NASA Astrophysics Data System (ADS)
Mabu, Shingo; Chen, Yan; Hirasawa, Kotaro
Genetic Network Programming (GNP) is an evolutionary algorithm which represents its solutions using graph structures. Since GNP can create quite compact programs and has an implicit memory function, GNP works well especially in dynamic environments. In addition, a study on creating trading rules on stock markets using GNP with Importance Index (GNP-IMX) has been done. IMX is one of the criterions for decision making. However, the values of IMXs must be deteminined by our experience/knowledge. Therefore in this paper, IMXs are adjusted appropriately during the stock trading in order to predict the rise and fall of the stocks. Moreover, newly defined flag nodes are introduced to GNP, which can appropriately judge the current situation of the stock prices, and also contributes to the use of many kinds of nodes in GNP program. In the simulation, programs are evolved using the stock prices of 20 companies. Then the generalization ability is tested and compared with GNP without flag nodes, GNP without IMX adjustment and Buy&Hold.
Genetic Network Programming with Reconstructed Individuals
NASA Astrophysics Data System (ADS)
Ye, Fengming; Mabu, Shingo; Wang, Lutao; Eto, Shinji; Hirasawa, Kotaro
A lot of research on evolutionary computation has been done and some significant classical methods such as Genetic Algorithm (GA), Genetic Programming (GP), Evolutionary Programming (EP), and Evolution Strategies (ES) have been studied. Recently, a new approach named Genetic Network Programming (GNP) has been proposed. GNP can evolve itself and find the optimal solution. It is based on the idea of Genetic Algorithm and uses the data structure of directed graphs. Many papers have demonstrated that GNP can deal with complex problems in the dynamic environments very efficiently and effectively. As a result, recently, GNP is getting more and more attentions and is used in many different areas such as data mining, extracting trading rules of stock markets, elevator supervised control systems, etc., and GNP has obtained some outstanding results. Focusing on the GNP's distinguished expression ability of the graph structure, this paper proposes a method named Genetic Network Programming with Reconstructed Individuals (GNP-RI). The aim of GNP-RI is to balance the exploitation and exploration of GNP, that is, to strengthen the exploitation ability by using the exploited information extensively during the evolution process of GNP and finally obtain better performances than that of GNP. In the proposed method, the worse individuals are reconstructed and enhanced by the elite information before undergoing genetic operations (mutation and crossover). The enhancement of worse individuals mimics the maturing phenomenon in nature, where bad individuals can become smarter after receiving a good education. In this paper, GNP-RI is applied to the tile-world problem which is an excellent bench mark for evaluating the proposed architecture. The performance of GNP-RI is compared with that of the conventional GNP. The simulation results show some advantages of GNP-RI demonstrating its superiority over the conventional GNPs.
Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu
2007-01-01
This paper proposes a graph-based evolutionary algorithm called Genetic Network Programming (GNP). Our goal is to develop GNP, which can deal with dynamic environments efficiently and effectively, based on the distinguished expression ability of the graph (network) structure. The characteristics of GNP are as follows. 1) GNP programs are composed of a number of nodes which execute simple judgment/processing, and these nodes are connected by directed links to each other. 2) The graph structure enables GNP to re-use nodes, thus the structure can be very compact. 3) The node transition of GNP is executed according to its node connections without any terminal nodes, thus the past history of the node transition affects the current node to be used and this characteristic works as an implicit memory function. These structural characteristics are useful for dealing with dynamic environments. Furthermore, we propose an extended algorithm, "GNP with Reinforcement Learning (GNPRL)" which combines evolution and reinforcement learning in order to create effective graph structures and obtain better results in dynamic environments. In this paper, we applied GNP to the problem of determining agents' behavior to evaluate its effectiveness. Tileworld was used as the simulation environment. The results show some advantages for GNP over conventional methods.
Online Learning of Genetic Network Programming and its Application to Prisoner’s Dilemma Game
NASA Astrophysics Data System (ADS)
Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi
A new evolutionary model with the network structure named Genetic Network Programming (GNP) has been proposed recently. GNP, that is, an expansion of GA and GP, represents solutions as a network structure and evolves it by using “offline learning (selection, mutation, crossover)”. GNP can memorize the past action sequences in the network flow, so it can deal with Partially Observable Markov Decision Process (POMDP) well. In this paper, in order to improve the ability of GNP, Q learning (an off-policy TD control algorithm) that is one of the famous online methods is introduced for online learning of GNP. Q learning is suitable for GNP because (1) in reinforcement learning, the rewards an agent will get in the future can be estimated, (2) TD control doesn’t need much memory and can learn quickly, and (3) off-policy is suitable in order to search for an optimal solution independently of the policy. Finally, in the simulations, online learning of GNP is applied to a player for “Prisoner’s dilemma game” and its ability for online adaptation is confirmed.
NASA Astrophysics Data System (ADS)
Mabu, Shingo; Hirasawa, Kotaro; Furuzuki, Takayuki
Genetic Network Programming (GNP) is an evolutionary computation which represents its solutions using graph structures. Since GNP can create quite compact programs and has an implicit memory function, it has been clarified that GNP works well especially in dynamic environments. In addition, a study on creating trading rules on stock markets using GNP with Importance Index (GNP-IMX) has been done. IMX is a new element which is a criterion for decision making. In this paper, we combined GNP-IMX with Actor-Critic (GNP-IMX&AC) and create trading rules on stock markets. Evolution-based methods evolve their programs after enough period of time because they must calculate fitness values, however reinforcement learning can change programs during the period, therefore the trading rules can be created efficiently. In the simulation, the proposed method is trained using the stock prices of 10 brands in 2002 and 2003. Then the generalization ability is tested using the stock prices in 2004. The simulation results show that the proposed method can obtain larger profits than GNP-IMX without AC and Buy&Hold.
Real Time Updating Genetic Network Programming for Adapting to the Change of Stock Prices
NASA Astrophysics Data System (ADS)
Chen, Yan; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro
The key in stock trading model is to take the right actions for trading at the right time, primarily based on the accurate forecast of future stock trends. Since an effective trading with given information of stock prices needs an intelligent strategy for the decision making, we applied Genetic Network Programming (GNP) to creating a stock trading model. In this paper, we propose a new method called Real Time Updating Genetic Network Programming (RTU-GNP) for adapting to the change of stock prices. There are three important points in this paper: First, the RTU-GNP method makes a stock trading decision considering both the recommendable information of technical indices and the candlestick charts according to the real time stock prices. Second, we combine RTU-GNP with a Sarsa learning algorithm to create the programs efficiently. Also, sub-nodes are introduced in each judgment and processing node to determine appropriate actions (buying/selling) and to select appropriate stock price information depending on the situation. Third, a Real Time Updating system has been firstly introduced in our paper considering the change of the trend of stock prices. The experimental results on the Japanese stock market show that the trading model with the proposed RTU-GNP method outperforms other models without real time updating. We also compared the experimental results using the proposed method with Buy&Hold method to confirm its effectiveness, and it is clarified that the proposed trading model can obtain much higher profits than Buy&Hold method.
Multi Agent Systems with Symbiotic Learning and Evolution using GNP
NASA Astrophysics Data System (ADS)
Eguchi, Toru; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi
Recently, various attempts relevant to Multi Agent Systems (MAS) which is one of the most promising systems based on Distributed Artificial Intelligence have been studied to control large and complicated systems efficiently. In these trends of MAS, Multi Agent Systems with Symbiotic Learning and Evolution named Masbiole has been proposed. In Masbiole, symbiotic phenomena among creatures are considered in the process of learning and evolution of MAS. So we can expect more flexible and sophisticated solutions than conventional MAS. In this paper, we apply Masbiole to Iterative Prisoner’s Dilemma Games (IPD Games) using Genetic Network Programming (GNP) which is a newly developed evolutionary computation method for constituting agents. Some characteristics of Masbiole using GNP in IPD Games are clarified.
NASA Astrophysics Data System (ADS)
Yu, Lu; Zhou, Jin; Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu; Markon, Sandor
The Elevator Group Supervisory Control Systems (EGSCS) are the control systems that systematically manage three or more elevators in order to efficiently transport the passengers in buildings. Double-deck elevators, where two elevators are connected with each other, serve passengers at two consecutive floors simultaneously. Double-deck Elevator systems (DDES) become more complex in their behavior than conventional single-deck elevator systems (SDES). Recently, Artificial Intelligence (AI) technology has been used in such complex systems. Genetic Network Programming (GNP), a graph-based evolutionary method, has been applied to EGSCS and its advantages are shown in some papers. GNP can obtain the strategy of a new hall call assignment to the optimal elevator when it performs crossover and mutation operations to judgment nodes and processing nodes. Meanwhile, Destination Floor Guidance System (DFGS) is installed in DDES, so that passengers can also input their destinations at elevator halls. In this paper, we have applied GNP to DDES and compared DFGS with normal systems. The waiting time and traveling time of DFGS are all improved because of getting more information from DFGS. The simulations showed the effectiveness of the double-deck elevators with DFGS in different building traffics.
Zhou, Dan; Yang, Liping; Yang, Runmiao; Song, Weihua; Peng, Shuhua; Wang, Yanmei
2009-11-15
A new matrix additive, poly (N,N-dimethylacrylamide)-functionalized gold nanoparticle (GNP-PDMA), was prepared by "grafting-to" approach, and then incorporated into quasi-interpenetrating network (quasi-IPN) composed of linear polyacrylamide (LPA, 3.3 MDa) and PDMA to form novel polymer/metal composite sieving matrix (quasi-IPN/GNP-PDMA) for DNA sequencing by capillary electrophoresis. Without complete optimization, quasi-IPN/GNP-PDMA yielded a readlength of 801 bases at 98% accuracy in about 64 min by using the ABI 310 Genetic Analyzer at 50 degrees C and 150 V/cm. Compared with previous quasi-IPN/GNPs, quasi-IPN/GNP-PDMA can further improve DNA sequencing performances. This is because the presence of GNP-PDMA can improve the compatibility of GNPs with the whole sequencing system, enhance the entanglement degree of networks, and increase the GNP concentration in system, which consequently lead to higher restriction and stability, higher apparent molecular weight (MW), and smaller pore size of the total sieving networks. Furthermore, the composite matrix was also compared with quasi-IPN containing higher-MW LPA and commercial POP-6. The results indicate that the composite matrix is a promising one for DNA sequencing to achieve full automation due to the separation provided with high resolution, speediness, excellent reproducibility, and easy loading in the presence of GNP-PDMA.
