poole, Stephen W; Ruwart, Thomas

    2011-04-01

    In this project we look at the performance characteristics of three tools used to move large data sets over dedicated long distance networking infrastructure. Although performance studies of wide area networks have been a frequent topic of interest, performance analyses have tended to focus on network latency characteristics and peak throughput using network traffic generators. In this study we instead perform an end-to-end long distance networking analysis that includes reading large data sets from a source file system and committing large data sets to a destination file system. An evaluation of end-to-end data movement is also an evaluation of themore » system configurations employed and the tools used to move the data. For this paper, we have built several storage platforms and connected them with a high performance long distance network configuration. We use these systems to analyze the capabilities of three data movement tools: BBcp, GridFTP, and XDD. Our studies demonstrate that existing data movement tools do not provide efficient performance levels or exercise the storage devices in their highest performance modes. We describe the device information required to achieve high levels of I/O performance and discuss how this data is applicable in use cases beyond data movement performance.« less

  5. Local-Area-Network Simulator

    NASA Technical Reports Server (NTRS)

    Gibson, Jim; Jordan, Joe; Grant, Terry

    1990-01-01

    Local Area Network Extensible Simulator (LANES) computer program provides method for simulating performance of high-speed local-area-network (LAN) technology. Developed as design and analysis software tool for networking computers on board proposed Space Station. Load, network, link, and physical layers of layered network architecture all modeled. Mathematically models according to different lower-layer protocols: Fiber Distributed Data Interface (FDDI) and Star*Bus. Written in FORTRAN 77.

  6. ProphTools: general prioritization tools for heterogeneous biological networks.

    PubMed

    Navarro, Carmen; Martínez, Victor; Blanco, Armando; Cano, Carlos

    2017-12-01

    Networks have been proven effective representations for the analysis of biological data. As such, there exist multiple methods to extract knowledge from biological networks. However, these approaches usually limit their scope to a single biological entity type of interest or they lack the flexibility to analyze user-defined data. We developed ProphTools, a flexible open-source command-line tool that performs prioritization on a heterogeneous network. ProphTools prioritization combines a Flow Propagation algorithm similar to a Random Walk with Restarts and a weighted propagation method. A flexible model for the representation of a heterogeneous network allows the user to define a prioritization problem involving an arbitrary number of entity types and their interconnections. Furthermore, ProphTools provides functionality to perform cross-validation tests, allowing users to select the best network configuration for a given problem. ProphTools core prioritization methodology has already been proven effective in gene-disease prioritization and drug repositioning. Here we make ProphTools available to the scientific community as flexible, open-source software and perform a new proof-of-concept case study on long noncoding RNAs (lncRNAs) to disease prioritization. ProphTools is robust prioritization software that provides the flexibility not present in other state-of-the-art network analysis approaches, enabling researchers to perform prioritization tasks on any user-defined heterogeneous network. Furthermore, the application to lncRNA-disease prioritization shows that ProphTools can reach the performance levels of ad hoc prioritization tools without losing its generality. © The Authors 2017. Published by Oxford University Press.

  7. Data communication network at the ASRM facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Robert J., III; Smith, Wayne D.; Nirgudkar, Ravi; Dement, James

    1994-01-01

    This three-year project (February 1991 to February 1994) has involved analyzing and helping to design the communication network for the Advanced Solid Rocket Motor (ASRM) facility at Yellow Creek, near Iuka, MS. The principal concerns in the analysis were the bandwidth (both on average and in the worst case) and the expandability of the network. As the communication network was designed and modified, a careful evaluation of the bandwidth of the network, the capabilities of the protocol, and the requirements of the controllers and computers on the network was required. The overall network, which was heterogeneous in protocol and bandwidth, needed to be modeled, analyzed, and simulated to obtain some degree of confidence in its performance capabilities and in its performance under nominal and heavy loads. The results of our analysis did have an impact on the design and operation of the ASRM facility. During 1993 we analyzed many configurations of this basic network structure. The analyses are described in detail in Section 2 and 3 herein. Section 2 reports on an analysis of the whole network. The preliminary results of that research indicated that the most likely bottleneck as the network traffic increased would be the hubs. Thus a study of Cabletron hubs was initiated. The results of that study are in Section 3. Section 4 herein reports on the final network configuration analyzed. When the ASRM facility was mothballed in December of 1993, this was basically the planned and partially installed network. A briefing was held at NASA/MSFC on December 7, 1993, at which time our final analysis and conclusions were disseminated. This report contains a written record of most of the information disseminated at that briefing.

  8. OSI Network-layer Abstraction: Analysis of Simulation Dynamics and Performance Indicators

    NASA Astrophysics Data System (ADS)

    Lawniczak, Anna T.; Gerisch, Alf; Di Stefano, Bruno

    2005-06-01

    The Open Systems Interconnection (OSI) reference model provides a conceptual framework for communication among computers in a data communication network. The Network Layer of this model is responsible for the routing and forwarding of packets of data. We investigate the OSI Network Layer and develop an abstraction suitable for the study of various network performance indicators, e.g. throughput, average packet delay, average packet speed, average packet path-length, etc. We investigate how the network dynamics and the network performance indicators are affected by various routing algorithms and by the addition of randomly generated links into a regular network connection topology of fixed size. We observe that the network dynamics is not simply the sum of effects resulting from adding individual links to the connection topology but rather is governed nonlinearly by the complex interactions caused by the existence of all randomly added and already existing links in the network. Data for our study was gathered using Netzwerk-1, a C++ simulation tool that we developed for our abstraction.

  9. Peer Influence on Academic Performance: A Social Network Analysis of Social-Emotional Intervention Effects.

    PubMed

    DeLay, Dawn; Zhang, Linlin; Hanish, Laura D; Miller, Cindy F; Fabes, Richard A; Martin, Carol Lynn; Kochel, Karen P; Updegraff, Kimberly A

    2016-11-01

    Longitudinal social network analysis (SNA) was used to examine how a social-emotional learning (SEL) intervention may be associated with peer socialization on academic performance. Fifth graders (N = 631; 48 % girls; 9 to 12 years) were recruited from six elementary schools. Intervention classrooms (14) received a relationship building intervention (RBI) and control classrooms (8) received elementary school as usual. At pre- and post-test, students nominated their friends, and teachers completed assessments of students' writing and math performance. The results of longitudinal SNA suggested that the RBI was associated with friend selection and peer influence within the classroom peer network. Friendship choices were significantly more diverse (i.e., less evidence of social segregation as a function of ethnicity and academic ability) in intervention compared to control classrooms, and peer influence on improved writing and math performance was observed in RBI but not control classrooms. The current findings provide initial evidence that SEL interventions may change social processes in a classroom peer network and may break down barriers of social segregation and improve academic performance.

  10. A STUDY ON PREPARING THE BCP FOR LOCAL ADMINISTRATION COSIDERING SUBSISTED RISK ANALYSIS OF ROAD NETWORK

    NASA Astrophysics Data System (ADS)

    Sakata, Akio; Ito, Norio; Kawamoto, Atsushi; Shiraki, Wataru

    For road networks in mountain site which are very important infrastructures for rescue and support operations in disaster, a study on preparing the BCP for local administrations at less favored area considering subsisted risk analysis is performed. As a risk the stop of road networks caused by collapse of natural slop or cut slop is considered. The effects of the stop of road networks are analyzed and the important of preparing the BCP is demonstrated.

  11. Communication performance analysis and comparison of two patterns for data exchange between nodes in WorldFIP fieldbus network.

    PubMed

    Liang, Geng; Wang, Hong; Li, Wen; Li, Dazhong

    2010-10-01

    Data exchange patterns between nodes in WorldFIP fieldbus network are quite important and meaningful in improving the communication performance of WorldFIP network. Based on the basic communication ways supported in WorldFIP protocol, we propose two patterns for implementation of data exchange between peer nodes over WorldFIP network. Effects on communication performance of WorldFIP network in terms of some network parameters, such as number of bytes in user's data and turn-around time, in both the proposed patterns, are analyzed at length when different network speeds are applied. Such effects with the patterns of periodic message transmission using acknowledged and non-acknowledged messages, are also studied. Communication performance in both the proposed patterns are analyzed and compared. Practical applications of the research are presented. Through the study, it can be seen that different data exchange patterns make a great difference in improving communication efficiency with different network parameters, which is quite useful and helpful in the practical design of distributed systems based on WorldFIP network. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Modeling Verdict Outcomes Using Social Network Measures: The Watergate and Caviar Network Cases.

    PubMed

    Masías, Víctor Hugo; Valle, Mauricio; Morselli, Carlo; Crespo, Fernando; Vargas, Augusto; Laengle, Sigifredo

    2016-01-01

    Modelling criminal trial verdict outcomes using social network measures is an emerging research area in quantitative criminology. Few studies have yet analyzed which of these measures are the most important for verdict modelling or which data classification techniques perform best for this application. To compare the performance of different techniques in classifying members of a criminal network, this article applies three different machine learning classifiers-Logistic Regression, Naïve Bayes and Random Forest-with a range of social network measures and the necessary databases to model the verdicts in two real-world cases: the U.S. Watergate Conspiracy of the 1970's and the now-defunct Canada-based international drug trafficking ring known as the Caviar Network. In both cases it was found that the Random Forest classifier did better than either Logistic Regression or Naïve Bayes, and its superior performance was statistically significant. This being so, Random Forest was used not only for classification but also to assess the importance of the measures. For the Watergate case, the most important one proved to be betweenness centrality while for the Caviar Network, it was the effective size of the network. These results are significant because they show that an approach combining machine learning with social network analysis not only can generate accurate classification models but also helps quantify the importance social network variables in modelling verdict outcomes. We conclude our analysis with a discussion and some suggestions for future work in verdict modelling using social network measures.

  13. Analysis of integrated healthcare networks' performance: a contingency-strategic management perspective.

    PubMed

    Lin, B Y; Wan, T T

    1999-12-01

    Few empirical analyses have been done in the organizational researches of integrated healthcare networks (IHNs) or integrated healthcare delivery systems. Using a contingency derived contact-process-performance model, this study attempts to explore the relationships among an IHN's strategic direction, structural design, and performance. A cross-sectional analysis of 100 IHNs suggests that certain contextual factors such as market competition and network age and tax status have statistically significant effects on the implementation of an IHN's service differentiation strategy, which addresses coordination and control in the market. An IHN's service differentiation strategy is positively related to its integrated structural design, which is characterized as integration of administration, patient care, and information system across different settings. However, no evidence supports that the development of integrated structural design may benefit an IHN's performance in terms of clinical efficiency and financial viability.

  14. Spatially distributed effects of mental exhaustion on resting-state FMRI networks.

    PubMed

    Esposito, Fabrizio; Otto, Tobias; Zijlstra, Fred R H; Goebel, Rainer

    2014-01-01

    Brain activity during rest is spatially coherent over functional connectivity networks called resting-state networks. In resting-state functional magnetic resonance imaging, independent component analysis yields spatially distributed network representations reflecting distinct mental processes, such as intrinsic (default) or extrinsic (executive) attention, and sensory inhibition or excitation. These aspects can be related to different treatments or subjective experiences. Among these, exhaustion is a common psychological state induced by prolonged mental performance. Using repeated functional magnetic resonance imaging sessions and spatial independent component analysis, we explored the effect of several hours of sustained cognitive performances on the resting human brain. Resting-state functional magnetic resonance imaging was performed on the same healthy volunteers in two days, with and without, and before, during and after, an intensive psychological treatment (skill training and sustained practice with a flight simulator). After each scan, subjects rated their level of exhaustion and performed an N-back task to evaluate eventual decrease in cognitive performance. Spatial maps of selected resting-state network components were statistically evaluated across time points to detect possible changes induced by the sustained mental performance. The intensive treatment had a significant effect on exhaustion and effort ratings, but no effects on N-back performances. Significant changes in the most exhausted state were observed in the early visual processing and the anterior default mode networks (enhancement) and in the fronto-parietal executive networks (suppression), suggesting that mental exhaustion is associated with a more idling brain state and that internal attention processes are facilitated to the detriment of more extrinsic processes. The described application may inspire future indicators of the level of fatigue in the neural attention system.

  15. Network interface unit design options performance analysis

    NASA Technical Reports Server (NTRS)

    Miller, Frank W.

    1991-01-01

    An analysis is presented of three design options for the Space Station Freedom (SSF) onboard Data Management System (DMS) Network Interface Unit (NIU). The NIU provides the interface from the Fiber Distributed Data Interface (FDDI) local area network (LAN) to the DMS processing elements. The FDDI LAN provides the primary means for command and control and low and medium rate telemetry data transfers on board the SSF. The results of this analysis provide the basis for the implementation of the NIU.

  16. Performance Analysis of Optical Mobile Fronthaul for Cloud Radio Access Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Xiao, Yuming; Li, Hui; Ji, Yuefeng

    2017-10-01

    Cloud radio access networks (C-RAN) separates baseband units (BBU) of conventional base station to a centralized pool which connects remote radio heads (RRH) through mobile fronthaul. Mobile fronthaul is a new network segment of C-RAN, it is designed to transport digital sampling data between BBU and RRH. Optical transport networks that provide large bandwidth and low latency is a promising fronthaul solution. In this paper, we discuss several optical transport networks which are candidates for mobile fronthaul, analyze their performances including the number of used wavelength, round-trip latency and wavelength utilization.

  17. Centrality Measures and Academic Achievement in Computerized Classroom Social Networks: An Empirical Investigation

    ERIC Educational Resources Information Center

    Reychav, Iris; Raban, Daphne Ruth; McHaney, Roger

    2018-01-01

    The current empirical study examines relationships between network measures and learning performance from a social network analysis perspective. We collected computerized, networking data to analyze how 401 junior high students connected to classroom peers using text- and video-based material on iPads. Following a period of computerized…

  18. Functional Interaction Network Construction and Analysis for Disease Discovery.

    PubMed

    Wu, Guanming; Haw, Robin

    2017-01-01

    Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.

  19. Resting-state low-frequency fluctuations reflect individual differences in spoken language learning.

    PubMed

    Deng, Zhizhou; Chandrasekaran, Bharath; Wang, Suiping; Wong, Patrick C M

    2016-03-01

    A major challenge in language learning studies is to identify objective, pre-training predictors of success. Variation in the low-frequency fluctuations (LFFs) of spontaneous brain activity measured by resting-state functional magnetic resonance imaging (RS-fMRI) has been found to reflect individual differences in cognitive measures. In the present study, we aimed to investigate the extent to which initial spontaneous brain activity is related to individual differences in spoken language learning. We acquired RS-fMRI data and subsequently trained participants on a sound-to-word learning paradigm in which they learned to use foreign pitch patterns (from Mandarin Chinese) to signal word meaning. We performed amplitude of spontaneous low-frequency fluctuation (ALFF) analysis, graph theory-based analysis, and independent component analysis (ICA) to identify functional components of the LFFs in the resting-state. First, we examined the ALFF as a regional measure and showed that regional ALFFs in the left superior temporal gyrus were positively correlated with learning performance, whereas ALFFs in the default mode network (DMN) regions were negatively correlated with learning performance. Furthermore, the graph theory-based analysis indicated that the degree and local efficiency of the left superior temporal gyrus were positively correlated with learning performance. Finally, the default mode network and several task-positive resting-state networks (RSNs) were identified via the ICA. The "competition" (i.e., negative correlation) between the DMN and the dorsal attention network was negatively correlated with learning performance. Our results demonstrate that a) spontaneous brain activity can predict future language learning outcome without prior hypotheses (e.g., selection of regions of interest--ROIs) and b) both regional dynamics and network-level interactions in the resting brain can account for individual differences in future spoken language learning success. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Resting-state low-frequency fluctuations reflect individual differences in spoken language learning

    PubMed Central

    Deng, Zhizhou; Chandrasekaran, Bharath; Wang, Suiping; Wong, Patrick C.M.

    2016-01-01

    A major challenge in language learning studies is to identify objective, pre-training predictors of success. Variation in the low-frequency fluctuations (LFFs) of spontaneous brain activity measured by resting-state functional magnetic resonance imaging (RS-fMRI) has been found to reflect individual differences in cognitive measures. In the present study, we aimed to investigate the extent to which initial spontaneous brain activity is related to individual differences in spoken language learning. We acquired RS-fMRI data and subsequently trained participants on a sound-to-word learning paradigm in which they learned to use foreign pitch patterns (from Mandarin Chinese) to signal word meaning. We performed amplitude of spontaneous low-frequency fluctuation (ALFF) analysis, graph theory-based analysis, and independent component analysis (ICA) to identify functional components of the LFFs in the resting-state. First, we examined the ALFF as a regional measure and showed that regional ALFFs in the left superior temporal gyrus were positively correlated with learning performance, whereas ALFFs in the default mode network (DMN) regions were negatively correlated with learning performance. Furthermore, the graph theory-based analysis indicated that the degree and local efficiency of the left superior temporal gyrus were positively correlated with learning performance. Finally, the default mode network and several task-positive resting-state networks (RSNs) were identified via the ICA. The “competition” (i.e., negative correlation) between the DMN and the dorsal attention network was negatively correlated with learning performance. Our results demonstrate that a) spontaneous brain activity can predict future language learning outcome without prior hypotheses (e.g., selection of regions of interest – ROIs) and b) both regional dynamics and network-level interactions in the resting brain can account for individual differences in future spoken language learning success. PMID:26866283

  1. Effectiveness of Simulation in a Hybrid and Online Networking Course.

    ERIC Educational Resources Information Center

    Cameron, Brian H.

    2003-01-01

    Reports on a study that compares the performance of students enrolled in two sections of a Web-based computer networking course: one utilizing a simulation package and the second utilizing a static, graphical software package. Analysis shows statistically significant improvements in performance in the simulation group compared to the…

  2. On Extended Dissipativity of Discrete-Time Neural Networks With Time Delay.

    PubMed

    Feng, Zhiguang; Zheng, Wei Xing

    2015-12-01

    In this brief, the problem of extended dissipativity analysis for discrete-time neural networks with time-varying delay is investigated. The definition of extended dissipativity of discrete-time neural networks is proposed, which unifies several performance measures, such as the H∞ performance, passivity, l2 - l∞ performance, and dissipativity. By introducing a triple-summable term in Lyapunov function, the reciprocally convex approach is utilized to bound the forward difference of the triple-summable term and then the extended dissipativity criterion for discrete-time neural networks with time-varying delay is established. The derived condition guarantees not only the extended dissipativity but also the stability of the neural networks. Two numerical examples are given to demonstrate the reduced conservatism and effectiveness of the obtained results.

  3. Optimization of deformation monitoring networks using finite element strain analysis

    NASA Astrophysics Data System (ADS)

    Alizadeh-Khameneh, M. Amin; Eshagh, Mehdi; Jensen, Anna B. O.

    2018-04-01

    An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.

  4. When is hub gene selection better than standard meta-analysis?

    PubMed

    Langfelder, Peter; Mischel, Paul S; Horvath, Steve

    2013-01-01

    Since hub nodes have been found to play important roles in many networks, highly connected hub genes are expected to play an important role in biology as well. However, the empirical evidence remains ambiguous. An open question is whether (or when) hub gene selection leads to more meaningful gene lists than a standard statistical analysis based on significance testing when analyzing genomic data sets (e.g., gene expression or DNA methylation data). Here we address this question for the special case when multiple genomic data sets are available. This is of great practical importance since for many research questions multiple data sets are publicly available. In this case, the data analyst can decide between a standard statistical approach (e.g., based on meta-analysis) and a co-expression network analysis approach that selects intramodular hubs in consensus modules. We assess the performance of these two types of approaches according to two criteria. The first criterion evaluates the biological insights gained and is relevant in basic research. The second criterion evaluates the validation success (reproducibility) in independent data sets and often applies in clinical diagnostic or prognostic applications. We compare meta-analysis with consensus network analysis based on weighted correlation network analysis (WGCNA) in three comprehensive and unbiased empirical studies: (1) Finding genes predictive of lung cancer survival, (2) finding methylation markers related to age, and (3) finding mouse genes related to total cholesterol. The results demonstrate that intramodular hub gene status with respect to consensus modules is more useful than a meta-analysis p-value when identifying biologically meaningful gene lists (reflecting criterion 1). However, standard meta-analysis methods perform as good as (if not better than) a consensus network approach in terms of validation success (criterion 2). The article also reports a comparison of meta-analysis techniques applied to gene expression data and presents novel R functions for carrying out consensus network analysis, network based screening, and meta analysis.

  5. HRLSim: a high performance spiking neural network simulator for GPGPU clusters.

    PubMed

    Minkovich, Kirill; Thibeault, Corey M; O'Brien, Michael John; Nogin, Aleksey; Cho, Youngkwan; Srinivasa, Narayan

    2014-02-01

    Modeling of large-scale spiking neural models is an important tool in the quest to understand brain function and subsequently create real-world applications. This paper describes a spiking neural network simulator environment called HRL Spiking Simulator (HRLSim). This simulator is suitable for implementation on a cluster of general purpose graphical processing units (GPGPUs). Novel aspects of HRLSim are described and an analysis of its performance is provided for various configurations of the cluster. With the advent of inexpensive GPGPU cards and compute power, HRLSim offers an affordable and scalable tool for design, real-time simulation, and analysis of large-scale spiking neural networks.

  6. Development of task network models of human performance in microgravity

    NASA Technical Reports Server (NTRS)

    Diaz, Manuel F.; Adam, Susan

    1992-01-01

    This paper discusses the utility of task-network modeling for quantifying human performance variability in microgravity. The data are gathered for: (1) improving current methodologies for assessing human performance and workload in the operational space environment; (2) developing tools for assessing alternative system designs; and (3) developing an integrated set of methodologies for the evaluation of performance degradation during extended duration spaceflight. The evaluation entailed an analysis of the Remote Manipulator System payload-grapple task performed on many shuttle missions. Task-network modeling can be used as a tool for assessing and enhancing human performance in man-machine systems, particularly for modeling long-duration manned spaceflight. Task-network modeling can be directed toward improving system efficiency by increasing the understanding of basic capabilities of the human component in the system and the factors that influence these capabilities.

  7. Sample size and power considerations in network meta-analysis

    PubMed Central

    2012-01-01

    Background Network meta-analysis is becoming increasingly popular for establishing comparative effectiveness among multiple interventions for the same disease. Network meta-analysis inherits all methodological challenges of standard pairwise meta-analysis, but with increased complexity due to the multitude of intervention comparisons. One issue that is now widely recognized in pairwise meta-analysis is the issue of sample size and statistical power. This issue, however, has so far only received little attention in network meta-analysis. To date, no approaches have been proposed for evaluating the adequacy of the sample size, and thus power, in a treatment network. Findings In this article, we develop easy-to-use flexible methods for estimating the ‘effective sample size’ in indirect comparison meta-analysis and network meta-analysis. The effective sample size for a particular treatment comparison can be interpreted as the number of patients in a pairwise meta-analysis that would provide the same degree and strength of evidence as that which is provided in the indirect comparison or network meta-analysis. We further develop methods for retrospectively estimating the statistical power for each comparison in a network meta-analysis. We illustrate the performance of the proposed methods for estimating effective sample size and statistical power using data from a network meta-analysis on interventions for smoking cessation including over 100 trials. Conclusion The proposed methods are easy to use and will be of high value to regulatory agencies and decision makers who must assess the strength of the evidence supporting comparative effectiveness estimates. PMID:22992327

  8. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.

    PubMed

    Wu, Mengmeng; Zeng, Wanwen; Liu, Wenqiang; Lv, Hairong; Chen, Ting; Jiang, Rui

    2018-06-03

    Genome-wide association studies (GWAS) have successfully discovered a number of disease-associated genetic variants in the past decade, providing an unprecedented opportunity for deciphering genetic basis of human inherited diseases. However, it is still a challenging task to extract biological knowledge from the GWAS data, due to such issues as missing heritability and weak interpretability. Indeed, the fact that the majority of discovered loci fall into noncoding regions without clear links to genes has been preventing the characterization of their functions and appealing for a sophisticated approach to bridge genetic and genomic studies. Towards this problem, network-based prioritization of candidate genes, which performs integrated analysis of gene networks with GWAS data, has emerged as a promising direction and attracted much attention. However, most existing methods overlook the sparse and noisy properties of gene networks and thus may lead to suboptimal performance. Motivated by this understanding, we proposed a novel method called REGENT for integrating multiple gene networks with GWAS data to prioritize candidate genes for complex diseases. We leveraged a technique called the network representation learning to embed a gene network into a compact and robust feature space, and then designed a hierarchical statistical model to integrate features of multiple gene networks with GWAS data for the effective inference of genes associated with a disease of interest. We applied our method to six complex diseases and demonstrated the superior performance of REGENT over existing approaches in recovering known disease-associated genes. We further conducted a pathway analysis and showed that the ability of REGENT to discover disease-associated pathways. We expect to see applications of our method to a broad spectrum of diseases for post-GWAS analysis. REGENT is freely available at https://github.com/wmmthu/REGENT. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. CCSDS Advanced Orbiting Systems Virtual Channel Access Service for QoS MACHETE Model

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Segui, John S.

    2011-01-01

    To support various communications requirements imposed by different missions, interplanetary communication protocols need to be designed, validated, and evaluated carefully. Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in "Simulator of Space Communication Networks" (NPO-41373), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. By building abstract behavioral models of network protocols, one can validate performance after identifying the appropriate metrics of interest. The innovators have extended the MACHETE model library to include a generic link-layer Virtual Channel (VC) model supporting quality-of-service (QoS) controls based on IP streams. The main purpose of this generic Virtual Channel model addition was to interface fine-grain flow-based QoS (quality of service) between the network and MAC layers of the QualNet simulator, a commercial component of MACHETE. This software model adds the capability of mapping IP streams, based on header fields, to virtual channel numbers, allowing extended QoS handling at link layer. This feature further refines the QoS v existing at the network layer. QoS at the network layer (e.g. diffserv) supports few QoS classes, so data from one class will be aggregated together; differentiating between flows internal to a class/priority is not supported. By adding QoS classification capability between network and MAC layers through VC, one maps multiple VCs onto the same physical link. Users then specify different VC weights, and different queuing and scheduling policies at the link layer. This VC model supports system performance analysis of various virtual channel link-layer QoS queuing schemes independent of the network-layer QoS systems.

  10. Content-specific network analysis of peer-to-peer communication in an online community for smoking cessation.

    PubMed

    Myneni, Sahiti; Cobb, Nathan K; Cohen, Trevor

    2016-01-01

    Analysis of user interactions in online communities could improve our understanding of health-related behaviors and inform the design of technological solutions that support behavior change. However, to achieve this we would need methods that provide granular perspective, yet are scalable. In this paper, we present a methodology for high-throughput semantic and network analysis of large social media datasets, combining semi-automated text categorization with social network analytics. We apply this method to derive content-specific network visualizations of 16,492 user interactions in an online community for smoking cessation. Performance of the categorization system was reasonable (average F-measure of 0.74, with system-rater reliability approaching rater-rater reliability). The resulting semantically specific network analysis of user interactions reveals content- and behavior-specific network topologies. Implications for socio-behavioral health and wellness platforms are also discussed.

  11. Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Lavelle, Thomas M.; Patnaik, Surya

    2003-01-01

    The neural network and regression methods of NASA Glenn Research Center s COMETBOARDS design optimization testbed were used to generate approximate analysis and design models for a subsonic aircraft operating at Mach 0.85 cruise speed. The analytical model is defined by nine design variables: wing aspect ratio, engine thrust, wing area, sweep angle, chord-thickness ratio, turbine temperature, pressure ratio, bypass ratio, fan pressure; and eight response parameters: weight, landing velocity, takeoff and landing field lengths, approach thrust, overall efficiency, and compressor pressure and temperature. The variables were adjusted to optimally balance the engines to the airframe. The solution strategy included a sensitivity model and the soft analysis model. Researchers generated the sensitivity model by training the approximators to predict an optimum design. The trained neural network predicted all response variables, within 5-percent error. This was reduced to 1 percent by the regression method. The soft analysis model was developed to replace aircraft analysis as the reanalyzer in design optimization. Soft models have been generated for a neural network method, a regression method, and a hybrid method obtained by combining the approximators. The performance of the models is graphed for aircraft weight versus thrust as well as for wing area and turbine temperature. The regression method followed the analytical solution with little error. The neural network exhibited 5-percent maximum error over all parameters. Performance of the hybrid method was intermediate in comparison to the individual approximators. Error in the response variable is smaller than that shown in the figure because of a distortion scale factor. The overall performance of the approximators was considered to be satisfactory because aircraft analysis with NASA Langley Research Center s FLOPS (Flight Optimization System) code is a synthesis of diverse disciplines: weight estimation, aerodynamic analysis, engine cycle analysis, propulsion data interpolation, mission performance, airfield length for landing and takeoff, noise footprint, and others.

  12. Delay Analysis of GTS Bridging between IEEE 802.15.4 and IEEE 802.11 Networks for Healthcare Applications

    PubMed Central

    Mišić, Jelena; (Sherman) Shen, Xuemin

    2009-01-01

    We consider interconnection of IEEE 802.15.4 beacon-enabled network cluster with IEEE 802.11b network. This scenario is important in healthcare applications where IEEE 802.15.4 nodes comprise patient's body area network (BAN) and are involved in sensing some health-related data. BAN nodes have very short communication range in order to avoid harming patient's health and save energy. Sensed data needs to be transmitted to an access point in the ward room using wireless technology with higher transmission range and rate such as IEEE 802.11b. We model the interconnected network where IEEE 802.15.4-based BAN operates in guaranteed time slot (GTS) mode, and IEEE 802.11b part of the bridge conveys GTS superframe to the 802.11b access point. We then analyze the network delays. Performance analysis is performed using EKG traffic from continuous telemetry, and we discuss the delays of communication due the increasing number of patients. PMID:19107184

  13. Delay Analysis of GTS Bridging between IEEE 802.15.4 and IEEE 802.11 Networks for Healthcare Applications.

    PubMed

    Misić, Jelena; Sherman Shen, Xuemin

    2009-01-01

    We consider interconnection of IEEE 802.15.4 beacon-enabled network cluster with IEEE 802.11b network. This scenario is important in healthcare applications where IEEE 802.15.4 nodes comprise patient's body area network (BAN) and are involved in sensing some health-related data. BAN nodes have very short communication range in order to avoid harming patient's health and save energy. Sensed data needs to be transmitted to an access point in the ward room using wireless technology with higher transmission range and rate such as IEEE 802.11b. We model the interconnected network where IEEE 802.15.4-based BAN operates in guaranteed time slot (GTS) mode, and IEEE 802.11b part of the bridge conveys GTS superframe to the 802.11b access point. We then analyze the network delays. Performance analysis is performed using EKG traffic from continuous telemetry, and we discuss the delays of communication due the increasing number of patients.

  14. Improving Biometric-Based Authentication Schemes with Smart Card Revocation/Reissue for Wireless Sensor Networks.

    PubMed

    Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho

    2017-04-25

    User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.'s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme.

  15. Improving Biometric-Based Authentication Schemes with Smart Card Revocation/Reissue for Wireless Sensor Networks

    PubMed Central

    Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho

    2017-01-01

    User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.’s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme. PMID:28441331

  16. Analysing the Correlation between Social Network Analysis Measures and Performance of Students in Social Network-Based Engineering Education

    ERIC Educational Resources Information Center

    Putnik, Goran; Costa, Eric; Alves, Cátia; Castro, Hélio; Varela, Leonilde; Shah, Vaibhav

    2016-01-01

    Social network-based engineering education (SNEE) is designed and implemented as a model of Education 3.0 paradigm. SNEE represents a new learning methodology, which is based on the concept of social networks and represents an extended model of project-led education. The concept of social networks was applied in the real-life experiment,…

  17. Interdependencies and Causalities in Coupled Financial Networks.

    PubMed

    Vodenska, Irena; Aoyama, Hideaki; Fujiwara, Yoshi; Iyetomi, Hiroshi; Arai, Yuta

    2016-01-01

    We explore the foreign exchange and stock market networks for 48 countries from 1999 to 2012 and propose a model, based on complex Hilbert principal component analysis, for extracting significant lead-lag relationships between these markets. The global set of countries, including large and small countries in Europe, the Americas, Asia, and the Middle East, is contrasted with the limited scopes of targets, e.g., G5, G7 or the emerging Asian countries, adopted by previous works. We construct a coupled synchronization network, perform community analysis, and identify formation of four distinct network communities that are relatively stable over time. In addition to investigating the entire period, we divide the time period into into "mild crisis," (1999-2002), "calm," (2003-2006) and "severe crisis" (2007-2012) sub-periods and find that the severe crisis period behavior dominates the dynamics in the foreign exchange-equity synchronization network. We observe that in general the foreign exchange market has predictive power for the global stock market performances. In addition, the United States, German and Mexican markets have forecasting power for the performances of other global equity markets.

  18. Network centrality measures and systemic risk: An application to the Turkish financial crisis

    NASA Astrophysics Data System (ADS)

    Kuzubaş, Tolga Umut; Ömercikoğlu, Inci; Saltoğlu, Burak

    2014-07-01

    In this paper, we analyze the performance of several network centrality measures in detecting systemically important financial institutions (SIFI) using data from the Turkish Interbank market during the financial crisis in 2000. We employ various network investigation tools such as volume, transactions, links, connectivity and reciprocity to gain a clearer picture of the network topology of the interbank market. We study the main borrower role of Demirbank in the crash of the banking system with network centrality measures which are extensively used in the network theory. This ex-post analysis of the crisis shows that centrality measures perform well in identifying and monitoring systemically important financial institutions which provide useful insights for financial regulations.

  19. Modelling fuel cell performance using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  20. Final Report - Cloud-Based Management Platform for Distributed, Multi-Domain Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Pulak; Mukherjee, Biswanath

    2017-11-03

    In this Department of Energy (DOE) Small Business Innovation Research (SBIR) Phase II project final report, Ennetix presents the development of a solution for end-to-end monitoring, analysis, and visualization of network performance for distributed networks. This solution benefits enterprises of all sizes, operators of distributed and federated networks, and service providers.

  1. Network effects on scientific collaborations.

    PubMed

    Uddin, Shahadat; Hossain, Liaquat; Rasmussen, Kim

    2013-01-01

    The analysis of co-authorship network aims at exploring the impact of network structure on the outcome of scientific collaborations and research publications. However, little is known about what network properties are associated with authors who have increased number of joint publications and are being cited highly. Measures of social network analysis, for example network centrality and tie strength, have been utilized extensively in current co-authorship literature to explore different behavioural patterns of co-authorship networks. Using three SNA measures (i.e., degree centrality, closeness centrality and betweenness centrality), we explore scientific collaboration networks to understand factors influencing performance (i.e., citation count) and formation (tie strength between authors) of such networks. A citation count is the number of times an article is cited by other articles. We use co-authorship dataset of the research field of 'steel structure' for the year 2005 to 2009. To measure the strength of scientific collaboration between two authors, we consider the number of articles co-authored by them. In this study, we examine how citation count of a scientific publication is influenced by different centrality measures of its co-author(s) in a co-authorship network. We further analyze the impact of the network positions of authors on the strength of their scientific collaborations. We use both correlation and regression methods for data analysis leading to statistical validation. We identify that citation count of a research article is positively correlated with the degree centrality and betweenness centrality values of its co-author(s). Also, we reveal that degree centrality and betweenness centrality values of authors in a co-authorship network are positively correlated with the strength of their scientific collaborations. Authors' network positions in co-authorship networks influence the performance (i.e., citation count) and formation (i.e., tie strength) of scientific collaborations.

  2. Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia.

    PubMed

    Oh, Jooyoung; Chun, Ji-Won; Kim, Eunseong; Park, Hae-Jeong; Lee, Boreom; Kim, Jae-Jin

    2017-01-01

    Patients with schizophrenia exhibit several cognitive deficits, including memory impairment. Problems with recognition memory can hinder socially adaptive behavior. Previous investigations have suggested that altered activation of the frontotemporal area plays an important role in recognition memory impairment. However, the cerebral networks related to these deficits are not known. The aim of this study was to elucidate the brain networks required for recognizing socially relevant information in patients with schizophrenia performing an old-new recognition task. Sixteen patients with schizophrenia and 16 controls participated in this study. First, the subjects performed the theme-identification task during functional magnetic resonance imaging. In this task, pictures depicting social situations were presented with three words, and the subjects were asked to select the best theme word for each picture. The subjects then performed an old-new recognition task in which they were asked to discriminate whether the presented words were old or new. Task performance and neural responses in the old-new recognition task were compared between the subject groups. An independent component analysis of the functional connectivity was performed. The patients with schizophrenia exhibited decreased discriminability and increased activation of the right superior temporal gyrus compared with the controls during correct responses. Furthermore, aberrant network activities were found in the frontopolar and language comprehension networks in the patients. The functional connectivity analysis showed aberrant connectivity in the frontopolar and language comprehension networks in the patients with schizophrenia, and these aberrations possibly contribute to their low recognition performance and social dysfunction. These results suggest that the frontopolar and language comprehension networks are potential therapeutic targets in patients with schizophrenia.

  3. Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks.

    PubMed

    Saad, E W; Prokhorov, D V; Wunsch, D C

    1998-01-01

    Three networks are compared for low false alarm stock trend predictions. Short-term trends, particularly attractive for neural network analysis, can be used profitably in scenarios such as option trading, but only with significant risk. Therefore, we focus on limiting false alarms, which improves the risk/reward ratio by preventing losses. To predict stock trends, we exploit time delay, recurrent, and probabilistic neural networks (TDNN, RNN, and PNN, respectively), utilizing conjugate gradient and multistream extended Kalman filter training for TDNN and RNN. We also discuss different predictability analysis techniques and perform an analysis of predictability based on a history of daily closing price. Our results indicate that all the networks are feasible, the primary preference being one of convenience.

  4. Graph theory network function in Parkinson's disease assessed with electroencephalography.

    PubMed

    Utianski, Rene L; Caviness, John N; van Straaten, Elisabeth C W; Beach, Thomas G; Dugger, Brittany N; Shill, Holly A; Driver-Dunckley, Erika D; Sabbagh, Marwan N; Mehta, Shyamal; Adler, Charles H; Hentz, Joseph G

    2016-05-01

    To determine what differences exist in graph theory network measures derived from electroencephalography (EEG), between Parkinson's disease (PD) patients who are cognitively normal (PD-CN) and matched healthy controls; and between PD-CN and PD dementia (PD-D). EEG recordings were analyzed via graph theory network analysis to quantify changes in global efficiency and local integration. This included minimal spanning tree analysis. T-tests and correlations were used to assess differences between groups and assess the relationship with cognitive performance. Network measures showed increased local integration across all frequency bands between control and PD-CN; in contrast, decreased local integration occurred in PD-D when compared to PD-CN in the alpha1 frequency band. Differences found in PD-MCI mirrored PD-D. Correlations were found between network measures and assessments of global cognitive performance in PD. Our results reveal distinct patterns of band and network measure type alteration and breakdown for PD, as well as with cognitive decline in PD. These patterns suggest specific ways that interaction between cortical areas becomes abnormal and contributes to PD symptoms at various stages. Graph theory analysis by EEG suggests that network alteration and breakdown are robust attributes of PD cortical dysfunction pathophysiology. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods.

    PubMed

    Schaffter, Thomas; Marbach, Daniel; Floreano, Dario

    2011-08-15

    Over the last decade, numerous methods have been developed for inference of regulatory networks from gene expression data. However, accurate and systematic evaluation of these methods is hampered by the difficulty of constructing adequate benchmarks and the lack of tools for a differentiated analysis of network predictions on such benchmarks. Here, we describe a novel and comprehensive method for in silico benchmark generation and performance profiling of network inference methods available to the community as an open-source software called GeneNetWeaver (GNW). In addition to the generation of detailed dynamical models of gene regulatory networks to be used as benchmarks, GNW provides a network motif analysis that reveals systematic prediction errors, thereby indicating potential ways of improving inference methods. The accuracy of network inference methods is evaluated using standard metrics such as precision-recall and receiver operating characteristic curves. We show how GNW can be used to assess the performance and identify the strengths and weaknesses of six inference methods. Furthermore, we used GNW to provide the international Dialogue for Reverse Engineering Assessments and Methods (DREAM) competition with three network inference challenges (DREAM3, DREAM4 and DREAM5). GNW is available at http://gnw.sourceforge.net along with its Java source code, user manual and supporting data. Supplementary data are available at Bioinformatics online. dario.floreano@epfl.ch.

  6. A smartphone-based platform to test the performance of wireless mobile networks and preliminary findings

    NASA Astrophysics Data System (ADS)

    Geng, Xinli; Xu, Hao; Qin, Xiaowei

    2016-10-01

    During the last several years, the amount of wireless network traffic data increased fast and relative technologies evolved rapidly. In order to improve the performance and Quality of Experience (QoE) of wireless network services, the analysis of field network data and existing delivery mechanisms comes to be a promising research topic. In order to achieve this goal, a smartphone based platform named Monitor and Diagnosis of Mobile Applications (MDMA) was developed to collect field data. Based on this tool, the web browsing service of High Speed Downlink Packet Access (HSDPA) network was tested. The top 200 popular websites in China were selected and loaded on smartphone for thousands times automatically. Communication packets between the smartphone and the cell station were captured for various scenarios (e.g. residential area, urban roads, bus station etc.) in the selected city. A cross-layer database was constructed to support the off-line analysis. Based on the results of client-side experiments and analysis, the usability of proposed portable tool was verified. The preliminary findings and results for existing web browsing service were also presented.

  7. Modeling Verdict Outcomes Using Social Network Measures: The Watergate and Caviar Network Cases

    PubMed Central

    2016-01-01

    Modelling criminal trial verdict outcomes using social network measures is an emerging research area in quantitative criminology. Few studies have yet analyzed which of these measures are the most important for verdict modelling or which data classification techniques perform best for this application. To compare the performance of different techniques in classifying members of a criminal network, this article applies three different machine learning classifiers–Logistic Regression, Naïve Bayes and Random Forest–with a range of social network measures and the necessary databases to model the verdicts in two real–world cases: the U.S. Watergate Conspiracy of the 1970’s and the now–defunct Canada–based international drug trafficking ring known as the Caviar Network. In both cases it was found that the Random Forest classifier did better than either Logistic Regression or Naïve Bayes, and its superior performance was statistically significant. This being so, Random Forest was used not only for classification but also to assess the importance of the measures. For the Watergate case, the most important one proved to be betweenness centrality while for the Caviar Network, it was the effective size of the network. These results are significant because they show that an approach combining machine learning with social network analysis not only can generate accurate classification models but also helps quantify the importance social network variables in modelling verdict outcomes. We conclude our analysis with a discussion and some suggestions for future work in verdict modelling using social network measures. PMID:26824351

  8. Study of Adversarial and Defensive Components in an Experimental Machinery Control Systems Laboratory Environment

    DTIC Science & Technology

    2014-09-01

    prevention system (IPS), capable of performing real-time traffic analysis and packet logging on IP networks [25]. Snort’s features include protocol... analysis and content searching/matching. Snort can detect a variety of attacks and network probes, such as buffer overflows, port scans and OS...www.digitalbond.com/tools/the- rack/jtr-s7-password-cracking/ Kismet Mike Kershaw Cross- platform Open source wireless network detector and wireless sniffer

  9. The Strength of the Strongest Ties in Collaborative Problem Solving

    NASA Astrophysics Data System (ADS)

    de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune

    2014-06-01

    Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.

