Fault detection and diagnosis using neural network approaches
NASA Technical Reports Server (NTRS)
Kramer, Mark A.
1992-01-01
Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.
Process-in-Network: A Comprehensive Network Processing Approach
Urzaiz, Gabriel; Villa, David; Villanueva, Felix; Lopez, Juan Carlos
2012-01-01
A solid and versatile communications platform is very important in modern Ambient Intelligence (AmI) applications, which usually require the transmission of large amounts of multimedia information over a highly heterogeneous network. This article focuses on the concept of Process-in-Network (PIN), which is defined as the possibility that the network processes information as it is being transmitted, and introduces a more comprehensive approach than current network processing technologies. PIN can take advantage of waiting times in queues of routers, idle processing capacity in intermediate nodes, and the information that passes through the network. PMID:22969390
A study on predicting network corrections in PPP-RTK processing
NASA Astrophysics Data System (ADS)
Wang, Kan; Khodabandeh, Amir; Teunissen, Peter
2017-10-01
In PPP-RTK processing, the network corrections including the satellite clocks, the satellite phase biases and the ionospheric delays are provided to the users to enable fast single-receiver integer ambiguity resolution. To solve the rank deficiencies in the undifferenced observation equations, the estimable parameters are formed to generate full-rank design matrix. In this contribution, we firstly discuss the interpretation of the estimable parameters without and with a dynamic satellite clock model incorporated in a Kalman filter during the network processing. The functionality of the dynamic satellite clock model is tested in the PPP-RTK processing. Due to the latency generated by the network processing and data transfer, the network corrections are delayed for the real-time user processing. To bridge the latencies, we discuss and compare two prediction approaches making use of the network corrections without and with the dynamic satellite clock model, respectively. The first prediction approach is based on the polynomial fitting of the estimated network parameters, while the second approach directly follows the dynamic model in the Kalman filter of the network processing and utilises the satellite clock drifts estimated in the network processing. Using 1 Hz data from two networks in Australia, the influences of the two prediction approaches on the user positioning results are analysed and compared for latencies ranging from 3 to 10 s. The accuracy of the positioning results decreases with the increasing latency of the network products. For a latency of 3 s, the RMS of the horizontal and the vertical coordinates (with respect to the ground truth) do not show large differences applying both prediction approaches. For a latency of 10 s, the prediction approach making use of the satellite clock model has generated slightly better positioning results with the differences of the RMS at mm-level. Further advantages and disadvantages of both prediction approaches are also discussed in this contribution.
Plastic modulation of episodic memory networks in the aging brain with cognitive decline.
Bai, Feng; Yuan, Yonggui; Yu, Hui; Zhang, Zhijun
2016-07-15
Social-cognitive processing has been posited to underlie general functions such as episodic memory. Episodic memory impairment is a recognized hallmark of amnestic mild cognitive impairment (aMCI) who is at a high risk for dementia. Three canonical networks, self-referential processing, executive control processing and salience processing, have distinct roles in episodic memory retrieval processing. It remains unclear whether and how these sub-networks of the episodic memory retrieval system would be affected in aMCI. This task-state fMRI study constructed systems-level episodic memory retrieval sub-networks in 28 aMCI and 23 controls using two computational approaches: a multiple region-of-interest based approach and a voxel-level functional connectivity-based approach, respectively. These approaches produced the remarkably similar findings that the self-referential processing network made critical contributions to episodic memory retrieval in aMCI. More conspicuous alterations in self-referential processing of the episodic memory retrieval network were identified in aMCI. In order to complete a given episodic memory retrieval task, increases in cooperation between the self-referential processing network and other sub-networks were mobilized in aMCI. Self-referential processing mediate the cooperation of the episodic memory retrieval sub-networks as it may help to achieve neural plasticity and may contribute to the prevention and treatment of dementia. Copyright © 2016 Elsevier B.V. All rights reserved.
Learning polynomial feedforward neural networks by genetic programming and backpropagation.
Nikolaev, N Y; Iba, H
2003-01-01
This paper presents an approach to learning polynomial feedforward neural networks (PFNNs). The approach suggests, first, finding the polynomial network structure by means of a population-based search technique relying on the genetic programming paradigm, and second, further adjustment of the best discovered network weights by an especially derived backpropagation algorithm for higher order networks with polynomial activation functions. These two stages of the PFNN learning process enable us to identify networks with good training as well as generalization performance. Empirical results show that this approach finds PFNN which outperform considerably some previous constructive polynomial network algorithms on processing benchmark time series.
A novel neural-wavelet approach for process diagnostics and complex system modeling
NASA Astrophysics Data System (ADS)
Gao, Rong
Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.
A neural network strategy for end-point optimization of batch processes.
Krothapally, M; Palanki, S
1999-01-01
The traditional way of operating batch processes has been to utilize an open-loop "golden recipe". However, there can be substantial batch to batch variation in process conditions and this open-loop strategy can lead to non-optimal operation. In this paper, a new approach is presented for end-point optimization of batch processes by utilizing neural networks. This strategy involves the training of two neural networks; one to predict switching times and the other to predict the input profile in the singular region. This approach alleviates the computational problems associated with the classical Pontryagin's approach and the nonlinear programming approach. The efficacy of this scheme is illustrated via simulation of a fed-batch fermentation.
Imbedded-Fracture Formulation of THMC Processes in Fractured Media
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Tsai, C. H.; Sung, R.
2016-12-01
Fractured media consist of porous materials and fracture networks. There exist four approaches to mathematically formulating THMC (Thermal-Hydrology-Mechanics-Chemistry) processes models in the system: (1) Equivalent Porous Media, (2) Dual Porosity or Dual Continuum, (3) Heterogeneous Media, and (4) Discrete Fracture Network. The first approach cannot explicitly explore the interactions between porous materials and fracture networks. The second approach introduces too many extra parameters (namely, exchange coefficients) between two media. The third approach may make the problems too stiff because the order of material heterogeneity may be too much. The fourth approach ignore the interaction between porous materials and fracture networks. This talk presents an alternative approach in which fracture networks are modeled with a lower dimension than the surrounding porous materials. Theoretical derivation of mathematical formulations will be given. An example will be illustrated to show the feasibility of this approach.
Process-based network decomposition reveals backbone motif structure
Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen
2010-01-01
A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated). PMID:20498084
Optimal cost design of water distribution networks using a decomposition approach
NASA Astrophysics Data System (ADS)
Lee, Ho Min; Yoo, Do Guen; Sadollah, Ali; Kim, Joong Hoon
2016-12-01
Water distribution network decomposition, which is an engineering approach, is adopted to increase the efficiency of obtaining the optimal cost design of a water distribution network using an optimization algorithm. This study applied the source tracing tool in EPANET, which is a hydraulic and water quality analysis model, to the decomposition of a network to improve the efficiency of the optimal design process. The proposed approach was tested by carrying out the optimal cost design of two water distribution networks, and the results were compared with other optimal cost designs derived from previously proposed optimization algorithms. The proposed decomposition approach using the source tracing technique enables the efficient decomposition of an actual large-scale network, and the results can be combined with the optimal cost design process using an optimization algorithm. This proves that the final design in this study is better than those obtained with other previously proposed optimization algorithms.
Local Area Networks (The Printout).
ERIC Educational Resources Information Center
Aron, Helen; Balajthy, Ernest
1989-01-01
Describes the Local Area Network (LAN), a project in which students used LAN-based word processing and electronic mail software as the center of a writing process approach. Discusses the advantages and disadvantages of networking. (MM)
A Network Approach to Curriculum Quality Assessment
ERIC Educational Resources Information Center
Jordens, J. Zoe; Zepke, Nick
2009-01-01
This paper argues for an alternative approach to quality assurance in New Zealand universities that locates evaluation not with external auditors but with members of the teaching team. In the process, aspects of network theories are introduced as the basis for an approach to quality assurance. From this, the concept of networks is extended to…
A Holistic Management Architecture for Large-Scale Adaptive Networks
2007-09-01
transmission and processing overhead required for management. The challenges of building models to describe dynamic systems are well-known to the field of...increases the challenge of finding a simple approach to assessing the state of the network. Moreover, the performance state of one network link may be... challenging . These obstacles indicate the need for a less comprehensive-analytical, more systemic-holistic approach to managing networks. This approach might
Discovery of Information Diffusion Process in Social Networks
NASA Astrophysics Data System (ADS)
Kim, Kwanho; Jung, Jae-Yoon; Park, Jonghun
Information diffusion analysis in social networks is of significance since it enables us to deeply understand dynamic social interactions among users. In this paper, we introduce approaches to discovering information diffusion process in social networks based on process mining. Process mining techniques are applied from three perspectives: social network analysis, process discovery and community recognition. We then present experimental results by using a real-life social network data. The proposed techniques are expected to employ as new analytical tools in online social networks such as blog and wikis for company marketers, politicians, news reporters and online writers.
Enhancement of COPD biological networks using a web-based collaboration interface
Boue, Stephanie; Fields, Brett; Hoeng, Julia; Park, Jennifer; Peitsch, Manuel C.; Schlage, Walter K.; Talikka, Marja; Binenbaum, Ilona; Bondarenko, Vladimir; Bulgakov, Oleg V.; Cherkasova, Vera; Diaz-Diaz, Norberto; Fedorova, Larisa; Guryanova, Svetlana; Guzova, Julia; Igorevna Koroleva, Galina; Kozhemyakina, Elena; Kumar, Rahul; Lavid, Noa; Lu, Qingxian; Menon, Swapna; Ouliel, Yael; Peterson, Samantha C.; Prokhorov, Alexander; Sanders, Edward; Schrier, Sarah; Schwaitzer Neta, Golan; Shvydchenko, Irina; Tallam, Aravind; Villa-Fombuena, Gema; Wu, John; Yudkevich, Ilya; Zelikman, Mariya
2015-01-01
The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks. PMID:25767696
Enhancement of COPD biological networks using a web-based collaboration interface.
Boue, Stephanie; Fields, Brett; Hoeng, Julia; Park, Jennifer; Peitsch, Manuel C; Schlage, Walter K; Talikka, Marja; Binenbaum, Ilona; Bondarenko, Vladimir; Bulgakov, Oleg V; Cherkasova, Vera; Diaz-Diaz, Norberto; Fedorova, Larisa; Guryanova, Svetlana; Guzova, Julia; Igorevna Koroleva, Galina; Kozhemyakina, Elena; Kumar, Rahul; Lavid, Noa; Lu, Qingxian; Menon, Swapna; Ouliel, Yael; Peterson, Samantha C; Prokhorov, Alexander; Sanders, Edward; Schrier, Sarah; Schwaitzer Neta, Golan; Shvydchenko, Irina; Tallam, Aravind; Villa-Fombuena, Gema; Wu, John; Yudkevich, Ilya; Zelikman, Mariya
2015-01-01
The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks.
Ma, Cheng-Wei; Xiu, Zhi-Long; Zeng, An-Ping
2012-01-01
A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins. PMID:22363664
Commodity-based Approach for Evaluating the Value of Freight Moving on Texas’ Roadway Network
DOT National Transportation Integrated Search
2017-12-10
The researchers took a commodity-based approach to evaluate the value of a list of selected commodities moved on the Texas freight network. This approach takes advantage of commodity-specific data sources and modeling processes. It provides a unique ...
Patterns recognition of electric brain activity using artificial neural networks
NASA Astrophysics Data System (ADS)
Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.
2017-04-01
An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.
NASA Astrophysics Data System (ADS)
Hopkins, Charlotte Rachael; Bailey, David Mark; Potts, Tavis
2018-07-01
As international pressure for marine protection has increased, Scotland has increased spatial protection through the development of a Marine Protected Area (MPA) network. Few MPA networks to date have included specific considerations of climate change in the design, monitoring or management of the network. The Scottish MPA network followed a feature-led approach to identify a series of MPAs across the Scottish marine area and incorporated the diverse views of many different stakeholders. This feature led approach has led to wide ranging opinions and understandings regarding the success of the MPA network. Translating ideas of success into a policy approach whilst also considering how climate change may affect these ideas of success is a complex challenge. This paper presents the results of a Delphi process that aimed to facilitate clear communication between academics, policy makers and stakeholders in order to identify specific climate change considerations applicable to the Scottish MPA network. This study engaged a group of academic and non-academic stakeholders to discuss potential options that could be translated into an operational process for management of the MPA network. The results of Delphi process discussion are presented with the output of a management matrix tool, which could aid in future decisions for MPA management under scenarios of climate change.
A feedback-based secure path approach for wireless sensor network data collection.
Mao, Yuxin; Wei, Guiyi
2010-01-01
The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.
Network Security Validation Using Game Theory
NASA Astrophysics Data System (ADS)
Papadopoulou, Vicky; Gregoriades, Andreas
Non-functional requirements (NFR) such as network security recently gained widespread attention in distributed information systems. Despite their importance however, there is no systematic approach to validate these requirements given the complexity and uncertainty characterizing modern networks. Traditionally, network security requirements specification has been the results of a reactive process. This however, limited the immunity property of the distributed systems that depended on these networks. Security requirements specification need a proactive approach. Networks' infrastructure is constantly under attack by hackers and malicious software that aim to break into computers. To combat these threats, network designers need sophisticated security validation techniques that will guarantee the minimum level of security for their future networks. This paper presents a game-theoretic approach to security requirements validation. An introduction to game theory is presented along with an example that demonstrates the application of the approach.
Wong, Michelle; Bejarano, Esther; Carvlin, Graeme; Fellows, Katie; King, Galatea; Lugo, Humberto; Jerrett, Michael; Meltzer, Dan; Northcross, Amanda; Olmedo, Luis; Seto, Edmund; Wilkie, Alexa; English, Paul
2018-03-15
Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach.
Wong, Michelle; Bejarano, Esther; Carvlin, Graeme; King, Galatea; Lugo, Humberto; Jerrett, Michael; Northcross, Amanda; Olmedo, Luis; Seto, Edmund; Wilkie, Alexa; English, Paul
2018-01-01
Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach. PMID:29543726
Hierarchical Brain Networks Active in Approach and Avoidance Goal Pursuit
Spielberg, Jeffrey M.; Heller, Wendy; Miller, Gregory A.
2013-01-01
Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal-pursuit processes (e.g., motivation) has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity) vital to goal-pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging) with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures. PMID:23785328
Hierarchical brain networks active in approach and avoidance goal pursuit.
Spielberg, Jeffrey M; Heller, Wendy; Miller, Gregory A
2013-01-01
Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal-pursuit processes (e.g., motivation) has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity) vital to goal-pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging) with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures.
Application of machine learning methods for traffic signs recognition
NASA Astrophysics Data System (ADS)
Filatov, D. V.; Ignatev, K. V.; Deviatkin, A. V.; Serykh, E. V.
2018-02-01
This paper focuses on solving a relevant and pressing safety issue on intercity roads. Two approaches were considered for solving the problem of traffic signs recognition; the approaches involved neural networks to analyze images obtained from a camera in the real-time mode. The first approach is based on a sequential image processing. At the initial stage, with the help of color filters and morphological operations (dilatation and erosion), the area containing the traffic sign is located on the image, then the selected and scaled fragment of the image is analyzed using a feedforward neural network to determine the meaning of the found traffic sign. Learning of the neural network in this approach is carried out using a backpropagation method. The second approach involves convolution neural networks at both stages, i.e. when searching and selecting the area of the image containing the traffic sign, and when determining its meaning. Learning of the neural network in the second approach is carried out using the intersection over union function and a loss function. For neural networks to learn and the proposed algorithms to be tested, a series of videos from a dash cam were used that were shot under various weather and illumination conditions. As a result, the proposed approaches for traffic signs recognition were analyzed and compared by key indicators such as recognition rate percentage and the complexity of neural networks’ learning process.
Reducing neural network training time with parallel processing
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Lamarsh, William J., II
1995-01-01
Obtaining optimal solutions for engineering design problems is often expensive because the process typically requires numerous iterations involving analysis and optimization programs. Previous research has shown that a near optimum solution can be obtained in less time by simulating a slow, expensive analysis with a fast, inexpensive neural network. A new approach has been developed to further reduce this time. This approach decomposes a large neural network into many smaller neural networks that can be trained in parallel. Guidelines are developed to avoid some of the pitfalls when training smaller neural networks in parallel. These guidelines allow the engineer: to determine the number of nodes on the hidden layer of the smaller neural networks; to choose the initial training weights; and to select a network configuration that will capture the interactions among the smaller neural networks. This paper presents results describing how these guidelines are developed.
A SYSTEMS BIOLOGY APPROACH TO DEVELOPMENTAL TOXICOLOGY
Abstract
Recent advances in developmental biology have yielded detailed models of gene regulatory networks (GRNs) involved in cell specification and other processes in embryonic differentiation. Such networks form the bedrock on which a systems biology approach to developme...
A New Approach to Create Image Control Networks in ISIS
NASA Astrophysics Data System (ADS)
Becker, K. J.; Berry, K. L.; Mapel, J. A.; Walldren, J. C.
2017-06-01
A new approach was used to create a feature-based control point network that required the development of new tools in the Integrated Software for Imagers and Spectrometers (ISIS3) system to process very large datasets.
Dynamic waste management (DWM): towards an evolutionary decision-making approach.
Rojo, Gabriel; Glaus, Mathias; Laforest, Valerie; Laforest, Valérie; Bourgois, Jacques; Bourgeois, Jacques; Hausler, Robert
2013-12-01
To guarantee sustainable and dynamic waste management, the dynamic waste management approach (DWM) suggests an evolutionary new approach that maintains a constant flow towards the most favourable waste treatment processes (facilities) within a system. To that end, DWM is based on the law of conservation of energy, which allows the balancing of a network, while considering the constraints of incoming (h1 ) and outgoing (h2 ) loads, as well as the distribution network (ΔH) characteristics. The developed approach lies on the identification of the prioritization index (PI) for waste generators (analogy to h1 ), a global allocation index for each of the treatment processes (analogy to h2 ) and the linear index load loss (ΔH) associated with waste transport. To demonstrate the scope of DWM, we outline this approach, and then present an example of its application. The case study shows that the variable monthly waste from the three considered sources is dynamically distributed in priority to the more favourable processes. Moreover, the reserve (stock) helps temporarily store waste in order to ease the global load of the network and favour a constant feeding of the treatment processes. The DWM approach serves as a decision-making tool by evaluating new waste treatment processes, as well as their location and new means of transport for waste.
A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection
Mao, Yuxin; Wei, Guiyi
2010-01-01
The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose. PMID:22163424
Quantifiable and objective approach to organizational performance enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholand, Andrew Joseph; Tausczik, Yla R.
This report describes a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to identify socially situated relationships between individuals which, though subtle, are highly influential. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships aremore » latent or unrecognized. This report outlines the philosophical antecedents of SLNA, the mechanics of preprocessing, processing, and post-processing stages, and some example results obtained by applying this approach to a 15-month corporate discussion archive.« less
Phase-space networks of geometrically frustrated systems.
Han, Yilong
2009-11-01
We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.
Plant Growth Models Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Hoflund, A Bryce
2013-01-01
This paper describes how grounded theory was used to investigate the "black box" of network leadership in the creation of the National Quality Forum. Scholars are beginning to recognize the importance of network organizations and are in the embryonic stages of collecting and analyzing data about network leadership processes. Grounded theory, with its focus on deriving theory from empirical data, offers researchers a distinctive way of studying little-known phenomena and is therefore well suited to exploring network leadership processes. Specifically, this paper provides an overview of grounded theory, a discussion of the appropriateness of grounded theory to investigating network phenomena, a description of how the research was conducted, and a discussion of the limitations and lessons learned from using this approach.
Controlling Contagion Processes in Activity Driven Networks
NASA Astrophysics Data System (ADS)
Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro
2014-03-01
The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.
Zhang, Yuji
2015-01-01
Molecular networks act as the backbone of molecular activities within cells, offering a unique opportunity to better understand the mechanism of diseases. While network data usually constitute only static network maps, integrating them with time course gene expression information can provide clues to the dynamic features of these networks and unravel the mechanistic driver genes characterizing cellular responses. Time course gene expression data allow us to broadly "watch" the dynamics of the system. However, one challenge in the analysis of such data is to establish and characterize the interplay among genes that are altered at different time points in the context of a biological process or functional category. Integrative analysis of these data sources will lead us a more complete understanding of how biological entities (e.g., genes and proteins) coordinately perform their biological functions in biological systems. In this paper, we introduced a novel network-based approach to extract functional knowledge from time-dependent biological processes at a system level using time course mRNA sequencing data in zebrafish embryo development. The proposed method was applied to investigate 1α, 25(OH)2D3-altered mechanisms in zebrafish embryo development. We applied the proposed method to a public zebrafish time course mRNA-Seq dataset, containing two different treatments along four time points. We constructed networks between gene ontology biological process categories, which were enriched in differential expressed genes between consecutive time points and different conditions. The temporal propagation of 1α, 25-Dihydroxyvitamin D3-altered transcriptional changes started from a few genes that were altered initially at earlier stage, to large groups of biological coherent genes at later stages. The most notable biological processes included neuronal and retinal development and generalized stress response. In addition, we also investigated the relationship among biological processes enriched in co-expressed genes under different conditions. The enriched biological processes include translation elongation, nucleosome assembly, and retina development. These network dynamics provide new insights into the impact of 1α, 25-Dihydroxyvitamin D3 treatment in bone and cartilage development. We developed a network-based approach to analyzing the DEGs at different time points by integrating molecular interactions and gene ontology information. These results demonstrate that the proposed approach can provide insight on the molecular mechanisms taking place in vertebrate embryo development upon treatment with 1α, 25(OH)2D3. Our approach enables the monitoring of biological processes that can serve as a basis for generating new testable hypotheses. Such network-based integration approach can be easily extended to any temporal- or condition-dependent genomic data analyses.
Network-Oriented Approach to Distributed Generation Planning
NASA Astrophysics Data System (ADS)
Kochukov, O.; Mutule, A.
2017-06-01
The main objective of the paper is to present an innovative complex approach to distributed generation planning and show the advantages over existing methods. The approach will be most suitable for DNOs and authorities and has specific calculation targets to support the decision-making process. The method can be used for complex distribution networks with different arrangement and legal base.
An Overview of Data Routing Approaches for Wireless Sensor Networks
Anisi, Mohammad Hossein; Abdullah, Abdul Hanan; Razak, Shukor Abd; Ngadi, Md. Asri
2012-01-01
Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals. PMID:23443040
Neural network and its application to CT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikravesh, M.; Kovscek, A.R.; Patzek, T.W.
We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.
The pathophysiology of post-stroke aphasia: A network approach.
Thiel, Alexander; Zumbansen, Anna
2016-06-13
Post-stroke aphasia syndromes as a clinical entity arise from the disruption of brain networks specialized in language production and comprehension due to permanent focal ischemia. This approach to post-stroke aphasia is based on two pathophysiological concepts: 1) Understanding language processing in terms of distributed networks rather than language centers and 2) understanding the molecular pathophysiology of ischemic brain injury as a dynamic process beyond the direct destruction of network centers and their connections. While considerable progress has been made in the past 10 years to develop such models on a systems as well as a molecular level, the influence of these approaches on understanding and treating clinical aphasia syndromes has been limited. In this article, we review current pathophysiological concepts of ischemic brain injury, their relationship to altered information processing in language networks after ischemic stroke and how these mechanisms may be influenced therapeutically to improve treatment of post-stroke aphasia. Understanding the pathophysiological mechanism of post-stroke aphasia on a neurophysiological systems level as well as on the molecular level becomes more and more important for aphasia treatment, as the field moves from standardized therapies towards more targeted individualized treatment strategies comprising behavioural therapies as well as non-invasive brain stimulation (NIBS).
Firnkorn, D; Ganzinger, M; Muley, T; Thomas, M; Knaup, P
2015-01-01
Joint data analysis is a key requirement in medical research networks. Data are available in heterogeneous formats at each network partner and their harmonization is often rather complex. The objective of our paper is to provide a generic approach for the harmonization process in research networks. We applied the process when harmonizing data from three sites for the Lung Cancer Phenotype Database within the German Center for Lung Research. We developed a spreadsheet-based solution as tool to support the harmonization process for lung cancer data and a data integration procedure based on Talend Open Studio. The harmonization process consists of eight steps describing a systematic approach for defining and reviewing source data elements and standardizing common data elements. The steps for defining common data elements and harmonizing them with local data definitions are repeated until consensus is reached. Application of this process for building the phenotype database led to a common basic data set on lung cancer with 285 structured parameters. The Lung Cancer Phenotype Database was realized as an i2b2 research data warehouse. Data harmonization is a challenging task requiring informatics skills as well as domain knowledge. Our approach facilitates data harmonization by providing guidance through a uniform process that can be applied in a wide range of projects.
2011-01-01
Background To understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs), microRNAs (miRNAs) and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date. Results To identify and analyze molecular interaction networks, we developed MIR@NT@N, an integrative approach based on a meta-regulation network model and a large-scale database. MIR@NT@N uses a graph-based approach to predict novel molecular actors across multiple regulatory processes (i.e. TFs acting on protein-coding or miRNA genes, or miRNAs acting on messenger RNAs). Exploiting these predictions, the user can generate networks and further analyze them to identify sub-networks, including motifs such as feedback and feedforward loops (FBL and FFL). In addition, networks can be built from lists of molecular actors with an a priori role in a given biological process to predict novel and unanticipated interactions. Analyses can be contextualized and filtered by integrating additional information such as microarray expression data. All results, including generated graphs, can be visualized, saved and exported into various formats. MIR@NT@N performances have been evaluated using published data and then applied to the regulatory program underlying epithelium to mesenchyme transition (EMT), an evolutionary-conserved process which is implicated in embryonic development and disease. Conclusions MIR@NT@N is an effective computational approach to identify novel molecular regulations and to predict gene regulatory networks and sub-networks including conserved motifs within a given biological context. Taking advantage of the M@IA environment, MIR@NT@N is a user-friendly web resource freely available at http://mironton.uni.lu which will be updated on a regular basis. PMID:21375730
A Holistic Approach to Networked Information Systems Design and Analysis
2016-04-15
attain quite substantial savings. 11. Optimal algorithms for energy harvesting in wireless networks. We use a Markov- decision-process (MDP) based...approach to obtain optimal policies for transmissions . The key advantage of our approach is that it holistically considers information and energy in a...Coding technique to minimize delays and the number of transmissions in Wireless Systems. As we approach an era of ubiquitous computing with information
NASA Technical Reports Server (NTRS)
Anderson, Michael L.; Wright, Nathaniel; Tai, Wallace
2012-01-01
Natural disasters, terrorist attacks, civil unrest, and other events have the potential of disrupting mission-essential operations in any space communications network. NASA's Space Communications and Navigation office (SCaN) is in the process of studying options for integrating the three existing NASA network elements, the Deep Space Network, the Near Earth Network, and the Space Network, into a single integrated network with common services and interfaces. The need to maintain Continuity of Operations (COOP) after a disastrous event has a direct impact on the future network design and operations concepts. The SCaN Integrated Network will provide support to a variety of user missions. The missions have diverse requirements and include anything from earth based platforms to planetary missions and rovers. It is presumed that an integrated network, with common interfaces and processes, provides an inherent advantage to COOP in that multiple elements and networks can provide cross-support in a seamless manner. The results of trade studies support this assumption but also show that centralization as a means of achieving integration can result in single points of failure that must be mitigated. The cost to provide this mitigation can be substantial. In support of this effort, the team evaluated the current approaches to COOP, developed multiple potential approaches to COOP in a future integrated network, evaluated the interdependencies of the various approaches to the various network control and operations options, and did a best value assessment of the options. The paper will describe the trade space, the study methods, and results of the study.
Towards the understanding of network information processing in biology
NASA Astrophysics Data System (ADS)
Singh, Vijay
Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.
Shorov, Andrey; Kotenko, Igor
2014-01-01
The paper outlines a bioinspired approach named "network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed procedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine necessary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described.
Yang, S; Wang, D
2000-01-01
This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.
García-Ramírez, Manuel; Paloma, Virginia; Suarez-Balcazar, Yolanda; Balcazar, Fabricio
2009-09-01
Europe is in the process of building a more participative, just, and inclusive European Union. The European Social Fund, which is an initiative developed to actively promote multinational partnerships that address pressing social issues, is a good example of the European transformation. This article describes the steps taken to develop and evaluate the activities of an international network promoting collaborative capacity among regional partners involved in the prevention of labor discrimination toward immigrants in three European countries-Spain, Belgium, and Italy. An international team of community psychologists proposed an empowering approach to assess the collaborative capacity of the network. This approach consisted of three steps: (1) establishing a collaborative relationship among partners, (2) building collaborative capacity, and (3) evaluating the collaborative capacity of the network. We conclude with lessons learned from the process and provide recommendations for addressing the challenges inherent in international collaboration processes.
Signal propagation in cortical networks: a digital signal processing approach.
Rodrigues, Francisco Aparecido; da Fontoura Costa, Luciano
2009-01-01
This work reports a digital signal processing approach to representing and modeling transmission and combination of signals in cortical networks. The signal dynamics is modeled in terms of diffusion, which allows the information processing undergone between any pair of nodes to be fully characterized in terms of a finite impulse response (FIR) filter. Diffusion without and with time decay are investigated. All filters underlying the cat and macaque cortical organization are found to be of low-pass nature, allowing the cortical signal processing to be summarized in terms of the respective cutoff frequencies (a high cutoff frequency meaning little alteration of signals through their intermixing). Several findings are reported and discussed, including the fact that the incorporation of temporal activity decay tends to provide more diversified cutoff frequencies. Different filtering intensity is observed for each community in those networks. In addition, the brain regions involved in object recognition tend to present the highest cutoff frequencies for both the cat and macaque networks.
A network function-based definition of communities in complex networks.
Chauhan, Sanjeev; Girvan, Michelle; Ott, Edward
2012-09-01
We consider an alternate definition of community structure that is functionally motivated. We define network community structure based on the function the network system is intended to perform. In particular, as a specific example of this approach, we consider communities whose function is enhanced by the ability to synchronize and/or by resilience to node failures. Previous work has shown that, in many cases, the largest eigenvalue of the network's adjacency matrix controls the onset of both synchronization and percolation processes. Thus, for networks whose functional performance is dependent on these processes, we propose a method that divides a given network into communities based on maximizing a function of the largest eigenvalues of the adjacency matrices of the resulting communities. We also explore the differences between the partitions obtained by our method and the modularity approach (which is based solely on consideration of network structure). We do this for several different classes of networks. We find that, in many cases, modularity-based partitions do almost as well as our function-based method in finding functional communities, even though modularity does not specifically incorporate consideration of function.
Concurrent evolution of feature extractors and modular artificial neural networks
NASA Astrophysics Data System (ADS)
Hannak, Victor; Savakis, Andreas; Yang, Shanchieh Jay; Anderson, Peter
2009-05-01
This paper presents a new approach for the design of feature-extracting recognition networks that do not require expert knowledge in the application domain. Feature-Extracting Recognition Networks (FERNs) are composed of interconnected functional nodes (feurons), which serve as feature extractors, and are followed by a subnetwork of traditional neural nodes (neurons) that act as classifiers. A concurrent evolutionary process (CEP) is used to search the space of feature extractors and neural networks in order to obtain an optimal recognition network that simultaneously performs feature extraction and recognition. By constraining the hill-climbing search functionality of the CEP on specific parts of the solution space, i.e., individually limiting the evolution of feature extractors and neural networks, it was demonstrated that concurrent evolution is a necessary component of the system. Application of this approach to a handwritten digit recognition task illustrates that the proposed methodology is capable of producing recognition networks that perform in-line with other methods without the need for expert knowledge in image processing.
Modeling Renewable Penertration Using a Network Economic Model
NASA Astrophysics Data System (ADS)
Lamont, A.
2001-03-01
This paper evaluates the accuracy of a network economic modeling approach in designing energy systems having renewable and conventional generators. The network approach models the system as a network of processes such as demands, generators, markets, and resources. The model reaches a solution by exchanging prices and quantity information between the nodes of the system. This formulation is very flexible and takes very little time to build and modify models. This paper reports an experiment designing a system with photovoltaic and base and peak fossil generators. The level of PV penetration as a function of its price and the capacities of the fossil generators were determined using the network approach and using an exact, analytic approach. It is found that the two methods agree very closely in terms of the optimal capacities and are nearly identical in terms of annual system costs.
Ammenwerth, Elske; Hackl, Werner O
2017-01-01
Learning as a constructive process works best in interaction with other learners. Support of social interaction processes is a particular challenge within online learning settings due to the spatial and temporal distribution of participants. It should thus be carefully monitored. We present structural network analysis and related indicators to analyse and visualize interaction patterns of participants in online learning settings. We validate this approach in two online courses and show how the visualization helps to monitor interaction and to identify activity profiles of learners. Structural network analysis is a feasible approach for an analysis of the intensity and direction of interaction in online learning settings.
An individual-based approach to SIR epidemics in contact networks.
Youssef, Mina; Scoglio, Caterina
2011-08-21
Many approaches have recently been proposed to model the spread of epidemics on networks. For instance, the Susceptible/Infected/Recovered (SIR) compartmental model has successfully been applied to different types of diseases that spread out among humans and animals. When this model is applied on a contact network, the centrality characteristics of the network plays an important role in the spreading process. However, current approaches only consider an aggregate representation of the network structure, which can result in inaccurate analysis. In this paper, we propose a new individual-based SIR approach, which considers the whole description of the network structure. The individual-based approach is built on a continuous time Markov chain, and it is capable of evaluating the state probability for every individual in the network. Through mathematical analysis, we rigorously confirm the existence of an epidemic threshold below which an epidemic does not propagate in the network. We also show that the epidemic threshold is inversely proportional to the maximum eigenvalue of the network. Additionally, we study the role of the whole spectrum of the network, and determine the relationship between the maximum number of infected individuals and the set of eigenvalues and eigenvectors. To validate our approach, we analytically study the deviation with respect to the continuous time Markov chain model, and we show that the new approach is accurate for a large range of infection strength. Furthermore, we compare the new approach with the well-known heterogeneous mean field approach in the literature. Ultimately, we support our theoretical results through extensive numerical evaluations and Monte Carlo simulations. Published by Elsevier Ltd.
Space Network Control Conference on Resource Allocation Concepts and Approaches
NASA Technical Reports Server (NTRS)
Moe, Karen L. (Editor)
1991-01-01
The results are presented of the Space Network Control (SNC) Conference. In the late 1990s, when the Advanced Tracking and Data Relay Satellite System is operational, Space Network communication services will be supported and controlled by the SNC. The goals of the conference were to survey existing resource allocation concepts and approaches, to identify solutions applicable to the Space Network, and to identify avenues of study in support of the SNC development. The conference was divided into three sessions: (1) Concepts for Space Network Allocation; (2) SNC and User Payload Operations Control Center (POCC) Human-Computer Interface Concepts; and (3) Resource Allocation Tools, Technology, and Algorithms. Key recommendations addressed approaches to achieving higher levels of automation in the scheduling process.
Valdés, Julio J; Bonham-Carter, Graeme
2006-03-01
A computational intelligence approach is used to explore the problem of detecting internal state changes in time dependent processes; described by heterogeneous, multivariate time series with imprecise data and missing values. Such processes are approximated by collections of time dependent non-linear autoregressive models represented by a special kind of neuro-fuzzy neural network. Grid and high throughput computing model mining procedures based on neuro-fuzzy networks and genetic algorithms, generate: (i) collections of models composed of sets of time lag terms from the time series, and (ii) prediction functions represented by neuro-fuzzy networks. The composition of the models and their prediction capabilities, allows the identification of changes in the internal structure of the process. These changes are associated with the alternation of steady and transient states, zones with abnormal behavior, instability, and other situations. This approach is general, and its sensitivity for detecting subtle changes of state is revealed by simulation experiments. Its potential in the study of complex processes in earth sciences and astrophysics is illustrated with applications using paleoclimate and solar data.
Thye, Melissa D; Ammons, Carla J; Murdaugh, Donna L; Kana, Rajesh K
2018-07-16
Social neuroscience research has focused on an identified network of brain regions primarily associated with processing Theory of Mind (ToM). However, ToM is a broad cognitive process, which encompasses several sub-processes, such as mental state detection and intentional attribution, and the connectivity of brain regions underlying the broader ToM network in response to paradigms assessing these sub-processes requires further characterization. Standard fMRI analyses which focus only on brain activity cannot capture information about ToM processing at a network level. An alternative method, independent component analysis (ICA), is a data-driven technique used to isolate intrinsic connectivity networks, and this approach provides insight into network-level regional recruitment. In this fMRI study, three complementary, but distinct ToM tasks assessing mental state detection (e.g. RMIE: Reading the Mind in the Eyes; RMIV: Reading the Mind in the Voice) and intentional attribution (Causality task) were each analyzed using ICA in order to separately characterize the recruitment and functional connectivity of core nodes in the ToM network in response to the sub-processes of ToM. Based on visual comparison of the derived networks for each task, the spatiotemporal network patterns were similar between the RMIE and RMIV tasks, which elicited mentalizing about the mental states of others, and these networks differed from the network derived for the Causality task, which elicited mentalizing about goal-directed actions. The medial prefrontal cortex, precuneus, and right inferior frontal gyrus were seen in the components with the highest correlation with the task condition for each of the tasks highlighting the role of these regions in general ToM processing. Using a data-driven approach, the current study captured the differences in task-related brain response to ToM in three distinct ToM paradigms. The findings of this study further elucidate the neural mechanisms associated with mental state detection and causal attribution, which represent possible sub-processes of the complex construct of ToM processing. Published by Elsevier B.V.
Dynamic modeling and parameter estimation of a radial and loop type distribution system network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun Qui; Heng Chen; Girgis, A.A.
1993-05-01
This paper presents a new identification approach to three-phase power system modeling and model reduction taking power system network as multi-input, multi-output (MIMO) processes. The model estimate can be obtained in discrete-time input-output form, discrete- or continuous-time state-space variable form, or frequency-domain impedance transfer function matrix form. An algorithm for determining the model structure of this MIMO process is described. The effect of measurement noise on the approach is also discussed. This approach has been applied on a sample system and simulation results are also presented in this paper.
Gene network analysis: from heart development to cardiac therapy.
Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B
2015-03-01
Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.
Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng
2007-01-01
The recent availability of low cost and miniaturized hardware has allowed wireless sensor networks (WSNs) to retrieve audio and video data in real world applications, which has fostered the development of wireless multimedia sensor networks (WMSNs). Resource constraints and challenging multimedia data volume make development of efficient algorithms to perform in-network processing of multimedia contents imperative. This paper proposes solving problems in the domain of WMSNs from the perspective of multi-agent systems. The multi-agent framework enables flexible network configuration and efficient collaborative in-network processing. The focus is placed on target classification in WMSNs where audio information is retrieved by microphones. To deal with the uncertainties related to audio information retrieval, the statistical approaches of power spectral density estimates, principal component analysis and Gaussian process classification are employed. A multi-agent negotiation mechanism is specially developed to efficiently utilize limited resources and simultaneously enhance classification accuracy and reliability. The negotiation is composed of two phases, where an auction based approach is first exploited to allocate the classification task among the agents and then individual agent decisions are combined by the committee decision mechanism. Simulation experiments with real world data are conducted and the results show that the proposed statistical approaches and negotiation mechanism not only reduce memory and computation requirements in WMSNs but also significantly enhance classification accuracy and reliability. PMID:28903223
Social network approaches to leadership: an integrative conceptual review.
Carter, Dorothy R; DeChurch, Leslie A; Braun, Michael T; Contractor, Noshir S
2015-05-01
Contemporary definitions of leadership advance a view of the phenomenon as relational, situated in specific social contexts, involving patterned emergent processes, and encompassing both formal and informal influence. Paralleling these views is a growing interest in leveraging social network approaches to study leadership. Social network approaches provide a set of theories and methods with which to articulate and investigate, with greater precision and rigor, the wide variety of relational perspectives implied by contemporary leadership theories. Our goal is to advance this domain through an integrative conceptual review. We begin by answering the question of why-Why adopt a network approach to study leadership? Then, we offer a framework for organizing prior research. Our review reveals 3 areas of research, which we term: (a) leadership in networks, (b) leadership as networks, and (c) leadership in and as networks. By clarifying the conceptual underpinnings, key findings, and themes within each area, this review serves as a foundation for future inquiry that capitalizes on, and programmatically builds upon, the insights of prior work. Our final contribution is to advance an agenda for future research that harnesses the confluent ideas at the intersection of leadership in and as networks. Leadership in and as networks represents a paradigm shift in leadership research-from an emphasis on the static traits and behaviors of formal leaders whose actions are contingent upon situational constraints, toward an emphasis on the complex and patterned relational processes that interact with the embedding social context to jointly constitute leadership emergence and effectiveness. (c) 2015 APA, all rights reserved.
Cai, Chao-Ran; Wu, Zhi-Xi; Guan, Jian-Yue
2014-11-01
Recently, Gómez et al. proposed a microscopic Markov-chain approach (MMCA) [S. Gómez, J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. E 84, 036105 (2011)PLEEE81539-375510.1103/PhysRevE.84.036105] to the discrete-time susceptible-infected-susceptible (SIS) epidemic process and found that the epidemic prevalence obtained by this approach agrees well with that by simulations. However, we found that the approach cannot be straightforwardly extended to a susceptible-infected-recovered (SIR) epidemic process (due to its irreversible property), and the epidemic prevalences obtained by MMCA and Monte Carlo simulations do not match well when the infection probability is just slightly above the epidemic threshold. In this contribution we extend the effective degree Markov-chain approach, proposed for analyzing continuous-time epidemic processes [J. Lindquist, J. Ma, P. Driessche, and F. Willeboordse, J. Math. Biol. 62, 143 (2011)JMBLAJ0303-681210.1007/s00285-010-0331-2], to address discrete-time binary-state (SIS) or three-state (SIR) epidemic processes on uncorrelated complex networks. It is shown that the final epidemic size as well as the time series of infected individuals obtained from this approach agree very well with those by Monte Carlo simulations. Our results are robust to the change of different parameters, including the total population size, the infection probability, the recovery probability, the average degree, and the degree distribution of the underlying networks.
NASA Astrophysics Data System (ADS)
Tohidnia, S.; Tohidi, G.
2018-02-01
The current paper develops three different ways to measure the multi-period global cost efficiency for homogeneous networks of processes when the prices of exogenous inputs are known at all time periods. A multi-period network data envelopment analysis model is presented to measure the minimum cost of the network system based on the global production possibility set. We show that there is a relationship between the multi-period global cost efficiency of network system and its subsystems, and also its processes. The proposed model is applied to compute the global cost Malmquist productivity index for measuring the productivity changes of network system and each of its process between two time periods. This index is circular. Furthermore, we show that the productivity changes of network system can be defined as a weighted average of the process productivity changes. Finally, a numerical example will be presented to illustrate the proposed approach.
[GSH fermentation process modeling using entropy-criterion based RBF neural network model].
Tan, Zuoping; Wang, Shitong; Deng, Zhaohong; Du, Guocheng
2008-05-01
The prediction accuracy and generalization of GSH fermentation process modeling are often deteriorated by noise existing in the corresponding experimental data. In order to avoid this problem, we present a novel RBF neural network modeling approach based on entropy criterion. It considers the whole distribution structure of the training data set in the parameter learning process compared with the traditional MSE-criterion based parameter learning, and thus effectively avoids the weak generalization and over-learning. Then the proposed approach is applied to the GSH fermentation process modeling. Our results demonstrate that this proposed method has better prediction accuracy, generalization and robustness such that it offers a potential application merit for the GSH fermentation process modeling.
An Approach Based on Social Network Analysis Applied to a Collaborative Learning Experience
ERIC Educational Resources Information Center
Claros, Iván; Cobos, Ruth; Collazos, César A.
2016-01-01
The Social Network Analysis (SNA) techniques allow modelling and analysing the interaction among individuals based on their attributes and relationships. This approach has been used by several researchers in order to measure the social processes in collaborative learning experiences. But oftentimes such measures were calculated at the final state…
Artificial neuron-glia networks learning approach based on cooperative coevolution.