NASA Astrophysics Data System (ADS)
Yang, Yuchen; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro
Intertransaction association rules have been reported to be useful in many fields such as stock market prediction, but still there are not so many efficient methods to dig them out from large data sets. Furthermore, how to use and measure these more complex rules should be considered carefully. In this paper, we propose a new intertransaction class association rule mining method based on Genetic Network Programming (GNP), which has the ability to overcome some shortages of Apriori-like based intertransaction association methods. Moreover, a general classifier model for intertransaction rules is also introduced. In experiments on the real world application of stock market prediction, the method shows its efficiency and ability to obtain good results and can bring more benefits with a suitable classifier considering larger interval span.
Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings.
Garcia, E; Nistal, A; Khalifa, A; Essa, Y; Martín de la Escalera, F; Osendi, M I; Miranzo, P
2015-08-19
Hybrid coatings consisting of a heat resistant Y2O3-Al2O3-SiO2 (YAS) glass containing 2.3 wt % of graphene nanoplatelets (GNPs) were developed by flame spraying homogeneous ceramic powders-GNP granules. Around 40% of the GNPs survived the high spraying temperatures and were distributed along the splat-interfaces, forming a percolated network. These YAS-GNP coatings are potentially interesting in thermal protection systems and electromagnetic interference shields for aerospace applications; therefore silicon carbide (SiC) materials at the forefront of those applications were employed as substrates. Whereas the YAS coatings are nonconductive, the YAS-GNP coatings showed in-plane electrical conductivity (∼10(2) S·m(-1)) for which a low percolation limit (below 3.6 vol %) is inferred. Indentation tests revealed the formation of a highly damaged indentation zone showing multiple shear displacements between adjacent splats probably favored by the graphene sheets location. The indentation radial cracks typically found in brittle glass coatings are not detected in the hybrid coatings that are also more compliant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, C; Chow, J
Purpose: This study investigated the dose enhancement effect of using gold nanoparticles (GNP) as radiation sensitizers radiated by different photon beam energies. Microdosimetry of photon-irradiated GNP was determined by the Geant4-DNA process in the DNA scale. Methods: Monte Carlo simulation was conducted using the Geant4 toolkit (ver. 10.2). A GNP with different sizes (30, 50, and 100nm diameter sphere) and a DNA were placed in a water cube (1µm{sup 3}). The GNP was irradiated by photon beams with different energies (50, 100, and 150keV) and produced secondary electrons to increase the dose to the DNA. Energy depositions were calculated formore » both with and without GNP and to investigate the dose enhancement effect at the DNA. The distance between the GNP and DNA was varied to optimize the best GNP position to the DNA. The photon beam source was set to 200nm from the GNP in each simulation. Results: It is found that GNP had a dose enhancement effect on kV photon radiations. For Monte Carlo results on different GNP sizes, distances between the GNP and DNA, and photon beam energies, enhancement ratio was found increasing as GNP size increased. The distance between the GNP and DNA affected the result that as distance increased while the dose enhancement ratio decreased. However, the effect of changing distance was not as significant as varying the GNP size. In addition, increasing the photon beam energy also increased the dose enhancement ratio. The largest dose enhancement ratio was found to be 3.5, when the GNP (100nm diameter) irradiated by the 150keV photon beam was set to 80nm from the DNA. Conclusion: Dose enhancement was determined in the DNA with GNP in the microdosimetry scale. It is concluded that the dose enhancement varied with the photon beam energy, GNP size and distance between the GNP and DNA.« less
Study on plasmon absorption of hybrid Au-GO-GNP films for SPR sensing application
NASA Astrophysics Data System (ADS)
Mukhtar, Wan Maisarah; Ahmad, Farah Hayati; Samsuri, Nurul Diyanah; Murat, Noor Faezah
2018-06-01
This study proposed the development of hybrid Au-GO-GNP films for the enhancement of plasmon absorption in SPR sensing. Several thicknesses of Au at t=40nm, t=50nm and t=300nm were sputtered on the glass substrate. The hybridization of bilayer and trilayer films were formed by depositing GO-GNP layers and GNP-GO layers on top of various thicknesses of Au coated substrates. UV-Vis spectra analysis was conducted to characterize the plasmon absorption for each configuration. The plasmon absorption was successfully amplified by employing hybrid trilayer Au-GO-GNP with the thickness of Au film was fixed at t=50nm. It is noteworthy to highlight that the employment of bilayer and trilayer configurations are the key success to enhance the SPP excitation. Au-GNP and Au-GNP-GO results no significant outcome in comparison with Au-GO and Au-GO-GNP. A redshift of the absorbance wavelength evinces the presence of GO on Au-GO sample and GNP on Au-GO-GNP sample due to the surface reconstruction. It is important to emphasize that not all bilayer and trilayer configurations able to enhance the plasmon absorption where no significant output was obtained with the hybridization order of Au-GNP and Au-GNP-GO.
Müller, Michael Thomas; Hilarius, Konrad; Liebscher, Marco; Lellinger, Dirk; Alig, Ingo; Pötschke, Petra
2017-05-18
The influence of the morphology of industrial graphite nanoplate (GNP) materials on their dispersion in polycarbonate (PC) is studied. Three GNP morphology types were identified, namely lamellar, fragmented or compact structure. The dispersion evolution of all GNP types in PC is similar with varying melt temperature, screw speed, or mixing time during melt mixing. Increased shear stress reduces the size of GNP primary structures, whereby the GNP aspect ratio decreases. A significant GNP exfoliation to individual or few graphene layers could not be achieved under the selected melt mixing conditions. The resulting GNP macrodispersion depends on the individual GNP morphology, particle sizes and bulk density and is clearly reflected in the composite's electrical, thermal, mechanical, and gas barrier properties. Based on a comparison with carbon nanotubes (CNT) and carbon black (CB), CNT are recommended in regard to electrical conductivity, whereas, for thermal conductive or gas barrier application, GNP is preferred.
Yang, Yang; Yang, Yifu; Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen
2016-01-01
Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP's activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP's apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production.
Mehrali, Mehdi; Moghaddam, Ehsan; Seyed Shirazi, Seyed Farid; Baradaran, Saeid; Mehrali, Mohammad; Latibari, Sara Tahan; Metselaar, Hendrik Simon Cornelis; Kadri, Nahrizul Adib; Zandi, Keivan; Osman, Noor Azuan Abu
2014-01-01
Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix. PMID:25229540
Kumar, Pavitra V; Singh, Beena G; Maiti, Nandita; Iwaoka, Michio; Priyadarsini, K Indira
2014-12-15
Binding of a cyclic organoselenium compound, DL-trans-3,4-dihydroxy-1-selenolane (DHSred) with gold nanoparticles (GNP) of different sizes was studied by absorption spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), surface enhanced Raman spectroscopy (SERS) and zeta-potential (ζ) measurements. GNP of different size were synthesized by varying the reaction conditions and their size was determined by DLS and TEM techniques. The absorption spectral data showed red shift in the surface plasmon resonance (SPR) band indicating increase in the size of GNP on binding to DHSred. SERS studies confirmed that the binding of DHSred with GNP is through selenium center with planar orientation of DHSred on the GNP surface. The product of the number of binding sites (n) in GNP and the binding constant (K) was estimated for GNP of different particle size. The zeta potential (ζ) value of GNP decreased marginally in the presence of DHSred. Further, the binding of DHSred with GNP was found to enhance its reactivity with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS(·-)) and the reactivity increased with decrease in the GNP size. Such enhancement in the reducing ability may have a greater impact on the antioxidant activity of DHSred. Copyright © 2014 Elsevier Inc. All rights reserved.
Müller, Michael Thomas; Hilarius, Konrad; Liebscher, Marco; Lellinger, Dirk; Alig, Ingo; Pötschke, Petra
2017-01-01
The influence of the morphology of industrial graphite nanoplate (GNP) materials on their dispersion in polycarbonate (PC) is studied. Three GNP morphology types were identified, namely lamellar, fragmented or compact structure. The dispersion evolution of all GNP types in PC is similar with varying melt temperature, screw speed, or mixing time during melt mixing. Increased shear stress reduces the size of GNP primary structures, whereby the GNP aspect ratio decreases. A significant GNP exfoliation to individual or few graphene layers could not be achieved under the selected melt mixing conditions. The resulting GNP macrodispersion depends on the individual GNP morphology, particle sizes and bulk density and is clearly reflected in the composite’s electrical, thermal, mechanical, and gas barrier properties. Based on a comparison with carbon nanotubes (CNT) and carbon black (CB), CNT are recommended in regard to electrical conductivity, whereas, for thermal conductive or gas barrier application, GNP is preferred. PMID:28772907
Coyle, Doug; Ko, Yoo-Joung; Coyle, Kathryn; Saluja, Ronak; Shah, Keya; Lien, Kelly; Lam, Henry; Chan, Kelvin K W
2017-04-01
To assess the cost-effectiveness of gemcitabine (G), G + 5-fluorouracil, G + capecitabine, G + cisplatin, G + oxaliplatin, G + erlotinib, G + nab-paclitaxel (GnP), and FOLFIRINOX in the treatment of advanced pancreatic cancer from a Canadian public health payer's perspective, using data from a recently published Bayesian network meta-analysis. Analysis was conducted through a three-state Markov model and used data on the progression of disease with treatment from the gemcitabine arms of randomized controlled trials combined with estimates from the network meta-analysis for the newer regimens. Estimates of health care costs were obtained from local providers, and utilities were derived from the literature. The model estimates the effect of treatment regimens on costs and quality-adjusted life-years (QALYs) discounted at 5% per annum. At a willingness-to-pay (WTP) threshold of greater than $30,666 per QALY, FOLFIRINOX would be the most optimal regimen. For a WTP threshold of $50,000 per QALY, the probability that FOLFIRINOX would be optimal was 57.8%. There was no price reduction for nab-paclitaxel when GnP was optimal. From a Canadian public health payer's perspective at the present time and drug prices, FOLFIRINOX is the optimal regimen on the basis of the cost-effectiveness criterion. GnP is not cost-effective regardless of the WTP threshold. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
On the Role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles
Xiao, Fangxing; Zheng, Yi; Cloutier, Pierre; He, Yunhui; Hunting, Darel; Sanche, Léon
2013-01-01
Four different gold nanoparticle (GNP) preparations, including nude GNP and GNP coated either with thiolated undecane (S-C11H23), or with dithiolated diethylenetriaminepentaacetic (DTDTPA) or gadolinium (Gd) DTDTPA chelating agents were synthesized. The average diameters, for each type of nanoparticle are 5 nm, 10 and 13 nm, respectively. Dry films of plasmid DNA pGEM-3Zf(-), DNA with bound GNP and DNA with coated GNP were bombarded with 60 keV electrons. The yields of single and double strand breaks were measured as a function of exposure by electrophoresis. The binding of only one GNP without coating to DNA containing 3197 base pairs increases single and double strand breaks by a factor of 2.3 while for GNP coated with S-C11H23 this factor is reduced to 1.6. GNP coated with the DTDTPA and DTDTPA:Gd in same ratio with DNA, produce essentially no increment in damage. These results could be explained by the attenuation by the coatings of the intensity of low energy photoelectrons emitted from GNP. Thus, coatings of GNP may considerably attenuate short-range low energy electrons emitted from gold, leading to a considerable decrease of radiosensitization. According to our results, the highest radiosensitization should be obtained with GNP having the shortest possible ligand, directed to the DNA of cancer cells. PMID:22024607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinov, M; Thomson, R
2015-06-15