  10. The strength of the strongest ties in collaborative problem solving.

    PubMed

    de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune

    2014-06-20

    Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.

  11. Analyzing the effect of routing protocols on media access control protocols in radio networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, C. L.; Drozda, M.; Marathe, A.

    2002-01-01

    We study the effect of routing protocols on the performance of media access control (MAC) protocols in wireless radio networks. Three well known MAC protocols: 802.11, CSMA, and MACA are considered. Similarly three recently proposed routing protocols: AODV, DSR and LAR scheme 1 are considered. The experimental analysis was carried out using GloMoSim: a tool for simulating wireless networks. The main focus of our experiments was to study how the routing protocols affect the performance of the MAC protocols when the underlying network and traffic parameters are varied. The performance of the protocols was measured w.r.t. five important parameters: (i)more » number of received packets, (ii) average latency of each packet, (iii) throughput (iv) long term fairness and (v) number of control packets at the MAC layer level. Our results show that combinations of routing and MAC protocols yield varying performance under varying network topology and traffic situations. The result has an important implication; no combination of routing protocol and MAC protocol is the best over all situations. Also, the performance analysis of protocols at a given level in the protocol stack needs to be studied not locally in isolation but as a part of the complete protocol stack. A novel aspect of our work is the use of statistical technique, ANOVA (Analysis of Variance) to characterize the effect of routing protocols on MAC protocols. This technique is of independent interest and can be utilized in several other simulation and empirical studies.« less

  12. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications. PMID:24678277

  13. Switching performance of OBS network model under prefetched real traffic

    NASA Astrophysics Data System (ADS)

    Huang, Zhenhua; Xu, Du; Lei, Wen

    2005-11-01

    Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.

  14. Reorganization of functional brain networks mediates the improvement of cognitive performance following real-time neurofeedback training of working memory.

    PubMed

    Zhang, Gaoyan; Yao, Li; Shen, Jiahui; Yang, Yihong; Zhao, Xiaojie

    2015-05-01

    Working memory (WM) is essential for individuals' cognitive functions. Neuroimaging studies indicated that WM fundamentally relied on a frontoparietal working memory network (WMN) and a cinguloparietal default mode network (DMN). Behavioral training studies demonstrated that the two networks can be modulated by WM training. Different from the behavioral training, our recent study used a real-time functional MRI (rtfMRI)-based neurofeedback method to conduct WM training, demonstrating that WM performance can be significantly improved after successfully upregulating the activity of the target region of interest (ROI) in the left dorsolateral prefrontal cortex (Zhang et al., [2013]: PloS One 8:e73735); however, the neural substrate of rtfMRI-based WM training remains unclear. In this work, we assessed the intranetwork and internetwork connectivity changes of WMN and DMN during the training, and their correlations with the change of brain activity in the target ROI as well as with the improvement of post-training behavior. Our analysis revealed an "ROI-network-behavior" correlation relationship underlying the rtfMRI training. Further mediation analysis indicated that the reorganization of functional brain networks mediated the effect of self-regulation of the target brain activity on the improvement of cognitive performance following the neurofeedback training. The results of this study enhance our understanding of the neural basis of real-time neurofeedback and suggest a new direction to improve WM performance by regulating the functional connectivity in the WM related networks. © 2014 Wiley Periodicals, Inc.

  15. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  16. Demonstration of Cost-Effective, High-Performance Computing at Performance and Reliability Levels Equivalent to a 1994 Vector Supercomputer

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2000-01-01

    The Affordable High Performance Computing (AHPC) project demonstrated that high-performance computing based on a distributed network of computer workstations is a cost-effective alternative to vector supercomputers for running CPU and memory intensive design and analysis tools. The AHPC project created an integrated system called a Network Supercomputer. By connecting computer work-stations through a network and utilizing the workstations when they are idle, the resulting distributed-workstation environment has the same performance and reliability levels as the Cray C90 vector Supercomputer at less than 25 percent of the C90 cost. In fact, the cost comparison between a Cray C90 Supercomputer and Sun workstations showed that the number of distributed networked workstations equivalent to a C90 costs approximately 8 percent of the C90.

  17. Network-based machine learning and graph theory algorithms for precision oncology.

    PubMed

    Zhang, Wei; Chien, Jeremy; Yong, Jeongsik; Kuang, Rui

    2017-01-01

    Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and that the efficacy of repositioned drugs can be inferred from disease modules in molecular networks. This article reviews network-based machine learning and graph theory algorithms for integrative analysis of personal genomic data and biomedical knowledge bases to identify tumor-specific molecular mechanisms, candidate targets and repositioned drugs for personalized treatment. The review focuses on the algorithmic design and mathematical formulation of these methods to facilitate applications and implementations of network-based analysis in the practice of precision oncology. We review the methods applied in three scenarios to integrate genomic data and network models in different analysis pipelines, and we examine three categories of network-based approaches for repositioning drugs in drug-disease-gene networks. In addition, we perform a comprehensive subnetwork/pathway analysis of mutations in 31 cancer genome projects in the Cancer Genome Atlas and present a detailed case study on ovarian cancer. Finally, we discuss interesting observations, potential pitfalls and future directions in network-based precision oncology.

  18. Preliminary performance analysis of an interplanetary navigation system using asteroid based beacons

    NASA Technical Reports Server (NTRS)

    Jee, J. Rodney; Khatib, Ahmad R.; Muellerschoen, Ronald J.; Williams, Bobby G.; Vincent, Mark A.

    1988-01-01

    A futuristic interplanetary navigation system using transmitters placed on selected asteroids is introduced. This network of space beacons is seen as a needed alternative to the overly burdened Deep Space Network. Covariance analyses on the potential performance of these space beacons located on a candidate constellation of eight real asteroids are initiated. Simplified analytic calculations are performed to determine limiting accuracies attainable with the network for geometric positioning. More sophisticated computer simulations are also performed to determine potential accuracies using long arcs of range and Doppler data from the beacons. The results from these computations show promise for this navigation system.

  19. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach

    PubMed Central

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A.; Zhang, Wenbo

    2016-01-01

    Objective Combined source imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a non-invasive fashion. Source imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source imaging algorithms to both find the network nodes (regions of interest) and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Methods Source imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from inter-ictal and ictal signals recorded by EEG and/or MEG. Results Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ~20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Conclusion Our study indicates that combined source imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). Significance The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions. PMID:27740473

  20. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach.

    PubMed

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A; Zhang, Wenbo; He, Bin

    2016-12-01

    Combined source-imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a noninvasive fashion. Source-imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source-imaging algorithms to both find the network nodes [regions of interest (ROI)] and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses, and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Source-imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from interictal and ictal signals recorded by EEG and/or Magnetoencephalography (MEG). Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ∼20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Our study indicates that combined source-imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions.

  1. Assessing the Robustness of Graph Statistics for Network Analysis Under Incomplete Information

    DTIC Science & Technology

    strategy for dismantling these networks based on their network structure. However, these strategies typically assume complete information about the...combat them with missing information . This thesis analyzes the performance of a variety of network statistics in the context of incomplete information by...leveraging simulation to remove nodes and edges from networks and evaluating the effect this missing information has on our ability to accurately

  2. SCinet Architecture: Featured at the International Conference for High Performance Computing,Networking, Storage and Analysis 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyonnais, Marc; Smith, Matt; Mace, Kate P.

    SCinet is the purpose-built network that operates during the International Conference for High Performance Computing,Networking, Storage and Analysis (Super Computing or SC). Created each year for the conference, SCinet brings to life a high-capacity network that supports applications and experiments that are a hallmark of the SC conference. The network links the convention center to research and commercial networks around the world. This resource serves as a platform for exhibitors to demonstrate the advanced computing resources of their home institutions and elsewhere by supporting a wide variety of applications. Volunteers from academia, government and industry work together to design andmore » deliver the SCinet infrastructure. Industry vendors and carriers donate millions of dollars in equipment and services needed to build and support the local and wide area networks. Planning begins more than a year in advance of each SC conference and culminates in a high intensity installation in the days leading up to the conference. The SCinet architecture for SC16 illustrates a dramatic increase in participation from the vendor community, particularly those that focus on network equipment. Software-Defined Networking (SDN) and Data Center Networking (DCN) are present in nearly all aspects of the design.« less

  3. A multivariate analysis of age-related differences in functional networks supporting conflict resolution.

    PubMed

    Salami, Alireza; Rieckmann, Anna; Fischer, Håkan; Bäckman, Lars

    2014-02-01

    Functional neuroimaging studies demonstrate age-related differences in recruitment of a large-scale attentional network during interference resolution, especially within dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). These alterations in functional responses have been frequently observed despite equivalent task performance, suggesting age-related reallocation of neural resources, although direct evidence for a facilitating effect in aging is sparse. We used the multi-source interference task and multivariate partial-least-squares to investigate age-related differences in the neuronal signature of conflict resolution, and their behavioral implications in younger and older adults. There were interference-related increases in activity, involving fronto-parietal and basal ganglia networks that generalized across age. In addition an age-by-task interaction was observed within a distributed network, including DLPFC and ACC, with greater activity during interference in the old. Next, we combined brain-behavior and functional connectivity analyses to investigate whether compensatory brain changes were present in older adults, using DLPFC and ACC as regions of interest (i.e. seed regions). This analysis revealed two networks differentially related to performance across age groups. A structural analysis revealed age-related gray-matter losses in regions facilitating performance in the young, suggesting that functional reorganization may partly reflect structural alterations in aging. Collectively, these findings suggest that age-related structural changes contribute to reductions in the efficient recruitment of a youth-like interference network, which cascades into instantiation of a different network facilitating conflict resolution in elderly people. © 2013. Published by Elsevier Inc. All rights reserved.

  4. BRAPH: A graph theory software for the analysis of brain connectivity

    PubMed Central

    Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B.; Westman, Eric; Volpe, Giovanni

    2017-01-01

    The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer’s disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson’s patients with mild cognitive impairment. PMID:28763447

  5. BRAPH: A graph theory software for the analysis of brain connectivity.

    PubMed

    Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B; Westman, Eric; Volpe, Giovanni

    2017-01-01

    The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH-BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.

  6. Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance.

    PubMed

    Keerativittayayut, Ruedeerat; Aoki, Ryuta; Sarabi, Mitra Taghizadeh; Jimura, Koji; Nakahara, Kiyoshi

    2018-06-18

    Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30-40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding. © 2018, Keerativittayayut et al.

  7. Social Networks, Engagement and Resilience in University Students.

    PubMed

    Fernández-Martínez, Elena; Andina-Díaz, Elena; Fernández-Peña, Rosario; García-López, Rosa; Fulgueiras-Carril, Iván; Liébana-Presa, Cristina

    2017-12-01

    Analysis of social networks may be a useful tool for understanding the relationship between resilience and engagement, and this could be applied to educational methodologies, not only to improve academic performance, but also to create emotionally sustainable networks. This descriptive study was carried out on 134 university students. We collected the network structural variables, degree of resilience (CD-RISC 10), and engagement (UWES-S). The computer programs used were excel, UCINET for network analysis, and SPSS for statistical analysis. The analysis revealed results of means of 28.61 for resilience, 2.98 for absorption, 4.82 for dedication, and 3.13 for vigour. The students had two preferred places for sharing information: the classroom and WhatsApp. The greater the value for engagement, the greater the degree of centrality in the friendship network among students who are beginning their university studies. This relationship becomes reversed as the students move to later academic years. In terms of resilience, the highest values correspond to greater centrality in the friendship networks. The variables of engagement and resilience influenced the university students' support networks.

  8. Social Networks, Engagement and Resilience in University Students

    PubMed Central

    García-López, Rosa; Fulgueiras-Carril, Iván

    2017-01-01

    Analysis of social networks may be a useful tool for understanding the relationship between resilience and engagement, and this could be applied to educational methodologies, not only to improve academic performance, but also to create emotionally sustainable networks. This descriptive study was carried out on 134 university students. We collected the network structural variables, degree of resilience (CD-RISC 10), and engagement (UWES-S). The computer programs used were excel, UCINET for network analysis, and SPSS for statistical analysis. The analysis revealed results of means of 28.61 for resilience, 2.98 for absorption, 4.82 for dedication, and 3.13 for vigour. The students had two preferred places for sharing information: the classroom and WhatsApp. The greater the value for engagement, the greater the degree of centrality in the friendship network among students who are beginning their university studies. This relationship becomes reversed as the students move to later academic years. In terms of resilience, the highest values correspond to greater centrality in the friendship networks. The variables of engagement and resilience influenced the university students’ support networks. PMID:29194361

  9. Artificial astrocytes improve neural network performance.

    PubMed

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  10. Artificial Astrocytes Improve Neural Network Performance

    PubMed Central

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  11. Optimization of analytical laboratory work using computer networking and databasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upp, D.L.; Metcalf, R.A.

    1996-06-01

    The Health Physics Analysis Laboratory (HPAL) performs around 600,000 analyses for radioactive nuclides each year at Los Alamos National Laboratory (LANL). Analysis matrices vary from nasal swipes, air filters, work area swipes, liquids, to the bottoms of shoes and cat litter. HPAL uses 8 liquid scintillation counters, 8 gas proportional counters, and 9 high purity germanium detectors in 5 laboratories to perform these analyses. HPAL has developed a computer network between the labs and software to produce analysis results. The software and hardware package includes barcode sample tracking, log-in, chain of custody, analysis calculations, analysis result printing, and utility programs.more » All data are written to a database, mirrored on a central server, and eventually written to CD-ROM to provide for online historical results. This system has greatly reduced the work required to provide for analysis results as well as improving the quality of the work performed.« less

  12. Reviewing the Differences in Size, Composition and Structure between the Personal Networks of High-and Low-Performing Students

    ERIC Educational Resources Information Center

    Casquero, Oskar; Ovelar, Ramón; Romo, Jesús; Benito, Manuel

    2015-01-01

    An interesting aspect in the current literature about learning networks is the shift of focus from the understanding of the "whole network" of a course to the examination of the "personal networks" of individual students. This line of research is relatively new, based on small-scale studies and diverse analysis techniques,…

  13. GLOBECOM '85 - Global Telecommunications Conference, New Orleans, LA, December 2-5, 1985, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Various papers on global telecommunications are presented. The general topics addressed include: multiservice integration with optical fibers, multicompany owned telecommunication networks, softworks quality and reliability, advanced on-board processing, impact of new services and systems on operations and maintenance, analytical studies of protocols for data communication networks, topics in packet radio networking, CCITT No. 7 to support new services, document processing and communication, antenna technology and system aspects in satellite communications. Also considered are: communication systems modelling methodology, experimental integrated local area voice/data nets, spread spectrum communications, motion video at the DS-0 rate, optical and data communications, intelligent work stations, switch performance analysis, novel radio communication systems, wireless local networks, ISDN services, LAN communication protocols, user-system interface, radio propagation and performance, mobile satellite system, software for computer networks, VLSI for ISDN terminals, quality management, man-machine interfaces in switching, and local area network performance.

  14. An enhanced performance through agent-based secure approach for mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Bisen, Dhananjay; Sharma, Sanjeev

    2018-01-01

    This paper proposes an agent-based secure enhanced performance approach (AB-SEP) for mobile ad hoc network. In this approach, agent nodes are selected through optimal node reliability as a factor. This factor is calculated on the basis of node performance features such as degree difference, normalised distance value, energy level, mobility and optimal hello interval of node. After selection of agent nodes, a procedure of malicious behaviour detection is performed using fuzzy-based secure architecture (FBSA). To evaluate the performance of the proposed approach, comparative analysis is done with conventional schemes using performance parameters such as packet delivery ratio, throughput, total packet forwarding, network overhead, end-to-end delay and percentage of malicious detection.

  15. Ecological network analysis for a virtual water network.

    PubMed

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  16. Sampling Approaches for Multi-Domain Internet Performance Measurement Infrastructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calyam, Prasad

    2014-09-15

    The next-generation of high-performance networks being developed in DOE communities are critical for supporting current and emerging data-intensive science applications. The goal of this project is to investigate multi-domain network status sampling techniques and tools to measure/analyze performance, and thereby provide “network awareness” to end-users and network operators in DOE communities. We leverage the infrastructure and datasets available through perfSONAR, which is a multi-domain measurement framework that has been widely deployed in high-performance computing and networking communities; the DOE community is a core developer and the largest adopter of perfSONAR. Our investigations include development of semantic scheduling algorithms, measurement federationmore » policies, and tools to sample multi-domain and multi-layer network status within perfSONAR deployments. We validate our algorithms and policies with end-to-end measurement analysis tools for various monitoring objectives such as network weather forecasting, anomaly detection, and fault-diagnosis. In addition, we develop a multi-domain architecture for an enterprise-specific perfSONAR deployment that can implement monitoring-objective based sampling and that adheres to any domain-specific measurement policies.« less

  17. Correlation analysis on real-time tab-delimited network monitoring data

    DOE PAGES

    Pan, Aditya; Majumdar, Jahin; Bansal, Abhay; ...

    2016-01-01

    End-End performance monitoring in the Internet, also called PingER is a part of SLAC National Accelerator Laboratory’s research project. It was created to answer the growing need to monitor network both to analyze current performance and to designate resources to optimize execution between research centers, and the universities and institutes co-operating on present and future operations. The monitoring support reflects the broad geographical area of the collaborations and requires a comprehensive number of research and financial channels. The data architecture retrieval and methodology of the interpretation have emerged over numerous years. Analyzing this data is the main challenge due tomore » its high volume. Finally, by using correlation analysis, we can make crucial conclusions about how the network data affects the performance of the hosts and how it depends from countries to countries.« less

  18. The Robustness Analysis of Wireless Sensor Networks under Uncertain Interference

    PubMed Central

    Deng, Changjian

    2013-01-01

    Based on the complex network theory, robustness analysis of condition monitoring wireless sensor network under uncertain interference is present. In the evolution of the topology of sensor networks, the density weighted algebraic connectivity is taken into account, and the phenomenon of removing and repairing the link and node in the network is discussed. Numerical simulation is conducted to explore algebraic connectivity characteristics and network robustness performance. It is found that nodes density has the effect on algebraic connectivity distribution in the random graph model; high density nodes carry more connections, use more throughputs, and may be more unreliable. Moreover, the results show that, when network should be more error tolerant or robust by repairing nodes or adding new nodes, the network should be better clustered in median and high scale wireless sensor networks and be meshing topology in small scale networks. PMID:24363613

  19. Distributed Large Data-Object Environments: End-to-End Performance Analysis of High Speed Distributed Storage Systems in Wide Area ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary

    1996-01-01

    We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.

  20. Robust neural network with applications to credit portfolio data analysis.

    PubMed

    Feng, Yijia; Li, Runze; Sudjianto, Agus; Zhang, Yiyun

    2010-01-01

    In this article, we study nonparametric conditional quantile estimation via neural network structure. We proposed an estimation method that combines quantile regression and neural network (robust neural network, RNN). It provides good smoothing performance in the presence of outliers and can be used to construct prediction bands. A Majorization-Minimization (MM) algorithm was developed for optimization. Monte Carlo simulation study is conducted to assess the performance of RNN. Comparison with other nonparametric regression methods (e.g., local linear regression and regression splines) in real data application demonstrate the advantage of the newly proposed procedure.

  1. High Energy Physics and Nuclear Physics Network Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physicsmore » (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily reliant on transoceanic connectivity, which is subject to longer term service disruptions than terrestrial connectivity. The network engineering aspects of undersea connectivity will continue to be a significant part of the planning, deployment, and operation of the data analysis infrastructure for HEP and NP experiments for the foreseeable future. Given their critical dependency on networking services, the experiments have expressed the need for tight integration (both technically and operationally) of the domestic and the transoceanic parts of the network infrastructure that supports the experiments. 4. The datasets associated with simulations continue to increase in size, and the need to move these datasets between analysis centers is placing ever-increasing demands on networks and on data management systems at the supercomputing centers. In addition, there is a need to harmonize cybersecurity practice with the data transfer performance requirements of the science. This report expands on these points, and addresses others as well. The report contains a findings section in addition to the text of the case studies discussed during the review.« less

  2. Paule‐Mandel estimators for network meta‐analysis with random inconsistency effects

    PubMed Central

    Veroniki, Areti Angeliki; Law, Martin; Tricco, Andrea C.; Baker, Rose

    2017-01-01

    Network meta‐analysis is used to simultaneously compare multiple treatments in a single analysis. However, network meta‐analyses may exhibit inconsistency, where direct and different forms of indirect evidence are not in agreement with each other, even after allowing for between‐study heterogeneity. Models for network meta‐analysis with random inconsistency effects have the dual aim of allowing for inconsistencies and estimating average treatment effects across the whole network. To date, two classical estimation methods for fitting this type of model have been developed: a method of moments that extends DerSimonian and Laird's univariate method and maximum likelihood estimation. However, the Paule and Mandel estimator is another recommended classical estimation method for univariate meta‐analysis. In this paper, we extend the Paule and Mandel method so that it can be used to fit models for network meta‐analysis with random inconsistency effects. We apply all three estimation methods to a variety of examples that have been used previously and we also examine a challenging new dataset that is highly heterogenous. We perform a simulation study based on this new example. We find that the proposed Paule and Mandel method performs satisfactorily and generally better than the previously proposed method of moments because it provides more accurate inferences. Furthermore, the Paule and Mandel method possesses some advantages over likelihood‐based methods because it is both semiparametric and requires no convergence diagnostics. Although restricted maximum likelihood estimation remains the gold standard, the proposed methodology is a fully viable alternative to this and other estimation methods. PMID:28585257

  3. Motif-Synchronization: A new method for analysis of dynamic brain networks with EEG

    NASA Astrophysics Data System (ADS)

    Rosário, R. S.; Cardoso, P. T.; Muñoz, M. A.; Montoya, P.; Miranda, J. G. V.

    2015-12-01

    The major aim of this work was to propose a new association method known as Motif-Synchronization. This method was developed to provide information about the synchronization degree and direction between two nodes of a network by counting the number of occurrences of some patterns between any two time series. The second objective of this work was to present a new methodology for the analysis of dynamic brain networks, by combining the Time-Varying Graph (TVG) method with a directional association method. We further applied the new algorithms to a set of human electroencephalogram (EEG) signals to perform a dynamic analysis of the brain functional networks (BFN).

  4. Artificial neural network prediction of aircraft aeroelastic behavior

    NASA Astrophysics Data System (ADS)

    Pesonen, Urpo Juhani

    An Artificial Neural Network that predicts aeroelastic behavior of aircraft is presented. The neural net was designed to predict the shape of a flexible wing in static flight conditions using results from a structural analysis and an aerodynamic analysis performed with traditional computational tools. To generate reliable training and testing data for the network, an aeroelastic analysis code using these tools as components was designed and validated. To demonstrate the advantages and reliability of Artificial Neural Networks, a network was also designed and trained to predict airfoil maximum lift at low Reynolds numbers where wind tunnel data was used for the training. Finally, a neural net was designed and trained to predict the static aeroelastic behavior of a wing without the need to iterate between the structural and aerodynamic solvers.

  5. Detailed analysis of routing protocols with different network limitations

    NASA Astrophysics Data System (ADS)

    Masood, Mohsin; Abuhelala, Mohamed; Glesk, Ivan

    2016-12-01

    In network communication field, routing protocols have got a significant role which are not only used in networks to handle the user data but also to monitor the different network environments. Dynamic routing protocols such as OSPF, EIGRP and RIP are used for forwarding user data to its destination by instantly detecting the dynamic changes across the network. The dynamic changes in the network can be in the form of topological changes, congestions, links failure etc. Therefore, it becomes a challenge to develop and implement dynamic routing protocols that fulfills the network requirements. Hence, each routing protocol has its own characteristics such as convergence activity, routing metric, routing table etc. and will perform differently in various network environments. This paper presents a comprehensive study of static and dynamic routing, along with dynamic routing protocols. Experiments that are conducted under various network limitations are presented using the OPNET tool. The performance of each of dynamic routing protocols are monitored and explained in the form of simulated results using network parameters. The results are analyzed, in order to provide a clear understanding of each protocol performance for the selection of the proper protocol for a given network environment.

  6. Cognitive and default-mode resting state networks: do male and female brains "rest" differently?

    PubMed

    Weissman-Fogel, Irit; Moayedi, Massieh; Taylor, Keri S; Pope, Geoff; Davis, Karen D

    2010-11-01

    Variability in human behavior related to sex is supported by neuroimaging studies showing differences in brain activation patterns during cognitive task performance. An emerging field is examining the human connectome, including networks of brain regions that are not only temporally-correlated during different task conditions, but also networks that show highly correlated spontaneous activity during a task-free state. Both task-related and task-free network activity has been associated with individual task performance and behavior under certain conditions. Therefore, our aim was to determine whether sex differences exist during a task-free resting state for two networks associated with cognitive task performance (executive control network (ECN), salience network (SN)) and the default mode network (DMN). Forty-nine healthy subjects (26 females, 23 males) underwent a 5-min task-free fMRI scan in a 3T MRI. An independent components analysis (ICA) was performed to identify the best-fit IC for each network based on specific spatial nodes defined in previous studies. To determine the consistency of these networks across subjects we performed self-organizing group-level ICA analyses. There were no significant differences between sexes in the functional connectivity of the brain areas within the ECN, SN, or the DMN. These important findings highlight the robustness of intrinsic connectivity of these resting state networks and their similarity between sexes. Furthermore, our findings suggest that resting state fMRI studies do not need to be controlled for sex. © 2010 Wiley-Liss, Inc.

  7. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    PubMed Central

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423

  8. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks.

    PubMed

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  9. Affective mentalizing and brain activity at rest in the behavioral variant of frontotemporal dementia.

    PubMed

    Caminiti, Silvia P; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F

    2015-01-01

    bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms.

  10. WGCNA: an R package for weighted correlation network analysis.

    PubMed

    Langfelder, Peter; Horvath, Steve

    2008-12-29

    Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.

  11. Distributed Finite Element Analysis Using a Transputer Network

    NASA Technical Reports Server (NTRS)

    Watson, James; Favenesi, James; Danial, Albert; Tombrello, Joseph; Yang, Dabby; Reynolds, Brian; Turrentine, Ronald; Shephard, Mark; Baehmann, Peggy

    1989-01-01

    The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the $80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the $15,000,000 Cray X-MP24 system.

  12. Quantitative Analysis of Ca, Mg, and K in the Roots of Angelica pubescens f. biserrata by Laser-Induced Breakdown Spectroscopy Combined with Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Shi, M.; Zheng, P.; Xue, Sh.; Peng, R.

    2018-03-01

    Laser-induced breakdown spectroscopy has been applied for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan used in traditional Chinese medicine. Ca II 317.993 nm, Mg I 517.268 nm, and K I 769.896 nm spectral lines have been chosen to set up calibration models for the analysis using the external standard and artificial neural network methods. The linear correlation coefficients of the predicted concentrations versus the standard concentrations of six samples determined by the artificial neural network method are 0.9896, 0.9945, and 0.9911 for Ca, Mg, and K, respectively, which are better than for the external standard method. The artificial neural network method also gives better performance comparing with the external standard method for the average and maximum relative errors, average relative standard deviations, and most maximum relative standard deviations of the predicted concentrations of Ca, Mg, and K in the six samples. Finally, it is proved that the artificial neural network method gives better performance compared to the external standard method for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens.

  13. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Voice Call Analysis

    DTIC Science & Technology

    2015-09-01

    Gateway 2 4. Voice Packet Flow: SIP , Session Description Protocol (SDP), and RTP 3 5. Voice Data Analysis 5 6. Call Analysis 6 7. Call Metrics 6...analysis processing is designed for a general VoIP system architecture based on Session Initiation Protocol ( SIP ) for negotiating call sessions and...employs Skinny Client Control Protocol for network communication between the phone and the local CallManager (e.g., for each dialed digit), SIP

  14. Health Insurance Portability and Accountability Act-Compliant Ocular Telehealth Network for the Remote Diagnosis and Management of Diabetic Retinopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yaquin; Karnowski, Thomas Paul; Tobin Jr, Kenneth William

    2011-01-01

    In this article, we present the design and implementation of a regional ocular telehealth network for remote assessment and management of diabetic retinopathy (DR), including the design requirements, network topology, protocol design, system work flow, graphics user interfaces, and performance evaluation. The Telemedical Retinal Image Analysis and Diagnosis Network is a computer-aided, image analysis telehealth paradigm for the diagnosis of DR and other retinal diseases using fundus images acquired from primary care end users delivering care to underserved patient populations in the mid-South and southeastern United States.

  15. A health insurance portability and accountability act-compliant ocular telehealth network for the remote diagnosis and management of diabetic retinopathy.

    PubMed

    Li, Yaqin; Karnowski, Thomas P; Tobin, Kenneth W; Giancardo, Luca; Morris, Scott; Sparrow, Sylvia E; Garg, Seema; Fox, Karen; Chaum, Edward

    2011-10-01

    In this article, we present the design and implementation of a regional ocular telehealth network for remote assessment and management of diabetic retinopathy (DR), including the design requirements, network topology, protocol design, system work flow, graphics user interfaces, and performance evaluation. The Telemedical Retinal Image Analysis and Diagnosis Network is a computer-aided, image analysis telehealth paradigm for the diagnosis of DR and other retinal diseases using fundus images acquired from primary care end users delivering care to underserved patient populations in the mid-South and southeastern United States.

  16. Performance Analysis of IIUM Wireless Campus Network

    NASA Astrophysics Data System (ADS)

    Abd Latif, Suhaimi; Masud, Mosharrof H.; Anwar, Farhat

    2013-12-01

    International Islamic University Malaysia (IIUM) is one of the leading universities in the world in terms of quality of education that has been achieved due to providing numerous facilities including wireless services to every enrolled student. The quality of this wireless service is controlled and monitored by Information Technology Division (ITD), an ISO standardized organization under the university. This paper aims to investigate the constraints of wireless campus network of IIUM. It evaluates the performance of the IIUM wireless campus network in terms of delay, throughput and jitter. QualNet 5.2 simulator tool has employed to measure these performances of IIUM wireless campus network. The observation from the simulation result could be one of the influencing factors in improving wireless services for ITD and further improvement.

  17. Non-Intrusive Gaze Tracking Using Artificial Neural Networks

    DTIC Science & Technology

    1994-01-05

    We have developed an artificial neural network based gaze tracking, system which can be customized to individual users. A three layer feed forward...empirical analysis of the performance of a large number of artificial neural network architectures for this task. Suggestions for further explorations...for neurally based gaze trackers are presented, and are related to other similar artificial neural network applications such as autonomous road following.

  18. Scheduling: A guide for program managers

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The following topics are discussed concerning scheduling: (1) milestone scheduling; (2) network scheduling; (3) program evaluation and review technique; (4) critical path method; (5) developing a network; (6) converting an ugly duckling to a swan; (7) network scheduling problem; (8) (9) network scheduling when resources are limited; (10) multi-program considerations; (11) influence on program performance; (12) line-of-balance technique; (13) time management; (14) recapitulization; and (15) analysis.

  19. Assessing the Liquidity of Firms: Robust Neural Network Regression as an Alternative to the Current Ratio

    NASA Astrophysics Data System (ADS)

    de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia

    Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.

  20. Gender differences in working memory networks: A BrainMap meta-analysis

    PubMed Central

    Hill, Ashley C.; Laird, Angela R.; Robinson, Jennifer L.

    2014-01-01

    Gender differences in psychological processes have been of great interest in a variety of fields. While the majority of research in this area has focused on specific differences in relation to test performance, this study sought to determine the underlying neurofunctional differences observed during working memory, a pivotal cognitive process shown to be predictive of academic achievement and intelligence. Using the BrainMap database, we performed a meta-analysis and applied activation likelihood estimation to our search set. Our results demonstrate consistent working memory networks across genders, but also provide evidence for gender-specific networks whereby females consistently activate more limbic (e.g., amygdala and hippocampus) and prefrontal structures (e.g., right inferior frontal gyrus), and males activate a distributed network inclusive of more parietal regions. These data provide a framework for future investigation using functional or effective connectivity methods to elucidate the underpinnings of gender differences in neural network recruitment during working memory tasks. PMID:25042764

  1. Gender differences in working memory networks: a BrainMap meta-analysis.

    PubMed

    Hill, Ashley C; Laird, Angela R; Robinson, Jennifer L

    2014-10-01

    Gender differences in psychological processes have been of great interest in a variety of fields. While the majority of research in this area has focused on specific differences in relation to test performance, this study sought to determine the underlying neurofunctional differences observed during working memory, a pivotal cognitive process shown to be predictive of academic achievement and intelligence. Using the BrainMap database, we performed a meta-analysis and applied activation likelihood estimation to our search set. Our results demonstrate consistent working memory networks across genders, but also provide evidence for gender-specific networks whereby females consistently activate more limbic (e.g., amygdala and hippocampus) and prefrontal structures (e.g., right inferior frontal gyrus), and males activate a distributed network inclusive of more parietal regions. These data provide a framework for future investigations using functional or effective connectivity methods to elucidate the underpinnings of gender differences in neural network recruitment during working memory tasks. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Passivity and Dissipativity as Design and Analysis Tools for Networked Control Systems

    ERIC Educational Resources Information Center

    Yu, Han

    2012-01-01

    In this dissertation, several control problems are studied that arise when passive or dissipative systems are interconnected and controlled over a communication network. Since communication networks can impact the systems' stability and performance, there is a need to extend the results on control of passive or dissipative systems to networked…

  3. Interdependencies and Causalities in Coupled Financial Networks

    PubMed Central

    Vodenska, Irena; Aoyama, Hideaki; Fujiwara, Yoshi; Iyetomi, Hiroshi; Arai, Yuta

    2016-01-01

    We explore the foreign exchange and stock market networks for 48 countries from 1999 to 2012 and propose a model, based on complex Hilbert principal component analysis, for extracting significant lead-lag relationships between these markets. The global set of countries, including large and small countries in Europe, the Americas, Asia, and the Middle East, is contrasted with the limited scopes of targets, e.g., G5, G7 or the emerging Asian countries, adopted by previous works. We construct a coupled synchronization network, perform community analysis, and identify formation of four distinct network communities that are relatively stable over time. In addition to investigating the entire period, we divide the time period into into “mild crisis,” (1999–2002), “calm,” (2003–2006) and “severe crisis” (2007–2012) sub-periods and find that the severe crisis period behavior dominates the dynamics in the foreign exchange-equity synchronization network. We observe that in general the foreign exchange market has predictive power for the global stock market performances. In addition, the United States, German and Mexican markets have forecasting power for the performances of other global equity markets. PMID:26977806

  4. Performance analysis of wireless sensor networks in geophysical sensing applications

    NASA Astrophysics Data System (ADS)

    Uligere Narasimhamurthy, Adithya

    Performance is an important criteria to consider before switching from a wired network to a wireless sensing network. Performance is especially important in geophysical sensing where the quality of the sensing system is measured by the precision of the acquired signal. Can a wireless sensing network maintain the same reliability and quality metrics that a wired system provides? Our work focuses on evaluating the wireless GeoMote sensor motes that were developed by previous computer science graduate students at Mines. Specifically, we conducted a set of experiments, namely WalkAway and Linear Array experiments, to characterize the performance of the wireless motes. The motes were also equipped with the Sticking Heartbeat Aperture Resynchronization Protocol (SHARP), a time synchronization protocol developed by a previous computer science graduate student at Mines. This protocol should automatically synchronize the mote's internal clocks and reduce time synchronization errors. We also collected passive data to evaluate the response of GeoMotes to various frequency components associated with the seismic waves. With the data collected from these experiments, we evaluated the performance of the SHARP protocol and compared the performance of our GeoMote wireless system against the industry standard wired seismograph system (Geometric-Geode). Using arrival time analysis and seismic velocity calculations, we set out to answer the following question. Can our wireless sensing system (GeoMotes) perform similarly to a traditional wired system in a realistic scenario?

  5. Ku-band signal design study. [space shuttle orbiter data processing network

    NASA Technical Reports Server (NTRS)

    Rubin, I.

    1978-01-01

    Analytical tools, methods and techniques for assessing the design and performance of the space shuttle orbiter data processing system (DPS) are provided. The computer data processing network is evaluated in the key areas of queueing behavior synchronization and network reliability. The structure of the data processing network is described as well as the system operation principles and the network configuration. The characteristics of the computer systems are indicated. System reliability measures are defined and studied. System and network invulnerability measures are computed. Communication path and network failure analysis techniques are included.

  6. Structural integration and performance of inter-sectoral public health-related policy networks: An analysis across policy phases.

    PubMed

    Peters, D T J M; Raab, J; Grêaux, K M; Stronks, K; Harting, J

    2017-12-01

    Inter-sectoral policy networks may be effective in addressing environmental determinants of health with interventions. However, contradictory results are reported on relations between structural network characteristics (i.e., composition and integration) and network performance, such as addressing environmental determinants of health. This study examines these relations in different phases of the policy process. A multiple-case study was performed on four public health-related policy networks. Using a snowball method among network actors, overall and sub-networks per policy phase were identified and the policy sector of each actor was assigned. To operationalise the outcome variable, interventions were classified by the proportion of environmental determinants they addressed. In the overall networks, no relation was found between structural network characteristics and network performance. In most effective cases, the policy development sub-networks were characterised by integration with less interrelations between actors (low cohesion), more equally distributed distances between the actors (low closeness centralisation), and horizontal integration in inter-sectoral cliques. The most effective case had non-public health central actors with less connections in all sub-networks. The results suggest that, to address environmental determinants of health, sub-networks should be inter-sectorally composed in the policy development rather than in the intervention development and implementation phases, and that policy development actors should have the opportunity to connect with other actors, without strong direction from a central actor. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Emulation Platform for Cyber Analysis of Wireless Communication Network Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Leeuwen, Brian P.; Eldridge, John M.

    Wireless networking and mobile communications is increasing around the world and in all sectors of our lives. With increasing use, the density and complexity of the systems increase with more base stations and advanced protocols to enable higher data throughputs. The security of data transported over wireless networks must also evolve with the advances in technologies enabling more capable wireless networks. However, means for analysis of the effectiveness of security approaches and implementations used on wireless networks are lacking. More specifically a capability to analyze the lower-layer protocols (i.e., Link and Physical layers) is a major challenge. An analysis approachmore » that incorporates protocol implementations without the need for RF emissions is necessary. In this research paper several emulation tools and custom extensions that enable an analysis platform to perform cyber security analysis of lower layer wireless networks is presented. A use case of a published exploit in the 802.11 (i.e., WiFi) protocol family is provided to demonstrate the effectiveness of the described emulation platform.« less

  8. Towards a Methodology for Validation of Centrality Measures in Complex Networks

    PubMed Central

    2014-01-01

    Background Living systems are associated with Social networks — networks made up of nodes, some of which may be more important in various aspects as compared to others. While different quantitative measures labeled as “centralities” have previously been used in the network analysis community to find out influential nodes in a network, it is debatable how valid the centrality measures actually are. In other words, the research question that remains unanswered is: how exactly do these measures perform in the real world? So, as an example, if a centrality of a particular node identifies it to be important, is the node actually important? Purpose The goal of this paper is not just to perform a traditional social network analysis but rather to evaluate different centrality measures by conducting an empirical study analyzing exactly how do network centralities correlate with data from published multidisciplinary network data sets. Method We take standard published network data sets while using a random network to establish a baseline. These data sets included the Zachary's Karate Club network, dolphin social network and a neural network of nematode Caenorhabditis elegans. Each of the data sets was analyzed in terms of different centrality measures and compared with existing knowledge from associated published articles to review the role of each centrality measure in the determination of influential nodes. Results Our empirical analysis demonstrates that in the chosen network data sets, nodes which had a high Closeness Centrality also had a high Eccentricity Centrality. Likewise high Degree Centrality also correlated closely with a high Eigenvector Centrality. Whereas Betweenness Centrality varied according to network topology and did not demonstrate any noticeable pattern. In terms of identification of key nodes, we discovered that as compared with other centrality measures, Eigenvector and Eccentricity Centralities were better able to identify important nodes. PMID:24709999

  9. WGCNA: an R package for weighted correlation network analysis

    PubMed Central

    Langfelder, Peter; Horvath, Steve

    2008-01-01

    Background Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. Results The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. Conclusion The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at . PMID:19114008

  10. Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange

    NASA Astrophysics Data System (ADS)

    Jahangoshai Rezaee, Mustafa; Jozmaleki, Mehrdad; Valipour, Mahsa

    2018-01-01

    One of the main features to invest in stock exchange companies is their financial performance. On the other hand, conventional evaluation methods such as data envelopment analysis are not only a retrospective process, but are also a process, which are incomplete and ineffective approaches to evaluate the companies in the future. To remove this problem, it is required to plan an expert system for evaluating organizations when the online data are received from stock exchange market. This paper deals with an approach for predicting the online financial performance of companies when data are received in different time's intervals. The proposed approach is based on integrating fuzzy C-means (FCM), data envelopment analysis (DEA) and artificial neural network (ANN). The classical FCM method is unable to update the number of clusters and their members when the data are changed or the new data are received. Hence, this method is developed in order to make dynamic features for the number of clusters and clusters members in classical FCM. Then, DEA is used to evaluate DMUs by using financial ratios to provide targets in neural network. Finally, the designed network is trained and prepared for predicting companies' future performance. The data on Tehran Stock Market companies for six consecutive years (2007-2012) are used to show the abilities of the proposed approach.

  11. Optimal Base Station Density of Dense Network: From the Viewpoint of Interference and Load.

    PubMed

    Feng, Jianyuan; Feng, Zhiyong

    2017-09-11

    Network densification is attracting increasing attention recently due to its ability to improve network capacity by spatial reuse and relieve congestion by offloading. However, excessive densification and aggressive offloading can also cause the degradation of network performance due to problems of interference and load. In this paper, with consideration of load issues, we study the optimal base station density that maximizes the throughput of the network. The expected link rate and the utilization ratio of the contention-based channel are derived as the functions of base station density using the Poisson Point Process (PPP) and Markov Chain. They reveal the rules of deployment. Based on these results, we obtain the throughput of the network and indicate the optimal deployment density under different network conditions. Extensive simulations are conducted to validate our analysis and show the substantial performance gain obtained by the proposed deployment scheme. These results can provide guidance for the network densification.