Mesejo, Pablo; Ibáñez, Oscar; Fernández-Blanco, Enrique; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana B
2015-06-01
Artificial Neuron-Glia Networks (ANGNs) are a novel bio-inspired machine learning approach. They extend classical Artificial Neural Networks (ANNs) by incorporating recent findings and suppositions about the way information is processed by neural and astrocytic networks in the most evolved living organisms. Although ANGNs are not a consolidated method, their performance against the traditional approach, i.e. without artificial astrocytes, was already demonstrated on classification problems. However, the corresponding learning algorithms developed so far strongly depends on a set of glial parameters which are manually tuned for each specific problem. As a consequence, previous experimental tests have to be done in order to determine an adequate set of values, making such manual parameter configuration time-consuming, error-prone, biased and problem dependent. Thus, in this paper, we propose a novel learning approach for ANGNs that fully automates the learning process, and gives the possibility of testing any kind of reasonable parameter configuration for each specific problem. This new learning algorithm, based on coevolutionary genetic algorithms, is able to properly learn all the ANGNs parameters. Its performance is tested on five classification problems achieving significantly better results than ANGN and competitive results with ANN approaches.
Networked Improvement Communities: The Discipline of Improvement Science Meets the Power of Networks
ERIC Educational Resources Information Center
LeMahieu, Paul G.; Grunow, Alicia; Baker, Laura; Nordstrum, Lee E.; Gomez, Louis M.
2017-01-01
Purpose: The purpose of this paper is to delineate an approach to quality assurance in education called networked improvement communities (NICs) that focused on integrating the methodologies of improvement science with few of the networks. Quality improvement, the science and practice of continuously improving programs, practices, processes,…
Kotenko, Igor
2014-01-01
The paper outlines a bioinspired approach named “network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed prosedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine nessesary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described. PMID:25254229
An approach to the rationalization of streamflow data collection networks
NASA Astrophysics Data System (ADS)
Burn, Donald H.; Goulter, Ian C.
1991-01-01
A new procedure for rationalizing a streamflow data collection network is developed. The procedure is a two-phase approach in which in the first phase, a hierarchical clustering technique is used to identify groups of similar gauging stations. In the second phase, a single station from each identified group of gauging stations is selected to be retained in the rationalized network. The station selection phase is an inherently heuristic process that incorporates information about the characteristics of the individual stations in the network. The methodology allows the direct inclusion of user judgement into the station selection process in that it is possible to select more than one station from a group, if conditions warrant. The technique is demonstrated using streamflow gauging stations in and near the Pembina River basin, southern Manitoba, Canada.
Using Bayesian networks to support decision-focused information retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehner, P.; Elsaesser, C.; Seligman, L.
This paper has described an approach to controlling the process of pulling data/information from distributed data bases in a way that is specific to a persons specific decision making context. Our prototype implementation of this approach uses a knowledge-based planner to generate a plan, an automatically constructed Bayesian network to evaluate the plan, specialized processing of the network to derive key information items that would substantially impact the evaluation of the plan (e.g., determine that replanning is needed), automated construction of Standing Requests for Information (SRIs) which are automated functions that monitor changes and trends in distributed data base thatmore » are relevant to the key information items. This emphasis of this paper is on how Bayesian networks are used.« less
A distributed computing approach to mission operations support. [for spacecraft
NASA Technical Reports Server (NTRS)
Larsen, R. L.
1975-01-01
Computing mission operation support includes orbit determination, attitude processing, maneuver computation, resource scheduling, etc. The large-scale third-generation distributed computer network discussed is capable of fulfilling these dynamic requirements. It is shown that distribution of resources and control leads to increased reliability, and exhibits potential for incremental growth. Through functional specialization, a distributed system may be tuned to very specific operational requirements. Fundamental to the approach is the notion of process-to-process communication, which is effected through a high-bandwidth communications network. Both resource-sharing and load-sharing may be realized in the system.
Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming
2016-01-01
Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.
Dynamics of Intersubject Brain Networks during Anxious Anticipation
Najafi, Mahshid; Kinnison, Joshua; Pessoa, Luiz
2017-01-01
How do large-scale brain networks reorganize during the waxing and waning of anxious anticipation? Here, threat was dynamically modulated during human functional MRI as two circles slowly meandered on the screen; if they touched, an unpleasant shock was delivered. We employed intersubject correlation analysis, which allowed the investigation of network-level functional connectivity across brains, and sought to determine how network connectivity changed during periods of approach (circles moving closer) and periods of retreat (circles moving apart). Analysis of positive connection weights revealed that dynamic threat altered connectivity within and between the salience, executive, and task-negative networks. For example, dynamic functional connectivity increased within the salience network during approach and decreased during retreat. The opposite pattern was found for the functional connectivity between the salience and task-negative networks: decreases during approach and increases during approach. Functional connections between subcortical regions and the salience network also changed dynamically during approach and retreat periods. Subcortical regions exhibiting such changes included the putative periaqueductal gray, putative habenula, and putative bed nucleus of the stria terminalis. Additional analysis of negative functional connections revealed dynamic changes, too. For example, negative weights within the salience network decreased during approach and increased during retreat, opposite what was found for positive weights. Together, our findings unraveled dynamic features of functional connectivity of large-scale networks and subcortical regions across participants while threat levels varied continuously, and demonstrate the potential of characterizing emotional processing at the level of dynamic networks. PMID:29209184
MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control
NASA Astrophysics Data System (ADS)
Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming
2017-09-01
Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.
Digital Signal Processing and Control for the Study of Gene Networks
NASA Astrophysics Data System (ADS)
Shin, Yong-Jun
2016-04-01
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.
Digital Signal Processing and Control for the Study of Gene Networks.
Shin, Yong-Jun
2016-04-22
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.
Digital Signal Processing and Control for the Study of Gene Networks
Shin, Yong-Jun
2016-01-01
Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks. PMID:27102828
Mapping soil landscape as spatial continua: The Neural Network Approach
NASA Astrophysics Data System (ADS)
Zhu, A.-Xing
2000-03-01
A neural network approach was developed to populate a soil similarity model that was designed to represent soil landscape as spatial continua for hydroecological modeling at watersheds of mesoscale size. The approach employs multilayer feed forward neural networks. The input to the network was data on a set of soil formative environmental factors; the output from the network was a set of similarity values to a set of prescribed soil classes. The network was trained using a conjugate gradient algorithm in combination with a simulated annealing technique to learn the relationships between a set of prescribed soils and their environmental factors. Once trained, the network was used to compute for every location in an area the similarity values of the soil to the set of prescribed soil classes. The similarity values were then used to produce detailed soil spatial information. The approach also included a Geographic Information System procedure for selecting representative training and testing samples and a process of determining the network internal structure. The approach was applied to soil mapping in a watershed, the Lubrecht Experimental Forest, in western Montana. The case study showed that the soil spatial information derived using the neural network approach reveals much greater spatial detail and has a higher quality than that derived from the conventional soil map. Implications of this detailed soil spatial information for hydroecological modeling at the watershed scale are also discussed.
Improved personalized recommendation based on a similarity network
NASA Astrophysics Data System (ADS)
Wang, Ximeng; Liu, Yun; Xiong, Fei
2016-08-01
A recommender system helps individual users find the preferred items rapidly and has attracted extensive attention in recent years. Many successful recommendation algorithms are designed on bipartite networks, such as network-based inference or heat conduction. However, most of these algorithms define the resource-allocation methods for an average allocation. That is not reasonable because average allocation cannot indicate the user choice preference and the influence between users which leads to a series of non-personalized recommendation results. We propose a personalized recommendation approach that combines the similarity function and bipartite network to generate a similarity network that improves the resource-allocation process. Our model introduces user influence into the recommender system and states that the user influence can make the resource-allocation process more reasonable. We use four different metrics to evaluate our algorithms for three benchmark data sets. Experimental results show that the improved recommendation on a similarity network can obtain better accuracy and diversity than some competing approaches.
Using fuzzy logic to integrate neural networks and knowledge-based systems
NASA Technical Reports Server (NTRS)
Yen, John
1991-01-01
Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.
Kreakie, B J; Hychka, K C; Belaire, J A; Minor, E; Walker, H A
2016-02-01
Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing internet-based social networks, and use an existing traditional (survey-based) case study to illustrate in a familiar context the deviations in methods and results. Internet-based approaches to SNA offer a means to overcome institutional hurdles to conducting survey-based SNA, provide unique insight into an institution's web presences, allow for easy snowballing (iterative process that incorporates new nodes in the network), and afford monitoring of social networks through time. The internet-based approaches differ in link definition: hyperlink is based on links on a website that redirect to a different website and relatedness links are based on a Google's "relatedness" operator that identifies pages "similar" to a URL. All networks were initiated with the same start nodes [members of a conservation alliance for the Calumet region around Chicago (n = 130)], but the resulting networks vary drastically from one another. Interpretation of the resulting networks is highly contingent upon how the links were defined.
NASA Astrophysics Data System (ADS)
Kreakie, B. J.; Hychka, K. C.; Belaire, J. A.; Minor, E.; Walker, H. A.
2016-02-01
Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing internet-based social networks, and use an existing traditional (survey-based) case study to illustrate in a familiar context the deviations in methods and results. Internet-based approaches to SNA offer a means to overcome institutional hurdles to conducting survey-based SNA, provide unique insight into an institution's web presences, allow for easy snowballing (iterative process that incorporates new nodes in the network), and afford monitoring of social networks through time. The internet-based approaches differ in link definition: hyperlink is based on links on a website that redirect to a different website and relatedness links are based on a Google's "relatedness" operator that identifies pages "similar" to a URL. All networks were initiated with the same start nodes [members of a conservation alliance for the Calumet region around Chicago ( n = 130)], but the resulting networks vary drastically from one another. Interpretation of the resulting networks is highly contingent upon how the links were defined.
Kang, Hyunchul
2015-01-01
We investigate the in-network processing of an iceberg join query in wireless sensor networks (WSNs). An iceberg join is a special type of join where only those joined tuples whose cardinality exceeds a certain threshold (called iceberg threshold) are qualified for the result. Processing such a join involves the value matching for the join predicate as well as the checking of the cardinality constraint for the iceberg threshold. In the previous scheme, the value matching is carried out as the main task for filtering non-joinable tuples while the iceberg threshold is treated as an additional constraint. We take an alternative approach, meeting the cardinality constraint first and matching values next. In this approach, with a logical fragmentation of the join operand relations on the aggregate counts of the joining attribute values, the optimal sequence of 2-way fragment semijoins is generated, where each fragment semijoin employs a Bloom filter as a synopsis of the joining attribute values. This sequence filters non-joinable tuples in an energy-efficient way in WSNs. Through implementation and a set of detailed experiments, we show that our alternative approach considerably outperforms the previous one. PMID:25774710
Statistical modelling of networked human-automation performance using working memory capacity.
Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja
2014-01-01
This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.
Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.
2000-01-01
Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
High-accuracy local positioning network for the alignment of the Mu2e experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hejdukova, Jana B.
This Diploma thesis describes the establishment of a high-precision local positioning network and accelerator alignment for the Mu2e physics experiment. The process of establishing new network consists of few steps: design of the network, pre-analysis, installation works, measurements of the network and making adjustments. Adjustments were performed using two approaches. First is a geodetic approach of taking into account the Earth’s curvature and the metrological approach of a pure 3D Cartesian system on the other side. The comparison of those two approaches is performed and evaluated in the results and compared with expected differences. The effect of the Earth’s curvaturemore » was found to be significant for this kind of network and should not be neglected. The measurements were obtained with Absolute Tracker AT401, leveling instrument Leica DNA03 and gyrotheodolite DMT Gyromat 2000. The coordinates of the points of the reference network were determined by the Least Square Meth od and the overall view is attached as Annexes.« less
Complex networks of functional connectivity in a wetland reconnected to its floodplain
Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson
2017-01-01
Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a “biotic filter,” shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.
Complex networks of functional connectivity in a wetland reconnected to its floodplain
NASA Astrophysics Data System (ADS)
Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson W.
2017-07-01
Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a "biotic filter," shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.
Knapsack - TOPSIS Technique for Vertical Handover in Heterogeneous Wireless Network
2015-01-01
In a heterogeneous wireless network, handover techniques are designed to facilitate anywhere/anytime service continuity for mobile users. Consistent best-possible access to a network with widely varying network characteristics requires seamless mobility management techniques. Hence, the vertical handover process imposes important technical challenges. Handover decisions are triggered for continuous connectivity of mobile terminals. However, bad network selection and overload conditions in the chosen network can cause fallout in the form of handover failure. In order to maintain the required Quality of Service during the handover process, decision algorithms should incorporate intelligent techniques. In this paper, a new and efficient vertical handover mechanism is implemented using a dynamic programming method from the operation research discipline. This dynamic programming approach, which is integrated with the Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) method, provides the mobile user with the best handover decisions. Moreover, in this proposed handover algorithm a deterministic approach which divides the network into zones is incorporated into the network server in order to derive an optimal solution. The study revealed that this method is found to achieve better performance and QoS support to users and greatly reduce the handover failures when compared to the traditional TOPSIS method. The decision arrived at the zone gateway using this operational research analytical method (known as the dynamic programming knapsack approach together with Technique to Order Preference by Similarity to Ideal Solution) yields remarkably better results in terms of the network performance measures such as throughput and delay. PMID:26237221
Knapsack--TOPSIS Technique for Vertical Handover in Heterogeneous Wireless Network.
Malathy, E M; Muthuswamy, Vijayalakshmi
2015-01-01
In a heterogeneous wireless network, handover techniques are designed to facilitate anywhere/anytime service continuity for mobile users. Consistent best-possible access to a network with widely varying network characteristics requires seamless mobility management techniques. Hence, the vertical handover process imposes important technical challenges. Handover decisions are triggered for continuous connectivity of mobile terminals. However, bad network selection and overload conditions in the chosen network can cause fallout in the form of handover failure. In order to maintain the required Quality of Service during the handover process, decision algorithms should incorporate intelligent techniques. In this paper, a new and efficient vertical handover mechanism is implemented using a dynamic programming method from the operation research discipline. This dynamic programming approach, which is integrated with the Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) method, provides the mobile user with the best handover decisions. Moreover, in this proposed handover algorithm a deterministic approach which divides the network into zones is incorporated into the network server in order to derive an optimal solution. The study revealed that this method is found to achieve better performance and QoS support to users and greatly reduce the handover failures when compared to the traditional TOPSIS method. The decision arrived at the zone gateway using this operational research analytical method (known as the dynamic programming knapsack approach together with Technique to Order Preference by Similarity to Ideal Solution) yields remarkably better results in terms of the network performance measures such as throughput and delay.
A Data Fusion Method in Wireless Sensor Networks
Izadi, Davood; Abawajy, Jemal H.; Ghanavati, Sara; Herawan, Tutut
2015-01-01
The success of a Wireless Sensor Network (WSN) deployment strongly depends on the quality of service (QoS) it provides regarding issues such as data accuracy, data aggregation delays and network lifetime maximisation. This is especially challenging in data fusion mechanisms, where a small fraction of low quality data in the fusion input may negatively impact the overall fusion result. In this paper, we present a fuzzy-based data fusion approach for WSN with the aim of increasing the QoS whilst reducing the energy consumption of the sensor network. The proposed approach is able to distinguish and aggregate only true values of the collected data as such, thus reducing the burden of processing the entire data at the base station (BS). It is also able to eliminate redundant data and consequently reduce energy consumption thus increasing the network lifetime. We studied the effectiveness of the proposed data fusion approach experimentally and compared it with two baseline approaches in terms of data collection, number of transferred data packets and energy consumption. The results of the experiments show that the proposed approach achieves better results than the baseline approaches. PMID:25635417
Hazard interactions and interaction networks (cascades) within multi-hazard methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel C.; Malamud, Bruce D.
2016-08-01
This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
A Graph Oriented Approach for Network Forensic Analysis
ERIC Educational Resources Information Center
Wang, Wei
2010-01-01
Network forensic analysis is a process that analyzes intrusion evidence captured from networked environment to identify suspicious entities and stepwise actions in an attack scenario. Unfortunately, the overwhelming amount and low quality of output from security sensors make it difficult for analysts to obtain a succinct high-level view of complex…
Learning as Issue Framing in Agricultural Innovation Networks
ERIC Educational Resources Information Center
Tisenkopfs, Talis; Kunda, Ilona; Šumane, Sandra
2014-01-01
Purpose: Networks are increasingly viewed as entities of learning and innovation in agriculture. In this article we explore learning as issue framing in two agricultural innovation networks. Design/methodology/approach: We combine frame analysis and social learning theories to analyse the processes and factors contributing to frame convergence and…
DOT National Transportation Integrated Search
2017-01-01
As our highway infrastructure continues to age, there is the imperative need to renew the entire network while keeping it operational. Moreover, many highway corridors and regional networks are becoming ever more congested. As a result there is an in...
Social Networking on the Semantic Web
ERIC Educational Resources Information Center
Finin, Tim; Ding, Li; Zhou, Lina; Joshi, Anupam
2005-01-01
Purpose: Aims to investigate the way that the semantic web is being used to represent and process social network information. Design/methodology/approach: The Swoogle semantic web search engine was used to construct several large data sets of Resource Description Framework (RDF) documents with social network information that were encoded using the…
Wigman, J T W; van Os, J; Borsboom, D; Wardenaar, K J; Epskamp, S; Klippel, A; Viechtbauer, W; Myin-Germeys, I; Wichers, M
2015-08-01
It has been suggested that the structure of psychopathology is best described as a complex network of components that interact in dynamic ways. The goal of the present paper was to examine the concept of psychopathology from a network perspective, combining complementary top-down and bottom-up approaches using momentary assessment techniques. A pooled Experience Sampling Method (ESM) dataset of three groups (individuals with a diagnosis of depression, psychotic disorder or no diagnosis) was used (pooled N = 599). The top-down approach explored the network structure of mental states across different diagnostic categories. For this purpose, networks of five momentary mental states ('cheerful', 'content', 'down', 'insecure' and 'suspicious') were compared between the three groups. The complementary bottom-up approach used principal component analysis to explore whether empirically derived network structures yield meaningful higher order clusters. Individuals with a clinical diagnosis had more strongly connected moment-to-moment network structures, especially the depressed group. This group also showed more interconnections specifically between positive and negative mental states than the psychotic group. In the bottom-up approach, all possible connections between mental states were clustered into seven main components that together captured the main characteristics of the network dynamics. Our combination of (i) comparing network structure of mental states across three diagnostically different groups and (ii) searching for trans-diagnostic network components across all pooled individuals showed that these two approaches yield different, complementary perspectives in the field of psychopathology. The network paradigm therefore may be useful to map transdiagnostic processes.
The effect of inclusion of inlets in dual drainage modelling
NASA Astrophysics Data System (ADS)
Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.; Djordjević, Slobodan
2018-04-01
In coupled sewer and surface flood modelling approaches, the flow process in gullies is often ignored although the overland flow is drained to sewer network via inlets and gullies. Therefore, the flow entering inlets is transferred to the sewer network immediately, which may lead to a different flood estimation than the reality. In this paper, we compared two modelling approach with and without considering the flow processes in gullies in the coupled sewer and surface modelling. Three historical flood events were adopted for model calibration and validation. The results showed that the inclusion of flow process in gullies can further improve the accuracy of urban flood modelling.
Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks
NASA Astrophysics Data System (ADS)
Granell, Clara; Gómez, Sergio; Arenas, Alex
2013-09-01
We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.
Dynamical interplay between awareness and epidemic spreading in multiplex networks.
Granell, Clara; Gómez, Sergio; Arenas, Alex
2013-09-20
We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.
A systems biology approach to study systemic inflammation.
Chen, Bor-Sen; Wu, Chia-Chou
2014-01-01
Systemic inflammation needs a precise control on the sequence and magnitude of occurring events. The high throughput data on the host-pathogen interactions gives us an opportunity to have a glimpse on the systemic inflammation. In this article, a dynamic Candida albicans-zebrafish interactive infectious network is built as an example to demonstrate how systems biology approach can be used to study systematic inflammation. In particular, based on microarray data of C. albicans and zebrafish during infection, the hyphal growth, zebrafish, and host-pathogen intercellular PPI networks were combined to form an integrated infectious PPI network that helps us understand the systematic mechanisms underlying the pathogenicity of C. albicans and the immune response of the host. The signaling pathways for morphogenesis and hyphal growth of C. albicans were 2 significant interactions found in the intercellular PPI network. Two cellular networks were also developed corresponding to the different infection stages (adhesion and invasion), and then compared with each other to identify proteins to gain more insight into the pathogenic role of hyphal development in the C. albicans infection process. Important defense-related proteins in zebrafish were predicted using the same approach. This integrated network consisting of intercellular invasion and cellular defense processes during infection can improve medical therapies and facilitate development of new antifungal drugs.
Neighborhoods and Adolescent Health-Risk Behavior: An Ecological Network Approach1
Browning, Christopher R.; Soller, Brian; Jackson, Aubrey L.
2014-01-01
This study integrates insights from social network analysis, activity space perspectives, and theories of urban and spatial processes to present an innovative approach to neighborhood effects on health-risk behavior among youth. We suggest spatial patterns of neighborhood residents’ non-home routine activities may be conceptualized as ecological, or “eco”-networks, which are two-mode networks that indirectly link residents through socio-spatial overlap in routine activities. We further argue structural configurations of eco-networks are consequential for youth’s behavioral health. In this study we focus on a key structural feature of eco-networks—the neighborhood-level extent to which households share two or more activity locations, or eco-network reinforcement—and its association with two dimensions of health-risk behavior, substance use and delinquency/sexual activity. Using geographic data on non-home routine activity locations among respondents from the Los Angeles Family and Neighborhood Survey (L.A.FANS), we constructed neighborhood-specific eco-networks by connecting sampled households to “activity clusters,” which are sets of spatially-proximate activity locations. We then measured eco-network reinforcement and examined its association with adolescent dimensions of health risk behavior employing a sample of 830 youth ages 12-17 nested in 65 census tracts. We also examined whether neighborhood-level social processes (collective efficacy and intergenerational closure) mediate the association between eco-network reinforcement and the outcomes considered. Results indicated eco-network reinforcement exhibits robust negative associations with both substance use and delinquency/sexual activity scales. Eco-network reinforcement effects were not explained by potential mediating variables. In addition to introducing a novel theoretical and empirical approach to neighborhood effects on youth, our findings highlight the importance of eco-network reinforcement for adolescent behavioral health. PMID:25011958
ERIC Educational Resources Information Center
Ford, David L., Jr.
When one engages in organizational diagnosis, it has been suggested that greater understanding of the organization can come through: (1) an identification of all the channels conveying material and information, and (2) a description of the means by which this communication influences the behavior of the organization. A networks/system approach is…
Atanassova, Vassia; Sotirova, Evdokia; Doukovska, Lyubka; Bureva, Veselina; Mavrov, Deyan; Tomov, Jivko
2017-01-01
The approach of InterCriteria Analysis (ICA) was applied for the aim of reducing the set of variables on the input of a neural network, taking into account the fact that their large number increases the number of neurons in the network, thus making them unusable for hardware implementation. Here, for the first time, with the help of the ICA method, correlations between triples of the input parameters for training of the neural networks were obtained. In this case, we use the approach of ICA for data preprocessing, which may yield reduction of the total time for training the neural networks, hence, the time for the network's processing of data and images. PMID:28874908
Xu, W; LeBeau, J M
2018-05-01
We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the need for pretreating the data. With the aligned data, additional networks then measure the sample thickness and tilt. The performance of the network is explored as a function of a variety of variables including thickness, tilt, and dose. A methodology to explore the response of the neural network to various pattern features is also presented. Processing patterns at a rate of ∼ 0.1 s/pattern, the network is shown to be orders of magnitude faster than a brute force method while maintaining accuracy. The approach is thus suitable for automatically processing big, 4D STEM data. We also discuss the generality of the method to other materials/orientations as well as a hybrid approach that combines the features of the neural network with least squares fitting for even more robust analysis. The source code is available at https://github.com/subangstrom/DeepDiffraction. Copyright © 2018 Elsevier B.V. All rights reserved.
Stoyanova, Raliza S.; Baron-Cohen, Simon; Calder, Andrew J.
2013-01-01
Individuals with Autism Spectrum Conditions (ASC) have difficulties in social interaction and communication, which is reflected in hypoactivation of brain regions engaged in social processing, such as medial prefrontal cortex (mPFC), amygdala and insula. Resting state studies in ASC have identified reduced connectivity of the default mode network (DMN), which includes mPFC, suggesting that other resting state networks incorporating ‘social’ brain regions may also be abnormal. Using Seed-based Connectivity and Group Independent Component Analysis (ICA) approaches, we looked at resting functional connectivity in ASC between specific ‘social’ brain regions, as well as within and between whole networks incorporating these regions. We found reduced functional connectivity within the DMN in individuals with ASC, using both ICA and seed-based approaches. Two further networks identified by ICA, the salience network, incorporating the insula and a medial temporal lobe network, incorporating the amygdala, showed reduced inter-network connectivity. This was underlined by reduced seed-based connectivity between the insula and amygdala. The results demonstrate significantly reduced functional connectivity within and between resting state networks incorporating ‘social’ brain regions. This reduced connectivity may result in difficulties in communication and integration of information across these networks, which could contribute to the impaired processing of social signals in ASC. PMID:22563003
A biologically inspired neural network for dynamic programming.
Francelin Romero, R A; Kacpryzk, J; Gomide, F
2001-12-01
An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems.
Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel; Malamud, Bruce D.
2016-04-01
Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
Rosenthal, Gideon; Váša, František; Griffa, Alessandra; Hagmann, Patric; Amico, Enrico; Goñi, Joaquín; Avidan, Galia; Sporns, Olaf
2018-06-05
Connectomics generates comprehensive maps of brain networks, represented as nodes and their pairwise connections. The functional roles of nodes are defined by their direct and indirect connectivity with the rest of the network. However, the network context is not directly accessible at the level of individual nodes. Similar problems in language processing have been addressed with algorithms such as word2vec that create embeddings of words and their relations in a meaningful low-dimensional vector space. Here we apply this approach to create embedded vector representations of brain networks or connectome embeddings (CE). CE can characterize correspondence relations among brain regions, and can be used to infer links that are lacking from the original structural diffusion imaging, e.g., inter-hemispheric homotopic connections. Moreover, we construct predictive deep models of functional and structural connectivity, and simulate network-wide lesion effects using the face processing system as our application domain. We suggest that CE offers a novel approach to revealing relations between connectome structure and function.
Bassett, Danielle S; Sporns, Olaf
2017-01-01
Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system. PMID:28230844
Process Writing and the Internet: Blogs and Ning Networks in the Classroom
ERIC Educational Resources Information Center
Boas, Isabela Villas
2011-01-01
In contrast to the product approach to writing, which is based on studying and replicating textual models, the process approach involves multiple and repeated steps that compel the writer to closely consider the topic, language, purpose for writing, and social reality of an audience. In addition to discussing the benefits of the process approach…
A holistic framework for design of cost-effective minimum water utilization network.
Wan Alwi, S R; Manan, Z A; Samingin, M H; Misran, N
2008-07-01
Water pinch analysis (WPA) is a well-established tool for the design of a maximum water recovery (MWR) network. MWR, which is primarily concerned with water recovery and regeneration, only partly addresses water minimization problem. Strictly speaking, WPA can only lead to maximum water recovery targets as opposed to the minimum water targets as widely claimed by researchers over the years. The minimum water targets can be achieved when all water minimization options including elimination, reduction, reuse/recycling, outsourcing and regeneration have been holistically applied. Even though WPA has been well established for synthesis of MWR network, research towards holistic water minimization has lagged behind. This paper describes a new holistic framework for designing a cost-effective minimum water network (CEMWN) for industry and urban systems. The framework consists of five key steps, i.e. (1) Specify the limiting water data, (2) Determine MWR targets, (3) Screen process changes using water management hierarchy (WMH), (4) Apply Systematic Hierarchical Approach for Resilient Process Screening (SHARPS) strategy, and (5) Design water network. Three key contributions have emerged from this work. First is a hierarchical approach for systematic screening of process changes guided by the WMH. Second is a set of four new heuristics for implementing process changes that considers the interactions among process changes options as well as among equipment and the implications of applying each process change on utility targets. Third is the SHARPS cost-screening technique to customize process changes and ultimately generate a minimum water utilization network that is cost-effective and affordable. The CEMWN holistic framework has been successfully implemented on semiconductor and mosque case studies and yielded results within the designer payback period criterion.
Communal Cooperation in Sensor Networks for Situation Management
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin,Chunsheng
2006-01-01
Situation management is a rapidly evolving science where managed sources are processed as realtime streams of events and fused in a way that maximizes comprehension, thus enabling better decisions for action. Sensor networks provide a new technology that promises ubiquitous input and action throughout an environment, which can substantially improve information available to the process. Here we describe a NASA program that requires improvements in sensor networks and situation management. We present an approach for massively deployed sensor networks that does not rely on centralized control but is founded in lessons learned from the way biological ecosystems are organized. In this approach, fully distributed data aggregation and integration can be performed in a scalable fashion where individual motes operate based on local information, making local decisions that achieve globally-meaningful results. This exemplifies the robust, fault-tolerant infrastructure required for successful situation management systems.
How to assess extreme weather impacts - case European transport network
NASA Astrophysics Data System (ADS)
Leviäkangas, P.
2010-09-01
To assess the impacts of climate change and preparing for impacts is a process. This process we must understand and learn to apply. EWENT (Extreme Weather impacts on European Networks of Transport) will be a test bench for one prospective approach. It has the following main components: 1) identifying what is "extreme", 2) assessing the change in the probabilities, 3) constructing the causal impact models, 4) finding appropriate methods of pricing and costing, 5) finding alternative strategy option, 6) assessing the efficiency of strategy option. This process follows actually the steps of standardized risk management process. Each step is challenging, but if EWENT project succeeds to assess the extreme weather impacts on European transport networks, it is one possible benchmark how to carry out similar analyses in other regions and on country level. EWENT approach could particularly useful for weather and climate information service providers, offering tools for transport authorities and financiers to assess weather risks, and then rationally managing the risks. EWENT project is financed by the European Commission and participated by met-service organisations and transport research institutes from different parts of Europe. The presentation will explain EWENT approach in detail and bring forth the findings of the first work packages.
Environmental Education and Networking in Mafeteng Primary Schools: A Participatory Approach
ERIC Educational Resources Information Center
Bitso, Constance
2006-01-01
This paper explores a participatory process of Environmental Education (EE) networking in Mafeteng primary schools. It gives an overview of the existing EE efforts in Lesotho, particularly the models schools of the National Curriculum Development Centre. It also provides information about Lesotho Environmental Information Network as the body that…
Distributed Sensing and Processing: A Graphical Model Approach
2005-11-30
that Ramanujan graph toplogies maximize the convergence rate of distributed detection consensus algorithms, improving over three orders of...small world type network designs. 14. SUBJECT TERMS Ramanujan graphs, sensor network topology, sensor network...that Ramanujan graphs, for which there are explicit algebraic constructions, have large eigenratios, converging much faster than structured graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Christopher S.; Bernstein, Hans C.; Weisenhorn, Pamela
Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community-level data as a critical input for the networkmore » reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph-heterotroph consortium that was used to provide data needed for a community-level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources.« less
Combined Simulated Annealing and Genetic Algorithm Approach to Bus Network Design
NASA Astrophysics Data System (ADS)
Liu, Li; Olszewski, Piotr; Goh, Pong-Chai
A new method - combined simulated annealing (SA) and genetic algorithm (GA) approach is proposed to solve the problem of bus route design and frequency setting for a given road network with fixed bus stop locations and fixed travel demand. The method involves two steps: a set of candidate routes is generated first and then the best subset of these routes is selected by the combined SA and GA procedure. SA is the main process to search for a better solution to minimize the total system cost, comprising user and operator costs. GA is used as a sub-process to generate new solutions. Bus demand assignment on two alternative paths is performed at the solution evaluation stage. The method was implemented on four theoretical grid networks of different size and a benchmark network. Several GA operators (crossover and mutation) were utilized and tested for their effectiveness. The results show that the proposed method can efficiently converge to the optimal solution on a small network but computation time increases significantly with network size. The method can also be used for other transport operation management problems.
Fundamental Principles of Network Formation among Preschool Children1
Schaefer, David R.; Light, John M.; Fabes, Richard A.; Hanish, Laura D.; Martin, Carol Lynn
2009-01-01
The goal of this research was to investigate the origins of social networks by examining the formation of children’s peer relationships in 11 preschool classes throughout the school year. We investigated whether several fundamental processes of relationship formation were evident at this age, including reciprocity, popularity, and triadic closure effects. We expected these mechanisms to change in importance over time as the network crystallizes, allowing more complex structures to evolve from simpler ones in a process we refer to as structural cascading. We analyzed intensive longitudinal observational data of children’s interactions using the SIENA actor-based model. We found evidence that reciprocity, popularity, and triadic closure all shaped the formation of preschool children’s networks. The influence of reciprocity remained consistent, whereas popularity and triadic closure became increasingly important over the course of the school year. Interactions between age and endogenous network effects were nonsignificant, suggesting that these network formation processes were not moderated by age in this sample of young children. We discuss the implications of our longitudinal network approach and findings for the study of early network developmental processes. PMID:20161606
The Role of Graphlets in Viral Processes on Networks
NASA Astrophysics Data System (ADS)
Khorshidi, Samira; Al Hasan, Mohammad; Mohler, George; Short, Martin B.
2018-05-01
Predicting the evolution of viral processes on networks is an important problem with applications arising in biology, the social sciences, and the study of the Internet. In existing works, mean-field analysis based upon degree distribution is used for the prediction of viral spreading across networks of different types. However, it has been shown that degree distribution alone fails to predict the behavior of viruses on some real-world networks and recent attempts have been made to use assortativity to address this shortcoming. In this paper, we show that adding assortativity does not fully explain the variance in the spread of viruses for a number of real-world networks. We propose using the graphlet frequency distribution in combination with assortativity to explain variations in the evolution of viral processes across networks with identical degree distribution. Using a data-driven approach by coupling predictive modeling with viral process simulation on real-world networks, we show that simple regression models based on graphlet frequency distribution can explain over 95% of the variance in virality on networks with the same degree distribution but different network topologies. Our results not only highlight the importance of graphlets but also identify a small collection of graphlets which may have the highest influence over the viral processes on a network.
Stochastic Simulation of Biomolecular Networks in Dynamic Environments
Voliotis, Margaritis; Thomas, Philipp; Grima, Ramon; Bowsher, Clive G.
2016-01-01
Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate—using decision-making by a large population of quorum sensing bacteria—that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits. PMID:27248512
On Deep Learning for Trust-Aware Recommendations in Social Networks.
Deng, Shuiguang; Huang, Longtao; Xu, Guandong; Wu, Xindong; Wu, Zhaohui
2017-05-01
With the emergence of online social networks, the social network-based recommendation approach is popularly used. The major benefit of this approach is the ability of dealing with the problems with cold-start users. In addition to social networks, user trust information also plays an important role to obtain reliable recommendations. Although matrix factorization (MF) becomes dominant in recommender systems, the recommendation largely relies on the initialization of the user and item latent feature vectors. Aiming at addressing these challenges, we develop a novel trust-based approach for recommendation in social networks. In particular, we attempt to leverage deep learning to determinate the initialization in MF for trust-aware social recommendations and to differentiate the community effect in user's trusted friendships. A two-phase recommendation process is proposed to utilize deep learning in initialization and to synthesize the users' interests and their trusted friends' interests together with the impact of community effect for recommendations. We perform extensive experiments on real-world social network data to demonstrate the accuracy and effectiveness of our proposed approach in comparison with other state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Abdi, Abdi M.; Szu, Harold H.
2003-04-01
With the growing rate of interconnection among computer systems, network security is becoming a real challenge. Intrusion Detection System (IDS) is designed to protect the availability, confidentiality and integrity of critical network information systems. Today"s approach to network intrusion detection involves the use of rule-based expert systems to identify an indication of known attack or anomalies. However, these techniques are less successful in identifying today"s attacks. Hackers are perpetually inventing new and previously unanticipated techniques to compromise information infrastructure. This paper proposes a dynamic way of detecting network intruders on time serious data. The proposed approach consists of a two-step process. Firstly, obtaining an efficient multi-user detection method, employing the recently introduced complexity minimization approach as a generalization of a standard ICA. Secondly, we identified unsupervised learning neural network architecture based on Kohonen"s Self-Organizing Map for potential functional clustering. These two steps working together adaptively will provide a pseudo-real time novelty detection attribute to supplement the current intrusion detection statistical methodology.
Evolving Scale-Free Networks by Poisson Process: Modeling and Degree Distribution.
Feng, Minyu; Qu, Hong; Yi, Zhang; Xie, Xiurui; Kurths, Jurgen
2016-05-01
Since the great mathematician Leonhard Euler initiated the study of graph theory, the network has been one of the most significant research subject in multidisciplinary. In recent years, the proposition of the small-world and scale-free properties of complex networks in statistical physics made the network science intriguing again for many researchers. One of the challenges of the network science is to propose rational models for complex networks. In this paper, in order to reveal the influence of the vertex generating mechanism of complex networks, we propose three novel models based on the homogeneous Poisson, nonhomogeneous Poisson and birth death process, respectively, which can be regarded as typical scale-free networks and utilized to simulate practical networks. The degree distribution and exponent are analyzed and explained in mathematics by different approaches. In the simulation, we display the modeling process, the degree distribution of empirical data by statistical methods, and reliability of proposed networks, results show our models follow the features of typical complex networks. Finally, some future challenges for complex systems are discussed.
Resting state neural networks for visual Chinese word processing in Chinese adults and children.
Li, Ling; Liu, Jiangang; Chen, Feiyan; Feng, Lu; Li, Hong; Tian, Jie; Lee, Kang
2013-07-01
This study examined the resting state neural networks for visual Chinese word processing in Chinese children and adults. Both the functional connectivity (FC) and amplitude of low frequency fluctuation (ALFF) approaches were used to analyze the fMRI data collected when Chinese participants were not engaged in any specific explicit tasks. We correlated time series extracted from the visual word form area (VWFA) with those in other regions in the brain. We also performed ALFF analysis in the resting state FC networks. The FC results revealed that, regarding the functionally connected brain regions, there exist similar intrinsically organized resting state networks for visual Chinese word processing in adults and children, suggesting that such networks may already be functional after 3-4 years of informal exposure to reading plus 3-4 years formal schooling. The ALFF results revealed that children appear to recruit more neural resources than adults in generally reading-irrelevant brain regions. Differences between child and adult ALFF results suggest that children's intrinsic word processing network during the resting state, though similar in functional connectivity, is still undergoing development. Further exposure to visual words and experience with reading are needed for children to develop a mature intrinsic network for word processing. The developmental course of the intrinsically organized word processing network may parallel that of the explicit word processing network. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.
2010-07-01
In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS
Almquist, Zack W.; Butts, Carter T.
2015-01-01
Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.
Almquist, Zack W; Butts, Carter T
2014-08-01
Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach.
A review of active learning approaches to experimental design for uncovering biological networks
2017-01-01
Various types of biological knowledge describe networks of interactions among elementary entities. For example, transcriptional regulatory networks consist of interactions among proteins and genes. Current knowledge about the exact structure of such networks is highly incomplete, and laboratory experiments that manipulate the entities involved are conducted to test hypotheses about these networks. In recent years, various automated approaches to experiment selection have been proposed. Many of these approaches can be characterized as active machine learning algorithms. Active learning is an iterative process in which a model is learned from data, hypotheses are generated from the model to propose informative experiments, and the experiments yield new data that is used to update the model. This review describes the various models, experiment selection strategies, validation techniques, and successful applications described in the literature; highlights common themes and notable distinctions among methods; and identifies likely directions of future research and open problems in the area. PMID:28570593
ERIC Educational Resources Information Center
Vögtle, Eva Maria; Windzio, Michael
2016-01-01
In this paper, we investigate the impact of membership in the Bologna Process on patterns and driving forces of cross-national student mobility. Student exchange flows are analyzed for almost all Bologna Process member states and non-Bologna OECD members over a ten-year period (from 2000 to 2010). We apply a social network approach focusing on…
Quantum stochastic walks on networks for decision-making.
Martínez-Martínez, Ismael; Sánchez-Burillo, Eduardo
2016-03-31
Recent experiments report violations of the classical law of total probability and incompatibility of certain mental representations when humans process and react to information. Evidence shows promise of a more general quantum theory providing a better explanation of the dynamics and structure of real decision-making processes than classical probability theory. Inspired by this, we show how the behavioral choice-probabilities can arise as the unique stationary distribution of quantum stochastic walkers on the classical network defined from Luce's response probabilities. This work is relevant because (i) we provide a very general framework integrating the positive characteristics of both quantum and classical approaches previously in confrontation, and (ii) we define a cognitive network which can be used to bring other connectivist approaches to decision-making into the quantum stochastic realm. We model the decision-maker as an open system in contact with her surrounding environment, and the time-length of the decision-making process reveals to be also a measure of the process' degree of interplay between the unitary and irreversible dynamics. Implementing quantum coherence on classical networks may be a door to better integrate human-like reasoning biases in stochastic models for decision-making.
Adverse outcome pathway networks II: Network analytics
The US EPA is developing more cost effective and efficient ways to evaluate chemical safety using high throughput and computationally based testing strategies. An important component of this approach is the ability to translate chemical effects on fundamental biological processes...
Nekhay, Olexandr; Arriaza, Manuel; Boerboom, Luc
2009-07-01
The study presents an approach that combined objective information such as sampling or experimental data with subjective information such as expert opinions. This combined approach was based on the Analytic Network Process method. It was applied to evaluate soil erosion risk and overcomes one of the drawbacks of USLE/RUSLE soil erosion models, namely that they do not consider interactions among soil erosion factors. Another advantage of this method is that it can be used if there are insufficient experimental data. The lack of experimental data can be compensated for through the use of expert evaluations. As an example of the proposed approach, the risk of soil erosion was evaluated in olive groves in Southern Spain, showing the potential of the ANP method for modelling a complex physical process like soil erosion.
Dynamics of functional failures and recovery in complex road networks
NASA Astrophysics Data System (ADS)
Zhan, Xianyuan; Ukkusuri, Satish V.; Rao, P. Suresh C.
2017-11-01
We propose a new framework for modeling the evolution of functional failures and recoveries in complex networks, with traffic congestion on road networks as the case study. Differently from conventional approaches, we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting and coalescing embedded within the original network structure. The proposed model successfully explains traffic congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical analysis shows that certain network structural attributes can amplify or suppress cascading functional failures. Our approach represents a new general framework to model functional failures and recoveries in flow-based networks and allows understanding of the interplay between structure and function for flow-induced failure propagation and recovery.
A transversal approach to predict gene product networks from ontology-based similarity
Chabalier, Julie; Mosser, Jean; Burgun, Anita
2007-01-01
Background Interpretation of transcriptomic data is usually made through a "standard" approach which consists in clustering the genes according to their expression patterns and exploiting Gene Ontology (GO) annotations within each expression cluster. This approach makes it difficult to underline functional relationships between gene products that belong to different expression clusters. To address this issue, we propose a transversal analysis that aims to predict functional networks based on a combination of GO processes and data expression. Results The transversal approach presented in this paper consists in computing the semantic similarity between gene products in a Vector Space Model. Through a weighting scheme over the annotations, we take into account the representativity of the terms that annotate a gene product. Comparing annotation vectors results in a matrix of gene product similarities. Combined with expression data, the matrix is displayed as a set of functional gene networks. The transversal approach was applied to 186 genes related to the enterocyte differentiation stages. This approach resulted in 18 functional networks proved to be biologically relevant. These results were compared with those obtained through a standard approach and with an approach based on information content similarity. Conclusion Complementary to the standard approach, the transversal approach offers new insight into the cellular mechanisms and reveals new research hypotheses by combining gene product networks based on semantic similarity, and data expression. PMID:17605807
Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.
Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora
2018-07-01
Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fine-tuning gene networks using simple sequence repeats
Egbert, Robert G.; Klavins, Eric
2012-01-01
The parameters in a complex synthetic gene network must be extensively tuned before the network functions as designed. Here, we introduce a simple and general approach to rapidly tune gene networks in Escherichia coli using hypermutable simple sequence repeats embedded in the spacer region of the ribosome binding site. By varying repeat length, we generated expression libraries that incrementally and predictably sample gene expression levels over a 1,000-fold range. We demonstrate the utility of the approach by creating a bistable switch library that programmatically samples the expression space to balance the two states of the switch, and we illustrate the need for tuning by showing that the switch’s behavior is sensitive to host context. Further, we show that mutation rates of the repeats are controllable in vivo for stability or for targeted mutagenesis—suggesting a new approach to optimizing gene networks via directed evolution. This tuning methodology should accelerate the process of engineering functionally complex gene networks. PMID:22927382
Next generation of network medicine: interdisciplinary signaling approaches.