Purpose: To investigate dose enhancement to cellular compartments following gold nanoparticle (GNP) uptake in tissue, varying cell and tissue morphology, intra and extracellular GNP distribution, and source energy using Monte Carlo (MC) simulations. Methods: Models of single and multiple cells are developed for normal and cancerous tissues; cells (outer radii 5–10 µm) are modeled as concentric spheres comprising the nucleus (radii 2.5–7.5 µm) and cytoplasm. GNP distributions modeled include homogeneous distributions throughout the cytoplasm, variable numbers of GNP-containing endosomes within the cytoplasm, or distributed in a spherical shell about the nucleus. Gold concentrations range from 1 to 30 mg/g. Dosemore » to nucleus and to cytoplasm for simulations including GNPs are compared to simulations without GNPs to compute Nuclear and Cytoplasm Dose Enhancement Factors (NDEF, CDEF). Photon source energies are between 20 keV and 1.25 MeV. Results: DEFs are highly sensitive to GNP intracellular distribution; for a 2.5 µm radius nucleus irradiated by a 30 keV source, NDEF varies from 1.2 for a single endosome containing all GNPs to 8.2 for GNPs distributed about the nucleus (7 mg/g). DEFs vary with cell dimensions and source energy: NDEFs vary from 2.5 (90 keV) to 8.2 (30 keV) for a 2.5 µm radius nucleus and from 1.1 (90 keV) to 1.3 (30 keV) for a 7.5 µm radius nucleus, both with GNPs in a spherical shell about the nucleus (7 mg/g). NDEF and CDEF are generally different within a single cell. For multicell models, the presence of gold within intervening tissues between source and target perturbs the fluence reaching cellular targets, resulting in DEF inhomogeneities within a population of irradiated cells. Conclusion: DEFs vary by an order of magnitude for different cell models, GNP distributions, and source energies, demonstrating the importance of detailed modelling for advancing GNP development for radiotherapy. Funding provided by the Natural Sciences and Engineering Council of Canada (NSERC), and the Canada Research Chairs Program (CRC)« less
Zhang, Yuanchao; Liu, Jingquan; Li, Da; Dai, Xing; Yan, Fuhua; Conlan, Xavier A; Zhou, Ruhong; Barrow, Colin J; He, Jin; Wang, Xin; Yang, Wenrong
2016-05-24
Chirality sensing is a very challenging task. Here, we report a method for ultrasensitive detection of chiral molecule l/d-carnitine based on changes in the recognition tunneling current across self-assembled core-satellite gold nanoparticle (GNP) networks. The recognition tunneling technique has been demonstrated to work at the single molecule level where the binding between the reader molecules and the analytes in a nanojunction. This process was observed to generate a unique and sensitive change in tunneling current, which can be used to identify the analytes of interest. The molecular recognition mechanism between amino acid l-cysteine and l/d-carnitine has been studied with the aid of SERS. The different binding strength between homo- or heterochiral pairs can be effectively probed by the copper ion replacement fracture. The device resistance was measured before and after the sequential exposures to l/d-carnitine and copper ions. The normalized resistance change was found to be extremely sensitive to the chirality of carnitine molecule. The results suggested that a GNP networks device optimized for recognition tunneling was successfully built and that such a device can be used for ultrasensitive detection of chiral molecules.
Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione.
Tedesco, Sara; Doyle, Hugh; Blasco, Julian; Redmond, Gareth; Sheehan, David
2010-03-01
Relatively little is known about how gold nanoparticles (GNP) might interact in vivo with marine organisms. Mytilus edulis was exposed (24h) to approximately 15 nm GNP, menadione and both compounds simultaneously (GNP/menadione). GNP was detected by inductively coupled plasma-optical emission spectroscopy mainly in digestive gland of samples exposed to GNP though not GNP/menadione, perhaps due to impaired feeding. Thioredoxin reductase activity and malondialdehyde levels were determined in all tissues. Thioredoxin reductase inhibition was detected only in digestive gland exposed to menadione whilst malondialdehyde levels did not vary in response to treatment in all tissues. GNP caused a decrease in the reduced/oxidized glutathione ratio in digestive gland, but no difference was found in other tissues or for other treatments. One dimensional electrophoresis of proteins containing thiol groups was performed in all tissues and revealed a reduction in protein thiols for all treatments in digestive gland. Two dimensional electrophoresis of digestive gland extracts, from GNP and control groups, showed decreased levels of thiol proteins in response to GNP which we attribute to oxidation. Our results suggest that GNP causes a modest level of oxidative stress sufficient to oxidize thiols in glutathione and proteins but without causing lipid peroxidation or induction of thioredoxin reductase activity.
Kelnar, Ivan; Kratochvíl, Jaroslav; Kaprálková, Ludmila; Zhigunov, Alexander; Nevoralová, Martina
2017-07-01
Structure and properties of poly(lactic acid) (PLA)/poly (ɛ-caprolactone) (PCL) influenced by graphite nanoplatelets (GNP) were studied in dependence on blend composition. Electron microscopy indicates predominant localization of GNP in PCL. GNP-induced changes in viscosity hinder refinement of PCL inclusions, support PCL continuity in the co-continuous system, and lead to reduction of PLA inclusions size without GNP being present at the interface in the PCL-matrix blend. Negligible differences in crystallinity of both phases indicate that mechanical behaviour is mainly influenced by reinforcement and GNP-induced changes in morphology. Addition of 5 parts of GNP leads to ~40% and ~25% increase of stiffness in the PCL- and PLA-matrix systems, respectively, whereas the reinforcing effect is practically eliminated in the co-continuous systems due to GNP-induced lower continuity of PLA which enhances toughness. Impact resistance of the 80/20 blend shows increase with 5 parts content due to synergistic effect of PCL/GNP stacks, whereas minor increase in the blend of the ductile PCL matrix with brittle PLA inclusions is caused by GNP-modification of the component parameters. Results indicate high potential of GNP in preparing biocompatible systems with wide range of structure and properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen
2016-01-01
Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP’s activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP’s apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production. PMID:26771380
Comparative in vivo assessment of the subacute toxicity of gold and silver nanoparticles
NASA Astrophysics Data System (ADS)
Rathore, Mansee; Mohanty, Ipseeta Ray; Maheswari, Ujjwala; Dayal, Navami; Suman, Rajesh; Joshi, D. S.
2014-04-01
In spite of the projected therapeutic potentials of gold nanoparticles (GNP) and silver nanoparticles (SNP), very limited data are available on the interaction of nanoparticles with the biological systems. The present investigation was designed to evaluate as well as compare the subacute toxicity of GNP and SNP. Stable suspensions of GNP and SNP with mean particle diameter 10 and 25 nm, respectively, were prepared. Wistar rats were orally fed SNP (3 mg/kg) or GNP (20 μg/kg), once a day for 21 days. Biochemical indices (creatinine phosphokinase-MB, urea, blood urea nitrogen, aspartate transaminase, alkaline alanine transferase) and histopathological features of the liver, heart, brain, lungs, and kidney were evaluated for signs of toxicity. A significant decline in hepatic and renal function in the GNP treated group was observed as compared to SNP. GNP was found to be relatively more toxic on the lungs and SNP on the myocardial tissue as compared to SNP and GNP treatments, respectively. Interestingly, neither SNP nor GNP adversely affected the basal architecture of the brain as compared to sham. The present study demonstrated that GNP was significantly more noxious on the liver and kidney as compared with SNP.
Anderson, Ginna; Caswell, Georgina; Edwards, Olive; Hsieh, Amy; Hull, Beri; Mallouris, Christoforos; Mason, Naisiadet; Nöstlinger, Christiana
2012-01-01
Introduction In 2010, two global networks of people living with HIV, the International Community of Women Living with HIV (ICW Global) and the Global Network of People living with HIV (GNP + ) were invited to review a draft strategic framework for the global scale up of prevention of vertical transmission (PVT) through the primary prevention of HIV and the prevention of unintended pregnancies among women living with HIV. In order to ensure recommendations were based on expressed needs of people living with HIV, GNP+ and ICW Global undertook a consultation amongst people living with HIV which highlighted both facilitators and barriers to prevention services. This commentary summarizes the results of that consultation. Discussion The consultation was comprised of an online consultation (moderated chat-forum with 36 participants from 16 countries), an anonymous online e-survey (601 respondents from 58 countries), and focus-group discussions with people living with HIV in Jamaica (27 participants). The consultation highlighted the discrepancies across regions with respect to access to essential packages of PVT services. However, the consultation participants also identified common barriers to access, including a lack of trustworthy sources of information, service providers’ attitudes, and gender-based violence. In addition, participant responses revealed common facilitators of access, including quality counselling on reproductive choices, male involvement, and decentralized services. Conclusions The consultation provided some understanding and insight into the participants’ experiences with and recommendations for PVT strategies. Participants agreed that successful, comprehensive PVT programming require greater efforts to both prevent primary HIV infection among young women and girls and, in particular, targeted efforts to ensure that women living with HIV and their partners are supported to avoid unintended pregnancies and to have safe, healthy pregnancies instead. In addition to providing the insights into prevention services discussed above, the consultation served as a valuable example of the meaningful involvement of people living with HIV in programming and implementation to ensure that programs are tailored to individuals’ needs and to circumvent rights abuses within those settings. PMID:22789649
Anderson, Ginna; Caswell, Georgina; Edwards, Olive; Hsieh, Amy; Hull, Beri; Mallouris, Christoforos; Mason, Naisiadet; Nöstlinger, Christiana
2012-07-11
In 2010, two global networks of people living with HIV, the International Community of Women Living with HIV (ICW Global) and the Global Network of People living with HIV (GNP+) were invited to review a draft strategic framework for the global scale up of prevention of vertical transmission (PVT) through the primary prevention of HIV and the prevention of unintended pregnancies among women living with HIV. In order to ensure recommendations were based on expressed needs of people living with HIV, GNP+ and ICW Global undertook a consultation amongst people living with HIV which highlighted both facilitators and barriers to prevention services. This commentary summarizes the results of that consultation. The consultation was comprised of an online consultation (moderated chat-forum with 36 participants from 16 countries), an anonymous online e-survey (601 respondents from 58 countries), and focus-group discussions with people living with HIV in Jamaica (27 participants). The consultation highlighted the discrepancies across regions with respect to access to essential packages of PVT services. However, the consultation participants also identified common barriers to access, including a lack of trustworthy sources of information, service providers' attitudes, and gender-based violence. In addition, participant responses revealed common facilitators of access, including quality counselling on reproductive choices, male involvement, and decentralized services. The consultation provided some understanding and insight into the participants' experiences with and recommendations for PVT strategies. Participants agreed that successful, comprehensive PVT programming require greater efforts to both prevent primary HIV infection among young women and girls and, in particular, targeted efforts to ensure that women living with HIV and their partners are supported to avoid unintended pregnancies and to have safe, healthy pregnancies instead. In addition to providing the insights into prevention services discussed above, the consultation served as a valuable example of the meaningful involvement of people living with HIV in programming and implementation to ensure that programs are tailored to individuals' needs and to circumvent rights abuses within those settings.