  12. Systemic risk on different interbank network topologies

    NASA Astrophysics Data System (ADS)

    Lenzu, Simone; Tedeschi, Gabriele

    2012-09-01

    In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.

  13. Connectivity: Performance Portable Algorithms for graph connectivity v. 0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slota, George; Rajamanickam, Sivasankaran; Madduri, Kamesh

    Graphs occur in several places in real world from road networks, social networks and scientific simulations. Connectivity is a graph analysis software to graph connectivity in modern architectures like multicore CPUs, Xeon Phi and GPUs.

  14. Predictive Control of Networked Multiagent Systems via Cloud Computing.

    PubMed

    Liu, Guo-Ping

    2017-01-18

    This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.

  15. Graph analysis of functional brain networks: practical issues in translational neuroscience

    PubMed Central

    De Vico Fallani, Fabrizio; Richiardi, Jonas; Chavez, Mario; Achard, Sophie

    2014-01-01

    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes. PMID:25180301

  16. Social Insects: A Model System for Network Dynamics

    NASA Astrophysics Data System (ADS)

    Charbonneau, Daniel; Blonder, Benjamin; Dornhaus, Anna

    Social insect colonies (ants, bees, wasps, and termites) show sophisticated collective problem-solving in the face of variable constraints. Individuals exchange information and materials such as food. The resulting network structure and dynamics can inform us about the mechanisms by which the insects achieve particular collective behaviors and these can be transposed to man-made and social networks. We discuss how network analysis can answer important questions about social insects, such as how effective task allocation or information flow is realized. We put forward the idea that network analysis methods are under-utilized in social insect research, and that they can provide novel ways to view the complexity of collective behavior, particularly if network dynamics are taken into account. To illustrate this, we present an example of network tasks performed by ant workers, linked by instances of workers switching from one task to another. We show how temporal network analysis can propose and test new hypotheses on mechanisms of task allocation, and how adding temporal elements to static networks can drastically change results. We discuss the benefits of using social insects as models for complex systems in general. There are multiple opportunities emergent technologies and analysis methods in facilitating research on social insect network. The potential for interdisciplinary work could significantly advance diverse fields such as behavioral ecology, computer sciences, and engineering.

  17. System Analysis for the Huntsville Operation Support Center, Distributed Computer System

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Massey, D.

    1985-01-01

    HOSC as a distributed computing system, is responsible for data acquisition and analysis during Space Shuttle operations. HOSC also provides computing services for Marshall Space Flight Center's nonmission activities. As mission and nonmission activities change, so do the support functions of HOSC change, demonstrating the need for some method of simulating activity at HOSC in various configurations. The simulation developed in this work primarily models the HYPERchannel network. The model simulates the activity of a steady state network, reporting statistics such as, transmitted bits, collision statistics, frame sequences transmitted, and average message delay. These statistics are used to evaluate such performance indicators as throughout, utilization, and delay. Thus the overall performance of the network is evaluated, as well as predicting possible overload conditions.

  18. Pulse-coupled neural network implementation in FPGA

    NASA Astrophysics Data System (ADS)

    Waldemark, Joakim T. A.; Lindblad, Thomas; Lindsey, Clark S.; Waldemark, Karina E.; Oberg, Johnny; Millberg, Mikael

    1998-03-01

    Pulse Coupled Neural Networks (PCNN) are biologically inspired neural networks, mainly based on studies of the visual cortex of small mammals. The PCNN is very well suited as a pre- processor for image processing, particularly in connection with object isolation, edge detection and segmentation. Several implementations of PCNN on von Neumann computers, as well as on special parallel processing hardware devices (e.g. SIMD), exist. However, these implementations are not as flexible as required for many applications. Here we present an implementation in Field Programmable Gate Arrays (FPGA) together with a performance analysis. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications. The latter may include advanced on-line image analysis with close to real-time performance.

  19. Reliability studies of Integrated Modular Engine system designs

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-01-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  20. Reliability studies of integrated modular engine system designs

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-01-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  1. Reliability studies of integrated modular engine system designs

    NASA Astrophysics Data System (ADS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-06-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  2. Reliability studies of Integrated Modular Engine system designs

    NASA Astrophysics Data System (ADS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-06-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  3. Causal functional contributions and interactions in the attention network of the brain: an objective multi-perturbation analysis.

    PubMed

    Zavaglia, Melissa; Hilgetag, Claus C

    2016-06-01

    Spatial attention is a prime example for the distributed network functions of the brain. Lesion studies in animal models have been used to investigate intact attentional mechanisms as well as perspectives for rehabilitation in the injured brain. Here, we systematically analyzed behavioral data from cooling deactivation and permanent lesion experiments in the cat, where unilateral deactivation of the posterior parietal cortex (in the vicinity of the posterior middle suprasylvian cortex, pMS) or the superior colliculus (SC) cause a severe neglect in the contralateral hemifield. Counterintuitively, additional deactivation of structures in the opposite hemisphere reverses the deficit. Using such lesion data, we employed a game-theoretical approach, multi-perturbation Shapley value analysis (MSA), for inferring functional contributions and network interactions of bilateral pMS and SC from behavioral performance in visual attention studies. The approach provides an objective theoretical strategy for lesion inferences and allows a unique quantitative characterization of regional functional contributions and interactions on the basis of multi-perturbations. The quantitative analysis demonstrated that right posterior parietal cortex and superior colliculus made the strongest positive contributions to left-field orienting, while left brain regions had negative contributions, implying that their perturbation may reverse the effects of contralateral lesions or improve normal function. An analysis of functional modulations and interactions among the regions revealed redundant interactions (implying functional overlap) between regions within each hemisphere, and synergistic interactions between bilateral regions. To assess the reliability of the MSA method in the face of variable and incomplete input data, we performed a sensitivity analysis, investigating how much the contribution values of the four regions depended on the performance of specific configurations and on the prediction of unknown performances. The results suggest that the MSA approach is sensitive to categorical, but insensitive to gradual changes in the input data. Finally, we created a basic network model that was based on the known anatomical interactions among cortical-tectal regions and reproduced the experimentally observed behavior in visual orienting. We discuss the structural organization of the network model relative to the causal modulations identified by MSA, to aid a mechanistic understanding of the attention network of the brain.

  4. A local structure model for network analysis

    DOE PAGES

    Casleton, Emily; Nordman, Daniel; Kaiser, Mark

    2017-04-01

    The statistical analysis of networks is a popular research topic with ever widening applications. Exponential random graph models (ERGMs), which specify a model through interpretable, global network features, are common for this purpose. In this study we introduce a new class of models for network analysis, called local structure graph models (LSGMs). In contrast to an ERGM, a LSGM specifies a network model through local features and allows for an interpretable and controllable local dependence structure. In particular, LSGMs are formulated by a set of full conditional distributions for each network edge, e.g., the probability of edge presence/absence, depending onmore » neighborhoods of other edges. Additional model features are introduced to aid in specification and to help alleviate a common issue (occurring also with ERGMs) of model degeneracy. Finally, the proposed models are demonstrated on a network of tornadoes in Arkansas where a LSGM is shown to perform significantly better than a model without local dependence.« less

  5. A local structure model for network analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casleton, Emily; Nordman, Daniel; Kaiser, Mark

    The statistical analysis of networks is a popular research topic with ever widening applications. Exponential random graph models (ERGMs), which specify a model through interpretable, global network features, are common for this purpose. In this study we introduce a new class of models for network analysis, called local structure graph models (LSGMs). In contrast to an ERGM, a LSGM specifies a network model through local features and allows for an interpretable and controllable local dependence structure. In particular, LSGMs are formulated by a set of full conditional distributions for each network edge, e.g., the probability of edge presence/absence, depending onmore » neighborhoods of other edges. Additional model features are introduced to aid in specification and to help alleviate a common issue (occurring also with ERGMs) of model degeneracy. Finally, the proposed models are demonstrated on a network of tornadoes in Arkansas where a LSGM is shown to perform significantly better than a model without local dependence.« less

  6. Comparative analysis of two discretizations of Ricci curvature for complex networks.

    PubMed

    Samal, Areejit; Sreejith, R P; Gu, Jiao; Liu, Shiping; Saucan, Emil; Jost, Jürgen

    2018-06-05

    We have performed an empirical comparison of two distinct notions of discrete Ricci curvature for graphs or networks, namely, the Forman-Ricci curvature and Ollivier-Ricci curvature. Importantly, these two discretizations of the Ricci curvature were developed based on different properties of the classical smooth notion, and thus, the two notions shed light on different aspects of network structure and behavior. Nevertheless, our extensive computational analysis in a wide range of both model and real-world networks shows that the two discretizations of Ricci curvature are highly correlated in many networks. Moreover, we show that if one considers the augmented Forman-Ricci curvature which also accounts for the two-dimensional simplicial complexes arising in graphs, the observed correlation between the two discretizations is even higher, especially, in real networks. Besides the potential theoretical implications of these observations, the close relationship between the two discretizations has practical implications whereby Forman-Ricci curvature can be employed in place of Ollivier-Ricci curvature for faster computation in larger real-world networks whenever coarse analysis suffices.

  7. Precipitation forecast using artificial neural networks. An application to the Guadalupe Valley, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Herrera-Oliva, C. S.

    2013-05-01

    In this work we design and implement a method for the determination of precipitation forecast through the application of an elementary neuronal network (perceptron) to the statistical analysis of the precipitation reported in catalogues. The method is limited mainly by the catalogue length (and, in a smaller degree, by its accuracy). The method performance is measured using grading functions that evaluate a tradeoff between positive and negative aspects of performance. The method is applied to the Guadalupe Valley, Baja California, Mexico. Using consecutive intervals of dt=0.1 year, employing the data of several climatological stations situated in and surrounding this important wine industries zone. We evaluated the performance of different models of ANN, whose variables of entrance are the heights of precipitation. The results obtained were satisfactory, except for exceptional values of rain. Key words: precipitation forecast, artificial neural networks, statistical analysis

  8. Control and communication co-design: analysis and practice on performance improvement in distributed measurement and control system based on fieldbus and Ethernet.

    PubMed

    Liang, Geng

    2015-01-01

    In this paper, improving control performance of a networked control system by reducing DTD in a different perspective was investigated. Two different network architectures for system implementation were presented. Analysis and improvement dealing with DTD for the experimental control system were expounded. Effects of control scheme configuration on DTD in the form of FB were investigated and corresponding improvements by reallocation of FB and re-arrangement of schedule table are proposed. Issues of DTD in hybrid network were investigated and corresponding approaches to improve performance including (1) reducing DTD in PLC or PAC by way of IEC61499 and (2) cascade Smith predictive control with BPNN-based identification were proposed and investigated. Control effects under the proposed methodologies were also given. Experimental and field practices validated these methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. The use of neural network technology to model swimming performance.

    PubMed

    Silva, António José; Costa, Aldo Manuel; Oliveira, Paulo Moura; Reis, Victor Machado; Saavedra, José; Perl, Jurgen; Rouboa, Abel; Marinho, Daniel Almeida

    2007-01-01

    to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons) and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females) of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility), swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics) and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron) with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances) is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports. Key pointsThe non-linear analysis resulting from the use of feed forward neural network allowed us the development of four performance models.The mean difference between the true and estimated results performed by each one of the four neural network models constructed was low.The neural network tool can be a good approach in the resolution of the performance modeling as an alternative to the standard statistical models that presume well-defined distributions and independence among all inputs.The use of neural networks for sports sciences application allowed us to create very realistic models for swimming performance prediction based on previous selected criterions that were related with the dependent variable (performance).

  10. Ad hoc Laser networks component technology for modular spacecraft

    NASA Astrophysics Data System (ADS)

    Huang, Xiujun; Shi, Dele; Ma, Zongfeng; Shen, Jingshi

    2016-03-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  11. Ad hoc laser networks component technology for modular spacecraft

    NASA Astrophysics Data System (ADS)

    Huang, Xiujun; Shi, Dele; Shen, Jingshi

    2017-10-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  12. The Global Oscillation Network Group site survey. 1: Data collection and analysis methods

    NASA Technical Reports Server (NTRS)

    Hill, Frank; Fischer, George; Grier, Jennifer; Leibacher, John W.; Jones, Harrison B.; Jones, Patricia P.; Kupke, Renate; Stebbins, Robin T.

    1994-01-01

    The Global Oscillation Network Group (GONG) Project is planning to place a set of instruments around the world to observe solar oscillations as continuously as possible for at least three years. The Project has now chosen the sites that will comprise the network. This paper describes the methods of data collection and analysis that were used to make this decision. Solar irradiance data were collected with a one-minute cadence at fifteen sites around the world and analyzed to produce statistics of cloud cover, atmospheric extinction, and transparency power spectra at the individual sites. Nearly 200 reasonable six-site networks were assembled from the individual stations, and a set of statistical measures of the performance of the networks was analyzed using a principal component analysis. An accompanying paper presents the results of the survey.

  13. Impact of real-time fMRI working memory feedback training on the interactions between three core brain networks.

    PubMed

    Zhang, Qiushi; Zhang, Gaoyan; Yao, Li; Zhao, Xiaojie

    2015-01-01

    Working memory (WM) refers to the temporary holding and manipulation of information during the performance of a range of cognitive tasks, and WM training is a promising method for improving an individual's cognitive functions. Our previous work demonstrated that WM performance can be improved through self-regulation of dorsal lateral prefrontal cortex (PFC) activation using real-time functional magnetic resonance imaging (rtfMRI), which enables individuals to control local brain activities volitionally according to the neurofeedback. Furthermore, research concerning large-scale brain networks has demonstrated that WM training requires the engagement of several networks, including the central executive network (CEN), the default mode network (DMN) and the salience network (SN), and functional connectivity within the CEN and DMN can be changed by WM training. Although a switching role of the SN between the CEN and DMN has been demonstrated, it remains unclear whether WM training can affect the interactions between the three networks and whether a similar mechanism also exists during the training process. In this study, we investigated the dynamic functional connectivity between the three networks during the rtfMRI feedback training using independent component analysis (ICA) and correlation analysis. The results indicated that functional connectivity within and between the three networks were significantly enhanced by feedback training, and most of the changes were associated with the insula and correlated with behavioral improvements. These findings suggest that the insula plays a critical role in the reorganization of functional connectivity among the three networks induced by rtfMRI training and in WM performance, thus providing new insights into the mechanisms of high-level functions and the clinical treatment of related functional impairments.

  14. A hierarchical clustering scheme approach to assessment of IP-network traffic using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Takuma, Takehisa; Masugi, Masao

    2009-03-01

    This paper presents an approach to the assessment of IP-network traffic in terms of the time variation of self-similarity. To get a comprehensive view in analyzing the degree of long-range dependence (LRD) of IP-network traffic, we use a hierarchical clustering scheme, which provides a way to classify high-dimensional data with a tree-like structure. Also, in the LRD-based analysis, we employ detrended fluctuation analysis (DFA), which is applicable to the analysis of long-range power-law correlations or LRD in non-stationary time-series signals. Based on sequential measurements of IP-network traffic at two locations, this paper derives corresponding values for the LRD-related parameter α that reflects the degree of LRD of measured data. In performing the hierarchical clustering scheme, we use three parameters: the α value, average throughput, and the proportion of network traffic that exceeds 80% of network bandwidth for each measured data set. We visually confirm that the traffic data can be classified in accordance with the network traffic properties, resulting in that the combined depiction of the LRD and other factors can give us an effective assessment of network conditions at different times.

  15. An innovative and comprehensive technique to evaluate different measures of medication adherence: The network meta-analysis.

    PubMed

    Tonin, Fernanda S; Wiecek, Elyssa; Torres-Robles, Andrea; Pontarolo, Roberto; Benrimoj, Shalom Charlie I; Fernandez-Llimos, Fernando; Garcia-Cardenas, Victoria

    2018-05-19

    Poor medication adherence is associated with adverse health outcomes and higher costs of care. However, inconsistencies in the assessment of adherence are found in the literature. To evaluate the effect of different measures of adherence in the comparative effectiveness of complex interventions to enhance patients' adherence to prescribed medications. A systematic review with network meta-analysis was performed. Electronic searches for relevant pairwise meta-analysis including trials of interventions that aimed to improve medication adherence were performed in PubMed. Data extraction was conducted with eligible trials evaluating short-period adherence follow-up (until 3 months) using any measure of adherence: self-report, pill count, or MEMS (medication event monitoring system). To standardize the results obtained with these different measures, an overall composite measure and an objective composite measure were also calculated. Network meta-analyses for each measure of adherence were built. Rank order and surface under the cumulative ranking curve analyses (SUCRA) were performed. Ninety-one trials were included in the network meta-analyses. The five network meta-analyses demonstrated robustness and reliability. Results obtained for all measures of adherence were similar across them and to both composite measures. For both composite measures, interventions comprising economic + technical components were the best option (90% of probability in SUCRA analysis) with statistical superiority against almost all other interventions and against standard care (odds ratio with 95% credibility interval ranging from 0.09 to 0.25 [0.02, 0.98]). The use of network meta-analysis was reliable to compare different measures of adherence of complex interventions in short-periods follow-up. Analyses with longer follow-up periods are needed to confirm these results. Different measures of adherence produced similar results. The use of composite measures revealed reliable alternatives to establish a broader and more detailed picture of adherence. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Network Effects on Scientific Collaborations

    PubMed Central

    Uddin, Shahadat; Hossain, Liaquat; Rasmussen, Kim

    2013-01-01

    Background The analysis of co-authorship network aims at exploring the impact of network structure on the outcome of scientific collaborations and research publications. However, little is known about what network properties are associated with authors who have increased number of joint publications and are being cited highly. Methodology/Principal Findings Measures of social network analysis, for example network centrality and tie strength, have been utilized extensively in current co-authorship literature to explore different behavioural patterns of co-authorship networks. Using three SNA measures (i.e., degree centrality, closeness centrality and betweenness centrality), we explore scientific collaboration networks to understand factors influencing performance (i.e., citation count) and formation (tie strength between authors) of such networks. A citation count is the number of times an article is cited by other articles. We use co-authorship dataset of the research field of ‘steel structure’ for the year 2005 to 2009. To measure the strength of scientific collaboration between two authors, we consider the number of articles co-authored by them. In this study, we examine how citation count of a scientific publication is influenced by different centrality measures of its co-author(s) in a co-authorship network. We further analyze the impact of the network positions of authors on the strength of their scientific collaborations. We use both correlation and regression methods for data analysis leading to statistical validation. We identify that citation count of a research article is positively correlated with the degree centrality and betweenness centrality values of its co-author(s). Also, we reveal that degree centrality and betweenness centrality values of authors in a co-authorship network are positively correlated with the strength of their scientific collaborations. Conclusions/Significance Authors’ network positions in co-authorship networks influence the performance (i.e., citation count) and formation (i.e., tie strength) of scientific collaborations. PMID:23469021

  17. The importance of national and international collaboration in adult congenital heart disease: A network analysis of research output.

    PubMed

    Orwat, Melanie Iris; Kempny, Aleksander; Bauer, Ulrike; Gatzoulis, Michael A; Baumgartner, Helmut; Diller, Gerhard-Paul

    2015-09-15

    The determinants of adult congenital heart disease (ACHD) research output are only partially understood. The heterogeneity of ACHD naturally calls for collaborative work; however, limited information exists on the impact of collaboration on academic performance. We aimed to examine the global topology of ACHD research, distribution of research collaboration and its association with cumulative research output. Based on publications presenting original research between 2005 and 2011, a network analysis was performed quantifying centrality measures and key players in the field of ACHD. In addition, network maps were produced to illustrate the global distribution and interconnected nature of ACHD research. The proportion of collaborative research was 35.6 % overall, with a wide variation between countries (7.1 to 62.8%). The degree of research collaboration, as well as measures of network centrality (betweenness and degree centrality), were statistically associated with cumulative research output independently of national wealth and available workforce. The global ACHD research network was found to be scale-free with a small number of central hubs and a relatively large number of peripheral nodes. In addition, we could identify potentially influential hubs based on cluster analysis and measures of centrality/key player analysis. Using network analysis methods the current study illustrates the complex and global structures of ACHD research. It suggests that collaboration between research institutions is associated with higher academic output. As a consequence national and international collaboration in ACHD research should be encouraged and the creation of an adequate supporting infrastructure should be further promoted. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.

    PubMed

    Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar

    2017-09-01

    Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.

  19. A Survey of Techniques for Security Architecture Analysis

    DTIC Science & Technology

    2003-05-01

    to be corrected immediately. 49 DSTO-TR-1438 A software phenomenon is the "user innovation network", examples of such networks being "free" and "open...source" software projects. These networks have innovation development, production, distribution and consumption all being performed by users/self...manufacturers. "User innovation networks can function entirely independently of manufacturers because (1) at least some users have sufficient incentive to

  20. A Risk Stratification Model for Lung Cancer Based on Gene Coexpression Network and Deep Learning

    PubMed Central

    2018-01-01

    Risk stratification model for lung cancer with gene expression profile is of great interest. Instead of previous models based on individual prognostic genes, we aimed to develop a novel system-level risk stratification model for lung adenocarcinoma based on gene coexpression network. Using multiple microarray, gene coexpression network analysis was performed to identify survival-related networks. A deep learning based risk stratification model was constructed with representative genes of these networks. The model was validated in two test sets. Survival analysis was performed using the output of the model to evaluate whether it could predict patients' survival independent of clinicopathological variables. Five networks were significantly associated with patients' survival. Considering prognostic significance and representativeness, genes of the two survival-related networks were selected for input of the model. The output of the model was significantly associated with patients' survival in two test sets and training set (p < 0.00001, p < 0.0001 and p = 0.02 for training and test sets 1 and 2, resp.). In multivariate analyses, the model was associated with patients' prognosis independent of other clinicopathological features. Our study presents a new perspective on incorporating gene coexpression networks into the gene expression signature and clinical application of deep learning in genomic data science for prognosis prediction. PMID:29581968

  1. DSRC standards testing : 5MHz band-plan analysis, clustered system architecture and communication in emergency scenarios.

    DOT National Transportation Integrated Search

    2011-12-01

    Researchers performed a system level technical study of physical layer and network layer performance of vehicular communication in a specially licensed Dedicated Short Range Communication (DSRC) 5.9 GHz frequency band. Physical layer analysis provide...

  2. Findings from an Organizational Network Analysis to Support Local Public Health Management

    PubMed Central

    Caldwell, Michael; Rockoff, Maxine L.; Gebbie, Kristine; Carley, Kathleen M.; Bakken, Suzanne

    2008-01-01

    We assessed the feasibility of using organizational network analysis in a local public health organization. The research setting was an urban/suburban county health department with 156 employees. The goal of the research was to study communication and information flow in the department and to assess the technique for public health management. Network data were derived from survey questionnaires. Computational analysis was performed with the Organizational Risk Analyzer. Analysis revealed centralized communication, limited interdependencies, potential knowledge loss through retirement, and possible informational silos. The findings suggested opportunities for more cross program coordination but also suggested the presences of potentially efficient communication paths and potentially beneficial social connectedness. Managers found the findings useful to support decision making. Public health organizations must be effective in an increasingly complex environment. Network analysis can help build public health capacity for complex system management. PMID:18481183

  3. Comparative safety and efficacy of vasopressors for mortality in septic shock: A network meta-analysis.

    PubMed

    Nagendran, Myura; Maruthappu, Mahiben; Gordon, Anthony C; Gurusamy, Kurinchi S

    2016-05-01

    Septic shock is a life-threatening condition requiring vasopressor agents to support the circulatory system. Several agents exist with choice typically guided by the specific clinical scenario. We used a network meta-analysis approach to rate the comparative efficacy and safety of vasopressors for mortality and arrhythmia incidence in septic shock patients. We performed a comprehensive electronic database search including Medline, Embase, Science Citation Index Expanded and the Cochrane database. Randomised trials investigating vasopressor agents in septic shock patients and specifically assessing 28-day mortality or arrhythmia incidence were included. A Bayesian network meta-analysis was performed using Markov chain Monte Carlo methods. Thirteen trials of low to moderate risk of bias in which 3146 patients were randomised were included. There was no pairwise evidence to suggest one agent was superior over another for mortality. In the network meta-analysis, vasopressin was significantly superior to dopamine (OR 0.68 (95% CI 0.5 to 0.94)) for mortality. For arrhythmia incidence, standard pairwise meta-analyses confirmed that dopamine led to a higher incidence of arrhythmias than norepinephrine (OR 2.69 (95% CI 2.08 to 3.47)). In the network meta-analysis, there was no evidence of superiority of one agent over another. In this network meta-analysis, vasopressin was superior to dopamine for 28-day mortality in septic shock. Existing pairwise information supports the use of norepinephrine over dopamine. Our findings suggest that dopamine should be avoided in patients with septic shock and that other vasopressor agents should continue to be based on existing guidelines and clinical judgement of the specific presentation of the patient.

  4. Evaluation of Supply Chain Efficiency Based on a Novel Network of Data Envelopment Analysis Model

    NASA Astrophysics Data System (ADS)

    Fu, Li Fang; Meng, Jun; Liu, Ying

    2015-12-01

    Performance evaluation of supply chain (SC) is a vital topic in SC management and inherently complex problems with multilayered internal linkages and activities of multiple entities. Recently, various Network Data Envelopment Analysis (NDEA) models, which opened the “black box” of conventional DEA, were developed and applied to evaluate the complex SC with a multilayer network structure. However, most of them are input or output oriented models which cannot take into consideration the nonproportional changes of inputs and outputs simultaneously. This paper extends the Slack-based measure (SBM) model to a nonradial, nonoriented network model named as U-NSBM with the presence of undesirable outputs in the SC. A numerical example is presented to demonstrate the applicability of the model in quantifying the efficiency and ranking the supply chain performance. By comparing with the CCR and U-SBM models, it is shown that the proposed model has higher distinguishing ability and gives feasible solution in the presence of undesirable outputs. Meanwhile, it provides more insights for decision makers about the source of inefficiency as well as the guidance to improve the SC performance.

  5. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code.

    PubMed

    Kunkel, Susanne; Schenck, Wolfram

    2017-01-01

    NEST is a simulator for spiking neuronal networks that commits to a general purpose approach: It allows for high flexibility in the design of network models, and its applications range from small-scale simulations on laptops to brain-scale simulations on supercomputers. Hence, developers need to test their code for various use cases and ensure that changes to code do not impair scalability. However, running a full set of benchmarks on a supercomputer takes up precious compute-time resources and can entail long queuing times. Here, we present the NEST dry-run mode, which enables comprehensive dynamic code analysis without requiring access to high-performance computing facilities. A dry-run simulation is carried out by a single process, which performs all simulation steps except communication as if it was part of a parallel environment with many processes. We show that measurements of memory usage and runtime of neuronal network simulations closely match the corresponding dry-run data. Furthermore, we demonstrate the successful application of the dry-run mode in the areas of profiling and performance modeling.

  6. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code

    PubMed Central

    Kunkel, Susanne; Schenck, Wolfram

    2017-01-01

    NEST is a simulator for spiking neuronal networks that commits to a general purpose approach: It allows for high flexibility in the design of network models, and its applications range from small-scale simulations on laptops to brain-scale simulations on supercomputers. Hence, developers need to test their code for various use cases and ensure that changes to code do not impair scalability. However, running a full set of benchmarks on a supercomputer takes up precious compute-time resources and can entail long queuing times. Here, we present the NEST dry-run mode, which enables comprehensive dynamic code analysis without requiring access to high-performance computing facilities. A dry-run simulation is carried out by a single process, which performs all simulation steps except communication as if it was part of a parallel environment with many processes. We show that measurements of memory usage and runtime of neuronal network simulations closely match the corresponding dry-run data. Furthermore, we demonstrate the successful application of the dry-run mode in the areas of profiling and performance modeling. PMID:28701946

  7. Simulation of Attacks for Security in Wireless Sensor Network.

    PubMed

    Diaz, Alvaro; Sanchez, Pablo

    2016-11-18

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node's software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work.

  8. Shuttle orbiter S-band payload communications equipment design evaluation

    NASA Technical Reports Server (NTRS)

    Springett, J. C.; Maronde, R. G.

    1979-01-01

    The analysis of the design, and the performance assessment of the Orbiter S-band communication equipment are reported. The equipment considered include: network transponder, network signal processor, FM transmitter, FM signal processor, payload interrogator, and payload signal processor.

  9. Mother's Social Network and Family Language Maintenance

    ERIC Educational Resources Information Center

    Velazquez, Isabel

    2013-01-01

    This article reports the results of a social network analysis (SNA) performed on the mother's primary network of interaction in 15 Mexican American families in the city of El Paso, Texas, the neighbourhood of La Villita, in Chicago, and the city of Lincoln, Nebraska. The goal of this study was to examine potential opportunities for Spanish use by…

  10. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    NASA Technical Reports Server (NTRS)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  11. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    NASA Technical Reports Server (NTRS)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  12. Using deep neural networks to augment NIF post-shot analysis

    NASA Astrophysics Data System (ADS)

    Humbird, Kelli; Peterson, Luc; McClarren, Ryan; Field, John; Gaffney, Jim; Kruse, Michael; Nora, Ryan; Spears, Brian

    2017-10-01

    Post-shot analysis of National Ignition Facility (NIF) experiments is the process of determining which simulation inputs yield results consistent with experimental observations. This analysis is typically accomplished by running suites of manually adjusted simulations, or Monte Carlo sampling surrogate models that approximate the response surfaces of the physics code. These approaches are expensive and often find simulations that match only a small subset of observables simultaneously. We demonstrate an alternative method for performing post-shot analysis using inverse models, which map directly from experimental observables to simulation inputs with quantified uncertainties. The models are created using a novel machine learning algorithm which automates the construction and initialization of deep neural networks to optimize predictive accuracy. We show how these neural networks, trained on large databases of post-shot simulations, can rigorously quantify the agreement between simulation and experiment. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Game theoretic approach for cooperative feature extraction in camera networks

    NASA Astrophysics Data System (ADS)

    Redondi, Alessandro E. C.; Baroffio, Luca; Cesana, Matteo; Tagliasacchi, Marco

    2016-07-01

    Visual sensor networks (VSNs) consist of several camera nodes with wireless communication capabilities that can perform visual analysis tasks such as object identification, recognition, and tracking. Often, VSN deployments result in many camera nodes with overlapping fields of view. In the past, such redundancy has been exploited in two different ways: (1) to improve the accuracy/quality of the visual analysis task by exploiting multiview information or (2) to reduce the energy consumed for performing the visual task, by applying temporal scheduling techniques among the cameras. We propose a game theoretic framework based on the Nash bargaining solution to bridge the gap between the two aforementioned approaches. The key tenet of the proposed framework is for cameras to reduce the consumed energy in the analysis process by exploiting the redundancy in the reciprocal fields of view. Experimental results in both simulated and real-life scenarios confirm that the proposed scheme is able to increase the network lifetime, with a negligible loss in terms of visual analysis accuracy.

  14. Interdependent Multi-Layer Networks: Modeling and Survivability Analysis with Applications to Space-Based Networks

    PubMed Central

    Castet, Jean-Francois; Saleh, Joseph H.

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks. PMID:23599835

  15. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    PubMed

    Castet, Jean-Francois; Saleh, Joseph H

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks.

  16. Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis.

    PubMed

    Faradji, Farhad; Ward, Rabab K; Birch, Gary E

    2009-06-15

    The feasibility of having a self-paced brain-computer interface (BCI) based on mental tasks is investigated. The EEG signals of four subjects performing five mental tasks each are used in the design of a 2-state self-paced BCI. The output of the BCI should only be activated when the subject performs a specific mental task and should remain inactive otherwise. For each subject and each task, the feature coefficient and the classifier that yield the best performance are selected, using the autoregressive coefficients as the features. The classifier with a zero false positive rate and the highest true positive rate is selected as the best classifier. The classifiers tested include: linear discriminant analysis, quadratic discriminant analysis, Mahalanobis discriminant analysis, support vector machine, and radial basis function neural network. The results show that: (1) some classifiers obtained the desired zero false positive rate; (2) the linear discriminant analysis classifier does not yield acceptable performance; (3) the quadratic discriminant analysis classifier outperforms the Mahalanobis discriminant analysis classifier and performs almost as well as the radial basis function neural network; and (4) the support vector machine classifier has the highest true positive rates but unfortunately has nonzero false positive rates in most cases.

  17. Multi-phenomenology Observation Network Evaluation Tool'' (MONET)

    NASA Astrophysics Data System (ADS)

    Oltrogge, D.; North, P.; Vallado, D.

    2014-09-01

    Evaluating overall performance of an SSA "system-of-systems" observational network collecting against thousands of Resident Space Objects (RSO) is very difficult for typical tasking or scheduling-based analysis tools. This is further complicated by networks that have a wide variety of sensor types and phenomena, to include optical, radar and passive RF types, each having unique resource, ops tempo, competing customer and detectability constraints. We present details of the Multi-phenomenology Observation Network Evaluation Tool (MONET), which circumvents these difficulties by assessing the ideal performance of such a network via a digitized supply-vs-demand approach. Cells of each sensors supply time are distributed among RSO targets of interest to determine the average performance of the network against that set of RSO targets. Orbit Determination heuristics are invoked to represent observation quantity and geometry notionally required to obtain the desired orbit estimation quality. To feed this approach, we derive the detectability and collection rate performance of optical, radar and passive RF sensor physical and performance characteristics. We then prioritize the selected RSO targets according to object size, active/inactive status, orbit regime, and/or other considerations. Finally, the OD-derived tracking demands of each RSO of interest are levied against remaining sensor supply until either (a) all sensor time is exhausted; or (b) the list of RSO targets is exhausted. The outputs from MONET include overall network performance metrics delineated by sensor type, objects and orbits tracked, along with likely orbit accuracies which might result from the conglomerate network tracking.

  18. A neural network device for on-line particle identification in cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Scrimaglio, R.; Finetti, N.; D'Altorio, L.; Rantucci, E.; Raso, M.; Segreto, E.; Tassoni, A.; Cardarilli, G. C.

    2004-05-01

    On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification.

  19. 3-DIMENSIONAL Optoelectronic

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Ashok Venketaraman

    This thesis covers the design, analysis, optimization, and implementation of optoelectronic (N,M,F) networks. (N,M,F) networks are generic space-division networks that are well suited to implementation using optoelectronic integrated circuits and free-space optical interconnects. An (N,M,F) networks consists of N input channels each having a fanout F_{rm o}, M output channels each having a fanin F_{rm i}, and Log_{rm K}(N/F) stages of K x K switches. The functionality of the fanout, switching, and fanin stages depends on the specific application. Three applications of optoelectronic (N,M,F) networks are considered. The first is an optoelectronic (N,1,1) content -addressable memory system that achieves associative recall on two-dimensional images retrieved from a parallel-access optical memory. The design and simulation of the associative memory are discussed, and an experimental emulation of a prototype system using images from a parallel-readout optical disk is presented. The system design provides superior performance to existing electronic content-addressable memory chips in terms of capacity and search rate, and uses readily available optical disk and VLSI technologies. Next, a scalable optoelectronic (N,M,F) neural network that uses free-space holographic optical interconnects is presented. The neural architecture minimizes the number of optical transmitters needed, and provides accurate electronic fanin with low signal skew, and dendritic-type fan-in processing capability in a compact layout. Optimal data-encoding methods and circuit techniques are discussed. The implementation of an prototype optoelectronic neural system, and its application to a simple recognition task is demonstrated. Finally, the design, analysis, and optimization of a (N,N,F) self-routing, packet-switched multistage interconnection network is described. The network is suitable for parallel computing and broadband switching applications. The tradeoff between optical and electronic interconnects is examined quantitatively by varying the electronic switch size K. The performance of the (N,N,F) network versus the fanning parameter F, is also analyzed. It is shown that the optoelectronic (N,N,F) networks provide a range of performance-cost alternatives, and offer superior performance-per-cost to fully electronic switching networks and to previous networks designs.

  20. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    PubMed

    Zhang, Lingling; Hou, Rui; Su, Hailin; Hu, Xiaoli; Wang, Shi; Bao, Zhenmin

    2012-01-01

    Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  1. Analysis of 100Mb/s Ethernet for the Whitney Commodity Computing Testbed

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.; Pedretti, Kevin T.; Kutler, Paul (Technical Monitor)

    1997-01-01

    We evaluate the performance of a Fast Ethernet network configured with a single large switch, a single hub, and a 4x4 2D torus topology in a testbed cluster of "commodity" Pentium Pro PCs. We also evaluated a mixed network composed of ethernet hubs and switches. An MPI collective communication benchmark, and the NAS Parallel Benchmarks version 2.2 (NPB2) show that the torus network performs best for all sizes that we were able to test (up to 16 nodes). For larger networks the ethernet switch outperforms the hub, though its performance is far less than peak. The hub/switch combination tests indicate that the NAS parallel benchmarks are relatively insensitive to hub densities of less than 7 nodes per hub.

  2. Safety Network to Detect Performance Degradation and Pilot Incapacitation (Reseau de securite pour detecter la degradation des performances et la defaillance du pilote)

    DTIC Science & Technology

    1990-09-01

    military pilot acceptance of a safety network system would be based , as always, on the following: a. Do I really need such a system and will it be a...inferring pilot state based on computer analysis of pilot control inputs (or lack of)l. Having decided that the pilot is incapacitated, PMAS would alert...the advances being made in neural network computing machinery have necessitated a complete re-thinking of the conventional serial von Neuman machine

  3. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.

    PubMed

    Zhou, Guangyan; Xia, Jianguo

    2018-06-07

    Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.

  4. A comparative analysis of the statistical properties of large mobile phone calling networks.

    PubMed

    Li, Ming-Xia; Jiang, Zhi-Qiang; Xie, Wen-Jie; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N

    2014-05-30

    Mobile phone calling is one of the most widely used communication methods in modern society. The records of calls among mobile phone users provide us a valuable proxy for the understanding of human communication patterns embedded in social networks. Mobile phone users call each other forming a directed calling network. If only reciprocal calls are considered, we obtain an undirected mutual calling network. The preferential communication behavior between two connected users can be statistically tested and it results in two Bonferroni networks with statistically validated edges. We perform a comparative analysis of the statistical properties of these four networks, which are constructed from the calling records of more than nine million individuals in Shanghai over a period of 110 days. We find that these networks share many common structural properties and also exhibit idiosyncratic features when compared with previously studied large mobile calling networks. The empirical findings provide us an intriguing picture of a representative large social network that might shed new lights on the modelling of large social networks.

  5. Short-term memory capacity in networks via the restricted isometry property.

    PubMed

    Charles, Adam S; Yap, Han Lun; Rozell, Christopher J

    2014-06-01

    Cortical networks are hypothesized to rely on transient network activity to support short-term memory (STM). In this letter, we study the capacity of randomly connected recurrent linear networks for performing STM when the input signals are approximately sparse in some basis. We leverage results from compressed sensing to provide rigorous nonasymptotic recovery guarantees, quantifying the impact of the input sparsity level, the input sparsity basis, and the network characteristics on the system capacity. Our analysis demonstrates that network memory capacities can scale superlinearly with the number of nodes and in some situations can achieve STM capacities that are much larger than the network size. We provide perfect recovery guarantees for finite sequences and recovery bounds for infinite sequences. The latter analysis predicts that network STM systems may have an optimal recovery length that balances errors due to omission and recall mistakes. Furthermore, we show that the conditions yielding optimal STM capacity can be embodied in several network topologies, including networks with sparse or dense connectivities.

  6. Consistent maximum entropy representations of pipe flow networks

    NASA Astrophysics Data System (ADS)

    Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael

    2017-06-01

    The maximum entropy method is used to predict flows on water distribution networks. This analysis extends the water distribution network formulation of Waldrip et al. (2016) Journal of Hydraulic Engineering (ASCE), by the use of a continuous relative entropy defined on a reduced parameter set. This reduction in the parameters that the entropy is defined over ensures consistency between different representations of the same network. The performance of the proposed reduced parameter method is demonstrated with a one-loop network case study.

  7. A Health Insurance Portability and Accountability Act–Compliant Ocular Telehealth Network for the Remote Diagnosis and Management of Diabetic Retinopathy

    PubMed Central

    Li, Yaqin; Karnowski, Thomas P.; Tobin, Kenneth W.; Giancardo, Luca; Morris, Scott; Sparrow, Sylvia E.; Garg, Seema; Fox, Karen

    2011-01-01

    Abstract In this article, we present the design and implementation of a regional ocular telehealth network for remote assessment and management of diabetic retinopathy (DR), including the design requirements, network topology, protocol design, system work flow, graphics user interfaces, and performance evaluation. The Telemedical Retinal Image Analysis and Diagnosis Network is a computer-aided, image analysis telehealth paradigm for the diagnosis of DR and other retinal diseases using fundus images acquired from primary care end users delivering care to underserved patient populations in the mid-South and southeastern United States. PMID:21819244

  8. Self-assembled Ag nanoparticle network passivated by a nano-sized ZnO layer for transparent and flexible film heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr; Kim, Min-Yi

    2015-12-15

    We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, themore » TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.« less

  9. NASCOM network ground communications availability report

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A performance analysis of NASCOM Network circuits is presented. An objective of 99.80 percent availability has been established for all network circuits and an acceptable level of 99.50. A network narrative summary for the current month includes changes in network configurations, current month's totals for modes of service and trouble category losses, a discussion of trends, and significant losses that affected the performance indexes of individual or groups of circuits. A table and narrative summary of those circuits that failed to meet the objective of 99.80% availability for all network circuits and an acceptable level of 99.50. Lost time and interruption tables showing all circuits affected by outages, by trouble category, with their total time and events, scheduled operating hours, and individual availability indexes also are included. Selected circuits whose availabilities have or continue to affect the overall network availability are also analyzed.

  10. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

    PubMed

    Li, Shuai; Li, Yangming; Wang, Zheng

    2013-03-01

    This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks.

    PubMed

    Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario

    2018-03-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.

  12. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks

    PubMed Central

    Grierson, Claire S.

    2018-01-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli. Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution. PMID:29670941

  13. Dynamics of subway networks based on vehicles operation timetable

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui

    2017-05-01

    In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.