Korcsmaros, Tamas; Schneider, Maria Victoria; Superti-Furga, Giulio
2017-02-20
In the last decade, network approaches have transformed our understanding of biological systems. Network analyses and visualizations have allowed us to identify essential molecules and modules in biological systems, and improved our understanding of how changes in cellular processes can lead to complex diseases, such as cancer, infectious and neurodegenerative diseases. "Network medicine" involves unbiased large-scale network-based analyses of diverse data describing interactions between genes, diseases, phenotypes, drug targets, drug transport, drug side-effects, disease trajectories and more. In terms of drug discovery, network medicine exploits our understanding of the network connectivity and signaling system dynamics to help identify optimal, often novel, drug targets. Contrary to initial expectations, however, network approaches have not yet delivered a revolution in molecular medicine. In this review, we propose that a key reason for the limited impact, so far, of network medicine is a lack of quantitative multi-disciplinary studies involving scientists from different backgrounds. To support this argument, we present existing approaches from structural biology, 'omics' technologies (e.g., genomics, proteomics, lipidomics) and computational modeling that point towards how multi-disciplinary efforts allow for important new insights. We also highlight some breakthrough studies as examples of the potential of these approaches, and suggest ways to make greater use of the power of interdisciplinarity. This review reflects discussions held at an interdisciplinary signaling workshop which facilitated knowledge exchange from experts from several different fields, including in silico modelers, computational biologists, biochemists, geneticists, molecular and cell biologists as well as cancer biologists and pharmacologists.
A Scalable Approach for Discovering Conserved Active Subnetworks across Species
Verfaillie, Catherine M.; Hu, Wei-Shou; Myers, Chad L.
2010-01-01
Overlaying differential changes in gene expression on protein interaction networks has proven to be a useful approach to interpreting the cell's dynamic response to a changing environment. Despite successes in finding active subnetworks in the context of a single species, the idea of overlaying lists of differentially expressed genes on networks has not yet been extended to support the analysis of multiple species' interaction networks. To address this problem, we designed a scalable, cross-species network search algorithm, neXus (Network - cross(X)-species - Search), that discovers conserved, active subnetworks based on parallel differential expression studies in multiple species. Our approach leverages functional linkage networks, which provide more comprehensive coverage of functional relationships than physical interaction networks by combining heterogeneous types of genomic data. We applied our cross-species approach to identify conserved modules that are differentially active in stem cells relative to differentiated cells based on parallel gene expression studies and functional linkage networks from mouse and human. We find hundreds of conserved active subnetworks enriched for stem cell-associated functions such as cell cycle, DNA repair, and chromatin modification processes. Using a variation of this approach, we also find a number of species-specific networks, which likely reflect mechanisms of stem cell function that have diverged between mouse and human. We assess the statistical significance of the subnetworks by comparing them with subnetworks discovered on random permutations of the differential expression data. We also describe several case examples that illustrate the utility of comparative analysis of active subnetworks. PMID:21170309
Ji, Xiaonan; Yen, Po-Yin
2015-08-31
Systematic reviews and their implementation in practice provide high quality evidence for clinical practice but are both time and labor intensive due to the large number of articles. Automatic text classification has proven to be instrumental in identifying relevant articles for systematic reviews. Existing approaches use machine learning model training to generate classification algorithms for the article screening process but have limitations. We applied a network approach to assist in the article screening process for systematic reviews using predetermined article relationships (similarity). The article similarity metric is calculated using the MEDLINE elements title (TI), abstract (AB), medical subject heading (MH), author (AU), and publication type (PT). We used an article network to illustrate the concept of article relationships. Using the concept, each article can be modeled as a node in the network and the relationship between 2 articles is modeled as an edge connecting them. The purpose of our study was to use the article relationship to facilitate an interactive article recommendation process. We used 15 completed systematic reviews produced by the Drug Effectiveness Review Project and demonstrated the use of article networks to assist article recommendation. We evaluated the predictive performance of MEDLINE elements and compared our approach with existing machine learning model training approaches. The performance was measured by work saved over sampling at 95% recall (WSS95) and the F-measure (F1). We also used repeated analysis over variance and Hommel's multiple comparison adjustment to demonstrate statistical evidence. We found that although there is no significant difference across elements (except AU), TI and AB have better predictive capability in general. Collaborative elements bring performance improvement in both F1 and WSS95. With our approach, a simple combination of TI+AB+PT could achieve a WSS95 performance of 37%, which is competitive to traditional machine learning model training approaches (23%-41% WSS95). We demonstrated a new approach to assist in labor intensive systematic reviews. Predictive ability of different elements (both single and composited) was explored. Without using model training approaches, we established a generalizable method that can achieve a competitive performance.
Effect of chain rigidity on network architecture and deformation behavior of glassy polymer networks
NASA Astrophysics Data System (ADS)
Knowles, Kyler Reser
Processing carbon fiber composite laminates creates molecular-level strains in the thermoset matrix upon curing and cooling which can lead to failures such as geometry deformations, micro-cracking, and other issues. It is known strain creation is attributed to the significant volume and physical state changes undergone by the polymer matrix throughout the curing process, though storage and relaxation of cure-induced strains remain poorly understood. This dissertation establishes two approaches to address the issue. The first establishes testing methods to simultaneously measure key volumetric properties of a carbon fiber composite laminate and its polymer matrix. The second approach considers the rigidity of the polymer matrix in regards to strain storage and relaxation mechanisms which ultimately control composite performance throughout manufacturing and use. Through the use of a non-contact, full-field strain measurement technique known as digital image correlation (DIC), we describe and implement useful experiments which quantify matrix and composite parameters necessary for simulation efforts and failure models. The methods are compared to more traditional techniques and show excellent correlation. Further, we established relationships which represent matrix-fiber compatibility in regards to critical processing constraints. The second approach involves a systematic study of epoxy-amine networks which are chemically-similar but differ in chain segment rigidity. Prior research has investigated the isomer effect of glassy polymers, showing sizeable differences in thermal, volumetric, physical, and mechanical properties. This work builds on these themes and shows the apparent isomer effect is rather an effect of chain rigidity. Indeed, it was found that structurally-dissimilar polymer networks exhibit very similar properties as a consequence of their shared average network rigidity. Differences in chain packing, as a consequence of chain rigidity, were shown to alter the physical, volumetric, and mechanical properties of the glassy networks. Chain rigidity was found to directly control deformation mechanisms, which were related to the yielding behavior of the epoxy network series. The unique benefit to our approach is the ability to separate the role of rigidity - an intramolecular parameter - from intermolecular phenomena which otherwise influence network properties.
2009-01-01
Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426
2013-03-01
Wouter De Nooy, Andrej Mrvar and Vladimir Batagelj , Exploratory Social Network Analysis with Pajek, (New York: Cambridge University Press, 2005), 5...Granovetter, “The Strength of Weak Ties,” 1350–1368. 151 de Nooy, Mrvar , and Batagelj , Exploratory Social Network Analysis with Pajek, 151. 152...Spacetime Wrinkles Exhibit (1995). de Nooy, Wouter, Andrej Mrvar , and Vladimir Batagelj . Exploratory Social Network Analysis with Pajek. Cambridge
NASA Astrophysics Data System (ADS)
Aviles, Angelica I.; Alsaleh, Samar; Sobrevilla, Pilar; Casals, Alicia
2016-03-01
Robotic-Assisted Surgery approach overcomes the limitations of the traditional laparoscopic and open surgeries. However, one of its major limitations is the lack of force feedback. Since there is no direct interaction between the surgeon and the tissue, there is no way of knowing how much force the surgeon is applying which can result in irreversible injuries. The use of force sensors is not practical since they impose different constraints. Thus, we make use of a neuro-visual approach to estimate the applied forces, in which the 3D shape recovery together with the geometry of motion are used as input to a deep network based on LSTM-RNN architecture. When deep networks are used in real time, pre-processing of data is a key factor to reduce complexity and improve the network performance. A common pre-processing step is dimensionality reduction which attempts to eliminate redundant and insignificant information by selecting a subset of relevant features to use in model construction. In this work, we show the effects of dimensionality reduction in a real-time application: estimating the applied force in Robotic-Assisted Surgeries. According to the results, we demonstrated positive effects of doing dimensionality reduction on deep networks including: faster training, improved network performance, and overfitting prevention. We also show a significant accuracy improvement, ranging from about 33% to 86%, over existing approaches related to force estimation.
Dietscher, Christina
2017-02-01
Networks in health promotion (HP) have, after the launch of WHO's Ottawa Charter [(World Health Organization (WHO) (eds). (1986) Ottawa Charter on Health Promotion. Towards A New Public Health. World Health Organization, Geneva], become a widespread tool to disseminate HP especially in conjunction with the settings approach. Despite their allegedly high importance for HP practice and more than two decades of experiences with networking so far, a sound theoretical basis to support effective planning, formation, coordination and strategy development for networks in the settings approach of HP (HPSN) is still widely missing. Brößkamp-Stone's multi-facetted interorganizational network assessment framework (2004) provides a starting point but falls short of specifying the outcomes that can be reasonably expected from the specific network type of HPSN, and the specific processes/strategies and structures that are needed to achieve them. Based on outcome models in HP, on social, managerial and health science theories of networks, settings and organizations, a sociological systems theory approach and the capacity approach in HP, this article points out why existing approaches to studying networks are insufficient for HPSN, what can be understood by their functioning and effectiveness, what preconditions there are for HPSN effectiveness and how an HPSN functioning and effectiveness framework proposed on these grounds can be used for researching networks in practice, drawing on experiences from the ‘Project on an Internationally Comparative Evaluation Study of the International Network of Health Promoting Hospitals and Health Services’ (PRICES-HPH), which was coordinated by the WHO Collaborating Centre for Health Promotion in Hospitals and Health Services (Vienna WHO-CC) from 2008 to 2012.
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
Spencer, Matt; Eickholt, Jesse; Cheng, Jianlin
2014-01-01
Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80% and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test data set of 198 proteins, achieving a Q3 accuracy of 80.7% and a Sov accuracy of 74.2%. PMID:25750595
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.
Spencer, Matt; Eickholt, Jesse; Jianlin Cheng
2015-01-01
Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.
Advanced Secure Optical Image Processing for Communications
NASA Astrophysics Data System (ADS)
Al Falou, Ayman
2018-04-01
New image processing tools and data-processing network systems have considerably increased the volume of transmitted information such as 2D and 3D images with high resolution. Thus, more complex networks and long processing times become necessary, and high image quality and transmission speeds are requested for an increasing number of applications. To satisfy these two requests, several either numerical or optical solutions were offered separately. This book explores both alternatives and describes research works that are converging towards optical/numerical hybrid solutions for high volume signal and image processing and transmission. Without being limited to hybrid approaches, the latter are particularly investigated in this book in the purpose of combining the advantages of both techniques. Additionally, pure numerical or optical solutions are also considered since they emphasize the advantages of one of the two approaches separately.
Using network science in the language sciences and clinic.
Vitevitch, Michael S; Castro, Nichol
2015-02-01
A number of variables—word frequency, word length—have long been known to influence language processing. This study briefly reviews the effects in speech perception and production of two more recently examined variables: phonotactic probability and neighbourhood density. It then describes a new approach to study language, network science, which is an interdisciplinary field drawing from mathematics, computer science, physics and other disciplines. In this approach, nodes represent individual entities in a system (i.e. phonological word-forms in the lexicon), links between nodes represent relationships between nodes (i.e. phonological neighbours) and various measures enable researchers to assess the micro-level (i.e. the individual word), the macro-level (i.e. characteristics about the whole system) and the meso-level (i.e. how an individual fits into smaller sub-groups in the larger system). Although research on individual lexical characteristics such as word-frequency has increased understanding of language processing, these measures only assess the "micro-level". Using network science, researchers can examine words at various levels in the system and how each word relates to the many other words stored in the lexicon. Several new findings using the network science approach are summarized to illustrate how this approach can be used to advance basic research as well as clinical practice.
Using network science in the language sciences and clinic
Vitevitch, Michael S.; Castro, Nichol
2017-01-01
A number of variables—word frequency, word length—have long been known to influence language processing. We briefly review the effects in speech perception and production of two more recently examined variables: phonotactic probability and neighborhood density. We then describe a new approach to study language, network science, which is an interdisciplinary field drawing from mathematics, computer science, physics, and other disciplines. In this approach, nodes represent individual entities in a system (i.e., phonological word-forms in the lexicon), links between nodes represent relationships between nodes (i.e., phonological neighbors), and various measures enable researchers to assess the micro-level (i.e., the individual word), the macro-level (i.e., characteristics about the whole system), and the meso-level (i.e., how an individual fits into smaller sub-groups in the larger system). Although research on individual lexical characteristics such as word-frequency has increased our understanding of language processing, these measures only assess the “micro-level.” Using network science, researchers can examine words at various levels in the system, and how each word relates to the many other words stored in the lexicon. Several new findings using the network science approach are summarized to illustrate how this approach can be used to advance basic research as well as clinical practice. PMID:25539473
Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service.
Bao, Shunxing; Plassard, Andrew J; Landman, Bennett A; Gokhale, Aniruddha
2017-04-01
Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based "medical image processing-as-a-service" offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop's distributed file system. Despite this promise, HBase's load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split policy, and nearly a six-fold improvement over a commonly available network file system (NFS) approach even for relatively small file sets. Moreover, file access latency is lower than network attached storage.
Long-term variability of global statistical properties of epileptic brain networks
NASA Astrophysics Data System (ADS)
Kuhnert, Marie-Therese; Elger, Christian E.; Lehnertz, Klaus
2010-12-01
We investigate the influence of various pathophysiologic and physiologic processes on global statistical properties of epileptic brain networks. We construct binary functional networks from long-term, multichannel electroencephalographic data recorded from 13 epilepsy patients, and the average shortest path length and the clustering coefficient serve as global statistical network characteristics. For time-resolved estimates of these characteristics we observe large fluctuations over time, however, with some periodic temporal structure. These fluctuations can—to a large extent—be attributed to daily rhythms while relevant aspects of the epileptic process contribute only marginally. Particularly, we could not observe clear cut changes in network states that can be regarded as predictive of an impending seizure. Our findings are of particular relevance for studies aiming at an improved understanding of the epileptic process with graph-theoretical approaches.
Abduallah, Yasser; Turki, Turki; Byron, Kevin; Du, Zongxuan; Cervantes-Cervantes, Miguel; Wang, Jason T L
2017-01-01
Gene regulation is a series of processes that control gene expression and its extent. The connections among genes and their regulatory molecules, usually transcription factors, and a descriptive model of such connections are known as gene regulatory networks (GRNs). Elucidating GRNs is crucial to understand the inner workings of the cell and the complexity of gene interactions. To date, numerous algorithms have been developed to infer gene regulatory networks. However, as the number of identified genes increases and the complexity of their interactions is uncovered, networks and their regulatory mechanisms become cumbersome to test. Furthermore, prodding through experimental results requires an enormous amount of computation, resulting in slow data processing. Therefore, new approaches are needed to expeditiously analyze copious amounts of experimental data resulting from cellular GRNs. To meet this need, cloud computing is promising as reported in the literature. Here, we propose new MapReduce algorithms for inferring gene regulatory networks on a Hadoop cluster in a cloud environment. These algorithms employ an information-theoretic approach to infer GRNs using time-series microarray data. Experimental results show that our MapReduce program is much faster than an existing tool while achieving slightly better prediction accuracy than the existing tool.
Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial.
Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid
2016-06-01
Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves.
Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial
Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid
2016-01-01
Data science or “data-driven research” is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286
An adaptive neural swarm approach for intrusion defense in ad hoc networks
NASA Astrophysics Data System (ADS)
Cannady, James
2011-06-01
Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.
Dynamic-ETL: a hybrid approach for health data extraction, transformation and loading.
Ong, Toan C; Kahn, Michael G; Kwan, Bethany M; Yamashita, Traci; Brandt, Elias; Hosokawa, Patrick; Uhrich, Chris; Schilling, Lisa M
2017-09-13
Electronic health records (EHRs) contain detailed clinical data stored in proprietary formats with non-standard codes and structures. Participating in multi-site clinical research networks requires EHR data to be restructured and transformed into a common format and standard terminologies, and optimally linked to other data sources. The expertise and scalable solutions needed to transform data to conform to network requirements are beyond the scope of many health care organizations and there is a need for practical tools that lower the barriers of data contribution to clinical research networks. We designed and implemented a health data transformation and loading approach, which we refer to as Dynamic ETL (Extraction, Transformation and Loading) (D-ETL), that automates part of the process through use of scalable, reusable and customizable code, while retaining manual aspects of the process that requires knowledge of complex coding syntax. This approach provides the flexibility required for the ETL of heterogeneous data, variations in semantic expertise, and transparency of transformation logic that are essential to implement ETL conventions across clinical research sharing networks. Processing workflows are directed by the ETL specifications guideline, developed by ETL designers with extensive knowledge of the structure and semantics of health data (i.e., "health data domain experts") and target common data model. D-ETL was implemented to perform ETL operations that load data from various sources with different database schema structures into the Observational Medical Outcome Partnership (OMOP) common data model. The results showed that ETL rule composition methods and the D-ETL engine offer a scalable solution for health data transformation via automatic query generation to harmonize source datasets. D-ETL supports a flexible and transparent process to transform and load health data into a target data model. This approach offers a solution that lowers technical barriers that prevent data partners from participating in research data networks, and therefore, promotes the advancement of comparative effectiveness research using secondary electronic health data.
Brain enhancement through cognitive training: a new insight from brain connectome.
Taya, Fumihiko; Sun, Yu; Babiloni, Fabio; Thakor, Nitish; Bezerianos, Anastasios
2015-01-01
Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive functions.
Brain enhancement through cognitive training: a new insight from brain connectome
Taya, Fumihiko; Sun, Yu; Babiloni, Fabio; Thakor, Nitish; Bezerianos, Anastasios
2015-01-01
Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners’ learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals’ cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive functions. PMID:25883555
Park, Chihyun; Yun, So Jeong; Ryu, Sung Jin; Lee, Soyoung; Lee, Young-Sam; Yoon, Youngmi; Park, Sang Chul
2017-03-15
Cellular senescence irreversibly arrests growth of human diploid cells. In addition, recent studies have indicated that senescence is a multi-step evolving process related to important complex biological processes. Most studies analyzed only the genes and their functions representing each senescence phase without considering gene-level interactions and continuously perturbed genes. It is necessary to reveal the genotypic mechanism inferred by affected genes and their interaction underlying the senescence process. We suggested a novel computational approach to identify an integrative network which profiles an underlying genotypic signature from time-series gene expression data. The relatively perturbed genes were selected for each time point based on the proposed scoring measure denominated as perturbation scores. Then, the selected genes were integrated with protein-protein interactions to construct time point specific network. From these constructed networks, the conserved edges across time point were extracted for the common network and statistical test was performed to demonstrate that the network could explain the phenotypic alteration. As a result, it was confirmed that the difference of average perturbation scores of common networks at both two time points could explain the phenotypic alteration. We also performed functional enrichment on the common network and identified high association with phenotypic alteration. Remarkably, we observed that the identified cell cycle specific common network played an important role in replicative senescence as a key regulator. Heretofore, the network analysis from time series gene expression data has been focused on what topological structure was changed over time point. Conversely, we focused on the conserved structure but its context was changed in course of time and showed it was available to explain the phenotypic changes. We expect that the proposed method will help to elucidate the biological mechanism unrevealed by the existing approaches.
Borisjuk, Ljudmilla; Hajirezaei, Mohammad-Reza; Klukas, Christian; Rolletschek, Hardy; Schreiber, Falk
2005-01-01
Modern 'omics'-technologies result in huge amounts of data about life processes. For analysis and data mining purposes this data has to be considered in the context of the underlying biological networks. This work presents an approach for integrating data from biological experiments into metabolic networks by mapping the data onto network elements and visualising the data enriched networks automatically. This methodology is implemented in DBE, an information system that supports the analysis and visualisation of experimental data in the context of metabolic networks. It consists of five parts: (1) the DBE-Database for consistent data storage, (2) the Excel-Importer application for the data import, (3) the DBE-Website as the interface for the system, (4) the DBE-Pictures application for the up- and download of binary (e. g. image) files, and (5) DBE-Gravisto, a network analysis and graph visualisation system. The usability of this approach is demonstrated in two examples.
Process-driven inference of biological network structure: feasibility, minimality, and multiplicity
NASA Astrophysics Data System (ADS)
Zeng, Chen
2012-02-01
For a given dynamic process, identifying the putative interaction networks to achieve it is the inference problem. In this talk, we address the computational complexity of inference problem in the context of Boolean networks under dominant inhibition condition. The first is a proof that the feasibility problem (is there a network that explains the dynamics?) can be solved in polynomial-time. Second, while the minimality problem (what is the smallest network that explains the dynamics?) is shown to be NP-hard, a simple polynomial-time heuristic is shown to produce near-minimal solutions, as demonstrated by simulation. Third, the theoretical framework also leads to a fast polynomial-time heuristic to estimate the number of network solutions with reasonable accuracy. We will apply these approaches to two simplified Boolean network models for the cell cycle process of budding yeast (Li 2004) and fission yeast (Davidich 2008). Our results demonstrate that each of these networks contains a giant backbone motif spanning all the network nodes that provides the desired main functionality, while the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. Moreover, we show that the bioprocesses of these two cell cycle models differ considerably from a typically generated process and are intrinsically cascade-like.
High Tech Educators Network Evaluation.
ERIC Educational Resources Information Center
O'Shea, Dan
A process evaluation was conducted to assess the High Tech Educators Network's (HTEN's) activities. Four basic components to the evaluation approach were documentation review, program logic model, written survey, and participant interviews. The model mapped the basic goals and objectives, assumptions, activities, outcome expectations, and…
Paolino, Andrea R.; McGlynn, Elizabeth A.; Lieu, Tracy; Nelson, Andrew F.; Prausnitz, Stephanie; Horberg, Michael A.; Arterburn, David E.; Gould, Michael K.; Laws, Reesa L.; Steiner, John F.
2016-01-01
Introduction: The Patient Outcomes Research to Advance Learning (PORTAL) Network was established with funding from the Patient-Centered Outcomes Research Institute (PCORI) in 2014. The PORTAL team adapted governance structures and processes from past research network collaborations. We will review and outline the structures and processes of the PORTAL governance approach and describe how proactively focusing on priority areas helped us to facilitate an ambitious research agenda. Background: For years a variety of funders have supported large-scale infrastructure grants to promote the use of clinical datasets to answer important comparative effectiveness research (CER) questions. These awards have provided the impetus for health care systems to join forces in creating clinical data research networks. Often, these scientific networks do not develop governance processes proactively or systematically, and address issues only as problems arise. Even if network leaders and collaborators foresee the need to develop governance approaches, they may underestimate the time and effort required to develop sound processes. The resulting delays can impede research progress. Innovation: Because the PORTAL sites had built trust and a foundation of collaboration by participating with one another in past research networks, essential elements of effective governance such as guiding principles, decision making processes, project governance, data governance, and stakeholders in governance were familiar to PORTAL investigators. This trust and familiarity enabled the network to rapidly prioritize areas that required sound governance approaches: responding to new research opportunities, creating a culture of trust and collaboration, conducting individual studies, within the broader network, assigning responsibility and credit to scientific investigators, sharing data while protecting privacy/security, and allocating resources. The PORTAL Governance Document, complete with a Toolkit of Appendices is included for reference and for adaptation by other networks. Credibility: As a result of identifying project-based governance priorities (IRB approval, subcontracting, selection of new research including lead PI and participating sites, and authorship) and data governance priorities (reciprocal data use agreement, analytic plan procedures, and other tools for data governance), PORTAL established most of its governance structure by Month 6 of the 18 month project. This allowed science to progress and collaborators to experience first-hand how the structures and procedures functioned in the remaining 12 months of the project, leaving ample time to refine them and to develop new structures or processes as necessary. Discussion: The use of procedures and processes with which participating investigators and their home institutions were already familiar allowed project and regulatory requirements to be established quickly to protect patients, their data, and the health care systems that act as stewards for both. As the project progressed, PORTAL was able to test and adjust the structures it put place, and to make substantive revisions by Month 17. As a result, priority processes have been predictable, transparent and effective. Conclusion/Next steps: Strong governance practices are a stewardship responsibility of research networks to justify the trust of patients, health plan members, health care delivery organizations, and other stakeholders. Well-planned governance can reduce the time necessary to initiate the scientific activities of a network, a particular concern when the time frame to complete research is short. Effective network and data governance structures protect patient and institutional data as well as the interests of investigators and their institutions, and assures that the network has built an environment to meet the goals of the research. PMID:27141524
Paolino, Andrea R; McGlynn, Elizabeth A; Lieu, Tracy; Nelson, Andrew F; Prausnitz, Stephanie; Horberg, Michael A; Arterburn, David E; Gould, Michael K; Laws, Reesa L; Steiner, John F
2016-01-01
The Patient Outcomes Research to Advance Learning (PORTAL) Network was established with funding from the Patient-Centered Outcomes Research Institute (PCORI) in 2014. The PORTAL team adapted governance structures and processes from past research network collaborations. We will review and outline the structures and processes of the PORTAL governance approach and describe how proactively focusing on priority areas helped us to facilitate an ambitious research agenda. For years a variety of funders have supported large-scale infrastructure grants to promote the use of clinical datasets to answer important comparative effectiveness research (CER) questions. These awards have provided the impetus for health care systems to join forces in creating clinical data research networks. Often, these scientific networks do not develop governance processes proactively or systematically, and address issues only as problems arise. Even if network leaders and collaborators foresee the need to develop governance approaches, they may underestimate the time and effort required to develop sound processes. The resulting delays can impede research progress. Because the PORTAL sites had built trust and a foundation of collaboration by participating with one another in past research networks, essential elements of effective governance such as guiding principles, decision making processes, project governance, data governance, and stakeholders in governance were familiar to PORTAL investigators. This trust and familiarity enabled the network to rapidly prioritize areas that required sound governance approaches: responding to new research opportunities, creating a culture of trust and collaboration, conducting individual studies, within the broader network, assigning responsibility and credit to scientific investigators, sharing data while protecting privacy/security, and allocating resources. The PORTAL Governance Document, complete with a Toolkit of Appendices is included for reference and for adaptation by other networks. As a result of identifying project-based governance priorities (IRB approval, subcontracting, selection of new research including lead PI and participating sites, and authorship) and data governance priorities (reciprocal data use agreement, analytic plan procedures, and other tools for data governance), PORTAL established most of its governance structure by Month 6 of the 18 month project. This allowed science to progress and collaborators to experience first-hand how the structures and procedures functioned in the remaining 12 months of the project, leaving ample time to refine them and to develop new structures or processes as necessary. The use of procedures and processes with which participating investigators and their home institutions were already familiar allowed project and regulatory requirements to be established quickly to protect patients, their data, and the health care systems that act as stewards for both. As the project progressed, PORTAL was able to test and adjust the structures it put place, and to make substantive revisions by Month 17. As a result, priority processes have been predictable, transparent and effective. Strong governance practices are a stewardship responsibility of research networks to justify the trust of patients, health plan members, health care delivery organizations, and other stakeholders. Well-planned governance can reduce the time necessary to initiate the scientific activities of a network, a particular concern when the time frame to complete research is short. Effective network and data governance structures protect patient and institutional data as well as the interests of investigators and their institutions, and assures that the network has built an environment to meet the goals of the research.
Network Anomaly Detection Based on Wavelet Analysis
NASA Astrophysics Data System (ADS)
Lu, Wei; Ghorbani, Ali A.
2008-12-01
Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
Intelligent Resource Management for Local Area Networks: Approach and Evolution
NASA Technical Reports Server (NTRS)
Meike, Roger
1988-01-01
The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. AI is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of AI techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An AI network design advisor is being added to help in the design of an efficient network. The AI portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.
'Multimorbidity' as the manifestation of network disturbances.
Sturmberg, Joachim P; Bennett, Jeanette M; Martin, Carmel M; Picard, Martin
2017-02-01
We argue that 'multimorbidity' is the manifestation of interconnected physiological network processes within an individual in his or her socio-cultural environment. Networks include genomic, metabolomic, proteomic, neuroendocrine, immune and mitochondrial bioenergetic elements, as well as social, environmental and health care networks. Stress systems and other physiological mechanisms create feedback loops that integrate and regulate internal networks within the individual. Minor (e.g. daily hassles) and major (e.g. trauma) stressful life experiences perturb internal and social networks resulting in physiological instability with changes ranging from improved resilience to unhealthy adaptation and 'clinical disease'. Understanding 'multimorbidity' as a complex adaptive systems response to biobehavioural and socio-environmental networks is essential. Thus, designing integrative care delivery approaches that more adequately address the underlying disease processes as the manifestation of a state of physiological dysregulation is essential. This framework can shape care delivery approaches to meet the individual's care needs in the context of his or her underlying illness experience. It recognizes 'multimorbidity' and its symptoms as the end product of complex physiological processes, namely, stress activation and mitochondrial energetics, and suggests new opportunities for treatment and prevention. The future of 'multimorbidity' management might become much more discerning by combining the balancing of physiological dysregulation with targeted personalized biotechnology interventions such as small molecule therapeutics targeting specific cellular components of the stress response, with community-embedded interventions that involve addressing psycho-socio-cultural impediments that would aim to strengthen personal/social resilience and enhance social capital. © 2016 John Wiley & Sons, Ltd.
Schmidt, Christoph; Piper, Diana; Pester, Britta; Mierau, Andreas; Witte, Herbert
2018-05-01
Identification of module structure in brain functional networks is a promising way to obtain novel insights into neural information processing, as modules correspond to delineated brain regions in which interactions are strongly increased. Tracking of network modules in time-varying brain functional networks is not yet commonly considered in neuroscience despite its potential for gaining an understanding of the time evolution of functional interaction patterns and associated changing degrees of functional segregation and integration. We introduce a general computational framework for extracting consensus partitions from defined time windows in sequences of weighted directed edge-complete networks and show how the temporal reorganization of the module structure can be tracked and visualized. Part of the framework is a new approach for computing edge weight thresholds for individual networks based on multiobjective optimization of module structure quality criteria as well as an approach for matching modules across time steps. By testing our framework using synthetic network sequences and applying it to brain functional networks computed from electroencephalographic recordings of healthy subjects that were exposed to a major balance perturbation, we demonstrate the framework's potential for gaining meaningful insights into dynamic brain function in the form of evolving network modules. The precise chronology of the neural processing inferred with our framework and its interpretation helps to improve the currently incomplete understanding of the cortical contribution for the compensation of such balance perturbations.
An Iterative Approach for the Optimization of Pavement Maintenance Management at the Network Level
Torres-Machí, Cristina; Chamorro, Alondra; Videla, Carlos; Yepes, Víctor
2014-01-01
Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic) and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods) have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach. PMID:24741352
An iterative approach for the optimization of pavement maintenance management at the network level.
Torres-Machí, Cristina; Chamorro, Alondra; Videla, Carlos; Pellicer, Eugenio; Yepes, Víctor
2014-01-01
Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic) and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods) have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach.
Network Robustness: the whole story
NASA Astrophysics Data System (ADS)
Longjas, A.; Tejedor, A.; Zaliapin, I. V.; Ambroj, S.; Foufoula-Georgiou, E.
2014-12-01
A multitude of actual processes operating on hydrological networks may exhibit binary outcomes such as clean streams in a river network that may become contaminated. These binary outcomes can be modeled by node removal processes (attacks) acting in a network. Network robustness against attacks has been widely studied in fields as diverse as the Internet, power grids and human societies. However, the current definition of robustness is only accounting for the connectivity of the nodes unaffected by the attack. Here, we put forward the idea that the connectivity of the affected nodes can play a crucial role in proper evaluation of the overall network robustness and its future recovery from the attack. Specifically, we propose a dual perspective approach wherein at any instant in the network evolution under attack, two distinct networks are defined: (i) the Active Network (AN) composed of the unaffected nodes and (ii) the Idle Network (IN) composed of the affected nodes. The proposed robustness metric considers both the efficiency of destroying the AN and the efficiency of building-up the IN. This approach is motivated by concrete applied problems, since, for example, if we study the dynamics of contamination in river systems, it is necessary to know both the connectivity of the healthy and contaminated parts of the river to assess its ecological functionality. We show that trade-offs between the efficiency of the Active and Idle network dynamics give rise to surprising crossovers and re-ranking of different attack strategies, pointing to significant implications for decision making.
Wild cricket social networks show stability across generations.
Fisher, David N; Rodríguez-Muñoz, Rolando; Tregenza, Tom
2016-07-27
A central part of an animal's environment is its interactions with conspecifics. There has been growing interest in the potential to capture these interactions in the form of a social network. Such networks can then be used to examine how relationships among individuals affect ecological and evolutionary processes. However, in the context of selection and evolution, the utility of this approach relies on social network structures persisting across generations. This is an assumption that has been difficult to test because networks spanning multiple generations have not been available. We constructed social networks for six annual generations over a period of eight years for a wild population of the cricket Gryllus campestris. Through the use of exponential random graph models (ERGMs), we found that the networks in any given year were able to predict the structure of networks in other years for some network characteristics. The capacity of a network model of any given year to predict the networks of other years did not depend on how far apart those other years were in time. Instead, the capacity of a network model to predict the structure of a network in another year depended on the similarity in population size between those years. Our results indicate that cricket social network structure resists the turnover of individuals and is stable across generations. This would allow evolutionary processes that rely on network structure to take place. The influence of network size may indicate that scaling up findings on social behaviour from small populations to larger ones will be difficult. Our study also illustrates the utility of ERGMs for comparing networks, a task for which an effective approach has been elusive.
Laven, Daniel N; Krymkowski, Daniel H; Ventriss, Curtis L; Manning, Robert E; Mitchell, Nora J
2010-08-01
National Heritage Areas (NHAs) are an alternative and increasingly popular form of protected area management in the United States. NHAs seek to integrate environmental objectives with community and economic objectives at regional or landscape scales. NHA designations have increased rapidly in the last 20 years, generating a substantial need for evaluative information about (a) how NHAs work; (b) outcomes associated with the NHA process; and (c) the costs and benefits of investing public moneys into the NHA approach. Qualitative evaluation studies recently conducted at three NHAs have identified the importance of understanding network structure and function in the context of evaluating NHA management effectiveness. This article extends these case studies by examining quantitative network data from each of the sites. The authors analyze these data using both a descriptive approach and a statistically more robust approach known as exponential random graph modeling. Study findings indicate the presence of transitive structures and the absence of three-cycle structures in each of these networks. This suggests that these networks are relatively ''open,'' which may be desirable, given the uncertainty of the environments in which they operate. These findings also suggest, at least at the sites reported here, that the NHA approach may be an effective way to activate and develop networks of intersectoral organizational partners. Finally, this study demonstrates the utility of using quantitative network analysis to better understand the effectiveness of protected area management models that rely on partnership networks to achieve their intended outcomes.
A Systems' Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks
Kunz, Manfred; Vera, Julio; Wolkenhauer, Olaf
2013-01-01
MicroRNAs (miRNAs) are potent effectors in gene regulatory networks where aberrant miRNA expression can contribute to human diseases such as cancer. For a better understanding of the regulatory role of miRNAs in coordinating gene expression, we here present a systems biology approach combining data-driven modeling and model-driven experiments. Such an approach is characterized by an iterative process, including biological data acquisition and integration, network construction, mathematical modeling and experimental validation. To demonstrate the application of this approach, we adopt it to investigate mechanisms of collective repression on p21 by multiple miRNAs. We first construct a p21 regulatory network based on data from the literature and further expand it using algorithms that predict molecular interactions. Based on the network structure, a detailed mechanistic model is established and its parameter values are determined using data. Finally, the calibrated model is used to study the effect of different miRNA expression profiles and cooperative target regulation on p21 expression levels in different biological contexts. PMID:24350286
Wang, Jianxin; Chen, Bo; Wang, Yaqun; Wang, Ningtao; Garbey, Marc; Tran-Son-Tay, Roger; Berceli, Scott A.; Wu, Rongling
2013-01-01
The capacity of an organism to respond to its environment is facilitated by the environmentally induced alteration of gene and protein expression, i.e. expression plasticity. The reconstruction of gene regulatory networks based on expression plasticity can gain not only new insights into the causality of transcriptional and cellular processes but also the complex regulatory mechanisms that underlie biological function and adaptation. We describe an approach for network inference by integrating expression plasticity into Shannon’s mutual information. Beyond Pearson correlation, mutual information can capture non-linear dependencies and topology sparseness. The approach measures the network of dependencies of genes expressed in different environments, allowing the environment-induced plasticity of gene dependencies to be tested in unprecedented details. The approach is also able to characterize the extent to which the same genes trigger different amounts of expression in response to environmental changes. We demonstrated the usefulness of this approach through analysing gene expression data from a rabbit vein graft study that includes two distinct blood flow environments. The proposed approach provides a powerful tool for the modelling and analysis of dynamic regulatory networks using gene expression data from distinct environments. PMID:23470995
ERIC Educational Resources Information Center
Ramstad, Elise
2009-01-01
Purpose: During the past decade new types of broader networks that aim to achieve widespread effects in the working life have emerged. These are typically based on an interactive innovation approach, where knowledge is created jointly together with diverse players. At the moment, the challenge is how to evaluate these complex networks and learning…
Robust Resilience of the Frontotemporal Syntax System to Aging
Samu, Dávid; Davis, Simon W.; Geerligs, Linda; Mustafa, Abdur; Tyler, Lorraine K.
2016-01-01
Brain function is thought to become less specialized with age. However, this view is largely based on findings of increased activation during tasks that fail to separate task-related processes (e.g., attention, decision making) from the cognitive process under examination. Here we take a systems-level approach to separate processes specific to language comprehension from those related to general task demands and to examine age differences in functional connectivity both within and between those systems. A large population-based sample (N = 111; 22–87 years) from the Cambridge Centre for Aging and Neuroscience (Cam-CAN) was scanned using functional MRI during two versions of an experiment: a natural listening version in which participants simply listened to spoken sentences and an explicit task version in which they rated the acceptability of the same sentences. Independent components analysis across the combined data from both versions showed that although task-free language comprehension activates only the auditory and frontotemporal (FTN) syntax networks, performing a simple task with the same sentences recruits several additional networks. Remarkably, functionality of the critical FTN is maintained across age groups, showing no difference in within-network connectivity or responsivity to syntactic processing demands despite gray matter loss and reduced connectivity to task-related networks. We found no evidence for reduced specialization or compensation with age. Overt task performance was maintained across the lifespan and performance in older, but not younger, adults related to crystallized knowledge, suggesting that decreased between-network connectivity may be compensated for by older adults' richer knowledge base. SIGNIFICANCE STATEMENT Understanding spoken language requires the rapid integration of information at many different levels of analysis. Given the complexity and speed of this process, it is remarkably well preserved with age. Although previous work claims that this preserved functionality is due to compensatory activation of regions outside the frontotemporal language network, we use a novel systems-level approach to show that these “compensatory” activations simply reflect age differences in response to experimental task demands. Natural, task-free language comprehension solely recruits auditory and frontotemporal networks, the latter of which is similarly responsive to language-processing demands across the lifespan. These findings challenge the conventional approach to neurocognitive aging by showing that the neural underpinnings of a given cognitive function depend on how you test it. PMID:27170120
NASA Technical Reports Server (NTRS)
Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph
1990-01-01
The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.
NASA Astrophysics Data System (ADS)
Aydogan, D.
2007-04-01
An image processing technique called the cellular neural network (CNN) approach is used in this study to locate geological features giving rise to gravity anomalies such as faults or the boundary of two geologic zones. CNN is a stochastic image processing technique based on template optimization using the neighborhood relationships of cells. These cells can be characterized by a functional block diagram that is typical of neural network theory. The functionality of CNN is described in its entirety by a number of small matrices (A, B and I) called the cloning template. CNN can also be considered to be a nonlinear convolution of these matrices. This template describes the strength of the nearest neighbor interconnections in the network. The recurrent perceptron learning algorithm (RPLA) is used in optimization of cloning template. The CNN and standard Canny algorithms were first tested on two sets of synthetic gravity data with the aim of checking the reliability of the proposed approach. The CNN method was compared with classical derivative techniques by applying the cross-correlation method (CC) to the same anomaly map as this latter approach can detect some features that are difficult to identify on the Bouguer anomaly maps. This approach was then applied to the Bouguer anomaly map of Biga and its surrounding area, in Turkey. Structural features in the area between Bandirma, Biga, Yenice and Gonen in the southwest Marmara region are investigated by applying the CNN and CC to the Bouguer anomaly map. Faults identified by these algorithms are generally in accordance with previously mapped surface faults. These examples show that the geologic boundaries can be detected from Bouguer anomaly maps using the cloning template approach. A visual evaluation of the outputs of the CNN and CC approaches is carried out, and the results are compared with each other. This approach provides quantitative solutions based on just a few assumptions, which makes the method more powerful than the classical methods.
Zhang, Kui; Li, Jia; Fang, Yunsheng; Luo, Beibei; Zhang, Yanli; Li, Yanqiu; Zhou, Jun; Hu, Bin
2018-04-25
A solution processed metal nanowire network is a promising flexible transparent electrode to replace brittle metal oxides for printable optoelectronics applications, but suffers from the issue of pseudo contact between nanowires. Herein, using volatile solvent mists as a powerful "zipper", we demonstrate a simple and rapid method to effectively weld silver nanowires, which dramatically improves the conductivity and robustness of the silver nanowire network based flexible transparent electrodes. We reveal that for a stacked network structure, the unique wedge-shaped nanogaps between the long nanowires and substrate provide a strong capillary force during solvent evaporation, which is much larger than that between zero-dimensional nanoparticles and gives a decisive contribution for nanowire junction welding, and this nanowire-substrate interplay force is positively related to the wettability of the substrate. At the same time, the dissolution-reprecipitation of the capping agent on the silver nanowire surface as the natural adhesive can fix the network on the substrate tightly, which enhances the robustness of the network. Our approach solves two key issues in solution-processed transparent electrodes in one simple step, and is compatible with various mild solution-processed optoelectronic devices, especially those containing heat-sensitive or chemical-sensitive materials. Moreover, a new type of invisible infrared encryption display is demonstrated based on this approach.
Infant Joint Attention, Neural Networks and Social Cognition
Mundy, Peter; Jarrold, William
2010-01-01
Neural network models of attention can provide a unifying approach to the study of human cognitive and emotional development (Posner & Rothbart, 2007). This paper we argue that a neural networks approach to the infant development of joint attention can inform our understanding of the nature of human social learning, symbolic thought process and social cognition. At its most basic, joint attention involves the capacity to coordinate one’s own visual attention with that of another person. We propose that joint attention development involves increments in the capacity to engage in simultaneous or parallel processing of information about one’s own attention and the attention of other people. Infant practice with joint attention is both a consequence and organizer of the development of a distributed and integrated brain network involving frontal and parietal cortical systems. This executive distributed network first serves to regulate the capacity of infants to respond to and direct the overt behavior of other people in order to share experience with others through the social coordination of visual attention. In this paper we describe this parallel and distributed neural network model of joint attention development and discuss two hypotheses that stem from this model. One is that activation of this distributed network during coordinated attention enhances to depth of information processing and encoding beginning in the first year of life. We also propose that with development joint attention becomes internalized as the capacity to socially coordinate mental attention to internal representations. As this occurs the executive joint attention network makes vital contributions to the development of human symbolic thinking and social cognition. PMID:20884172
Large Scale Proteomic Data and Network-Based Systems Biology Approaches to Explore the Plant World.
Di Silvestre, Dario; Bergamaschi, Andrea; Bellini, Edoardo; Mauri, PierLuigi
2018-06-03
The investigation of plant organisms by means of data-derived systems biology approaches based on network modeling is mainly characterized by genomic data, while the potential of proteomics is largely unexplored. This delay is mainly caused by the paucity of plant genomic/proteomic sequences and annotations which are fundamental to perform mass-spectrometry (MS) data interpretation. However, Next Generation Sequencing (NGS) techniques are contributing to filling this gap and an increasing number of studies are focusing on plant proteome profiling and protein-protein interactions (PPIs) identification. Interesting results were obtained by evaluating the topology of PPI networks in the context of organ-associated biological processes as well as plant-pathogen relationships. These examples foreshadow well the benefits that these approaches may provide to plant research. Thus, in addition to providing an overview of the main-omic technologies recently used on plant organisms, we will focus on studies that rely on concepts of module, hub and shortest path, and how they can contribute to the plant discovery processes. In this scenario, we will also consider gene co-expression networks, and some examples of integration with metabolomic data and genome-wide association studies (GWAS) to select candidate genes will be mentioned.