Cho, Jaehyun; Jeon, Ikseong; Kim, Seong Yun; Lim, Soonho; Jho, Jae Young
2017-08-23
A series of polyketone (PK) nanocomposite films with varying content of noncovalently functionalized graphene nanoplatelet with 1-aminopyrene (GNP/APy) is prepared by solution blending with a solvent of hexafluoro-2-propanol. GNP/APy, prepared by a facile method, can effectively induce specific interaction such as hydrogen bonding between the amine functional group of GNP/APy and the carbonyl functional group of the PK matrix. With comparison of GNP and GNP/Py as reference materials, intensive investigation on filler-matrix interaction is achieved. In addition, the dispersion state of the functionalized GNP (f-GNPs; GNP/Py and GNP/APy) in the PK matrix is analyzed by three-dimensional nondestructive X-ray microcomputed tomography, and the increased dispersion state of those fillers results in significant improvement in the water vapor transmission rate (WVTR). The enhancement in WVTR of the PK/GNP/APy nanocomposite film at 1 wt % loading of filler leads to a barrier performance approximately 2 times larger compared to that of PK/GNP nanocomposite film and an approximately 92% reduction in WVTR compared to the case of pristine PK film. We expect that this facile method of graphene functionalization to enhance graphene dispersibility as well as interfacial interaction with the polymer matrix will be widely utilized to expand the potential of graphene materials to barrier film applications.
Tomić, Sergej; Đokić, Jelena; Vasilijić, Saša; Ogrinc, Nina; Rudolf, Rebeka; Pelicon, Primož; Vučević, Dragana; Milosavljević, Petar; Janković, Srđa; Anžel, Ivan; Rajković, Jelena; Rupnik, Marjan Slak; Friedrich, Bernd; Čolić, Miodrag
2014-01-01
Gold nanoparticles (GNPs) are claimed as outstanding biomedical tools for cancer diagnostics and photo-thermal therapy, but without enough evidence on their potentially adverse immunological effects. Using a model of human dendritic cells (DCs), we showed that 10 nm- and 50 nm-sized GNPs (GNP10 and GNP50, respectively) were internalized predominantly via dynamin-dependent mechanisms, and they both impaired LPS-induced maturation and allostimulatory capacity of DCs, although the effect of GNP10 was more prominent. However, GNP10 inhibited LPS-induced production of IL-12p70 by DCs, and potentiated their Th2 polarization capacity, while GNP50 promoted Th17 polarization. Such effects of GNP10 correlated with a stronger inhibition of LPS-induced changes in Ca2+ oscillations, their higher number per DC, and more frequent extra-endosomal localization, as judged by live-cell imaging, proton, and electron microscopy, respectively. Even when released from heat-killed necrotic HEp-2 cells, GNP10 inhibited the necrotic tumor cell-induced maturation and functions of DCs, potentiated their Th2/Th17 polarization capacity, and thus, impaired the DCs' capacity to induce T cell-mediated anti-tumor cytotoxicity in vitro. Therefore, GNP10 could potentially induce more adverse DC-mediated immunological effects, compared to GNP50. PMID:24802102
Mousavi, Mehdi; Nedaei, Hassan Ali; Khoei, Samideh; Eynali, Samira; Khoshgard, Karim; Robatjazi, Mostafa; Iraji Rad, Rasoul
2017-02-01
Gold nanoparticles (GNP) have significant potential as radiosensitizer agents due to their distinctive properties. Several studies have shown that the surface modification of nanoparticles with methyl polyethylene glycol (mPEG) can increase their biocompatibility. However, the present study investigated the radiosensitization effects of mPEG-coated GNP (mPEG-GNP) in B16F10 murine melanoma cells under irradiation of 6 MeV Electron beam. The synthesized GNP were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy, and zeta potential. Enhancement of radiosensitization was evaluated by the clonogenic assay at different radiation doses of megavoltage electron beams. It was observed that mPEG-GNP with a hydrodynamic size of approximately 50 nm are almost spherical and cellular uptake occurred at all concentrations. Both proliferation efficiency and survival fraction decreased with increasing mPEG-GNP concentration. Furthermore, significant GNP sensitization occurred with a maximum dose enhancement factor of 1.22 at a concentration of 30 μM. Pegylated-GNP are taken up by B16F10 cancer cells and cause radiosensitization in the presence of 6 MeV electrons. The radiosensitization effects of GNP may probably be due to biological processes. Therefore, the underlying biological mechanisms beyond the physical dose enhancement need to be further clarified.
Saha, Partha Pratim; Bhowmik, Tanmoy; Dasgupta, Anjan Kumar; Gomes, Antony
2014-08-01
Nanoscience and Nanotechnology have found their way in the fields of pharmacology and medicine. The conjugation of drug to nanoparticles combines the properties of both. In this study, gold nanoparticle (GNP) was conjugated with NKCT1, a cytotoxic protein toxin from Indian cobra venom for evaluation of anti-arthritic activity and toxicity in experimental animal models. GNP conjugated NKCT1 (GNP-NKCT1) synthesized by NaBH4 reduction method was stable at room temperature (25 +/- 2 degrees C), pH 7.2. Hydrodynamic size of GNP-NKCT1 was 68-122 nm. Arthritis was developed by Freund's complete adjuvant induction in male albino rats and treatment was done with NKCT1/GNP-NKCT1/standard drug. The paw/ankle swelling, urinary markers, serum markers and cytokines were changed significantly in arthritic control rats which were restored after GNP-NKCT1 treatment. Acute toxicity study revealed that GNP conjugation increased the minimum lethal dose value of NKCT1 and partially reduced the NKCT1 induced increase of the serum biochemical tissue injury markers. Histopathological study showed partial restoration of toxic effect in kidney tissue after GNP conjugation. Normal lymphocyte count in culture was in the order of GNP-NKCT1 > NKCT1 > Indomethacine treatment. The present study confirmed that GNP conjugation increased the antiarthritic activity and decreased toxicity profile of NKCT1.
Biofabrication of broad range antibacterial and antibiofilm silver nanoparticles.
Qayyum, Shariq; Khan, Asad Ullah
2016-10-01
Silver nanoparticles (AgNPs) were biosynthesized via a green route using ten different plants extracts (GNP1- Caryota urens , GNP2- Pongamia glabra , GNP3- Hamelia patens , GNP4- Thevetia peruviana , GNP5- Calendula officinalis , GNP6- Tectona grandis , GNP7- Ficus petiolaris , GNP8- Ficus busking , GNP9- Juniper communis, GNP10- Bauhinia purpurea ). AgNPs were tested against drug resistant microbes and their biofilms. These nanoparticles (NPs) were characterised using UV-vis spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction and Image J software. Most of the AgNPs were distributed over a range of 1 of 60 nm size. The results indicated that AgNPs were antibacterial in nature without differentiating between resistant or susceptible strains. Moreover, the effect was more prominent on Gram negative bacteria then Gram positive bacteria and fungus. AgNPs inhibited various classes of microbes with different concentration. It was also evident from the results that the origin or nature of extract did not affect the activity of the NPs. Protein and carbohydrate leakage assays confirmed that the cells lysis is one of the main mechanisms for the killing of microbes by green AgNPs. This study suggests that the action of AgNPs on microbial cells resulted into cell lysis and DNA damage. Excellent microbial biofilm inhibition was also seen by these green AgNPs. AgNPs have proved their candidature as a potential antibacterial and antibiofilm agent against MDR microbes.
MO-FG-BRA-08: A Preliminary Study of Gold Nanoparticles Enhanced Diffuse Optical Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, K; Dogan, N; Yang, Y
2015-06-15
Purpose: To develop an imaging method by using gold nanoparticles (GNP) to enhance diffuse optical tomography (DOT) for better tumor detection. Methods: Experiments were performed on a tissue-simulating cylindrical optical phantom (30mm diameter, 60mm length). The GNP used are gold nanorods (10nm diameter, 44nm length) with peak light absorption at 840nm. 0.085ml GNP colloid of 96nM concentration was loaded into a 6mm diameter cylindrical hole in the phantom. An 856nm laser beam (14mW) was used as light source to irradiate the phantom at multiple locations through rotating and elevating the phantom. A CCD camera captured the light transmission through themore » phantom for each irradiation with total 40 projections (8 rotation angles in 45degree steps and 5 elevations with 3mm apart). Cone beam CT of the phantom was used to generate the three-dimensional mesh for DOT reconstruction and to identify the true location of the GNP volume. A forward simulation was performed with known phantom optical properties to establish a relationship between the absorption coefficient and concentration of the GNP by matching the simulated and measured transmission. DOT image reconstruction was performed to restore the GNP within the phantom. In addition, a region-constrained reconstruction was performed by confining the solutions within the GNP volume detected from CT. Results: The position of the GNP volume was reconstructed with <2mm error. The reconstructed average GNP concentration within an identical volume was 104nM, 8% difference from the truth. When the CT was used as “a priori”, the reconstructed average GNP concentration was 239nM, about 2.5 times of the true concentration. Conclusion: This study is the first to demonstrate GNP enhanced DOT with phantom imaging. The GNP can be differentiated from their surrounding background. However, the reconstruction methods needs to be improved for better spatial and quantification accuracy.« less
NASA Astrophysics Data System (ADS)
Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.