  14. Coarse graining for synchronization in directed networks

    NASA Astrophysics Data System (ADS)

    Zeng, An; Lü, Linyuan

    2011-05-01

    Coarse-graining model is a promising way to analyze and visualize large-scale networks. The coarse-grained networks are required to preserve statistical properties as well as the dynamic behaviors of the initial networks. Some methods have been proposed and found effective in undirected networks, while the study on coarse-graining directed networks lacks of consideration. In this paper we proposed a path-based coarse-graining (PCG) method to coarse grain the directed networks. Performing the linear stability analysis of synchronization and numerical simulation of the Kuramoto model on four kinds of directed networks, including tree networks and variants of Barabási-Albert networks, Watts-Strogatz networks, and Erdös-Rényi networks, we find our method can effectively preserve the network synchronizability.

  15. Flexible modulation of network connectivity related to cognition in Alzheimer's disease.

    PubMed

    McLaren, Donald G; Sperling, Reisa A; Atri, Alireza

    2014-10-15

    Functional neuroimaging tools, such as fMRI methods, may elucidate the neural correlates of clinical, behavioral, and cognitive performance. Most functional imaging studies focus on regional task-related activity or resting state connectivity rather than how changes in functional connectivity across conditions and tasks are related to cognitive and behavioral performance. To investigate the promise of characterizing context-dependent connectivity-behavior relationships, this study applies the method of generalized psychophysiological interactions (gPPI) to assess the patterns of associative-memory-related fMRI hippocampal functional connectivity in Alzheimer's disease (AD) associated with performance on memory and other cognitively demanding neuropsychological tests and clinical measures. Twenty-four subjects with mild AD dementia (ages 54-82, nine females) participated in a face-name paired-associate encoding memory study. Generalized PPI analysis was used to estimate the connectivity between the hippocampus and the whole brain during encoding. The difference in hippocampal-whole brain connectivity between encoding novel and encoding repeated face-name pairs was used in multiple-regression analyses as an independent predictor for 10 behavioral, neuropsychological and clinical tests. The analysis revealed connectivity-behavior relationships that were distributed, dynamically overlapping, and task-specific within and across intrinsic networks; hippocampal-whole brain connectivity-behavior relationships were not isolated to single networks, but spanned multiple brain networks. Importantly, these spatially distributed performance patterns were unique for each measure. In general, out-of-network behavioral associations with encoding novel greater than repeated face-name pairs hippocampal-connectivity were observed in the default-mode network, while correlations with encoding repeated greater than novel face-name pairs hippocampal-connectivity were observed in the executive control network (p<0.05, cluster corrected). Psychophysiological interactions revealed significantly more extensive and robust associations between paired-associate encoding task-dependent hippocampal-whole brain connectivity and performance on memory and behavioral/clinical measures than previously revealed by standard activity-behavior analysis. Compared to resting state and task-activation methods, gPPI analyses may be more sensitive to reveal additional complementary information regarding subtle within- and between-network relations. The patterns of robust correlations between hippocampal-whole brain connectivity and behavioral measures identified here suggest that there are 'coordinated states' in the brain; that the dynamic range of these states is related to behavior and cognition; and that these states can be observed and quantified, even in individuals with mild AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Methods for network meta-analysis of continuous outcomes using individual patient data: a case study in acupuncture for chronic pain.

    PubMed

    Saramago, Pedro; Woods, Beth; Weatherly, Helen; Manca, Andrea; Sculpher, Mark; Khan, Kamran; Vickers, Andrew J; MacPherson, Hugh

    2016-10-06

    Network meta-analysis methods, which are an extension of the standard pair-wise synthesis framework, allow for the simultaneous comparison of multiple interventions and consideration of the entire body of evidence in a single statistical model. There are well-established advantages to using individual patient data to perform network meta-analysis and methods for network meta-analysis of individual patient data have already been developed for dichotomous and time-to-event data. This paper describes appropriate methods for the network meta-analysis of individual patient data on continuous outcomes. This paper introduces and describes network meta-analysis of individual patient data models for continuous outcomes using the analysis of covariance framework. Comparisons are made between this approach and change score and final score only approaches, which are frequently used and have been proposed in the methodological literature. A motivating example on the effectiveness of acupuncture for chronic pain is used to demonstrate the methods. Individual patient data on 28 randomised controlled trials were synthesised. Consistency of endpoints across the evidence base was obtained through standardisation and mapping exercises. Individual patient data availability avoided the use of non-baseline-adjusted models, allowing instead for analysis of covariance models to be applied and thus improving the precision of treatment effect estimates while adjusting for baseline imbalance. The network meta-analysis of individual patient data using the analysis of covariance approach is advocated to be the most appropriate modelling approach for network meta-analysis of continuous outcomes, particularly in the presence of baseline imbalance. Further methods developments are required to address the challenge of analysing aggregate level data in the presence of baseline imbalance.

  17. A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network

    DTIC Science & Technology

    2016-04-10

    to interference from a given transmission . We then use our algorithm to perform a network capacity analysis comparing different wireless technologies...A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network Greg Kuperman, Jun Sun, and Aradhana Narula-Tam MIT...the maximum achievable capacity of a multi-hop wireless mesh network subject to interference constraints. Being able to quickly determine the maximum

  18. Information-Theoretic Performance Analysis of Sensor Networks via Markov Modeling of Time Series Data.

    PubMed

    Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K

    2018-06-01

    This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.

  19. Study of co-authorship network of papers in the Journal of Research in Medical Sciences using social network analysis

    PubMed Central

    Zare-Farashbandi, Firoozeh; Geraei, Ehsan; Siamaki, Saba

    2014-01-01

    Background: Co-authorship is one of the most tangible forms of research collaboration. A co-authorship network is a social network in which the authors through participation in one or more publication through an indirect path have linked to each other. The present research using the social network analysis studied co-authorship network of 681 articles published in Journal of Research in Medical Sciences (JRMS) during 2008-2012. Materials and Methods: The study was carried out with the scientometrics approach and using co-authorship network analysis of authors. The topology of the co-authorship network of 681 published articles in JRMS between 2008 and 2012 was analyzed using macro-level metrics indicators of network analysis such as density, clustering coefficient, components and mean distance. In addition, in order to evaluate the performance of each authors and countries in the network, the micro-level indicators such as degree centrality, closeness centrality and betweenness centrality as well as productivity index were used. The UCINET and NetDraw softwares were used to draw and analyze the co-authorship network of the papers. Results: The assessment of the authors productivity in this journal showed that the first ranks were belonged to only five authors, respectively. Furthermore, analysis of the co-authorship of the authors in the network demonstrated that in the betweenness centrality index, three authors of them had the good position in the network. They can be considered as the network leaders able to control the flow of information in the network compared with the other members based on the shortest paths. On the other hand, the key role of the network according to the productivity and centrality indexes was belonged to Iran, Malaysia and United States of America. Conclusion: Co-authorship network of JRMS has the characteristics of a small world network. In addition, the theory of 6° separation is valid in this network was also true. PMID:24672564

  20. Application of neural networks and sensitivity analysis to improved prediction of trauma survival.

    PubMed

    Hunter, A; Kennedy, L; Henry, J; Ferguson, I

    2000-05-01

    The performance of trauma departments is widely audited by applying predictive models that assess probability of survival, and examining the rate of unexpected survivals and deaths. Although the TRISS methodology, a logistic regression modelling technique, is still the de facto standard, it is known that neural network models perform better. A key issue when applying neural network models is the selection of input variables. This paper proposes a novel form of sensitivity analysis, which is simpler to apply than existing techniques, and can be used for both numeric and nominal input variables. The technique is applied to the audit survival problem, and used to analyse the TRISS variables. The conclusions discuss the implications for the design of further improved scoring schemes and predictive models.

  1. Power Consumption Analysis of Operating Systems for Wireless Sensor Networks

    PubMed Central

    Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J.

    2010-01-01

    In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems—TinyOS v1.0, TinyOS v2.0, Mantis and Contiki—running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks. PMID:22219688

  2. Power consumption analysis of operating systems for wireless sensor networks.

    PubMed

    Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J

    2010-01-01

    In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems--TinyOS v1.0, TinyOS v2.0, Mantis and Contiki--running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks.

  3. Development of on-line monitoring system for Nuclear Power Plant (NPP) using neuro-expert, noise analysis, and modified neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subekti, M.; Center for Development of Reactor Safety Technology, National Nuclear Energy Agency of Indonesia, Puspiptek Complex BO.80, Serpong-Tangerang, 15340; Ohno, T.

    2006-07-01

    The neuro-expert has been utilized in previous monitoring-system research of Pressure Water Reactor (PWR). The research improved the monitoring system by utilizing neuro-expert, conventional noise analysis and modified neural networks for capability extension. The parallel method applications required distributed architecture of computer-network for performing real-time tasks. The research aimed to improve the previous monitoring system, which could detect sensor degradation, and to perform the monitoring demonstration in High Temperature Engineering Tested Reactor (HTTR). The developing monitoring system based on some methods that have been tested using the data from online PWR simulator, as well as RSG-GAS (30 MW research reactormore » in Indonesia), will be applied in HTTR for more complex monitoring. (authors)« less

  4. Reliability analysis of degradable networks with modified BPR

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Qing; Zhou, Chao-Fan; Jia, Bin; Zhu, Hua-Bing

    2017-12-01

    In this paper, the effect of the speed limit on degradable networks with capacity restrictions and the forced flow is investigated. The link performance function considering the road capacity is proposed. Additionally, the probability density distribution and the cumulative distribution of link travel time are introduced in the degradable network. By the mean of distinguishing the value of the speed limit, four cases are discussed, respectively. Means and variances of link travel time and route one of the degradable road network are calculated. Besides, by the mean of performing numerical simulation experiments in a specific network, it is found that the speed limit strategy can reduce the travel time budget and mean travel time of link and route. Moreover, it reveals that the speed limit strategy can cut down variances of the travel time of networks to some extent.

  5. Influence maximization based on partial network structure information: A comparative analysis on seed selection heuristics

    NASA Astrophysics Data System (ADS)

    Erkol, Şirag; Yücel, Gönenç

    In this study, the problem of seed selection is investigated. This problem is mainly treated as an optimization problem, which is proved to be NP-hard. There are several heuristic approaches in the literature which mostly use algorithmic heuristics. These approaches mainly focus on the trade-off between computational complexity and accuracy. Although the accuracy of algorithmic heuristics are high, they also have high computational complexity. Furthermore, in the literature, it is generally assumed that complete information on the structure and features of a network is available, which is not the case in most of the times. For the study, a simulation model is constructed, which is capable of creating networks, performing seed selection heuristics, and simulating diffusion models. Novel metric-based seed selection heuristics that rely only on partial information are proposed and tested using the simulation model. These heuristics use local information available from nodes in the synthetically created networks. The performances of heuristics are comparatively analyzed on three different network types. The results clearly show that the performance of a heuristic depends on the structure of a network. A heuristic to be used should be selected after investigating the properties of the network at hand. More importantly, the approach of partial information provided promising results. In certain cases, selection heuristics that rely only on partial network information perform very close to similar heuristics that require complete network data.

  6. Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network.

    PubMed

    Novkovic, Mario; Onder, Lucas; Bocharov, Gennady; Ludewig, Burkhard

    2017-01-01

    Secondary lymphoid organs have developed segregated niches that are able to initiate and maintain effective immune responses. Such global organization requires tight control of diverse cellular components, specifically those that regulate lymphocyte trafficking. Fibroblastic reticular cells (FRCs) form a densely interconnected network in lymph nodes and provide key factors necessary for T cell migration and retention, and foster subsequent interactions between T cells and dendritic cells. Development of integrative systems biology approaches has made it possible to elucidate this multilevel complexity of the immune system. Here, we present a graph theory-based analysis of the FRC network in murine lymph nodes, where generation of the network topology is performed using high-resolution confocal microscopy and 3D reconstruction. This approach facilitates the analysis of physical cell-to-cell connectivity, and estimation of topological robustness and global behavior of the network when it is subjected to perturbation in silico.

  7. The simulation of cropping pattern to improve the performance of irrigation network in Cau irrigation area

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, Retno; Rintis Hadiani, RR; Sobriyah

    2017-01-01

    Cau irrigation area located in Madiun district, East Java Province, irrigates 1.232 Ha of land which covers Cau primary channel irrigation network, Wungu Secondary channel irrigation network, and Grape secondary channel irrigation network. The problems in Cau irrigation area are limited availability of water especially during the dry season (planting season II and III) and non-compliance to cropping patterns. The evaluation of irrigation system performance of Cau irrigation area needs to be done in order to know how far the irrigation system performance is, especially based on planting productivity aspect. The improvement of irrigation network performance through cropping pattern optimization is based on the increase of water necessity fulfillment (k factor), the realization of planting area and rice productivity. The research method of irrigation system performance is by analyzing the secondary data based on the Regulation of Ministry of Public Work and State Minister for Public Housing Number: 12/PRT/M/2015. The analysis of water necessity fulfillment (k factor) uses Public Work Plan Criteria Method. The performance level of planting productivity aspect in existing condition is 87.10%, alternative 1 is 93.90% dan alternative 2 is 96.90%. It means that the performance of the irrigation network from productivity aspect increases 6.80% for alternative 1 and 9.80% for alternative 2.

  8. Altered Pathway Analyzer: A gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways

    PubMed Central

    Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh

    2017-01-01

    Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397

  9. Identification of functional modules using network topology and high-throughput data.

    PubMed

    Ulitsky, Igor; Shamir, Ron

    2007-01-26

    With the advent of systems biology, biological knowledge is often represented today by networks. These include regulatory and metabolic networks, protein-protein interaction networks, and many others. At the same time, high-throughput genomics and proteomics techniques generate very large data sets, which require sophisticated computational analysis. Usually, separate and different analysis methodologies are applied to each of the two data types. An integrated investigation of network and high-throughput information together can improve the quality of the analysis by accounting simultaneously for topological network properties alongside intrinsic features of the high-throughput data. We describe a novel algorithmic framework for this challenge. We first transform the high-throughput data into similarity values, (e.g., by computing pairwise similarity of gene expression patterns from microarray data). Then, given a network of genes or proteins and similarity values between some of them, we seek connected sub-networks (or modules) that manifest high similarity. We develop algorithms for this problem and evaluate their performance on the osmotic shock response network in S. cerevisiae and on the human cell cycle network. We demonstrate that focused, biologically meaningful and relevant functional modules are obtained. In comparison with extant algorithms, our approach has higher sensitivity and higher specificity. We have demonstrated that our method can accurately identify functional modules. Hence, it carries the promise to be highly useful in analysis of high throughput data.

  10. Performance Evaluation of 14 Neural Network Architectures Used for Predicting Heat Transfer Characteristics of Engine Oils

    NASA Astrophysics Data System (ADS)

    Al-Ajmi, R. M.; Abou-Ziyan, H. Z.; Mahmoud, M. A.

    2012-01-01

    This paper reports the results of a comprehensive study that aimed at identifying best neural network architecture and parameters to predict subcooled boiling characteristics of engine oils. A total of 57 different neural networks (NNs) that were derived from 14 different NN architectures were evaluated for four different prediction cases. The NNs were trained on experimental datasets performed on five engine oils of different chemical compositions. The performance of each NN was evaluated using a rigorous statistical analysis as well as careful examination of smoothness of predicted boiling curves. One NN, out of the 57 evaluated, correctly predicted the boiling curves for all cases considered either for individual oils or for all oils taken together. It was found that the pattern selection and weight update techniques strongly affect the performance of the NNs. It was also revealed that the use of descriptive statistical analysis such as R2, mean error, standard deviation, and T and slope tests, is a necessary but not sufficient condition for evaluating NN performance. The performance criteria should also include inspection of the smoothness of the predicted curves either visually or by plotting the slopes of these curves.

  11. CUFID-query: accurate network querying through random walk based network flow estimation.

    PubMed

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive performance evaluation based on biological networks with known functional modules, we show that CUFID-query outperforms the existing state-of-the-art algorithms in terms of prediction accuracy and biological significance of the predictions.

  12. Performance analysis of Integrated Communication and Control System networks

    NASA Technical Reports Server (NTRS)

    Halevi, Y.; Ray, A.

    1990-01-01

    This paper presents statistical analysis of delays in Integrated Communication and Control System (ICCS) networks that are based on asynchronous time-division multiplexing. The models are obtained in closed form for analyzing control systems with randomly varying delays. The results of this research are applicable to ICCS design for complex dynamical processes like advanced aircraft and spacecraft, autonomous manufacturing plants, and chemical and processing plants.

  13. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements.

    PubMed

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks.

  14. Communications network design and costing model users manual

    NASA Technical Reports Server (NTRS)

    Logan, K. P.; Somes, S. S.; Clark, C. A.

    1983-01-01

    The information and procedures needed to exercise the communications network design and costing model for performing network analysis are presented. Specific procedures are included for executing the model on the NASA Lewis Research Center IBM 3033 computer. The concepts, functions, and data bases relating to the model are described. Model parameters and their format specifications for running the model are detailed.

  15. Child Pornography in Peer-to-Peer Networks

    ERIC Educational Resources Information Center

    Steel, Chad M. S.

    2009-01-01

    Objective: The presence of child pornography in peer-to-peer networks is not disputed, but there has been little effort done to quantify and analyze the distribution and nature of that content to-date. By performing an analysis of queries and query hits on the largest peer-to-peer network, we are able to both quantify and describe the nature of…

  16. Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mobile Relay.

    PubMed

    Zhong, Xuefeng; Chen, Fangjiong; Fan, Jiasheng; Guan, Quansheng; Ji, Fei; Yu, Hua

    2018-01-16

    Underwater acoustic communication network (UACN) has been considered as an essential infrastructure for ocean exploitation. Performance analysis of UACN is important in underwater acoustic network deployment and management. In this paper, we analyze the network throughput of three-dimensional randomly deployed transmitter-receiver pairs. Due to the long delay of acoustic channels, complicated networking protocols with heavy signaling overhead may not be appropriate. In this paper, we consider only one-hop or two-hop transmission, to save the signaling cost. That is, we assume the transmitter sends the data packet to the receiver by one-hop direct transmission, or by two-hop transmission via mobile relays. We derive the closed-form formulation of packet delivery rate with respect to the transmission delay and the number of transmitter-receiver pairs. The correctness of the derivation results are verified by computer simulations. Our analysis indicates how to obtain a precise tradeoff between the delay constraint and the network capacity.

  17. Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mobile Relay

    PubMed Central

    Zhong, Xuefeng; Fan, Jiasheng; Guan, Quansheng; Ji, Fei; Yu, Hua

    2018-01-01

    Underwater acoustic communication network (UACN) has been considered as an essential infrastructure for ocean exploitation. Performance analysis of UACN is important in underwater acoustic network deployment and management. In this paper, we analyze the network throughput of three-dimensional randomly deployed transmitter–receiver pairs. Due to the long delay of acoustic channels, complicated networking protocols with heavy signaling overhead may not be appropriate. In this paper, we consider only one-hop or two-hop transmission, to save the signaling cost. That is, we assume the transmitter sends the data packet to the receiver by one-hop direct transmission, or by two-hop transmission via mobile relays. We derive the closed-form formulation of packet delivery rate with respect to the transmission delay and the number of transmitter–receiver pairs. The correctness of the derivation results are verified by computer simulations. Our analysis indicates how to obtain a precise tradeoff between the delay constraint and the network capacity. PMID:29337911

  18. Identifying Dynamic Functional Connectivity Changes in Dementia with Lewy Bodies Based on Product Hidden Markov Models.

    PubMed

    Sourty, Marion; Thoraval, Laurent; Roquet, Daniel; Armspach, Jean-Paul; Foucher, Jack; Blanc, Frédéric

    2016-01-01

    Exploring time-varying connectivity networks in neurodegenerative disorders is a recent field of research in functional MRI. Dementia with Lewy bodies (DLB) represents 20% of the neurodegenerative forms of dementia. Fluctuations of cognition and vigilance are the key symptoms of DLB. To date, no dynamic functional connectivity (DFC) investigations of this disorder have been performed. In this paper, we refer to the concept of connectivity state as a piecewise stationary configuration of functional connectivity between brain networks. From this concept, we propose a new method for group-level as well as for subject-level studies to compare and characterize connectivity state changes between a set of resting-state networks (RSNs). Dynamic Bayesian networks, statistical and graph theory-based models, enable one to learn dependencies between interacting state-based processes. Product hidden Markov models (PHMM), an instance of dynamic Bayesian networks, are introduced here to capture both statistical and temporal aspects of DFC of a set of RSNs. This analysis was based on sliding-window cross-correlations between seven RSNs extracted from a group independent component analysis performed on 20 healthy elderly subjects and 16 patients with DLB. Statistical models of DFC differed in patients compared to healthy subjects for the occipito-parieto-frontal network, the medial occipital network and the right fronto-parietal network. In addition, pairwise comparisons of DFC of RSNs revealed a decrease of dependency between these two visual networks (occipito-parieto-frontal and medial occipital networks) and the right fronto-parietal control network. The analysis of DFC state changes thus pointed out networks related to the cognitive functions that are known to be impaired in DLB: visual processing as well as attentional and executive functions. Besides this context, product HMM applied to RSNs cross-correlations offers a promising new approach to investigate structural and temporal aspects of brain DFC.

  19. Muscle networks: Connectivity analysis of EMG activity during postural control

    NASA Astrophysics Data System (ADS)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  20. Performance and analysis of MAC protocols based on application

    NASA Astrophysics Data System (ADS)

    Yadav, Ravi; Daniel, A. K.

    2018-04-01

    Wireless Sensor Network is one of the rapid emerging technology in recent decades. It covers large application area as civilian and military. Wireless Sensor Network primary consists of sensor nodes having low-power, low cost and multifunctional activities to collaborates and communicates via wireless medium. The deployment of sensor nodes are adhoc in nature, so sensor nodes are auto organize themselves in such a way to communicate with each other. The characteristics make more challenging areas on WSNs. This paper gives overview about characteristics of WSNs, Architecture and Contention Based MAC protocol. The paper present analysis of various protocol based on performance.

  1. Molecular inspired models for prediction and control of directional FSO/RF wireless networks

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Milner, Stuart D.; Davis, Christopher C.

    2010-08-01

    Directional wireless networks using FSO and RF transmissions provide wireless backbone support for mobile communications in dynamic environments. The heterogeneous and dynamic nature of such networks challenges their robustness and requires self-organization mechanisms to assure end-to-end broadband connectivity. We developed a framework based on the definition of a potential energy function to characterize robustness in communication networks and the study of first and second order variations of the potential energy to provide prediction and control strategies for network performance optimization. In this paper, we present non-convex molecular potentials such as the Morse Potential, used to describe the potential energy of bonds within molecules, for the characterization of communication links in the presence of physical constraints such as the power available at the network nodes. The inclusion of the Morse Potential translates into adaptive control strategies where forces on network nodes drive the release, retention or reconfiguration of communication links for network performance optimization. Simulation results show the effectiveness of our self-organized control mechanism, where the physical topology reorganizes to maximize the number of source to destination communicating pairs. Molecular Normal Mode Analysis (NMA) techniques for assessing network performance degradation in dynamic networks are also presented. Preliminary results show correlation between peaks in the eigenvalues of the Hessian of the network potential and network degradation.

  2. A low complexity visualization tool that helps to perform complex systems analysis

    NASA Astrophysics Data System (ADS)

    Beiró, M. G.; Alvarez-Hamelin, J. I.; Busch, J. R.

    2008-12-01

    In this paper, we present an extension of large network visualization (LaNet-vi), a tool to visualize large scale networks using the k-core decomposition. One of the new features is how vertices compute their angular position. While in the later version it is done using shell clusters, in this version we use the angular coordinate of vertices in higher k-shells, and arrange the highest shell according to a cliques decomposition. The time complexity goes from O(n\\sqrt n) to O(n) upon bounds on a heavy-tailed degree distribution. The tool also performs a k-core-connectivity analysis, highlighting vertices that are not k-connected; e.g. this property is useful to measure robustness or quality of service (QoS) capabilities in communication networks. Finally, the actual version of LaNet-vi can draw labels and all the edges using transparencies, yielding an accurate visualization. Based on the obtained figure, it is possible to distinguish different sources and types of complex networks at a glance, in a sort of 'network iris-print'.

  3. Multilayer motif analysis of brain networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito

    2017-04-01

    In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.

  4. FACETS: multi-faceted functional decomposition of protein interaction networks.

    PubMed

    Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes

    2012-10-15

    The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein-protein interaction (PPI) network using graph theoretic analysis. Despite the recent progress, systems level analysis of high-throughput PPIs remains a daunting task because of the amount of data they present. In this article, we propose a novel PPI network decomposition algorithm called FACETS in order to make sense of the deluge of interaction data using Gene Ontology (GO) annotations. FACETS finds not just a single functional decomposition of the PPI network, but a multi-faceted atlas of functional decompositions that portray alternative perspectives of the functional landscape of the underlying PPI network. Each facet in the atlas represents a distinct interpretation of how the network can be functionally decomposed and organized. Our algorithm maximizes interpretative value of the atlas by optimizing inter-facet orthogonality and intra-facet cluster modularity. We tested our algorithm on the global networks from IntAct, and compared it with gold standard datasets from MIPS and KEGG. We demonstrated the performance of FACETS. We also performed a case study that illustrates the utility of our approach. Supplementary data are available at the Bioinformatics online. Our software is available freely for non-commercial purposes from: http://www.cais.ntu.edu.sg/~assourav/Facets/

  5. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    PubMed

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  6. Grey-matter network disintegration as predictor of cognitive and motor function with aging.

    PubMed

    Koini, Marisa; Duering, Marco; Gesierich, Benno G; Rombouts, Serge A R B; Ropele, Stefan; Wagner, Fabian; Enzinger, Christian; Schmidt, Reinhold

    2018-06-01

    Loss of grey-matter volume with advancing age affects the entire cortex. It has been suggested that atrophy occurs in a network-dependent manner with advancing age rather than in independent brain areas. The relationship between networks of structural covariance (SCN) disintegration and cognitive functioning during normal aging is not fully explored. We, therefore, aimed to (1) identify networks that lose GM integrity with advancing age, (2) investigate if age-related impairment of integrity in GM networks associates with cognitive function and decreasing fine motor skills (FMS), and (3) examine if GM disintegration is a mediator between age and cognition and FMS. T1-weighted scans of n = 257 participants (age range: 20-87) were used to identify GM networks using independent component analysis. Random forest analysis was implemented to examine the importance of network integrity as predictors of memory, executive functions, and FMS. The associations between GM disintegration, age and cognitive performance, and FMS were assessed using mediation analyses. Advancing age was associated with decreasing cognitive performance and FMS. Fourteen of 20 GM networks showed integrity changes with advancing age. Next to age and education, eight networks (fronto-parietal, fronto-occipital, temporal, limbic, secondary somatosensory, cuneal, sensorimotor network, and a cerebellar network) showed an association with cognition and FMS (up to 15.08%). GM networks partially mediated the effect between age and cognition and age and FMS. We confirm an age-related decline in cognitive functioning and FMS in non-demented community-dwelling subjects and showed that aging selectively affects the integrity of GM networks. The negative effect of age on cognition and FMS is associated with distinct GM networks and is partly mediated by their disintegration.

  7. Crustal movements in Europe observed with EUROPE and IVS-T2 VLBI networks

    NASA Astrophysics Data System (ADS)

    Zubko, N.; Poutanen, M.

    2011-07-01

    The comparative analysis of the EUROPE and IVS-T2 geodetic VLBI sessions has been performed. The main purpose of both campaigns is to observe and accurately determine the VLBI station coordinates and their time evolution. In this analysis our interest is to understand the influence of network configuration on the estimated parameters and, also, how much the results of these two campaigns are consistent. We have used the VieVS software developing at Vienna University of Technology to analyze the EUROPE and IVS-T2 sessions of 2002-2009. We have analyzed the difference of crustal movements obtained with these two networks and the effect of network configuration and station selection. The EPN (EUREF permanent GNSS Network) and IGS (International GNSS Service) networks can be used to compare the results.

  8. Modeling and performance analysis of QoS data

    NASA Astrophysics Data System (ADS)

    Strzeciwilk, Dariusz; Zuberek, Włodzimierz M.

    2016-09-01

    The article presents the results of modeling and analysis of data transmission performance on systems that support quality of service. Models are designed and tested, taking into account multiservice network architecture, i.e. supporting the transmission of data related to different classes of traffic. Studied were mechanisms of traffic shaping systems, which are based on the Priority Queuing with an integrated source of data and the various sources of data that is generated. Discussed were the basic problems of the architecture supporting QoS and queuing systems. Designed and built were models based on Petri nets, supported by temporal logics. The use of simulation tools was to verify the mechanisms of shaping traffic with the applied queuing algorithms. It is shown that temporal models of Petri nets can be effectively used in the modeling and analysis of the performance of computer networks.

  9. Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis.

    PubMed

    Luo, Heng; Ye, Hao; Ng, Hui; Shi, Leming; Tong, Weida; Mattes, William; Mendrick, Donna; Hong, Huixiao

    2015-01-01

    As the major histocompatibility complex (MHC), human leukocyte antigens (HLAs) are one of the most polymorphic genes in humans. Patients carrying certain HLA alleles may develop adverse drug reactions (ADRs) after taking specific drugs. Peptides play an important role in HLA related ADRs as they are the necessary co-binders of HLAs with drugs. Many experimental data have been generated for understanding HLA-peptide binding. However, efficiently utilizing the data for understanding and accurately predicting HLA-peptide binding is challenging. Therefore, we developed a network analysis based method to understand and predict HLA-peptide binding. Qualitative Class I HLA-peptide binding data were harvested and prepared from four major databases. An HLA-peptide binding network was constructed from this dataset and modules were identified by the fast greedy modularity optimization algorithm. To examine the significance of signals in the yielded models, the modularity was compared with the modularity values generated from 1,000 random networks. The peptides and HLAs in the modules were characterized by similarity analysis. The neighbor-edges based and unbiased leverage algorithm (Nebula) was developed for predicting HLA-peptide binding. Leave-one-out (LOO) validations and two-fold cross-validations were conducted to evaluate the performance of Nebula using the constructed HLA-peptide binding network. Nine modules were identified from analyzing the HLA-peptide binding network with a highest modularity compared to all the random networks. Peptide length and functional side chains of amino acids at certain positions of the peptides were different among the modules. HLA sequences were module dependent to some extent. Nebula archived an overall prediction accuracy of 0.816 in the LOO validations and average accuracy of 0.795 in the two-fold cross-validations and outperformed the method reported in the literature. Network analysis is a useful approach for analyzing large and sparse datasets such as the HLA-peptide binding dataset. The modules identified from the network analysis clustered peptides and HLAs with similar sequences and properties of amino acids. Nebula performed well in the predictions of HLA-peptide binding. We demonstrated that network analysis coupled with Nebula is an efficient approach to understand and predict HLA-peptide binding interactions and thus, could further our understanding of ADRs.

  10. Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis

    PubMed Central

    2015-01-01

    Background As the major histocompatibility complex (MHC), human leukocyte antigens (HLAs) are one of the most polymorphic genes in humans. Patients carrying certain HLA alleles may develop adverse drug reactions (ADRs) after taking specific drugs. Peptides play an important role in HLA related ADRs as they are the necessary co-binders of HLAs with drugs. Many experimental data have been generated for understanding HLA-peptide binding. However, efficiently utilizing the data for understanding and accurately predicting HLA-peptide binding is challenging. Therefore, we developed a network analysis based method to understand and predict HLA-peptide binding. Methods Qualitative Class I HLA-peptide binding data were harvested and prepared from four major databases. An HLA-peptide binding network was constructed from this dataset and modules were identified by the fast greedy modularity optimization algorithm. To examine the significance of signals in the yielded models, the modularity was compared with the modularity values generated from 1,000 random networks. The peptides and HLAs in the modules were characterized by similarity analysis. The neighbor-edges based and unbiased leverage algorithm (Nebula) was developed for predicting HLA-peptide binding. Leave-one-out (LOO) validations and two-fold cross-validations were conducted to evaluate the performance of Nebula using the constructed HLA-peptide binding network. Results Nine modules were identified from analyzing the HLA-peptide binding network with a highest modularity compared to all the random networks. Peptide length and functional side chains of amino acids at certain positions of the peptides were different among the modules. HLA sequences were module dependent to some extent. Nebula archived an overall prediction accuracy of 0.816 in the LOO validations and average accuracy of 0.795 in the two-fold cross-validations and outperformed the method reported in the literature. Conclusions Network analysis is a useful approach for analyzing large and sparse datasets such as the HLA-peptide binding dataset. The modules identified from the network analysis clustered peptides and HLAs with similar sequences and properties of amino acids. Nebula performed well in the predictions of HLA-peptide binding. We demonstrated that network analysis coupled with Nebula is an efficient approach to understand and predict HLA-peptide binding interactions and thus, could further our understanding of ADRs. PMID:26424483

  11. Identifying and tracking attacks on networks: C3I displays and related technologies

    NASA Astrophysics Data System (ADS)

    Manes, Gavin W.; Dawkins, J.; Shenoi, Sujeet; Hale, John C.

    2003-09-01

    Converged network security is extremely challenging for several reasons; expanded system and technology perimeters, unexpected feature interaction, and complex interfaces all conspire to provide hackers with greater opportunities for compromising large networks. Preventive security services and architectures are essential, but in and of themselves do not eliminate all threat of compromise. Attack management systems mitigate this residual risk by facilitating incident detection, analysis and response. There are a wealth of attack detection and response tools for IP networks, but a dearth of such tools for wireless and public telephone networks. Moreover, methodologies and formalisms have yet to be identified that can yield a common model for vulnerabilities and attacks in converged networks. A comprehensive attack management system must coordinate detection tools for converged networks, derive fully-integrated attack and network models, perform vulnerability and multi-stage attack analysis, support large-scale attack visualization, and orchestrate strategic responses to cyber attacks that cross network boundaries. We present an architecture that embodies these principles for attack management. The attack management system described engages a suite of detection tools for various networking domains, feeding real-time attack data to a comprehensive modeling, analysis and visualization subsystem. The resulting early warning system not only provides network administrators with a heads-up cockpit display of their entire network, it also supports guided response and predictive capabilities for multi-stage attacks in converged networks.

  12. Improvements to Integrated Tradespace Analysis of Communications Architectures (ITACA) Network Loading Analysis Tool

    NASA Technical Reports Server (NTRS)

    Lee, Nathaniel; Welch, Bryan W.

    2018-01-01

    NASA's SCENIC project aims to simplify and reduce the cost of space mission planning by replicating the analysis capabilities of commercially licensed software which are integrated with relevant analysis parameters specific to SCaN assets and SCaN supported user missions. SCENIC differs from current tools that perform similar analyses in that it 1) does not require any licensing fees, 2) will provide an all-in-one package for various analysis capabilities that normally requires add-ons or multiple tools to complete. As part of SCENIC's capabilities, the ITACA network loading analysis tool will be responsible for assessing the loading on a given network architecture and generating a network service schedule. ITACA will allow users to evaluate the quality of service of a given network architecture and determine whether or not the architecture will satisfy the mission's requirements. ITACA is currently under development, and the following improvements were made during the fall of 2017: optimization of runtime, augmentation of network asset pre-service configuration time, augmentation of Brent's method of root finding, augmentation of network asset FOV restrictions, augmentation of mission lifetimes, and the integration of a SCaN link budget calculation tool. The improvements resulted in (a) 25% reduction in runtime, (b) more accurate contact window predictions when compared to STK(Registered Trademark) contact window predictions, and (c) increased fidelity through the use of specific SCaN asset parameters.

  13. Neural network-based model reference adaptive control system.

    PubMed

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  14. Network approach towards understanding the crazing in glassy amorphous polymers

    NASA Astrophysics Data System (ADS)

    Venkatesan, Sudarkodi; Vivek-Ananth, R. P.; Sreejith, R. P.; Mangalapandi, Pattulingam; Hassanali, Ali A.; Samal, Areejit

    2018-04-01

    We have used molecular dynamics to simulate an amorphous glassy polymer with long chains to study the deformation mechanism of crazing and associated void statistics. The Van der Waals interactions and the entanglements between chains constituting the polymer play a crucial role in crazing. Thus, we have reconstructed two underlying weighted networks, namely, the Van der Waals network and the entanglement network from polymer configurations extracted from the molecular dynamics simulation. Subsequently, we have performed graph-theoretic analysis of the two reconstructed networks to reveal the role played by them in the crazing of polymers. Our analysis captured various stages of crazing through specific trends in the network measures for Van der Waals networks and entanglement networks. To further corroborate the effectiveness of network analysis in unraveling the underlying physics of crazing in polymers, we have contrasted the trends in network measures for Van der Waals networks and entanglement networks in the light of stress-strain behaviour and voids statistics during deformation. We find that the Van der Waals network plays a crucial role in craze initiation and growth. Although, the entanglement network was found to maintain its structure during craze initiation stage, it was found to progressively weaken and undergo dynamic changes during the hardening and failure stages of crazing phenomena. Our work demonstrates the utility of network theory in quantifying the underlying physics of polymer crazing and widens the scope of applications of network science to characterization of deformation mechanisms in diverse polymers.

  15. Affective mentalizing and brain activity at rest in the behavioral variant of frontotemporal dementia

    PubMed Central

    Caminiti, Silvia P.; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F.

    2015-01-01

    Background bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. Objective To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). Methods We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Results Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Conclusions Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms. PMID:26594631

  16. Stochastic availability analysis of operational data systems in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Issa, T. N.

    1991-01-01

    Existing availability models of standby redundant systems consider only an operator's performance and its interaction with the hardware performance. In the case of operational data systems in the Deep Space Network (DSN), in addition to an operator system interface, a controller reconfigures the system and links a standby unit into the network data path upon failure of the operating unit. A stochastic (Markovian) process technique is used to model and analyze the availability performance and occurrence of degradation due to partial failures are quantitatively incorporated into the model. Exact expressions of the steady state availability and proportion degraded performance measures are derived for the systems under study. The interaction among the hardware, operator, and controller performance parameters and that interaction's effect on data availability are evaluated and illustrated for an operational data processing system.

  17. Simulation of Attacks for Security in Wireless Sensor Network

    PubMed Central

    Diaz, Alvaro; Sanchez, Pablo

    2016-01-01

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node’s software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work. PMID:27869710

  18. Comparative Network-Based Recovery Analysis and Proteomic Profiling of Neurological Changes in Valproic Acid-Treated Mice

    PubMed Central

    2013-01-01

    Despite its prominence for characterization of complex mixtures, LC–MS/MS frequently fails to identify many proteins. Network-based analysis methods, based on protein–protein interaction networks (PPINs), biological pathways, and protein complexes, are useful for recovering non-detected proteins, thereby enhancing analytical resolution. However, network-based analysis methods do come in varied flavors for which the respective efficacies are largely unknown. We compare the recovery performance and functional insights from three distinct instances of PPIN-based approaches, viz., Proteomics Expansion Pipeline (PEP), Functional Class Scoring (FCS), and Maxlink, in a test scenario of valproic acid (VPA)-treated mice. We find that the most comprehensive functional insights, as well as best non-detected protein recovery performance, are derived from FCS utilizing real biological complexes. This outstrips other network-based methods such as Maxlink or Proteomics Expansion Pipeline (PEP). From FCS, we identified known biological complexes involved in epigenetic modifications, neuronal system development, and cytoskeletal rearrangements. This is congruent with the observed phenotype where adult mice showed an increase in dendritic branching to allow the rewiring of visual cortical circuitry and an improvement in their visual acuity when tested behaviorally. In addition, PEP also identified a novel complex, comprising YWHAB, NR1, NR2B, ACTB, and TJP1, which is functionally related to the observed phenotype. Although our results suggest different network analysis methods can produce different results, on the whole, the findings are mutually supportive. More critically, the non-overlapping information each provides can provide greater holistic understanding of complex phenotypes. PMID:23557376

  19. Behavioral Systems Analysis in Health and Human Services

    ERIC Educational Resources Information Center

    McGee, Heather M.; Diener, Lori H.

    2010-01-01

    This article provides a behavioral systems approach to improve operational performance in health and human service organizations. This article provides six performance truths that are relevant to any organization and a case study from a community mental health network of agencies. A comprehensive analysis, as described here, will help health and…

  20. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks

    PubMed Central

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-01-01

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks. PMID:27754380

  1. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    PubMed

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  2. Design of Neural Networks for Fast Convergence and Accuracy

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1998-01-01

    A novel procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed to provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component spacecraft design changes and measures of its performance. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The design algorithm attempts to avoid the local minima phenomenon that hampers the traditional network training. A numerical example is performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  3. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia.

    PubMed

    Cassidy, Clifford M; Van Snellenberg, Jared X; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa; Horga, Guillermo

    2016-04-13

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. Copyright © 2016 the authors 0270-6474/16/364378-12$15.00/0.

  4. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia

    PubMed Central

    Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa

    2016-01-01

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE STATEMENT It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. PMID:27076432

  5. The topology of metabolic isotope labeling networks.

    PubMed

    Weitzel, Michael; Wiechert, Wolfgang; Nöh, Katharina

    2007-08-29

    Metabolic Flux Analysis (MFA) based on isotope labeling experiments (ILEs) is a widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks (ILNs) contain all essential information required to describe the flow of labeled material in an ILE. Whereas recent experimental progress paves the way for high-throughput MFA, large network investigations and exact statistical methods, these developments are still limited by the poor performance of computational routines used for the evaluation and design of ILEs. In this context, the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all required computational procedures. With a strong focus on the speedup of algorithms the topology of ILNs is investigated using graph theoretic concepts and algorithms. A rigorous determination of all cyclic and isomorphic subnetworks, accompanied by the global analysis of ILN connectivity is performed. Particularly, it is proven that ILNs always brake up into a large number of small strongly connected components (SCCs) and, moreover, there are natural isomorphisms between many of these SCCs. All presented techniques are universal, i.e. they do not require special assumptions on the network structure, bidirectionality of fluxes, measurement configuration, or label input. The general results are exemplified with a practically relevant metabolic network which describes the central metabolism of E. coli comprising 10390 isotopomer pools. Exploiting the topological features of ILNs leads to a significant speedup of all universal algorithms for ILE evaluation. It is proven in theory and exemplified with the E. coli example that a speedup factor of about 1000 compared to standard algorithms is achieved. This widely opens the door for new high performance algorithms suitable for high throughput applications and large ILNs. Moreover, for the first time the global topological analysis of ILNs allows to comprehensively describe and understand the general patterns of label flow in complex networks. This is an invaluable tool for the structural design of new experiments and the interpretation of measured data.