NASA Astrophysics Data System (ADS)
Putra, J. C. P.; Safrilah
2017-06-01
Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.
Sauser Zachrison, Kori; Iwashyna, Theodore J; Gebremariam, Achamyeleh; Hutchins, Meghan; Lee, Joyce M
2016-12-28
Connected individuals (or nodes) in a network are more likely to be similar than two randomly selected nodes due to homophily and/or network influence. Distinguishing between these two influences is an important goal in network analysis, and generalized estimating equation (GEE) analyses of longitudinal dyadic network data are an attractive approach. It is not known to what extent such regressions can accurately extract underlying data generating processes. Therefore our primary objective is to determine to what extent, and under what conditions, does the GEE-approach recreate the actual dynamics in an agent-based model. We generated simulated cohorts with pre-specified network characteristics and attachments in both static and dynamic networks, and we varied the presence of homophily and network influence. We then used statistical regression and examined the GEE model performance in each cohort to determine whether the model was able to detect the presence of homophily and network influence. In cohorts with both static and dynamic networks, we find that the GEE models have excellent sensitivity and reasonable specificity for determining the presence or absence of network influence, but little ability to distinguish whether or not homophily is present. The GEE models are a valuable tool to examine for the presence of network influence in longitudinal data, but are quite limited with respect to homophily.
Suggestions for Library Network Design.
ERIC Educational Resources Information Center
Salton, Gerald
1979-01-01
Various approaches to the design of automatic library systems are described, suggestions for the design of rational and effective automated library processes are posed, and an attempt is made to assess the importance and effect of library network systems on library operations and library effectiveness. (Author/CWM)
Neural networks with fuzzy Petri nets for modeling a machining process
NASA Astrophysics Data System (ADS)
Hanna, Moheb M.
1998-03-01
The paper presents an intelligent architecture based a feedforward neural network with fuzzy Petri nets for modeling product quality in a CNC machining center. It discusses how the proposed architecture can be used for modeling, monitoring and control a product quality specification such as surface roughness. The surface roughness represents the output quality specification manufactured by a CNC machining center as a result of a milling process. The neural network approach employed the selected input parameters which defined by the machine operator via the CNC code. The fuzzy Petri nets approach utilized the exact input milling parameters, such as spindle speed, feed rate, tool diameter and coolant (off/on), which can be obtained via the machine or sensors system. An aim of the proposed architecture is to model the demanded quality of surface roughness as high, medium or low.
NASA Astrophysics Data System (ADS)
Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng
2018-02-01
Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.
Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng
2018-02-01
Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.
Modeling formalisms in Systems Biology
2011-01-01
Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future. PMID:22141422
Development of dynamic Bayesian models for web application test management
NASA Astrophysics Data System (ADS)
Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.
2018-03-01
The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.
NASA Astrophysics Data System (ADS)
Ebadi, H.; Saeedian, M.; Ausloos, M.; Jafari, G. R.
2016-11-01
The Boolean network is one successful model to investigate discrete complex systems such as the gene interacting phenomenon. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self-organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function —one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of the yeast cell cycle network, we discover a power-law-like memory with a more robust dynamics than the Markovian dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...
2017-06-06
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
Language Networks as Models of Cognition: Understanding Cognition through Language
NASA Astrophysics Data System (ADS)
Beckage, Nicole M.; Colunga, Eliana
Language is inherently cognitive and distinctly human. Separating the object of language from the human mind that processes and creates language fails to capture the full language system. Linguistics traditionally has focused on the study of language as a static representation, removed from the human mind. Network analysis has traditionally been focused on the properties and structure that emerge from network representations. Both disciplines could gain from looking at language as a cognitive process. In contrast, psycholinguistic research has focused on the process of language without committing to a representation. However, by considering language networks as approximations of the cognitive system we can take the strength of each of these approaches to study human performance and cognition as related to language. This paper reviews research showcasing the contributions of network science to the study of language. Specifically, we focus on the interplay of cognition and language as captured by a network representation. To this end, we review different types of language network representations before considering the influence of global level network features. We continue by considering human performance in relation to network structure and conclude with theoretical network models that offer potential and testable explanations of cognitive and linguistic phenomena.
Development of a Neural Network-Based Renewable Energy Forecasting Framework for Process Industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Soobin; Ryu, Jun-Hyung; Hodge, Bri-Mathias
2016-06-25
This paper presents a neural network-based forecasting framework for photovoltaic power (PV) generation as a decision-supporting tool to employ renewable energies in the process industry. The applicability of the proposed framework is illustrated by comparing its performance against other methodologies such as linear and nonlinear time series modelling approaches. A case study of an actual PV power plant in South Korea is presented.
Network-Based Approaches in Drug Discovery and Early Development
Harrold, JM; Ramanathan, M; Mager, DE
2015-01-01
Identification of novel targets is a critical first step in the drug discovery and development process. Most diseases such as cancer, metabolic disorders, and neurological disorders are complex, and their pathogenesis involves multiple genetic and environmental factors. Finding a viable drug target–drug combination with high potential for yielding clinical success within the efficacy–toxicity spectrum is extremely challenging. Many examples are now available in which network-based approaches show potential for the identification of novel targets and for the repositioning of established targets. The objective of this article is to highlight network approaches for identifying novel targets with greater chances of gaining approved drugs with maximal efficacy and minimal side effects. Further enhancement of these approaches may emerge from effectively integrating computational systems biology with pharmacodynamic systems analysis. Coupling genomics, proteomics, and metabolomics databases with systems pharmacology modeling may aid in the development of disease-specific networks that can be further used to build confidence in target identification. PMID:24025802
Lawlor, Jennifer A; Neal, Zachary P
2016-06-01
Addressing complex problems in communities has become a key area of focus in recent years (Kania & Kramer, 2013, Stanford Social Innovation Review). Building on existing approaches to understanding and addressing problems, such as action research, several new approaches have emerged that shift the way communities solve problems (e.g., Burns, 2007, Systemic Action Research; Foth, 2006, Action Research, 4, 205; Kania & Kramer, 2011, Stanford Social Innovation Review, 1, 36). Seeking to bring clarity to the emerging literature on community change strategies, this article identifies the common features of the most widespread community change strategies and explores the conditions under which such strategies have the potential to be effective. We identify and describe five common features among the approaches to change. Then, using an agent-based model, we simulate network-building behavior among stakeholders participating in community change efforts using these approaches. We find that the emergent stakeholder networks are efficient when the processes are implemented under ideal conditions. © Society for Community Research and Action 2016.
A Baseline for the Multivariate Comparison of Resting-State Networks
Allen, Elena A.; Erhardt, Erik B.; Damaraju, Eswar; Gruner, William; Segall, Judith M.; Silva, Rogers F.; Havlicek, Martin; Rachakonda, Srinivas; Fries, Jill; Kalyanam, Ravi; Michael, Andrew M.; Caprihan, Arvind; Turner, Jessica A.; Eichele, Tom; Adelsheim, Steven; Bryan, Angela D.; Bustillo, Juan; Clark, Vincent P.; Feldstein Ewing, Sarah W.; Filbey, Francesca; Ford, Corey C.; Hutchison, Kent; Jung, Rex E.; Kiehl, Kent A.; Kodituwakku, Piyadasa; Komesu, Yuko M.; Mayer, Andrew R.; Pearlson, Godfrey D.; Phillips, John P.; Sadek, Joseph R.; Stevens, Michael; Teuscher, Ursina; Thoma, Robert J.; Calhoun, Vince D.
2011-01-01
As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12–71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease. PMID:21442040
Value Driven Information Processing and Fusion
2016-03-01
consensus approach allows a decentralized approach to achieve the optimal error exponent of the centralized counterpart, a conclusion that is signifi...SECURITY CLASSIFICATION OF: The objective of the project is to develop a general framework for value driven decentralized information processing...including: optimal data reduction in a network setting for decentralized inference with quantization constraint; interactive fusion that allows queries and
Bayesian networks in overlay recipe optimization
NASA Astrophysics Data System (ADS)
Binns, Lewis A.; Reynolds, Greg; Rigden, Timothy C.; Watkins, Stephen; Soroka, Andrew
2005-05-01
Currently, overlay measurements are characterized by "recipe", which defines both physical parameters such as focus, illumination et cetera, and also the software parameters such as algorithm to be used and regions of interest. Setting up these recipes requires both engineering time and wafer availability on an overlay tool, so reducing these requirements will result in higher tool productivity. One of the significant challenges to automating this process is that the parameters are highly and complexly correlated. At the same time, a high level of traceability and transparency is required in the recipe creation process, so a technique that maintains its decisions in terms of well defined physical parameters is desirable. Running time should be short, given the system (automatic recipe creation) is being implemented to reduce overheads. Finally, a failure of the system to determine acceptable parameters should be obvious, so a certainty metric is also desirable. The complex, nonlinear interactions make solution by an expert system difficult at best, especially in the verification of the resulting decision network. The transparency requirements tend to preclude classical neural networks and similar techniques. Genetic algorithms and other "global minimization" techniques require too much computational power (given system footprint and cost requirements). A Bayesian network, however, provides a solution to these requirements. Such a network, with appropriate priors, can be used during recipe creation / optimization not just to select a good set of parameters, but also to guide the direction of search, by evaluating the network state while only incomplete information is available. As a Bayesian network maintains an estimate of the probability distribution of nodal values, a maximum-entropy approach can be utilized to obtain a working recipe in a minimum or near-minimum number of steps. In this paper we discuss the potential use of a Bayesian network in such a capacity, reducing the amount of engineering intervention. We discuss the benefits of this approach, especially improved repeatability and traceability of the learning process, and quantification of uncertainty in decisions made. We also consider the problems associated with this approach, especially in detailed construction of network topology, validation of the Bayesian network and the recipes it generates, and issues arising from the integration of a Bayesian network with a complex multithreaded application; these primarily relate to maintaining Bayesian network and system architecture integrity.
Toward Optimal Transport Networks
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.
2008-01-01
Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.
Molloy Elreda, Lauren; Coatsworth, J Douglas; Gest, Scott D; Ram, Nilam; Bamberger, Katharine
2016-11-01
Although the majority of evidence-based programs are designed for group delivery, group process and its role in participant outcomes have received little empirical attention. Data were collected from 20 groups of participants (94 early adolescents, 120 parents) enrolled in an efficacy trial of a mindfulness-based adaptation of the Strengthening Families Program (MSFP). Following each weekly session, participants reported on their relations to group members. Social network analysis and methods sensitive to intraindividual variability were integrated to examine weekly covariation between group process and participant progress, and to predict post-intervention outcomes from levels and changes in group process. Results demonstrate hypothesized links between network indices of group process and intervention outcomes and highlight the value of this unique analytic approach to studying intervention group process.
Sosa, Sebastian; Zhang, Peng; Cabanes, Guénaël
2017-06-01
This study applied a temporal social network analysis model to describe three affiliative social networks (allogrooming, sleep in contact, and triadic interaction) in a non-human primate species, Macaca sylvanus. Three main social mechanisms were examined to determine interactional patterns among group members, namely preferential attachment (i.e., highly connected individuals are more likely to form new connections), triadic closure (new connections occur via previous close connections), and homophily (individuals interact preferably with others with similar attributes). Preferential attachment was only observed for triadic interaction network. Triadic closure was significant in allogrooming and triadic interaction networks. Finally, gender homophily was seasonal for allogrooming and sleep in contact networks, and observed in each period for triadic interaction network. These individual-based behaviors are based on individual reactions, and their analysis can shed light on the formation of the affiliative networks determining ultimate coalition networks, and how these networks may evolve over time. A focus on individual behaviors is necessary for a global interactional approach to understanding social behavior rules and strategies. When combined, these social processes could make animal social networks more resilient, thus enabling them to face drastic environmental changes. This is the first study to pinpoint some of the processes underlying the formation of a social structure in a non-human primate species, and identify common mechanisms with humans. The approach used in this study provides an ideal tool for further research seeking to answer long-standing questions about social network dynamics. © 2017 Wiley Periodicals, Inc.
Dissociating functional brain networks by decoding the between-subject variability
Seghier, Mohamed L.; Price, Cathy J.
2009-01-01
In this study we illustrate how the functional networks involved in a single task (e.g. the sensory, cognitive and motor components) can be segregated without cognitive subtractions at the second-level. The method used is based on meaningful variability in the patterns of activation between subjects with the assumption that regions belonging to the same network will have comparable variations from subject to subject. fMRI data were collected from thirty nine healthy volunteers who were asked to indicate with a button press if visually presented words were semantically related or not. Voxels were classified according to the similarity in their patterns of between-subject variance using a second-level unsupervised fuzzy clustering algorithm. The results were compared to those identified by cognitive subtractions of multiple conditions tested in the same set of subjects. This illustrated that the second-level clustering approach (on activation for a single task) was able to identify the functional networks observed using cognitive subtractions (e.g. those associated with vision, semantic associations or motor processing). In addition the fuzzy clustering approach revealed other networks that were not dissociated by the cognitive subtraction approach (e.g. those associated with high- and low-level visual processing and oculomotor movements). We discuss the potential applications of our method which include the identification of “hidden” or unpredicted networks as well as the identification of systems level signatures for different subgroupings of clinical and healthy populations. PMID:19150501
Multi-level deep supervised networks for retinal vessel segmentation.
Mo, Juan; Zhang, Lei
2017-12-01
Changes in the appearance of retinal blood vessels are an important indicator for various ophthalmologic and cardiovascular diseases, including diabetes, hypertension, arteriosclerosis, and choroidal neovascularization. Vessel segmentation from retinal images is very challenging because of low blood vessel contrast, intricate vessel topology, and the presence of pathologies such as microaneurysms and hemorrhages. To overcome these challenges, we propose a neural network-based method for vessel segmentation. A deep supervised fully convolutional network is developed by leveraging multi-level hierarchical features of the deep networks. To improve the discriminative capability of features in lower layers of the deep network and guide the gradient back propagation to overcome gradient vanishing, deep supervision with auxiliary classifiers is incorporated in some intermediate layers of the network. Moreover, the transferred knowledge learned from other domains is used to alleviate the issue of insufficient medical training data. The proposed approach does not rely on hand-crafted features and needs no problem-specific preprocessing or postprocessing, which reduces the impact of subjective factors. We evaluate the proposed method on three publicly available databases, the DRIVE, STARE, and CHASE_DB1 databases. Extensive experiments demonstrate that our approach achieves better or comparable performance to state-of-the-art methods with a much faster processing speed, making it suitable for real-world clinical applications. The results of cross-training experiments demonstrate its robustness with respect to the training set. The proposed approach segments retinal vessels accurately with a much faster processing speed and can be easily applied to other biomedical segmentation tasks.
Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach.
Steggles, L Jason; Banks, Richard; Shaw, Oliver; Wipat, Anil
2007-02-01
New developments in post-genomic technology now provide researchers with the data necessary to study regulatory processes in a holistic fashion at multiple levels of biological organization. One of the major challenges for the biologist is to integrate and interpret these vast data resources to gain a greater understanding of the structure and function of the molecular processes that mediate adaptive and cell cycle driven changes in gene expression. In order to achieve this biologists require new tools and techniques to allow pathway related data to be modelled and analysed as network structures, providing valuable insights which can then be validated and investigated in the laboratory. We propose a new technique for constructing and analysing qualitative models of genetic regulatory networks based on the Petri net formalism. We take as our starting point the Boolean network approach of treating genes as binary switches and develop a new Petri net model which uses logic minimization to automate the construction of compact qualitative models. Our approach addresses the shortcomings of Boolean networks by providing access to the wide range of existing Petri net analysis techniques and by using non-determinism to cope with incomplete and inconsistent data. The ideas we present are illustrated by a case study in which the genetic regulatory network controlling sporulation in the bacterium Bacillus subtilis is modelled and analysed. The Petri net model construction tool and the data files for the B. subtilis sporulation case study are available at http://bioinf.ncl.ac.uk/gnapn.
Data-driven integration of genome-scale regulatory and metabolic network models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Data-driven integration of genome-scale regulatory and metabolic network models
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.; ...
2015-05-05
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Integrated Approaches to Drug Discovery for Oxidative Stress-Related Retinal Diseases.
Nishimura, Yuhei; Hara, Hideaki
2016-01-01
Excessive oxidative stress induces dysregulation of functional networks in the retina, resulting in retinal diseases such as glaucoma, age-related macular degeneration, and diabetic retinopathy. Although various therapies have been developed to reduce oxidative stress in retinal diseases, most have failed to show efficacy in clinical trials. This may be due to oversimplification of target selection for such a complex network as oxidative stress. Recent advances in high-throughput technologies have facilitated the collection of multilevel omics data, which has driven growth in public databases and in the development of bioinformatics tools. Integration of the knowledge gained from omics databases can be used to generate disease-related biological networks and to identify potential therapeutic targets within the networks. Here, we provide an overview of integrative approaches in the drug discovery process and provide simple examples of how the approaches can be exploited to identify oxidative stress-related targets for retinal diseases.
Integrated Approaches to Drug Discovery for Oxidative Stress-Related Retinal Diseases
Hara, Hideaki
2016-01-01
Excessive oxidative stress induces dysregulation of functional networks in the retina, resulting in retinal diseases such as glaucoma, age-related macular degeneration, and diabetic retinopathy. Although various therapies have been developed to reduce oxidative stress in retinal diseases, most have failed to show efficacy in clinical trials. This may be due to oversimplification of target selection for such a complex network as oxidative stress. Recent advances in high-throughput technologies have facilitated the collection of multilevel omics data, which has driven growth in public databases and in the development of bioinformatics tools. Integration of the knowledge gained from omics databases can be used to generate disease-related biological networks and to identify potential therapeutic targets within the networks. Here, we provide an overview of integrative approaches in the drug discovery process and provide simple examples of how the approaches can be exploited to identify oxidative stress-related targets for retinal diseases. PMID:28053689
Dynamic Bayesian network modeling for longitudinal brain morphometry
Chen, Rong; Resnick, Susan M; Davatzikos, Christos; Herskovits, Edward H
2011-01-01
Identifying interactions among brain regions from structural magnetic-resonance images presents one of the major challenges in computational neuroanatomy. We propose a Bayesian data-mining approach to the detection of longitudinal morphological changes in the human brain. Our method uses a dynamic Bayesian network to represent evolving inter-regional dependencies. The major advantage of dynamic Bayesian network modeling is that it can represent complicated interactions among temporal processes. We validated our approach by analyzing a simulated atrophy study, and found that this approach requires only a small number of samples to detect the ground-truth temporal model. We further applied dynamic Bayesian network modeling to a longitudinal study of normal aging and mild cognitive impairment — the Baltimore Longitudinal Study of Aging. We found that interactions among regional volume-change rates for the mild cognitive impairment group are different from those for the normal-aging group. PMID:21963916
A hierarchical approach for the design improvements of an Organocat biorefinery.
Abdelaziz, Omar Y; Gadalla, Mamdouh A; El-Halwagi, Mahmoud M; Ashour, Fatma H
2015-04-01
Lignocellulosic biomass has emerged as a potentially attractive renewable energy source. Processing technologies of such biomass, particularly its primary separation, still lack economic justification due to intense energy requirements. Establishing an economically viable and energy efficient biorefinery scheme is a significant challenge. In this work, a systematic approach is proposed for improving basic/existing biorefinery designs. This approach is based on enhancing the efficiency of mass and energy utilization through the use of a hierarchical design approach that involves mass and energy integration. The proposed procedure is applied to a novel biorefinery called Organocat to minimize its energy and mass consumption and total annualized cost. An improved heat exchanger network with minimum energy consumption of 4.5 MJ/kgdry biomass is designed. An optimal recycle network with zero fresh water usage and minimum waste discharge is also constructed, making the process more competitive and economically attractive. Copyright © 2015 Elsevier Ltd. All rights reserved.
A hierarchical network-based algorithm for multi-scale watershed delineation
NASA Astrophysics Data System (ADS)
Castronova, Anthony M.; Goodall, Jonathan L.
2014-11-01
Watershed delineation is a process for defining a land area that contributes surface water flow to a single outlet point. It is a commonly used in water resources analysis to define the domain in which hydrologic process calculations are applied. There has been a growing effort over the past decade to improve surface elevation measurements in the U.S., which has had a significant impact on the accuracy of hydrologic calculations. Traditional watershed processing on these elevation rasters, however, becomes more burdensome as data resolution increases. As a result, processing of these datasets can be troublesome on standard desktop computers. This challenge has resulted in numerous works that aim to provide high performance computing solutions to large data, high resolution data, or both. This work proposes an efficient watershed delineation algorithm for use in desktop computing environments that leverages existing data, U.S. Geological Survey (USGS) National Hydrography Dataset Plus (NHD+), and open source software tools to construct watershed boundaries. This approach makes use of U.S. national-level hydrography data that has been precomputed using raster processing algorithms coupled with quality control routines. Our approach uses carefully arranged data and mathematical graph theory to traverse river networks and identify catchment boundaries. We demonstrate this new watershed delineation technique, compare its accuracy with traditional algorithms that derive watershed solely from digital elevation models, and then extend our approach to address subwatershed delineation. Our findings suggest that the open-source hierarchical network-based delineation procedure presented in the work is a promising approach to watershed delineation that can be used summarize publicly available datasets for hydrologic model input pre-processing. Through our analysis, we explore the benefits of reusing the NHD+ datasets for watershed delineation, and find that the our technique offers greater flexibility and extendability than traditional raster algorithms.
Complex network description of the ionosphere
NASA Astrophysics Data System (ADS)
Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi
2018-03-01
Complex networks have emerged as an essential approach of geoscience to generate novel insights into the nature of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed, based on a probabilistic graph of the vertical total electron content (VTEC) from 2012. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus, the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions play an eminently important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network shows that the interconnections principally exist between adjacent geographical locations, indicating that the propagation of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of the edge distances with respect to longitude and latitude directions shows that the dynamic processes travel further along the longitude than along the latitude in the ionosphere. The analysis of small-world-ness
indicates that the ionospheric network possesses the small-world property, which can make the ionosphere stable and efficient in the propagation of dynamic processes.
Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio
2017-02-01
Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.
Carlos, Diene Monique; de Pádua, Elisabete Matallo Marchesini; da Silva, Lygia Maria Pereira; Silva, Marta Angélica Iossi; Marques, Walter Ernesto Ude; Leitão, Maria Neto da Cruz; Ferriani, Maria das Graças Carvalho
2017-08-01
To contribute the understanding of the network care provided to families involved in family violence against children and adolescents (FVACA), from the Primary Health Care (PHC) perspective. Children and adolescents figure among the main victims of violence around the world, which occurs predominantly in the family context. PHC-guided network care has emerged as a new process that contrasts with traditional approaches, which rely on fragmented, punctual and compensatory actions and produce simplified and segmented interventions in response to complex phenomena like violence. The Paradigm of Complexity interacts with the network care approach and, by articulating the multiple dimensions of the research phenomenon, contributes to its understanding. Qualitative research, based on the Paradigm of Complexity. Data were collected through minimal maps of the external institutional social network, focus groups and semi-structured interviews held with 41 PHC professionals in Brazil. The notions of comprehension and contextualisation as well as dialogical, recursive and holographic principles from complexity theory guided the data analysis. The two thematic categories that emerged revealed reduced institutional networks, with low-density and homogeneous bonds, which resulted in fragmented care in all stages of the care process. Although the network organisation of care for the families involved in FVACA is fundamental, the construction of these networks still represents a great challenge, as it requires the joint work of a multiprofessional team. For nursing to respond to the contemporary care demands in a contemplative and pertinent manner, a perspective and a reference framework need to be developed, leading to broader and more contextualised actions, with a multidimensional approach to the families and communities of which child and adolescent victims of violence are a part. © 2016 John Wiley & Sons Ltd.
Objective assessment of MPEG-2 video quality
NASA Astrophysics Data System (ADS)
Gastaldo, Paolo; Zunino, Rodolfo; Rovetta, Stefano
2002-07-01
The increasing use of video compression standards in broadcasting television systems has required, in recent years, the development of video quality measurements that take into account artifacts specifically caused by digital compression techniques. In this paper we present a methodology for the objective quality assessment of MPEG video streams by using circular back-propagation feedforward neural networks. Mapping neural networks can render nonlinear relationships between objective features and subjective judgments, thus avoiding any simplifying assumption on the complexity of the model. The neural network processes an instantaneous set of input values, and yields an associated estimate of perceived quality. Therefore, the neural-network approach turns objective quality assessment into adaptive modeling of subjective perception. The objective features used for the estimate are chosen according to the assessed relevance to perceived quality and are continuously extracted in real time from compressed video streams. The overall system mimics perception but does not require any analytical model of the underlying physical phenomenon. The capability to process compressed video streams represents an important advantage over existing approaches, like avoiding the stream-decoding process greatly enhances real-time performance. Experimental results confirm that the system provides satisfactory, continuous-time approximations for actual scoring curves concerning real test videos.
Quantum stochastic walks on networks for decision-making
NASA Astrophysics Data System (ADS)
Martínez-Martínez, Ismael; Sánchez-Burillo, Eduardo
2016-03-01
Recent experiments report violations of the classical law of total probability and incompatibility of certain mental representations when humans process and react to information. Evidence shows promise of a more general quantum theory providing a better explanation of the dynamics and structure of real decision-making processes than classical probability theory. Inspired by this, we show how the behavioral choice-probabilities can arise as the unique stationary distribution of quantum stochastic walkers on the classical network defined from Luce’s response probabilities. This work is relevant because (i) we provide a very general framework integrating the positive characteristics of both quantum and classical approaches previously in confrontation, and (ii) we define a cognitive network which can be used to bring other connectivist approaches to decision-making into the quantum stochastic realm. We model the decision-maker as an open system in contact with her surrounding environment, and the time-length of the decision-making process reveals to be also a measure of the process’ degree of interplay between the unitary and irreversible dynamics. Implementing quantum coherence on classical networks may be a door to better integrate human-like reasoning biases in stochastic models for decision-making.
Quantum stochastic walks on networks for decision-making
Martínez-Martínez, Ismael; Sánchez-Burillo, Eduardo
2016-01-01
Recent experiments report violations of the classical law of total probability and incompatibility of certain mental representations when humans process and react to information. Evidence shows promise of a more general quantum theory providing a better explanation of the dynamics and structure of real decision-making processes than classical probability theory. Inspired by this, we show how the behavioral choice-probabilities can arise as the unique stationary distribution of quantum stochastic walkers on the classical network defined from Luce’s response probabilities. This work is relevant because (i) we provide a very general framework integrating the positive characteristics of both quantum and classical approaches previously in confrontation, and (ii) we define a cognitive network which can be used to bring other connectivist approaches to decision-making into the quantum stochastic realm. We model the decision-maker as an open system in contact with her surrounding environment, and the time-length of the decision-making process reveals to be also a measure of the process’ degree of interplay between the unitary and irreversible dynamics. Implementing quantum coherence on classical networks may be a door to better integrate human-like reasoning biases in stochastic models for decision-making. PMID:27030372
Neuronal network models of epileptogenesis
Abdullahi, Aminu T.; Adamu, Lawan H.
2017-01-01
Epilepsy is a chronic neurological condition, following some trigger, transforming a normal brain to one that produces recurrent unprovoked seizures. In the search for the mechanisms that best explain the epileptogenic process, there is a growing body of evidence suggesting that the epilepsies are network level disorders. In this review, we briefly describe the concept of neuronal networks and highlight 2 methods used to analyse such networks. The first method, graph theory, is used to describe general characteristics of a network to facilitate comparison between normal and abnormal networks. The second, dynamic causal modelling, is useful in the analysis of the pathways of seizure spread. We concluded that the end results of the epileptogenic process are best understood as abnormalities of neuronal circuitry and not simply as molecular or cellular abnormalities. The network approach promises to generate new understanding and more targeted treatment of epilepsy. PMID:28416779
Satellite image analysis using neural networks
NASA Technical Reports Server (NTRS)
Sheldon, Roger A.
1990-01-01
The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.
2011-07-01
supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property
Alcohol expectancy multiaxial assessment: a memory network-based approach.
Goldman, Mark S; Darkes, Jack
2004-03-01
Despite several decades of activity, alcohol expectancy research has yet to merge measurement approaches with developing memory theory. This article offers an expectancy assessment approach built on a conceptualization of expectancy as an information processing network. The authors began with multidimensional scaling models of expectancy space, which served as heuristics to suggest confirmatory factor analytic dimensional models for entry into covariance structure predictive models. It is argued that this approach permits a relatively thorough assessment of the broad range of potential expectancy dimensions in a format that is very flexible in terms of instrument length and specificity versus breadth of focus. ((c) 2004 APA, all rights reserved)
Peleato, Nicolas M; Legge, Raymond L; Andrews, Robert C
2018-06-01
The use of fluorescence data coupled with neural networks for improved predictability of drinking water disinfection by-products (DBPs) was investigated. Novel application of autoencoders to process high-dimensional fluorescence data was related to common dimensionality reduction techniques of parallel factors analysis (PARAFAC) and principal component analysis (PCA). The proposed method was assessed based on component interpretability as well as for prediction of organic matter reactivity to formation of DBPs. Optimal prediction accuracies on a validation dataset were observed with an autoencoder-neural network approach or by utilizing the full spectrum without pre-processing. Latent representation by an autoencoder appeared to mitigate overfitting when compared to other methods. Although DBP prediction error was minimized by other pre-processing techniques, PARAFAC yielded interpretable components which resemble fluorescence expected from individual organic fluorophores. Through analysis of the network weights, fluorescence regions associated with DBP formation can be identified, representing a potential method to distinguish reactivity between fluorophore groupings. However, distinct results due to the applied dimensionality reduction approaches were observed, dictating a need for considering the role of data pre-processing in the interpretability of the results. In comparison to common organic measures currently used for DBP formation prediction, fluorescence was shown to improve prediction accuracies, with improvements to DBP prediction best realized when appropriate pre-processing and regression techniques were applied. The results of this study show promise for the potential application of neural networks to best utilize fluorescence EEM data for prediction of organic matter reactivity. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Drexler, Wendy
This design-based research case study applied a networked learning approach to a seventh grade science class at a public school in the southeastern United States. Students adapted emerging Web applications to construct personal learning environments for in-depth scientific inquiry of poisonous and venomous life forms. The personal learning environments constructed used Application Programming Interface (API) widgets to access, organize, and synthesize content from a number of educational Internet resources and social network connections. This study examined the nature of personal learning environments; the processes students go through during construction, and patterns that emerged. The project was documented from both an instructional and student-design perspective. Findings revealed that students applied the processes of: practicing digital responsibility; practicing digital literacy; organizing content; collaborating and socializing; and synthesizing and creating. These processes informed a model of the networked student that will serve as a framework for future instructional designs. A networked learning approach that incorporates these processes into future designs has implications for student learning, teacher roles, professional development, administrative policies, and delivery. This work is significant in that it shifts the focus from technology innovations based on tools to student empowerment based on the processes required to support learning. It affirms the need for greater attention to digital literacy and responsibility in K12 schools as well as consideration for those skills students will need to achieve success in the 21st century. The design-based research case study provides a set of design principles for teachers to follow when facilitating student construction of personal learning environments.
NASA Astrophysics Data System (ADS)
Jahangoshai Rezaee, Mustafa; Jozmaleki, Mehrdad; Valipour, Mahsa
2018-01-01
One of the main features to invest in stock exchange companies is their financial performance. On the other hand, conventional evaluation methods such as data envelopment analysis are not only a retrospective process, but are also a process, which are incomplete and ineffective approaches to evaluate the companies in the future. To remove this problem, it is required to plan an expert system for evaluating organizations when the online data are received from stock exchange market. This paper deals with an approach for predicting the online financial performance of companies when data are received in different time's intervals. The proposed approach is based on integrating fuzzy C-means (FCM), data envelopment analysis (DEA) and artificial neural network (ANN). The classical FCM method is unable to update the number of clusters and their members when the data are changed or the new data are received. Hence, this method is developed in order to make dynamic features for the number of clusters and clusters members in classical FCM. Then, DEA is used to evaluate DMUs by using financial ratios to provide targets in neural network. Finally, the designed network is trained and prepared for predicting companies' future performance. The data on Tehran Stock Market companies for six consecutive years (2007-2012) are used to show the abilities of the proposed approach.
Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach.
Park, Sa-Yoon; Park, Ji-Hun; Kim, Hyo-Su; Lee, Choong-Yeol; Lee, Hae-Jeung; Kang, Ki Sung; Kim, Chang-Eop
2018-01-01
Panax ginseng has been used since ancient times based on the traditional Asian medicine theory and clinical experiences, and currently, is one of the most popular herbs in the world. To date, most of the studies concerning P. ginseng have focused on specific mechanisms of action of individual constituents. However, in spite of many studies on the molecular mechanisms of P. ginseng , it still remains unclear how multiple active ingredients of P. ginseng interact with multiple targets simultaneously, giving the multidimensional effects on various conditions and diseases. In order to decipher the systems-level mechanism of multiple ingredients of P. ginseng , a novel approach is needed beyond conventional reductive analysis. We aim to review the systems-level mechanism of P. ginseng by adopting novel analytical framework-network pharmacology. Here, we constructed a compound-target network of P. ginseng using experimentally validated and machine learning-based prediction results. The targets of the network were analyzed in terms of related biological process, pathways, and diseases. The majority of targets were found to be related with primary metabolic process, signal transduction, nitrogen compound metabolic process, blood circulation, immune system process, cell-cell signaling, biosynthetic process, and neurological system process. In pathway enrichment analysis of targets, mainly the terms related with neural activity showed significant enrichment and formed a cluster. Finally, relative degrees analysis for the target-disease association of P. ginseng revealed several categories of related diseases, including respiratory, psychiatric, and cardiovascular diseases.
Efficient embedding of complex networks to hyperbolic space via their Laplacian
Alanis-Lobato, Gregorio; Mier, Pablo; Andrade-Navarro, Miguel A.
2016-01-01
The different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction. PMID:27445157
Efficient embedding of complex networks to hyperbolic space via their Laplacian
NASA Astrophysics Data System (ADS)
Alanis-Lobato, Gregorio; Mier, Pablo; Andrade-Navarro, Miguel A.
2016-07-01
The different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction.
Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease
NASA Astrophysics Data System (ADS)
Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M.
2018-04-01
Objective. Emerging evidence shows that cognitive deficits in Alzheimer’s disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. Approach. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Main results. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients’ functional brain networks and their cognitive scores. Significance. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.
Geocenter Coordinates from a Combined Processing of LEO and Ground-based GPS Observations
NASA Astrophysics Data System (ADS)
Männel, Benjamin; Rothacher, Markus
2017-04-01
The GPS observations provided by the global IGS (International GNSS Service) tracking network play an important role for the realization of a unique terrestrial reference frame that is accurate enough to allow the monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board Low Earth Orbiters (LEO) might help to further improve the realization of the terrestrial reference frame and the estimation of the geocenter coordinates, GPS satellite orbits and Earth rotation parameters (ERP). To assess the scope of improvement, we processed a network of 50 globally distributed and stable IGS-stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of three years (2010-2012). To ensure fully consistent solutions the zero-difference phase observations of the ground stations and LEOs were processed in a common least-square adjustment, estimating GPS orbits, LEO orbits, station coordinates, ERPs, site-specific tropospheric delays, satellite and receiver clocks and ambiguities. We present the significant impact of the individual LEOs and a combination of all four LEOs on geocenter coordinates derived by using a translational approach (also called network shift approach). In addition, we present geocenter coordinates derived from the same set of GPS observations by using a unified approach. This approach combines the translational and the degree-one approach by estimating translations and surface deformations simultaneously. Based on comparisons against each other and against geocenter time series derived by other techniques the effect of the selected approach is assessed.
Prediction of daily sea surface temperature using efficient neural networks
NASA Astrophysics Data System (ADS)
Patil, Kalpesh; Deo, Makaranad Chintamani
2017-04-01
Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.
Integrating cognitive and peripheral factors in predicting hearing-aid processing effectiveness
Kates, James M.; Arehart, Kathryn H.; Souza, Pamela E.
2013-01-01
Individual factors beyond the audiogram, such as age and cognitive abilities, can influence speech intelligibility and speech quality judgments. This paper develops a neural network framework for combining multiple subject factors into a single model that predicts speech intelligibility and quality for a nonlinear hearing-aid processing strategy. The nonlinear processing approach used in the paper is frequency compression, which is intended to improve the audibility of high-frequency speech sounds by shifting them to lower frequency regions where listeners with high-frequency loss have better hearing thresholds. An ensemble averaging approach is used for the neural network to avoid the problems associated with overfitting. Models are developed for two subject groups, one having nearly normal hearing and the other mild-to-moderate sloping losses. PMID:25669257
Generalized epidemic process on modular networks.
Chung, Kihong; Baek, Yongjoo; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong
2014-05-01
Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified using the finite-size scaling analysis and the crossings of the bimodality coefficient.
A network control concept for the 30/20 GHz communication system baseband processor
NASA Technical Reports Server (NTRS)
Sabourin, D. J.; Hay, R. E.
1982-01-01
The architecture and system design for a satellite-switched TDMA communication system employing on-board processing was developed by Motorola for NASA's Lewis Research Center. The system design is based on distributed processing techniques that provide extreme flexibility in the selection of a network control protocol without impacting the satellite or ground terminal hardware. A network control concept that includes system synchronization and allows burst synchronization to occur within the system operational requirement is described. This concept integrates the tracking and control links with the communication links via the baseband processor, resulting in an autonomous system operational approach.
Wood, Guilherme; Nuerk, Hans-Christoph; Moeller, Korbinian; Geppert, Barbara; Schnitker, Ralph; Weber, Jochen; Willmes, Klaus
2008-01-02
Number processing recruits a complex network of multiple numerical representations. Usually the components of this network are examined in a between-task approach with the disadvantage of relying upon different instructions, tasks, and inhomogeneous stimulus sets across different studies. A within-task approach may avoid these disadvantages and access involved numerical representations more specifically. In the present study we employed a within-task approach to investigate numerical representations activated in the number bisection task (NBT) using parametric rapid event-related fMRI. Participants were to judge whether the central number of a triplet was also its arithmetic mean (e.g. 23_26_29) or not (e.g. 23_25_29). Activation in the left inferior parietal cortex was associated with the deployment of arithmetic fact knowledge, while activation of the intraparietal cortex indicated more intense magnitude processing, instrumental aspects of calculation and integration of the base-10 structure of two-digit numbers. These results replicate evidence from the literature. Furthermore, activation in the dorsolateral and ventrolateral prefrontal cortex revealed mechanisms of feature monitoring and inhibition as well as allocation of cognitive resources recruited to solve a specific triplet. We conclude that the network of numerical representations should rather be studied in a within-task approach than in varying between-task approaches.
Managing the Process: The Intradepartmental Networks of Early-Career Academics
ERIC Educational Resources Information Center
Pifer, Meghan J.; Baker, Vicki L.
2013-01-01
This article relies on data from surveys and interviews to explore the networking behaviors and strategies of early-career faculty members within the contexts of their academic departments. Findings suggest that faculty members' approaches to interactions and relationships with colleagues may be conceptualized according to a continuum of…
Implementing and Investigating Distributed Leadership in a National University Network--SaMnet
ERIC Educational Resources Information Center
Sharma, Manjula D.; Rifkin, Will; Tzioumis, Vicky; Hill, Matthew; Johnson, Elizabeth; Varsavsky, Cristina; Jones, Susan; Beames, Stephanie; Crampton, Andrea; Zadnik, Marjan; Pyke, Simon
2017-01-01
The literature suggests that collaborative approaches to leadership, such as distributed leadership, are essential for supporting educational innovators in leading change in teaching in universities. This paper briefly describes the array of activities, processes and resources to support distributed leadership in the implementation of a network,…
2009-07-01
simulation. The pilot described in this paper used this two-step approach within a Define, Measure, Analyze, Improve, and Control ( DMAIC ) framework to...networks, BBN, Monte Carlo simulation, DMAIC , Six Sigma, business case 15. NUMBER OF PAGES 35 16. PRICE CODE 17. SECURITY CLASSIFICATION OF
Contingency diagrams as teaching tools.
Mattaini, M A
1995-01-01
Contingency diagrams are particularly effective teaching tools, because they provide a means for students to view the complexities of contingency networks present in natural and laboratory settings while displaying the elementary processes that constitute those networks. This paper sketches recent developments in this visualization technology and illustrates approaches for using contingency diagrams in teaching.
ERIC Educational Resources Information Center
Williamson, Ben
2015-01-01
This article examines the emergence of "digital governance" in public education in England. Drawing on and combining concepts from software studies, policy and political studies, it identifies some specific approaches to digital governance facilitated by network-based communications and database-driven information processing software…
The fidelity of Kepler eclipsing binary parameters inferred by the neural network
NASA Astrophysics Data System (ADS)
Holanda, N.; da Silva, J. R. P.
2018-04-01
This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 eclipsing binary detached obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cos ω and e sin ω, but orbital inclination is clearly underestimated in neural network tests.
The fidelity of Kepler eclipsing binary parameters inferred by the neural network
NASA Astrophysics Data System (ADS)
Holanda, N.; da Silva, J. R. P.
2018-07-01
This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 detached eclipsing binaries obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light-curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cosω and e sinω, but orbital inclination is clearly underestimated in neural network tests.
Epidemic spreading on interconnected networks.
Saumell-Mendiola, Anna; Serrano, M Ángeles; Boguñá, Marián
2012-08-01
Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.
Epidemic spreading on interconnected networks
NASA Astrophysics Data System (ADS)
Saumell-Mendiola, Anna; Serrano, M. Ángeles; Boguñá, Marián
2012-08-01
Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.
NASA Astrophysics Data System (ADS)
Aydin, Orhun; Caers, Jef Karel
2017-08-01
Faults are one of the building-blocks for subsurface modeling studies. Incomplete observations of subsurface fault networks lead to uncertainty pertaining to location, geometry and existence of faults. In practice, gaps in incomplete fault network observations are filled based on tectonic knowledge and interpreter's intuition pertaining to fault relationships. Modeling fault network uncertainty with realistic models that represent tectonic knowledge is still a challenge. Although methods that address specific sources of fault network uncertainty and complexities of fault modeling exists, a unifying framework is still lacking. In this paper, we propose a rigorous approach to quantify fault network uncertainty. Fault pattern and intensity information are expressed by means of a marked point process, marked Strauss point process. Fault network information is constrained to fault surface observations (complete or partial) within a Bayesian framework. A structural prior model is defined to quantitatively express fault patterns, geometries and relationships within the Bayesian framework. Structural relationships between faults, in particular fault abutting relations, are represented with a level-set based approach. A Markov Chain Monte Carlo sampler is used to sample posterior fault network realizations that reflect tectonic knowledge and honor fault observations. We apply the methodology to a field study from Nankai Trough & Kumano Basin. The target for uncertainty quantification is a deep site with attenuated seismic data with only partially visible faults and many faults missing from the survey or interpretation. A structural prior model is built from shallow analog sites that are believed to have undergone similar tectonics compared to the site of study. Fault network uncertainty for the field is quantified with fault network realizations that are conditioned to structural rules, tectonic information and partially observed fault surfaces. We show the proposed methodology generates realistic fault network models conditioned to data and a conceptual model of the underlying tectonics.
Identifying key nodes in multilayer networks based on tensor decomposition.
Wang, Dingjie; Wang, Haitao; Zou, Xiufen
2017-06-01
The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.
Identifying key nodes in multilayer networks based on tensor decomposition
NASA Astrophysics Data System (ADS)
Wang, Dingjie; Wang, Haitao; Zou, Xiufen
2017-06-01
The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.
NASA Astrophysics Data System (ADS)
Lindquist, E.; Pierce, J. L.