2017-03-01
The interaction of macromolecules with gold nanoparticles (GNPs) is of interest in the emerging field of biomedical and environmental detection devices. However, the physicochemical properties, including spectra, of GNPs in aqueous solution in the absence of metal-macromolecular interactions must first be considered before their activity in biological and environmental systems can be understood. The specific objective of this research was to experimentally illuminate the role of nanoparticle core size on the spectral (simultaneous consideration of extinction, emission, and scattering) versus aggregation behaviors of citrate-coated GNPs (CT-GNPs). It is difficult to find in the literature systematic simultaneous presentation of scattering, emission, and extinction spectra, including the UV range, and thus the present work will aid those who would use such particles for spectroscopic related separations or sensors. The spectroscopic behavior of CT-GNPs with different core sizes (5, 10, 30, and 50 nm) was studied in ultra-pure water at pH 6.0-6.5 employing UV-visible extinction, excitation-emission matrix (EEM), resonance Rayleigh scattering, and dynamic light scattering (DLS) spectroscopies. The CT-GNP-5 and CT-GNP-10 samples aggregated, absorbed light, and emitted light. In contrast, the CT-GNP-30 and CT-GNP-50 samples did not aggregate and did not emit light, but scattered light intensely. Multimodal peaks were observed in the intensity-based DLS spectra of CT-GNP-5 and CT-GNP-10 samples. Monomodal peaks in the volume-based DLS spectra overestimated particle diameters by 60% and 30% for the CT-GNP-5 and CT-GNP-10 samples, respectively, but underestimated diameters by 10% and 4% for the CT-GNP-30 and CT-GNP-50 samples. The volume-based DLS spectra indicated that dimer and trimer aggregates contributed most to the overall volume of particles in the 5- and 10-nm CT-GNPs, whereas the CT-GNP-30 and CT-GNP-50 samples did not aggregate. Here, we discuss the potential influence that differences in preparation, ionic strength, zeta potential, and conformation of adsorbed citrate anions (due to surface curvature of corona) may exert on the aggregation and spectral observations in these data. In particular, the severe surface curvature of the 5- and 10-nm GNP corona may affect the efficiency of the di-/tribasic citrate compatiblizer molecule to shield the core from interactions with light and from GNP-GNP homoaggregation.
Tuning TiO2 nanoparticle morphology in graphene-TiO2 hybrids by graphene surface modification
NASA Astrophysics Data System (ADS)
Sordello, Fabrizio; Zeb, Gul; Hu, Kaiwen; Calza, Paola; Minero, Claudio; Szkopek, Thomas; Cerruti, Marta
2014-05-01
We report the hydrothermal synthesis of graphene (GNP)-TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C-Ti bonds on all hybrids, thus confirming heterogeneous nucleation. GNP functionalization induced the nucleation of TiO2 NPs with specific shapes and crystalline facets exposed. COOH functionalization directed the synthesis of anatase truncated bipyramids, bonded to graphene sheets via the {101} facets, while NH2 functionalization induced the formation of belted truncated bipyramids, bonded to graphene via the {100} facets. Belted truncated bipyramids formed on unfunctionalized GNP too, however the NPs were more irregular and rounded. These effects were ascribed to pH variations in the proximity of the functionalized GNP sheets, due to the high density of COOH or NH2 groups. Because of the different reactivity of anatase {100} and {101} crystalline facets, we hypothesize that the hybrid materials will behave differently as photocatalysts, and that the COOH-GNP-TiO2 hybrids will be better photocatalysts for water splitting and H2 production.We report the hydrothermal synthesis of graphene (GNP)-TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C-Ti bonds on all hybrids, thus confirming heterogeneous nucleation. GNP functionalization induced the nucleation of TiO2 NPs with specific shapes and crystalline facets exposed. COOH functionalization directed the synthesis of anatase truncated bipyramids, bonded to graphene sheets via the {101} facets, while NH2 functionalization induced the formation of belted truncated bipyramids, bonded to graphene via the {100} facets. Belted truncated bipyramids formed on unfunctionalized GNP too, however the NPs were more irregular and rounded. These effects were ascribed to pH variations in the proximity of the functionalized GNP sheets, due to the high density of COOH or NH2 groups. Because of the different reactivity of anatase {100} and {101} crystalline facets, we hypothesize that the hybrid materials will behave differently as photocatalysts, and that the COOH-GNP-TiO2 hybrids will be better photocatalysts for water splitting and H2 production. Electronic supplementary information (ESI) available: Statistical analysis of the D : G intensity ratio, additional XPS analysis and TEM micrographs. See DOI: 10.1039/c4nr01322k
An approach for recreation suitability analysis to recreation planning in Gölcük Nature Park.
Gül, Atila; Orücü, M Kamil; Karaca, Oznur
2006-05-01
Gölcük Nature Park (GNP) is an area protected by law in Turkey. It is an important nature park with rich flora, fauna, geomorphologic forms, landscape features, and recreational potential in the region. However, GNP does not have a recreation management plan. The purpose of this study was to determine the actual natural, cultural, and visual resources of GNP, determine the most suitable recreational sites with multiple factors, evaluate the demands and tendencies of visitors, and suggest recreational activities and facilities for the most suitable sites of GNP. However, it was also conceived as leading to a recreational plan and design of GNP in the future and identifying the entire appropriate and current data of GNP with the creation of various maps. This study used multifactor analysis to determine the most suitable recreation sites of GNP. Used recreation factors were established including degree of slope, proximity to water resources, accessibility, elevation, vegetation, soil, climate, aspect, current cultural facilities, visual values, and some limiting factors in accordance with the characteristics of GNP. Weighting and suitability values of factors were determined by 30 local expert surveys. All obtained data were evaluated and integrated in the Geographical Information Systems base. Obtained maps were overlapped. Thus, recreational suitability zones map were created manually. However, the demands and behaviours from visitor surveys in GNP were focused on the most suitable recreation sites of the park. Finally, 10% of GNP was identified as the most suitable sites for recreational use. Various recreational facilities and activities (including picnicking, sports facilities and playgrounds, camping sites, walking paths, food and local outlets, etc.) were recommended for nine of the most suitable areas on the proposed recreational map.
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Subhani, Tayyab; Wang, Nannan; Zhu, Yanqiu
2018-05-01
This paper concerns the thermophysical properties of high-frequency induction heat (HFIH) sintered alumina ceramic nanocomposites containing various graphene nanoplatelets (GNP) concentrations. The GNP/alumina nanocomposites demonstrated high densities, fine-grained microstructures, highest fracture toughness and hardness values of 5.7 MPa m1/2 and 18.4 GPa, which found 72 and 8%, superior to the benchmarked monolithic alumina, respectively. We determine the role of GNP in tuning the microstructure and inducing toughening mechanisms in the nanocomposites. The sintered monolithic alumina exhibited thermal conductivity value of 24.8 W/mK; however, steady drops of 2, 15 and 19% were recorded after adding respective GNP contents of 0.25, 0.5 and 1.0 wt.% in the nanocomposites. In addition, a dwindling trend in thermal conductions with increasing temperatures was recorded for all sintered samples. Simulation of experimental results with proven theoretical thermal models showed the dominant role of GNP dispersions, microstructural porosity, elastic modulus and grain size in controlling the thermal transport properties of the GNP/alumina nanocomposites. Thermogravimetric analysis showed that the nanocomposite with up to 0.5 mass% of GNP is thermally stable at the temperatures greater than 875 °C. The GNP/alumina nanocomposites owning a distinctive combination of mechanical and thermal properties are promising contenders for the specific components of the aerospace engine and electronic devices having contact with elevated temperatures.
Bao, Quan-Ying; Liu, Ai-Yun; Ma, Yu; Chen, Huan; Hong, Jin; Shen, Wen-Bin; Zhang, Can; Ding, Ya
2016-10-01
The shape, size, and surface features of nanoparticles greatly influence the structure and properties of resulting hybrid nanosystems. In this work, gold nanoparticles (GNPs) were modified via S-Au covalent bonding by glycol monomethyl ether thioctate with poly(ethylene glycol) methyl ether of different molecular weights (i.e., 350, 550, and 750Da). These modified GNPs (i.e., GNP350, GNP550, and GNP750) showed different oil-water partition coefficients (Kp), as detected using inductively coupled plasma-atomic emission spectroscopy. The different Kp values of the gold conjugates (i.e., 13.98, 2.11, and 0.036 for GNP350, GNP550, and GNP750, respectively) resulted in different conjugate localization within liposomes, as observed by transmission electron microscopy. In addition, the cellular uptake of hybrid liposomes co-encapsulating gold conjugates and Nile red was evaluated using intracellular fluorescence intensity. The results indicated that precise GNP localization in the hydrophilic or hydrophobic liposome cavity could be achieved by regulating the GNP oil-water partition coefficient via surface modification; such localization could further affect the properties and functions of hybrid liposomes, including their cellular uptake profiles. This study furthers the understanding not only of the interaction between liposomes and inorganic nanoparticles but also of adjusting liposome-gold hybrid nanostructure properties via the surface chemistry of gold materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Ying-Zheng; Jin, Rong-Rong; Yang, Wei; Xiang, Qi; Yu, Wen-Ze; Lin, Qian; Tian, Fu-Rong; Mao, Kai-Li; Lv, Chuan-Zhu; Wáng, Yi-Xiáng J; Lu, Cui-Tao
2016-01-01
Intranasal administration of phospholipid-based gelatin nanoparticles (GNP) was prepared to investigate the neuro-recovery effects of neuropeptide Substance P (SP) on hemiparkinsonian rats. The SP-loaded gelatin nanoparticles (SP-GNP) were prepared by a water-in-water emulsion method and possessed high stability, encapsulating efficiency and loading capacity. PC-12 cells were used to examine the growth enhancement of SP-GNP in vitro by MTT assays and flow cytometry (FCM). The therapeutic effects of SP-GNP on 6-hydroxydopamine (6-OHDA) induced hemiparkinsonian rats were assessed by quantifying rotational behavior and the levels of tyrosine hydroxylase (TH), phosphorylated c-Jun protein (p-c-Jun) and Caspase-3 (Cas-3) expressed in substantia nigra (SN) region of hemiparkinsonian rats. PC-12 cells under SP-GNP treatment showed better cell viability and lower degree of apoptosis than those under SP solution treatment. Hemiparkinsonian rats under intranasal SP-GNP administration demonstrated better behavioral improvement, higher level of TH in SN along with much lower extent of p-c-Jun and Cas-3 than those under intranasal SP solution administration and intravenous SP-GNP administration. With the advantages of GNP and nose-to-brain pathway, SP can be effectively delivered into the damaged SN region and exhibit its neuro-recovery function through the inhibition on JNK pathway and dopaminergic neuron apoptosis.
Less is More: A Comparison of Antibody-Gold Nanoparticle Conjugates of Different Ratios.