  6. Optimizing performance of hybrid FSO/RF networks in realistic dynamic scenarios

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Desai, Aniket; Baskaran, Eswaran; Milner, Stuart; Davis, Christopher

    2005-08-01

    Hybrid Free Space Optical (FSO) and Radio Frequency (RF) networks promise highly available wireless broadband connectivity and quality of service (QoS), particularly suitable for emerging network applications involving extremely high data rate transmissions such as high quality video-on-demand and real-time surveillance. FSO links are prone to atmospheric obscuration (fog, clouds, snow, etc) and are difficult to align over long distances due the use of narrow laser beams and the effect of atmospheric turbulence. These problems can be mitigated by using adjunct directional RF links, which provide backup connectivity. In this paper, methodologies for modeling and simulation of hybrid FSO/RF networks are described. Individual link propagation models are derived using scattering theory, as well as experimental measurements. MATLAB is used to generate realistic atmospheric obscuration scenarios, including moving cloud layers at different altitudes. These scenarios are then imported into a network simulator (OPNET) to emulate mobile hybrid FSO/RF networks. This framework allows accurate analysis of the effects of node mobility, atmospheric obscuration and traffic demands on network performance, and precise evaluation of topology reconfiguration algorithms as they react to dynamic changes in the network. Results show how topology reconfiguration algorithms, together with enhancements to TCP/IP protocols which reduce the network response time, enable the network to rapidly detect and act upon link state changes in highly dynamic environments, ensuring optimized network performance and availability.

  7. Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio; Biamonte, Jacob

    2016-10-01

    Any physical system can be viewed from the perspective that information is implicitly represented in its state. However, the quantification of this information when it comes to complex networks has remained largely elusive. In this work, we use techniques inspired by quantum statistical mechanics to define an entropy measure for complex networks and to develop a set of information-theoretic tools, based on network spectral properties, such as Rényi q entropy, generalized Kullback-Leibler and Jensen-Shannon divergences, the latter allowing us to define a natural distance measure between complex networks. First, we show that by minimizing the Kullback-Leibler divergence between an observed network and a parametric network model, inference of model parameter(s) by means of maximum-likelihood estimation can be achieved and model selection can be performed with appropriate information criteria. Second, we show that the information-theoretic metric quantifies the distance between pairs of networks and we can use it, for instance, to cluster the layers of a multilayer system. By applying this framework to networks corresponding to sites of the human microbiome, we perform hierarchical cluster analysis and recover with high accuracy existing community-based associations. Our results imply that spectral-based statistical inference in complex networks results in demonstrably superior performance as well as a conceptual backbone, filling a gap towards a network information theory.

  8. Computing by robust transience: How the fronto-parietal network performs sequential category-based decisions

    PubMed Central

    Chaisangmongkon, Warasinee; Swaminathan, Sruthi K.; Freedman, David J.; Wang, Xiao-Jing

    2017-01-01

    Summary Decision making involves dynamic interplay between internal judgements and external perception, which has been investigated in delayed match-to-category (DMC) experiments. Our analysis of neural recordings shows that, during DMC tasks, LIP and PFC neurons demonstrate mixed, time-varying, and heterogeneous selectivity, but previous theoretical work has not established the link between these neural characteristics and population-level computations. We trained a recurrent network model to perform DMC tasks and found that the model can remarkably reproduce key features of neuronal selectivity at the single-neuron and population levels. Analysis of the trained networks elucidates that robust transient trajectories of the neural population are the key driver of sequential categorical decisions. The directions of trajectories are governed by network self-organized connectivity, defining a ‘neural landscape’, consisting of a task-tailored arrangement of slow states and dynamical tunnels. With this model, we can identify functionally-relevant circuit motifs and generalize the framework to solve other categorization tasks. PMID:28334612

  9. A soil sampling intercomparison exercise for the ALMERA network.

    PubMed

    Belli, Maria; de Zorzi, Paolo; Sansone, Umberto; Shakhashiro, Abduhlghani; Gondin da Fonseca, Adelaide; Trinkl, Alexander; Benesch, Thomas

    2009-11-01

    Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a "reference site", aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.

  10. The Use of Neural Network Technology to Model Swimming Performance

    PubMed Central

    Silva, António José; Costa, Aldo Manuel; Oliveira, Paulo Moura; Reis, Victor Machado; Saavedra, José; Perl, Jurgen; Rouboa, Abel; Marinho, Daniel Almeida

    2007-01-01

    The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons) and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females) of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility), swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics) and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron) with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances) is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports. Key pointsThe non-linear analysis resulting from the use of feed forward neural network allowed us the development of four performance models.The mean difference between the true and estimated results performed by each one of the four neural network models constructed was low.The neural network tool can be a good approach in the resolution of the performance modeling as an alternative to the standard statistical models that presume well-defined distributions and independence among all inputs.The use of neural networks for sports sciences application allowed us to create very realistic models for swimming performance prediction based on previous selected criterions that were related with the dependent variable (performance). PMID:24149233

  11. Impulsive synchronization of stochastic reaction-diffusion neural networks with mixed time delays.

    PubMed

    Sheng, Yin; Zeng, Zhigang

    2018-07-01

    This paper discusses impulsive synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and hybrid time delays. By virtue of inequality techniques, theories of stochastic analysis, linear matrix inequalities, and the contradiction method, sufficient criteria are proposed to ensure exponential synchronization of the addressed stochastic reaction-diffusion neural networks with mixed time delays via a designed impulsive controller. Compared with some recent studies, the neural network models herein are more general, some restrictions are relaxed, and the obtained conditions enhance and generalize some published ones. Finally, two numerical simulations are performed to substantiate the validity and merits of the developed theoretical analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Method and system for pattern analysis using a coarse-coded neural network

    NASA Technical Reports Server (NTRS)

    Spirkovska, Liljana (Inventor); Reid, Max B. (Inventor)

    1994-01-01

    A method and system for performing pattern analysis with a neural network coarse-coding a pattern to be analyzed so as to form a plurality of sub-patterns collectively defined by data. Each of the sub-patterns comprises sets of pattern data. The neural network includes a plurality fields, each field being associated with one of the sub-patterns so as to receive the sub-pattern data therefrom. Training and testing by the neural network then proceeds in the usual way, with one modification: the transfer function thresholds the value obtained from summing the weighted products of each field over all sub-patterns associated with each pattern being analyzed by the system.

  13. TCP Packet Trace Analysis. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Shepard, Timothy J.

    1991-01-01

    Examination of a trace of packets collected from the network is often the only method available for diagnosing protocol performance problems in computer networks. This thesis explores the use of packet traces to diagnose performance problems of the transport protocol TCP. Unfortunately, manual examination of these traces can be so tedious that effective analysis is not possible. The primary contribution of this thesis is a graphical method of displaying the packet trace which greatly reduce, the tediousness of examining a packet trace. The graphical method is demonstrated by the examination of some packet traces of typical TCP connections. The performance of two different implementations of TCP sending data across a particular network path is compared. Traces many thousands of packets long are used to demonstrate how effectively the graphical method simplifies examination of long complicated traces. In the comparison of the two TCP implementations, the burstiness of the TCP transmitter appeared to be related to the achieved throughput. A method of quantifying this burstiness is presented and its possible relevance to understanding the performance of TCP is discussed.

  14. Feature Extraction of Event-Related Potentials Using Wavelets: An Application to Human Performance Monitoring

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Shensa, Mark J.; Remington, Roger W. (Technical Monitor)

    1998-01-01

    This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many f ree parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation,-, algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance.

  15. Feature extraction of event-related potentials using wavelets: an application to human performance monitoring

    NASA Technical Reports Server (NTRS)

    Trejo, L. J.; Shensa, M. J.

    1999-01-01

    This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many free parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance. Copyright 1999 Academic Press.

  16. The performance evaluation of a new neural network based traffic management scheme for a satellite communication network

    NASA Technical Reports Server (NTRS)

    Ansari, Nirwan; Liu, Dequan

    1991-01-01

    A neural-network-based traffic management scheme for a satellite communication network is described. The scheme consists of two levels of management. The front end of the scheme is a derivation of Kohonen's self-organization model to configure maps for the satellite communication network dynamically. The model consists of three stages. The first stage is the pattern recognition task, in which an exemplar map that best meets the current network requirements is selected. The second stage is the analysis of the discrepancy between the chosen exemplar map and the state of the network, and the adaptive modification of the chosen exemplar map to conform closely to the network requirement (input data pattern) by means of Kohonen's self-organization. On the basis of certain performance criteria, whether a new map is generated to replace the original chosen map is decided in the third stage. A state-dependent routing algorithm, which arranges the incoming call to some proper path, is used to make the network more efficient and to lower the call block rate. Simulation results demonstrate that the scheme, which combines self-organization and the state-dependent routing mechanism, provides better performance in terms of call block rate than schemes that only have either the self-organization mechanism or the routing mechanism.

  17. A Multidimensional Analysis Tool for Visualizing Online Interactions

    ERIC Educational Resources Information Center

    Kim, Minjeong; Lee, Eunchul

    2012-01-01

    This study proposes and verifies the performance of an analysis tool for visualizing online interactions. A review of the most widely used methods for analyzing online interactions, including quantitative analysis, content analysis, and social network analysis methods, indicates these analysis methods have some limitations resulting from their…

  18. Simple techniques for improving deep neural network outcomes on commodity hardware

    NASA Astrophysics Data System (ADS)

    Colina, Nicholas Christopher A.; Perez, Carlos E.; Paraan, Francis N. C.

    2017-08-01

    We benchmark improvements in the performance of deep neural networks (DNN) on the MNIST data test upon imple-menting two simple modifications to the algorithm that have little overhead computational cost. First is GPU parallelization on a commodity graphics card, and second is initializing the DNN with random orthogonal weight matrices prior to optimization. Eigenspectra analysis of the weight matrices reveal that the initially orthogonal matrices remain nearly orthogonal after training. The probability distributions from which these orthogonal matrices are drawn are also shown to significantly affect the performance of these deep neural networks.

  19. A Clustering Graph Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winlaw, Manda; De Sterck, Hans; Sanders, Geoffrey

    In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps tomore » understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.« less

  20. Aberrant functional connectivity of default-mode network in type 2 diabetes patients.

    PubMed

    Cui, Ying; Jiao, Yun; Chen, Hua-Jun; Ding, Jie; Luo, Bing; Peng, Cheng-Yu; Ju, Sheng-Hong; Teng, Gao-Jun

    2015-11-01

    Type 2 diabetes mellitus is associated with increased risk for dementia. Patients with impaired cognition often show default-mode network disruption. We aimed to investigate the integrity of a default-mode network in diabetic patients by using independent component analysis, and to explore the relationship between network abnormalities, neurocognitive performance and diabetic variables. Forty-two patients with type 2 diabetes and 42 well-matched healthy controls were included and underwent resting-state functional MRI in a 3 Tesla unit. Independent component analysis was adopted to extract the default-mode network, including its anterior and posterior components. Z-maps of both sub-networks were compared between the two groups and correlated with each clinical variable. Patients showed increased connectivity around the medial prefrontal cortex in the anterior sub-network, but decreased connectivity around the posterior cingulate cortex in the posterior sub-network. The decreased connectivity in the posterior part was significantly correlated with the score on Complex Figure Test-delay recall test (r = 0.359, p = 0.020), the time spent on Trail-Making Test-part B (r = -0.346, p = 0.025) and the insulin resistance level (r = -0.404, p = 0.024). Dissociation pattern in the default-mode network was found in diabetic patients, which might provide powerful new insights into the neural mechanisms that underlie the diabetes-related cognitive decline. • Type 2 diabetes mellitus is associated with impaired cognition • Default- mode network plays a central role in maintaining normal cognition • Network connectivity within the default mode was disrupted in type 2 diabetes patients • Decreased network connectivity was correlated with cognitive performance and insulin resistance level • Disrupted default-mode network might explain the impaired cognition in diabetic population.

  1. Toward next-generation optical networks: a network operator perspective based on experimental tests and economic analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaojun; Du, Chunsheng; Zhou, Rongsheng

    2004-04-01

    As a result of data traffic"s exponential growth, network is currently evolving from fixed circuit switched services to dynamic packet switched services, which has brought unprecedented changes to the existing transport infrastructure. It is generally agreed that automatic switched optical network (ASON) is one of the promising solutions for the next generation optical networks. In this paper, we present the results of our experimental tests and economic analysis on ASON. The intention of this paper is to present our perspective, in terms of evolution strategy toward ASON, on next generation optical networks. It is shown through experimental tests that the performance of current Pre-standard ASON enabled equipments satisfies the basic requirements of network operators and is ready for initial deployment. The results of the economic analysis show that network operators can be benefit from the deployment of ASON from three sides. Firstly, ASON can reduce the CAPEX for network expanding by integrating multiple ADM & DCS into one box. Secondly, ASON can reduce the OPEX for network operation by introducing automatic resource control scheme. Finally, ASON can increase margin revenue by providing new optical network services such as Bandwidth on Demand, optical VPN etc. Finally, the evolution strategy is proposed as our perspective toward next generation optical networks. We hope the evolution strategy introduced may be helpful for the network operators to gracefully migrate their fixed ring based legacy networks to next generation dynamic mesh based network.

  2. "Us and them": a social network analysis of physicians' professional networks and their attitudes towards EBM.

    PubMed

    Mascia, Daniele; Cicchetti, Americo; Damiani, Gianfranco

    2013-10-22

    Extant research suggests that there is a strong social component to Evidence-Based Medicine (EBM) adoption since professional networks amongst physicians are strongly associated with their attitudes towards EBM. Despite this evidence, it is still unknown whether individual attitudes to use scientific evidence in clinical decision-making influence the position that physicians hold in their professional network. This paper explores how physicians' attitudes towards EBM is related to the network position they occupy within healthcare organizations. Data pertain to a sample of Italian physicians, whose professional network relationships, demographics and work-profile characteristics were collected. A social network analysis was performed to capture the structural importance of physicians in the collaboration network by the means of a core-periphery analysis and the computation of network centrality indicators. Then, regression analysis was used to test the association between the network position of individual clinicians and their attitudes towards EBM. Findings documented that the overall network structure is made up of a dense cohesive core of physicians and of less connected clinicians who occupy the periphery. A negative association between the physicians' attitudes towards EBM and the coreness they exhibited in the professional network was also found. Network centrality indicators confirmed these results documenting a negative association between physicians' propensity to use EBM and their structural importance in the professional network. Attitudes that physicians show towards EBM are related to the part (core or periphery) of the professional networks to which they belong as well as to their structural importance. By identifying virtuous attitudes and behaviors of professionals within their organizations, policymakers and executives may avoid marginalization and stimulate integration and continuity of care, both within and across the boundaries of healthcare providers.

  3. Generic Information Can Retrieve Known Biological Associations: Implications for Biomedical Knowledge Discovery

    PubMed Central

    van Haagen, Herman H. H. B. M.; 't Hoen, Peter A. C.; Mons, Barend; Schultes, Erik A.

    2013-01-01

    Motivation Weighted semantic networks built from text-mined literature can be used to retrieve known protein-protein or gene-disease associations, and have been shown to anticipate associations years before they are explicitly stated in the literature. Our text-mining system recognizes over 640,000 biomedical concepts: some are specific (i.e., names of genes or proteins) others generic (e.g., ‘Homo sapiens’). Generic concepts may play important roles in automated information retrieval, extraction, and inference but may also result in concept overload and confound retrieval and reasoning with low-relevance or even spurious links. Here, we attempted to optimize the retrieval performance for protein-protein interactions (PPI) by filtering generic concepts (node filtering) or links to generic concepts (edge filtering) from a weighted semantic network. First, we defined metrics based on network properties that quantify the specificity of concepts. Then using these metrics, we systematically filtered generic information from the network while monitoring retrieval performance of known protein-protein interactions. We also systematically filtered specific information from the network (inverse filtering), and assessed the retrieval performance of networks composed of generic information alone. Results Filtering generic or specific information induced a two-phase response in retrieval performance: initially the effects of filtering were minimal but beyond a critical threshold network performance suddenly drops. Contrary to expectations, networks composed exclusively of generic information demonstrated retrieval performance comparable to unfiltered networks that also contain specific concepts. Furthermore, an analysis using individual generic concepts demonstrated that they can effectively support the retrieval of known protein-protein interactions. For instance the concept “binding” is indicative for PPI retrieval and the concept “mutation abnormality” is indicative for gene-disease associations. Conclusion Generic concepts are important for information retrieval and cannot be removed from semantic networks without negative impact on retrieval performance. PMID:24260124

  4. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.

    PubMed

    Yildirim, Özal

    2018-05-01

    Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effect of tumor resection on the characteristics of functional brain networks.

    PubMed

    Wang, H; Douw, L; Hernández, J M; Reijneveld, J C; Stam, C J; Van Mieghem, P

    2010-08-01

    Brain functioning such as cognitive performance depends on the functional interactions between brain areas, namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors are measured before and after tumor resection. In this work, we perform a weighted network analysis to understand the effect of neurosurgery on the characteristics of functional brain networks. Statistically significant changes in network features have been discovered in the beta (13-30 Hz) band after neurosurgery: the link weight correlation around nodes and within triangles increases which implies improvement in local efficiency of information transfer and robustness; the clustering of high link weights in a subgraph becomes stronger, which enhances the global transport capability; and the decrease in the synchronization or virus spreading threshold, revealed by the increase in the largest eigenvalue of the adjacency matrix, which suggests again the improvement of information dissemination.

  6. Combining Partial Directed Coherence and Graph Theory to Analyse Effective Brain Networks of Different Mental Tasks.

    PubMed

    Huang, Dengfeng; Ren, Aifeng; Shang, Jing; Lei, Qiao; Zhang, Yun; Yin, Zhongliang; Li, Jun; von Deneen, Karen M; Huang, Liyu

    2016-01-01

    The aim of this study is to qualify the network properties of the brain networks between two different mental tasks (play task or rest task) in a healthy population. EEG signals were recorded from 19 healthy subjects when performing different mental tasks. Partial directed coherence (PDC) analysis, based on Granger causality (GC), was used to assess the effective brain networks during the different mental tasks. Moreover, the network measures, including degree, degree distribution, local and global efficiency in delta, theta, alpha, and beta rhythms were calculated and analyzed. The local efficiency is higher in the beta frequency and lower in the theta frequency during play task whereas the global efficiency is higher in the theta frequency and lower in the beta frequency in the rest task. This study reveals the network measures during different mental states and efficiency measures may be used as characteristic quantities for improvement in attentional performance.

  7. Survey of Human Systems Integration (HSI) Tools for USCG Acquisitions

    DTIC Science & Technology

    2009-04-01

    an IMPRINT HPM. IMPRINT uses task network modeling to represent human performance. As the name implies, task networks use a flowchart type format...tools; and built-in tutoring support for beginners . A perceptual/motor layer extending ACT-R’s theory of cognition to perception and action is also...chisystems.com B.8 Information and Functional Flow Analysis Description In information flow analysis, a flowchart of the information and decisions

  8. Acquisition Management for Systems-of-Systems: Analysis of Alternatives via Computational Exploratory Model

    DTIC Science & Technology

    2012-02-03

    node to the analysis of eigenmodes (connected trees /networks) of disruption sequences. The identification of disruption eigenmodes is particularly...investment portfolio approach enables the identification of optimal SoS network topologies and provides a tool for acquisition professionals to...a program based on its ability to provide a new capability for a given cost, and not on its ability to meet specific performance requirements ( Spacy

  9. Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Charakopoulos, A. K.; Katsouli, G. A.; Karakasidis, T. E.

    2018-04-01

    Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.

  10. Evaluating the Limits of Network Topology Inference Via Virtualized Network Emulation

    DTIC Science & Technology

    2015-06-01

    76 xi Figure 5.33 Hop-plot of five best reduction methods. KDD most closely matches the Internet plot...respectively, located around the world. These monitors provide locations from which to perform network measurement experiments, primarily using the ping ...International Symposium on Modeling, Analysis and Simulation of Computer Telecommunication Systems. IEEE, 2001, pp. 346–353. 90 [21] C. Jin , Q. Chen, and S

  11. Non-criticality of interaction network over system's crises: A percolation analysis.

    PubMed

    Shirazi, Amir Hossein; Saberi, Abbas Ali; Hosseiny, Ali; Amirzadeh, Ehsan; Toranj Simin, Pourya

    2017-11-20

    Extraction of interaction networks from multi-variate time-series is one of the topics of broad interest in complex systems. Although this method has a wide range of applications, most of the previous analyses have focused on the pairwise relations. Here we establish the potential of such a method to elicit aggregated behavior of the system by making a connection with the concepts from percolation theory. We study the dynamical interaction networks of a financial market extracted from the correlation network of indices, and build a weighted network. In correspondence with the percolation model, we find that away from financial crises the interaction network behaves like a critical random network of Erdős-Rényi, while close to a financial crisis, our model deviates from the critical random network and behaves differently at different size scales. We perform further analysis to clarify that our observation is not a simple consequence of the growth in correlations over the crises.

  12. Educational network comparative analysis of small groups: Short- and long-term communications

    NASA Astrophysics Data System (ADS)

    Berg, D. B.; Zvereva, O. M.; Nazarova, Yu. Yu.; Chepurov, E. G.; Kokovin, A. V.; Ranyuk, S. V.

    2017-11-01

    The present study is devoted to the discussion of small group communication network structures. These communications were observed in student groups, where actors were united with a regular educational activity. The comparative analysis was carried out for networks of short-term (1 hour) and long-term (4 weeks) communications, it was based on seven structural parameters, and consisted of two stages. At the first stage, differences between the network graphs were examined, and the random corresponding Bernoulli graphs were built. At the second stage, revealed differences were compared. Calculations were performed using UCINET software framework. It was found out that networks of long-term and short-term communications are quite different: the structure of a short-term communication network is close to a random one, whereas the most of long-term communication network parameters differ from the corresponding random ones by more than 30%. This difference can be explained by strong "noisiness" of a short-term communication network, and the lack of social in it.

  13. Robust nonlinear canonical correlation analysis: application to seasonal climate forecasting

    NASA Astrophysics Data System (ADS)

    Cannon, A. J.; Hsieh, W. W.

    2008-02-01

    Robust variants of nonlinear canonical correlation analysis (NLCCA) are introduced to improve performance on datasets with low signal-to-noise ratios, for example those encountered when making seasonal climate forecasts. The neural network model architecture of standard NLCCA is kept intact, but the cost functions used to set the model parameters are replaced with more robust variants. The Pearson product-moment correlation in the double-barreled network is replaced by the biweight midcorrelation, and the mean squared error (mse) in the inverse mapping networks can be replaced by the mean absolute error (mae). Robust variants of NLCCA are demonstrated on a synthetic dataset and are used to forecast sea surface temperatures in the tropical Pacific Ocean based on the sea level pressure field. Results suggest that adoption of the biweight midcorrelation can lead to improved performance, especially when a strong, common event exists in both predictor/predictand datasets. Replacing the mse by the mae leads to improved performance on the synthetic dataset, but not on the climate dataset except at the longest lead time, which suggests that the appropriate cost function for the inverse mapping networks is more problem dependent.

  14. Observability and synchronization of neuron models.

    PubMed

    Aguirre, Luis A; Portes, Leonardo L; Letellier, Christophe

    2017-10-01

    Observability is the property that enables recovering the state of a dynamical system from a reduced number of measured variables. In high-dimensional systems, it is therefore important to make sure that the variable recorded to perform the analysis conveys good observability of the system dynamics. The observability of a network of neuron models depends nontrivially on the observability of the node dynamics and on the topology of the network. The aim of this paper is twofold. First, to perform a study of observability using four well-known neuron models by computing three different observability coefficients. This not only clarifies observability properties of the models but also shows the limitations of applicability of each type of coefficients in the context of such models. Second, to study the emergence of phase synchronization in networks composed of neuron models. This is done performing multivariate singular spectrum analysis which, to the best of the authors' knowledge, has not been used in the context of networks of neuron models. It is shown that it is possible to detect phase synchronization: (i) without having to measure all the state variables, but only one (that provides greatest observability) from each node and (ii) without having to estimate the phase.

  15. Automatic analysis and classification of surface electromyography.

    PubMed

    Abou-Chadi, F E; Nashar, A; Saad, M

    2001-01-01

    In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.

  16. Finite wordlength implementation of a megachannel digital spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Satorius, E. H.; Grimm, M. J.; Zimmerman, G. A.; Wilck, H. C.

    1986-01-01

    The results of an extensive system analysis of the megachannel spectrum analyzer currently being developed for use in various applications of the Deep Space Network are presented. The intent of this analysis is to quantify the effects of digital quantization errors on system performance. The results of this analysis provide useful guidelines for choosing various system design parameters to enhance system performance.

  17. Alveolar ridge preservation after tooth extraction: a Bayesian Network meta-analysis of grafting materials efficacy on prevention of bone height and width reduction.

    PubMed

    Iocca, Oreste; Farcomeni, Alessio; Pardiñas Lopez, Simon; Talib, Huzefa S

    2017-01-01

    To conduct a traditional meta-analysis and a Bayesian Network meta-analysis to synthesize the information coming from randomized controlled trials on different socket grafting materials and combine the resulting indirect evidence in order to make inferences on treatments that have not been compared directly. RCTs were identified for inclusion in the systematic review and subsequent statistical analysis. Bone height and width remodelling were selected as the chosen summary measures for comparison. First, a series of pairwise meta-analyses were performed and overall mean difference (MD) in mm with 95% CI was calculated between grafted versus non-grafted sockets. Then, a Bayesian Network meta-analysis was performed to draw indirect conclusions on which grafting materials can be considered most likely the best compared to the others. From the six included studies, seven comparisons were obtained. Traditional meta-analysis showed statistically significant results in favour of grafting the socket compared to no-graft both for height (MD 1.02, 95% CI 0.44-1.59, p value < 0.001) than for width (MD 1.52 95% CI 1.18-1.86, p value <0.000001) remodelling. Bayesian Network meta-analysis allowed to obtain a rank of intervention efficacy. On the basis of the results of the present analysis, socket grafting seems to be more favourable than unassisted socket healing. Moreover, Bayesian Network meta-analysis indicates that freeze-dried bone graft plus membrane is the most likely effective in the reduction of bone height remodelling. Autologous bone marrow resulted the most likely effective when width remodelling was considered. Studies with larger samples and less risk of bias should be conducted in the future in order to further strengthen the results of this analysis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Performance Analysis of Classification Methods for Indoor Localization in Vlc Networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Rodríguez, D.; Alonso-González, I.; Sánchez-Medina, J.; Ley-Bosch, C.; Díaz-Vilariño, L.

    2017-09-01

    Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.

  19. ANNA: A Convolutional Neural Network Code for Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Lee-Brown, Donald; Anthony-Twarog, Barbara J.; Twarog, Bruce A.

    2018-01-01

    We present ANNA, a Python-based convolutional neural network code for the automated analysis of stellar spectra. ANNA provides a flexible framework that allows atmospheric parameters such as temperature and metallicity to be determined with accuracies comparable to those of established but less efficient techniques. ANNA performs its parameterization extremely quickly; typically several thousand spectra can be analyzed in less than a second. Additionally, the code incorporates features which greatly speed up the training process necessary for the neural network to measure spectra accurately, resulting in a tool that can easily be run on a single desktop or laptop computer. Thus, ANNA is useful in an era when spectrographs increasingly have the capability to collect dozens to hundreds of spectra each night. This talk will cover the basic features included in ANNA and demonstrate its performance in two use cases: an open cluster abundance analysis involving several hundred spectra, and a metal-rich field star study. Applicability of the code to large survey datasets will also be discussed.

  20. Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures

    NASA Astrophysics Data System (ADS)

    Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye

    2016-03-01

    Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.

  1. Evaluation of the annual Canadian biodosimetry network intercomparisons

    PubMed Central

    Wilkins, Ruth C.; Beaton-Green, Lindsay A.; Lachapelle, Sylvie; Kutzner, Barbara C.; Ferrarotto, Catherine; Chauhan, Vinita; Marro, Leonora; Livingston, Gordon K.; Boulay Greene, Hillary; Flegal, Farrah N.

    2015-01-01

    Abstract Purpose: To evaluate the importance of annual intercomparisons for maintaining the capacity and capabilities of a well-established biodosimetry network in conjunction with assessing efficient and effective analysis methods for emergency response. Materials and methods: Annual intercomparisons were conducted between laboratories in the Canadian National Biological Dosimetry Response Plan. Intercomparisons were performed over a six-year period and comprised of the shipment of 10–12 irradiated, blinded blood samples for analysis by each of the participating laboratories. Dose estimates were determined by each laboratory using the dicentric chromosome assay (conventional and QuickScan scoring) and where possible the cytokinesis block micronucleus (CBMN) assay. Dose estimates were returned to the lead laboratory for evaluation and comparison. Results: Individual laboratories performed comparably from year to year with only slight fluctuations in performance. Dose estimates using the dicentric chromosome assay were accurate about 80% of the time and the QuickScan method for scoring the dicentric chromosome assay was proven to reduce the time of analysis without having a significant effect on the dose estimates. Although analysis with the CBMN assay was comparable to QuickScan scoring with respect to speed, the accuracy of the dose estimates was greatly reduced. Conclusions: Annual intercomparisons are necessary to maintain a network of laboratories for emergency response biodosimetry as they evoke confidence in their capabilities. PMID:25670072

  2. An extensive assessment of network alignment algorithms for comparison of brain connectomes.

    PubMed

    Milano, Marianna; Guzzi, Pietro Hiram; Tymofieva, Olga; Xu, Duan; Hess, Christofer; Veltri, Pierangelo; Cannataro, Mario

    2017-06-06

    Recently the study of the complex system of connections in neural systems, i.e. the connectome, has gained a central role in neurosciences. The modeling and analysis of connectomes are therefore a growing area. Here we focus on the representation of connectomes by using graph theory formalisms. Macroscopic human brain connectomes are usually derived from neuroimages; the analyzed brains are co-registered in the image domain and brought to a common anatomical space. An atlas is then applied in order to define anatomically meaningful regions that will serve as the nodes of the network - this process is referred to as parcellation. The atlas-based parcellations present some known limitations in cases of early brain development and abnormal anatomy. Consequently, it has been recently proposed to perform atlas-free random brain parcellation into nodes and align brains in the network space instead of the anatomical image space, as a way to deal with the unknown correspondences of the parcels. Such process requires modeling of the brain using graph theory and the subsequent comparison of the structure of graphs. The latter step may be modeled as a network alignment (NA) problem. In this work, we first define the problem formally, then we test six existing state of the art of network aligners on diffusion MRI-derived brain networks. We compare the performances of algorithms by assessing six topological measures. We also evaluated the robustness of algorithms to alterations of the dataset. The results confirm that NA algorithms may be applied in cases of atlas-free parcellation for a fully network-driven comparison of connectomes. The analysis shows MAGNA++ is the best global alignment algorithm. The paper presented a new analysis methodology that uses network alignment for validating atlas-free parcellation brain connectomes. The methodology has been experimented on several brain datasets.

  3. The Network Structure of Human Personality According to the NEO-PI-R: Matching Network Community Structure to Factor Structure

    PubMed Central

    Goekoop, Rutger; Goekoop, Jaap G.; Scholte, H. Steven

    2012-01-01

    Introduction Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. Aim To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). Methods 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. Results At facet level, NCS showed a best match (96.2%) with a ‘confirmatory’ 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with ‘confirmatory’ 5-FS and ‘exploratory’ 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. Conclusion We present the first optimized network graph of personality traits according to the NEO-PI-R: a ‘Personality Web’. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network. PMID:23284713

  4. The network structure of human personality according to the NEO-PI-R: matching network community structure to factor structure.

    PubMed

    Goekoop, Rutger; Goekoop, Jaap G; Scholte, H Steven

    2012-01-01

    Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. At facet level, NCS showed a best match (96.2%) with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.

  5. Short-term estimation of GNSS TEC using a neural network model in Brazil

    NASA Astrophysics Data System (ADS)

    Ferreira, Arthur Amaral; Borges, Renato Alves; Paparini, Claudia; Ciraolo, Luigi; Radicella, Sandro M.

    2017-10-01

    This work presents a novel Neural Network (NN) model to estimate Total Electron Content (TEC) from Global Navigation Satellite Systems (GNSS) measurements in three distinct sectors in Brazil. The purpose of this work is to start the investigations on the development of a regional model that can be used to determine the vertical TEC over Brazil, aiming future applications on a near real-time frame estimations and short-term forecasting. The NN is used to estimate the GNSS TEC values at void locations, where no dual-frequency GNSS receiver that may be used as a source of data to GNSS TEC estimation is available. This approach is particularly useful for GNSS single-frequency users that rely on corrections of ionospheric range errors by TEC models. GNSS data from the first GLONASS network for research and development (GLONASS R&D network) installed in Latin America, and from the Brazilian Network for Continuous Monitoring of the GNSS (RMBC) were used on TEC calibration. The input parameters of the NN model are based on features known to influence TEC values, such as geographic location of the GNSS receiver, magnetic activity, seasonal and diurnal variations, and solar activity. Data from two ten-days periods (from DoY 154 to 163 and from 282 to 291) are used to train the network. Three distinct analyses have been carried out in order to assess time-varying and spatial performance of the model. At the spatial performance analysis, for each region, a set of stations is chosen to provide training data to the NN, and after the training procedure, the NN is used to estimate vTEC behavior for the test station which data were not presented to the NN in training process. An analysis is done by comparing, for each testing station, the estimated NN vTEC delivered by the NN and reference calibrated vTEC. Also, as a second analysis, the network ability to forecast one day after the time interval (DoY 292) based on information of the second period of investigation is also assessed in order to verify the feasibility on using low amount of data for short-term forecasting. In a third analysis, the spatial performance of the NN model is assessed and compared against CODE Global Ionospheric Maps during the geomagnetic storm registered on 13th and 14th October 2016. The results obtained from the three described analyses indicate that even using a ten-days period of data to train the network, the proposed NN model provides good spatial performance and presents to be a promising tool for short-term forecasting. The results obtained in the analysis presented a root mean squared error less than 7.9 TECU in all scenarios under investigation.

  6. The ART of representation: Memory reduction and noise tolerance in a neural network vision system

    NASA Astrophysics Data System (ADS)

    Langley, Christopher S.

    The Feature Cerebellar Model Arithmetic Computer (FCMAC) is a multiple-input-single-output neural network that can provide three-degree-of-freedom (3-DOF) pose estimation for a robotic vision system. The FCMAC provides sufficient accuracy to enable a manipulator to grasp an object from an arbitrary pose within its workspace. The network learns an appearance-based representation of an object by storing coarsely quantized feature patterns. As all unique patterns are encoded, the network size grows uncontrollably. A new architecture is introduced herein, which combines the FCMAC with an Adaptive Resonance Theory (ART) network. The ART module categorizes patterns observed during training into a set of prototypes that are used to build the FCMAC. As a result, the network no longer grows without bound, but constrains itself to a user-specified size. Pose estimates remain accurate since the ART layer tends to discard the least relevant information first. The smaller network performs recall faster, and in some cases is better for generalization, resulting in a reduction of error at recall time. The ART-Under-Constraint (ART-C) algorithm is extended to include initial filling with randomly selected patterns (referred to as ART-F). In experiments using a real-world data set, the new network performed equally well using less than one tenth the number of coarse patterns as a regular FCMAC. The FCMAC is also extended to include real-valued input activations. As a result, the network can be tuned to reject a variety of types of noise in the image feature detection. A quantitative analysis of noise tolerance was performed using four synthetic noise algorithms, and a qualitative investigation was made using noisy real-world image data. In validation experiments, the FCMAC system outperformed Radial Basis Function (RBF) networks for the 3-DOF problem, and had accuracy comparable to that of Principal Component Analysis (PCA) and superior to that of Shape Context Matching (SCM), both of which estimate orientation only.

  7. Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks.

    PubMed

    Blatti, Charles; Sinha, Saurabh

    2016-07-15

    Analysis of co-expressed gene sets typically involves testing for enrichment of different annotations or 'properties' such as biological processes, pathways, transcription factor binding sites, etc., one property at a time. This common approach ignores any known relationships among the properties or the genes themselves. It is believed that known biological relationships among genes and their many properties may be exploited to more accurately reveal commonalities of a gene set. Previous work has sought to achieve this by building biological networks that combine multiple types of gene-gene or gene-property relationships, and performing network analysis to identify other genes and properties most relevant to a given gene set. Most existing network-based approaches for recognizing genes or annotations relevant to a given gene set collapse information about different properties to simplify (homogenize) the networks. We present a network-based method for ranking genes or properties related to a given gene set. Such related genes or properties are identified from among the nodes of a large, heterogeneous network of biological information. Our method involves a random walk with restarts, performed on an initial network with multiple node and edge types that preserve more of the original, specific property information than current methods that operate on homogeneous networks. In this first stage of our algorithm, we find the properties that are the most relevant to the given gene set and extract a subnetwork of the original network, comprising only these relevant properties. We then re-rank genes by their similarity to the given gene set, based on a second random walk with restarts, performed on the above subnetwork. We demonstrate the effectiveness of this algorithm for ranking genes related to Drosophila embryonic development and aggressive responses in the brains of social animals. DRaWR was implemented as an R package available at veda.cs.illinois.edu/DRaWR. blatti@illinois.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  8. Regular Topologies for Gigabit Wide-Area Networks. Volume 1

    NASA Technical Reports Server (NTRS)

    Shacham, Nachum; Denny, Barbara A.; Lee, Diane S.; Khan, Irfan H.; Lee, Danny Y. C.; McKenney, Paul

    1994-01-01

    In general terms, this project aimed at the analysis and design of techniques for very high-speed networking. The formal objectives of the project were to: (1) Identify switch and network technologies for wide-area networks that interconnect a large number of users and can provide individual data paths at gigabit/s rates; (2) Quantitatively evaluate and compare existing and proposed architectures and protocols, identify their strength and growth potentials, and ascertain the compatibility of competing technologies; and (3) Propose new approaches to existing architectures and protocols, and identify opportunities for research to overcome deficiencies and enhance performance. The project was organized into two parts: 1. The design, analysis, and specification of techniques and protocols for very-high-speed network environments. In this part, SRI has focused on several key high-speed networking areas, including Forward Error Control (FEC) for high-speed networks in which data distortion is the result of packet loss, and the distribution of broadband, real-time traffic in multiple user sessions. 2. Congestion Avoidance Testbed Experiment (CATE). This part of the project was done within the framework of the DARTnet experimental T1 national network. The aim of the work was to advance the state of the art in benchmarking DARTnet's performance and traffic control by developing support tools for network experimentation, by designing benchmarks that allow various algorithms to be meaningfully compared, and by investigating new queueing techniques that better satisfy the needs of best-effort and reserved-resource traffic. This document is the final technical report describing the results obtained by SRI under this project. The report consists of three volumes: Volume 1 contains a technical description of the network techniques developed by SRI in the areas of FEC and multicast of real-time traffic. Volume 2 describes the work performed under CATE. Volume 3 contains the source code of all software developed under CATE.

  9. The effect of souvenaid on functional brain network organisation in patients with mild Alzheimer's disease: a randomised controlled study.

    PubMed

    de Waal, Hanneke; Stam, Cornelis J; Lansbergen, Marieke M; Wieggers, Rico L; Kamphuis, Patrick J G H; Scheltens, Philip; Maestú, Fernando; van Straaten, Elisabeth C W

    2014-01-01

    Synaptic loss is a major hallmark of Alzheimer's disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD. A 24-week randomised, controlled, double-blind, parallel-group, multi-country study. 179 drug-naïve mild AD patients who participated in the Souvenir II study. Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. In a secondary analysis of the Souvenir II study, electroencephalography (EEG) brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma) and global network integration (normalised characteristic path length lambda) were compared between study groups, and related to memory performance. THE NETWORK MEASURES IN THE BETA BAND WERE SIGNIFICANTLY DIFFERENT BETWEEN GROUPS: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance. The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG analysis, using the mathematical framework of graph theory, is useful and feasible for assessing the effects of interventions. Dutch Trial Register NTR1975.

  10. The Effect of Souvenaid on Functional Brain Network Organisation in Patients with Mild Alzheimer’s Disease: A Randomised Controlled Study

    PubMed Central

    de Waal, Hanneke; Stam, Cornelis J.; Lansbergen, Marieke M.; Wieggers, Rico L.; Kamphuis, Patrick J. G. H.; Scheltens, Philip; Maestú, Fernando; van Straaten, Elisabeth C. W.

    2014-01-01

    Background Synaptic loss is a major hallmark of Alzheimer’s disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. Objective To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD. Design A 24-week randomised, controlled, double-blind, parallel-group, multi-country study. Participants 179 drug-naïve mild AD patients who participated in the Souvenir II study. Intervention Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. Outcome In a secondary analysis of the Souvenir II study, electroencephalography (EEG) brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma) and global network integration (normalised characteristic path length lambda) were compared between study groups, and related to memory performance. Results The network measures in the beta band were significantly different between groups: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance. Conclusions The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG analysis, using the mathematical framework of graph theory, is useful and feasible for assessing the effects of interventions. Trial registration Dutch Trial Register NTR1975. PMID:24475144

  11. Performance evaluation of power control algorithms in wireless cellular networks

    NASA Astrophysics Data System (ADS)

    Temaneh-Nyah, C.; Iita, V.

    2014-10-01

    Power control in a mobile communication network intents to control the transmission power levels in such a way that the required quality of service (QoS) for the users is guaranteed with lowest possible transmission powers. Most of the studies of power control algorithms in the literature are based on some kind of simplified assumptions which leads to compromise in the validity of the results when applied in a real environment. In this paper, a CDMA network was simulated. The real environment was accounted for by defining the analysis area and the network base stations and mobile stations are defined by their geographical coordinates, the mobility of the mobile stations is accounted for. The simulation also allowed for a number of network parameters including the network traffic, and the wireless channel models to be modified. Finally, we present the simulation results of a convergence speed based comparative analysis of three uplink power control algorithms.

  12. Analysis of physical layer performance of hybrid optical-wireless access network

    NASA Astrophysics Data System (ADS)

    Shaddad, R. Q.; Mohammad, A. B.; Al-hetar, A. M.

    2011-09-01

    The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.

  13. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.

    PubMed

    Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y

    2008-08-12

    New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.