2013-12-01
Numerous frameworks and models exist for understanding the dynamics of the public policy process. A policy network approach considers how and why stakeholders and interests pay attention to and engage in policy problems, such as flood control or developing resilient and fire resistant landscapes. Variables considered in this approach include what the relationships are between these stakeholders, how they influence the process and outcomes, communication patterns within and between policy networks, and how networks change as a result of new information, science, or public interest and involvement with the problem. This approach is useful in understanding the creation of natural hazards policy as new information or situations, such as projected climate change impacts, influence and disrupt the policy process and networks. Two significant natural hazard policy networks exist in the semi-arid Treasure Valley region of Southwest Idaho, which includes the capitol city of Boise and the surrounding metropolitan area. Boise is situated along the Boise River and adjacent to steep foothills; this physiographic setting makes Boise vulnerable to both wildfires at the wildland-urban interface (WUI) and flooding. Both of these natural hazards have devastated the community in the past and floods and fires are projected to occur with more frequency in the future as a result of projected climate change impacts in the region. While both hazards are fairly well defined problems, there are stark differences lending themselves to comparisons across their respective networks. The WUI wildfire network is large and well developed, includes stakeholders from all levels of government, the private sector and property owner organizations, has well defined objectives, and conducts promotional and educational activities as part of its interaction with the public in order to increase awareness and garner support for its policies. The flood control policy network, however, is less defined, dominated by a few historically strong interests and is constrained (and supported) by the complex legal and management foundations of Western water rights, as well as federal and state regulatory practices for flood control and water provision. Overlap between these networks does occur as many of the stakeholders are the same, adding another dimension to the comparative approach presented here. It is the physical and natural sciences that bind these two networks, however, and create opportunities for convergence as hydrological inputs (snowmelt and rain) and summer drought simultaneously inform and impact efforts to increase resilience and reduce vulnerability and risk from both fire and flood. For example, early spring snowmelt can both increase risks of flooding and contribute to later severe fire conditions, and fires greatly increase the risk of catastrophic floods and debris flows in burned basins. Contributing to both of these potential hazards are changes in the climate in the region. This paper will present findings from a comparative study of these two policy networks and discuss the implications from how climate change is defined, understood, accepted, and integrated in both networks and the policy processes associated with these urban hazards.
Spreading dynamics on complex networks: a general stochastic approach.
Noël, Pierre-André; Allard, Antoine; Hébert-Dufresne, Laurent; Marceau, Vincent; Dubé, Louis J
2014-12-01
Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.
Neural correlates of the natural observation of an emotionally loaded video
Gonzalez-Santos, Leopoldo
2018-01-01
Studies based on a paradigm of free or natural viewing have revealed characteristics that allow us to know how the brain processes stimuli within a natural environment. This method has been little used to study brain function. With a connectivity approach, we examine the processing of emotions using an exploratory method to analyze functional magnetic resonance imaging (fMRI) data. This research describes our approach to modeling stress paradigms suitable for neuroimaging environments. We showed a short film (4.54 minutes) with high negative emotional valence and high arousal content to 24 healthy male subjects (36.42 years old; SD = 12.14) during fMRI. Independent component analysis (ICA) was used to identify networks based on spatial statistical independence. Through this analysis we identified the sensorimotor system and its influence on the dorsal attention and default-mode networks, which in turn have reciprocal activity and modulate networks described as emotional. PMID:29883494
Distributed Environment Control Using Wireless Sensor/Actuator Networks for Lighting Applications
Nakamura, Masayuki; Sakurai, Atsushi; Nakamura, Jiro
2009-01-01
We propose a decentralized algorithm to calculate the control signals for lights in wireless sensor/actuator networks. This algorithm uses an appropriate step size in the iterative process used for quickly computing the control signals. We demonstrate the accuracy and efficiency of this approach compared with the penalty method by using Mote-based mesh sensor networks. The estimation error of the new approach is one-eighth as large as that of the penalty method with one-fifth of its computation time. In addition, we describe our sensor/actuator node for distributed lighting control based on the decentralized algorithm and demonstrate its practical efficacy. PMID:22291525
A cloud-based data network approach for translational cancer research.
Xing, Wei; Tsoumakos, Dimitrios; Ghanem, Moustafa
2015-01-01
We develop a new model and associated technology for constructing and managing self-organizing data to support translational cancer research studies. We employ a semantic content network approach to address the challenges of managing cancer research data. Such data is heterogeneous, large, decentralized, growing and continually being updated. Moreover, the data originates from different information sources that may be partially overlapping, creating redundancies as well as contradictions and inconsistencies. Building on the advantages of elasticity of cloud computing, we deploy the cancer data networks on top of the CELAR Cloud platform to enable more effective processing and analysis of Big cancer data.
Infant joint attention, neural networks and social cognition.
Mundy, Peter; Jarrold, William
2010-01-01
Neural network models of attention can provide a unifying approach to the study of human cognitive and emotional development (Posner & Rothbart, 2007). In this paper we argue that a neural network approach to the infant development of joint attention can inform our understanding of the nature of human social learning, symbolic thought process and social cognition. At its most basic, joint attention involves the capacity to coordinate one's own visual attention with that of another person. We propose that joint attention development involves increments in the capacity to engage in simultaneous or parallel processing of information about one's own attention and the attention of other people. Infant practice with joint attention is both a consequence and an organizer of the development of a distributed and integrated brain network involving frontal and parietal cortical systems. This executive distributed network first serves to regulate the capacity of infants to respond to and direct the overt behavior of other people in order to share experience with others through the social coordination of visual attention. In this paper we describe this parallel and distributed neural network model of joint attention development and discuss two hypotheses that stem from this model. One is that activation of this distributed network during coordinated attention enhances the depth of information processing and encoding beginning in the first year of life. We also propose that with development, joint attention becomes internalized as the capacity to socially coordinate mental attention to internal representations. As this occurs the executive joint attention network makes vital contributions to the development of human symbolic thinking and social cognition. Copyright © 2010 Elsevier Ltd. All rights reserved.
Knapp, Bettina; Kaderali, Lars
2013-01-01
Perturbation experiments for example using RNA interference (RNAi) offer an attractive way to elucidate gene function in a high throughput fashion. The placement of hit genes in their functional context and the inference of underlying networks from such data, however, are challenging tasks. One of the problems in network inference is the exponential number of possible network topologies for a given number of genes. Here, we introduce a novel mathematical approach to address this question. We formulate network inference as a linear optimization problem, which can be solved efficiently even for large-scale systems. We use simulated data to evaluate our approach, and show improved performance in particular on larger networks over state-of-the art methods. We achieve increased sensitivity and specificity, as well as a significant reduction in computing time. Furthermore, we show superior performance on noisy data. We then apply our approach to study the intracellular signaling of human primary nave CD4(+) T-cells, as well as ErbB signaling in trastuzumab resistant breast cancer cells. In both cases, our approach recovers known interactions and points to additional relevant processes. In ErbB signaling, our results predict an important role of negative and positive feedback in controlling the cell cycle progression.
Combined expert system/neural networks method for process fault diagnosis
Reifman, Jaques; Wei, Thomas Y. C.
1995-01-01
A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.
Combined expert system/neural networks method for process fault diagnosis
Reifman, J.; Wei, T.Y.C.
1995-08-15
A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.
Networking Ethics: A Survey of Bioethics Networks Across the U.S.
Fausett, Jennifer Kleiner; Gilmore-Szott, Eleanor; Hester, D Micah
2016-06-01
Ethics networks have emerged over the last few decades as a mechanism for individuals and institutions over various regions, cities and states to converge on healthcare-related ethical issues. However, little is known about the development and nature of such networks. In an effort to fill the gap in the knowledge about such networks, a survey was conducted that evaluated the organizational structure, missions and functions, as well as the outcomes/products of ethics networks across the country. Eighteen established bioethics networks were identified via consensus of three search processes and were approached for participation. The participants completed a survey developed for the purposes of this study and distributed via SurveyMonkey. Responses were obtained from 10 of the 18 identified and approached networks regarding topic areas of: Network Composition and Catchment Areas; Network Funding and Expenses; Personnel; Services; and Missions and Accomplishments. Bioethics networks are designed primarily to bring ethics education and support to professionals and hospitals. They do so over specifically defined areas-states, regions, or communities-and each is concerned about how to stay financially healthy. At the same time, the networks work off different organizational models, either as stand-alone organizations or as entities within existing organizational structures.
NASA Astrophysics Data System (ADS)
Nicosia, Vincenzo; Skardal, Per Sebastian; Arenas, Alex; Latora, Vito
2017-03-01
We introduce a framework to intertwine dynamical processes of different nature, each with its own distinct network topology, using a multilayer network approach. As an example of collective phenomena emerging from the interactions of multiple dynamical processes, we study a model where neural dynamics and nutrient transport are bidirectionally coupled in such a way that the allocation of the transport process at one layer depends on the degree of synchronization at the other layer, and vice versa. We show numerically, and we prove analytically, that the multilayer coupling induces a spontaneous explosive synchronization and a heterogeneous distribution of allocations, otherwise not present in the two systems considered separately. Our framework can find application to other cases where two or more dynamical processes such as synchronization, opinion formation, information diffusion, or disease spreading, are interacting with each other.
Training trajectories by continuous recurrent multilayer networks.
Leistritz, L; Galicki, M; Witte, H; Kochs, E
2002-01-01
This paper addresses the problem of training trajectories by means of continuous recurrent neural networks whose feedforward parts are multilayer perceptrons. Such networks can approximate a general nonlinear dynamic system with arbitrary accuracy. The learning process is transformed into an optimal control framework where the weights are the controls to be determined. A training algorithm based upon a variational formulation of Pontryagin's maximum principle is proposed for such networks. Computer examples demonstrating the efficiency of the given approach are also presented.
NASA Astrophysics Data System (ADS)
Deng, Ning
In recent years, optical phase modulation has attracted much research attention in the field of fiber optic communications. Compared with the traditional optical intensity-modulated signal, one of the main merits of the optical phase-modulated signal is the better transmission performance. For optical phase modulation, in spite of the comprehensive study of its transmission performance, only a little research has been carried out in terms of its functions, applications and signal processing for future optical networks. These issues are systematically investigated in this thesis. The research findings suggest that optical phase modulation and its signal processing can greatly facilitate flexible network functions and high bandwidth which can be enjoyed by end users. In the thesis, the most important physical-layer technology, signal processing and multiplexing, are investigated with optical phase-modulated signals. Novel and advantageous signal processing and multiplexing approaches are proposed and studied. Experimental investigations are also reported and discussed in the thesis. Optical time-division multiplexing and demultiplexing. With the ever-increasing demand on communication bandwidth, optical time division multiplexing (OTDM) is an effective approach to upgrade the capacity of each wavelength channel in current optical systems. OTDM multiplexing can be simply realized, however, the demultiplexing requires relatively complicated signal processing and stringent timing control, and thus hinders its practicability. To tackle this problem, in this thesis a new OTDM scheme with hybrid DPSK and OOK signals is proposed. Experimental investigation shows this scheme can greatly enhance the demultiplexing timing misalignment and improve the demultiplexing performance, and thus make OTDM more practical and cost effective. All-optical signal processing. In current and future optical communication systems and networks, the data rate per wavelength has been approaching the speed limitation of electronics. Thus, all-optical signal processing techniques are highly desirable to support the necessary optical switching functionalities in future ultrahigh-speed optical packet-switching networks. To cope with the wide use of optical phase-modulated signals, in the thesis, an all-optical logic for DPSK or PSK input signals is developed, for the first time. Based on four-wave mixing in semiconductor optical amplifier, the structure of the logic gate is simple, compact, and capable of supporting ultrafast operation. In addition to the general logic processing, a simple label recognition scheme, as a specific signal processing function, is proposed for phase-modulated label signals. The proposed scheme can recognize any incoming label pattern according to the local pattern, and is potentially capable of handling variable-length label patterns. Optical access network with multicast overlay and centralized light sources. In the arena of optical access networks, wavelength division multiplexing passive optical network (WDM-PON) is a promising technology to deliver high-speed data traffic. However, most of proposed WDM-PONs only support conventional point-to-point service, and cannot meet the requirement of increasing demand on broadcast and multicast service. In this thesis, a simple network upgrade is proposed based on the traditional PON architecture to support both point-to-point and multicast service. In addition, the two service signals are modulated on the same lightwave carrier. The upstream signal is also remodulated on the same carrier at the optical network unit, which can significantly relax the requirement on wavelength management at the network unit.
Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger
2017-01-01
Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.
Parameterization of Keeling's network generation algorithm.
Badham, Jennifer; Abbass, Hussein; Stocker, Rob
2008-09-01
Simulation is increasingly being used to examine epidemic behaviour and assess potential management options. The utility of the simulations rely on the ability to replicate those aspects of the social structure that are relevant to epidemic transmission. One approach is to generate networks with desired social properties. Recent research by Keeling and his colleagues has generated simulated networks with a range of properties, and examined the impact of these properties on epidemic processes occurring over the network. However, published work has included only limited analysis of the algorithm itself and the way in which the network properties are related to the algorithm parameters. This paper identifies some relationships between the algorithm parameters and selected network properties (mean degree, degree variation, clustering coefficient and assortativity). Our approach enables users of the algorithm to efficiently generate a network with given properties, thereby allowing realistic social networks to be used as the basis of epidemic simulations. Alternatively, the algorithm could be used to generate social networks with a range of property values, enabling analysis of the impact of these properties on epidemic behaviour.
Seeing the forest for the trees: Networked workstations as a parallel processing computer
NASA Technical Reports Server (NTRS)
Breen, J. O.; Meleedy, D. M.
1992-01-01
Unlike traditional 'serial' processing computers in which one central processing unit performs one instruction at a time, parallel processing computers contain several processing units, thereby, performing several instructions at once. Many of today's fastest supercomputers achieve their speed by employing thousands of processing elements working in parallel. Few institutions can afford these state-of-the-art parallel processors, but many already have the makings of a modest parallel processing system. Workstations on existing high-speed networks can be harnessed as nodes in a parallel processing environment, bringing the benefits of parallel processing to many. While such a system can not rival the industry's latest machines, many common tasks can be accelerated greatly by spreading the processing burden and exploiting idle network resources. We study several aspects of this approach, from algorithms to select nodes to speed gains in specific tasks. With ever-increasing volumes of astronomical data, it becomes all the more necessary to utilize our computing resources fully.
NASA Astrophysics Data System (ADS)
Bashiri, Mahdi; Farshbaf-Geranmayeh, Amir; Mogouie, Hamed
2013-11-01
In this paper, a new method is proposed to optimize a multi-response optimization problem based on the Taguchi method for the processes where controllable factors are the smaller-the-better (STB)-type variables and the analyzer desires to find an optimal solution with smaller amount of controllable factors. In such processes, the overall output quality of the product should be maximized while the usage of the process inputs, the controllable factors, should be minimized. Since all possible combinations of factors' levels, are not considered in the Taguchi method, the response values of the possible unpracticed treatments are estimated using the artificial neural network (ANN). The neural network is tuned by the central composite design (CCD) and the genetic algorithm (GA). Then data envelopment analysis (DEA) is applied for determining the efficiency of each treatment. Although the important issue for implementation of DEA is its philosophy, which is maximization of outputs versus minimization of inputs, this important issue has been neglected in previous similar studies in multi-response problems. Finally, the most efficient treatment is determined using the maximin weight model approach. The performance of the proposed method is verified in a plastic molding process. Moreover a sensitivity analysis has been done by an efficiency estimator neural network. The results show efficiency of the proposed approach.
SNMP-SI: A Network Management Tool Based on Slow Intelligence System Approach
NASA Astrophysics Data System (ADS)
Colace, Francesco; de Santo, Massimo; Ferrandino, Salvatore
The last decade has witnessed an intense spread of computer networks that has been further accelerated with the introduction of wireless networks. Simultaneously with, this growth has increased significantly the problems of network management. Especially in small companies, where there is no provision of personnel assigned to these tasks, the management of such networks is often complex and malfunctions can have significant impacts on their businesses. A possible solution is the adoption of Simple Network Management Protocol. Simple Network Management Protocol (SNMP) is a standard protocol used to exchange network management information. It is part of the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite. SNMP provides a tool for network administrators to manage network performance, find and solve network problems, and plan for network growth. SNMP has a big disadvantage: its simple design means that the information it deals with is neither detailed nor well organized enough to deal with the expanding modern networking requirements. Over the past years much efforts has been given to improve the lack of Simple Network Management Protocol and new frameworks has been developed: A promising approach involves the use of Ontology. This is the starting point of this paper where a novel approach to the network management based on the use of the Slow Intelligence System methodologies and Ontology based techniques is proposed. Slow Intelligence Systems is a general-purpose systems characterized by being able to improve performance over time through a process involving enumeration, propagation, adaptation, elimination and concentration. Therefore, the proposed approach aims to develop a system able to acquire, according to an SNMP standard, information from the various hosts that are in the managed networks and apply solutions in order to solve problems. To check the feasibility of this model first experimental results in a real scenario are showed.
Neural Network Based Modeling and Analysis of LP Control Surface Allocation
NASA Technical Reports Server (NTRS)
Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen
2003-01-01
This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.
A neural network approach for the blind deconvolution of turbulent flows
NASA Astrophysics Data System (ADS)
Maulik, R.; San, O.
2017-11-01
We present a single-layer feedforward artificial neural network architecture trained through a supervised learning approach for the deconvolution of flow variables from their coarse grained computations such as those encountered in large eddy simulations. We stress that the deconvolution procedure proposed in this investigation is blind, i.e. the deconvolved field is computed without any pre-existing information about the filtering procedure or kernel. This may be conceptually contrasted to the celebrated approximate deconvolution approaches where a filter shape is predefined for an iterative deconvolution process. We demonstrate that the proposed blind deconvolution network performs exceptionally well in the a-priori testing of both two-dimensional Kraichnan and three-dimensional Kolmogorov turbulence and shows promise in forming the backbone of a physics-augmented data-driven closure for the Navier-Stokes equations.
Prediction of the properties anhydrite construction mixtures based on neural network approach
NASA Astrophysics Data System (ADS)
Fedorchuk, Y. M.; Zamyatin, N. V.; Smirnov, G. V.; Rusina, O. N.; Sadenova, M. A.
2017-08-01
The article considered the question of applying the backstop modeling mechanism from the components of anhydride mixtures in the process of managing the technological processes of receiving construction products which based on fluoranhydrite.
Modelling Peri-Perceptual Brain Processes in a Deep Learning Spiking Neural Network Architecture.
Gholami Doborjeh, Zohreh; Kasabov, Nikola; Gholami Doborjeh, Maryam; Sumich, Alexander
2018-06-11
Familiarity of marketing stimuli may affect consumer behaviour at a peri-perceptual processing level. The current study introduces a method for deep learning of electroencephalogram (EEG) data using a spiking neural network (SNN) approach that reveals the complexity of peri-perceptual processes of familiarity. The method is applied to data from 20 participants viewing familiar and unfamiliar logos. The results support the potential of SNN models as novel tools in the exploration of peri-perceptual mechanisms that respond differentially to familiar and unfamiliar stimuli. Specifically, the activation pattern of the time-locked response identified by the proposed SNN model at approximately 200 milliseconds post-stimulus suggests greater connectivity and more widespread dynamic spatio-temporal patterns for familiar than unfamiliar logos. The proposed SNN approach can be applied to study other peri-perceptual or perceptual brain processes in cognitive and computational neuroscience.
Foo, Mathias; Kim, Jongrae; Sawlekar, Rucha; Bates, Declan G
2017-04-06
Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.
Quality of Information Approach to Improving Source Selection in Tactical Networks
2017-02-01
consider the performance of this process based on metrics relating to quality of information: accuracy, timeliness, completeness and reliability. These...that are indicators of that the network is meeting these quality requirements. We study effective data rate, social distance, link integrity and the...utility of information as metrics within a multi-genre network to determine the quality of information of its available sources. This paper proposes a
Sanction Effectiveness in Iran: A Network Optimization Approach
2012-10-01
with a social network involving the same entities. Closeness centrality could provide insight into the accessibility of the knowledge to each of these...demander, and ultimately until the production process continues. If temporal estimates of knowledge diffusion along the social network were available, one...Conference. [10] Klebnikov, Paul. " Millionaire Mullahs." Forbes. Forbes Magazine, 21 July 2003. Web. http://www.forbes.com/forbes/2003/0721/056_3.html. [11
Wong, Yung-Hao; Wu, Chia-Chou; Wu, John Chung-Che; Lai, Hsien-Yong; Chen, Kai-Yun; Jheng, Bo-Ren; Chen, Mien-Cheng; Chang, Tzu-Hao; Chen, Bor-Sen
2016-01-01
Traumatic brain injury (TBI) is a primary injury caused by external physical force and also a secondary injury caused by biological processes such as metabolic, cellular, and other molecular events that eventually lead to brain cell death, tissue and nerve damage, and atrophy. It is a common disease process (as opposed to an event) that causes disabilities and high death rates. In order to treat all the repercussions of this injury, treatment becomes increasingly complex and difficult throughout the evolution of a TBI. Using high-throughput microarray data, we developed a systems biology approach to explore potential molecular mechanisms at four time points post-TBI (4, 8, 24, and 72 h), using a controlled cortical impact (CCI) model. We identified 27, 50, 48, and 59 significant proteins as network biomarkers at these four time points, respectively. We present their network structures to illustrate the protein–protein interactions (PPIs). We also identified UBC (Ubiquitin C), SUMO1, CDKN1A (cyclindependent kinase inhibitor 1A), and MYC as the core network biomarkers at the four time points, respectively. Using the functional analytical tool MetaCore™, we explored regulatory mechanisms and biological processes and conducted a statistical analysis of the four networks. The analytical results support some recent findings regarding TBI and provide additional guidance and directions for future research. PMID:26861311
Characterizing Cancer Drug Response and Biological Correlates: A Geometric Network Approach.
Pouryahya, Maryam; Oh, Jung Hun; Mathews, James C; Deasy, Joseph O; Tannenbaum, Allen R
2018-04-23
In the present work, we apply a geometric network approach to study common biological features of anticancer drug response. We use for this purpose the panel of 60 human cell lines (NCI-60) provided by the National Cancer Institute. Our study suggests that mathematical tools for network-based analysis can provide novel insights into drug response and cancer biology. We adopted a discrete notion of Ricci curvature to measure, via a link between Ricci curvature and network robustness established by the theory of optimal mass transport, the robustness of biological networks constructed with a pre-treatment gene expression dataset and coupled the results with the GI50 response of the cell lines to the drugs. Based on the resulting drug response ranking, we assessed the impact of genes that are likely associated with individual drug response. For genes identified as important, we performed a gene ontology enrichment analysis using a curated bioinformatics database which resulted in biological processes associated with drug response across cell lines and tissue types which are plausible from the point of view of the biological literature. These results demonstrate the potential of using the mathematical network analysis in assessing drug response and in identifying relevant genomic biomarkers and biological processes for precision medicine.
Queueing Network Models for Parallel Processing of Task Systems: an Operational Approach
NASA Technical Reports Server (NTRS)
Mak, Victor W. K.
1986-01-01
Computer performance modeling of possibly complex computations running on highly concurrent systems is considered. Earlier works in this area either dealt with a very simple program structure or resulted in methods with exponential complexity. An efficient procedure is developed to compute the performance measures for series-parallel-reducible task systems using queueing network models. The procedure is based on the concept of hierarchical decomposition and a new operational approach. Numerical results for three test cases are presented and compared to those of simulations.
Ho, Hsiang; Milenković, Tijana; Memisević, Vesna; Aruri, Jayavani; Przulj, Natasa; Ganesan, Anand K
2010-06-15
RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis. In this study, we utilize a PPI network topology-based approach to identify targets within our RNAi dataset that may be components of known melanogenesis regulatory pathways. Our computational approach identifies a set of screen targets that cluster topologically in a human PPI network with the known pigment regulator Endothelin receptor type B (EDNRB). Validation studies reveal that these genes impact pigment production and EDNRB signaling in pigmented melanoma cells (MNT-1) and normal melanocytes. We present an approach that identifies novel components of well-characterized biological pathways from functional genomics datasets that could not have been identified by existing statistical and computational approaches.
2010-01-01
Background RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis. Results In this study, we utilize a PPI network topology-based approach to identify targets within our RNAi dataset that may be components of known melanogenesis regulatory pathways. Our computational approach identifies a set of screen targets that cluster topologically in a human PPI network with the known pigment regulator Endothelin receptor type B (EDNRB). Validation studies reveal that these genes impact pigment production and EDNRB signaling in pigmented melanoma cells (MNT-1) and normal melanocytes. Conclusions We present an approach that identifies novel components of well-characterized biological pathways from functional genomics datasets that could not have been identified by existing statistical and computational approaches. PMID:20550706
Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service
Bao, Shunxing; Plassard, Andrew J.; Landman, Bennett A.; Gokhale, Aniruddha
2017-01-01
Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based “medical image processing-as-a-service” offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop’s distributed file system. Despite this promise, HBase’s load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split policy, and nearly a six-fold improvement over a commonly available network file system (NFS) approach even for relatively small file sets. Moreover, file access latency is lower than network attached storage. PMID:28884169
Reconstruction of the temporal signaling network in Salmonella-infected human cells.
Budak, Gungor; Eren Ozsoy, Oyku; Aydin Son, Yesim; Can, Tolga; Tuncbag, Nurcan
2015-01-01
Salmonella enterica is a bacterial pathogen that usually infects its host through food sources. Translocation of the pathogen proteins into the host cells leads to changes in the signaling mechanism either by activating or inhibiting the host proteins. Given that the bacterial infection modifies the response network of the host, a more coherent view of the underlying biological processes and the signaling networks can be obtained by using a network modeling approach based on the reverse engineering principles. In this work, we have used a published temporal phosphoproteomic dataset of Salmonella-infected human cells and reconstructed the temporal signaling network of the human host by integrating the interactome and the phosphoproteomic dataset. We have combined two well-established network modeling frameworks, the Prize-collecting Steiner Forest (PCSF) approach and the Integer Linear Programming (ILP) based edge inference approach. The resulting network conserves the information on temporality, direction of interactions, while revealing hidden entities in the signaling, such as the SNARE binding, mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways. Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3δ, Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling network although they were not present in the initial phosphoproteomic data. We believe that integrated approaches, such as the one presented here, have a high potential for the identification of clinical targets in infectious diseases, especially in the Salmonella infections.
Link-prediction to tackle the boundary specification problem in social network surveys
De Wilde, Philippe; Buarque de Lima-Neto, Fernando
2017-01-01
Diffusion processes in social networks often cause the emergence of global phenomena from individual behavior within a society. The study of those global phenomena and the simulation of those diffusion processes frequently require a good model of the global network. However, survey data and data from online sources are often restricted to single social groups or features, such as age groups, single schools, companies, or interest groups. Hence, a modeling approach is required that extrapolates the locally restricted data to a global network model. We tackle this Missing Data Problem using Link-Prediction techniques from social network research, network generation techniques from the area of Social Simulation, as well as a combination of both. We found that techniques employing less information may be more adequate to solve this problem, especially when data granularity is an issue. We validated the network models created with our techniques on a number of real-world networks, investigating degree distributions as well as the likelihood of links given the geographical distance between two nodes. PMID:28426826
Coevolutionary dynamics of opinion propagation and social balance: The key role of small-worldness
NASA Astrophysics Data System (ADS)
Chen, Yan; Chen, Lixue; Sun, Xian; Zhang, Kai; Zhang, Jie; Li, Ping
2014-03-01
The propagation of various opinions in social networks, which influences human inter-relationships and even social structure, and hence is a most important part of social life. We have incorporated social balance into opinion propagation in social networks are influenced by social balance. The edges in networks can represent both friendly or hostile relations, and change with the opinions of individual nodes. We introduce a model to characterize the coevolutionary dynamics of these two dynamical processes on Watts-Strogatz (WS) small-world network. We employ two distinct evolution rules (i) opinion renewal; and (ii) relation adjustment. By changing the rewiring probability, and thus the small-worldness of the WS network, we found that the time for the system to reach balanced states depends critically on both the average path length and clustering coefficient of the network, which is different than other networked process like epidemic spreading. In particular, the system equilibrates most quickly when the underlying network demonstrates strong small-worldness, i.e., small average path lengths and large clustering coefficient. We also find that opinion clusters emerge in the process of the network approaching the global equilibrium, and a measure of global contrariety is proposed to quantify the balanced state of a social network.
A Multi-Agent System Architecture for Sensor Networks
Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo
2009-01-01
The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work. PMID:22303172
A multi-agent system architecture for sensor networks.
Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo
2009-01-01
The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.
Multiple neural network approaches to clinical expert systems
NASA Astrophysics Data System (ADS)
Stubbs, Derek F.
1990-08-01
We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results
Driving the brain towards creativity and intelligence: A network control theory analysis.
Kenett, Yoed N; Medaglia, John D; Beaty, Roger E; Chen, Qunlin; Betzel, Richard F; Thompson-Schill, Sharon L; Qiu, Jiang
2018-01-04
High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, including cognitive control processes. Recent neurocognitive research on these constructs highlight the importance of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control contributes to creativity and intelligence? To address this question, we apply a computational network control theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that intelligence is related to the ability to "drive" the brain system into easy to reach neural states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also find that creativity is related to the ability to "drive" the brain system into difficult to reach states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas. Furthermore, we found that different facets of creativity-fluency, flexibility, and originality-relate to generally similar but not identical network controllability processes. We relate our findings to general theories on intelligence and creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nashiro, Kaoru; Sakaki, Michiko; Braskie, Meredith N; Mather, Mara
2017-06-01
Correlations in activity across disparate brain regions during rest reveal functional networks in the brain. Although previous studies largely agree that there is an age-related decline in the "default mode network," how age affects other resting-state networks, such as emotion-related networks, is still controversial. Here we used a dual-regression approach to investigate age-related alterations in resting-state networks. The results revealed age-related disruptions in functional connectivity in all 5 identified cognitive networks, namely the default mode network, cognitive-auditory, cognitive-speech (or speech-related somatosensory), and right and left frontoparietal networks, whereas such age effects were not observed in the 3 identified emotion networks. In addition, we observed age-related decline in functional connectivity in 3 visual and 3 motor/visuospatial networks. Older adults showed greater functional connectivity in regions outside 4 out of the 5 identified cognitive networks, consistent with the dedifferentiation effect previously observed in task-based functional magnetic resonance imaging studies. Both reduced within-network connectivity and increased out-of-network connectivity were correlated with poor cognitive performance, providing potential biomarkers for cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.
Identifying emerging research collaborations and networks: method development.
Dozier, Ann M; Martina, Camille A; O'Dell, Nicole L; Fogg, Thomas T; Lurie, Stephen J; Rubinstein, Eric P; Pearson, Thomas A
2014-03-01
Clinical and translational research is a multidisciplinary, collaborative team process. To evaluate this process, we developed a method to document emerging research networks and collaborations in our medical center to describe their productivity and viability over time. Using an e-mail survey, sent to 1,620 clinical and basic science full- and part-time faculty members, respondents identified their research collaborators. Initial analyses, using Pajek software, assessed the feasibility of using social network analysis (SNA) methods with these data. Nearly 400 respondents identified 1,594 collaborators across 28 medical center departments resulting in 309 networks with 5 or more collaborators. This low-burden approach yielded a rich data set useful for evaluation using SNA to: (a) assess networks at several levels of the organization, including intrapersonal (individuals), interpersonal (social), organizational/institutional leadership (tenure and promotion), and physical/environmental (spatial proximity) and (b) link with other data to assess the evolution of these networks.
Exploring the patterns and evolution of self-organized urban street networks through modeling
NASA Astrophysics Data System (ADS)
Rui, Yikang; Ban, Yifang; Wang, Jiechen; Haas, Jan
2013-03-01
As one of the most important subsystems in cities, urban street networks have recently been well studied by using the approach of complex networks. This paper proposes a growing model for self-organized urban street networks. The model involves a competition among new centers with different values of attraction radius and a local optimal principle of both geometrical and topological factors. We find that with the model growth, the local optimization in the connection process and appropriate probability for the loop construction well reflect the evolution strategy in real-world cities. Moreover, different values of attraction radius in centers competition process lead to morphological change in patterns including urban network, polycentric and monocentric structures. The model succeeds in reproducing a large diversity of road network patterns by varying parameters. The similarity between the properties of our model and empirical results implies that a simple universal growth mechanism exists in self-organized cities.
Social network analysis for program implementation.
Valente, Thomas W; Palinkas, Lawrence A; Czaja, Sara; Chu, Kar-Hai; Brown, C Hendricks
2015-01-01
This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach.
Social Network Analysis for Program Implementation
Valente, Thomas W.; Palinkas, Lawrence A.; Czaja, Sara; Chu, Kar-Hai; Brown, C. Hendricks
2015-01-01
This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach. PMID:26110842
Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus
2014-01-01
The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868
Multiprocessor graphics computation and display using transputers
NASA Technical Reports Server (NTRS)
Ellis, Graham K.
1988-01-01
A package of two-dimensional graphics routines was developed to run on a transputer-based parallel processing system. These routines were designed to enable applications programmers to easily generate and display results from the transputer network in a graphic format. The graphics procedures were designed for the lowest possible network communication overhead for increased performance. The routines were designed for ease of use and to present an intuitive approach to generating graphics on the transputer parallel processing system.
Local residue coupling strategies by neural network for InSAR phase unwrapping
NASA Astrophysics Data System (ADS)
Refice, Alberto; Satalino, Giuseppe; Chiaradia, Maria T.
1997-12-01
Phase unwrapping is one of the toughest problems in interferometric SAR processing. The main difficulties arise from the presence of point-like error sources, called residues, which occur mainly in close couples due to phase noise. We present an assessment of a local approach to the resolution of these problems by means of a neural network. Using a multi-layer perceptron, trained with the back- propagation scheme on a series of simulated phase images, fashion the best pairing strategies for close residue couples. Results show that god efficiencies and accuracies can have been obtained, provided a sufficient number of training examples are supplied. Results show that good efficiencies and accuracies can be obtained, provided a sufficient number of training examples are supplied. The technique is tested also on real SAR ERS-1/2 tandem interferometric images of the Matera test site, showing a good reduction of the residue density. The better results obtained by use of the neural network as far as local criteria are adopted appear justified given the probabilistic nature of the noise process on SAR interferometric phase fields and allows to outline a specifically tailored implementation of the neural network approach as a very fast pre-processing step intended to decrease the residue density and give sufficiently clean images to be processed further by more conventional techniques.
Sentence alignment using feed forward neural network.
Fattah, Mohamed Abdel; Ren, Fuji; Kuroiwa, Shingo
2006-12-01
Parallel corpora have become an essential resource for work in multi lingual natural language processing. However, sentence aligned parallel corpora are more efficient than non-aligned parallel corpora for cross language information retrieval and machine translation applications. In this paper, we present a new approach to align sentences in bilingual parallel corpora based on feed forward neural network classifier. A feature parameter vector is extracted from the text pair under consideration. This vector contains text features such as length, punctuate score, and cognate score values. A set of manually prepared training data has been assigned to train the feed forward neural network. Another set of data was used for testing. Using this new approach, we could achieve an error reduction of 60% over length based approach when applied on English-Arabic parallel documents. Moreover this new approach is valid for any language pair and it is quite flexible approach since the feature parameter vector may contain more/less or different features than that we used in our system such as lexical match feature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrada, J.J.; Osborne-Lee, I.W.; Grizzaffi, P.A.
Expert systems are known to be useful in capturing expertise and applying knowledge to chemical engineering problems such as diagnosis, process control, process simulation, and process advisory. However, expert system applications are traditionally limited to knowledge domains that are heuristic and involve only simple mathematics. Neural networks, on the other hand, represent an emerging technology capable of rapid recognition of patterned behavior without regard to mathematical complexity. Although useful in problem identification, neural networks are not very efficient in providing in-depth solutions and typically do not promote full understanding of the problem or the reasoning behind its solutions. Hence, applicationsmore » of neural networks have certain limitations. This paper explores the potential for expanding the scope of chemical engineering areas where neural networks might be utilized by incorporating expert systems and neural networks into the same application, a process called hybridization. In addition, hybrid applications are compared with those using more traditional approaches, the results of the different applications are analyzed, and the feasibility of converting the preliminary prototypes described herein into useful final products is evaluated. 12 refs., 8 figs.« less
NASA Astrophysics Data System (ADS)
Di Lorenzo, R.; Ingarao, G.; Fonti, V.
2007-05-01
The crucial task in the prevention of ductile fracture is the availability of a tool for the prediction of such defect occurrence. The technical literature presents a wide investigation on this topic and many contributions have been given by many authors following different approaches. The main class of approaches regards the development of fracture criteria: generally, such criteria are expressed by determining a critical value of a damage function which depends on stress and strain paths: ductile fracture is assumed to occur when such critical value is reached during the analysed process. There is a relevant drawback related to the utilization of ductile fracture criteria; in fact each criterion usually has good performances in the prediction of fracture for particular stress - strain paths, i.e. it works very well for certain processes but may provide no good results for other processes. On the other hand, the approaches based on damage mechanics formulation are very effective from a theoretical point of view but they are very complex and their proper calibration is quite difficult. In this paper, two different approaches are investigated to predict fracture occurrence in cold forming operations. The final aim of the proposed method is the achievement of a tool which has a general reliability i.e. it is able to predict fracture for different forming processes. The proposed approach represents a step forward within a research project focused on the utilization of innovative predictive tools for ductile fracture. The paper presents a comparison between an artificial neural network design procedure and an approach based on statistical tools; both the approaches were aimed to predict fracture occurrence/absence basing on a set of stress and strain paths data. The proposed approach is based on the utilization of experimental data available, for a given material, on fracture occurrence in different processes. More in detail, the approach consists in the analysis of experimental tests in which fracture occurs followed by the numerical simulations of such processes in order to track the stress-strain paths in the workpiece region where fracture is expected. Such data are utilized to build up a proper data set which was utilized both to train an artificial neural network and to perform a statistical analysis aimed to predict fracture occurrence. The developed statistical tool is properly designed and optimized and is able to recognize the fracture occurrence. The reliability and predictive capability of the statistical method were compared with the ones obtained from an artificial neural network developed to predict fracture occurrence. Moreover, the approach is validated also in forming processes characterized by a complex fracture mechanics.
Smooth function approximation using neural networks.
Ferrari, Silvia; Stengel, Robert F
2005-01-01
An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.
Supply Chain Engineering and the Use of a Supporting Knowledge Management Application
NASA Astrophysics Data System (ADS)
Laakmann, Frank
The future competition in markets will happen between logistics networks and no longer between enterprises. A new approach for supporting the engineering of logistics networks is developed by this research as a part of the Collaborative Research Centre (SFB) 559: "Modeling of Large Networks in Logistics" at the University of Dortmund together with the Fraunhofer-Institute of Material Flow and Logistics founded by Deutsche Forschungsgemeinschaft (DFG). Based on a reference model for logistics processes, the process chain model, a guideline for logistics engineers is developed to manage the different types of design tasks of logistics networks. The technical background of this solution is a collaborative knowledge management application. This paper will introduce how new Internet-based technologies support supply chain design projects.
Deciphering the Interdependence between Ecological and Evolutionary Networks.
Melián, Carlos J; Matthews, Blake; de Andreazzi, Cecilia S; Rodríguez, Jorge P; Harmon, Luke J; Fortuna, Miguel A
2018-05-24
Biological systems consist of elements that interact within and across hierarchical levels. For example, interactions among genes determine traits of individuals, competitive and cooperative interactions among individuals influence population dynamics, and interactions among species affect the dynamics of communities and ecosystem processes. Such systems can be represented as hierarchical networks, but can have complex dynamics when interdependencies among levels of the hierarchy occur. We propose integrating ecological and evolutionary processes in hierarchical networks to explore interdependencies in biological systems. We connect gene networks underlying predator-prey trait distributions to food webs. Our approach addresses longstanding questions about how complex traits and intraspecific trait variation affect the interdependencies among biological levels and the stability of meta-ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Nesic, Sasa; Gasevic, Dragan; Jazayeri, Mehdi; Landoni, Monica
2011-01-01
Semantic web technologies have been applied to many aspects of learning content authoring including semantic annotation, semantic search, dynamic assembly, and personalization of learning content. At the same time, social networking services have started to play an important role in the authoring process by supporting authors' collaborative…
Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems
Stover, Lori J.; Nair, Niketh S.; Faeder, James R.
2014-01-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. PMID:24699269
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R
2014-04-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.
Casula, Giuseppe; Dubbini, Marco; Galeandro, Angelo
2007-01-01
A semi-permanent GPS network of about 30 vertices has been installed at Terra Nova Bay (TNB) near Ross Sea in Antarctica. A permanent GPS station TNB1 based on an Ashtech Z-XII dual frequency P-code GPS receiver with ASH700936D_M Choke Ring Antenna has been mounted on a reinforced concrete pillar built on bedrock since October 1998 and has recorded continuously up to the present. The semi-permanent network has been routinely surveyed every summer using high quality dual frequency GPS receivers with 24 hour sessions at 15 sec rate; data, metadata and solutions will be available to the scientific community at (http://www.geodant.unimore.it). We present the results of a distributed session approach applied to processing GPS data of the TNB GPS network, and based on Gamit/Globk 10.2-3 GPS analysis software. The results are in good agreement with other authors' computations and with many of the theoretical models.
Dombrowski, Kirk; Sittner, Kelley; Crawford, Devan; Welch-Lazoritz, Melissa; Habecker, Patrick; Khan, Bilal
2016-01-01
During the United States economic recession of 2008–2011, the number of homeless and unstably housed people in the United States increased considerably. Homeless adult women and unaccompanied homeless youth make up the most marginal segments of this population. Because homeless individuals are a hard to reach population, research into these marginal groups has traditionally been a challenge for researchers interested in substance abuse and mental health. Network analysis techniques and research strategies offer means for dealing with traditional challenges such as missing sampling frames, variation in definitions of homelessness and study inclusion criteria, and enumeration/population estimation procedures. This review focuses on the need for, and recent steps toward, solutions to these problems that involve network science strategies for data collection and analysis. Research from a range of fields is reviewed and organized according to a new stress process framework aimed at understanding how homeless status interacts with issues related to substance abuse and mental health. Three types of network innovation are discussed: network scale-up methods, a network ecology approach to social resources, and the integration of network variables into the proposed stress process model of homeless substance abuse and mental health. By employing network methods and integrating these methods into existing models, research on homeless and unstably housed women and unaccompanied young people can address existing research challenges and promote more effective intervention and care programs. PMID:28042394
Dombrowski, Kirk; Sittner, Kelley; Crawford, Devan; Welch-Lazoritz, Melissa; Habecker, Patrick; Khan, Bilal
2016-09-01
During the United States economic recession of 2008-2011, the number of homeless and unstably housed people in the United States increased considerably. Homeless adult women and unaccompanied homeless youth make up the most marginal segments of this population. Because homeless individuals are a hard to reach population, research into these marginal groups has traditionally been a challenge for researchers interested in substance abuse and mental health. Network analysis techniques and research strategies offer means for dealing with traditional challenges such as missing sampling frames, variation in definitions of homelessness and study inclusion criteria, and enumeration/population estimation procedures. This review focuses on the need for, and recent steps toward, solutions to these problems that involve network science strategies for data collection and analysis. Research from a range of fields is reviewed and organized according to a new stress process framework aimed at understanding how homeless status interacts with issues related to substance abuse and mental health. Three types of network innovation are discussed: network scale-up methods, a network ecology approach to social resources, and the integration of network variables into the proposed stress process model of homeless substance abuse and mental health. By employing network methods and integrating these methods into existing models, research on homeless and unstably housed women and unaccompanied young people can address existing research challenges and promote more effective intervention and care programs.
Heuristic urban transportation network design method, a multilayer coevolution approach
NASA Astrophysics Data System (ADS)
Ding, Rui; Ujang, Norsidah; Hamid, Hussain bin; Manan, Mohd Shahrudin Abd; Li, Rong; Wu, Jianjun
2017-08-01
The design of urban transportation networks plays a key role in the urban planning process, and the coevolution of urban networks has recently garnered significant attention in literature. However, most of these recent articles are based on networks that are essentially planar. In this research, we propose a heuristic multilayer urban network coevolution model with lower layer network and upper layer network that are associated with growth and stimulate one another. We first use the relative neighbourhood graph and the Gabriel graph to simulate the structure of rail and road networks, respectively. With simulation we find that when a specific number of nodes are added, the total travel cost ratio between an expanded network and the initial lower layer network has the lowest value. The cooperation strength Λ and the changeable parameter average operation speed ratio Θ show that transit users' route choices change dramatically through the coevolution process and that their decisions, in turn, affect the multilayer network structure. We also note that the simulated relation between the Gini coefficient of the betweenness centrality, Θ and Λ have an optimal point for network design. This research could inspire the analysis of urban network topology features and the assessment of urban growth trends.
Modular architectures for quantum networks
NASA Astrophysics Data System (ADS)
Pirker, A.; Wallnöfer, J.; Dür, W.