Byzova, Nadezhda A; Safenkova, Irina V; Slutskaya, Elvira S; Zherdev, Anatoly V; Dzantiev, Boris B
2017-11-15
This comprehensive study is related to gold nanoparticles (GNPs) conjugated with antibodies. The goal of the study is to determine the minimal concentration of antibodies for conjugate synthesis when the conjugates have high antigen-capturing activity. Two systems were studied: gold nanoparticles conjugated with monoclonal antibodies (mAb-GNP) specific to Helicobacter pylori and gold nanoparticles conjugated with polyclonal antibodies (pAb-GNP) specific to mouse immunoglobulins. Several conjugates were synthesized with different GNP-to-antibody molar ratios (from 1:1 to 1:245) through nondirectional and noncovalent immobilization on a surface of GNPs with a diameter of 25.3 ± 4.6 nm. The maximal antigen-capturing activities and equilibrium constants of the conjugates correlate with the formation of a constant hydrodynamic radius of the conjugates for mAb-GNP (GNP to antibody molar ratio 1:58) and with the stabilizing concentration by flocculation curves for pAb-GNP (GNP to antibody molar ratio 1:116). The application of the conjugates to the lateral flow immunoassay shows that the antibody concentrations used for the conjugation can be reduced (below the stabilizing concentration) without losing activity for the mAb-GNP conjugates. The findings highlight that the optimal concentration of antibodies immobilized on the surface of GNPs is not always equal to the stabilizing concentration determined by the flocculation curve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boateng, F; Ngwa, W; Harvard Medical School, Boston, MA
Purpose: Brachytherapy application with in situ dose-painting using gold nanoparticles (GNP) released from GNP-loaded brachytherapy spacers has been proposed as an innovative approach to increase therapeutic efficacy during brachytherapy. This work investigates the dosimetric impact of slow versus burst release of GNP from next generation biodegradable spacers. Methods: Mathematical models were developed based on experimental data to study the release of GNP from a spacer designed with FDA approved poly(lactic-co-glycolic acid) (PLGA) polymer. The diffusion controlled released process and PLGA polymer degradation kinetics was incorporated in the calculations for the first time. An in vivo determined diffusion coefficient was usedmore » for determining the concentration profiles and corresponding dose enhancement based on initial GNP-loading concentrations of 7 mg/g. Results: The results showed that there is significant delay before the concentration profile of GNP diffusion in the tumor is similar to that when burst release is assumed as in previous studies. For example, in the case of burst release after spacer administration, it took up to 25 days for all the GNP to be released from the spacer using diffusion controlled release process only. However, it took up to 45 days when a combined model for both diffusion and polymer degradation processes was used. Based on the tumor concentration profiles, a significant dose enhancement factor (DEF >20%), could be attained at a tumor distances of 5 mm from a spacer loaded with 10 nm GNP sizes. Conclusion: The results highlight the need to take the slow release of GNP from spacers and factors such as biodegradation of polymers into account in research development of GNP-eluting spacers for brachytherapy applications with in-situ dose-painting using gold nanoparticles. The findings suggest that I-125 may be the more appropriate for such applications given the relatively longer half-live compared to other radioisotopes like Pd-103 and Cs-131.« less
Surface engineering of gold nanoparticles for in vitro siRNA delivery
NASA Astrophysics Data System (ADS)
Zhao, Enyu; Zhao, Zhixia; Wang, Jiancheng; Yang, Chunhui; Chen, Chengjun; Gao, Lingyan; Feng, Qiang; Hou, Wenjie; Gao, Mingyuan; Zhang, Qiang
2012-07-01
Cellular uptake, endosomal/lysosomal escape, and the effective dissociation from the carrier are a series of hurdles for specific genes to be delivered both in vitro and in vivo. To construct siRNA delivery systems, poly(allylamine hydrochloride) (PAH) and siRNA were alternately assembled on the surface of 11.8 +/- 0.9 nm Au nanoparticles (GNP), stabilized by denatured bovine serum albumin, by the ionic layer-by-layer (LbL) self-assembly method. By manipulating the outmost PAH layer, GNP-PAH vectors with different surface electric potentials were prepared. Then, the surface potential-dependent cytotoxicity of the resultant GNP-PAH particles was evaluated via sulforhodamine B (SRB) assay, while the surface potential-dependent cellular uptake efficiency was quantitatively analyzed by using the flow cytometry method based on carboxyfluorescein (FAM)-labeled siRNA. It was revealed that the GNP-PAH particles with surface potential of +25 mV exhibited the optimal cellular uptake efficiency and cytotoxicity for human breast cancer MCF-7 cells. Following these results, two more positively charged polyelectrolytes with different protonating abilities in comparison with PAH, i.e., polyethylenimine (PEI), and poly(diallyl dimethyl ammonium chloride) (PDDA), were chosen to fabricate similarly structured vectors. Confocal fluorescence microscopy studies indicated that siRNA delivered by GNP-PAH and GNP-PEI systems was better released than that delivered by the GNP-PDDA system. Further flow cytometric assays based on immunofluorescence staining of the epidermal growth factor receptor (EGFR) revealed that EGFR siRNA delivered by GNP-PAH and GNP-PEI exhibited similar down-regulation effects on EGFR expression in MCF-7 cells. The following dual fluorescence flow cytometry assays by co-staining phosphatidylserine and DNA suggested the EGFR siRNA delivered by GNP-PAH exhibited an improved silencing effect in comparison with that delivered by the commercial transfection reagent Lipofectamine 2000.
NASA Astrophysics Data System (ADS)
Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar
2014-05-01
Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00974f
Graphene nanoplatelet composite 'paper' as an electrostatic actuator.
Yu, Zeyang; Drzal, Lawrence T
2018-08-03
Graphene nanoplatelets (GnP) can be made into a thin 'paper' through vacuum filtration of GnP suspension. Electrodes were fabricated from the compressed GnP paper and then by coating the surface with epoxy. The electrostatic actuator was constructed from two parallel-aligned composite papers fixed at the anode and a cathode connected to ground. The two composite papers would then separate when a voltage was applied. The GnP paper was also modified to increase surface area by introducing porosity or adding ∼10 wt% C750 (GnP with diameter less than 1 μm); or changing the relative permittivity by adding barium titanate particles; or combining these two effects by adding CNCs. Overall the output work could be significantly improved to over 400%.
NASA Astrophysics Data System (ADS)
Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.
2018-01-01
Knowledge of the interactions between gold nanoparticles (GNPs) and dissolved organic matter (DOM) is significant in the development of detection devices for environmental sensing, studies of environmental fate and transport, and advances in antifouling water treatment membranes. The specific objective of this research was to spectroscopically investigate the fundamental interactions between citrate-stabilized gold nanoparticles (CT-GNPs) and DOM. Studies indicated that 30 and 50 nm diameter GNPs promoted disaggregation of the DOM. This result-disaggregation of an environmentally important polyelectrolyte-will be quite useful regarding antifouling properties in water treatment and water-based sensing applications. Furthermore, resonance Rayleigh scattering results showed significant enhancement in the UV range which can be useful to characterize DOM and can be exploited as an analytical tool to better sense and improve our comprehension of nanomaterial interactions with environmental systems. CT-GNPs having core size diameters of 5, 10, 30, and 50 nm were studied in the absence and presence of added DOM at 2 and 8 ppm at low ionic strength and near neutral pH (6.0-6.5) approximating surface water conditions. Interactions were monitored by cross-interpretation among ultraviolet (UV)-visible extinction spectroscopy, excitation-emission matrix (EEM) spectroscopy (emission and Rayleigh scattering), and dynamic light scattering (DLS). This comprehensive combination of spectroscopic analyses lends new insights into the antifouling behavior of GNPs. The CT-GNP-5 and -10 controls emitted light and aggregated. In contrast, the CT-GNP-30 and CT-GNP-50 controls scattered light intensely, but did not aggregate and did not emit light. The presence of any CT-GNP did not affect the extinction spectra of DOM, and the presence of DOM did not affect the extinction spectra of the CT-GNPs. The emission spectra (visible range) differed only slightly between calculated and actual mixtures of CT-GNP-5 or -10 with DOM, whereas emissions for mixtures of CT-GNP-30 or -50 with DOM were enhanced at the surface plasmon resonance (SPR) wavelength. The emission spectra (ultraviolet range) for protein-like constituents of DOM were quenched. Resonance Rayleigh scattering (RRS) was more intense for the CT-GNP-30 and -50 than for the CT-GNP-5 and -10 controls. Intensity-based DLS particle size distributions (PSDs) of DOM controls, CT-GNP-5 and -10 nm controls, and 5- and 10 nm GNP-DOM mixtures exhibited multimodal aggregation. Analyses of CT-GNP-5 and CT-GNP-10 nm mixtures with DOM indicated overcoating of DOM molecules occurred in close proximity (< 10 nm) to GNPs, whereas similar overcoating was not supported for the CT-GNP-30 or -50 mixtures with DOM. These fundamental observations can be exploited to improve our comprehension of nanomaterial interactions with environmental systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Y; Beaulieu, L; Laprise-Pelletier, M
2016-06-15
Purpose: Gold nanoparticle (GNP) is a promising radiosensitizer that selectively boosts tumor dose in radiotherapy. Transmission electron microscopy (TEM) imaging observations recently revealed for the first time that GNP exists in vivo in the form of highly localized vesicles, instead of hypothetical uniform distribution. This work investigates the corresponding difference of energy deposition in proton therapy. Methods: First, single vesicles of various radii were constructed by packing GNPs (as Φ50 nm gold spheres) in spheres and were simulated, as well as a single GNP. The radial energy depositions (REDs) were scored using 100 concentric spherical shells from 0.1µm to 10µm,more » 0.1µm thickness each, for both vesicles and GNP, and compared. TEM images, 8 days after injection in a PC3 prostate cancer murine model, were used to extract position/dimension of vesicles, as well as contours of cytoplasmic and nucleus membranes. Vesicles were then constructed based on the TEM images. A 100 MeV proton beam was studied by using the Geant4-DNA code, which simulates all energy deposition events. Results: The vesicle REDs, normalized to the same proton energy loss as in a single GNP, are larger (smaller) than that of a single GNP when radius >2µm (<2µm). The peak increase (at about 3µm radius) is about 10% and 18% for Φ1µm and Φ1.6µm vesicles respectively, relative to a single GNP. The TEM-based simulation resulted in a larger energy deposition (by about one order of magnitude) that follows completely different pattern from that of hypothetical GNP distributions (regular dotted pattern in extracellular and/or extranucleus regions). Conclusion: The in vivo energy deposition, both in pattern and magnitude, of proton therapy is greatly affected by the true distribution of the GNP, as illustrated by the presence of GNP vesicles compared to hypothetical scenarios. Work supported by NSERC Discovery Grant #435510, Canada.« less
Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Neeharika; Cifter, Gizem; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using themore » Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application with in situ dose painting administered via gold nanoparticle eluters for prostate cancer.« less
Gold nanoparticles synthesis and biological activity estimation in vitro and in vivo.