  14. An analysis of image storage systems for scalable training of deep neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seung-Hwan; Young, Steven R; Patton, Robert M

    This study presents a principled empirical evaluation of image storage systems for training deep neural networks. We employ the Caffe deep learning framework to train neural network models for three different data sets, MNIST, CIFAR-10, and ImageNet. While training the models, we evaluate five different options to retrieve training image data: (1) PNG-formatted image files on local file system; (2) pushing pixel arrays from image files into a single HDF5 file on local file system; (3) in-memory arrays to hold the pixel arrays in Python and C++; (4) loading the training data into LevelDB, a log-structured merge tree based key-valuemore » storage; and (5) loading the training data into LMDB, a B+tree based key-value storage. The experimental results quantitatively highlight the disadvantage of using normal image files on local file systems to train deep neural networks and demonstrate reliable performance with key-value storage based storage systems. When training a model on the ImageNet dataset, the image file option was more than 17 times slower than the key-value storage option. Along with measurements on training time, this study provides in-depth analysis on the cause of performance advantages/disadvantages of each back-end to train deep neural networks. We envision the provided measurements and analysis will shed light on the optimal way to architect systems for training neural networks in a scalable manner.« less

  15. A framework for performance measurement in university using extended network data envelopment analysis (DEA) structures

    NASA Astrophysics Data System (ADS)

    Kashim, Rosmaini; Kasim, Maznah Mat; Rahman, Rosshairy Abd

    2015-12-01

    Measuring university performance is essential for efficient allocation and utilization of educational resources. In most of the previous studies, performance measurement in universities emphasized the operational efficiency and resource utilization without investigating the university's ability to fulfill the needs of its stakeholders and society. Therefore, assessment of the performance of university should be separated into two stages namely efficiency and effectiveness. In conventional DEA analysis, a decision making unit (DMU) or in this context, a university is generally treated as a black-box which ignores the operation and interdependence of the internal processes. When this happens, the results obtained would be misleading. Thus, this paper suggest an alternative framework for measuring the overall performance of a university by incorporating both efficiency and effectiveness and applies network DEA model. The network DEA models are recommended because this approach takes into account the interrelationship between the processes of efficiency and effectiveness in the system. This framework also focuses on the university structure which is expanded from the hierarchical to form a series of horizontal relationship between subordinate units by assuming both intermediate unit and its subordinate units can generate output(s). Three conceptual models are proposed to evaluate the performance of a university. An efficiency model is developed at the first stage by using hierarchical network model. It is followed by an effectiveness model which take output(s) from the hierarchical structure at the first stage as a input(s) at the second stage. As a result, a new overall performance model is proposed by combining both efficiency and effectiveness models. Thus, once this overall model is realized and utilized, the university's top management can determine the overall performance of each unit more accurately and systematically. Besides that, the result from the network DEA model can give a superior benchmarking power over the conventional models.

  16. Performance Evaluation Model for Application Layer Firewalls.

    PubMed

    Xuan, Shichang; Yang, Wu; Dong, Hui; Zhang, Jiangchuan

    2016-01-01

    Application layer firewalls protect the trusted area network against information security risks. However, firewall performance may affect user experience. Therefore, performance analysis plays a significant role in the evaluation of application layer firewalls. This paper presents an analytic model of the application layer firewall, based on a system analysis to evaluate the capability of the firewall. In order to enable users to improve the performance of the application layer firewall with limited resources, resource allocation was evaluated to obtain the optimal resource allocation scheme in terms of throughput, delay, and packet loss rate. The proposed model employs the Erlangian queuing model to analyze the performance parameters of the system with regard to the three layers (network, transport, and application layers). Then, the analysis results of all the layers are combined to obtain the overall system performance indicators. A discrete event simulation method was used to evaluate the proposed model. Finally, limited service desk resources were allocated to obtain the values of the performance indicators under different resource allocation scenarios in order to determine the optimal allocation scheme. Under limited resource allocation, this scheme enables users to maximize the performance of the application layer firewall.

  17. Living network meta-analysis compared with pairwise meta-analysis in comparative effectiveness research: empirical study

    PubMed Central

    Nikolakopoulou, Adriani; Mavridis, Dimitris; Furukawa, Toshi A; Cipriani, Andrea; Tricco, Andrea C; Straus, Sharon E; Siontis, George C M; Egger, Matthias

    2018-01-01

    Abstract Objective To examine whether the continuous updating of networks of prospectively planned randomised controlled trials (RCTs) (“living” network meta-analysis) provides strong evidence against the null hypothesis in comparative effectiveness of medical interventions earlier than the updating of conventional, pairwise meta-analysis. Design Empirical study of the accumulating evidence about the comparative effectiveness of clinical interventions. Data sources Database of network meta-analyses of RCTs identified through searches of Medline, Embase, and the Cochrane Database of Systematic Reviews until 14 April 2015. Eligibility criteria for study selection Network meta-analyses published after January 2012 that compared at least five treatments and included at least 20 RCTs. Clinical experts were asked to identify in each network the treatment comparison of greatest clinical interest. Comparisons were excluded for which direct and indirect evidence disagreed, based on side, or node, splitting test (P<0.10). Outcomes and analysis Cumulative pairwise and network meta-analyses were performed for each selected comparison. Monitoring boundaries of statistical significance were constructed and the evidence against the null hypothesis was considered to be strong when the monitoring boundaries were crossed. A significance level was defined as α=5%, power of 90% (β=10%), and an anticipated treatment effect to detect equal to the final estimate from the network meta-analysis. The frequency and time to strong evidence was compared against the null hypothesis between pairwise and network meta-analyses. Results 49 comparisons of interest from 44 networks were included; most (n=39, 80%) were between active drugs, mainly from the specialties of cardiology, endocrinology, psychiatry, and rheumatology. 29 comparisons were informed by both direct and indirect evidence (59%), 13 by indirect evidence (27%), and 7 by direct evidence (14%). Both network and pairwise meta-analysis provided strong evidence against the null hypothesis for seven comparisons, but for an additional 10 comparisons only network meta-analysis provided strong evidence against the null hypothesis (P=0.002). The median time to strong evidence against the null hypothesis was 19 years with living network meta-analysis and 23 years with living pairwise meta-analysis (hazard ratio 2.78, 95% confidence interval 1.00 to 7.72, P=0.05). Studies directly comparing the treatments of interest continued to be published for eight comparisons after strong evidence had become evident in network meta-analysis. Conclusions In comparative effectiveness research, prospectively planned living network meta-analyses produced strong evidence against the null hypothesis more often and earlier than conventional, pairwise meta-analyses. PMID:29490922

  18. Implementing MANETS in Android based environment using Wi-Fi direct

    NASA Astrophysics Data System (ADS)

    Waqas, Muhammad; Babar, Mohammad Inayatullah Khan; Zafar, Mohammad Haseeb

    2015-05-01

    Packet loss occurs in real-time voice transmission over wireless broadcast Ad-hoc network which creates disruptions in sound. Basic objective of this research is to design a wireless Ad-hoc network based on two Android devices by using the Wireless Fidelity (WIFI) Direct Application Programming Interface (API) and apply the Network Codec, Reed Solomon Code. The network codec is used to encode the data of a music wav file and recover the lost packets if any, packets are dropped using a loss module at the transmitter device to analyze the performance with the objective of retrieving the original file at the receiver device using the network codec. This resulted in faster transmission of the files despite dropped packets. In the end both files had the original formatted music files with complete performance analysis based on the transmission delay.

  19. Adaptive mechanism-based congestion control for networked systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  20. Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone.

    PubMed

    Zhang, Luyan; Liang, Yi; Li, Fali; Sun, Hongbin; Peng, Wenjing; Du, Peishan; Si, Yajing; Song, Limeng; Yu, Liang; Xu, Peng

    2017-01-01

    The neuronal synchronous discharging may cause an epileptic seizure. Currently, most of the studies conducted to investigate the mechanism of epilepsy are based on EEGs or functional magnetic resonance imaging (fMRI) recorded during the ictal discharging or the resting-state, and few studies have probed into the dynamic patterns during the inter-ictal discharging that are much easier to record in clinical applications. Here, we propose a time-varying network analysis based on adaptive directed transfer function to uncover the dynamic brain network patterns during the inter-ictal discharging. In addition, an algorithm based on the time-varying outflow of information derived from the network analysis is developed to detect the epileptogenic zone. The analysis performed revealed the time-varying network patterns during different stages of inter-ictal discharging; the epileptogenic zone was activated prior to the discharge onset then worked as the source to propagate the activity to other brain regions. Consistence between the epileptogenic zones detected by our proposed approach and the actual epileptogenic zones proved that time-varying network analysis could not only reveal the underlying neural mechanism of epilepsy, but also function as a useful tool in detecting the epileptogenic zone based on the EEGs in the inter-ictal discharging.

  1. [Study based on ICA of "dorsal attention network" in patients with temporal lobe epilepsy].

    PubMed

    Yang, Zhigen; Wang, Huinan; Zhang, Zhiqiang; Zhong, Yuan; Chen, Zhili; Lu, Guangming

    2010-02-01

    Many functional magnetic resonance imaging (fMRI) studies have revealed the deactivation phenomenon of default mode network in the patients with epilepsy; however, nearly not any of the reports has focused on the dorsal attention network of epilepsy. In this paper, independent component analysis (ICA) was used to isolate the dorsal attention network of 16 patients with temporal lobe epilepsy (TLE) and of 20 healthy normals; and a goodness-of-fit analysis was applied at the individual subject level to choose the interesting component. Intra-group analysis and inter-group analysis were performed. The results indicated that the dorsal attention network included bilateral intraparietal sulcus, middle frontal gyrus, human frontal eye field, posterior lobe of right cerebellum, etc. The TLE group showed decreased functional connectivity in most of the dorsal attention regions with the predominance in the bilateral intraparietal sulcus, middle frontal gyrus, and posterior lobe of right cerebellum. These data suggested that the intrinsic organization of the brain function might be disrupted in TLE. In addition, the decrease of goodness-of-fit scores suggests that activity in the dorsal attention network may ultimately prove a sensitive biomarker for TLE.

  2. MANEMO Routing in Practice: Protocol Selection, Expected Performance, and Experimental Evaluation

    NASA Astrophysics Data System (ADS)

    Tazaki, Hajime; van Meter, Rodney; Wakikawa, Ryuji; Wongsaardsakul, Thirapon; Kanchanasut, Kanchana; Dias de Amorim, Marcelo; Murai, Jun

    Motivated by the deployment of post-disaster MANEMO (MANET for NEMO) composed of mobile routers and stations, we evaluate two candidate routing protocols through network simulation, theoretical performance analysis, and field experiments. The first protocol is the widely adopted Optimized Link State Routing protocol (OLSR) and the second is the combination of the Tree Discovery Protocol (TDP) with Network In Node Advertisement (NINA). To the best of our knowledge, this is the first time that these two protocols are compared in both theoretical and practical terms. We focus on the control overhead generated when mobile routers perform a handover. Our results confirm the correctness and operational robustness of both protocols. More interestingly, although in the general case OLSR leads to better results, TDP/NINA outperforms OLSR both in the case of sparse networks and in highly mobile networks, which correspond to the operation point of a large set of post-disaster scenarios.

  3. A prediction model for cognitive performance in health ageing using diffusion tensor imaging with graph theory.

    PubMed

    Yun, Ruijuan; Lin, Chung-Chih; Wu, Shuicai; Huang, Chu-Chung; Lin, Ching-Po; Chao, Yi-Ping

    2013-01-01

    In this study, we employed diffusion tensor imaging (DTI) to construct brain structural network and then derive the connection matrices from 96 healthy elderly subjects. The correlation analysis between these topological properties of network based on graph theory and the Cognitive Abilities Screening Instrument (CASI) index were processed to extract the significant network characteristics. These characteristics were then integrated to estimate the models by various machine-learning algorithms to predict user's cognitive performance. From the results, linear regression model and Gaussian processes model showed presented better abilities with lower mean absolute errors of 5.8120 and 6.25 to predict the cognitive performance respectively. Moreover, these extracted topological properties of brain structural network derived from DTI also could be regarded as the bio-signatures for further evaluation of brain degeneration in healthy aged and early diagnosis of mild cognitive impairment (MCI).

  4. Distributed task coding throughout the multiple demand network of the human frontal-insular cortex.

    PubMed

    Stiers, Peter; Mennes, Maarten; Sunaert, Stefan

    2010-08-01

    The large variety of tasks that humans can perform is governed by a small number of key frontal-insular regions that are commonly active during task performance. Little is known about how this network distinguishes different tasks. We report on fMRI data in twelve participants while they performed four cognitive tasks. Of 20 commonly active frontal-insular regions in each hemisphere, five showed a BOLD response increase with increased task demands, regardless of the task. Although active in all tasks, each task invoked a unique response pattern across the voxels in each area that proved reliable in split-half multi-voxel correlation analysis. Consequently, voxels differed in their preference for one or more of the tasks. Voxel-based functional connectivity analyses revealed that same preference voxels distributed across all areas of the network constituted functional sub-networks that characterized the task being executed. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Parallel discrete-event simulation of FCFS stochastic queueing networks

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1988-01-01

    Physical systems are inherently parallel. Intuition suggests that simulations of these systems may be amenable to parallel execution. The parallel execution of a discrete-event simulation requires careful synchronization of processes in order to ensure the execution's correctness; this synchronization can degrade performance. Largely negative results were recently reported in a study which used a well-known synchronization method on queueing network simulations. Discussed here is a synchronization method (appointments), which has proven itself to be effective on simulations of FCFS queueing networks. The key concept behind appointments is the provision of lookahead. Lookahead is a prediction on a processor's future behavior, based on an analysis of the processor's simulation state. It is shown how lookahead can be computed for FCFS queueing network simulations, give performance data that demonstrates the method's effectiveness under moderate to heavy loads, and discuss performance tradeoffs between the quality of lookahead, and the cost of computing lookahead.

  6. Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis.

    PubMed

    Scholten, Lisa; Scheidegger, Andreas; Reichert, Peter; Maurer, Max; Mauer, Max; Lienert, Judit

    2014-02-01

    To overcome the difficulties of strategic asset management of water distribution networks, a pipe failure and a rehabilitation model are combined to predict the long-term performance of rehabilitation strategies. Bayesian parameter estimation is performed to calibrate the failure and replacement model based on a prior distribution inferred from three large water utilities in Switzerland. Multi-criteria decision analysis (MCDA) and scenario planning build the framework for evaluating 18 strategic rehabilitation alternatives under future uncertainty. Outcomes for three fundamental objectives (low costs, high reliability, and high intergenerational equity) are assessed. Exploitation of stochastic dominance concepts helps to identify twelve non-dominated alternatives and local sensitivity analysis of stakeholder preferences is used to rank them under four scenarios. Strategies with annual replacement of 1.5-2% of the network perform reasonably well under all scenarios. In contrast, the commonly used reactive replacement is not recommendable unless cost is the only relevant objective. Exemplified for a small Swiss water utility, this approach can readily be adapted to support strategic asset management for any utility size and based on objectives and preferences that matter to the respective decision makers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Transient thermal analysis of fluid systems

    NASA Technical Reports Server (NTRS)

    Chandler, G. D.; Trust, R. D.

    1977-01-01

    Computer program performs transient thermal analysis of any 2-node to 200-node-thermal network, which transports heat by fluid flow convection. Program can be modified to add conduction along tubes and radiation.

  8. A Tool for Verification and Validation of Neural Network Based Adaptive Controllers for High Assurance Systems

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Schumann, Johann

    2004-01-01

    High reliability of mission- and safety-critical software systems has been identified by NASA as a high-priority technology challenge. We present an approach for the performance analysis of a neural network (NN) in an advanced adaptive control system. This problem is important in the context of safety-critical applications that require certification, such as flight software in aircraft. We have developed a tool to measure the performance of the NN during operation by calculating a confidence interval (error bar) around the NN's output. Our tool can be used during pre-deployment verification as well as monitoring the network performance during operation. The tool has been implemented in Simulink and simulation results on a F-15 aircraft are presented.

  9. Combining network analysis with Cognitive Work Analysis: insights into social organisational and cooperation analysis.

    PubMed

    Houghton, Robert J; Baber, Chris; Stanton, Neville A; Jenkins, Daniel P; Revell, Kirsten

    2015-01-01

    Cognitive Work Analysis (CWA) allows complex, sociotechnical systems to be explored in terms of their potential configurations. However, CWA does not explicitly analyse the manner in which person-to-person communication is performed in these configurations. Consequently, the combination of CWA with Social Network Analysis provides a means by which CWA output can be analysed to consider communication structure. The approach is illustrated through a case study of a military planning team. The case study shows how actor-to-actor and actor-to-function mapping can be analysed, in terms of centrality, to produce metrics of system structure under different operating conditions. In this paper, a technique for building social network diagrams from CWA is demonstrated.The approach allows analysts to appreciate the potential impact of organisational structure on a command system.

  10. Functional brain networks associated with cognitive control, cocaine dependence, and treatment outcome.

    PubMed

    Worhunsky, Patrick D; Stevens, Michael C; Carroll, Kathleen M; Rounsaville, Bruce J; Calhoun, Vince D; Pearlson, Godfrey D; Potenza, Marc N

    2013-06-01

    Individuals with cocaine dependence often evidence poor cognitive control. The purpose of this exploratory study was to investigate networks of functional connectivity underlying cognitive control in cocaine dependence and examine the relationship of the networks to the disorder and its treatment. Independent component analysis (ICA) was applied to fMRI data to investigate if regional activations underlying cognitive control processes operate in functional networks, and whether these networks relate to performance and treatment outcome measures in cocaine dependence. Twenty patients completed a Stroop task during fMRI prior to entering outpatient treatment and were compared to 20 control participants. ICA identified five distinct functional networks related to cognitive control interference events. Cocaine-dependent patients displayed differences in performance-related recruitment of three networks. Reduced involvement of a "top-down" fronto-cingular network contributing to conflict monitoring correlated with better treatment retention. Greater engagement of two "bottom-up" subcortical and ventral prefrontal networks related to cue-elicited motivational processing correlated with abstinence during treatment. The identification of subcortical networks linked to cocaine abstinence and cortical networks to treatment retention suggests that specific circuits may represent important, complementary targets in treatment development for cocaine dependence. 2013 APA, all rights reserved

  11. Entropy-based heavy tailed distribution transformation and visual analytics for monitoring massive network traffic

    NASA Astrophysics Data System (ADS)

    Han, Keesook J.; Hodge, Matthew; Ross, Virginia W.

    2011-06-01

    For monitoring network traffic, there is an enormous cost in collecting, storing, and analyzing network traffic datasets. Data mining based network traffic analysis has a growing interest in the cyber security community, but is computationally expensive for finding correlations between attributes in massive network traffic datasets. To lower the cost and reduce computational complexity, it is desirable to perform feasible statistical processing on effective reduced datasets instead of on the original full datasets. Because of the dynamic behavior of network traffic, traffic traces exhibit mixtures of heavy tailed statistical distributions or overdispersion. Heavy tailed network traffic characterization and visualization are important and essential tasks to measure network performance for the Quality of Services. However, heavy tailed distributions are limited in their ability to characterize real-time network traffic due to the difficulty of parameter estimation. The Entropy-Based Heavy Tailed Distribution Transformation (EHTDT) was developed to convert the heavy tailed distribution into a transformed distribution to find the linear approximation. The EHTDT linearization has the advantage of being amenable to characterize and aggregate overdispersion of network traffic in realtime. Results of applying the EHTDT for innovative visual analytics to real network traffic data are presented.

  12. The Global Oscillation Network Group site survey, 2: Results

    NASA Technical Reports Server (NTRS)

    Hill, Frank; Fischer, George; Forgach, Suzanne; Grier, Jennifer; Leibacher, John W.; Jones, Harrison P.; Jones, Patricia B.; Kupke, Renate; Stebbins, Robin T.; Clay, Donald W.

    1994-01-01

    The Global Oscillation Network Group (GONG) Project will place a network of instruments around the world to observe solar oscillations as continuously as possible for three years. The Project has now chosen the six network sites based on analysis of survey data from fifteen sites around the world. The chosen sites are: Big Bear Solar Observatory, California; Mauna Loa Solar Observatory, Hawaii; Learmonth Solar Observatory, Australia; Udaipur Solar Observatory, India; Observatorio del Teide, Tenerife; and Cerro Tololo Interamerican Observatory, Chile. Total solar intensity at each site yields information on local cloud cover, extinction coefficient, and transparency fluctuations. In addition, the performance of 192 reasonable networks assembled from the individual site records is compared using a statistical principal components analysis. An accompanying paper descibes the analysis methods in detail; here we present the results of both the network and individual site analyses. The selected network has a duty cycle of 93.3%, in good agreement with numerical simulations. The power spectrum of the network observing window shows a first diurnal sidelobe height of 3 x 10(exp -4) with respect to the central component, an improvement of a factor of 1300 over a single site. The background level of the network spectrum is lower by a factor of 50 compared to a single-site spectrum.

  13. Designing Industrial Networks Using Ecological Food Web Metrics.

    PubMed

    Layton, Astrid; Bras, Bert; Weissburg, Marc

    2016-10-18

    Biologically Inspired Design (biomimicry) and Industrial Ecology both look to natural systems to enhance the sustainability and performance of engineered products, systems and industries. Bioinspired design (BID) traditionally has focused on a unit operation and single product level. In contrast, this paper describes how principles of network organization derived from analysis of ecosystem properties can be applied to industrial system networks. Specifically, this paper examines the applicability of particular food web matrix properties as design rules for economically and biologically sustainable industrial networks, using an optimization model developed for a carpet recycling network. Carpet recycling network designs based on traditional cost and emissions based optimization are compared to designs obtained using optimizations based solely on ecological food web metrics. The analysis suggests that networks optimized using food web metrics also were superior from a traditional cost and emissions perspective; correlations between optimization using ecological metrics and traditional optimization ranged generally from 0.70 to 0.96, with flow-based metrics being superior to structural parameters. Four structural food parameters provided correlations nearly the same as that obtained using all structural parameters, but individual structural parameters provided much less satisfactory correlations. The analysis indicates that bioinspired design principles from ecosystems can lead to both environmentally and economically sustainable industrial resource networks, and represent guidelines for designing sustainable industry networks.

  14. Evaluation of urban drainage network based geographycal information system (GIS) in Sumenep City

    NASA Astrophysics Data System (ADS)

    Agrianto, F.; Hadiani, R.; Purwana, Y. M.

    2017-02-01

    Sumenep City frequently hit by floods. Drainage network conditions greatly affect the performance of her maid, especially those aspects that affect the capacity of the drainage channel. Aspects that affect the capacity of the drainage channel in the form of sedimentation rate and complementary buildings on drainage channels, for example, the presence of street inlet and trash rack. The method used is a drainage channel capacity level approach that level assessment of each segment drainage network conditions by calculating the ratio of the channel cross-sectional area that is filled with sediment to the total cross-sectional area wet and the existence of complementary buildings. Having obtained the condition index value of each segment, the subsequent analysis is spatial analysis using ArcGIS applications to obtain a map of the drainage network information. The analysis showed that the level condition of drainage network in the city of Sumenep in 2016 that of the total 428 drainage network there are 43 sections belonging to the state level “Good”, 198 drainage network belong to the state level “Enough”, 115 drainage network belong to the state “Mild Damaged”, 50 sections belonging to the state “Heavy Damage” and 22 drainage network belong to the state of “Dysfunction”.

  15. Time-Frequency Cross Mutual Information Analysis of the Brain Functional Networks Underlying Multiclass Motor Imagery.

    PubMed

    Gong, Anmin; Liu, Jianping; Chen, Si; Fu, Yunfa

    2018-01-01

    To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI.

  16. HSI top-down requirements analysis for ship manpower reduction

    NASA Astrophysics Data System (ADS)

    Malone, Thomas B.; Bost, J. R.

    2000-11-01

    U.S. Navy ship acquisition programs such as DD 21 and CVNX are increasingly relying on top down requirements analysis (TDRA) to define and assess design approaches for workload and manpower reduction, and for ensuring required levels of human performance, reliability, safety, and quality of life at sea. The human systems integration (HSI) approach to TDRA begins with a function analysis which identifies the functions derived from the requirements in the Operational Requirements Document (ORD). The function analysis serves as the function baseline for the ship, and also supports the definition of RDT&E and Total Ownership Cost requirements. A mission analysis is then conducted to identify mission scenarios, again based on requirements in the ORD, and the Design Reference Mission (DRM). This is followed by a mission/function analysis which establishes the function requirements to successfully perform the ship's missions. Function requirements of major importance for HSI are information, performance, decision, and support requirements associated with each function. An allocation of functions defines the roles of humans and automation in performing the functions associated with a mission. Alternate design concepts, based on function allocation strategies, are then described, and task networks associated with the concepts are developed. Task network simulations are conducted to assess workloads and human performance capabilities associated with alternate concepts. An assessment of the affordability and risk associated with alternate concepts is performed, and manning estimates are developed for feasible design concepts.

  17. Experience with low-cost telemedicine in three different settings. Recommendations based on a proposed framework for network performance evaluation.

    PubMed

    Wootton, Richard; Vladzymyrskyy, Anton; Zolfo, Maria; Bonnardot, Laurent

    2011-01-01

    Telemedicine has been used for many years to support doctors in the developing world. Several networks provide services in different settings and in different ways. However, to draw conclusions about which telemedicine networks are successful requires a method of evaluating them. No general consensus or validated framework exists for this purpose. To define a basic method of performance measurement that can be used to improve and compare teleconsultation networks; to employ the proposed framework in an evaluation of three existing networks; to make recommendations about the future implementation and follow-up of such networks. Analysis based on the experience of three telemedicine networks (in operation for 7-10 years) that provide services to doctors in low-resource settings and which employ the same basic design. Although there are many possible indicators and metrics that might be relevant, five measures for each of the three user groups appear to be sufficient for the proposed framework. In addition, from the societal perspective, information about clinical- and cost-effectiveness is also required. The proposed performance measurement framework was applied to three mature telemedicine networks. Despite their differences in terms of activity, size and objectives, their performance in certain respects is very similar. For example, the time to first reply from an expert is about 24 hours for each network. Although all three networks had systems in place to collect data from the user perspective, none of them collected information about the coordinator's time required or about ease of system usage. They had only limited information about quality and cost. Measuring the performance of a telemedicine network is essential in understanding whether the network is working as intended and what effect it is having. Based on long-term field experience, the suggested framework is a practical tool that will permit organisations to assess the performance of their own networks and to improve them by comparison with others. All telemedicine systems should provide information about setup and running costs because cost-effectiveness is crucial for sustainability.

  18. Experience with low-cost telemedicine in three different settings. Recommendations based on a proposed framework for network performance evaluation

    PubMed Central

    Wootton, Richard; Vladzymyrskyy, Anton; Zolfo, Maria; Bonnardot, Laurent

    2011-01-01

    Background Telemedicine has been used for many years to support doctors in the developing world. Several networks provide services in different settings and in different ways. However, to draw conclusions about which telemedicine networks are successful requires a method of evaluating them. No general consensus or validated framework exists for this purpose. Objective To define a basic method of performance measurement that can be used to improve and compare teleconsultation networks; to employ the proposed framework in an evaluation of three existing networks; to make recommendations about the future implementation and follow-up of such networks. Methods Analysis based on the experience of three telemedicine networks (in operation for 7–10 years) that provide services to doctors in low-resource settings and which employ the same basic design. Findings Although there are many possible indicators and metrics that might be relevant, five measures for each of the three user groups appear to be sufficient for the proposed framework. In addition, from the societal perspective, information about clinical- and cost-effectiveness is also required. The proposed performance measurement framework was applied to three mature telemedicine networks. Despite their differences in terms of activity, size and objectives, their performance in certain respects is very similar. For example, the time to first reply from an expert is about 24 hours for each network. Although all three networks had systems in place to collect data from the user perspective, none of them collected information about the coordinator's time required or about ease of system usage. They had only limited information about quality and cost. Conclusion Measuring the performance of a telemedicine network is essential in understanding whether the network is working as intended and what effect it is having. Based on long-term field experience, the suggested framework is a practical tool that will permit organisations to assess the performance of their own networks and to improve them by comparison with others. All telemedicine systems should provide information about setup and running costs because cost-effectiveness is crucial for sustainability. PMID:22162965

  19. A gene network bioinformatics analysis for pemphigoid autoimmune blistering diseases.

    PubMed

    Barone, Antonio; Toti, Paolo; Giuca, Maria Rita; Derchi, Giacomo; Covani, Ugo

    2015-07-01

    In this theoretical study, a text mining search and clustering analysis of data related to genes potentially involved in human pemphigoid autoimmune blistering diseases (PAIBD) was performed using web tools to create a gene/protein interaction network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was employed to identify a final set of PAIBD-involved genes and to calculate the overall significant interactions among genes: for each gene, the weighted number of links, or WNL, was registered and a clustering procedure was performed using the WNL analysis. Genes were ranked in class (leader, B, C, D and so on, up to orphans). An ontological analysis was performed for the set of 'leader' genes. Using the above-mentioned data network, 115 genes represented the final set; leader genes numbered 7 (intercellular adhesion molecule 1 (ICAM-1), interferon gamma (IFNG), interleukin (IL)-2, IL-4, IL-6, IL-8 and tumour necrosis factor (TNF)), class B genes were 13, whereas the orphans were 24. The ontological analysis attested that the molecular action was focused on extracellular space and cell surface, whereas the activation and regulation of the immunity system was widely involved. Despite the limited knowledge of the present pathologic phenomenon, attested by the presence of 24 genes revealing no protein-protein direct or indirect interactions, the network showed significant pathways gathered in several subgroups: cellular components, molecular functions, biological processes and the pathologic phenomenon obtained from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. The molecular basis for PAIBD was summarised and expanded, which will perhaps give researchers promising directions for the identification of new therapeutic targets.

  20. Simplified Techniques for Evaluation and Interpretation of Pavement Deflections for Network-level Analysis : Guide for Assessment of Pavement Structure Performance for PMS Applications

    DOT National Transportation Integrated Search

    2012-06-01

    The objective of this study was to develop an approach for incorporating techniques to interpret and evaluate deflection : data for network-level pavement management system (PMS) applications. The first part of this research focused on : identifying ...

  1. Functional network-based statistics in depression: Theory of mind subnetwork and importance of parietal region.

    PubMed

    Lai, Chien-Han; Wu, Yu-Te; Hou, Yuh-Ming

    2017-08-01

    The functional network analysis of whole brain is an emerging field for research in depression. We initiated this study to investigate which subnetwork is significantly altered within the functional connectome in major depressive disorder (MDD). The study enrolled 52 first-episode medication-naïve patients with MDD and 40 controls for functional network analysis. All participants received the resting-state functional imaging using a 3-Tesla magnetic resonance scanner. After preprocessing, we calculated the connectivity matrix of functional connectivity in whole brain for each subject. The network-based statistics of connectome was used to perform group comparisons between patients and controls. The correlations between functional connectivity and clinical parameters were also performed. MDD patients had significant alterations in the network involving "theory of mind" regions, such as the left precentral gyrus, left angular gyrus, bilateral rolandic operculums and left inferior frontal gyrus. The center node of significant network was the left angular gyrus. No significant correlations of functional connectivity within the subnetwork and clinical parameters were noted. Functional connectivity of "theory of mind" subnetwork may be the core issue for pathophysiology in MDD. In addition, the center role of parietal region should be emphasized in future study. Copyright © 2017. Published by Elsevier B.V.

  2. Delivery of video-on-demand services using local storages within passive optical networks.

    PubMed

    Abeywickrama, Sandu; Wong, Elaine

    2013-01-28

    At present, distributed storage systems have been widely studied to alleviate Internet traffic build-up caused by high-bandwidth, on-demand applications. Distributed storage arrays located locally within the passive optical network were previously proposed to deliver Video-on-Demand services. As an added feature, a popularity-aware caching algorithm was also proposed to dynamically maintain the most popular videos in the storage arrays of such local storages. In this paper, we present a new dynamic bandwidth allocation algorithm to improve Video-on-Demand services over passive optical networks using local storages. The algorithm exploits the use of standard control packets to reduce the time taken for the initial request communication between the customer and the central office, and to maintain the set of popular movies in the local storage. We conduct packet level simulations to perform a comparative analysis of the Quality-of-Service attributes between two passive optical networks, namely the conventional passive optical network and one that is equipped with a local storage. Results from our analysis highlight that strategic placement of a local storage inside the network enables the services to be delivered with improved Quality-of-Service to the customer. We further formulate power consumption models of both architectures to examine the trade-off between enhanced Quality-of-Service performance versus the increased power requirement from implementing a local storage within the network.

  3. Performance of a Protected Wireless Sensor Network in a Fire. Analysis of Fire Spread and Data Transmission

    PubMed Central

    Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic

    2009-01-01

    The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m2. PMID:22454563

  4. Performance of a protected wireless sensor network in a fire. Analysis of fire spread and data transmission.

    PubMed

    Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic

    2009-01-01

    The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m(2).

  5. Analysis of the Existence of Patient Care Team Using Social Network Methods in Physician Communities from Healthcare Insurance Companies.

    PubMed

    Ito, Márcia; Appel, Ana Paula; de Santana, Vagner Figueredo; Moyano, Luis G

    2017-01-01

    Care teams are formed by physicians of different specialties who take care of the same patient. Hence, if we find physicians that share patients with each other probably they configure an informal care team. Thus, the objective of this work is to explore the possibility of finding care teams using Social Network Analysis techniques in physician-physician networks where the physicians have patients in common. For this, we used healthcare insurance claims to build the network. There was the agreement on the metrics of degree and eigenvalue and of betweenness and closeness, also physicians with the 5 highest eigenvalues are highly interconnected. We discuss that the analysis of the physician-physician network with metrics of centrality is promising to reveal informal care teams. The high potential in calculating these metrics is verified from the results to evaluate member's performance and with that how to take actions to improve the work of the team.

  6. Google matrix of the world network of economic activities

    NASA Astrophysics Data System (ADS)

    Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.

    2015-07-01

    Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.

  7. Development of neural network techniques for finger-vein pattern classification

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen

    2010-02-01

    A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.

  8. Dual Arm Work Package performance estimates and telerobot task network simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draper, J.V.; Blair, L.M.

    1997-02-01

    This paper describes the methodology and results of a network simulation study of the Dual Arm Work Package (DAWP), to be employed for dismantling the Argonne National Laboratory CP-5 reactor. The development of the simulation model was based upon the results of a task analysis for the same system. This study was performed by the Oak Ridge National Laboratory (ORNL), in the Robotics and Process Systems Division. Funding was provided the US Department of Energy`s Office of Technology Development, Robotics Technology Development Program (RTDP). The RTDP is developing methods of computer simulation to estimate telerobotic system performance. Data were collectedmore » to provide point estimates to be used in a task network simulation model. Three skilled operators performed six repetitions of a pipe cutting task representative of typical teleoperation cutting operations.« less

  9. Using Spatial Multiple Regression to Identify Intrinsic Connectivity Networks Involved in Working Memory Performance

    PubMed Central

    Gordon, Evan M.; Stollstorff, Melanie; Vaidya, Chandan J.

    2012-01-01

    Many researchers have noted that the functional architecture of the human brain is relatively invariant during task performance and the resting state. Indeed, intrinsic connectivity networks (ICNs) revealed by resting-state functional connectivity analyses are spatially similar to regions activated during cognitive tasks. This suggests that patterns of task-related activation in individual subjects may result from the engagement of one or more of these ICNs; however, this has not been tested. We used a novel analysis, spatial multiple regression, to test whether the patterns of activation during an N-back working memory task could be well described by a linear combination of ICNs delineated using Independent Components Analysis at rest. We found that across subjects, the cingulo-opercular Set Maintenance ICN, as well as right and left Frontoparietal Control ICNs, were reliably activated during working memory, while Default Mode and Visual ICNs were reliably deactivated. Further, involvement of Set Maintenance, Frontoparietal Control, and Dorsal Attention ICNs was sensitive to varying working memory load. Finally, the degree of left Frontoparietal Control network activation predicted response speed, while activation in both left Frontoparietal Control and Dorsal Attention networks predicted task accuracy. These results suggest that a close relationship between resting-state networks and task-evoked activation is functionally relevant for behavior, and that spatial multiple regression analysis is a suitable method for revealing that relationship. PMID:21761505

  10. Living network meta-analysis compared with pairwise meta-analysis in comparative effectiveness research: empirical study.

    PubMed

    Nikolakopoulou, Adriani; Mavridis, Dimitris; Furukawa, Toshi A; Cipriani, Andrea; Tricco, Andrea C; Straus, Sharon E; Siontis, George C M; Egger, Matthias; Salanti, Georgia

    2018-02-28

    To examine whether the continuous updating of networks of prospectively planned randomised controlled trials (RCTs) ("living" network meta-analysis) provides strong evidence against the null hypothesis in comparative effectiveness of medical interventions earlier than the updating of conventional, pairwise meta-analysis. Empirical study of the accumulating evidence about the comparative effectiveness of clinical interventions. Database of network meta-analyses of RCTs identified through searches of Medline, Embase, and the Cochrane Database of Systematic Reviews until 14 April 2015. Network meta-analyses published after January 2012 that compared at least five treatments and included at least 20 RCTs. Clinical experts were asked to identify in each network the treatment comparison of greatest clinical interest. Comparisons were excluded for which direct and indirect evidence disagreed, based on side, or node, splitting test (P<0.10). Cumulative pairwise and network meta-analyses were performed for each selected comparison. Monitoring boundaries of statistical significance were constructed and the evidence against the null hypothesis was considered to be strong when the monitoring boundaries were crossed. A significance level was defined as α=5%, power of 90% (β=10%), and an anticipated treatment effect to detect equal to the final estimate from the network meta-analysis. The frequency and time to strong evidence was compared against the null hypothesis between pairwise and network meta-analyses. 49 comparisons of interest from 44 networks were included; most (n=39, 80%) were between active drugs, mainly from the specialties of cardiology, endocrinology, psychiatry, and rheumatology. 29 comparisons were informed by both direct and indirect evidence (59%), 13 by indirect evidence (27%), and 7 by direct evidence (14%). Both network and pairwise meta-analysis provided strong evidence against the null hypothesis for seven comparisons, but for an additional 10 comparisons only network meta-analysis provided strong evidence against the null hypothesis (P=0.002). The median time to strong evidence against the null hypothesis was 19 years with living network meta-analysis and 23 years with living pairwise meta-analysis (hazard ratio 2.78, 95% confidence interval 1.00 to 7.72, P=0.05). Studies directly comparing the treatments of interest continued to be published for eight comparisons after strong evidence had become evident in network meta-analysis. In comparative effectiveness research, prospectively planned living network meta-analyses produced strong evidence against the null hypothesis more often and earlier than conventional, pairwise meta-analyses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Optimal Location through Distributed Algorithm to Avoid Energy Hole in Mobile Sink WSNs

    PubMed Central

    Qing-hua, Li; Wei-hua, Gui; Zhi-gang, Chen

    2014-01-01

    In multihop data collection sensor network, nodes near the sink need to relay on remote data and, thus, have much faster energy dissipation rate and suffer from premature death. This phenomenon causes energy hole near the sink, seriously damaging the network performance. In this paper, we first compute energy consumption of each node when sink is set at any point in the network through theoretical analysis; then we propose an online distributed algorithm, which can adjust sink position based on the actual energy consumption of each node adaptively to get the actual maximum lifetime. Theoretical analysis and experimental results show that the proposed algorithms significantly improve the lifetime of wireless sensor network. It lowers the network residual energy by more than 30% when it is dead. Moreover, the cost for moving the sink is relatively smaller. PMID:24895668

  12. Optimizing a neural network for detection of moving vehicles in video

    NASA Astrophysics Data System (ADS)

    Fischer, Noëlle M.; Kruithof, Maarten C.; Bouma, Henri

    2017-10-01

    In the field of security and defense, it is extremely important to reliably detect moving objects, such as cars, ships, drones and missiles. Detection and analysis of moving objects in cameras near borders could be helpful to reduce illicit trading, drug trafficking, irregular border crossing, trafficking in human beings and smuggling. Many recent benchmarks have shown that convolutional neural networks are performing well in the detection of objects in images. Most deep-learning research effort focuses on classification or detection on single images. However, the detection of dynamic changes (e.g., moving objects, actions and events) in streaming video is extremely relevant for surveillance and forensic applications. In this paper, we combine an end-to-end feedforward neural network for static detection with a recurrent Long Short-Term Memory (LSTM) network for multi-frame analysis. We present a practical guide with special attention to the selection of the optimizer and batch size. The end-to-end network is able to localize and recognize the vehicles in video from traffic cameras. We show an efficient way to collect relevant in-domain data for training with minimal manual labor. Our results show that the combination with LSTM improves performance for the detection of moving vehicles.

  13. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  14. Age-related differences in brain network activation and co-activation during multiple object tracking.

    PubMed

    Dørum, Erlend S; Alnæs, Dag; Kaufmann, Tobias; Richard, Geneviève; Lund, Martina J; Tønnesen, Siren; Sneve, Markus H; Mathiesen, Nina C; Rustan, Øyvind G; Gjertsen, Øivind; Vatn, Sigurd; Fure, Brynjar; Andreassen, Ole A; Nordvik, Jan Egil; Westlye, Lars T

    2016-11-01

    Multiple object tracking (MOT) is a powerful paradigm for measuring sustained attention. Although previous fMRI studies have delineated the brain activation patterns associated with tracking and documented reduced tracking performance in aging, age-related effects on brain activation during MOT have not been characterized. In particular, it is unclear if the task-related activation of different brain networks is correlated, and also if this coordination between activations within brain networks shows differential effects of age. We obtained fMRI data during MOT at two load conditions from a group of younger ( n  = 25, mean age = 24.4 ± 5.1 years) and older ( n  = 21, mean age = 64.7 ± 7.4 years) healthy adults. Using a combination of voxel-wise and independent component analysis, we investigated age-related differences in the brain network activation. In order to explore to which degree activation of the various brain networks reflect unique and common mechanisms, we assessed the correlations between the brain networks' activations. Behavioral performance revealed an age-related reduction in MOT accuracy. Voxel and brain network level analyses converged on decreased load-dependent activations of the dorsal attention network (DAN) and decreased load-dependent deactivations of the default mode networks (DMN) in the old group. Lastly, we found stronger correlations in the task-related activations within DAN and within DMN components for younger adults, and stronger correlations between DAN and DMN components for older adults. Using MOT as means for measuring attentional performance, we have demonstrated an age-related attentional decline. Network-level analysis revealed age-related alterations in network recruitment consisting of diminished activations of DAN and diminished deactivations of DMN in older relative to younger adults. We found stronger correlations within DMN and within DAN components for younger adults and stronger correlations between DAN and DMN components for older adults, indicating age-related alterations in the coordinated network-level activation during attentional processing.

  15. Hyperconnectivity in juvenile myoclonic epilepsy: a network analysis.

    PubMed

    Caeyenberghs, K; Powell, H W R; Thomas, R H; Brindley, L; Church, C; Evans, J; Muthukumaraswamy, S D; Jones, D K; Hamandi, K

    2015-01-01

    Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients.