2018-05-01
We consider the problem of generating multipartite entangled states in a quantum network upon request. We follow a top-down approach, where the required entanglement is initially present in the network in form of network states shared between network devices, and then manipulated in such a way that the desired target state is generated. This minimizes generation times, and allows for network structures that are in principle independent of physical links. We present a modular and flexible architecture, where a multi-layer network consists of devices of varying complexity, including quantum network routers, switches and clients, that share certain resource states. We concentrate on the generation of graph states among clients, which are resources for numerous distributed quantum tasks. We assume minimal functionality for clients, i.e. they do not participate in the complex and distributed generation process of the target state. We present architectures based on shared multipartite entangled Greenberger–Horne–Zeilinger states of different size, and fully connected decorated graph states, respectively. We compare the features of these architectures to an approach that is based on bipartite entanglement, and identify advantages of the multipartite approach in terms of memory requirements and complexity of state manipulation. The architectures can handle parallel requests, and are designed in such a way that the network state can be dynamically extended if new clients or devices join the network. For generation or dynamical extension of the network states, we propose a quantum network configuration protocol, where entanglement purification is used to establish high fidelity states. The latter also allows one to show that the entanglement generated among clients is private, i.e. the network is secure.
On Adding Structure to Unstructured Overlay Networks
NASA Astrophysics Data System (ADS)
Leitão, João; Carvalho, Nuno A.; Pereira, José; Oliveira, Rui; Rodrigues, Luís
Unstructured peer-to-peer overlay networks are very resilient to churn and topology changes, while requiring little maintenance cost. Therefore, they are an infrastructure to build highly scalable large-scale services in dynamic networks. Typically, the overlay topology is defined by a peer sampling service that aims at maintaining, in each process, a random partial view of peers in the system. The resulting random unstructured topology is suboptimal when a specific performance metric is considered. On the other hand, structured approaches (for instance, a spanning tree) may optimize a given target performance metric but are highly fragile. In fact, the cost for maintaining structures with strong constraints may easily become prohibitive in highly dynamic networks. This chapter discusses different techniques that aim at combining the advantages of unstructured and structured networks. Namely we focus on two distinct approaches, one based on optimizing the overlay and another based on optimizing the gossip mechanism itself.
Modeling the dynamical interaction between epidemics on overlay networks
NASA Astrophysics Data System (ADS)
Marceau, Vincent; Noël, Pierre-André; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J.
2011-08-01
Epidemics seldom occur as isolated phenomena. Typically, two or more viral agents spread within the same host population and may interact dynamically with each other. We present a general model where two viral agents interact via an immunity mechanism as they propagate simultaneously on two networks connecting the same set of nodes. By exploiting a correspondence between the propagation dynamics and a dynamical process performing progressive network generation, we develop an analytical approach that accurately captures the dynamical interaction between epidemics on overlay networks. The formalism allows for overlay networks with arbitrary joint degree distribution and overlap. To illustrate the versatility of our approach, we consider a hypothetical delayed intervention scenario in which an immunizing agent is disseminated in a host population to hinder the propagation of an undesirable agent (e.g., the spread of preventive information in the context of an emerging infectious disease).
Ji, Xiaonan; Machiraju, Raghu; Ritter, Alan; Yen, Po-Yin
2017-01-01
Systematic Reviews (SRs) of biomedical literature summarize evidence from high-quality studies to inform clinical decisions, but are time and labor intensive due to the large number of article collections. Article similarities established from textual features have been shown to assist in the identification of relevant articles, thus facilitating the article screening process efficiently. In this study, we visualized article similarities to extend its utilization in practical settings for SR researchers, aiming to promote human comprehension of article distributions and hidden patterns. To prompt an effective visualization in an interpretable, intuitive, and scalable way, we implemented a graph-based network visualization with three network sparsification approaches and a distance-based map projection via dimensionality reduction. We evaluated and compared three network sparsification approaches and the visualization types (article network vs. article map). We demonstrated the effectiveness in revealing article distribution and exhibiting clustering patterns of relevant articles with practical meanings for SRs.
ERIC Educational Resources Information Center
National Centre for Vocational Education Research (NCVER), 2010
2010-01-01
This good practice guide is based on research that looked at how to teach adult literacy and numeracy using a social capital approach. The guide suggests ways vocational education and training (VET) practitioners can adopt a social capital approach to their teaching practice. A social capital approach refers to the process in which networks are…
Motivation but not valence modulates neuroticism-dependent cingulate cortex and insula activity.
Deng, Yaling; Li, Shijia; Zhou, Renlai; Walter, Martin
2018-04-01
Neuroticism has been found to specifically modulate amygdala activations during differential processing of valence and motivation while other brain networks yet are unexplored for associated effects. The main purpose of this study was to investigate whether neural mechanisms processing valence or motivation are prone to neuroticism in the salience network (SN), a network that is anchored in the anterior cingulate cortex (ACC) and the anterior insula. This study used functional magnetic resonance imaging (fMRI) and an approach/avoid emotional pictures task to investigate brain activations modulated by pictures' valence or motivational status between high and low neurotic individuals. We found that neuroticism-dependent SN and the parahippocampal-fusiform area activations were modulated by motivation but not valence. Valence in contrast interacted with neuroticism in the lateral orbitofrontal cortex. We suggested that neuroticism modulated valence and motivation processing, however, under the influence of the two distinct networks. Neuroticism modulated the motivation through the SN while it modulated the valence through the orbitofrontal networks. © 2018 Wiley Periodicals, Inc.
Grošelj, Petra; Zadnik Stirn, Lidija
2015-09-15
Environmental management problems can be dealt with by combining participatory methods, which make it possible to include various stakeholders in a decision-making process, and multi-criteria methods, which offer a formal model for structuring and solving a problem. This paper proposes a three-phase decision making approach based on the analytic network process and SWOT (strengths, weaknesses, opportunities and threats) analysis. The approach enables inclusion of various stakeholders or groups of stakeholders in particular stages of decision making. The structure of the proposed approach is composed of a network consisting of an objective cluster, a cluster of strategic goals, a cluster of SWOT factors and a cluster of alternatives. The application of the suggested approach is applied to a management problem of Pohorje, a mountainous area in Slovenia. Stakeholders from sectors that are important for Pohorje (forestry, agriculture, tourism and nature protection agencies) who can offer a wide range of expert knowledge were included in the decision-making process. The results identify the alternative of "sustainable development" as the most appropriate for development of Pohorje. The application in the paper offers an example of employing the new approach to an environmental management problem. This can also be applied to decision-making problems in various other fields. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design of fuzzy systems using neurofuzzy networks.
Figueiredo, M; Gomide, F
1999-01-01
This paper introduces a systematic approach for fuzzy system design based on a class of neural fuzzy networks built upon a general neuron model. The network structure is such that it encodes the knowledge learned in the form of if-then fuzzy rules and processes data following fuzzy reasoning principles. The technique provides a mechanism to obtain rules covering the whole input/output space as well as the membership functions (including their shapes) for each input variable. Such characteristics are of utmost importance in fuzzy systems design and application. In addition, after learning, it is very simple to extract fuzzy rules in the linguistic form. The network has universal approximation capability, a property very useful in, e.g., modeling and control applications. Here we focus on function approximation problems as a vehicle to illustrate its usefulness and to evaluate its performance. Comparisons with alternative approaches are also included. Both, nonnoisy and noisy data have been studied and considered in the computational experiments. The neural fuzzy network developed here and, consequently, the underlying approach, has shown to provide good results from the accuracy, complexity, and system design points of view.
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Huang, Song; Govind, Girish
1991-01-01
In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.
Wilczynski, Bartek; Furlong, Eileen E M
2010-04-15
Development is regulated by dynamic patterns of gene expression, which are orchestrated through the action of complex gene regulatory networks (GRNs). Substantial progress has been made in modeling transcriptional regulation in recent years, including qualitative "coarse-grain" models operating at the gene level to very "fine-grain" quantitative models operating at the biophysical "transcription factor-DNA level". Recent advances in genome-wide studies have revealed an enormous increase in the size and complexity or GRNs. Even relatively simple developmental processes can involve hundreds of regulatory molecules, with extensive interconnectivity and cooperative regulation. This leads to an explosion in the number of regulatory functions, effectively impeding Boolean-based qualitative modeling approaches. At the same time, the lack of information on the biophysical properties for the majority of transcription factors within a global network restricts quantitative approaches. In this review, we explore the current challenges in moving from modeling medium scale well-characterized networks to more poorly characterized global networks. We suggest to integrate coarse- and find-grain approaches to model gene regulatory networks in cis. We focus on two very well-studied examples from Drosophila, which likely represent typical developmental regulatory modules across metazoans. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Cutting the Wires: Modularization of Cellular Networks for Experimental Design
Lang, Moritz; Summers, Sean; Stelling, Jörg
2014-01-01
Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. PMID:24411264
Klein, Michael T; Hou, Gang; Quann, Richard J; Wei, Wei; Liao, Kai H; Yang, Raymond S H; Campain, Julie A; Mazurek, Monica A; Broadbelt, Linda J
2002-01-01
A chemical engineering approach for the rigorous construction, solution, and optimization of detailed kinetic models for biological processes is described. This modeling capability addresses the required technical components of detailed kinetic modeling, namely, the modeling of reactant structure and composition, the building of the reaction network, the organization of model parameters, the solution of the kinetic model, and the optimization of the model. Even though this modeling approach has enjoyed successful application in the petroleum industry, its application to biomedical research has just begun. We propose to expand the horizons on classic pharmacokinetics and physiologically based pharmacokinetics (PBPK), where human or animal bodies were often described by a few compartments, by integrating PBPK with reaction network modeling described in this article. If one draws a parallel between an oil refinery, where the application of this modeling approach has been very successful, and a human body, the individual processing units in the oil refinery may be considered equivalent to the vital organs of the human body. Even though the cell or organ may be much more complicated, the complex biochemical reaction networks in each organ may be similarly modeled and linked in much the same way as the modeling of the entire oil refinery through linkage of the individual processing units. The integrated chemical engineering software package described in this article, BioMOL, denotes the biological application of molecular-oriented lumping. BioMOL can build a detailed model in 1-1,000 CPU sec using standard desktop hardware. The models solve and optimize using standard and widely available hardware and software and can be presented in the context of a user-friendly interface. We believe this is an engineering tool with great promise in its application to complex biological reaction networks. PMID:12634134
Kim, Kamin; Ekstrom, Arne D; Tandon, Nitin
2016-10-01
Electrical stimulation of the brain is a unique tool to perturb endogenous neural signals, allowing us to evaluate the necessity of given neural processes to cognitive processing. An important issue, gaining increasing interest in the literature, is whether and how stimulation can be employed to selectively improve or disrupt declarative memory processes. Here, we provide a comprehensive review of both invasive and non-invasive stimulation studies aimed at modulating memory performance. The majority of past studies suggest that invasive stimulation of the hippocampus impairs memory performance; similarly, most non-invasive studies show that disrupting frontal or parietal regions also impairs memory performance, suggesting that these regions also play necessary roles in declarative memory. On the other hand, a handful of both invasive and non-invasive studies have also suggested modest improvements in memory performance following stimulation. These studies typically target brain regions connected to the hippocampus or other memory "hubs," which may affect endogenous activity in connected areas like the hippocampus, suggesting that to augment declarative memory, altering the broader endogenous memory network activity is critical. Together, studies reporting memory improvements/impairments are consistent with the idea that a network of distinct brain "hubs" may be crucial for successful memory encoding and retrieval rather than a single primary hub such as the hippocampus. Thus, it is important to consider neurostimulation from the network perspective, rather than from a purely localizationalist viewpoint. We conclude by proposing a novel approach to neurostimulation for declarative memory modulation that aims to facilitate interactions between multiple brain "nodes" underlying memory rather than considering individual brain regions in isolation. Copyright © 2016. Published by Elsevier Inc.
Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks
Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian
2014-01-01
In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better. PMID:24959631
Global detection of live virtual machine migration based on cellular neural networks.
Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian
2014-01-01
In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better.
Kwak, Doyeon
2017-01-01
It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks. PMID:28542367
Kwak, Doyeon; Kim, Wonjoon
2017-01-01
It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks.
Topological Vulnerability Analysis
NASA Astrophysics Data System (ADS)
Jajodia, Sushil; Noel, Steven
Traditionally, network administrators rely on labor-intensive processes for tracking network configurations and vulnerabilities. This requires a great deal of expertise, and is error prone because of the complexity of networks and associated security data. The interdependencies of network vulnerabilities make traditional point-wise vulnerability analysis inadequate. We describe a Topological Vulnerability Analysis (TVA) approach that analyzes vulnerability dependencies and shows all possible attack paths into a network. From models of the network vulnerabilities and potential attacker exploits, we compute attack graphs that convey the impact of individual and combined vulnerabilities on overall security. TVA finds potential paths of vulnerability through a network, showing exactly how attackers may penetrate a network. From this, we identify key vulnerabilities and provide strategies for protection of critical network assets.
Topological data analysis of contagion maps for examining spreading processes on networks.
Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J
2015-07-21
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Topological data analysis of contagion maps for examining spreading processes on networks
NASA Astrophysics Data System (ADS)
Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.
2015-07-01
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Temporal percolation of the susceptible network in an epidemic spreading.
Valdez, Lucas Daniel; Macri, Pablo Alejandro; Braunstein, Lidia Adriana
2012-01-01
In this work, we study the evolution of the susceptible individuals during the spread of an epidemic modeled by the susceptible-infected-recovered (SIR) process spreading on the top of complex networks. Using an edge-based compartmental approach and percolation tools, we find that a time-dependent quantity ΦS(t), namely, the probability that a given neighbor of a node is susceptible at time t, is the control parameter of a node void percolation process involving those nodes on the network not-reached by the disease. We show that there exists a critical time t(c) above which the giant susceptible component is destroyed. As a consequence, in order to preserve a macroscopic connected fraction of the network composed by healthy individuals which guarantee its functionality, any mitigation strategy should be implemented before this critical time t(c). Our theoretical results are confirmed by extensive simulations of the SIR process.
Care networking: a study of technical mediations in a home telecare service.
Correa, Gonzalo; Domènech, Miquel
2013-07-22
This article examines the processes of technical mediation within familial care networks based on a study of home telecare targeted at older people. Supported by contributions from the actor-network theory as part of the social psychology of science and technology, these processes of technical mediation are analyzed using a qualitative approach. The data were gathered through six focus groups and four in-depth interviews; the participants in the study included users, relatives and formal carers. Thematic analysis techniques encompassing the information were used, revealing the effects on the patterns of caring relationships. The results show the interplay between presence-absence made possible by the devices; the two-way direction of care between the older people and the artifacts; and the process of sustaining care using the technology. We conclude that care should be seen as a socio-technical network where technology plays an active role in sustaining family relationships.
Ji, Xiaonan; Machiraju, Raghu; Ritter, Alan; Yen, Po-Yin
2015-01-01
Systematic reviews (SRs) provide high quality evidence for clinical practice, but the article screening process is time and labor intensive. As SRs aim to identify relevant articles with a specific scope, we propose that a pre-defined article relationship, using similarity metrics, could accelerate this process. In this study, we established the article relationship using MEDLINE element similarities and visualized the article network with the Force Atlas layout. We also analyzed the article networks with graph diameter, closeness centrality, and module classes. The results revealed the distribution of articles and found that included articles tended to aggregate together in some module classes, providing further evidence of the existence of strong relationships among included articles. This approach can be utilized to facilitate the articles selection process through early identification of these dominant module classes. We are optimistic that the use of article network visualization can help better SR work prioritization.
Ji, Xiaonan; Machiraju, Raghu; Ritter, Alan; Yen, Po-Yin
2015-01-01
Systematic reviews (SRs) provide high quality evidence for clinical practice, but the article screening process is time and labor intensive. As SRs aim to identify relevant articles with a specific scope, we propose that a pre-defined article relationship, using similarity metrics, could accelerate this process. In this study, we established the article relationship using MEDLINE element similarities and visualized the article network with the Force Atlas layout. We also analyzed the article networks with graph diameter, closeness centrality, and module classes. The results revealed the distribution of articles and found that included articles tended to aggregate together in some module classes, providing further evidence of the existence of strong relationships among included articles. This approach can be utilized to facilitate the articles selection process through early identification of these dominant module classes. We are optimistic that the use of article network visualization can help better SR work prioritization. PMID:26958292
Care Networking: A Study of Technical Mediations in a Home Telecare Service
Correa, Gonzalo; Domènech, Miquel
2013-01-01
This article examines the processes of technical mediation within familial care networks based on a study of home telecare targeted at older people. Supported by contributions from the actor—network theory as part of the social psychology of science and technology, these processes of technical mediation are analyzed using a qualitative approach. The data were gathered through six focus groups and four in-depth interviews; the participants in the study included users, relatives and formal carers. Thematic analysis techniques encompassing the information were used, revealing the effects on the patterns of caring relationships. The results show the interplay between presence-absence made possible by the devices; the two-way direction of care between the older people and the artifacts; and the process of sustaining care using the technology. We conclude that care should be seen as a socio-technical network where technology plays an active role in sustaining family relationships. PMID:23880730
Neural network post-processing of grayscale optical correlator
NASA Technical Reports Server (NTRS)
Lu, Thomas T; Hughlett, Casey L.; Zhoua, Hanying; Chao, Tien-Hsin; Hanan, Jay C.
2005-01-01
In this paper we present the use of a radial basis function neural network (RBFNN) as a post-processor to assist the optical correlator to identify the objects and to reject false alarms. Image plane features near the correlation peaks are extracted and fed to the neural network for analysis. The approach is capable of handling large number of object variations and filter sets. Preliminary experimental results are presented and the performance is analyzed.
Descriptive vs. mechanistic network models in plant development in the post-genomic era.
Davila-Velderrain, J; Martinez-Garcia, J C; Alvarez-Buylla, E R
2015-01-01
Network modeling is now a widespread practice in systems biology, as well as in integrative genomics, and it constitutes a rich and diverse scientific research field. A conceptually clear understanding of the reasoning behind the main existing modeling approaches, and their associated technical terminologies, is required to avoid confusions and accelerate the transition towards an undeniable necessary more quantitative, multidisciplinary approach to biology. Herein, we focus on two main network-based modeling approaches that are commonly used depending on the information available and the intended goals: inference-based methods and system dynamics approaches. As far as data-based network inference methods are concerned, they enable the discovery of potential functional influences among molecular components. On the other hand, experimentally grounded network dynamical models have been shown to be perfectly suited for the mechanistic study of developmental processes. How do these two perspectives relate to each other? In this chapter, we describe and compare both approaches and then apply them to a given specific developmental module. Along with the step-by-step practical implementation of each approach, we also focus on discussing their respective goals, utility, assumptions, and associated limitations. We use the gene regulatory network (GRN) involved in Arabidopsis thaliana Root Stem Cell Niche patterning as our illustrative example. We show that descriptive models based on functional genomics data can provide important background information consistent with experimentally supported functional relationships integrated in mechanistic GRN models. The rationale of analysis and modeling can be applied to any other well-characterized functional developmental module in multicellular organisms, like plants and animals.
Estimating User Influence in Online Social Networks Subject to Information Overload
NASA Astrophysics Data System (ADS)
Li, Pei; Sun, Yunchuan; Chen, Yingwen; Tian, Zhi
2014-11-01
Online social networks have attracted remarkable attention since they provide various approaches for hundreds of millions of people to stay connected with their friends. Due to the existence of information overload, the research on diffusion dynamics in epidemiology cannot be adopted directly to that in online social networks. In this paper, we consider diffusion dynamics in online social networks subject to information overload, and model the information-processing process of a user by a queue with a batch arrival and a finite buffer. We use the average number of times a message is processed after it is generated by a given user to characterize the user influence, which is then estimated through theoretical analysis for a given network. We validate the accuracy of our estimation by simulations, and apply the results to study the impacts of different factors on the user influence. Among the observations, we find that the impact of network size on the user influence is marginal while the user influence decreases with assortativity due to information overload, which is particularly interesting.
The application of the multi-alternative approach in active neural network models
NASA Astrophysics Data System (ADS)
Podvalny, S.; Vasiljev, E.
2017-02-01
The article refers to the construction of intelligent systems based artificial neuron networks are used. We discuss the basic properties of the non-compliance of artificial neuron networks and their biological prototypes. It is shown here that the main reason for these discrepancies is the structural immutability of the neuron network models in the learning process, that is, their passivity. Based on the modern understanding of the biological nervous system as a structured ensemble of nerve cells, it is proposed to abandon the attempts to simulate its work at the level of the elementary neurons functioning processes and proceed to the reproduction of the information structure of data storage and processing on the basis of the general enough evolutionary principles of multialternativity, i.e. the multi-level structural model, diversity and modularity. The implementation method of these principles is offered, using the faceted memory organization in the neuron network with the rearranging active structure. An example of the implementation of the active facet-type neuron network in the intellectual decision-making system in the conditions of critical events development in the electrical distribution system.
Pérès, Sabine; Felicori, Liza; Rialle, Stéphanie; Jobard, Elodie; Molina, Franck
2010-01-01
Motivation: In the available databases, biological processes are described from molecular and cellular points of view, but these descriptions are represented with text annotations that make it difficult to handle them for computation. Consequently, there is an obvious need for formal descriptions of biological processes. Results: We present a formalism that uses the BioΨ concepts to model biological processes from molecular details to networks. This computational approach, based on elementary bricks of actions, allows us to calculate on biological functions (e.g. process comparison, mapping structure–function relationships, etc.). We illustrate its application with two examples: the functional comparison of proteases and the functional description of the glycolysis network. This computational approach is compatible with detailed biological knowledge and can be applied to different kinds of systems of simulation. Availability: www.sysdiag.cnrs.fr/publications/supplementary-materials/BioPsi_Manager/ Contact: sabine.peres@sysdiag.cnrs.fr; franck.molina@sysdiag.cnrs.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20448138
Design of a MIMD neural network processor
NASA Astrophysics Data System (ADS)
Saeks, Richard E.; Priddy, Kevin L.; Pap, Robert M.; Stowell, S.
1994-03-01
The Accurate Automation Corporation (AAC) neural network processor (NNP) module is a fully programmable multiple instruction multiple data (MIMD) parallel processor optimized for the implementation of neural networks. The AAC NNP design fully exploits the intrinsic sparseness of neural network topologies. Moreover, by using a MIMD parallel processing architecture one can update multiple neurons in parallel with efficiency approaching 100 percent as the size of the network increases. Each AAC NNP module has 8 K neurons and 32 K interconnections and is capable of 140,000,000 connections per second with an eight processor array capable of over one billion connections per second.
An Approach to Knowledge-Directed Image Analysis,
1977-09-01
34AN APPROACH TO KNOWLEDGE -DIRECTED IMAGE ANALYSIS D.H. Ballard, C.M.’Brown, J.A. Feldman Computer Science Department iThe University of Rochester...Rochester, New York 14627 DTII EECTE UTIC FILE COPY o n I, n 83 - ’ f t 8 11 28 19 1f.. AN APPROACH TO KNOWLEDGE -DIRECTED IMAGE ANALYSIS 5*., D.H...semantic network model and a distributed control structure to accomplish the image analysis process. The process of " understanding an image" leads to
Genome Scale Modeling in Systems Biology: Algorithms and Resources
Najafi, Ali; Bidkhori, Gholamreza; Bozorgmehr, Joseph H.; Koch, Ina; Masoudi-Nejad, Ali
2014-01-01
In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics. PMID:24822031
Managing integrated oncology treatment in virtual networks.
Stanicki, Verena; Becker, Matthias; Böckmann, Britta
2015-01-01
Interdisciplinary and intersectoral coordinated healthcare management based on Clinical Practice Guidelines is essential to achieve high quality in oncological networks. The objective of our research project is to create a cookbook, which can be used by oncological networks as a template. The cookbook is based on guideline-compliant care processes. To develop these care processes, the three S3-guidelines breast, colon and prostate carcinoma have been formalized. The thus-obtained platform-independent process fragments were transformed into an underlying metamodel, which is based on HL7 and can be used for modeling clinical pathways. Additional, qualitative guided interviews were chosen to capitalize on the experts' (e.g. chief residents, resident specialists) wide knowledge and experience in oncological health care management. One of these use cases (tumor board scheduling) is developed for a healthcare management platform which is linked to a national electronic case record. The projected result of our approach is a cookbook which shows, how the treatment can be controlled by interdisciplinary and intersectoral care processes in an oncological network.
Efficient collective influence maximization in cascading processes with first-order transitions
Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.
2017-01-01
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches. PMID:28349988
Efficient collective influence maximization in cascading processes with first-order transitions
NASA Astrophysics Data System (ADS)
Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.
2017-03-01
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches.
Random and Directed Walk-Based Top-k Queries in Wireless Sensor Networks
Fu, Jun-Song; Liu, Yun
2015-01-01
In wireless sensor networks, filter-based top-k query approaches are the state-of-the-art solutions and have been extensively researched in the literature, however, they are very sensitive to the network parameters, including the size of the network, dynamics of the sensors’ readings and declines in the overall range of all the readings. In this work, a random walk-based top-k query approach called RWTQ and a directed walk-based top-k query approach called DWTQ are proposed. At the beginning of a top-k query, one or several tokens are sent to the specific node(s) in the network by the base station. Then, each token walks in the network independently to record and process the readings in a random or directed way. A strategy of choosing the “right” way in DWTQ is carefully designed for the token(s) to arrive at the high-value regions as soon as possible. When designing the walking strategy for DWTQ, the spatial correlations of the readings are also considered. Theoretical analysis and simulation results indicate that RWTQ and DWTQ both are very robust against these parameters discussed previously. In addition, DWTQ outperforms TAG, FILA and EXTOK in transmission cost, energy consumption and network lifetime. PMID:26016914
Efficient spiking neural network model of pattern motion selectivity in visual cortex.
Beyeler, Michael; Richert, Micah; Dutt, Nikil D; Krichmar, Jeffrey L
2014-07-01
Simulating large-scale models of biological motion perception is challenging, due to the required memory to store the network structure and the computational power needed to quickly solve the neuronal dynamics. A low-cost yet high-performance approach to simulating large-scale neural network models in real-time is to leverage the parallel processing capability of graphics processing units (GPUs). Based on this approach, we present a two-stage model of visual area MT that we believe to be the first large-scale spiking network to demonstrate pattern direction selectivity. In this model, component-direction-selective (CDS) cells in MT linearly combine inputs from V1 cells that have spatiotemporal receptive fields according to the motion energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) cells in MT are constructed by pooling over MT CDS cells with a wide range of preferred directions. Responses of our model neurons are comparable to electrophysiological results for grating and plaid stimuli as well as speed tuning. The behavioral response of the network in a motion discrimination task is in agreement with psychophysical data. Moreover, our implementation outperforms a previous implementation of the motion energy model by orders of magnitude in terms of computational speed and memory usage. The full network, which comprises 153,216 neurons and approximately 40 million synapses, processes 20 frames per second of a 40 × 40 input video in real-time using a single off-the-shelf GPU. To promote the use of this algorithm among neuroscientists and computer vision researchers, the source code for the simulator, the network, and analysis scripts are publicly available.
Inferring phenomenological models of Markov processes from data
NASA Astrophysics Data System (ADS)
Rivera, Catalina; Nemenman, Ilya
Microscopically accurate modeling of stochastic dynamics of biochemical networks is hard due to the extremely high dimensionality of the state space of such networks. Here we propose an algorithm for inference of phenomenological, coarse-grained models of Markov processes describing the network dynamics directly from data, without the intermediate step of microscopically accurate modeling. The approach relies on the linear nature of the Chemical Master Equation and uses Bayesian Model Selection for identification of parsimonious models that fit the data. When applied to synthetic data from the Kinetic Proofreading process (KPR), a common mechanism used by cells for increasing specificity of molecular assembly, the algorithm successfully uncovers the known coarse-grained description of the process. This phenomenological description has been notice previously, but this time it is derived in an automated manner by the algorithm. James S. McDonnell Foundation Grant No. 220020321.
Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides
NASA Astrophysics Data System (ADS)
Lemonde, M.-A.; Meesala, S.; Sipahigil, A.; Schuetz, M. J. A.; Lukin, M. D.; Loncar, M.; Rabl, P.
2018-05-01
We propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart from quantum information processing, this setup constitutes a novel waveguide QED platform, where strong-coupling effects between solid-state defects and individual propagating phonons can be explored at the quantum level.
NASA Astrophysics Data System (ADS)
Lv, Mingshan
2015-10-01
The passive and photoelectrical jamming to anti-ship missile in the condition of network centric warship formation is an important research issue of fleet EW operation. An approach jamming method of shipborne surface-type infrared decoy countering the infrared image guided anti-ship missile is put forward. By analyzing the countering process the jamming effectiveness evaluation model is constructed. By simulation the method is proved t reasonable and effective. This method breaks through the traditional restrict that the passive and photoelectricity jamming measure can only be used in the end self-defence and provides a new method for network centric worship formation to support each other.
Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides.
Lemonde, M-A; Meesala, S; Sipahigil, A; Schuetz, M J A; Lukin, M D; Loncar, M; Rabl, P
2018-05-25
We propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart from quantum information processing, this setup constitutes a novel waveguide QED platform, where strong-coupling effects between solid-state defects and individual propagating phonons can be explored at the quantum level.
Kinetic signature of fractal-like filament networks formed by orientational linear epitaxy.
Hwang, Wonmuk; Eryilmaz, Esma
2014-07-11
We study a broad class of epitaxial assembly of filament networks on lattice surfaces. Over time, a scale-free behavior emerges with a 2.5-3 power-law exponent in filament length distribution. Partitioning between the power-law and exponential behaviors in a network can be used to find the stage and kinetic parameters of the assembly process. To analyze real-world networks, we develop a computer program that measures the network architecture in experimental images. Application to triaxial networks of collagen fibrils shows quantitative agreement with our model. Our unifying approach can be used for characterizing and controlling the network formation that is observed across biological and nonbiological systems.
Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita
2016-01-01
Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523
Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E.; Balázsi, Gábor; Gennaro, Maria Laura
2016-01-01
Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics. PMID:27029515
Percolation of networks with directed dependency links
NASA Astrophysics Data System (ADS)
Niu, Dunbiao; Yuan, Xin; Du, Minhui; Stanley, H. Eugene; Hu, Yanqing
2016-04-01
The self-consistent probabilistic approach has proven itself powerful in studying the percolation behavior of interdependent or multiplex networks without tracking the percolation process through each cascading step. In order to understand how directed dependency links impact criticality, we employ this approach to study the percolation properties of networks with both undirected connectivity links and directed dependency links. We find that when a random network with a given degree distribution undergoes a second-order phase transition, the critical point and the unstable regime surrounding the second-order phase transition regime are determined by the proportion of nodes that do not depend on any other nodes. Moreover, we also find that the triple point and the boundary between first- and second-order transitions are determined by the proportion of nodes that depend on no more than one node. This implies that it is maybe general for multiplex network systems, some important properties of phase transitions can be determined only by a few parameters. We illustrate our findings using Erdős-Rényi networks.
Timóteo, Sérgio; Correia, Marta; Rodríguez-Echeverría, Susana; Freitas, Helena; Heleno, Ruben
2018-01-10
Species interaction networks are traditionally explored as discrete entities with well-defined spatial borders, an oversimplification likely impairing their applicability. Using a multilayer network approach, explicitly accounting for inter-habitat connectivity, we investigate the spatial structure of seed-dispersal networks across the Gorongosa National Park, Mozambique. We show that the overall seed-dispersal network is composed by spatially explicit communities of dispersers spanning across habitats, functionally linking the landscape mosaic. Inter-habitat connectivity determines spatial structure, which cannot be accurately described with standard monolayer approaches either splitting or merging habitats. Multilayer modularity cannot be predicted by null models randomizing either interactions within each habitat or those linking habitats; however, as habitat connectivity increases, random processes become more important for overall structure. The importance of dispersers for the overall network structure is captured by multilayer versatility but not by standard metrics. Highly versatile species disperse many plant species across multiple habitats, being critical to landscape functional cohesion.
Nonparametric Simulation of Signal Transduction Networks with Semi-Synchronized Update
Nassiri, Isar; Masoudi-Nejad, Ali; Jalili, Mahdi; Moeini, Ali
2012-01-01
Simulating signal transduction in cellular signaling networks provides predictions of network dynamics by quantifying the changes in concentration and activity-level of the individual proteins. Since numerical values of kinetic parameters might be difficult to obtain, it is imperative to develop non-parametric approaches that combine the connectivity of a network with the response of individual proteins to signals which travel through the network. The activity levels of signaling proteins computed through existing non-parametric modeling tools do not show significant correlations with the observed values in experimental results. In this work we developed a non-parametric computational framework to describe the profile of the evolving process and the time course of the proportion of active form of molecules in the signal transduction networks. The model is also capable of incorporating perturbations. The model was validated on four signaling networks showing that it can effectively uncover the activity levels and trends of response during signal transduction process. PMID:22737250
Transcriptional network control of normal and leukaemic haematopoiesis
Sive, Jonathan I.; Göttgens, Berthold
2014-01-01
Transcription factors (TFs) play a key role in determining the gene expression profiles of stem/progenitor cells, and defining their potential to differentiate into mature cell lineages. TF interactions within gene-regulatory networks are vital to these processes, and dysregulation of these networks by TF overexpression, deletion or abnormal gene fusions have been shown to cause malignancy. While investigation of these processes remains a challenge, advances in genome-wide technologies and growing interactions between laboratory and computational science are starting to produce increasingly accurate network models. The haematopoietic system provides an attractive experimental system to elucidate gene regulatory mechanisms, and allows experimental investigation of both normal and dysregulated networks. In this review we examine the principles of TF-controlled gene regulatory networks and the key experimental techniques used to investigate them. We look in detail at examples of how these approaches can be used to dissect out the regulatory mechanisms controlling normal haematopoiesis, as well as the dysregulated networks associated with haematological malignancies. PMID:25014893
Transcriptional network control of normal and leukaemic haematopoiesis.
Sive, Jonathan I; Göttgens, Berthold
2014-12-10
Transcription factors (TFs) play a key role in determining the gene expression profiles of stem/progenitor cells, and defining their potential to differentiate into mature cell lineages. TF interactions within gene-regulatory networks are vital to these processes, and dysregulation of these networks by TF overexpression, deletion or abnormal gene fusions have been shown to cause malignancy. While investigation of these processes remains a challenge, advances in genome-wide technologies and growing interactions between laboratory and computational science are starting to produce increasingly accurate network models. The haematopoietic system provides an attractive experimental system to elucidate gene regulatory mechanisms, and allows experimental investigation of both normal and dysregulated networks. In this review we examine the principles of TF-controlled gene regulatory networks and the key experimental techniques used to investigate them. We look in detail at examples of how these approaches can be used to dissect out the regulatory mechanisms controlling normal haematopoiesis, as well as the dysregulated networks associated with haematological malignancies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
A brain network instantiating approach and avoidance motivation.
Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Banich, Marie T; Sutton, Bradley P; Heller, Wendy
2012-09-01
Research indicates that dorsolateral prefrontal cortex (DLPFC) is important for pursuing goals, and areas of DLPFC are differentially involved in approach and avoidance motivation. Given the complexity of the processes involved in goal pursuit, DLPFC is likely part of a network that includes orbitofrontal cortex (OFC), cingulate, amygdala, and basal ganglia. This hypothesis was tested with regard to one component of goal pursuit, the maintenance of goals in the face of distraction. Examination of connectivity with motivation-related areas of DLPFC supported the network hypothesis. Differential patterns of connectivity suggest a distinct role for DLPFC areas, with one involved in selecting approach goals, one in selecting avoidance goals, and one in selecting goal pursuit strategies. Finally, differences in trait motivation moderated connectivity between DLPFC and OFC, suggesting that this connectivity is important for instantiating motivation. Copyright © 2012 Society for Psychophysiological Research.
A Brain Network Instantiating Approach and Avoidance Motivation
Spielberg, Jeffrey M.; Miller, Gregory A.; Warren, Stacie L.; Engels, Anna S.; Crocker, Laura D.; Banich, Marie T.; Sutton, Bradley P.; Heller, Wendy
2015-01-01
Research indicates that dorsolateral prefrontal cortex (DLPFC) is important for pursuing goals, and areas of DLPFC are differentially involved in approach and avoidance motivation. Given the complexity of the processes involved in goal pursuit, DLPFC is likely part of a network that includes orbitofrontal cortex (OFC), cingulate, amygdala, and basal ganglia. This hypothesis was tested with regard to one component of goal pursuit, the maintenance of goals in the face of distraction. Examination of connectivity with motivation-related areas of DLPFC supported the network hypothesis. Differential patterns of connectivity suggest a distinct role for DLPFC areas, with one involved in selecting approach goals, one in selecting avoidance goals, and one in selecting goal pursuit strategies. Finally, differences in trait motivation moderated connectivity between DLPFC and OFC, suggesting that this connectivity is important for instantiating motivation. PMID:22845892
A new methodology for determination of macroscopic transport parameters in drying porous media
NASA Astrophysics Data System (ADS)
Attari Moghaddam, A.; Kharaghani, A.; Tsotsas, E.; Prat, M.
2015-12-01
Two main approaches have been used to model the drying process: The first approach considers the partially saturated porous medium as a continuum and partial differential equations are used to describe the mass, momentum and energy balances of the fluid phases. The continuum-scale models (CM) obtained by this approach involve constitutive laws which require effective material properties, such as the diffusivity, permeability, and thermal conductivity which are often determined by experiments. The second approach considers the material at the pore scale, where the void space is represented by a network of pores (PN). Micro- or nanofluidics models used in each pore give rise to a large system of ordinary differential equations with degrees of freedom at each node of the pore network. In this work, the moisture transport coefficient (D), the pseudo desorption isotherm inside the network and at the evaporative surface are estimated from the post-processing of the three-dimensional pore network drying simulations for fifteen realizations of the pore space geometry from a given probability distribution. A slice sampling method is used in order to extract these parameters from PN simulations. The moisture transport coefficient obtained in this way is shown in Fig. 1a. The minimum of average D values demonstrates the transition between liquid dominated moisture transport region and vapor dominated moisture transport region; a similar behavior has been observed in previous experimental findings. A function is fitted to the average D values and then is fed into the non-linear moisture diffusion equation. The saturation profiles obtained from PN and CM simulations are shown in Fig. 1b. Figure 1: (a) extracted moisture transport coefficient during drying for fifteen realizations of the pore network, (b) average moisture profiles during drying obtained from PN and CM simulations.
Climate change education in informal settings: Using boundary objects to frame network dissemination
NASA Astrophysics Data System (ADS)
Steiner, Mary Ann
This study of climate change education dissemination takes place in the context of a larger project where institutions in four cities worked together to develop a linked set of informal learning experiences about climate change. Each city developed an organizational network to explore new ways to connect urban audiences with climate change education. The four city-specific networks shared tools, resources, and knowledge with each other. The networks were related in mission and goals, but were structured and functioned differently depending on the city context. This study illustrates how the tools, resources, and knowledge developed in one network were shared with networks in two additional cities. Boundary crossing theory frames the study to describe the role of objects and processes in sharing between networks. Findings suggest that the goals, capacity and composition of networks resulted in a different emphasis in dissemination efforts, in one case to push the approach out to partners for their own work and in the other to pull partners into a more collaborative stance. Learning experiences developed in each city as a result of the dissemination reflected these differences in the city-specific emphasis with the push city diving into messy examples of the approach to make their own examples, and the pull city offering polished experiences to partners in order to build confidence in the climate change messaging. The networks themselves underwent different kinds of growth and change as a result of dissemination. The emphasis on push and use of messy examples resulted in active use of the principles of the approach and the pull emphasis with polished examples resulted in the cultivation of partnerships with the hub and the potential to engage in the educational approach. These findings have implications for boundary object theory as a useful grounding for dissemination designs in the context of networks of informal learning organizations to support a shift in communication approach, particularly when developing interventions for wicked socio-scientific issues such as climate change.
Beyeler, Michael; Dutt, Nikil D; Krichmar, Jeffrey L
2013-12-01
Understanding how the human brain is able to efficiently perceive and understand a visual scene is still a field of ongoing research. Although many studies have focused on the design and optimization of neural networks to solve visual recognition tasks, most of them either lack neurobiologically plausible learning rules or decision-making processes. Here we present a large-scale model of a hierarchical spiking neural network (SNN) that integrates a low-level memory encoding mechanism with a higher-level decision process to perform a visual classification task in real-time. The model consists of Izhikevich neurons and conductance-based synapses for realistic approximation of neuronal dynamics, a spike-timing-dependent plasticity (STDP) synaptic learning rule with additional synaptic dynamics for memory encoding, and an accumulator model for memory retrieval and categorization. The full network, which comprised 71,026 neurons and approximately 133 million synapses, ran in real-time on a single off-the-shelf graphics processing unit (GPU). The network was constructed on a publicly available SNN simulator that supports general-purpose neuromorphic computer chips. The network achieved 92% correct classifications on MNIST in 100 rounds of random sub-sampling, which is comparable to other SNN approaches and provides a conservative and reliable performance metric. Additionally, the model correctly predicted reaction times from psychophysical experiments. Because of the scalability of the approach and its neurobiological fidelity, the current model can be extended to an efficient neuromorphic implementation that supports more generalized object recognition and decision-making architectures found in the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.
Classification of boreal forest by satellite and inventory data using neural network approach
NASA Astrophysics Data System (ADS)
Romanov, A. A.
2012-12-01
The main objective of this research was to develop methodology for boreal (Siberian Taiga) land cover classification in a high accuracy level. The study area covers the territories of Central Siberian several parts along the Yenisei River (60-62 degrees North Latitude): the right bank includes mixed forest and dark taiga, the left - pine forests; so were taken as a high heterogeneity and statistically equal surfaces concerning spectral characteristics. Two main types of data were used: time series of middle spatial resolution satellite images (Landsat 5, 7 and SPOT4) and inventory datasets from the nature fieldworks (used for training samples sets preparation). Method of collecting field datasets included a short botany description (type/species of vegetation, density, compactness of the crowns, individual height and max/min diameters representative of each type, surface altitude of the plot), at the same time the geometric characteristic of each training sample unit corresponded to the spatial resolution of satellite images and geo-referenced (prepared datasets both of the preliminary processing and verification). The network of test plots was planned as irregular and determined by the landscape oriented approach. The main focus of the thematic data processing has been allocated for the use of neural networks (fuzzy logic inc.); therefore, the results of field studies have been converting input parameter of type / species of vegetation cover of each unit and the degree of variability. Proposed approach involves the processing of time series separately for each image mainly for the verification: shooting parameters taken into consideration (time, albedo) and thus expected to assess the quality of mapping. So the input variables for the networks were sensor bands, surface altitude, solar angels and land surface temperature (for a few experiments); also given attention to the formation of the formula class on the basis of statistical pre-processing of results of field research (prevalence type). Besides some statistical methods of supervised classification has been used (minimal distance, maximum likelihood, Mahalanobis). During the study received various types of neural classifiers suitable for the mapping, and even for the high heterogenic areas neural network approach has shown better results in precision despite the validity of the assumption of Gaussian distribution (Table). Experimentally chosen optimum network structure consisting of three layers of ten neuron in each, but it should be clarified that such configuration requires larges computational resources in comparison the statistical methods presented above; necessary to increase the number of iteration in network learning process for RMS errors minimization. It should also be emphasized that the key issues of accuracy estimation of the classification results is lack of completeness of the training sets, this is especially true with summer image processing of mixed forest. However seems that proposed methodology can be used also for measure local dynamic of boreal land surface by the type of vegetation.Comparison of classification accuracyt;
Deep space network resource scheduling approach and application
NASA Technical Reports Server (NTRS)
Eggemeyer, William C.; Bowling, Alan
1987-01-01
Deep Space Network (DSN) resource scheduling is the process of distributing ground-based facilities to track multiple spacecraft. The Jet Propulsion Laboratory has carried out extensive research to find ways of automating this process in an effort to reduce time and manpower costs. This paper presents a resource-scheduling system entitled PLAN-IT with a description of its design philosophy. The PLAN-IT's current on-line usage and limitations in scheduling the resources of the DSN are discussed, along with potential enhancements for DSN application.