Rieznichenko, L S; Dybkova, S M; Gruzina, T G; Ulberg, Z R; Todor, I N; Lukyanova, N Yu; Shpyleva, S I; Chekhun, V F
2012-01-01
The aim of the work was the synthesis of gold nanoparticles (GNP) of different sizes and the estimation of their biological activity in vitro and in vivo. Water dispersions of gold nanoparticles of different sizes have been synthesized by Davis method and characterized by laser-correlation spectroscopy and transmission electron microscopy methods. The GNP interaction with tumor cells has been visualized by confocal microscopy method. The enzyme activity was determined by standard biochemical methods. GNP distribution and content in organs and tissues have been determined via atomic-absorption spectrometry method; genotoxic influence has been estimated by "Comet-assay" method. The GNP size-dependent accumulation in cultured U937 tumor cells and their ability to modulate U937 cell membrane Na(+),K(+)-АТР-ase activity value has been revealed in vitro. Using in vivo model of Guerin carcinoma it has been shown that GNP possess high affinity to tumor cells. Our results indicate the perspectives of use of the synthesized GNP water dispersions for cancer diagnostics and treatment. It's necessary to take into account a size-dependent biosafety level of nanoparticles.
Pokharel, Pashupati; Lee, Sang Hyub; Lee, Dai Soo
2015-01-01
Hybrid nanocomposites of polyurethane (PU) were prepared by in-situ polymerization of 4,4'- diphenyl methane diisocyanate (MDI) with mixture of graphene oxide (GO) and graphene nanoplatelet (GNP) dispersed in a poly(tetramethylene ether glycol) (PTMEG). Effects of the fillers, GO and GNP, on the thermal, mechanical, and electrical properties of the nanocomposites of PU were investigated. Sonication of the hybrid of GNP and GO with PTMEG enabled effective dispersion of the fillers in the solution than the sonication of GNP alone. The addition of PTMEG in the solution prevented the GNPs from the restacking during the drying process. It was observed that the electrical conductivity and mechanical property of the nanocomposites based on the hybrid of GO and GNP were superior to the nanocomposite based on GNP alone at the same loading of the filler. At the loading of the 3 wt% hybrid filler in PU, we observed the improvement of Young's modulus -200% and the surface resistivity of 10(9.5) ohm/sq without sacrificing the elongation at break.
Maiti, Subhabrata; Das, Dibyendu; Shome, Anshupriya; Das, Prasanta Kumar
2010-02-08
Herein, we report the effect of gold nanoparticles (GNPs) in enhancing lipase activity in reverse micelles of cetyltrimethylammonium bromide (CTAB)/water/isooctane/n-hexanol. The size and concentration of the nanoparticles were varied and their specific roles were assessed in detail. An overall enhancement of activity was observed in the GNP-doped CTAB reverse micelles. The improvement in activity becomes more prominent with increasing concentration and size of the GNPs (0-52 microM and ca. 3-30 nm, respectively). The observed highest lipase activity (k(2)=1070+/-12 cm(3) g(-1) s(-1)) in GNP-doped CTAB reverse micelles ([GNP]: 52 microm, ca. 20 nm) is 2.5-fold higher than in CTAB reverse micelles without GNPs. Improvement in the lipase activity is only specific to the GNP-doped reverse micellar media, whereas GNP deactivates and structurally deforms the enzyme in aqueous media. The reason for this activation is probably due to the formation of larger-sized reverse micelles in which the GNP acts as a polar core and the surfactants aggregate around the nanoparticle ('GNP pool') instead of only water. Lipase at the augmented interface of the GNP-doped reverse micelle showed improved activity because of enhancement in both the substrate and enzyme concentrations and increased flexibility in the lipase conformation. The extent of the activation is greater in the case of the larger-sized GNPs. A correlation has been established between the activity of lipase and its secondary structure by using circular dichroism and FTIR spectroscopic analysis. The generalized influence of GNP is verified in the reverse micelles of another surfactant, namely, cetyltripropylammonium bromide (CTPAB). TEM, dynamic light scattering (DLS), and UV/Vis spectroscopic analysis were utilized to characterize the GNPs and the organized aggregates. For the first time, CTAB-based reverse micelles have been found to be an excellent host for lipase simply by doping with appropriately sized GNPs.
NASA Astrophysics Data System (ADS)
Maliszewska, Irena; Leśniewska, Agata; Olesiak-Bańska, Joanna; Matczyszyn, Katarzyna; Samoć, Marek
2014-06-01
There is considerable current interest in photodynamic inactivation (PDI) as potential antimicrobial therapy. This study reports successful implementation of PDI of Staphylococcus epidermidis using methylene blue (MB) in combination with biogenic gold nanoparticles (GNP). Monodispersed colloidal GNP were synthesized by reduction of Au+3 in the presence of cell-free filtrate of Trichoderma koningii and were characterized by a number of techniques including UV-Vis and fluorescence spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) to be 12 ± 3 nm spherical gold particles coated with proteins. Studies on the role of the cell-free filtrate proteins in the synthesis of the GNP indicate that the process is nonenzymatic but involves interactions of various amino acids with gold ions. A Xe lamp (550-780 nm) or a He-Ne laser (632 nm) was used as light sources to study the effect of MB alone, the GNP alone, and the MB-GNP mixture on the viability of bacterial cells. Lethal photosensitization of S. epidermidis with the MB-GNP mixture was achieved after 5 and 10 min exposure to laser or Xe lamp, respectively. It has been found that the MB-GNP mixture exhibits a significant antibacterial activity already in the absence of any light source and gives an enhanced antimicrobial response when using either a laser or a Xe lamp source for photosensitization.
Electrical and optical percolations in PMMA/GNP composite films
NASA Astrophysics Data System (ADS)
Arda, Ertan; Mergen, Ömer Bahadır; Pekcan, Önder
2018-05-01
Effects of graphene nanoplatelet (GNP) addition on the electrical conductivity and optical absorbance of poly(methyl methacrylate)/graphene nanoplatelet (PMMA/GNP) composite films were studied. Optical absorbance and two point probe resistivity techniques were used to determine the variations of the optical and electrical properties of the composites, respectively. Absorbance intensity, A, and surface resistivity, Rs, of the composite films were monitored as a function of GNP mass fraction (M) at room temperature. Absorbance intensity values of the composites were increased and surface resistivity values were decreased by increasing the content of GNP in the composite. Electrical and optical percolation thresholds of composite films were determined as Mσ = 27.5 wt.% and Mop = 26.6 wt.%, respectively. The conductivity and the optical results were attributed to the classical and site percolation theories, respectively. Optical (βop) and electrical (βσ) critical exponents were calculated as 0.40 and 1.71, respectively.
Terahertz absorption in graphite nanoplatelets/polylactic acid composites
NASA Astrophysics Data System (ADS)
Bychanok, D.; Angelova, P.; Paddubskaya, A.; Meisak, D.; Shashkova, L.; Demidenko, M.; Plyushch, A.; Ivanov, E.; Krastev, R.; Kotsilkova, R.; Ogrin, F. Y.; Kuzhir, P.
2018-04-01
The electromagnetic properties of composite materials based on poly(lactic) acid (PLA) filled with graphite nanoplatelets (GNP) were investigated in the microwave (26–37 GHz) and terahertz (0.2–1 THz) frequency ranges. The maximum of the imaginary part of the dielectric permittivity was observed close to 0.6 THz for composites with 1.5 and 3 wt.% of GNP. The experimental data of complex dielectric permittivity of GNP/PLA composites was modelled using the Maxwell-Garnett theory. The effects of fine dispersion, agglomeration, and percolation in GNP-based composites on its electromagnetic constitutive parameters, presence, and position of THz absorption peak are discussed on the basis of the modeling results and experimental data. The unique combination of conductive and geometrical parameters of GNP embedded into the PLA matrix below the percolation threshold allow us to obtain the THz-absorptive material, which may be effectively used as a 3D-printing filament.
Luo, Sida; Liu, Tao
2014-06-25
A graphite nanoplatelet (GNP) thin film enabled 1D fiber sensor (GNP-FibSen) was fabricated by a continuous roll-to-roll spray coating process, characterized by scanning electron microscopy and Raman spectroscopy and evaluated by coupled electrical-mechanical tensile testing. The neat GNP-FibSen sensor shows very high gauge sensitivity with a gauge factor of ∼17. By embedding the sensor in fiberglass prepreg laminate parts, the dual functionalities of the GNP-FibSen sensor were demonstrated. In the manufacturing process, the resistance change of the embedded sensor provides valuable local resin curing information. After the manufacturing process, the same sensor is able to map the strain/stress states and detect the failure of the host composite. The superior durability of the embedded GNP-FibSen sensor has been demonstrated through 10,000 cycles of coupled electromechanical tests.
Yokaribas, Volkan; Schneider, Daniel S.; Friebertshäuser, Philipp; Lemme, Max C.; Fritzen, Claus-Peter
2017-01-01
The two-dimensional material graphene promises a broad variety of sensing activities. Based on its low weight and high versatility, the sensor density can significantly be increased on a structure, which can improve reliability and reduce fluctuation in damage detection strategies such as structural health monitoring (SHM). Moreover; it initializes the basis of structure–sensor fusion towards self-sensing structures. Strain gauges are extensively used sensors in scientific and industrial applications. In this work, sensing in small strain fields (from −0.1% up to 0.1%) with regard to structural dynamics of a mechanical structure is presented with sensitivities comparable to bulk materials by measuring the inherent piezoresistive effect of graphene grown by chemical vapor deposition (CVD) with a very high aspect ratio of approximately 4.86 × 108. It is demonstrated that the increasing number of graphene layers with CVD graphene plays a key role in reproducible strain gauge application since defects of individual layers may become less important in the current path. This may lead to a more stable response and, thus, resulting in a lower scattering.. Further results demonstrate the piezoresistive effect in a network consisting of liquid exfoliated graphene nanoplatelets (GNP), which result in even higher strain sensitivity and reproducibility. A model-assisted approach provides the main parameters to find an optimum of sensitivity and reproducibility of GNP films. The fabricated GNP strain gauges show a minimal deviation in PRE effect with a GF of approximately 5.6 and predict a linear electromechanical behaviour up to 1% strain. Spray deposition is used to develop a low-cost and scalable manufacturing process for GNP strain gauges. In this context, the challenge of reproducible and reliable manufacturing and operating must be overcome. The developed sensors exhibit strain gauges by considering the significant importance of reproducible sensor performances and open the path for graphene strain gauges for potential usages in science and industry. PMID:29258260
Selective Targeting of Brain Tumors with Gold Nanoparticle-Induced Radiosensitization
Joh, Daniel Y.; Sun, Lova; Stangl, Melissa; Al Zaki, Ajlan; Murty, Surya; Santoiemma, Phillip P.; Davis, James J.; Baumann, Brian C.; Alonso-Basanta, Michelle; Bhang, Dongha; Kao, Gary D.; Tsourkas, Andrew; Dorsey, Jay F.