  16. Hyperconnectivity in juvenile myoclonic epilepsy: A network analysis

    PubMed Central

    Caeyenberghs, K.; Powell, H.W.R.; Thomas, R.H.; Brindley, L.; Church, C.; Evans, J.; Muthukumaraswamy, S.D.; Jones, D.K.; Hamandi, K.

    2014-01-01

    Objective Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Methods Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Results Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Conclusions Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients. PMID:25610771

  17. Generative models for discovering sparse distributed representations.

    PubMed Central

    Hinton, G E; Ghahramani, Z

    1997-01-01

    We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor analysis and can be implemented in a neural network. The model uses bottom-up, top-down and lateral connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been performed the connection strengths can be updated using a very simple learning rule that only requires locally available information. We demonstrate that the network learns to extract sparse, distributed, hierarchical representations. PMID:9304685

  18. Quantification of changes in language-related brain areas in autism spectrum disorders using large-scale network analysis.

    PubMed

    Goch, Caspar J; Stieltjes, Bram; Henze, Romy; Hering, Jan; Poustka, Luise; Meinzer, Hans-Peter; Maier-Hein, Klaus H

    2014-05-01

    Diagnosis of autism spectrum disorders (ASD) is difficult, as symptoms vary greatly and are difficult to quantify objectively. Recent work has focused on the assessment of non-invasive diffusion tensor imaging-based biomarkers that reflect the microstructural characteristics of neuronal pathways in the brain. While tractography-based approaches typically analyze specific structures of interest, a graph-based large-scale network analysis of the connectome can yield comprehensive measures of larger-scale architectural patterns in the brain. Commonly applied global network indices, however, do not provide any specificity with respect to functional areas or anatomical structures. Aim of this work was to assess the concept of network centrality as a tool to perform locally specific analysis without disregarding the global network architecture and compare it to other popular network indices. We create connectome networks from fiber tractographies and parcellations of the human brain and compute global network indices as well as local indices for Wernicke's Area, Broca's Area and the Motor Cortex. Our approach was evaluated on 18 children suffering from ASD and 18 typically developed controls using magnetic resonance imaging-based cortical parcellations in combination with diffusion tensor imaging tractography. We show that the network centrality of Wernicke's area is significantly (p<0.001) reduced in ASD, while the motor cortex, which was used as a control region, did not show significant alterations. This could reflect the reduced capacity for comprehension of language in ASD. The betweenness centrality could potentially be an important metric in the development of future diagnostic tools in the clinical context of ASD diagnosis. Our results further demonstrate the applicability of large-scale network analysis tools in the domain of region-specific analysis with a potential application in many different psychological disorders.

  19. Revealing the Hidden Relationship by Sparse Modules in Complex Networks with a Large-Scale Analysis

    PubMed Central

    Jiao, Qing-Ju; Huang, Yan; Liu, Wei; Wang, Xiao-Fan; Chen, Xiao-Shuang; Shen, Hong-Bin

    2013-01-01

    One of the remarkable features of networks is module that can provide useful insights into not only network organizations but also functional behaviors between their components. Comprehensive efforts have been devoted to investigating cohesive modules in the past decade. However, it is still not clear whether there are important structural characteristics of the nodes that do not belong to any cohesive module. In order to answer this question, we performed a large-scale analysis on 25 complex networks with different types and scales using our recently developed BTS (bintree seeking) algorithm, which is able to detect both cohesive and sparse modules in the network. Our results reveal that the sparse modules composed by the cohesively isolated nodes widely co-exist with the cohesive modules. Detailed analysis shows that both types of modules provide better characterization for the division of a network into functional units than merely cohesive modules, because the sparse modules possibly re-organize the nodes in the so-called cohesive modules, which lack obvious modular significance, into meaningful groups. Compared with cohesive modules, the sizes of sparse ones are generally smaller. Sparse modules are also found to have preferences in social and biological networks than others. PMID:23762457

  20. A novel method to identify pathways associated with renal cell carcinoma based on a gene co-expression network

    PubMed Central

    RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG

    2015-01-01

    The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425

  1. A User Authentication Scheme Based on Elliptic Curves Cryptography for Wireless Ad Hoc Networks

    PubMed Central

    Chen, Huifang; Ge, Linlin; Xie, Lei

    2015-01-01

    The feature of non-infrastructure support in a wireless ad hoc network (WANET) makes it suffer from various attacks. Moreover, user authentication is the first safety barrier in a network. A mutual trust is achieved by a protocol which enables communicating parties to authenticate each other at the same time and to exchange session keys. For the resource-constrained WANET, an efficient and lightweight user authentication scheme is necessary. In this paper, we propose a user authentication scheme based on the self-certified public key system and elliptic curves cryptography for a WANET. Using the proposed scheme, an efficient two-way user authentication and secure session key agreement can be achieved. Security analysis shows that our proposed scheme is resilient to common known attacks. In addition, the performance analysis shows that our proposed scheme performs similar or better compared with some existing user authentication schemes. PMID:26184224

  2. A User Authentication Scheme Based on Elliptic Curves Cryptography for Wireless Ad Hoc Networks.

    PubMed

    Chen, Huifang; Ge, Linlin; Xie, Lei

    2015-07-14

    The feature of non-infrastructure support in a wireless ad hoc network (WANET) makes it suffer from various attacks. Moreover, user authentication is the first safety barrier in a network. A mutual trust is achieved by a protocol which enables communicating parties to authenticate each other at the same time and to exchange session keys. For the resource-constrained WANET, an efficient and lightweight user authentication scheme is necessary. In this paper, we propose a user authentication scheme based on the self-certified public key system and elliptic curves cryptography for a WANET. Using the proposed scheme, an efficient two-way user authentication and secure session key agreement can be achieved. Security analysis shows that our proposed scheme is resilient to common known attacks. In addition, the performance analysis shows that our proposed scheme performs similar or better compared with some existing user authentication schemes.

  3. Deep Gaze Velocity Analysis During Mammographic Reading for Biometric Identification of Radiologists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hong-Jun; Alamudun, Folami T.; Hudson, Kathy

    Several studies have confirmed that the gaze velocity of the human eye can be utilized as a behavioral biometric or personalized biomarker. In this study, we leverage the local feature representation capacity of convolutional neural networks (CNNs) for eye gaze velocity analysis as the basis for biometric identification of radiologists performing breast cancer screening. Using gaze data collected from 10 radiologists reading 100 mammograms of various diagnoses, we compared the performance of a CNN-based classification algorithm with two deep learning classifiers, deep neural network and deep belief network, and a previously presented hidden Markov model classifier. The study showed thatmore » the CNN classifier is superior compared to alternative classification methods based on macro F1-scores derived from 10-fold cross-validation experiments. Our results further support the efficacy of eye gaze velocity as a biometric identifier of medical imaging experts.« less

  4. Deep Gaze Velocity Analysis During Mammographic Reading for Biometric Identification of Radiologists

    DOE PAGES

    Yoon, Hong-Jun; Alamudun, Folami T.; Hudson, Kathy; ...

    2018-01-24

    Several studies have confirmed that the gaze velocity of the human eye can be utilized as a behavioral biometric or personalized biomarker. In this study, we leverage the local feature representation capacity of convolutional neural networks (CNNs) for eye gaze velocity analysis as the basis for biometric identification of radiologists performing breast cancer screening. Using gaze data collected from 10 radiologists reading 100 mammograms of various diagnoses, we compared the performance of a CNN-based classification algorithm with two deep learning classifiers, deep neural network and deep belief network, and a previously presented hidden Markov model classifier. The study showed thatmore » the CNN classifier is superior compared to alternative classification methods based on macro F1-scores derived from 10-fold cross-validation experiments. Our results further support the efficacy of eye gaze velocity as a biometric identifier of medical imaging experts.« less

  5. Characterization of biomarkers in stroke based on ego-networks and pathways.

    PubMed

    Li, Haixia; Guo, Qianqian

    2017-12-01

    To explore potential biomarkers in stroke based on ego-networks and pathways. EgoNet method was applied to search for the underlying biomarkers in stroke using transcription profiling of E-GEOD-58294 and protein-protein interaction (PPI) data. Eight ego-genes were identified from PPI network according to the degree characteristics at the criteria of top 5% ranked z-sore and degree >1. Eight candidate ego-networks with classification accuracy ≥0.9 were selected. After performed randomization test, seven significant ego-networks with adjusted p value < 0.05 were identified. Pathway enrichment analysis was then conducted with these ego-networks to search for the significant pathways. Finally, two significant pathways were identified, and six of seven ego-networks were enriched to "3'-UTR-mediated translational regulation" pathway, indicating that this pathway performs an important role in the development of stroke. Seven ego-networks were constructed using EgoNet and two significant enriched by pathways were identified. These may provide new insights into the potential biomarkers for the development of stroke.

  6. Mitigating Handoff Call Dropping in Wireless Cellular Networks: A Call Admission Control Technique

    NASA Astrophysics Data System (ADS)

    Ekpenyong, Moses Effiong; Udoh, Victoria Idia; Bassey, Udoma James

    2016-06-01

    Handoff management has been an important but challenging issue in the field of wireless communication. It seeks to maintain seamless connectivity of mobile users changing their points of attachment from one base station to another. This paper derives a call admission control model and establishes an optimal step-size coefficient (k) that regulates the admission probability of handoff calls. An operational CDMA network carrier was investigated through the analysis of empirical data collected over a period of 1 month, to verify the performance of the network. Our findings revealed that approximately 23 % of calls in the existing system were lost, while 40 % of the calls (on the average) were successfully admitted. A simulation of the proposed model was then carried out under ideal network conditions to study the relationship between the various network parameters and validate our claim. Simulation results showed that increasing the step-size coefficient degrades the network performance. Even at optimum step-size (k), the network could still be compromised in the presence of severe network crises, but our model was able to recover from these problems and still functions normally.

  7. Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems.

    PubMed

    Kim, Jason Z; Soffer, Jonathan M; Kahn, Ari E; Vettel, Jean M; Pasqualetti, Fabio; Bassett, Danielle S

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  8. Role of graph architecture in controlling dynamical networks with applications to neural systems

    NASA Astrophysics Data System (ADS)

    Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  9. Language Networks as Models of Cognition: Understanding Cognition through Language

    NASA Astrophysics Data System (ADS)

    Beckage, Nicole M.; Colunga, Eliana

    Language is inherently cognitive and distinctly human. Separating the object of language from the human mind that processes and creates language fails to capture the full language system. Linguistics traditionally has focused on the study of language as a static representation, removed from the human mind. Network analysis has traditionally been focused on the properties and structure that emerge from network representations. Both disciplines could gain from looking at language as a cognitive process. In contrast, psycholinguistic research has focused on the process of language without committing to a representation. However, by considering language networks as approximations of the cognitive system we can take the strength of each of these approaches to study human performance and cognition as related to language. This paper reviews research showcasing the contributions of network science to the study of language. Specifically, we focus on the interplay of cognition and language as captured by a network representation. To this end, we review different types of language network representations before considering the influence of global level network features. We continue by considering human performance in relation to network structure and conclude with theoretical network models that offer potential and testable explanations of cognitive and linguistic phenomena.

  10. Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge-Based Image Analysis.

    DTIC Science & Technology

    1988-01-19

    approach for the analysis of aerial images. In this approach image analysis is performed ast three levels of abstraction, namely iconic or low-level... image analysis , symbolic or medium-level image analysis , and semantic or high-level image analysis . Domain dependent knowledge about prototypical urban

  11. The Global Seismographic Network (GSN): Deployment of Next Generation VBB Borehole Sensors and Improving Overall Network Noise Performance

    NASA Astrophysics Data System (ADS)

    Hafner, K.; Davis, P.; Wilson, D.; Sumy, D.

    2017-12-01

    The Global Seismographic Network (GSN) recently received delivery of the next generation Very Broadband (VBB) borehole sensors purchased through funding from the DOE. Deployment of these sensors will be underway during the end of summer and fall of 2017 and they will eventually replace the aging KS54000 sensors at approximately one-third of the GSN network stations. We will present the latest methods of deploying these sensors in the existing deep boreholes. To achieve lower noise performance at some sites, emplacement in shallow boreholes might result in lower noise performance for the existing site conditions. In some cases shallow borehole installations may be adapted to vault stations (which make up two thirds of the network), as a means of reducing tilt-induced signals on the horizontal components. The GSN is creating a prioritized list of equipment upgrades at selected stations with the ultimate goal of optimizing overall network data availability and noise performance. For an overview of the performance of the current GSN relative to selected set of metrics, we are utilizing data quality metrics and Probability Density Functions (PDFs)) generated by the IRIS Data Management Centers' (DMC) MUSTANG (Modular Utility for Statistical Knowledge Gathering) and LASSO (Latest Assessment of Seismic Station Observations) tools. We will present our metric analysis of GSN performance in 2016, and show the improvements at GSN sites resulting from recent instrumentation and infrastructure upgrades.

  12. Extension of a System Level Tool for Component Level Analysis

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Schallhorn, Paul

    2002-01-01

    This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.

  13. Extension of a System Level Tool for Component Level Analysis

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Schallhorn, Paul; McConnaughey, Paul K. (Technical Monitor)

    2001-01-01

    This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow, and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.

  14. State Space Model with hidden variables for reconstruction of gene regulatory networks.

    PubMed

    Wu, Xi; Li, Peng; Wang, Nan; Gong, Ping; Perkins, Edward J; Deng, Youping; Zhang, Chaoyang

    2011-01-01

    State Space Model (SSM) is a relatively new approach to inferring gene regulatory networks. It requires less computational time than Dynamic Bayesian Networks (DBN). There are two types of variables in the linear SSM, observed variables and hidden variables. SSM uses an iterative method, namely Expectation-Maximization, to infer regulatory relationships from microarray datasets. The hidden variables cannot be directly observed from experiments. How to determine the number of hidden variables has a significant impact on the accuracy of network inference. In this study, we used SSM to infer Gene regulatory networks (GRNs) from synthetic time series datasets, investigated Bayesian Information Criterion (BIC) and Principle Component Analysis (PCA) approaches to determining the number of hidden variables in SSM, and evaluated the performance of SSM in comparison with DBN. True GRNs and synthetic gene expression datasets were generated using GeneNetWeaver. Both DBN and linear SSM were used to infer GRNs from the synthetic datasets. The inferred networks were compared with the true networks. Our results show that inference precision varied with the number of hidden variables. For some regulatory networks, the inference precision of DBN was higher but SSM performed better in other cases. Although the overall performance of the two approaches is compatible, SSM is much faster and capable of inferring much larger networks than DBN. This study provides useful information in handling the hidden variables and improving the inference precision.

  15. Investigating the management performance of disinfection analysis of water distribution networks using data mining approaches.

    PubMed

    Zounemat-Kermani, Mohammad; Ramezani-Charmahineh, Abdollah; Adamowski, Jan; Kisi, Ozgur

    2018-06-13

    Chlorination, the basic treatment utilized for drinking water sources, is widely used for water disinfection and pathogen elimination in water distribution networks. Thereafter, the proper prediction of chlorine consumption is of great importance in water distribution network performance. In this respect, data mining techniques-which have the ability to discover the relationship between dependent variable(s) and independent variables-can be considered as alternative approaches in comparison to conventional methods (e.g., numerical methods). This study examines the applicability of three key methods, based on the data mining approach, for predicting chlorine levels in four water distribution networks. ANNs (artificial neural networks, including the multi-layer perceptron neural network, MLPNN, and radial basis function neural network, RBFNN), SVM (support vector machine), and CART (classification and regression tree) methods were used to estimate the concentration of residual chlorine in distribution networks for three villages in Kerman Province, Iran. Produced water (flow), chlorine consumption, and residual chlorine were collected daily for 3 years. An assessment of the studied models using several statistical criteria (NSC, RMSE, R 2 , and SEP) indicated that, in general, MLPNN has the greatest capability for predicting chlorine levels followed by CART, SVM, and RBF-ANN. Weaker performance of the data-driven methods in the water distribution networks, in some cases, could be attributed to improper chlorination management rather than the methods' capability.

  16. Automatic classification of DMSA scans using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Wright, J. W.; Duguid, R.; Mckiddie, F.; Staff, R. T.

    2014-04-01

    DMSA imaging is carried out in nuclear medicine to assess the level of functional renal tissue in patients. This study investigated the use of an artificial neural network to perform diagnostic classification of these scans. Using the radiological report as the gold standard, the network was trained to classify DMSA scans as positive or negative for defects using a representative sample of 257 previously reported images. The trained network was then independently tested using a further 193 scans and achieved a binary classification accuracy of 95.9%. The performance of the network was compared with three qualified expert observers who were asked to grade each scan in the 193 image testing set on a six point defect scale, from ‘definitely normal’ to ‘definitely abnormal’. A receiver operating characteristic analysis comparison between a consensus operator, generated from the scores of the three expert observers, and the network revealed a statistically significant increase (α < 0.05) in performance between the network and operators. A further result from this work was that when suitably optimized, a negative predictive value of 100% for renal defects was achieved by the network, while still managing to identify 93% of the negative cases in the dataset. These results are encouraging for application of such a network as a screening tool or quality assurance assistant in clinical practice.

  17. Mixed Criticality Scheduling for Industrial Wireless Sensor Networks

    PubMed Central

    Jin, Xi; Xia, Changqing; Xu, Huiting; Wang, Jintao; Zeng, Peng

    2016-01-01

    Wireless sensor networks (WSNs) have been widely used in industrial systems. Their real-time performance and reliability are fundamental to industrial production. Many works have studied the two aspects, but only focus on single criticality WSNs. Mixed criticality requirements exist in many advanced applications in which different data flows have different levels of importance (or criticality). In this paper, first, we propose a scheduling algorithm, which guarantees the real-time performance and reliability requirements of data flows with different levels of criticality. The algorithm supports centralized optimization and adaptive adjustment. It is able to improve both the scheduling performance and flexibility. Then, we provide the schedulability test through rigorous theoretical analysis. We conduct extensive simulations, and the results demonstrate that the proposed scheduling algorithm and analysis significantly outperform existing ones. PMID:27589741

  18. Bayesian network analysis revealed the connectivity difference of the default mode network from the resting-state to task-state

    PubMed Central

    Wu, Xia; Yu, Xinyu; Yao, Li; Li, Rui

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have converged to reveal the default mode network (DMN), a constellation of regions that display co-activation during resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we employed a Bayesian network (BN) analysis method to construct a directed effective connectivity model of the DMN and compared the organizational architecture and interregional directed connections under both resting-state and task-state. The analysis results indicated that the DMN was consistently organized into two closely interacting subsystems in both resting-state and task-state. The directed connections between DMN regions, however, changed significantly from the resting-state to task-state condition. The results suggest that the DMN intrinsically maintains a relatively stable structure whether at rest or performing tasks but has different information processing mechanisms under varied states. PMID:25309414

  19. Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks.

    PubMed

    Caillet, Pascal; Klemm, Sarah; Ducher, Michel; Aussem, Alexandre; Schott, Anne-Marie

    2015-01-01

    Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach. EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences. Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density. Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.

  20. Quantifying individual performance in Cricket — A network analysis of batsmen and bowlers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Satyam

    2014-01-01

    Quantifying individual performance in the game of Cricket is critical for team selection in International matches. The number of runs scored by batsmen and wickets taken by bowlers serves as a natural way of quantifying the performance of a cricketer. Traditionally the batsmen and bowlers are rated on their batting or bowling average respectively. However, in a game like Cricket it is always important the manner in which one scores the runs or claims a wicket. Scoring runs against a strong bowling line-up or delivering a brilliant performance against a team with a strong batting line-up deserves more credit. A player’s average is not able to capture this aspect of the game. In this paper we present a refined method to quantify the ‘quality’ of runs scored by a batsman or wickets taken by a bowler. We explore the application of Social Network Analysis (SNA) to rate the players in a team performance. We generate a directed and weighted network of batsmen-bowlers using the player-vs-player information available for Test cricket and ODI cricket. Additionally we generate a network of batsmen and bowlers based on the dismissal record of batsmen in the history of cricket-Test (1877-2011) and ODI (1971-2011). Our results show that M. Muralitharan is the most successful bowler in the history of Cricket. Our approach could potentially be applied in domestic matches to judge a player’s performance which in turn paves the way for a balanced team selection for International matches.

  1. Classification of bifurcations regions in IVOCT images using support vector machine and artificial neural network models

    NASA Astrophysics Data System (ADS)

    Porto, C. D. N.; Costa Filho, C. F. F.; Macedo, M. M. G.; Gutierrez, M. A.; Costa, M. G. F.

    2017-03-01

    Studies in intravascular optical coherence tomography (IV-OCT) have demonstrated the importance of coronary bifurcation regions in intravascular medical imaging analysis, as plaques are more likely to accumulate in this region leading to coronary disease. A typical IV-OCT pullback acquires hundreds of frames, thus developing an automated tool to classify the OCT frames as bifurcation or non-bifurcation can be an important step to speed up OCT pullbacks analysis and assist automated methods for atherosclerotic plaque quantification. In this work, we evaluate the performance of two state-of-the-art classifiers, SVM and Neural Networks in the bifurcation classification task. The study included IV-OCT frames from 9 patients. In order to improve classification performance, we trained and tested the SVM with different parameters by means of a grid search and different stop criteria were applied to the Neural Network classifier: mean square error, early stop and regularization. Different sets of features were tested, using feature selection techniques: PCA, LDA and scalar feature selection with correlation. Training and test were performed in sets with a maximum of 1460 OCT frames. We quantified our results in terms of false positive rate, true positive rate, accuracy, specificity, precision, false alarm, f-measure and area under ROC curve. Neural networks obtained the best classification accuracy, 98.83%, overcoming the results found in literature. Our methods appear to offer a robust and reliable automated classification of OCT frames that might assist physicians indicating potential frames to analyze. Methods for improving neural networks generalization have increased the classification performance.

  2. Nonlinear multivariate and time series analysis by neural network methods

    NASA Astrophysics Data System (ADS)

    Hsieh, William W.

    2004-03-01

    Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.

  3. The Deep Space Network: Noise temperature concepts, measurements, and performance

    NASA Technical Reports Server (NTRS)

    Stelzried, C. T.

    1982-01-01

    The use of higher operational frequencies is being investigated for improved performance of the Deep Space Network. Noise temperature and noise figure concepts are used to describe the noise performance of these receiving systems. The ultimate sensitivity of a linear receiving system is limited by the thermal noise of the source and the quantum noise of the receiver amplifier. The atmosphere, antenna and receiver amplifier of an Earth station receiving system are analyzed separately and as a system. Performance evaluation and error analysis techniques are investigated. System noise temperature and antenna gain parameters are combined to give an overall system figure of merit G/T. Radiometers are used to perform radio ""star'' antenna and system sensitivity calibrations. These are analyzed and the performance of several types compared to an idealized total power radiometer. The theory of radiative transfer is applicable to the analysis of transmission medium loss. A power series solution in terms of the transmission medium loss is given for the solution of the noise temperature contribution.

  4. Bimanual Motor Coordination in Older Adults Is Associated with Increased Functional Brain Connectivity – A Graph-Theoretical Analysis

    PubMed Central

    Heitger, Marcus H.; Goble, Daniel J.; Dhollander, Thijs; Dupont, Patrick; Caeyenberghs, Karen; Leemans, Alexander; Sunaert, Stefan; Swinnen, Stephan P.

    2013-01-01

    In bimanual coordination, older and younger adults activate a common cerebral network but the elderly also have additional activation in a secondary network of brain areas to master task performance. It remains unclear whether the functional connectivity within these primary and secondary motor networks differs between the old and the young and whether task difficulty modulates connectivity. We applied graph-theoretical network analysis (GTNA) to task-driven fMRI data in 16 elderly and 16 young participants using a bimanual coordination task including in-phase and anti-phase flexion/extension wrist movements. Network nodes for the GTNA comprised task-relevant brain areas as defined by fMRI activation foci. The elderly matched the motor performance of the young but showed an increased functional connectivity in both networks across a wide range of connectivity metrics, i.e., higher mean connectivity degree, connection strength, network density and efficiency, together with shorter mean communication path length between the network nodes and also a lower betweenness centrality. More difficult movements showed an increased connectivity in both groups. The network connectivity of both groups had “small world” character. The present findings indicate (a) that bimanual coordination in the aging brain is associated with a higher functional connectivity even between areas also activated in young adults, independently from task difficulty, and (b) that adequate motor coordination in the context of task-driven bimanual control in older adults may not be solely due to additional neural recruitment but also to aging-related changes of functional relationships between brain regions. PMID:23637982

  5. Performance Learning Roadmap A Network-Centric Approach for Engaged Learners

    DTIC Science & Technology

    2005-01-01

    Insurance Corporation Target Corporation Unilever Corporation United Nations Development Programme University of Wisconsin (UWSA)–Madison U.S. Coast Guard...performance support services, including consulting, coaching, mentoring, rapid 14 deployment training, targeted training, analysis , facilitation, and team...services include consulting, coaching, mentoring, rapid deployment training, targeted train- ing, analysis , facilitation, and team collaboration support

  6. Application of the device based on chirping of optical impulses for management of software-defined networks in dynamic mode

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Khasansin, Vadim R.; Andrianova, Anna V.; Yantilina, Liliya Z.; Vinogradov, Sergey L.

    2016-03-01

    The analysis of the influence of the physical layer concepts in optical networks on the performance of the whole network. It is concluded that the relevance of the search for new means of transmitting information on a physical level. It is proposed to use an optical chirp overhead transmission between controllers SDN. This article is devoted to research of a creation opportunity of optical neural switchboards controlled in addition by submitted optical radiation. It is supposed, that the managing radiation changes a parameter of refraction of optical environment of the device, and with it and length of a wave of information radiation. For the control by last is used multibeam interferometer. The brief estimation of technical aspects of construction of the device is carried out. The principle of using the device to an extensive network. Simulation of network performance parameters.

  7. LENS: web-based lens for enrichment and network studies of human proteins

    PubMed Central

    2015-01-01

    Background Network analysis is a common approach for the study of genetic view of diseases and biological pathways. Typically, when a set of genes are identified to be of interest in relation to a disease, say through a genome wide association study (GWAS) or a different gene expression study, these genes are typically analyzed in the context of their protein-protein interaction (PPI) networks. Further analysis is carried out to compute the enrichment of known pathways and disease-associations in the network. Having tools for such analysis at the fingertips of biologists without the requirement for computer programming or curation of data would accelerate the characterization of genes of interest. Currently available tools do not integrate network and enrichment analysis and their visualizations, and most of them present results in formats not most conducive to human cognition. Results We developed the tool Lens for Enrichment and Network Studies of human proteins (LENS) that performs network and pathway and diseases enrichment analyses on genes of interest to users. The tool creates a visualization of the network, provides easy to read statistics on network connectivity, and displays Venn diagrams with statistical significance values of the network's association with drugs, diseases, pathways, and GWASs. We used the tool to analyze gene sets related to craniofacial development, autism, and schizophrenia. Conclusion LENS is a web-based tool that does not require and download or plugins to use. The tool is free and does not require login for use, and is available at http://severus.dbmi.pitt.edu/LENS. PMID:26680011

  8. SAINT: A combined simulation language for modeling man-machine systems

    NASA Technical Reports Server (NTRS)

    Seifert, D. J.

    1979-01-01

    SAINT (Systems Analysis of Integrated Networks of Tasks) is a network modeling and simulation technique for design and analysis of complex man machine systems. SAINT provides the conceptual framework for representing systems that consist of discrete task elements, continuous state variables, and interactions between them. It also provides a mechanism for combining human performance models and dynamic system behaviors in a single modeling structure. The SAINT technique is described and applications of the SAINT are discussed.

  9. Software-Defined Radio Global System for Mobile Communications Transmitter Development for Heterogeneous Network Vulnerability Testing

    DTIC Science & Technology

    2013-12-01

    AbdelWahab, “ 2G / 3G Inter-RAT Handover Performance Analysis,” Second European Conference on Antennas and Propagation, pp. 1, 8, 11–16, Nov. 2007. [19] J...RADIO GLOBAL SYSTEM FOR MOBILE COMMUNICATIONS TRANSMITTER DEVELOPMENT FOR HETEROGENEOUS NETWORK VULNERABILITY TESTING by Carson C. McAbee... MOBILE COMMUNICATIONS TRANSMITTER DEVELOPMENT FOR HETEROGENEOUS NETWORK VULNERABILITY TESTING 5. FUNDING NUMBERS 6. AUTHOR(S) Carson C. McAbee

  10. Analysis of Soldier Radio Waveform Performance in Operational Test

    DTIC Science & Technology

    2015-05-01

    different frequencies based on carrier, uplink/downlink, and generation. In general, 2G and 3G cellular phones operate at 850 MHz uplink, and 1,900 MHz...spectrum management that may not be operationally feasible. These issues are not unique to SRW, but rather have plagued the mobile ad-hoc network... mobile ad-hoc network (MANET), enabling communication through a self-configuring, infrastructure-less network of mobile nodes. In the SS domain, these

  11. Neural network post-processing of grayscale optical correlator

    NASA Technical Reports Server (NTRS)

    Lu, Thomas T; Hughlett, Casey L.; Zhoua, Hanying; Chao, Tien-Hsin; Hanan, Jay C.

    2005-01-01

    In this paper we present the use of a radial basis function neural network (RBFNN) as a post-processor to assist the optical correlator to identify the objects and to reject false alarms. Image plane features near the correlation peaks are extracted and fed to the neural network for analysis. The approach is capable of handling large number of object variations and filter sets. Preliminary experimental results are presented and the performance is analyzed.

  12. Intelligent Agents as a Basis for Natural Language Interfaces

    DTIC Science & Technology

    1988-01-01

    language analysis component of UC, which produces a semantic representa tion of the input. This representation is in the form of a KODIAK network (see...Appendix A). Next, UC’s Concretion Mechanism performs concretion inferences ([Wilensky, 1983] and [Norvig, 1983]) based on the semantic network...The first step in UC’s processing is done by UC’s parser/understander component which produces a KODIAK semantic network representa tion of

  13. EEG Cortical Connectivity Analysis of Working Memory Reveals Topological Reorganization in Theta and Alpha Bands

    PubMed Central

    Dai, Zhongxiang; de Souza, Joshua; Lim, Julian; Ho, Paul M.; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios; Sun, Yu

    2017-01-01

    Numerous studies have revealed various working memory (WM)-related brain activities that originate from various cortical regions and oscillate at different frequencies. However, multi-frequency band analysis of the brain network in WM in the cortical space remains largely unexplored. In this study, we employed a graph theoretical framework to characterize the topological properties of the brain functional network in the theta and alpha frequency bands during WM tasks. Twenty-eight subjects performed visual n-back tasks at two difficulty levels, i.e., 0-back (control task) and 2-back (WM task). After preprocessing, Electroencephalogram (EEG) signals were projected into the source space and 80 cortical brain regions were selected for further analysis. Subsequently, the theta- and alpha-band networks were constructed by calculating the Pearson correlation coefficients between the power series (obtained by concatenating the power values of all epochs in each session) of all pairs of brain regions. Graph theoretical approaches were then employed to estimate the topological properties of the brain networks at different WM tasks. We found higher functional integration in the theta band and lower functional segregation in the alpha band in the WM task compared with the control task. Moreover, compared to the 0-back task, altered regional centrality was revealed in the 2-back task in various brain regions that mainly resided in the frontal, temporal and occipital lobes, with distinct presentations in the theta and alpha bands. In addition, significant negative correlations were found between the reaction time with the average path length of the theta-band network and the local clustering of the alpha-band network, which demonstrates the potential for using the brain network metrics as biomarkers for predicting the task performance during WM tasks. PMID:28553215

  14. EEG Cortical Connectivity Analysis of Working Memory Reveals Topological Reorganization in Theta and Alpha Bands.

    PubMed

    Dai, Zhongxiang; de Souza, Joshua; Lim, Julian; Ho, Paul M; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios; Sun, Yu

    2017-01-01

    Numerous studies have revealed various working memory (WM)-related brain activities that originate from various cortical regions and oscillate at different frequencies. However, multi-frequency band analysis of the brain network in WM in the cortical space remains largely unexplored. In this study, we employed a graph theoretical framework to characterize the topological properties of the brain functional network in the theta and alpha frequency bands during WM tasks. Twenty-eight subjects performed visual n -back tasks at two difficulty levels, i.e., 0-back (control task) and 2-back (WM task). After preprocessing, Electroencephalogram (EEG) signals were projected into the source space and 80 cortical brain regions were selected for further analysis. Subsequently, the theta- and alpha-band networks were constructed by calculating the Pearson correlation coefficients between the power series (obtained by concatenating the power values of all epochs in each session) of all pairs of brain regions. Graph theoretical approaches were then employed to estimate the topological properties of the brain networks at different WM tasks. We found higher functional integration in the theta band and lower functional segregation in the alpha band in the WM task compared with the control task. Moreover, compared to the 0-back task, altered regional centrality was revealed in the 2-back task in various brain regions that mainly resided in the frontal, temporal and occipital lobes, with distinct presentations in the theta and alpha bands. In addition, significant negative correlations were found between the reaction time with the average path length of the theta-band network and the local clustering of the alpha-band network, which demonstrates the potential for using the brain network metrics as biomarkers for predicting the task performance during WM tasks.

  15. Graph theory analysis of cortical thickness networks in adolescents with d-transposition of the great arteries.

    PubMed

    Watson, Christopher G; Stopp, Christian; Newburger, Jane W; Rivkin, Michael J

    2018-02-01

    Adolescents with d-transposition of the great arteries (d-TGA) who had the arterial switch operation in infancy have been found to have structural brain differences compared to healthy controls. We used cortical thickness measurements obtained from structural brain MRI to determine group differences in global brain organization using a graph theoretical approach. Ninety-two d-TGA subjects and 49 controls were scanned using one of two identical 1.5-Tesla MRI systems. Mean cortical thickness was obtained from 34 regions per hemisphere using Freesurfer. A linear model was used for each brain region to adjust for subject age, sex, and scanning location. Structural connectivity for each group was inferred based on the presence of high inter-regional correlations of the linear model residuals, and binary connectivity matrices were created by thresholding over a range of correlation values for each group. Graph theory analysis was performed using packages in R. Permutation tests were performed to determine significance of between-group differences in global network measures. Within-group connectivity patterns were qualitatively different between groups. At lower network densities, controls had significantly more long-range connections. The location and number of hub regions differed between groups: controls had a greater number of hubs at most network densities. The control network had a significant rightward asymmetry compared to the d-TGA group at all network densities. Using graph theory analysis of cortical thickness correlations, we found differences in brain structural network organization among d-TGA adolescents compared to controls. These may be related to the white matter and gray matter differences previously found in this cohort, and in turn may be related to the cognitive deficits this cohort presents.

  16. Automatic detection of hemorrhagic pericardial effusion on PMCT using deep learning - a feasibility study.

    PubMed

    Ebert, Lars C; Heimer, Jakob; Schweitzer, Wolf; Sieberth, Till; Leipner, Anja; Thali, Michael; Ampanozi, Garyfalia

    2017-12-01

    Post mortem computed tomography (PMCT) can be used as a triage tool to better identify cases with a possibly non-natural cause of death, especially when high caseloads make it impossible to perform autopsies on all cases. Substantial data can be generated by modern medical scanners, especially in a forensic setting where the entire body is documented at high resolution. A solution for the resulting issues could be the use of deep learning techniques for automatic analysis of radiological images. In this article, we wanted to test the feasibility of such methods for forensic imaging by hypothesizing that deep learning methods can detect and segment a hemopericardium in PMCT. For deep learning image analysis software, we used the ViDi Suite 2.0. We retrospectively selected 28 cases with, and 24 cases without, hemopericardium. Based on these data, we trained two separate deep learning networks. The first one classified images into hemopericardium/not hemopericardium, and the second one segmented the blood content. We randomly selected 50% of the data for training and 50% for validation. This process was repeated 20 times. The best performing classification network classified all cases of hemopericardium from the validation images correctly with only a few false positives. The best performing segmentation network would tend to underestimate the amount of blood in the pericardium, which is the case for most networks. This is the first study that shows that deep learning has potential for automated image analysis of radiological images in forensic medicine.

  17. A SVM-based quantitative fMRI method for resting-state functional network detection.

    PubMed

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets.

    PubMed

    Demartines, P; Herault, J

    1997-01-01

    We present a new strategy called "curvilinear component analysis" (CCA) for dimensionality reduction and representation of multidimensional data sets. The principle of CCA is a self-organized neural network performing two tasks: vector quantization (VQ) of the submanifold in the data set (input space); and nonlinear projection (P) of these quantizing vectors toward an output space, providing a revealing unfolding of the submanifold. After learning, the network has the ability to continuously map any new point from one space into another: forward mapping of new points in the input space, or backward mapping of an arbitrary position in the output space.

  19. On the efficacy of using the transfer-controlled procedure during periods of STP processor overloads in SS7 networks

    NASA Astrophysics Data System (ADS)

    Rumsewicz, Michael

    1994-04-01

    In this paper, we examine call completion performance, rather than message throughput, in a Common Channel Signaling network in which the processing resources, and not transmission resources, of a Signaling Transfer Point (STP) are overloaded. Specifically, we perform a transient analysis, via simulation, of a network consisting of a single Central Processor-based STP connecting many local exchanges. We consider the efficacy of using the Transfer Controlled (TFC) procedure when the network call attempt rate exceeds the processing capability of the STP. We find the following: (1) the success of the control depends critically on the rate at which TFC's are sent; (2) use of the TFC procedure in theevent of processor overload can provide reasonable call completion rates.

  20. Variable Neural Adaptive Robust Control: A Switched System Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewisemore » quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.« less

  1. Effects of resistance training, endurance training and whole-body vibration on lean body mass, muscle strength and physical performance in older people: a systematic review and network meta-analysis.

    PubMed

    Lai, Chih-Chin; Tu, Yu-Kang; Wang, Tyng-Guey; Huang, Yi-Ting; Chien, Kuo-Liong

    2018-05-01

    A variety of different types of exercise are promoted to improve muscle strength and physical performance in older people. We aimed to determine the relative effects of resistance training, endurance training and whole-body vibration on lean body mass, muscle strength and physical performance in older people. A systematic review and network meta-analysis. Adults aged 60 and over. Evidence from randomised controlled trials of resistance training, endurance training and whole-body vibration were combined. The effects of exercise interventions on lean body mass, muscle strength and physical performance were evaluated by conducting a network meta-analysis to compare multiple interventions and usual care. Risk of bias of included studies was assessed using the Cochrane Collaboration's tool. A meta-regression was performed to assess potential effect modifiers. Data were obtained from 30 trials involving 1,405 participants (age range: 60-92 years). No significant differences were found between the effects of exercise or usual care on lean body mass. Resistance training (minimum 6 weeks duration) achieved greater muscle strength improvement than did usual care (12.8 kg; 95% confidence interval [CI]: 8.5-17.0 kg). Resistance training and whole-body vibration were associated with greater physical performance improvement compared with usual care (2.6 times greater [95% CI: 1.3-3.9] and 2.1 times greater [95% CI: 0.5-3.7], respectively). Resistance training is the most effect intervention to improve muscle strength and physical performance in older people. Our findings also suggest that whole-body vibration is beneficial for physical performance. However, none of the three exercise interventions examined had a significant effect on lean body mass.

  2. Estimating Performance of Single Bus, Shared Memory Multiprocessors

    DTIC Science & Technology

    1987-05-01

    Chandy78] K.M. Chandy, C.M. Sauer, "Approximate methods for analyzing queuing network models of computing systems," Computing Surveys, vol10 , no 3...Denning78] P. Denning, J. Buzen, "The operational analysis of queueing network models", Computing Sur- veys, vol10 , no 3, September 1978, pp 225-261

  3. The Key Roles in the Informal Organization: A Network Analysis Perspective

    ERIC Educational Resources Information Center

    de Toni, Alberto F.; Nonino, Fabio

    2010-01-01

    Purpose: The purpose of this paper is to identify the key roles embedded in the informal organizational structure (informal networks) and to outline their contribution in the companies' performance. A major objective of the research is to find and characterize a new key informal role that synthesises problem solving, expertise, and accessibility…

  4. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks

    PubMed Central

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD. PMID:29262568

  5. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks.

    PubMed

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-11-28

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.

  6. Evolution of the Max and Mlx networks in animals.

    PubMed

    McFerrin, Lisa G; Atchley, William R

    2011-01-01

    Transcription factors (TFs) are essential for the regulation of gene expression and often form emergent complexes to perform vital roles in cellular processes. In this paper, we focus on the parallel Max and Mlx networks of TFs because of their critical involvement in cell cycle regulation, proliferation, growth, metabolism, and apoptosis. A basic-helix-loop-helix-zipper (bHLHZ) domain mediates the competitive protein dimerization and DNA binding among Max and Mlx network members to form a complex system of cell regulation. To understand the importance of these network interactions, we identified the bHLHZ domain of Max and Mlx network proteins across the animal kingdom and carried out several multivariate statistical analyses. The presence and conservation of Max and Mlx network proteins in animal lineages stemming from the divergence of Metazoa indicate that these networks have ancient and essential functions. Phylogenetic analysis of the bHLHZ domain identified clear relationships among protein families with distinct points of radiation and divergence. Multivariate discriminant analysis further isolated specific amino acid changes within the bHLHZ domain that classify proteins, families, and network configurations. These analyses on Max and Mlx network members provide a model for characterizing the evolution of TFs involved in essential networks.

  7. STOCK Market Differences in Correlation-Based Weighted Network

    NASA Astrophysics Data System (ADS)

    Youn, Janghyuk; Lee, Junghoon; Chang, Woojin

    We examined the sector dynamics of Korean stock market in relation to the market volatility. The daily price data of 360 stocks for 5019 trading days (from January, 1990 to August, 2008) in Korean stock market are used. We performed the weighted network analysis and employed four measures: the average, the variance, the intensity, and the coherence of network weights (absolute values of stock return correlations) to investigate the network structure of Korean stock market. We performed regression analysis using the four measures in the seven major industry sectors and the market (seven sectors combined). We found that the average, the intensity, and the coherence of sector (subnetwork) weights increase as market becomes volatile. Except for the "Financials" sector, the variance of sector weights also grows as market volatility increases. Based on the four measures, we can categorize "Financials," "Information Technology" and "Industrials" sectors into one group, and "Materials" and "Consumer Discretionary" sectors into another group. We investigated the distributions of intrasector and intersector weights for each sector and found the differences in "Financials" sector are most distinct.