Semantic Service Matchmaking in the ATM Domain Considering Infrastructure Capability Constraints
NASA Astrophysics Data System (ADS)
Moser, Thomas; Mordinyi, Richard; Sunindyo, Wikan Danar; Biffl, Stefan
In a service-oriented environment business processes flexibly build on software services provided by systems in a network. A key design challenge is the semantic matchmaking of business processes and software services in two steps: 1. Find for one business process the software services that meet or exceed the BP requirements; 2. Find for all business processes the software services that can be implemented within the capability constraints of the underlying network, which poses a major problem since even for small scenarios the solution space is typically very large. In this chapter we analyze requirements from mission-critical business processes in the Air Traffic Management (ATM) domain and introduce an approach for semi-automatic semantic matchmaking for software services, the “System-Wide Information Sharing” (SWIS) business process integration framework. A tool-supported semantic matchmaking process like SWIS can provide system designers and integrators with a set of promising software service candidates and therefore strongly reduces the human matching effort by focusing on a much smaller space of matchmaking candidates. We evaluate the feasibility of the SWIS approach in an industry use case from the ATM domain.
An approach for formalising the supply chain operations
NASA Astrophysics Data System (ADS)
Zdravković, Milan; Panetto, Hervé; Trajanović, Miroslav; Aubry, Alexis
2011-11-01
Reference models play an important role in the knowledge management of the various complex collaboration domains (such as supply chain networks). However, they often show a lack of semantic precision and, they are sometimes incomplete. In this article, we present an approach to overcome semantic inconsistencies and incompleteness of the Supply Chain Operations Reference (SCOR) model and hence improve its usefulness and expand the application domain. First, we describe a literal web ontology language (OWL) specification of SCOR concepts (and related tools) built with the intention to preserve the original approach in the classification of process reference model entities, and hence enable the effectiveness of usage in original contexts. Next, we demonstrate the system for its exploitation, in specific - tools for SCOR framework browsing and rapid supply chain process configuration. Then, we describe the SCOR-Full ontology, its relations with relevant domain ontology and show how it can be exploited for improvement of SCOR ontological framework competence. Finally, we elaborate the potential impact of the presented approach, to interoperability of systems in supply chain networks.
Risk prediction model: Statistical and artificial neural network approach
NASA Astrophysics Data System (ADS)
Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim
2017-04-01
Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.
Towards Semantic Modelling of Business Processes for Networked Enterprises
NASA Astrophysics Data System (ADS)
Furdík, Karol; Mach, Marián; Sabol, Tomáš
The paper presents an approach to the semantic modelling and annotation of business processes and information resources, as it was designed within the FP7 ICT EU project SPIKE to support creation and maintenance of short-term business alliances and networked enterprises. A methodology for the development of the resource ontology, as a shareable knowledge model for semantic description of business processes, is proposed. Systematically collected user requirements, conceptual models implied by the selected implementation platform as well as available ontology resources and standards are employed in the ontology creation. The process of semantic annotation is described and illustrated using an example taken from a real application case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aderholdt, Ferrol; Caldwell, Blake A.; Hicks, Susan Elaine
High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data at various security levels but in so doing are often enclaved at the highest security posture. This approach places significant restrictions on the users of the system even when processing data at a lower security level and exposes data at higher levels of confidentiality to a much broader population than otherwise necessary. The traditional approach of isolation, while effective in establishing security enclaves poses significant challenges formore » the use of shared infrastructure in HPC environments. This report details current state-of-the-art in virtualization, reconfigurable network enclaving via Software Defined Networking (SDN), and storage architectures and bridging techniques for creating secure enclaves in HPC environments.« less
Artificial neural networks for document analysis and recognition.
Marinai, Simone; Gori, Marco; Soda, Giovanni; Society, Computer
2005-01-01
Artificial neural networks have been extensively applied to document analysis and recognition. Most efforts have been devoted to the recognition of isolated handwritten and printed characters with widely recognized successful results. However, many other document processing tasks, like preprocessing, layout analysis, character segmentation, word recognition, and signature verification, have been effectively faced with very promising results. This paper surveys the most significant problems in the area of offline document image processing, where connectionist-based approaches have been applied. Similarities and differences between approaches belonging to different categories are discussed. A particular emphasis is given on the crucial role of prior knowledge for the conception of both appropriate architectures and learning algorithms. Finally, the paper provides a critical analysis on the reviewed approaches and depicts the most promising research guidelines in the field. In particular, a second generation of connectionist-based models are foreseen which are based on appropriate graphical representations of the learning environment.
Parallel plan execution with self-processing networks
NASA Technical Reports Server (NTRS)
Dautrechy, C. Lynne; Reggia, James A.
1989-01-01
A critical issue for space operations is how to develop and apply advanced automation techniques to reduce the cost and complexity of working in space. In this context, it is important to examine how recent advances in self-processing networks can be applied for planning and scheduling tasks. For this reason, the feasibility of applying self-processing network models to a variety of planning and control problems relevant to spacecraft activities is being explored. Goals are to demonstrate that self-processing methods are applicable to these problems, and that MIRRORS/II, a general purpose software environment for implementing self-processing models, is sufficiently robust to support development of a wide range of application prototypes. Using MIRRORS/II and marker passing modelling techniques, a model of the execution of a Spaceworld plan was implemented. This is a simplified model of the Voyager spacecraft which photographed Jupiter, Saturn, and their satellites. It is shown that plan execution, a task usually solved using traditional artificial intelligence (AI) techniques, can be accomplished using a self-processing network. The fact that self-processing networks were applied to other space-related tasks, in addition to the one discussed here, demonstrates the general applicability of this approach to planning and control problems relevant to spacecraft activities. It is also demonstrated that MIRRORS/II is a powerful environment for the development and evaluation of self-processing systems.
Bathellier, Brice; Carleton, Alan; Gerstner, Wulfram
2008-12-01
Fast oscillations and in particular gamma-band oscillation (20-80 Hz) are commonly observed during brain function and are at the center of several neural processing theories. In many cases, mathematical analysis of fast oscillations in neural networks has been focused on the transition between irregular and oscillatory firing viewed as an instability of the asynchronous activity. But in fact, brain slice experiments as well as detailed simulations of biological neural networks have produced a large corpus of results concerning the properties of fully developed oscillations that are far from this transition point. We propose here a mathematical approach to deal with nonlinear oscillations in a network of heterogeneous or noisy integrate-and-fire neurons connected by strong inhibition. This approach involves limited mathematical complexity and gives a good sense of the oscillation mechanism, making it an interesting tool to understand fast rhythmic activity in simulated or biological neural networks. A surprising result of our approach is that under some conditions, a change of the strength of inhibition only weakly influences the period of the oscillation. This is in contrast to standard theoretical and experimental models of interneuron network gamma oscillations (ING), where frequency tightly depends on inhibition strength, but it is similar to observations made in some in vitro preparations in the hippocampus and the olfactory bulb and in some detailed network models. This result is explained by the phenomenon of suppression that is known to occur in strongly coupled oscillating inhibitory networks but had not yet been related to the behavior of oscillation frequency.
Finding shared decisions in stakeholder networks: An agent-based approach
NASA Astrophysics Data System (ADS)
Le Pira, Michela; Inturri, Giuseppe; Ignaccolo, Matteo; Pluchino, Alessandro; Rapisarda, Andrea
2017-01-01
We address the problem of a participatory decision-making process where a shared priority list of alternatives has to be obtained while avoiding inconsistent decisions. An agent-based model (ABM) is proposed to mimic this process in different social networks of stakeholders who interact according to an opinion dynamics model. Simulations' results show the efficacy of interaction in finding a transitive and, above all, shared decision. These findings are in agreement with real participation experiences regarding transport planning decisions and can give useful suggestions on how to plan an effective participation process for sustainable policy-making based on opinion consensus.
Teaching the NIATx Model of Process Improvement as an Evidence-Based Process
ERIC Educational Resources Information Center
Evans, Alyson C.; Rieckmann, Traci; Fitzgerald, Maureen M.; Gustafson, David H.
2007-01-01
Process Improvement (PI) is an approach for helping organizations to identify and resolve inefficient and ineffective processes through problem solving and pilot testing change. Use of PI in improving client access, retention and outcomes in addiction treatment is on the rise through the teaching of the Network for the Improvement of Addiction…
Al-Anzi, Bader; Arpp, Patrick; Gerges, Sherif; Ormerod, Christopher; Olsman, Noah; Zinn, Kai
2015-05-01
An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.
Academic Life-Support: The Self Study of a Transnational Collaborative Mentoring Group
ERIC Educational Resources Information Center
Bristol, Laurette; Adams, Anne E.; Guzman Johannessen, B. Gloria
2014-01-01
In this paper, we examined the collaborative mentoring processes of a transnational network. A narrative approach was employed to explore the mentoring practices and experiences of 19 women involved in the CURVE-Y-FRiENDs (C-Y-F) network. Their mentoring practices go beyond transnational, ethnic, discipline, and university borders. The processes…
ERIC Educational Resources Information Center
Okoro, Ephraim
2012-01-01
Electronic communication and social networking are effective and useful tools in the process of teaching and learning and have increasingly improved the quality of students' learning outcomes in higher education in recent years. The system encourages and supports students' active engagement, collaboration, and participation in class activities and…
2015-07-31
and make the expected decision outcomes. The scenario is based around a scripted storyboard where an organized crime network is operating in a city to...interdicted by law enforcement to disrupt the network. The scenario storyboard was used to develop a probabilistic vehicle traffic model in order to
ERIC Educational Resources Information Center
Kamis, Arnold; Khan, Beverly K.
2009-01-01
How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…
Friendship and Alcohol Use in Early Adolescence: A Multilevel Social Network Approach
ERIC Educational Resources Information Center
Knecht, Andrea B.; Burk, William J.; Weesie, Jeroen; Steglich, Christian
2011-01-01
This study applies multilevel social network analytic techniques to examine processes of homophilic selection and social influence related to alcohol use among friends in early adolescence. Participants included 3,041 Dutch youth (M age =12 years, 49% female) from 120 classrooms in 14 schools. Three waves with 3-month intervals of friendship…
Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory
NASA Technical Reports Server (NTRS)
Rice, Brian P.; Lee, C. William; Curliss, David B.
2003-01-01
Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.
Russo, Lucia; Russo, Paola; Siettos, Constantinos I.
2016-01-01
Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire. PMID:27780249
Russo, Lucia; Russo, Paola; Siettos, Constantinos I
2016-01-01
Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.
The cognitive structural approach for image restoration
NASA Astrophysics Data System (ADS)
Mardare, Igor; Perju, Veacheslav; Casasent, David
2008-03-01
It is analyzed the important and actual problem of the defective images of scenes restoration. The proposed approach provides restoration of scenes by a system on the basis of human intelligence phenomena reproduction used for restoration-recognition of images. The cognitive models of the restoration process are elaborated. The models are realized by the intellectual processors constructed on the base of neural networks and associative memory using neural network simulator NNToolbox from MATLAB 7.0. The models provides restoration and semantic designing of images of scenes under defective images of the separate objects.
Mantini, D.; Marzetti, L.; Corbetta, M.; Romani, G.L.; Del Gratta, C.
2017-01-01
Two major non-invasive brain mapping techniques, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. We propose an approach based on the integration of EEG and fMRI, enabling the EEG temporal dynamics of information processing to be characterized within spatially well-defined fMRI large-scale networks. First, the fMRI data are decomposed into networks by means of spatial independent component analysis (sICA), and those associated with intrinsic activity and/or responding to task performance are selected using information from the related time-courses. Next, the EEG data over all sensors are averaged with respect to event timing, thus calculating event-related potentials (ERPs). The ERPs are subjected to temporal ICA (tICA), and the resulting components are localized with the weighted minimum norm (WMNLS) algorithm using the task-related fMRI networks as priors. Finally, the temporal contribution of each ERP component in the areas belonging to the fMRI large-scale networks is estimated. The proposed approach has been evaluated on visual target detection data. Our results confirm that two different components, commonly observed in EEG when presenting novel and salient stimuli respectively, are related to the neuronal activation in large-scale networks, operating at different latencies and associated with different functional processes. PMID:20052528
Design of order statistics filters using feedforward neural networks
NASA Astrophysics Data System (ADS)
Maslennikova, Yu. S.; Bochkarev, V. V.
2016-08-01
In recent years significant progress have been made in the development of nonlinear data processing techniques. Such techniques are widely used in digital data filtering and image enhancement. Many of the most effective nonlinear filters based on order statistics. The widely used median filter is the best known order statistic filter. Generalized form of these filters could be presented based on Lloyd's statistics. Filters based on order statistics have excellent robustness properties in the presence of impulsive noise. In this paper, we present special approach for synthesis of order statistics filters using artificial neural networks. Optimal Lloyd's statistics are used for selecting of initial weights for the neural network. Adaptive properties of neural networks provide opportunities to optimize order statistics filters for data with asymmetric distribution function. Different examples demonstrate the properties and performance of presented approach.
Foreign currency rate forecasting using neural networks
NASA Astrophysics Data System (ADS)
Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad
2000-03-01
Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.
Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia
2012-06-21
Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.
Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.
Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C
2015-01-01
MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice. Thus, the co-regulatory network analysis facilitated the identification of complex OsMYB regulatory networks, and candidate target regulon genes of selected guide MYB genes. The results contribute to the candidate gene screening, and experimentally testable hypotheses for potential regulatory MYB TFs, and their targets under stress conditions.
Predicting the evolution of spreading on complex networks
Chen, Duan-Bing; Xiao, Rui; Zeng, An
2014-01-01
Due to the wide applications, spreading processes on complex networks have been intensively studied. However, one of the most fundamental problems has not yet been well addressed: predicting the evolution of spreading based on a given snapshot of the propagation on networks. With this problem solved, one can accelerate or slow down the spreading in advance if the predicted propagation result is narrower or wider than expected. In this paper, we propose an iterative algorithm to estimate the infection probability of the spreading process and then apply it to a mean-field approach to predict the spreading coverage. The validation of the method is performed in both artificial and real networks. The results show that our method is accurate in both infection probability estimation and spreading coverage prediction. PMID:25130862
A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks
NASA Technical Reports Server (NTRS)
Cui, Zhenqian
1999-01-01
With the development of high-speed networking technology, computer networks, including local-area networks (LANs), wide-area networks (WANs) and the Internet, are extending their traditional roles of carrying computer data. They are being used for Internet telephony, multimedia applications such as conferencing and video on demand, distributed simulations, and other real-time applications. LANs are even used for distributed real-time process control and computing as a cost-effective approach. Differing from traditional data transfer, these new classes of high-speed network applications (video, audio, real-time process control, and others) are delay sensitive. The usefulness of data depends not only on the correctness of received data, but also the time that data are received. In other words, these new classes of applications require networks to provide guaranteed services or quality of service (QoS). Quality of service can be defined by a set of parameters and reflects a user's expectation about the underlying network's behavior. Traditionally, distinct services are provided by different kinds of networks. Voice services are provided by telephone networks, video services are provided by cable networks, and data transfer services are provided by computer networks. A single network providing different services is called an integrated-services network.
NASA Astrophysics Data System (ADS)
Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.
2016-12-01
Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models of hillslope production and fluvial transport processes, which is particularly useful to identify sediment provenance in poorly monitored river basins.
Verma, Arjun; Fratto, Brian E.; Privman, Vladimir; Katz, Evgeny
2016-01-01
We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702
Zand, Pouria; Dilo, Arta; Havinga, Paul
2013-06-27
Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead.
Chan, Chien A; Gygax, André F; Wong, Elaine; Leckie, Christopher A; Nirmalathas, Ampalavanapillai; Kilper, Daniel C
2013-01-02
Internet traffic has grown rapidly in recent years and is expected to continue to expand significantly over the next decade. Consequently, the resulting greenhouse gas (GHG) emissions of telecommunications service-supporting infrastructures have become an important issue. In this study, we develop a set of models for assessing the use-phase power consumption and carbon dioxide emissions of telecom network services to help telecom providers gain a better understanding of the GHG emissions associated with the energy required for their networks and services. Due to the fact that measuring the power consumption and traffic in a telecom network is a challenging task, these models utilize different granularities of available network information. As the granularity of the network measurement information decreases, the corresponding models have the potential to produce larger estimation errors. Therefore, we examine the accuracy of these models under various network scenarios using two approaches: (i) a sensitivity analysis through simulations and (ii) a case study of a deployed network. Both approaches show that the accuracy of the models depends on the network size, the total amount of network service traffic (i.e., for the service under assessment), and the number of network nodes used to process the service.
Zand, Pouria; Dilo, Arta; Havinga, Paul
2013-01-01
Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead. PMID:23807687
NASA Astrophysics Data System (ADS)
Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca
2017-04-01
The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.
Dimitrova, N; Nagaraj, A B; Razi, A; Singh, S; Kamalakaran, S; Banerjee, N; Joseph, P; Mankovich, A; Mittal, P; DiFeo, A; Varadan, V
2017-04-27
Characterizing the complex interplay of cellular processes in cancer would enable the discovery of key mechanisms underlying its development and progression. Published approaches to decipher driver mechanisms do not explicitly model tissue-specific changes in pathway networks and the regulatory disruptions related to genomic aberrations in cancers. We therefore developed InFlo, a novel systems biology approach for characterizing complex biological processes using a unique multidimensional framework integrating transcriptomic, genomic and/or epigenomic profiles for any given cancer sample. We show that InFlo robustly characterizes tissue-specific differences in activities of signalling networks on a genome scale using unique probabilistic models of molecular interactions on a per-sample basis. Using large-scale multi-omics cancer datasets, we show that InFlo exhibits higher sensitivity and specificity in detecting pathway networks associated with specific disease states when compared to published pathway network modelling approaches. Furthermore, InFlo's ability to infer the activity of unmeasured signalling network components was also validated using orthogonal gene expression signatures. We then evaluated multi-omics profiles of primary high-grade serous ovarian cancer tumours (N=357) to delineate mechanisms underlying resistance to frontline platinum-based chemotherapy. InFlo was the only algorithm to identify hyperactivation of the cAMP-CREB1 axis as a key mechanism associated with resistance to platinum-based therapy, a finding that we subsequently experimentally validated. We confirmed that inhibition of CREB1 phosphorylation potently sensitized resistant cells to platinum therapy and was effective in killing ovarian cancer stem cells that contribute to both platinum-resistance and tumour recurrence. Thus, we propose InFlo to be a scalable and widely applicable and robust integrative network modelling framework for the discovery of evidence-based biomarkers and therapeutic targets.
Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data
Wikle, C.K.; Royle, J. Andrew
2005-01-01
Many ecological processes exhibit spatial structure that changes over time in a coherent, dynamical fashion. This dynamical component is often ignored in the design of spatial monitoring networks. Furthermore, ecological variables related to processes such as habitat are often non-Gaussian (e.g. Poisson or log-normal). We demonstrate that a simulation-based design approach can be used in settings where the data distribution is from a spatio-temporal exponential family. The key random component in the conditional mean function from this distribution is then a spatio-temporal dynamic process. Given the computational burden of estimating the expected utility of various designs in this setting, we utilize an extended Kalman filter approximation to facilitate implementation. The approach is motivated by, and demonstrated on, the problem of selecting sampling locations to estimate July brood counts in the prairie pothole region of the U.S.
Ponce, Hiram; Martínez-Villaseñor, María de Lourdes; Miralles-Pechuán, Luis
2016-07-05
Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods.
A Framework for Real-Time Collection, Analysis, and Classification of Ubiquitous Infrasound Data
NASA Astrophysics Data System (ADS)
Christe, A.; Garces, M. A.; Magana-Zook, S. A.; Schnurr, J. M.
2015-12-01
Traditional infrasound arrays are generally expensive to install and maintain. There are ~10^3 infrasound channels on Earth today. The amount of data currently provided by legacy architectures can be processed on a modest server. However, the growing availability of low-cost, ubiquitous, and dense infrasonic sensor networks presents a substantial increase in the volume, velocity, and variety of data flow. Initial data from a prototype ubiquitous global infrasound network is already pushing the boundaries of traditional research server and communication systems, in particular when serving data products over heterogeneous, international network topologies. We present a scalable, cloud-based approach for capturing and analyzing large amounts of dense infrasonic data (>10^6 channels). We utilize Akka actors with WebSockets to maintain data connections with infrasound sensors. Apache Spark provides streaming, batch, machine learning, and graph processing libraries which will permit signature classification, cross-correlation, and other analytics in near real time. This new framework and approach provide significant advantages in scalability and cost.
[A non-classical approach to medical practices: Michel Foucault and Actor-Network Theory].
Bińczyk, E
2001-01-01
The text presents an analysis of medical practices stemming from two sources: Michel Foucault's conception and the research of Annemarie Mol and John Law, representatives of a trend known as Actor-Network Theory. Both approaches reveal significant theoretical kinship: they can be successfully consigned to the framework of non-classical sociology of science. I initially refer to the cited conceptions as a version of non-classical sociology of medicine. The identity of non-classical sociology of medicine hinges on the fact that it undermines the possibility of objective definitions of disease, health and body. These are rather approached as variable social and historical phenomena, co-constituted by medical practices. To both Foucault and Mol the main object of interest was not medicine as such, but rather the network of medical practices. Mol and Law sketch a new theoretical perspective for the analysis of medical practices. They attempt to go beyond the dichotomous scheme of thinking about the human body as an object of medical research and the subject of private experience. Research on patients suffering blood-sugar deficiency provide the empirical background for the thesis of Actor-Network Theory representatives. Michel Foucault's conceptions are extremely critical of medical practices. The French researcher describes the processes of 'medicalising' Western society as the emergence of a new type of power. He attempts to sensitise the reader to the ethical dimension of the processes of medicalising society.
Detecting the Influence of Spreading in Social Networks with Excitable Sensor Networks
Pei, Sen; Tang, Shaoting; Zheng, Zhiming
2015-01-01
Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of humans’ physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (Facebook, coauthor, and email social networks), we find that the excitable sensor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods. PMID:25950181
Genetic dissection of the Gpnmb network in the eye.
Lu, Hong; Wang, Xusheng; Pullen, Matthew; Guan, Huaijin; Chen, Hui; Sahu, Shwetapadma; Zhang, Bing; Chen, Hao; Williams, Robert W; Geisert, Eldon E; Lu, Lu; Jablonski, Monica M
2011-06-13
To use a systematic genetics approach to investigate the regulation of Gpnmb, a gene that contributes to pigmentary dispersion syndrome (PDS) and pigmentary glaucoma (PG) in the DBA/2J (D2) mouse. Global patterns of gene expression were studied in whole eyes of a large family of BXD mouse strains (n = 67) generated by crossing the PDS- and PG-prone parent (DBA/2J) with a resistant strain (C57BL/6J). Quantitative trait locus (eQTL) mapping methods and gene set analysis were used to evaluate Gpnmb coexpression networks in wild-type and mutant cohorts. The level of Gpnmb expression was associated with a highly significant cis-eQTL at the location of the gene itself. This autocontrol of Gpnmb is likely to be a direct consequence of the known premature stop codon in exon 4. Both gene ontology and coexpression network analyses demonstrated that the mutation in Gpnmb radically modified the set of genes with which Gpnmb expression is correlated. The covariates of wild-type Gpnmb are involved in biological processes including melanin synthesis and cell migration, whereas the covariates of mutant Gpnmb are involved in the biological processes of posttranslational modification, stress activation, and sensory processing. These results demonstrated that a systematic genetics approach provides a powerful tool for constructing coexpression networks that define the biological process categories within which similarly regulated genes function. The authors showed that the R150X mutation in Gpnmb dramatically modified its list of genetic covariates, which may explain the associated ocular pathology.
Reliable and Fault-Tolerant Software-Defined Network Operations Scheme for Remote 3D Printing
NASA Astrophysics Data System (ADS)
Kim, Dongkyun; Gil, Joon-Min
2015-03-01
The recent wide expansion of applicable three-dimensional (3D) printing and software-defined networking (SDN) technologies has led to a great deal of attention being focused on efficient remote control of manufacturing processes. SDN is a renowned paradigm for network softwarization, which has helped facilitate remote manufacturing in association with high network performance, since SDN is designed to control network paths and traffic flows, guaranteeing improved quality of services by obtaining network requests from end-applications on demand through the separated SDN controller or control plane. However, current SDN approaches are generally focused on the controls and automation of the networks, which indicates that there is a lack of management plane development designed for a reliable and fault-tolerant SDN environment. Therefore, in addition to the inherent advantage of SDN, this paper proposes a new software-defined network operations center (SD-NOC) architecture to strengthen the reliability and fault-tolerance of SDN in terms of network operations and management in particular. The cooperation and orchestration between SDN and SD-NOC are also introduced for the SDN failover processes based on four principal SDN breakdown scenarios derived from the failures of the controller, SDN nodes, and connected links. The abovementioned SDN troubles significantly reduce the network reachability to remote devices (e.g., 3D printers, super high-definition cameras, etc.) and the reliability of relevant control processes. Our performance consideration and analysis results show that the proposed scheme can shrink operations and management overheads of SDN, which leads to the enhancement of responsiveness and reliability of SDN for remote 3D printing and control processes.
Realistic Data-Driven Traffic Flow Animation Using Texture Synthesis.
Chao, Qianwen; Deng, Zhigang; Ren, Jiaping; Ye, Qianqian; Jin, Xiaogang
2018-02-01
We present a novel data-driven approach to populate virtual road networks with realistic traffic flows. Specifically, given a limited set of vehicle trajectories as the input samples, our approach first synthesizes a large set of vehicle trajectories. By taking the spatio-temporal information of traffic flows as a 2D texture, the generation of new traffic flows can be formulated as a texture synthesis process, which is solved by minimizing a newly developed traffic texture energy. The synthesized output captures the spatio-temporal dynamics of the input traffic flows, and the vehicle interactions in it strictly follow traffic rules. After that, we position the synthesized vehicle trajectory data to virtual road networks using a cage-based registration scheme, where a few traffic-specific constraints are enforced to maintain each vehicle's original spatial location and synchronize its motion in concert with its neighboring vehicles. Our approach is intuitive to control and scalable to the complexity of virtual road networks. We validated our approach through many experiments and paired comparison user studies.
Model-Based Anomaly Detection for a Transparent Optical Transmission System
NASA Astrophysics Data System (ADS)
Bengtsson, Thomas; Salamon, Todd; Ho, Tin Kam; White, Christopher A.
In this chapter, we present an approach for anomaly detection at the physical layer of networks where detailed knowledge about the devices and their operations is available. The approach combines physics-based process models with observational data models to characterize the uncertainties and derive the alarm decision rules. We formulate and apply three different methods based on this approach for a well-defined problem in optical network monitoring that features many typical challenges for this methodology. Specifically, we address the problem of monitoring optically transparent transmission systems that use dynamically controlled Raman amplification systems. We use models of amplifier physics together with statistical estimation to derive alarm decision rules and use these rules to automatically discriminate between measurement errors, anomalous losses, and pump failures. Our approach has led to an efficient tool for systematically detecting anomalies in the system behavior of a deployed network, where pro-active measures to address such anomalies are key to preventing unnecessary disturbances to the system's continuous operation.
Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems
Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh
2016-01-01
We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can be used to analyze complex “omics” data and to infer and optimize metabolic processes. Thereby, SMN models are suitable to capitalize on advances in high-throughput molecular and metabolic data generation. SMN models are starting to be applied to describe microbial interactions during wastewater treatment, in-situ bioremediation, microalgae blooms methanogenic fermentation, and bioplastic production. Despite their current challenges, we envisage that SMN models have future potential for the design and development of novel growth media, biochemical pathways and synthetic microbial associations. PMID:27242701
NASA Astrophysics Data System (ADS)
Kim, Nakwan
Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.
Broadband electrical impedance matching for piezoelectric ultrasound transducers.
Huang, Haiying; Paramo, Daniel
2011-12-01
This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.
Mixed methods analysis of urban environmental stewardship networks
James J.T. Connolly; Erika S. Svendsen; Dana R. Fisher; Lindsay K. Campbell
2015-01-01
While mixed methods approaches to research have been accepted practice within the social sciences for several decades (Tashakkori and Teddlie 2003), the rising demand for cross-disciplinary analyses of socio-environmental processes has necessitated a renewed examination of this approach within environmental studies. Urban environmental stewardship is one area where it...
Metadata behind the Interoperability of Wireless Sensor Networks
Ballari, Daniela; Wachowicz, Monica; Callejo, Miguel Angel Manso
2009-01-01
Wireless Sensor Networks (WSNs) produce changes of status that are frequent, dynamic and unpredictable, and cannot be represented using a linear cause-effect approach. Consequently, a new approach is needed to handle these changes in order to support dynamic interoperability. Our approach is to introduce the notion of context as an explicit representation of changes of a WSN status inferred from metadata elements, which in turn, leads towards a decision-making process about how to maintain dynamic interoperability. This paper describes the developed context model to represent and reason over different WSN status based on four types of contexts, which have been identified as sensing, node, network and organisational contexts. The reasoning has been addressed by developing contextualising and bridges rules. As a result, we were able to demonstrate how contextualising rules have been used to reason on changes of WSN status as a first step towards maintaining dynamic interoperability. PMID:22412330
Metadata behind the Interoperability of Wireless Sensor Networks.
Ballari, Daniela; Wachowicz, Monica; Callejo, Miguel Angel Manso
2009-01-01
Wireless Sensor Networks (WSNs) produce changes of status that are frequent, dynamic and unpredictable, and cannot be represented using a linear cause-effect approach. Consequently, a new approach is needed to handle these changes in order to support dynamic interoperability. Our approach is to introduce the notion of context as an explicit representation of changes of a WSN status inferred from metadata elements, which in turn, leads towards a decision-making process about how to maintain dynamic interoperability. This paper describes the developed context model to represent and reason over different WSN status based on four types of contexts, which have been identified as sensing, node, network and organisational contexts. The reasoning has been addressed by developing contextualising and bridges rules. As a result, we were able to demonstrate how contextualising rules have been used to reason on changes of WSN status as a first step towards maintaining dynamic interoperability.
Network based approaches reveal clustering in protein point patterns
NASA Astrophysics Data System (ADS)
Parker, Joshua; Barr, Valarie; Aldridge, Joshua; Samelson, Lawrence E.; Losert, Wolfgang
2014-03-01
Recent advances in super-resolution imaging have allowed for the sub-diffraction measurement of the spatial location of proteins on the surfaces of T-cells. The challenge is to connect these complex point patterns to the internal processes and interactions, both protein-protein and protein-membrane. We begin analyzing these patterns by forming a geometric network amongst the proteins and looking at network measures, such the degree distribution. This allows us to compare experimentally observed patterns to models. Specifically, we find that the experimental patterns differ from heterogeneous Poisson processes, highlighting an internal clustering structure. Further work will be to compare our results to simulated protein-protein interactions to determine clustering mechanisms.
An architecture for designing fuzzy logic controllers using neural networks
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.
Joint estimation of preferential attachment and node fitness in growing complex networks
NASA Astrophysics Data System (ADS)
Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi
2016-09-01
Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit.
Epidemic processes in complex networks
NASA Astrophysics Data System (ADS)
Pastor-Satorras, Romualdo; Castellano, Claudio; Van Mieghem, Piet; Vespignani, Alessandro
2015-07-01
In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.
Joint estimation of preferential attachment and node fitness in growing complex networks
Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi
2016-01-01
Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit. PMID:27601314
Advanced mobility handover for mobile IPv6 based wireless networks.
Safa Sadiq, Ali; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime
2014-01-01
We propose an Advanced Mobility Handover scheme (AMH) in this paper for seamless mobility in MIPv6-based wireless networks. In the proposed scheme, the mobile node utilizes a unique home IPv6 address developed to maintain communication with other corresponding nodes without a care-of-address during the roaming process. The IPv6 address for each MN during the first round of AMH process is uniquely identified by HA using the developed MN-ID field as a global permanent, which is identifying uniquely the IPv6 address of MN. Moreover, a temporary MN-ID is generated by access point each time an MN is associated with a particular AP and temporarily saved in a developed table inside the AP. When employing the AMH scheme, the handover process in the network layer is performed prior to its default time. That is, the mobility handover process in the network layer is tackled by a trigger developed AMH message to the next access point. Thus, a mobile node keeps communicating with the current access point while the network layer handover is executed by the next access point. The mathematical analyses and simulation results show that the proposed scheme performs better as compared with the existing approaches.
Template-based procedures for neural network interpretation.
Alexander, J A.; Mozer, M C.
1999-04-01
Although neural networks often achieve impressive learning and generalization performance, their internal workings are typically all but impossible to decipher. This characteristic of the networks, their opacity, is one of the disadvantages of connectionism compared to more traditional, rule-oriented approaches to artificial intelligence. Without a thorough understanding of the network behavior, confidence in a system's results is lowered, and the transfer of learned knowledge to other processing systems - including humans - is precluded. Methods that address the opacity problem by casting network weights in symbolic terms are commonly referred to as rule extraction techniques. This work describes a principled approach to symbolic rule extraction from standard multilayer feedforward networks based on the notion of weight templates, parameterized regions of weight space corresponding to specific symbolic expressions. With an appropriate choice of representation, we show how template parameters may be efficiently identified and instantiated to yield the optimal match to the actual weights of a unit. Depending on the requirements of the application domain, the approach can accommodate n-ary disjunctions and conjunctions with O(k) complexity, simple n-of-m expressions with O(k(2)) complexity, or more general classes of recursive n-of-m expressions with O(k(L+2)) complexity, where k is the number of inputs to an unit and L the recursion level of the expression class. Compared to other approaches in the literature, our method of rule extraction offers benefits in simplicity, computational performance, and overall flexibility. Simulation results on a variety of problems demonstrate the application of our procedures as well as the strengths and the weaknesses of our general approach.
McPherson, Charmaine; Ploeg, Jenny; Edwards, Nancy; Ciliska, Donna; Sword, Wendy
2017-02-01
The purpose of this study was to examine key processes and supportive and inhibiting factors involved in the development, evolution, and sustainability of a child health network in rural Canada. This study contributes to a relatively new research agenda aimed at understanding inter-organizational and cross-sectoral health networks. These networks encourage collaboration focusing on complex issues impacting health - issues that individual agencies cannot effectively address alone. This paper presents an overview of the study findings. An explanatory qualitative case study approach examined the Network's 13-year lifespan. Data sources were documents and Network members, including regional and 71 provincial senior managers from 11 child and youth service sectors. Data were collected through 34 individual interviews and a review of 127 documents. Interview data were analyzed using framework analysis methods; Prior's approach guided document analysis. Three themes related to network development, evolution and sustainability were identified: (a) Network relationships as system triggers, (b) Network-mediated system responsiveness, and (c) Network practice as political. Study findings have important implications for network organizational development, collaborative practice, interprofessional education, public policy, and public system responsiveness research. Findings suggest it is important to explicitly focus on relationships and multi-level socio-political contexts, such as supportive policy environments, in understanding health networks. The dynamic interplay among the Network members; central supportive and inhibiting factors; and micro-, meso-, and macro-organizational contexts was identified.
Gronau, Greta; Jacobsen, Matthew M.; Huang, Wenwen; Rizzo, Daniel J.; Li, David; Staii, Cristian; Pugno, Nicola M.; Wong, Joyce Y.; Kaplan, David L.; Buehler, Markus J.
2016-01-01
Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified. PMID:26017575
Lin, Shangchao; Ryu, Seunghwa; Tokareva, Olena; Gronau, Greta; Jacobsen, Matthew M; Huang, Wenwen; Rizzo, Daniel J; Li, David; Staii, Cristian; Pugno, Nicola M; Wong, Joyce Y; Kaplan, David L; Buehler, Markus J
2015-05-28
Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.
Neural networks: Alternatives to conventional techniques for automatic docking
NASA Technical Reports Server (NTRS)
Vinz, Bradley L.
1994-01-01
Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.
Concurrent enterprise: a conceptual framework for enterprise supply-chain network activities
NASA Astrophysics Data System (ADS)
Addo-Tenkorang, Richard; Helo, Petri T.; Kantola, Jussi
2017-04-01
Supply-chain management (SCM) in manufacturing industries has evolved significantly over the years. Recently, a lot more relevant research has picked up on the development of integrated solutions. Thus, seeking a collaborative optimisation of geographical, just-in-time (JIT), quality (customer demand/satisfaction) and return-on-investment (profits), aspects of organisational management and planning through 'best practice' business-process management - concepts and application; employing system tools such as certain applications/aspects of enterprise resource planning (ERP) - SCM systems information technology (IT) enablers to enhance enterprise integrated product development/concurrent engineering principles. This article assumed three main organisation theory applications in positioning its assumptions. Thus, proposing a feasible industry-specific framework not currently included within the SCOR model's level four (4) implementation level, as well as other existing SCM integration reference models such as in the MIT process handbook's - Process Interchange Format (PIF), the TOVE project, etc. which could also be replicated in other SCs. However, the wider focus of this paper's contribution will be concentrated on a complimentary proposed framework to the SCC's SCOR reference model. Quantitative empirical closed-ended questionnaires in addition to the main data collected from a qualitative empirical real-life industrial-based pilot case study were used: To propose a conceptual concurrent enterprise framework for SCM network activities. This research adopts a design structure matrix simulation approach analysis to propose an optimal enterprise SCM-networked value-adding, customised master data-management platform/portal for efficient SCM network information exchange and an effective supply-chain (SC) network systems-design teams' structure. Furthermore, social network theory analysis will be employed in a triangulation approach with statistical correlation analysis to assess the scale/level of frequency, importance, level of collaborative-ness, mutual trust as well as roles and responsibility among the enterprise SCM network for systems product development (PD) design teams' technical communication network as well as extensive literature reviews.
Kinetic analyses of vasculogenesis inform mechanistic studies
Winfree, Seth; Chu, Chenghao; Tu, Wanzhu; Blue, Emily K.; Gohn, Cassandra R.; Dunn, Kenneth W.
2017-01-01
Vasculogenesis is a complex process by which endothelial stem and progenitor cells undergo de novo vessel formation. Quantitative assessment of vasculogenesis is a central readout of endothelial progenitor cell functionality. However, current assays lack kinetic measurements. To address this issue, new approaches were developed to quantitatively assess in vitro endothelial colony-forming cell (ECFC) network formation in real time. Eight parameters of network structure were quantified using novel Kinetic Analysis of Vasculogenesis (KAV) software. KAV assessment of structure complexity identified two phases of network formation. This observation guided the development of additional vasculogenic readouts. A tissue cytometry approach was established to quantify the frequency and localization of dividing ECFCs. Additionally, Fiji TrackMate was used to quantify ECFC displacement and speed at the single-cell level during network formation. These novel approaches were then implemented to identify how intrauterine exposure to maternal diabetes mellitus (DM) impairs fetal ECFC vasculogenesis. Fetal ECFCs exposed to maternal DM form fewer initial network structures, which are not stable over time. Correlation analyses demonstrated that ECFC samples with greater division in branches form fewer closed network structures. Additionally, reductions in average ECFC movement over time decrease structural connectivity. Identification of these novel phenotypes utilizing the newly established methodologies provides evidence for the cellular mechanisms contributing to aberrant ECFC vasculogenesis. PMID:28100488
Cutting the wires: modularization of cellular networks for experimental design.
Lang, Moritz; Summers, Sean; Stelling, Jörg
2014-01-07
Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Zhan, Liang; Zhou, Jiayu; Wang, Yalin; Jin, Yan; Jahanshad, Neda; Prasad, Gautam; Nir, Talia M.; Leonardo, Cassandra D.; Ye, Jieping; Thompson, Paul M.; for the Alzheimer’s Disease Neuroimaging Initiative
2015-01-01
Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods – four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one “ball-and-stick” approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification. PMID:25926791
Generation of Complex Karstic Conduit Networks with a Hydro-chemical Model
NASA Astrophysics Data System (ADS)
De Rooij, R.; Graham, W. D.
2016-12-01
The discrete-continuum approach is very well suited to simulate flow and solute transport within karst aquifers. Using this approach, discrete one-dimensional conduits are embedded within a three-dimensional continuum representative of the porous limestone matrix. Typically, however, little is known about the geometry of the karstic conduit network. As such the discrete-continuum approach is rarely used for practical applications. It may be argued, however, that the uncertainty associated with the geometry of the network could be handled by modeling an ensemble of possible karst conduit networks within a stochastic framework. We propose to generate stochastically realistic karst conduit networks by simulating the widening of conduits as caused by the dissolution of limestone over geological relevant timescales. We illustrate that advanced numerical techniques permit to solve the non-linear and coupled hydro-chemical processes efficiently, such that relatively large and complex networks can be generated in acceptable time frames. Instead of specifying flow boundary conditions on conduit cells to recharge the network as is typically done in classical speleogenesis models, we specify an effective rainfall rate over the land surface and let model physics determine the amount of water entering the network. This is advantageous since the amount of water entering the network is extremely difficult to reconstruct, whereas the effective rainfall rate may be quantified using paleoclimatic data. Furthermore, we show that poorly known flow conditions may be constrained by requiring a realistic flow field. Using our speleogenesis model we have investigated factors that influence the geometry of simulated conduit networks. We illustrate that our model generates typical branchwork, network and anastomotic conduit systems. Flow, solute transport and water ages in karst aquifers are simulated using a few illustrative networks.
Memristor-based neural networks: Synaptic versus neuronal stochasticity
NASA Astrophysics Data System (ADS)
Naous, Rawan; AlShedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled Nabil
2016-11-01
In neuromorphic circuits, stochasticity in the cortex can be mapped into the synaptic or neuronal components. The hardware emulation of these stochastic neural networks are currently being extensively studied using resistive memories or memristors. The ionic process involved in the underlying switching behavior of the memristive elements is considered as the main source of stochasticity of its operation. Building on its inherent variability, the memristor is incorporated into abstract models of stochastic neurons and synapses. Two approaches of stochastic neural networks are investigated. Aside from the size and area perspective, the impact on the system performance, in terms of accuracy, recognition rates, and learning, among these two approaches and where the memristor would fall into place are the main comparison points to be considered.
A metabolic network approach for the identification and prioritization of antimicrobial drug targets
Chavali, Arvind K.; D’Auria, Kevin M.; Hewlett, Erik L.; Pearson, Richard D.; Papin, Jason A.
2012-01-01
For many infectious diseases, novel treatment options are needed to address problems with cost, toxicity and resistance to current drugs. Systems biology tools can be used to gain valuable insight into pathogenic processes and aid in expediting drug discovery. In the past decade, constraint-based modeling of genome-scale metabolic networks has become widely used. Focusing on pathogen metabolic networks, we review in silico strategies to identify effective drug targets, and we highlight recent successes as well as limitations associated with such computational analyses. We further discuss how accounting for the host environment and even targeting the host may offer new therapeutic options. These systems-level approaches are beginning to provide novel avenues for drug targeting against infectious agents. PMID:22300758
An artificial bioindicator system for network intrusion detection.
Blum, Christian; Lozano, José A; Davidson, Pedro Pinacho
An artificial bioindicator system is developed in order to solve a network intrusion detection problem. The system, inspired by an ecological approach to biological immune systems, evolves a population of agents that learn to survive in their environment. An adaptation process allows the transformation of the agent population into a bioindicator that is capable of reacting to system anomalies. Two characteristics stand out in our proposal. On the one hand, it is able to discover new, previously unseen attacks, and on the other hand, contrary to most of the existing systems for network intrusion detection, it does not need any previous training. We experimentally compare our proposal with three state-of-the-art algorithms and show that it outperforms the competing approaches on widely used benchmark data.
Frequency assignments for HFDF receivers in a search and rescue network
NASA Astrophysics Data System (ADS)
Johnson, Krista E.
1990-03-01
This thesis applies a multiobjective linear programming approach to the problem of assigning frequencies to high frequency direction finding (HFDF) receivers in a search-and-rescue network in order to maximize the expected number of geolocations of vessels in distress. The problem is formulated as a multiobjective integer linear programming problem. The integrality of the solutions is guaranteed by the totally unimodularity of the A-matrix. Two approaches are taken to solve the multiobjective linear programming problem: (1) the multiobjective simplex method as implemented in ADBASE; and (2) an iterative approach. In this approach, the individual objective functions are weighted and combined in a single additive objective function. The resulting single objective problem is expressed as a network programming problem and solved using SAS NETFLOW. The process is then repeated with different weightings for the objective functions. The solutions obtained from the multiobjective linear programs are evaluated using a FORTRAN program to determine which solution provides the greatest expected number of geolocations. This solution is then compared to the sample mean and standard deviation for the expected number of geolocations resulting from 10,000 random frequency assignments for the network.
Anand, Amrutha; Brandwood, Helen Jane; Jameson Evans, Matt
2017-11-01
To date, social media has been used predominantly by the pharmaceutical industry to market products and to gather feedback and comments on products from consumers, a process termed social listening. However, social media has only been used cautiously in the drug development cycle, mainly because of regulations, restrictions on engagement with patients, or a lack of guidelines for social media use from regulatory bodies. Despite this cautious approach, there is a clear drive, from both the industry and consumers, for increased patient participation in various stages of the drug development process. The authors use the example of HealthUnlocked, one of the world's largest health networks, to illustrate the potential applications of online health communities as a means of increasing patient involvement at various stages of the drug development process. Having identified the willingness of the user population to be involved in research, numerous ways to engage users on the platform have been identified and explored. This commentary describes some of these approaches and reports how online health networks that encourage people to share their experiences in managing their health can, in turn, enable rapid patient engagement for clinical research within the constraints of industry regulation. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.
Closed-Loop Estimation of Retinal Network Sensitivity by Local Empirical Linearization
2018-01-01
Abstract Understanding how sensory systems process information depends crucially on identifying which features of the stimulus drive the response of sensory neurons, and which ones leave their response invariant. This task is made difficult by the many nonlinearities that shape sensory processing. Here, we present a novel perturbative approach to understand information processing by sensory neurons, where we linearize their collective response locally in stimulus space. We added small perturbations to reference stimuli and tested if they triggered visible changes in the responses, adapting their amplitude according to the previous responses with closed-loop experiments. We developed a local linear model that accurately predicts the sensitivity of the neural responses to these perturbations. Applying this approach to the rat retina, we estimated the optimal performance of a neural decoder and showed that the nonlinear sensitivity of the retina is consistent with an efficient encoding of stimulus information. Our approach can be used to characterize experimentally the sensitivity of neural systems to external stimuli locally, quantify experimentally the capacity of neural networks to encode sensory information, and relate their activity to behavior. PMID:29379871
Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman
2016-01-01
Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.
Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman
2016-01-01
Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies. PMID:27799906
Scarselli, Franco; Tsoi, Ah Chung; Hagenbuchner, Markus; Noi, Lucia Di
2013-12-01
This paper proposes the combination of two state-of-the-art algorithms for processing graph input data, viz., the probabilistic mapping graph self organizing map, an unsupervised learning approach, and the graph neural network, a supervised learning approach. We organize these two algorithms in a cascade architecture containing a probabilistic mapping graph self organizing map, and a graph neural network. We show that this combined approach helps us to limit the long-term dependency problem that exists when training the graph neural network resulting in an overall improvement in performance. This is demonstrated in an application to a benchmark problem requiring the detection of spam in a relatively large set of web sites. It is found that the proposed method produces results which reach the state of the art when compared with some of the best results obtained by others using quite different approaches. A particular strength of our method is its applicability towards any input domain which can be represented as a graph. Copyright © 2013 Elsevier Ltd. All rights reserved.
The semantic distance task: Quantifying semantic distance with semantic network path length.
Kenett, Yoed N; Levi, Effi; Anaki, David; Faust, Miriam
2017-09-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Konapala, Goutam; Mishra, Ashok
2017-12-01
The quantification of spatio-temporal hydroclimatic extreme events is a key variable in water resources planning, disaster mitigation, and preparing climate resilient society. However, quantification of these extreme events has always been a great challenge, which is further compounded by climate variability and change. Recently complex network theory was applied in earth science community to investigate spatial connections among hydrologic fluxes (e.g., rainfall and streamflow) in water cycle. However, there are limited applications of complex network theory for investigating hydroclimatic extreme events. This article attempts to provide an overview of complex networks and extreme events, event synchronization method, construction of networks, their statistical significance and the associated network evaluation metrics. For illustration purpose, we apply the complex network approach to study the spatio-temporal evolution of droughts in Continental USA (CONUS). A different drought threshold leads to a new drought event as well as different socio-economic implications. Therefore, it would be interesting to explore the role of thresholds on spatio-temporal evolution of drought through network analysis. In this study, long term (1900-2016) Palmer drought severity index (PDSI) was selected for spatio-temporal drought analysis using three network-based metrics (i.e., strength, direction and distance). The results indicate that the drought events propagate differently at different thresholds associated with initiation of drought events. The direction metrics indicated that onset of mild drought events usually propagate in a more spatially clustered and uniform approach compared to onsets of moderate droughts. The distance metric shows that the drought events propagate for longer distance in western part compared to eastern part of CONUS. We believe that the network-aided metrics utilized in this study can be an important tool in advancing our knowledge on drought propagation as well as other hydroclimatic extreme events. Although the propagation of droughts is investigated using the network approach, however process (physics) based approaches is essential to further understand the dynamics of hydroclimatic extreme events.
Candidate change agent identification among men at risk for HIV infection
Schneider, John A.; McFadden, Rachel B.; Laumann, Edward O.; Kumar, SG Prem; Gandham, Sabitha R.; Oruganti, Ganesh
2012-01-01
Despite limited HIV prevention potency, peer-based programs have become one of the most often used HIV prevention approaches internationally. These programs demonstrate a need for greater specificity in peer change agent (PCA) recruitment and social network evaluation. In the present three-phase study based in India (2009–2010), we first explored the nature of friendship among truck-drivers, a group of men at high risk for HIV infection, in order to develop a thorough understanding of the social forces that contribute to and maintain their personal networks. This was accomplished in the first two study phases, through a combination of focus group discussions (n=5 groups), in-depth qualitative interviews (n=20), and personal network analyses (n=25) of truck-drivers to define friendship and deepen our understanding of friendship across geographic spaces. Measures collected in phases I and II included friend typologies, discussion topics, social network influences, advice-giving, and risk reduction. Outcomes were assessed through an iterative process of qualitative textual analysis and social network analysis. The networks of truck-drivers were found to comprise three typologies: close friends, parking lot friends, and other friends. From these data, we developed an algorithmic approach to the identification of a candidate PCA within a high-risk man’s personal network. In stage III we piloted field-use of this approach to identify and recruit PCAs, and further evaluated their potential for intervention through preliminary analysis of the PCA’s own personal networks. An instrument was developed to translate what social network theory and analysis has taught us about egocentric network dynamics into a real-world methodology for identifying intervention-appropriate peers within an individual’s personal network. Our approach can be tailored to the specifications of any high-risk population, and may serve to enhance current peer-based HIV interventions. PMID:22762951
1994-06-09
Ethics and the Soul 1-221 P. Werbos A Net Program for Natural Language Comprehension 1-863 J. Weiss Applications Oral ANN Design of Image Processing...Controlling Nonlinear Dynamic Systems Using Neuro-Fuzzy Networks 1-787 E. Teixera, G. Laforga, H. Azevedo Neural Fuzzy Logics as a Tool for Design Ecological ...Discrete Neural Network 11-466 Z. Cheng-fu Representation of Number A Theory of Mathematical Modeling 11-479 J. Cristofano An Ecological Approach to
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-09-25
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.
A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity.
Schmidt, Christoph; Pester, Britta; Schmid-Hertel, Nicole; Witte, Herbert; Wismüller, Axel; Leistritz, Lutz
2016-01-01
Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, M.R.; Cerda, J.
1998-06-01
A mathematical representation of a heat-exchanger network structure that explicitly accounts for the relative location of heat-transfer units, splitters, and mixers is presented. It is the basis of a mixed-integer linear programming sequential approach to the synthesis of heat-exchanger networks that allows the designer to specify beforehand some desired topology features as further design targets. Such structural information stands for additional problem data to be considered in the problem formulation, thus enhancing the involvement of the design engineer in the synthesis task. The topology constraints are expressed in terms of (1) the equipment items (heat exchangers, splitters, and mixers) thatmore » could be incorporated into the network, (2) the feasible neighbors for every potential unit, and (3) the heat matches, if any, with which a heat exchanger can be accomplished in parallel over any process stream. Moreover, the number and types of splitters being arranged over either a particular stream or the whole network can also be restrained. The new approach has been successfully applied to the solution of five example problems at each of which a wide variety of structural design restrictions were specified.« less
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-01-01
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731
Multi-Temporal Land Cover Classification with Long Short-Term Memory Neural Networks
NASA Astrophysics Data System (ADS)
Rußwurm, M.; Körner, M.
2017-05-01
Land cover classification (LCC) is a central and wide field of research in earth observation and has already put forth a variety of classification techniques. Many approaches are based on classification techniques considering observation at certain points in time. However, some land cover classes, such as crops, change their spectral characteristics due to environmental influences and can thus not be monitored effectively with classical mono-temporal approaches. Nevertheless, these temporal observations should be utilized to benefit the classification process. After extensive research has been conducted on modeling temporal dynamics by spectro-temporal profiles using vegetation indices, we propose a deep learning approach to utilize these temporal characteristics for classification tasks. In this work, we show how long short-term memory (LSTM) neural networks can be employed for crop identification purposes with SENTINEL 2A observations from large study areas and label information provided by local authorities. We compare these temporal neural network models, i.e., LSTM and recurrent neural network (RNN), with a classical non-temporal convolutional neural network (CNN) model and an additional support vector machine (SVM) baseline. With our rather straightforward LSTM variant, we exceeded state-of-the-art classification performance, thus opening promising potential for further research.
A. Paige Fischer; Ken Vance-Borland; Lorien Jasny; Kerry E. Grimm; Susan Charnley
2016-01-01
tManagement of ecological conditions and processes in multiownership landscapes requires cooperationby diverse stakeholder groups. The structure of organizational networks â the extent to which networksallow for interaction among organizations within and across ideological and geographic boundaries âcan indicate potential opportunities for cooperation on landscape-...
A three-stage heuristic for harvest scheduling with access road network development
Mark M. Clark; Russell D. Meller; Timothy P. McDonald
2000-01-01
In this article we present a new model for the scheduling of forest harvesting with spatial and temporal constraints. Our approach is unique in that we incorporate access road network development into the harvest scheduling selection process. Due to the difficulty of solving the problem optimally, we develop a heuristic that consists of a solution construction stage...
Contingency diagrams as teaching tools
Mattaini, Mark A.
1995-01-01
Contingency diagrams are particularly effective teaching tools, because they provide a means for students to view the complexities of contingency networks present in natural and laboratory settings while displaying the elementary processes that constitute those networks. This paper sketches recent developments in this visualization technology and illustrates approaches for using contingency diagrams in teaching. ImagesFigure 2Figure 3Figure 4 PMID:22478208
How to Perform a Security Audit: Is Your School's or District's Network Vulnerable?
ERIC Educational Resources Information Center
Dark, Melissa; Poftak, Amy
2004-01-01
In this article, the authors address the importance of taking a proactive approach to securing a school's network. To do this, it is first required to know the system's specific vulnerabilities and what steps to take to reduce them. The formal process for doing this is known as an information security risk assessment, or a security audit. What…
Fernald, Douglas; Hamer, Mika; James, Kathy; Tutt, Brandon; West, David
2015-01-01
Family medicine and internal medicine physicians order diagnostic laboratory tests for nearly one-third of patient encounters in an average week, yet among medical errors in primary care, an estimated 15% to 54% are attributed to laboratory testing processes. From a practice improvement perspective, we (1) describe the need for laboratory testing process quality improvements from the perspective of primary care practices, and (2) describe the approaches and resources needed to implement laboratory testing process quality improvements in practice. We applied practice observations, process mapping, and interviews with primary care practices in the Shared Networks of Colorado Ambulatory Practices and Partners (SNOCAP)-affiliated practice-based research networks that field-tested in 2013 a laboratory testing process improvement toolkit. From the data collected in each of the 22 participating practices, common testing quality issues included, but were not limited to, 3 main testing process steps: laboratory test preparation, test tracking, and patient notification. Three overarching qualitative themes emerged: practices readily acknowledge multiple laboratory testing process problems; practices know that they need help addressing the issues; and practices face challenges with finding patient-centered solutions compatible with practice priorities and available resources. While practices were able to get started with guidance and a toolkit to improve laboratory testing processes, most did not seem able to achieve their quality improvement aims unassisted. Providing specific guidance tools with practice facilitation or other rapid-cycle quality improvement support may be an effective approach to improve common laboratory testing issues in primary care. © Copyright 2015 by the American Board of Family Medicine.
NASA Astrophysics Data System (ADS)
Postigo-Boix, Marcos; Melús-Moreno, José L.
2018-04-01
Mobile Network Operators (MNOs) present wireless services of the same kind in identical zones, clients select the service taking into account any element they consider relevant. Churning hits on the design of the network and the method to assign prices by MNOs, and of course their earnings. Therefore, MNOs try to reduce churn detecting potential churners before they leave the service. Our approach to churn prediction considers each customer individually. Previous research shows that members of the social circle of a subscriber may influence churn. Thus, many scenarios that describe social relations, and in which churning processes could be expected, set an emerging challenge with practical implications. This paper uses the Agent-Based Modeling (ABM) technique to model customers. The model's parameters include demographic and psychographic features as well as usage profiles according to their social behavior considering their customers' profiles. Our model modifies and extends an existing real social network generator algorithm that considers customer's profiles and homophily considerations to create connections. We show that using our approach, groups of customers with greater tendency to churn due to the influence of their social networks can be identified better.
Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback.
Koush, Yury; Meskaldji, Djalel-E; Pichon, Swann; Rey, Gwladys; Rieger, Sebastian W; Linden, David E J; Van De Ville, Dimitri; Vuilleumier, Patrik; Scharnowski, Frank
2017-02-01
Most mental functions are associated with dynamic interactions within functional brain networks. Thus, training individuals to alter functional brain networks might provide novel and powerful means to improve cognitive performance and emotions. Using a novel connectivity-neurofeedback approach based on functional magnetic resonance imaging (fMRI), we show for the first time that participants can learn to change functional brain networks. Specifically, we taught participants control over a key component of the emotion regulation network, in that they learned to increase top-down connectivity from the dorsomedial prefrontal cortex, which is involved in cognitive control, onto the amygdala, which is involved in emotion processing. After training, participants successfully self-regulated the top-down connectivity between these brain areas even without neurofeedback, and this was associated with concomitant increases in subjective valence ratings of emotional stimuli of the participants. Connectivity-based neurofeedback goes beyond previous neurofeedback approaches, which were limited to training localized activity within a brain region. It allows to noninvasively and nonpharmacologically change interconnected functional brain networks directly, thereby resulting in specific behavioral changes. Our results demonstrate that connectivity-based neurofeedback training of emotion regulation networks enhances emotion regulation capabilities. This approach can potentially lead to powerful therapeutic emotion regulation protocols for neuropsychiatric disorders. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Signature neural networks: definition and application to multidimensional sorting problems.
Latorre, Roberto; de Borja Rodriguez, Francisco; Varona, Pablo
2011-01-01
In this paper we present a self-organizing neural network paradigm that is able to discriminate information locally using a strategy for information coding and processing inspired in recent findings in living neural systems. The proposed neural network uses: 1) neural signatures to identify each unit in the network; 2) local discrimination of input information during the processing; and 3) a multicoding mechanism for information propagation regarding the who and the what of the information. The local discrimination implies a distinct processing as a function of the neural signature recognition and a local transient memory. In the context of artificial neural networks none of these mechanisms has been analyzed in detail, and our goal is to demonstrate that they can be used to efficiently solve some specific problems. To illustrate the proposed paradigm, we apply it to the problem of multidimensional sorting, which can take advantage of the local information discrimination. In particular, we compare the results of this new approach with traditional methods to solve jigsaw puzzles and we analyze the situations where the new paradigm improves the performance.
From photons to big-data applications: terminating terabits
2016-01-01
Computer architectures have entered a watershed as the quantity of network data generated by user applications exceeds the data-processing capacity of any individual computer end-system. It will become impossible to scale existing computer systems while a gap grows between the quantity of networked data and the capacity for per system data processing. Despite this, the growth in demand in both task variety and task complexity continues unabated. Networked computer systems provide a fertile environment in which new applications develop. As networked computer systems become akin to infrastructure, any limitation upon the growth in capacity and capabilities becomes an important constraint of concern to all computer users. Considering a networked computer system capable of processing terabits per second, as a benchmark for scalability, we critique the state of the art in commodity computing, and propose a wholesale reconsideration in the design of computer architectures and their attendant ecosystem. Our proposal seeks to reduce costs, save power and increase performance in a multi-scale approach that has potential application from nanoscale to data-centre-scale computers. PMID:26809573
From photons to big-data applications: terminating terabits.
Zilberman, Noa; Moore, Andrew W; Crowcroft, Jon A
2016-03-06
Computer architectures have entered a watershed as the quantity of network data generated by user applications exceeds the data-processing capacity of any individual computer end-system. It will become impossible to scale existing computer systems while a gap grows between the quantity of networked data and the capacity for per system data processing. Despite this, the growth in demand in both task variety and task complexity continues unabated. Networked computer systems provide a fertile environment in which new applications develop. As networked computer systems become akin to infrastructure, any limitation upon the growth in capacity and capabilities becomes an important constraint of concern to all computer users. Considering a networked computer system capable of processing terabits per second, as a benchmark for scalability, we critique the state of the art in commodity computing, and propose a wholesale reconsideration in the design of computer architectures and their attendant ecosystem. Our proposal seeks to reduce costs, save power and increase performance in a multi-scale approach that has potential application from nanoscale to data-centre-scale computers. © 2016 The Authors.
Schwaibold, M; Schöchlin, J; Bolz, A
2002-01-01
For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.
In-vivo determination of chewing patterns using FBG and artificial neural networks
NASA Astrophysics Data System (ADS)
Pegorini, Vinicius; Zen Karam, Leandro; Rocha Pitta, Christiano S.; Ribeiro, Richardson; Simioni Assmann, Tangriani; Cardozo da Silva, Jean Carlos; Bertotti, Fábio L.; Kalinowski, Hypolito J.; Cardoso, Rafael
2015-09-01
This paper reports the process of pattern classification of the chewing process of ruminants. We propose a simplified signal processing scheme for optical fiber Bragg grating (FBG) sensors based on machine learning techniques. The FBG sensors measure the biomechanical forces during jaw movements and an artificial neural network is responsible for the classification of the associated chewing pattern. In this study, three patterns associated to dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior studies were monitored, rumination and idle period. Experimental results show that the proposed approach for pattern classification has been capable of differentiating the materials involved in the chewing process with a small classification error.
Cascade process modeling with mechanism-based hierarchical neural networks.
Cong, Qiumei; Yu, Wen; Chai, Tianyou
2010-02-01
Cascade process, such as wastewater treatment plant, includes many nonlinear sub-systems and many variables. When the number of sub-systems is big, the input-output relation in the first block and the last block cannot represent the whole process. In this paper we use two techniques to overcome the above problem. Firstly we propose a new neural model: hierarchical neural networks to identify the cascade process; then we use serial structural mechanism model based on the physical equations to connect with neural model. A stable learning algorithm and theoretical analysis are given. Finally, this method is used to model a wastewater treatment plant. Real operational data of wastewater treatment plant is applied to illustrate the modeling approach.
NASA Astrophysics Data System (ADS)
Schauberger, Bernhard; Rolinski, Susanne; Müller, Christoph
2016-12-01
Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. A systematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.
NASA Astrophysics Data System (ADS)
Zou, Yong; Donner, Reik V.; Kurths, Jürgen
2015-02-01
Long-range correlated processes are ubiquitous, ranging from climate variables to financial time series. One paradigmatic example for such processes is fractional Brownian motion (fBm). In this work, we highlight the potentials and conceptual as well as practical limitations when applying the recently proposed recurrence network (RN) approach to fBm and related stochastic processes. In particular, we demonstrate that the results of a previous application of RN analysis to fBm [Liu et al. Phys. Rev. E 89, 032814 (2014), 10.1103/PhysRevE.89.032814] are mainly due to an inappropriate treatment disregarding the intrinsic nonstationarity of such processes. Complementarily, we analyze some RN properties of the closely related stationary fractional Gaussian noise (fGn) processes and find that the resulting network properties are well-defined and behave as one would expect from basic conceptual considerations. Our results demonstrate that RN analysis can indeed provide meaningful results for stationary stochastic processes, given a proper selection of its intrinsic methodological parameters, whereas it is prone to fail to uniquely retrieve RN properties for nonstationary stochastic processes like fBm.
What can graph theory tell us about word learning and lexical retrieval?
Vitevitch, Michael S
2008-04-01
Graph theory and the new science of networks provide a mathematically rigorous approach to examine the development and organization of complex systems. These tools were applied to the mental lexicon to examine the organization of words in the lexicon and to explore how that structure might influence the acquisition and retrieval of phonological word-forms. Pajek, a program for large network analysis and visualization (V. Batagelj & A. Mvrar, 1998), was used to examine several characteristics of a network derived from a computerized database of the adult lexicon. Nodes in the network represented words, and a link connected two nodes if the words were phonological neighbors. The average path length and clustering coefficient suggest that the phonological network exhibits small-world characteristics. The degree distribution was fit better by an exponential rather than a power-law function. Finally, the network exhibited assortative mixing by degree. Some of these structural characteristics were also found in graphs that were formed by 2 simple stochastic processes suggesting that similar processes might influence the development of the lexicon. The graph theoretic perspective may provide novel insights about the mental lexicon and lead to future studies that help us better understand language development and processing.
Nitti, Mariangela; Ciavolino, Enrico; Salvatore, Sergio; Gennaro, Alessandro
2010-09-01
The authors propose a method for analyzing the psychotherapy process: discourse flow analysis (DFA). DFA is a technique representing the verbal interaction between therapist and patient as a discourse network, aimed at measuring the therapist-patient discourse ability to generate new meanings through time. DFA assumes that the main function of psychotherapy is to produce semiotic novelty. DFA is applied to the verbatim transcript of the psychotherapy. It defines the main meanings active within the therapeutic discourse by means of the combined use of text analysis and statistical techniques. Subsequently, it represents the dynamic interconnections among these meanings in terms of a "discursive network." The dynamic and structural indexes of the discursive network have been shown to provide a valid representation of the patient-therapist communicative flow as well as an estimation of its clinical quality. Finally, a neural network is designed specifically to identify patterns of functioning of the discursive network and to verify the clinical validity of these patterns in terms of their association with specific phases of the psychotherapy process. An application of the DFA to a case of psychotherapy is provided to illustrate the method and the kinds of results it produces.
Economic and environmental optimization of a multi-site utility network for an industrial complex.
Kim, Sang Hun; Yoon, Sung-Geun; Chae, Song Hwa; Park, Sunwon
2010-01-01
Most chemical companies consume a lot of steam, water and electrical resources in the production process. Given recent record fuel costs, utility networks must be optimized to reduce the overall cost of production. Environmental concerns must also be considered when preparing modifications to satisfy the requirements for industrial utilities, since wastes discharged from the utility networks are restricted by environmental regulations. Construction of Eco-Industrial Parks (EIPs) has drawn attention as a promising approach for retrofitting existing industrial parks to improve energy efficiency. The optimization of the utility network within an industrial complex is one of the most important undertakings to minimize energy consumption and waste loads in the EIP. In this work, a systematic approach to optimize the utility network of an industrial complex is presented. An important issue in the optimization of a utility network is the desire of the companies to achieve high profits while complying with the environmental regulations. Therefore, the proposed optimization was performed with consideration of both economic and environmental factors. The proposed approach consists of unit modeling using thermodynamic principles, mass and energy balances, development of a multi-period Mixed Integer Linear Programming (MILP) model for the integration of utility systems in an industrial complex, and an economic/environmental analysis of the results. This approach is applied to the Yeosu Industrial Complex, considering seasonal utility demands. The results show that both the total utility cost and waste load are reduced by optimizing the utility network of an industrial complex. 2009 Elsevier Ltd. All rights reserved.
Applying policy network theory to policy-making in China: the case of urban health insurance reform.
Zheng, Haitao; de Jong, Martin; Koppenjan, Joop
2010-01-01
In this article, we explore whether policy network theory can be applied in the People's Republic of China (PRC). We carried out a literature review of how this approach has already been dealt with in the Chinese policy sciences thus far. We then present the key concepts and research approach in policy networks theory in the Western literature and try these on a Chinese case to see the fit. We follow this with a description and analysis of the policy-making process regarding the health insurance reform in China from 1998 until the present. Based on this case study, we argue that this body of theory is useful to describe and explain policy-making processes in the Chinese context. However, limitations in the generic model appear in capturing the fundamentally different political and administrative systems, crucially different cultural values in the applicability of some research methods common in Western countries. Finally, we address which political and cultural aspects turn out to be different in the PRC and how they affect methodological and practical problems that PRC researchers will encounter when studying decision-making processes.
Evolving Deep Networks Using HPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Steven R.; Rose, Derek C.; Johnston, Travis
While a large number of deep learning networks have been studied and published that produce outstanding results on natural image datasets, these datasets only make up a fraction of those to which deep learning can be applied. These datasets include text data, audio data, and arrays of sensors that have very different characteristics than natural images. As these “best” networks for natural images have been largely discovered through experimentation and cannot be proven optimal on some theoretical basis, there is no reason to believe that they are the optimal network for these drastically different datasets. Hyperparameter search is thus oftenmore » a very important process when applying deep learning to a new problem. In this work we present an evolutionary approach to searching the possible space of network hyperparameters and construction that can scale to 18, 000 nodes. This approach is applied to datasets of varying types and characteristics where we demonstrate the ability to rapidly find best hyperparameters in order to enable practitioners to quickly iterate between idea and result.« less
Network Analysis: A Novel Approach to Understand Suicidal Behaviour
de Beurs, Derek
2017-01-01
Although suicide is a major public health issue worldwide, we understand little of the onset and development of suicidal behaviour. Suicidal behaviour is argued to be the end result of the complex interaction between psychological, social and biological factors. Epidemiological studies resulted in a range of risk factors for suicidal behaviour, but we do not yet understand how their interaction increases the risk for suicidal behaviour. A new approach called network analysis can help us better understand this process as it allows us to visualize and quantify the complex association between many different symptoms or risk factors. A network analysis of data containing information on suicidal patients can help us understand how risk factors interact and how their interaction is related to suicidal thoughts and behaviour. A network perspective has been successfully applied to the field of depression and psychosis, but not yet to the field of suicidology. In this theoretical article, I will introduce the concept of network analysis to the field of suicide prevention, and offer directions for future applications and studies.
Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks
Hallen, Mark; Li, Bochong; Tanouchi, Yu; Tan, Cheemeng; West, Mike; You, Lingchong
2011-01-01
Cellular processes are “noisy”. In each cell, concentrations of molecules are subject to random fluctuations due to the small numbers of these molecules and to environmental perturbations. While noise varies with time, it is often measured at steady state, for example by flow cytometry. When interrogating aspects of a cellular network by such steady-state measurements of network components, a key need is to develop efficient methods to simulate and compute these distributions. We describe innovations in stochastic modeling coupled with approaches to this computational challenge: first, an approach to modeling intrinsic noise via solution of the chemical master equation, and second, a convolution technique to account for contributions of extrinsic noise. We show how these techniques can be combined in a streamlined procedure for evaluation of different sources of variability in a biochemical network. Evaluation and illustrations are given in analysis of two well-characterized synthetic gene circuits, as well as a signaling network underlying the mammalian cell cycle entry. PMID:22022252
Automatic inference of multicellular regulatory networks using informative priors.
Sun, Xiaoyun; Hong, Pengyu
2009-01-01
To fully understand the mechanisms governing animal development, computational models and algorithms are needed to enable quantitative studies of the underlying regulatory networks. We developed a mathematical model based on dynamic Bayesian networks to model multicellular regulatory networks that govern cell differentiation processes. A machine-learning method was developed to automatically infer such a model from heterogeneous data. We show that the model inference procedure can be greatly improved by incorporating interaction data across species. The proposed approach was applied to C. elegans vulval induction to reconstruct a model capable of simulating C. elegans vulval induction under 73 different genetic conditions.
Implementing the sine transform of fermionic modes as a tensor network
NASA Astrophysics Data System (ADS)
Epple, Hannes; Fries, Pascal; Hinrichsen, Haye
2017-09-01
Based on the algebraic theory of signal processing, we recursively decompose the discrete sine transform of the first kind (DST-I) into small orthogonal block operations. Using a diagrammatic language, we then second-quantize this decomposition to construct a tensor network implementing the DST-I for fermionic modes on a lattice. The complexity of the resulting network is shown to scale as 5/4 n logn (not considering swap gates), where n is the number of lattice sites. Our method provides a systematic approach of generalizing Ferris' spectral tensor network for nontrivial boundary conditions.
xQuake: A Modern Approach to Seismic Network Analytics
NASA Astrophysics Data System (ADS)
Johnson, C. E.; Aikin, K. E.
2017-12-01
While seismic networks have expanded over the past few decades, and social needs for accurate and timely information has increased dramatically, approaches to the operational needs of both global and regional seismic observatories have been slow to adopt new technologies. This presentation presents the xQuake system that provides a fresh approach to seismic network analytics based on complexity theory and an adaptive architecture of streaming connected microservices as diverse data (picks, beams, and other data) flow into a final, curated catalog of events. The foundation for xQuake is the xGraph (executable graph) framework that is essentially a self-organizing graph database. An xGraph instance provides both the analytics as well as the data storage capabilities at the same time. Much of the analytics, such as synthetic annealing in the detection process and an evolutionary programing approach for event evolution, draws from the recent GLASS 3.0 seismic associator developed by and for the USGS National Earthquake Information Center (NEIC). In some respects xQuake is reminiscent of the Earthworm system, in that it comprises processes interacting through store and forward rings; not surprising as the first author was the lead architect of the original Earthworm project when it was known as "Rings and Things". While Earthworm components can easily be integrated into the xGraph processing framework, the architecture and analytics are more current (e.g. using a Kafka Broker for store and forward rings). The xQuake system is being released under an unrestricted open source license to encourage and enable sthe eismic community support in further development of its capabilities.
A Hopfield neural network for image change detection.
Pajares, Gonzalo
2006-09-01
This paper outlines an optimization relaxation approach based on the analog Hopfield neural network (HNN) for solving the image change detection problem between two images. A difference image is obtained by subtracting pixel by pixel both images. The network topology is built so that each pixel in the difference image is a node in the network. Each node is characterized by its state, which determines if a pixel has changed. An energy function is derived, so that the network converges to stable states. The analog Hopfield's model allows each node to take on analog state values. Unlike most widely used approaches, where binary labels (changed/unchanged) are assigned to each pixel, the analog property provides the strength of the change. The main contribution of this paper is reflected in the customization of the analog Hopfield neural network to derive an automatic image change detection approach. When a pixel is being processed, some existing image change detection procedures consider only interpixel relations on its neighborhood. The main drawback of such approaches is the labeling of this pixel as changed or unchanged according to the information supplied by its neighbors, where its own information is ignored. The Hopfield model overcomes this drawback and for each pixel allows a tradeoff between the influence of its neighborhood and its own criterion. This is mapped under the energy function to be minimized. The performance of the proposed method is illustrated by comparative analysis against some existing image change detection methods.
Chen, Bor-Sen; Lin, Ying-Po
2011-01-01
In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563
Fuzzy neural network methodology applied to medical diagnosis
NASA Technical Reports Server (NTRS)
Gorzalczany, Marian B.; Deutsch-Mcleish, Mary
1992-01-01
This paper presents a technique for building expert systems that combines the fuzzy-set approach with artificial neural network structures. This technique can effectively deal with two types of medical knowledge: a nonfuzzy one and a fuzzy one which usually contributes to the process of medical diagnosis. Nonfuzzy numerical data is obtained from medical tests. Fuzzy linguistic rules describing the diagnosis process are provided by a human expert. The proposed method has been successfully applied in veterinary medicine as a support system in the diagnosis of canine liver diseases.
NASA Astrophysics Data System (ADS)
Neyer, F.; Nocerino, E.; Gruen, A.
2018-05-01
Creating 3-dimensional (3D) models of underwater scenes has become a common approach for monitoring coral reef changes and its structural complexity. Also in underwater archeology, 3D models are often created using underwater optical imagery. In this paper, we focus on the aspect of detecting small changes in the coral reef using a multi-temporal photogrammetric modelling approach, which requires a high quality control network. We show that the quality of a good geodetic network limits the direct change detection, i.e., without any further registration process. As the photogrammetric accuracy is expected to exceed the geodetic network accuracy by at least one order of magnitude, we suggest to do a fine registration based on a number of signalized points. This work is part of the Moorea Island Digital Ecosystem Avatar (IDEA) project that has been initiated in 2013 by a group of international researchers (https://mooreaidea.ethz.ch/).
Model predictive control of non-linear systems over networks with data quantization and packet loss.
Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping
2015-11-01
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Xiang, Zheng; Sun, Hao; Cai, Xiaojun; Chen, Dahui
2016-04-01
Transmission of biological information is a biochemical process of multistep cascade from genes/proteins to metabolites. However, because most metabolites reflect the terminal information of the biochemical process, it is difficult to describe the transmission process of disease information in terms of the metabolomics strategy. In this paper, by incorporating network and metabolomics methods, an integrated approach was proposed to systematically investigate and explain the molecular mechanism of renal interstitial fibrosis. Through analysis of the network, the cascade transmission process of disease information starting from genes/proteins to metabolites was putatively identified and uncovered. The results indicated that renal fibrosis was involved in metabolic pathways of glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and arachidonic acid metabolism, riboflavin metabolism, tyrosine metabolism, and sphingolipid metabolism. These pathways involve kidney disease genes such as TGF-β1 and P2RX7. Our results showed that combining metabolomics and network analysis can provide new strategies and ideas for the interpretation of pathogenesis of disease with full consideration of "gene-protein-metabolite."
SuperJet International case study: a business network start-up in the aeronautics industry
NASA Astrophysics Data System (ADS)
Corallo, Angelo; de Maggio, Marco; Storelli, Davide
This chapter presents the SuperJet International case study, a start-up in the aeronautics industry characterized by a process-oriented approach and a complex and as yet evolving network of partnerships and collaborations. The chapter aims to describe the key points of the start-up process, highlighting common factors and differences compared to the TEKNE Methodology of Change, with particular reference to the second and third phase, namely, the design and deployment of new techno-organizational systems. The SuperJet International startup is presented as a case study where strategic and organizational aspects have been jointly conceived from a network-driven perspective. The chapter compares some of the guidelines of the TEKNE Methodology of Change with experiences and actual practices deriving from interviews with key players in SJI's start-up process.
NASA Astrophysics Data System (ADS)
Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui
2016-01-01
Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.
Weak percolation on multiplex networks
NASA Astrophysics Data System (ADS)
Baxter, Gareth J.; Dorogovtsev, Sergey N.; Mendes, José F. F.; Cellai, Davide
2014-04-01
Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters.
Distinct brain networks for adaptive and stable task control in humans
Dosenbach, Nico U. F.; Fair, Damien A.; Miezin, Francis M.; Cohen, Alexander L.; Wenger, Kristin K.; Dosenbach, Ronny A. T.; Fox, Michael D.; Snyder, Abraham Z.; Vincent, Justin L.; Raichle, Marcus E.; Schlaggar, Bradley L.; Petersen, Steven E.
2007-01-01
Control regions in the brain are thought to provide signals that configure the brain's moment-to-moment information processing. Previously, we identified regions that carried signals related to task-control initiation, maintenance, and adjustment. Here we characterize the interactions of these regions by applying graph theory to resting state functional connectivity MRI data. In contrast to previous, more unitary models of control, this approach suggests the presence of two distinct task-control networks. A frontoparietal network included the dorsolateral prefrontal cortex and intraparietal sulcus. This network emphasized start-cue and error-related activity and may initiate and adapt control on a trial-by-trial basis. The second network included dorsal anterior cingulate/medial superior frontal cortex, anterior insula/frontal operculum, and anterior prefrontal cortex. Among other signals, these regions showed activity sustained across the entire task epoch, suggesting that this network may control goal-directed behavior through the stable maintenance of task sets. These two independent networks appear to operate on different time scales and affect downstream processing via dissociable mechanisms. PMID:17576922
NASA Astrophysics Data System (ADS)
Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.
2016-03-01
The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00011h
ClueNet: Clustering a temporal network based on topological similarity rather than denseness.
Crawford, Joseph; Milenković, Tijana
2018-01-01
Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of "topologically related" nodes, where the resulting topology-based clusters are expected to "correlate" well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data-their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance.
Using computer algebra and SMT solvers in algebraic biology
NASA Astrophysics Data System (ADS)
Pineda Osorio, Mateo
2014-05-01
Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.
Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.
Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio
2008-11-24
Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.
Local Patterns to Global Architectures: Influences of Network Topology on Human Learning.
Karuza, Elisabeth A; Thompson-Schill, Sharon L; Bassett, Danielle S
2016-08-01
A core question in cognitive science concerns how humans acquire and represent knowledge about their environments. To this end, quantitative theories of learning processes have been formalized in an attempt to explain and predict changes in brain and behavior. We connect here statistical learning approaches in cognitive science, which are rooted in the sensitivity of learners to local distributional regularities, and network science approaches to characterizing global patterns and their emergent properties. We focus on innovative work that describes how learning is influenced by the topological properties underlying sensory input. The confluence of these theoretical approaches and this recent empirical evidence motivate the importance of scaling-up quantitative approaches to learning at both the behavioral and neural levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
GrDHP: a general utility function representation for dual heuristic dynamic programming.
Ni, Zhen; He, Haibo; Zhao, Dongbin; Xu, Xin; Prokhorov, Danil V
2015-03-01
A general utility function representation is proposed to provide the required derivable and adjustable utility function for the dual heuristic dynamic programming (DHP) design. Goal representation DHP (GrDHP) is presented with a goal network being on top of the traditional DHP design. This goal network provides a general mapping between the system states and the derivatives of the utility function. With this proposed architecture, we can obtain the required derivatives of the utility function directly from the goal network. In addition, instead of a fixed predefined utility function in literature, we conduct an online learning process for the goal network so that the derivatives of the utility function can be adaptively tuned over time. We provide the control performance of both the proposed GrDHP and the traditional DHP approaches under the same environment and parameter settings. The statistical simulation results and the snapshot of the system variables are presented to demonstrate the improved learning and controlling performance. We also apply both approaches to a power system example to further demonstrate the control capabilities of the GrDHP approach.
Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K.; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C.; Hoeng, Julia
2015-01-01
With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com PMID:25887162
Solving Constraint Satisfaction Problems with Networks of Spiking Neurons
Jonke, Zeno; Habenschuss, Stefan; Maass, Wolfgang
2016-01-01
Network of neurons in the brain apply—unlike processors in our current generation of computer hardware—an event-based processing strategy, where short pulses (spikes) are emitted sparsely by neurons to signal the occurrence of an event at a particular point in time. Such spike-based computations promise to be substantially more power-efficient than traditional clocked processing schemes. However, it turns out to be surprisingly difficult to design networks of spiking neurons that can solve difficult computational problems on the level of single spikes, rather than rates of spikes. We present here a new method for designing networks of spiking neurons via an energy function. Furthermore, we show how the energy function of a network of stochastically firing neurons can be shaped in a transparent manner by composing the networks of simple stereotypical network motifs. We show that this design approach enables networks of spiking neurons to produce approximate solutions to difficult (NP-hard) constraint satisfaction problems from the domains of planning/optimization and verification/logical inference. The resulting networks employ noise as a computational resource. Nevertheless, the timing of spikes plays an essential role in their computations. Furthermore, networks of spiking neurons carry out for the Traveling Salesman Problem a more efficient stochastic search for good solutions compared with stochastic artificial neural networks (Boltzmann machines) and Gibbs sampling. PMID:27065785
Mapping biological process relationships and disease perturbations within a pathway network.
Stoney, Ruth; Robertson, David L; Nenadic, Goran; Schwartz, Jean-Marc
2018-01-01
Molecular interaction networks are routinely used to map the organization of cellular function. Edges represent interactions between genes, proteins, or metabolites. However, in living cells, molecular interactions are dynamic, necessitating context-dependent models. Contextual information can be integrated into molecular interaction networks through the inclusion of additional molecular data, but there are concerns about completeness and relevance of this data. We developed an approach for representing the organization of human cellular processes using pathways as the nodes in a network. Pathways represent spatial and temporal sets of context-dependent interactions, generating a high-level network when linked together, which incorporates contextual information without the need for molecular interaction data. Analysis of the pathway network revealed linked communities representing functional relationships, comparable to those found in molecular networks, including metabolism, signaling, immunity, and the cell cycle. We mapped a range of diseases onto this network and find that pathways associated with diseases tend to be functionally connected, highlighting the perturbed functions that result in disease phenotypes. We demonstrated that disease pathways cluster within the network. We then examined the distribution of cancer pathways and showed that cancer pathways tend to localize within the signaling, DNA processes and immune modules, although some cancer-associated nodes are found in other network regions. Altogether, we generated a high-confidence functional network, which avoids some of the shortcomings faced by conventional molecular models. Our representation provides an intuitive functional interpretation of cellular organization, which relies only on high-quality pathway and Gene Ontology data. The network is available at https://data.mendeley.com/datasets/3pbwkxjxg9/1.
Ding, Fan; Zhang, Qianru; Ung, Carolina Oi Lam; Wang, Yitao; Han, Yifan; Hu, Yuanjia; Qi, Jin
2015-01-01
As a complex system, the complicated interactions between chemical ingredients, as well as the potential rules of interactive associations among chemical ingredients of traditional Chinese herbal formulae are not yet fully understood by modern science. On the other hand, network analysis is emerging as a powerful approach focusing on processing complex interactive data. By employing network approach in selected Chinese herbal formulae for the treatment of coronary heart disease (CHD), this article aims to construct and analyze chemical ingredients network of herbal formulae, and provide candidate herbs, chemical constituents, and ingredient groups for further investigation. As a result, chemical ingredients network composed of 1588 ingredients from 36 herbs used in 8 core formulae for the treatment of CHD was produced based on combination associations in herbal formulae. In this network, 9 communities with relative dense internal connections are significantly associated with 14 kinds of chemical structures with P<0.001. Moreover, chemical structural fingerprints of network communities were detected, while specific centralities of chemical ingredients indicating different levels of importance in the network were also measured. Finally, several distinct herbs, chemical ingredients, and ingredient groups with essential position in the network or high centrality value are recommended for further pharmacology study in the context of new drug development. PMID:25658855
Hierarchical analytical and simulation modelling of human-machine systems with interference
NASA Astrophysics Data System (ADS)
Braginsky, M. Ya; Tarakanov, D. V.; Tsapko, S. G.; Tsapko, I. V.; Baglaeva, E. A.
2017-01-01
The article considers the principles of building the analytical and simulation model of the human operator and the industrial control system hardware and software. E-networks as the extension of Petri nets are used as the mathematical apparatus. This approach allows simulating complex parallel distributed processes in human-machine systems. The structural and hierarchical approach is used as the building method for the mathematical model of the human operator. The upper level of the human operator is represented by the logical dynamic model of decision making based on E-networks. The lower level reflects psychophysiological characteristics of the human-operator.
Mashup Model and Verification Using Mashup Processing Network
NASA Astrophysics Data System (ADS)
Zahoor, Ehtesham; Perrin, Olivier; Godart, Claude
Mashups are defined to be lightweight Web applications aggregating data from different Web services, built using ad-hoc composition and being not concerned with long term stability and robustness. In this paper we present a pattern based approach, called Mashup Processing Network (MPN). The idea is based on Event Processing Network and is supposed to facilitate the creation, modeling and the verification of mashups. MPN provides a view of how different actors interact for the mashup development namely the producer, consumer, mashup processing agent and the communication channels. It also supports modeling transformations and validations of data and offers validation of both functional and non-functional requirements, such as reliable messaging and security, that are key issues within the enterprise context. We have enriched the model with a set of processing operations and categorize them into data composition, transformation and validation categories. These processing operations can be seen as a set of patterns for facilitating the mashup development process. MPN also paves a way for realizing Mashup Oriented Architecture where mashups along with services are used as building blocks for application development.
Approach to implementing a DICOM network: incorporate both economics and workflow adaptation
NASA Astrophysics Data System (ADS)
Beaver, S. Merritt; Sippel-Schmidt, Teresa M.
1995-05-01
This paper describes an approach to aide in the decision-making process for the justification and design of a digital image and information management system. It identifies key technical and clinical issues that need to be addressed by a healthcare institution during this process. Some issues identified here are very controversial and may take months or years for a department to determine solutions which meet their specific staffing, financial, and technical needs.
The Semantic Distance Task: Quantifying Semantic Distance with Semantic Network Path Length
ERIC Educational Resources Information Center
Kenett, Yoed N.; Levi, Effi; Anaki, David; Faust, Miriam
2017-01-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We…