  8. Using complex networks for text classification: Discriminating informative and imaginative documents

    NASA Astrophysics Data System (ADS)

    de Arruda, Henrique F.; Costa, Luciano da F.; Amancio, Diego R.

    2016-01-01

    Statistical methods have been widely employed in recent years to grasp many language properties. The application of such techniques have allowed an improvement of several linguistic applications, such as machine translation and document classification. In the latter, many approaches have emphasised the semantical content of texts, as is the case of bag-of-word language models. These approaches have certainly yielded reasonable performance. However, some potential features such as the structural organization of texts have been used only in a few studies. In this context, we probe how features derived from textual structure analysis can be effectively employed in a classification task. More specifically, we performed a supervised classification aiming at discriminating informative from imaginative documents. Using a networked model that describes the local topological/dynamical properties of function words, we achieved an accuracy rate of up to 95%, which is much higher than similar networked approaches. A systematic analysis of feature relevance revealed that symmetry and accessibility measurements are among the most prominent network measurements. Our results suggest that these measurements could be used in related language applications, as they play a complementary role in characterising texts.

  9. Clinical reports of pulmonary metastasectomy for colorectal cancer: a citation network analysis

    PubMed Central

    Fiorentino, F; Vasilakis, C; Treasure, T

    2011-01-01

    Introduction: Pulmonary metastasectomy for colorectal cancer is a commonly performed and well-established practice of ∼50 years standing. However, there have been no controlled studies, randomised or otherwise. We sought to investigate the evidence base that has been used in establishing its status as a standard of care. Methods: Among 51 papers used in a recent systematic review and quantitative synthesis, a citation network analysis was performed. A total of 344 publications (the 51 index papers and a further 293 cited in them) constitute the citation network. Results: The pattern of citation is that of a citation cascade. Specific analyses show the frequent use of historical or landmark papers, which add authority. Papers expressing an opposing viewpoint are rarely cited. Conclusions: The citation network for this common and well-established practice provides an example of selective citation. This pattern of citation tends to escalate belief in a clinical practice even when it lacks a high-quality evidence base and may create an impression of more authority than is warranted. PMID:21386844

  10. An Analysis of Database Replication Technologies with Regard to Deep Space Network Application Requirements

    NASA Technical Reports Server (NTRS)

    Connell, Andrea M.

    2011-01-01

    The Deep Space Network (DSN) has three communication facilities which handle telemetry, commands, and other data relating to spacecraft missions. The network requires these three sites to share data with each other and with the Jet Propulsion Laboratory for processing and distribution. Many database management systems have replication capabilities built in, which means that data updates made at one location will be automatically propagated to other locations. This project examines multiple replication solutions, looking for stability, automation, flexibility, performance, and cost. After comparing these features, Oracle Streams is chosen for closer analysis. Two Streams environments are configured - one with a Master/Slave architecture, in which a single server is the source for all data updates, and the second with a Multi-Master architecture, in which updates originating from any of the servers will be propagated to all of the others. These environments are tested for data type support, conflict resolution, performance, changes to the data structure, and behavior during and after network or server outages. Through this experimentation, it is determined which requirements of the DSN can be met by Oracle Streams and which cannot.

  11. Networks and the fiscal performance of rural hospitals in Oklahoma: are they associated?

    PubMed

    Broyles, R W; Brandt, E N; Biard-Holmes, D

    1998-01-01

    This paper uses regression analysis to explore the relation of network membership to the financial performance of rural hospitals in Oklahoma during fiscal year 1995. After adjusting for the scope of service, as measured by the number of facilities or services offered by the hospital, indicators of fiscal status are (1) the cash receipts derived from net patient revenue; (2) the cash disbursements related to operating costs, net of interest and depreciation expense, labor costs and nonlabor costs; and (3) net cash flow, defined as the difference between cash receipts and disbursements. Controlling for the effects of the hospital's structural attributes, operating characteristics and market conditions, the results indicate that members of a network reported lower net operating costs, labor costs and nonlabor expenses per service than nonmembers. Hence, the analysis seems to suggest that the membership of rural hospitals in a network is associated with lower cash disbursements and an improved net cash flow, outcomes that may preserve their fiscal viability and the access of the population at risk to service.

  12. Numerical and analytical investigation of the chimera state excitation conditions in the Kuramoto-Sakaguchi oscillator network

    NASA Astrophysics Data System (ADS)

    Frolov, Nikita S.; Goremyko, Mikhail V.; Makarov, Vladimir V.; Maksimenko, Vladimir A.; Hramov, Alexander E.

    2017-03-01

    In this paper we study the conditions of chimera states excitation in ensemble of non-locally coupled Kuramoto-Sakaguchi (KS) oscillators. In the framework of current research we analyze the dynamics of the homogeneous network containing identical oscillators. We show the chimera state formation process is sensitive to the parameters of coupling kernel and to the KS network initial state. To perform the analysis we have used the Ott-Antonsen (OA) ansatz to consider the behavior of infinitely large KS network.

  13. Boundedness and convergence of online gradient method with penalty for feedforward neural networks.

    PubMed

    Zhang, Huisheng; Wu, Wei; Liu, Fei; Yao, Mingchen

    2009-06-01

    In this brief, we consider an online gradient method with penalty for training feedforward neural networks. Specifically, the penalty is a term proportional to the norm of the weights. Its roles in the method are to control the magnitude of the weights and to improve the generalization performance of the network. By proving that the weights are automatically bounded in the network training with penalty, we simplify the conditions that are required for convergence of online gradient method in literature. A numerical example is given to support the theoretical analysis.

  14. A new method for solving routing and wavelength assignment problems under inaccurate routing information in optical networks with conversion capability

    NASA Astrophysics Data System (ADS)

    Luo, Yanting; Zhang, Yongjun; Gu, Wanyi

    2009-11-01

    In large dynamic networks it is extremely difficult to maintain accurate routing information on all network nodes. The existing studies have illustrated the impact of imprecise state information on the performance of dynamic routing and wavelength assignment (RWA) algorithms. An algorithm called Bypass Based Optical Routing (BBOR) proposed by Xavier Masip-Bruin et al can reduce the effects of having inaccurate routing information in networks operating under the wavelength-continuity constraint. Then they extended the BBOR mechanism (for convenience it's called EBBOR mechanism below) to be applied to the networks with sparse and limited wavelength conversion. But it only considers the characteristic of wavelength conversion in the step of computing the bypass-paths so that its performance may decline with increasing the degree of wavelength translation (this concept will be explained in the section of introduction again). We will demonstrate the issue through theoretical analysis and introduce a novel algorithm which modifies both the lightpath selection and the bypass-paths computation in comparison to EBBOR algorithm. Simulations show that the Modified EBBOR (MEBBOR) algorithm improves the blocking performance significantly in optical networks with Conversion Capability.

  15. Novel indexes based on network structure to indicate financial market

    NASA Astrophysics Data System (ADS)

    Zhong, Tao; Peng, Qinke; Wang, Xiao; Zhang, Jing

    2016-02-01

    There have been various achievements to understand and to analyze the financial market by complex network model. However, current studies analyze the financial network model but seldom present quantified indexes to indicate or forecast the price action of market. In this paper, the stock market is modeled as a dynamic network, in which the vertices refer to listed companies and edges refer to their rank-based correlation based on price series. Characteristics of the network are analyzed and then novel indexes are introduced into market analysis, which are calculated from maximum and fully-connected subnets. The indexes are compared with existing ones and the results confirm that our indexes perform better to indicate the daily trend of market composite index in advance. Via investment simulation, the performance of our indexes is analyzed in detail. The results indicate that the dynamic complex network model could not only serve as a structural description of the financial market, but also work to predict the market and guide investment by indexes.

  16. Internet end-to-end performance monitoring for the High Energy Nuclear and Particle Physics community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, W.

    2000-02-22

    Modern High Energy Nuclear and Particle Physics (HENP) experiments at Laboratories around the world present a significant challenge to wide area networks. Petabytes (1015) or exabytes (1018) of data will be generated during the lifetime of the experiment. Much of this data will be distributed via the Internet to the experiment's collaborators at Universities and Institutes throughout the world for analysis. In order to assess the feasibility of the computing goals of these and future experiments, the HENP networking community is actively monitoring performance across a large part of the Internet used by its collaborators. Since 1995, the pingER projectmore » has been collecting data on ping packet loss and round trip times. In January 2000, there are 28 monitoring sites in 15 countries gathering data on over 2,000 end-to-end pairs. HENP labs such as SLAC, Fermi Lab and CERN are using Advanced Network's Surveyor project and monitoring performance from one-way delay of UDP packets. More recently several HENP sites have become involved with NLANR's active measurement program (AMP). In addition SLAC and CERN are part of the RIPE test-traffic project and SLAC is home for a NIMI machine. The large End-to-end performance monitoring infrastructure allows the HENP networking community to chart long term trends and closely examine short term glitches across a wide range of networks and connections. The different methodologies provide opportunities to compare results based on different protocols and statistical samples. Understanding agreement and discrepancies between results provides particular insight into the nature of the network. This paper will highlight the practical side of monitoring by reviewing the special needs of High Energy Nuclear and Particle Physics experiments and provide an overview of the experience of measuring performance across a large number of interconnected networks throughout the world with various methodologies. In particular, results from each project will be compared and disagreement will be analyzed. The goal is to address issues for improving understanding for gathering and analysis of accurate monitoring data, but the outlook for the computing goals of HENP will also be examined.« less

  17. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things

    PubMed Central

    Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark

    2016-01-01

    LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed. PMID:27618064

  18. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things.

    PubMed

    Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark

    2016-09-09

    LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed.

  19. Uncertainty aggregation and reduction in structure-material performance prediction

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Mahadevan, Sankaran; Ao, Dan

    2018-02-01

    An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

  20. A performance analysis of advanced I/O architectures for PC-based network file servers

    NASA Astrophysics Data System (ADS)

    Huynh, K. D.; Khoshgoftaar, T. M.

    1994-12-01

    In the personal computing and workstation environments, more and more I/O adapters are becoming complete functional subsystems that are intelligent enough to handle I/O operations on their own without much intervention from the host processor. The IBM Subsystem Control Block (SCB) architecture has been defined to enhance the potential of these intelligent adapters by defining services and conventions that deliver command information and data to and from the adapters. In recent years, a new storage architecture, the Redundant Array of Independent Disks (RAID), has been quickly gaining acceptance in the world of computing. In this paper, we would like to discuss critical system design issues that are important to the performance of a network file server. We then present a performance analysis of the SCB architecture and disk array technology in typical network file server environments based on personal computers (PCs). One of the key issues investigated in this paper is whether a disk array can outperform a group of disks (of same type, same data capacity, and same cost) operating independently, not in parallel as in a disk array.

  1. Performance Analysis of Physical Layer Security of Opportunistic Scheduling in Multiuser Multirelay Cooperative Networks

    PubMed Central

    Shim, Kyusung; Do, Nhu Tri; An, Beongku

    2017-01-01

    In this paper, we study the physical layer security (PLS) of opportunistic scheduling for uplink scenarios of multiuser multirelay cooperative networks. To this end, we propose a low-complexity, yet comparable secrecy performance source relay selection scheme, called the proposed source relay selection (PSRS) scheme. Specifically, the PSRS scheme first selects the least vulnerable source and then selects the relay that maximizes the system secrecy capacity for the given selected source. Additionally, the maximal ratio combining (MRC) technique and the selection combining (SC) technique are considered at the eavesdropper, respectively. Investigating the system performance in terms of secrecy outage probability (SOP), closed-form expressions of the SOP are derived. The developed analysis is corroborated through Monte Carlo simulation. Numerical results show that the PSRS scheme significantly improves the secure ability of the system compared to that of the random source relay selection scheme, but does not outperform the optimal joint source relay selection (OJSRS) scheme. However, the PSRS scheme drastically reduces the required amount of channel state information (CSI) estimations compared to that required by the OJSRS scheme, specially in dense cooperative networks. PMID:28212286

  2. Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks

    PubMed Central

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-01-01

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate. PMID:25658394

  3. Putting age-related task activation into large-scale brain networks: A meta-analysis of 114 fMRI studies on healthy aging.

    PubMed

    Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; Lu, Guang-Ming; Zuo, Xi-Nian

    2015-10-01

    Normal aging is associated with cognitive decline and underlying brain dysfunction. Previous studies concentrated less on brain network changes at a systems level. Our goal was to examine these age-related changes of fMRI-derived activation with a common network parcellation of the human brain function, offering a systems-neuroscience perspective of healthy aging. We conducted a series of meta-analyses on a total of 114 studies that included 2035 older adults and 1845 young adults. Voxels showing significant age-related changes in activation were then overlaid onto seven commonly referenced neuronal networks. Older adults present moderate cognitive decline in behavioral performance during fMRI scanning, and hypo-activate the visual network and hyper-activate both the frontoparietal control and default mode networks. The degree of increased activation in frontoparietal network was associated with behavioral performance in older adults. Age-related changes in activation present different network patterns across cognitive domains. The systems neuroscience approach used here may be useful for elucidating the underlying network mechanisms of various brain plasticity processes during healthy aging. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Artificial neural network and classical least-squares methods for neurotransmitter mixture analysis.

    PubMed

    Schulze, H G; Greek, L S; Gorzalka, B B; Bree, A V; Blades, M W; Turner, R F

    1995-02-01

    Identification of individual components in biological mixtures can be a difficult problem regardless of the analytical method employed. In this work, Raman spectroscopy was chosen as a prototype analytical method due to its inherent versatility and applicability to aqueous media, making it useful for the study of biological samples. Artificial neural networks (ANNs) and the classical least-squares (CLS) method were used to identify and quantify the Raman spectra of the small-molecule neurotransmitters and mixtures of such molecules. The transfer functions used by a network, as well as the architecture of a network, played an important role in the ability of the network to identify the Raman spectra of individual neurotransmitters and the Raman spectra of neurotransmitter mixtures. Specifically, networks using sigmoid and hyperbolic tangent transfer functions generalized better from the mixtures in the training data set to those in the testing data sets than networks using sine functions. Networks with connections that permit the local processing of inputs generally performed better than other networks on all the testing data sets. and better than the CLS method of curve fitting, on novel spectra of some neurotransmitters. The CLS method was found to perform well on noisy, shifted, and difference spectra.

  5. Design of Neural Networks for Fast Convergence and Accuracy: Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1997-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  6. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.

    PubMed

    Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit

    2017-02-01

    Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.

  7. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System

    PubMed Central

    Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit

    2017-01-01

    Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more low-power sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting. PMID:28157148

  8. Design of neural networks for fast convergence and accuracy: dynamics and control.

    PubMed

    Maghami, P G; Sparks, D R

    2000-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  9. Delay and cost performance analysis of the diffie-hellman key exchange protocol in opportunistic mobile networks

    NASA Astrophysics Data System (ADS)

    Soelistijanto, B.; Muliadi, V.

    2018-03-01

    Diffie-Hellman (DH) provides an efficient key exchange system by reducing the number of cryptographic keys distributed in the network. In this method, a node broadcasts a single public key to all nodes in the network, and in turn each peer uses this key to establish a shared secret key which then can be utilized to encrypt and decrypt traffic between the peer and the given node. In this paper, we evaluate the key transfer delay and cost performance of DH in opportunistic mobile networks, a specific scenario of MANETs where complete end-to-end paths rarely exist between sources and destinations; consequently, the end-to-end delays in these networks are much greater than typical MANETs. Simulation results, driven by a random node movement model and real human mobility traces, showed that DH outperforms a typical key distribution scheme based on the RSA algorithm in terms of key transfer delay, measured by average key convergence time; however, DH performs as well as the benchmark in terms of key transfer cost, evaluated by total key (copies) forwards.

  10. A traffic analyzer for multiple SpaceWire links

    NASA Astrophysics Data System (ADS)

    Liu, Scige J.; Giusi, Giovanni; Di Giorgio, Anna M.; Vertolli, Nello; Galli, Emanuele; Biondi, David; Farina, Maria; Pezzuto, Stefano; Spinoglio, Luigi

    2014-07-01

    Modern space missions are becoming increasingly complex: the interconnection of the units in a satellite is now a network of terminals linked together through routers, where devices with different level of automation and intelligence share the same data-network. The traceability of the network transactions is performed mostly at terminal level through log analysis and hence it is difficult to verify in real time the reliability of the interconnections and the interchange protocols. To improve and ease the traffic analysis in a SpaceWire network we implemented a low-level link analyzer, with the specific goal to simplify the integration and test phases in the development of space instrumentation. The traffic analyzer collects signals coming from pod probes connected in-series on the interested links between two SpaceWire terminals. With respect to the standard traffic analyzers, the design of this new tool includes the possibility to internally reshape the LVDS signal. This improvement increases the robustness of the analyzer towards environmental noise effects and guarantees a deterministic delay on all analyzed signals. The analyzer core is implemented on a Xilinx FPGA, programmed to decode the bidirectional LVDS signals at Link and Network level. Successively, the core packetizes protocol characters in homogeneous sets of time ordered events. The analyzer provides time-tagging functionality for each characters set, with a precision down to the FPGA Clock, i.e. about 20nsec in the adopted HW environment. The use of a common time reference for each character stream allows synchronous performance measurements. The collected information is then routed to an external computer for quick analysis: this is done via high-speed USB2 connection. With this analyzer it is possible to verify the link performances in terms of induced delays in the transmitted signals. A case study focused on the analysis of the Time-Code synchronization in presence of a SpaceWire Router is shown in this paper as well.

  11. Psychology and social networks: a dynamic network theory perspective.

    PubMed

    Westaby, James D; Pfaff, Danielle L; Redding, Nicholas

    2014-04-01

    Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  12. Exploring Wound-Healing Genomic Machinery with a Network-Based Approach

    PubMed Central

    Vitali, Francesca; Marini, Simone; Balli, Martina; Grosemans, Hanne; Sampaolesi, Maurilio; Lussier, Yves A.; Cusella De Angelis, Maria Gabriella; Bellazzi, Riccardo

    2017-01-01

    The molecular mechanisms underlying tissue regeneration and wound healing are still poorly understood despite their importance. In this paper we develop a bioinformatics approach, combining biology and network theory to drive experiments for better understanding the genetic underpinnings of wound healing mechanisms and for selecting potential drug targets. We start by selecting literature-relevant genes in murine wound healing, and inferring from them a Protein-Protein Interaction (PPI) network. Then, we analyze the network to rank wound healing-related genes according to their topological properties. Lastly, we perform a procedure for in-silico simulation of a treatment action in a biological pathway. The findings obtained by applying the developed pipeline, including gene expression analysis, confirms how a network-based bioinformatics method is able to prioritize candidate genes for in vitro analysis, thus speeding up the understanding of molecular mechanisms and supporting the discovery of potential drug targets. PMID:28635674

  13. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1997-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  14. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  15. Analog-to-digital clinical data collection on networked workstations with graphic user interface.

    PubMed

    Lunt, D

    1991-02-01

    An innovative respiratory examination system has been developed that combines physiological response measurement, real-time graphic displays, user-driven operating sequences, and networked file archiving and review into a scientific research and clinical diagnosis tool. This newly constructed computer network is being used to enhance the research center's ability to perform patient pulmonary function examinations. Respiratory data are simultaneously acquired and graphically presented during patient breathing maneuvers and rapidly transformed into graphic and numeric reports, suitable for statistical analysis or database access. The environment consists of the hardware (Macintosh computer, MacADIOS converters, analog amplifiers), the software (HyperCard v2.0, HyperTalk, XCMDs), and the network (AppleTalk, fileservers, printers) as building blocks for data acquisition, analysis, editing, and storage. System operation modules include: Calibration, Examination, Reports, On-line Help Library, Graphic/Data Editing, and Network Storage.

  16. Complex Dynamics in Information Sharing Networks

    NASA Astrophysics Data System (ADS)

    Cronin, Bruce

    This study examines the roll-out of an electronic knowledge base in a medium-sized professional services firm over a six year period. The efficiency of such implementation is a key business problem in IT systems of this type. Data from usage logs provides the basis for analysis of the dynamic evolution of social networks around the depository during this time. The adoption pattern follows an "s-curve" and usage exhibits something of a power law distribution, both attributable to network effects, and network position is associated with organisational performance on a number of indicators. But periodicity in usage is evident and the usage distribution displays an exponential cut-off. Further analysis provides some evidence of mathematical complexity in the periodicity. Some implications of complex patterns in social network data for research and management are discussed. The study provides a case study demonstrating the utility of the broad methodological approach.

  17. Sparse dictionary learning for resting-state fMRI analysis

    NASA Astrophysics Data System (ADS)

    Lee, Kangjoo; Han, Paul Kyu; Ye, Jong Chul

    2011-09-01

    Recently, there has been increased interest in the usage of neuroimaging techniques to investigate what happens in the brain at rest. Functional imaging studies have revealed that the default-mode network activity is disrupted in Alzheimer's disease (AD). However, there is no consensus, as yet, on the choice of analysis method for the application of resting-state analysis for disease classification. This paper proposes a novel compressed sensing based resting-state fMRI analysis tool called Sparse-SPM. As the brain's functional systems has shown to have features of complex networks according to graph theoretical analysis, we apply a graph model to represent a sparse combination of information flows in complex network perspectives. In particular, a new concept of spatially adaptive design matrix has been proposed by implementing sparse dictionary learning based on sparsity. The proposed approach shows better performance compared to other conventional methods, such as independent component analysis (ICA) and seed-based approach, in classifying the AD patients from normal using resting-state analysis.

  18. Probabilistic Assessment of High-Throughput Wireless Sensor Networks

    PubMed Central

    Kim, Robin E.; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F.; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved. PMID:27258270

  19. The Intellectual Structure of Research on Educational Technology in Science Education (ETiSE): A Co-citation Network Analysis of Publications in Selected Journals (2008-2013)

    NASA Astrophysics Data System (ADS)

    Tang, Kai-Yu; Tsai, Chin-Chung

    2016-01-01

    The main purpose of this paper is to investigate the intellectual structure of the research on educational technology in science education (ETiSE) within the most recent years (2008-2013). Based on the criteria for educational technology research and the citation threshold for educational co-citation analysis, a total of 137 relevant ETiSE papers were identified from the International Journal of Science Education, the Journal of Research in Science Teaching, Science Education, and the Journal of Science Education and Technology. Then, a series of methodologies were performed to analyze all 137 source documents, including document co-citation analysis, social network analysis, and exploratory factor analysis. As a result, 454 co-citation ties were obtained and then graphically visualized with an undirected network, presenting a global structure of the current ETiSE research network. In addition, four major underlying intellectual subfields within the main component of the ETiSE network were extracted and named as: (1) technology-enhanced science inquiry, (2) simulation and visualization for understanding, (3) technology-enhanced chemistry learning, and (4) game-based science learning. The most influential co-citation pairs and cross-boundary phenomena were then analyzed and visualized in a co-citation network. This is the very first attempt to illuminate the core ideas underlying ETiSE research by integrating the co-citation method, factor analysis, and the networking visualization technique. The findings of this study provide a platform for scholarly discussion of the dissemination and research trends within the current ETiSE literature.

  20. Power System Study for Renewable Energy Interconnection in Malaysia

    NASA Astrophysics Data System (ADS)

    Askar, O. F.; Ramachandaramurthy, V. K.

    2013-06-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  1. Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio

    PubMed Central

    2012-01-01

    Background Research interest in phosphonates metal organic frameworks (MOF) has increased extremely in the last two decades, because of theirs fascinating and complex topology and structural flexibility. In this paper we present a mathematical model for ligand/metal ion ratio of an octahedral (Oh) network of cobalt vinylphosphonate (Co(vP)·H2O). Results A recurrent relationship of the ratio between the number of ligands and the number of metal ions in a lamellar octahedral (Oh) network Co(vP)·H2O, has been deducted by building the 3D network step by step using HyperChem 7.52 package. The mathematical relationship has been validated using X ray analysis, experimental thermogravimetric and elemental analysis data. Conclusions Based on deducted recurrence relationship, we can conclude prior to perform X ray analysis, that in the case of a thermogravimetric analysis pointing a ratio between the number of metal ions and ligands number around 1, the 3D network will have a central metal ion that corresponds to a single ligand. This relation is valid for every type of supramolecular network with divalent metal central ion Oh coordinated and bring valuable information with low effort and cost. PMID:22932493

  2. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network.

    PubMed

    Mallik, Mrinmay Kumar

    2018-02-07

    Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that is indicative of their strong influence in the protein protein interaction network. Similarly the newly proposed GEADCA helped identify the transcription factors with high centrality values indicative of their key roles in transcriptional regulation. The enrichment studies provided a list of molecular functions, biological processes and biochemical pathways associated with the constructed network. The study shows how pathway based databases may be used to create and analyze a relevant protein interaction network in glioma cancer stem cells and identify the essential elements within it to gather insights into the molecular interactions that regulate the properties of glioma stem cells. How these insights may be utilized to help the development of future research towards formulation of new management strategies have been discussed from a theoretical standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Short-term PV/T module temperature prediction based on PCA-RBF neural network

    NASA Astrophysics Data System (ADS)

    Li, Jiyong; Zhao, Zhendong; Li, Yisheng; Xiao, Jing; Tang, Yunfeng

    2018-02-01

    Aiming at the non-linearity and large inertia of temperature control in PV/T system, short-term temperature prediction of PV/T module is proposed, to make the PV/T system controller run forward according to the short-term forecasting situation to optimize control effect. Based on the analysis of the correlation between PV/T module temperature and meteorological factors, and the temperature of adjacent time series, the principal component analysis (PCA) method is used to pre-process the original input sample data. Combined with the RBF neural network theory, the simulation results show that the PCA method makes the prediction accuracy of the network model higher and the generalization performance stronger than that of the RBF neural network without the main component extraction.

  4. Examination of China’s performance and thematic evolution in quantum cryptography research using quantitative and computational techniques

    PubMed Central

    2018-01-01

    This study performed two phases of analysis to shed light on the performance and thematic evolution of China’s quantum cryptography (QC) research. First, large-scale research publication metadata derived from QC research published from 2001–2017 was used to examine the research performance of China relative to that of global peers using established quantitative and qualitative measures. Second, this study identified the thematic evolution of China’s QC research using co-word cluster network analysis, a computational science mapping technique. The results from the first phase indicate that over the past 17 years, China’s performance has evolved dramatically, placing it in a leading position. Among the most significant findings is the exponential rate at which all of China’s performance indicators (i.e., Publication Frequency, citation score, H-index) are growing. China’s H-index (a normalized indicator) has surpassed all other countries’ over the last several years. The second phase of analysis shows how China’s main research focus has shifted among several QC themes, including quantum-key-distribution, photon-optical communication, network protocols, and quantum entanglement with an emphasis on applied research. Several themes were observed across time periods (e.g., photons, quantum-key-distribution, secret-messages, quantum-optics, quantum-signatures); some themes disappeared over time (e.g., computer-networks, attack-strategies, bell-state, polarization-state), while others emerged more recently (e.g., quantum-entanglement, decoy-state, unitary-operation). Findings from the first phase of analysis provide empirical evidence that China has emerged as the global driving force in QC. Considering China is the premier driving force in global QC research, findings from the second phase of analysis provide an understanding of China’s QC research themes, which can provide clarity into how QC technologies might take shape. QC and science and technology policy researchers can also use these findings to trace previous research directions and plan future lines of research. PMID:29385151

  5. Examination of China's performance and thematic evolution in quantum cryptography research using quantitative and computational techniques.

    PubMed

    Olijnyk, Nicholas V

    2018-01-01

    This study performed two phases of analysis to shed light on the performance and thematic evolution of China's quantum cryptography (QC) research. First, large-scale research publication metadata derived from QC research published from 2001-2017 was used to examine the research performance of China relative to that of global peers using established quantitative and qualitative measures. Second, this study identified the thematic evolution of China's QC research using co-word cluster network analysis, a computational science mapping technique. The results from the first phase indicate that over the past 17 years, China's performance has evolved dramatically, placing it in a leading position. Among the most significant findings is the exponential rate at which all of China's performance indicators (i.e., Publication Frequency, citation score, H-index) are growing. China's H-index (a normalized indicator) has surpassed all other countries' over the last several years. The second phase of analysis shows how China's main research focus has shifted among several QC themes, including quantum-key-distribution, photon-optical communication, network protocols, and quantum entanglement with an emphasis on applied research. Several themes were observed across time periods (e.g., photons, quantum-key-distribution, secret-messages, quantum-optics, quantum-signatures); some themes disappeared over time (e.g., computer-networks, attack-strategies, bell-state, polarization-state), while others emerged more recently (e.g., quantum-entanglement, decoy-state, unitary-operation). Findings from the first phase of analysis provide empirical evidence that China has emerged as the global driving force in QC. Considering China is the premier driving force in global QC research, findings from the second phase of analysis provide an understanding of China's QC research themes, which can provide clarity into how QC technologies might take shape. QC and science and technology policy researchers can also use these findings to trace previous research directions and plan future lines of research.

  6. Investigating the Effects of Imputation Methods for Modelling Gene Networks Using a Dynamic Bayesian Network from Gene Expression Data

    PubMed Central

    CHAI, Lian En; LAW, Chow Kuan; MOHAMAD, Mohd Saberi; CHONG, Chuii Khim; CHOON, Yee Wen; DERIS, Safaai; ILLIAS, Rosli Md

    2014-01-01

    Background: Gene expression data often contain missing expression values. Therefore, several imputation methods have been applied to solve the missing values, which include k-nearest neighbour (kNN), local least squares (LLS), and Bayesian principal component analysis (BPCA). However, the effects of these imputation methods on the modelling of gene regulatory networks from gene expression data have rarely been investigated and analysed using a dynamic Bayesian network (DBN). Methods: In the present study, we separately imputed datasets of the Escherichia coli S.O.S. DNA repair pathway and the Saccharomyces cerevisiae cell cycle pathway with kNN, LLS, and BPCA, and subsequently used these to generate gene regulatory networks (GRNs) using a discrete DBN. We made comparisons on the basis of previous studies in order to select the gene network with the least error. Results: We found that BPCA and LLS performed better on larger networks (based on the S. cerevisiae dataset), whereas kNN performed better on smaller networks (based on the E. coli dataset). Conclusion: The results suggest that the performance of each imputation method is dependent on the size of the dataset, and this subsequently affects the modelling of the resultant GRNs using a DBN. In addition, on the basis of these results, a DBN has the capacity to discover potential edges, as well as display interactions, between genes. PMID:24876803

  7. Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors

    NASA Astrophysics Data System (ADS)

    Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee

    2016-01-01

    Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.

  8. High-accuracy local positioning network for the alignment of the Mu2e experiment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hejdukova, Jana B.

    This Diploma thesis describes the establishment of a high-precision local positioning network and accelerator alignment for the Mu2e physics experiment. The process of establishing new network consists of few steps: design of the network, pre-analysis, installation works, measurements of the network and making adjustments. Adjustments were performed using two approaches. First is a geodetic approach of taking into account the Earth’s curvature and the metrological approach of a pure 3D Cartesian system on the other side. The comparison of those two approaches is performed and evaluated in the results and compared with expected differences. The effect of the Earth’s curvaturemore » was found to be significant for this kind of network and should not be neglected. The measurements were obtained with Absolute Tracker AT401, leveling instrument Leica DNA03 and gyrotheodolite DMT Gyromat 2000. The coordinates of the points of the reference network were determined by the Least Square Meth od and the overall view is attached as Annexes.« less

  9. Complex network analysis of brain functional connectivity under a multi-step cognitive task

    NASA Astrophysics Data System (ADS)

    Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun

    2017-01-01

    Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.

  10. The application of artificial neural networks and support vector regression for simultaneous spectrophotometric determination of commercial eye drop contents

    NASA Astrophysics Data System (ADS)

    Valizadeh, Maryam; Sohrabi, Mahmoud Reza

    2018-03-01

    In the present study, artificial neural networks (ANNs) and support vector regression (SVR) as intelligent methods coupled with UV spectroscopy for simultaneous quantitative determination of Dorzolamide (DOR) and Timolol (TIM) in eye drop. Several synthetic mixtures were analyzed for validating the proposed methods. At first, neural network time series, which one type of network from the artificial neural network was employed and its efficiency was evaluated. Afterwards, the radial basis network was applied as another neural network. Results showed that the performance of this method is suitable for predicting. Finally, support vector regression was proposed to construct the Zilomole prediction model. Also, root mean square error (RMSE) and mean recovery (%) were calculated for SVR method. Moreover, the proposed methods were compared to the high-performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them. Also, the effect of interferences was investigated in spike solutions.

  11. An improved spanning tree approach for the reliability analysis of supply chain collaborative network

    NASA Astrophysics Data System (ADS)

    Lam, C. Y.; Ip, W. H.

    2012-11-01

    A higher degree of reliability in the collaborative network can increase the competitiveness and performance of an entire supply chain. As supply chain networks grow more complex, the consequences of unreliable behaviour become increasingly severe in terms of cost, effort and time. Moreover, it is computationally difficult to calculate the network reliability of a Non-deterministic Polynomial-time hard (NP-hard) all-terminal network using state enumeration, as this may require a huge number of iterations for topology optimisation. Therefore, this paper proposes an alternative approach of an improved spanning tree for reliability analysis to help effectively evaluate and analyse the reliability of collaborative networks in supply chains and reduce the comparative computational complexity of algorithms. Set theory is employed to evaluate and model the all-terminal reliability of the improved spanning tree algorithm and present a case study of a supply chain used in lamp production to illustrate the application of the proposed approach.

  12. Diversity of social ties in scientific collaboration networks

    NASA Astrophysics Data System (ADS)

    Shi, Quan; Xu, Bo; Xu, Xiaomin; Xiao, Yanghua; Wang, Wei; Wang, Hengshan

    2011-11-01

    Diversity is one of the important perspectives to characterize behaviors of individuals in social networks. It is intuitively believed that diversity of social ties accounts for competition advantage and idea innovation. However, quantitative evidences in a real large social network can be rarely found in the previous research. Thanks to the availability of scientific publication records on WWW; now we can construct a large scientific collaboration network, which provides us a chance to gain insight into the diversity of relationships in a real social network through statistical analysis. In this article, we dedicate our efforts to perform empirical analysis on a scientific collaboration network extracted from DBLP, an online bibliographic database in computer science, in a systematical way, finding the following: distributions of diversity indices tend to decay in an exponential or Gaussian way; diversity indices are not trivially correlated to existing vertex importance measures; authors of diverse social ties tend to connect to each other and these authors are generally more competitive than others.

  13. Evaluating Research and Impact: A Bibliometric Analysis of Research by the NIH/NIAID HIV/AIDS Clinical Trials Networks

    PubMed Central

    Rosas, Scott R.; Kagan, Jonathan M.; Schouten, Jeffrey T.; Slack, Perry A.; Trochim, William M. K.

    2011-01-01

    Evaluative bibliometrics uses advanced techniques to assess the impact of scholarly work in the context of other scientific work and usually compares the relative scientific contributions of research groups or institutions. Using publications from the National Institute of Allergy and Infectious Diseases (NIAID) HIV/AIDS extramural clinical trials networks, we assessed the presence, performance, and impact of papers published in 2006–2008. Through this approach, we sought to expand traditional bibliometric analyses beyond citation counts to include normative comparisons across journals and fields, visualization of co-authorship across the networks, and assess the inclusion of publications in reviews and syntheses. Specifically, we examined the research output of the networks in terms of the a) presence of papers in the scientific journal hierarchy ranked on the basis of journal influence measures, b) performance of publications on traditional bibliometric measures, and c) impact of publications in comparisons with similar publications worldwide, adjusted for journals and fields. We also examined collaboration and interdisciplinarity across the initiative, through network analysis and modeling of co-authorship patterns. Finally, we explored the uptake of network produced publications in research reviews and syntheses. Overall, the results suggest the networks are producing highly recognized work, engaging in extensive interdisciplinary collaborations, and having an impact across several areas of HIV-related science. The strengths and limitations of the approach for evaluation and monitoring research initiatives are discussed. PMID:21394198

  14. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    PubMed

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. FACETS: multi-faceted functional decomposition of protein interaction networks

    PubMed Central

    Seah, Boon-Siew; Bhowmick, Sourav S.; Forbes Dewey, C.

    2012-01-01

    Motivation: The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein–protein interaction (PPI) network using graph theoretic analysis. Despite the recent progress, systems level analysis of high-throughput PPIs remains a daunting task because of the amount of data they present. In this article, we propose a novel PPI network decomposition algorithm called FACETS in order to make sense of the deluge of interaction data using Gene Ontology (GO) annotations. FACETS finds not just a single functional decomposition of the PPI network, but a multi-faceted atlas of functional decompositions that portray alternative perspectives of the functional landscape of the underlying PPI network. Each facet in the atlas represents a distinct interpretation of how the network can be functionally decomposed and organized. Our algorithm maximizes interpretative value of the atlas by optimizing inter-facet orthogonality and intra-facet cluster modularity. Results: We tested our algorithm on the global networks from IntAct, and compared it with gold standard datasets from MIPS and KEGG. We demonstrated the performance of FACETS. We also performed a case study that illustrates the utility of our approach. Contact: seah0097@ntu.edu.sg or assourav@ntu.edu.sg Supplementary information: Supplementary data are available at the Bioinformatics online. Availability: Our software is available freely for non-commercial purposes from: http://www.cais.ntu.edu.sg/∼assourav/Facets/ PMID:22908217

  16. Practical End-to-End Performance Testing Tool for High Speed 3G-Based Networks

    NASA Astrophysics Data System (ADS)

    Shinbo, Hiroyuki; Tagami, Atsushi; Ano, Shigehiro; Hasegawa, Toru; Suzuki, Kenji

    High speed IP communication is a killer application for 3rd generation (3G) mobile systems. Thus 3G network operators should perform extensive tests to check whether expected end-to-end performances are provided to customers under various environments. An important objective of such tests is to check whether network nodes fulfill requirements to durations of processing packets because a long duration of such processing causes performance degradation. This requires testers (persons who do tests) to precisely know how long a packet is hold by various network nodes. Without any tool's help, this task is time-consuming and error prone. Thus we propose a multi-point packet header analysis tool which extracts and records packet headers with synchronized timestamps at multiple observation points. Such recorded packet headers enable testers to calculate such holding durations. The notable feature of this tool is that it is implemented on off-the shelf hardware platforms, i.e., lap-top personal computers. The key challenges of the implementation are precise clock synchronization without any special hardware and a sophisticated header extraction algorithm without any drop.

  17. Energy-efficient downlink resource management in self-organized OFDMA-based two-tier femtocell networks

    NASA Astrophysics Data System (ADS)

    Shahid, Adnan; Aslam, Saleem; Kim, Hyung Seok; Lee, Kyung-Geun

    2015-12-01

    Femtocell is a novel technology that is used for escalating indoor coverage as well as the capacity of traditional cellular networks. However, interference is the limiting factor for performance improvement due to co-channel deployment between macrocells and femtocells. The traditional network planning is not feasible because of the random deployment of femtocells. Therefore, self-organization approaches are the key to having successful deployment of femtocells. This study presents the joint resource block (RB) and power allocation task for the two-tier femtocell network in a self-organizing manner, with the concern to minimizing the impact of interference and maximizing the energy efficiency. In this study, we analyze the performance of the system in terms of the energy efficiency, which is composed of both the transmission and circuit power. Most of the previous studies investigate the performance regarding the throughput requirement of the two-tier femtocell network while the energy efficiency aspect is largely ignored. Here, the joint allocation task is modeled as a non-cooperative game which is demonstrated to exhibit pure and unique Nash equilibrium. In order to reduce the complexity of the proposed non-cooperative game, the joint RB and power allocation task is divided into two subproblems: an RB allocation and a particle swarm optimization-based power allocation. The analysis of the proposed game is carried out in terms of not only energy efficiency but also throughput. With practical 3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE) parameters, the simulation results illustrate the superior performance of the proposed game as compared to the traditional methods. Also, the comparison is carried out with the joint allocation scheme which only considers the throughput as the objective function. The results illustrate that significant performance improvement is achieved in terms of energy efficiency with slight loss in the throughput. The analysis in regard to energy efficiency and throughput of the two-tier femtocell network is carried out in terms of the performance metrics, which include convergence, impact of varying RBs, impact of femtocell density, and the fairness index.

  18. Analysis of critical operating conditions for LV distribution networks with microgrids

    NASA Astrophysics Data System (ADS)

    Zehir, M. A.; Batman, A.; Sonmez, M. A.; Font, A.; Tsiamitros, D.; Stimoniaris, D.; Kollatou, T.; Bagriyanik, M.; Ozdemir, A.; Dialynas, E.

    2016-11-01

    Increase in the penetration of Distributed Generation (DG) in distribution networks, raises the risk of voltage limit violations while contributing to line losses. Especially in low voltage (LV) distribution networks (secondary distribution networks), impacts of active power flows on the bus voltages and on the network losses are more dominant. As network operators must meet regulatory limitations, they have to take into account the most critical operating conditions in their systems. In this study, it is aimed to present the impact of the worst operation cases of LV distribution networks comprising microgrids. Simulation studies are performed on a field data-based virtual test-bed. The simulations are repeated for several cases consisting different microgrid points of connection with different network loading and microgrid supply/demand conditions.

  19. Social power and opinion formation in complex networks

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2013-02-01

    In this paper we investigate the effects of social power on the evolution of opinions in model networks as well as in a number of real social networks. A continuous opinion formation model is considered and the analysis is performed through numerical simulation. Social power is given to a proportion of agents selected either randomly or based on their degrees. As artificial network structures, we consider scale-free networks constructed through preferential attachment and Watts-Strogatz networks. Numerical simulations show that scale-free networks with degree-based social power on the hub nodes have an optimal case where the largest number of the nodes reaches a consensus. However, given power to a random selection of nodes could not improve consensus properties. Introducing social power in Watts-Strogatz networks could not significantly change the consensus profile.

  20. Access Selection Algorithm of Heterogeneous Wireless Networks for Smart Distribution Grid Based on Entropy-Weight and Rough Set

    NASA Astrophysics Data System (ADS)

    Xiang, Min; Qu, Qinqin; Chen, Cheng; Tian, Li; Zeng, Lingkang

    2017-11-01

    To improve the reliability of communication service in smart distribution grid (SDG), an access selection algorithm based on dynamic network status and different service types for heterogeneous wireless networks was proposed. The network performance index values were obtained in real time by multimode terminal and the variation trend of index values was analyzed by the growth matrix. The index weights were calculated by entropy-weight and then modified by rough set to get the final weights. Combining the grey relational analysis to sort the candidate networks, and the optimum communication network is selected. Simulation results show that the proposed algorithm can implement dynamically access selection in heterogeneous wireless networks of SDG effectively and reduce the network blocking probability.

Top