2013-01-01
Successful treatment of brain tumors such as glioblastoma multiforme (GBM) is limited in large part by the cumulative dose of Radiation Therapy (RT) that can be safely given and the blood-brain barrier (BBB), which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs). GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ∼1.3). Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature. PMID:23638079
Chakraborty, Madhurima; Paul, Somnath; Mitra, Ishani; Bardhan, Munmun; Bose, Mridul; Saha, Abhijit; Ganguly, Tapan
2018-01-01
The nature of interactions between heme protein human hemoglobin (HHb) and gold nanoparticles of two different morphologies that is GNP (spherical) and GNS (star-shaped) have been investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, resonance light scattering (RLS), time resolved fluorescence, FT-IR, and circular dichroism (CD) techniques under physiological condition of pH ~7 at ambient and different temperatures. Analysis of the steady state fluorescence quenching of HHb in aqueous solution in the presence of GNP and GNS suggests that the nature of the quenching is of static type. The static nature of the quenching is also confirmed from time resolved data. The static type of quenching also indicates the possibility of formation of ground state complex for both HHb-GNP and HHb-GNS systems. From the measurements of Stern-Volmer (SV) constants K SV and binding constants, K A and number of binding sites it appears that HHb forms stronger binding with GNP relative to GNS. Analysis of the thermodynamic parameters indicates that the formation of HHb-GNP and HHb-GNS complexes are spontaneous molecular interaction processes (∆G<0). In both cases hydrogen bonding and van der Waals interactions play a dominant role (∆H<0, ∆S<0). Synchronous fluorescence spectroscopy further reveals that the ground state complex formations of HHb-GNP and HHb-GNS preferably occur by binding with the amino acid tyrosine through hydrogen bonding interactions. Moreover the α-helicity contents of the proteins as obtained from the circular dichroism (CD) spectra appears to be marginally reduced by increasing concentrations of GNP and GNS and the α-helical structures of HHb retain its identity as native secondary structure in spite of complex formations with GNP or GNS. These findings demonstrate the efficiency of biomedical applications of GNP and GNS nanoparticles as well as in elucidating their mechanisms of action as drugs or drug delivery systems in human. Copyright © 2017 Elsevier B.V. All rights reserved.
Combinatorial Statistics on Trees and Networks
2010-09-29
interaction graph is drawn from the Erdos- Renyi , G(n,p), where each edge is present independently with probability p. For this model we establish a double...special interest is the behavior of Gibbs sampling on the Erdos- Renyi random graph G{n, d/n), where each edge is chosen independently with...which have no counterparts in the coloring setting. Our proof presented here exploits in novel ways the local treelike structure of Erdos- Renyi
NASA Astrophysics Data System (ADS)
Chung, Yongjin; Ahn, Yeonjoo; Kim, Do-Heyoung; Kwon, Yongchai
2017-01-01
A new enzyme catalyst is formed by fabricating gold nano particle (GNP)-glucose oxidase (GOx) clusters that are then attached to polyethyleneimine (PEI) and carbon nanotube (CNT) with cross-linkable terephthalaldehyde (TPA) (TPA/[CNT/PEI/GOx-GNP]). Especially, amide bonds belonging to TPA play an anchor role for incorporating rigid bonding among GNP, GOx and CNT/PEI, while middle size GNP is well bonded with thiol group of GOx to form strong GNP-GOx cluster. Those bonds are identified by chemical and electrochemical characterizations like XPS and cyclic voltammogram. The anchording effect of amide bonds induces fast electron transfer and strong chemical bonding, resulting in enhancements in (i) catalytic activity, (ii) amount of immobilized GOx and (ii) performance of enzymatic biofuel cell (EBC) including the catalyst. Regarding the catalytic activity, the TPA/[CNT/PEI/GOx-GNP] produces high electron transfer rate constant (6 s-1), high glucose sensitivity (68 μA mM-1 cm-2), high maximum current density (113 μA cm-2), low charge transfer resistance (17.0 Ω cm2) and long-lasting durability while its chemical structure is characterized by XPS confirming large portion of amide bond. In EBC measurement, it has high maximum power density (0.94 mW cm-2) compatible with catalytic acitivity measurements.
National Defense Budget Estimates for FY 1999
1998-03-01
National Product (GNP) to the Gross Domestic Product (GDP). Both GNP and GDP measure output at market prices, but in a slightly different manner. GNP...measures the market value of all goods and services produced during a particular time period by U.S. individuals, businesses and government; it...residents of the rest of the world. GDP measures the market value of all goods and services produced during a particular time period by individuals
Trend time-series modeling and forecasting with neural networks.
Qi, Min; Zhang, G Peter
2008-05-01
Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.
Prélaud, Ana Rostaher; Fuchs, Sebastian; Weber, Karin; Winter, Gerhard; Coester, Conrad; Mueller, Ralf S
2013-10-01
Cytosine-phosphate-guanine (CpG) oligodeoxynucleotides offer a novel promising immunotherapeutic approach for atopic dermatitis (AD) both in humans and animals. Gelatin nanoparticles (GNP) enhance and prolong CpG-associated immunomodulatory effects and minimize adverse effects both in vitro and in vivo. Information about the effects of this combination in dogs is lacking. The aim of this study was to evaluate immunological effects of CpG coupled to GNP on canine peripheral blood mononuclear cells (PBMCs) in vitro. Eight dogs with AD, diagnosed by standard criteria and with a concurrent immediate hypersensitivity to house dust mites were included. Control samples were taken from eight healthy, age-matched control dogs without history or evidence of cutaneous or systemic illness. Peripheral blood mononuclear cells of healthy and allergic dogs were incubated with CpG-GNP and the uptake of CpG-GNP was demonstrated using confocal laser scanning microscopy. Cell culture supernatant concentrations of interferon gamma (IFN-γ), interleukin (IL)-4, IL-6 and IL-10 were measured by Canine Cytokine Milliplex. No significant changes in IFN-γ and IL-4 were found when comparing PBMCs incubated with CpG and CpG-GNP with the negative controls in atopic and healthy dogs. Interleukin-6 was not detected in any of the groups. However, a statistically significant increase in IL-10 concentration was found after 24 h stimulation with CpG-GNP compared with CpG alone both in atopic and healthy dogs. As IL-10 is considered an immunosuppressive cytokine playing a key role in peripheral tolerance; the reported CpG-GNP formulation could be a new approach in allergy treatment. © 2013 ESVD and ACVD.
NASA Astrophysics Data System (ADS)
Balaraman Yadhukulakrishnan, Govindaraajan
Scope and Method of Study: Space vehicles re-entering the earth's atmosphere experience very high temperatures due to aerodynamic heating. Ultra-high temperature ceramics (UHTC) with melting point higher than 3200°C are promising materials for thermal protection systems of such space vehicles re-entering the earth's atmosphere. Among several UHTC systems ZrB2 based ceramic composites are particularly important for thermal protection systems due to their better mechanical and thermoelectric properties and high oxidation resistance. In this study spark plasma sintering of SiC, carbon nanotubes (CNT) and graphene nano platelets (GNP) reinforced ZrB2 ultra-high temperature ceramic matrix composites is reported. Findings and Conclusions: Systematic investigations on the effect of reinforcement type (SiC, CNTs and GNP) and content (10-40 vol.% SiC, 2-6 vol.% CNTs and 2-6 vol.% GNP) on densification behavior, microstructure development, and mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness) are reported. With the similar SPS parameters near-full densification (>99% relative density) was achieved with 10-40 vol.% SiC, 4-6 vol.% CNT reinforced composites. Highly dense composites were obtained in 4-6 vol.% GNP reinforced composites. The SiC, CNT and GNP reinforcement improved the indentation fracture toughness of the composites through a range of toughening mechanisms, including particle shearing, crack deflection at the particle-matrix interface, and grain pull-outs for ZrB2-SiC composites, CNT pull-outs and crack deflection in ZrB2-CNT composites and crack deflection, crack bridging and GNP sheet pull-out for ZrB2 -GNP composites.
NASA Astrophysics Data System (ADS)
Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki
2016-10-01
Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.
Nosratabadi, Reza; Rastin, Maryam; Sankian, Mojtaba; Haghmorad, Dariush; Mahmoudi, Mahmoud
2016-10-01
Hyperforin an herbal compound, is commonly used in traditional medicine due to its anti-inflammatory activities. The aim of this study was to use a hyperforin loaded gold nanoparticle (Hyp-GNP) in the treatment of experimental autoimmune encephalomyelitis (EAE) an animal model of multiple sclerosis (MS). Hyp-GNP and hyperforin significantly reduced clinical severity of EAE, which was accompanied by a decrease in the number of inflammatory cell infiltration in the spinal cord. Additionally, treatment with Hyp-GNP significantly inhibited disease-associated cytokines as well as an increase in the anti-inflammatory cytokines in comparison to all groups including the free-hyp group. Furthermore, hyperforin and Hyp-GNP inhibited the differentiation of Th1 and Th17 cells while promoting Treg and Th2 cell differentiation via regulating their master transcription factors. The current study demonstrated the although, free-hyp improved clinical and laboratory data Hyp-GNP is significantly more efficient than free hyperforin in the treatment of EAE. Copyright © 2016 Elsevier Inc. All rights reserved.
Fluorescence Manipulation by Gold Nanoparticles: From Complete Quenching to Extensive Enhancement
2011-01-01
Background When a fluorophore is placed in the vicinity of a metal nanoparticle possessing a strong plasmon field, its fluorescence emission may change extensively. Our study is to better understand this phenomenon and predict the extent of quenching and/or enhancement of fluorescence, to beneficially utilize it in molecular sensing/imaging. Results Plasmon field intensities on/around gold nanoparticles (GNPs) with various diameters were theoretically computed with respect to the distance from the GNP surface. The field intensity decreased rapidly with the distance from the surface and the rate of decrease was greater for the particle with a smaller diameter. Using the plasmon field strength obtained, the level of fluorescence alternation by the field was theoretically estimated. For experimental studies, 10 nm GNPs were coated with polymer layer(s) of known thicknesses. Cypate, a near infrared fluorophore, was placed on the outermost layer of the polymer coated GNPs, artificially separated from the GNP at known distances, and its fluorescence levels were observed. The fluorescence of Cypate on the particle surface was quenched almost completely and, at approximately 5 nm from the surface, it was enhanced ~17 times. The level decreased thereafter. Theoretically computed fluorescence levels of the Cypate placed at various distances from a 10 nm GNP were compared with the experimental data. The trend of the resulting fluorescence was similar. The experimental results, however, showed greater enhancement than the theoretical estimates, in general. The distance from the GNP surface that showed the maximum enhancement in the experiment was greater than the one theoretically predicted, probably due to the difference in the two systems. Conclusions Factors affecting the fluorescence of a fluorophore placed near a GNP are the GNP size, coating material on GNP, wavelengths of the incident light and emitted light and intrinsic quantum yield of the fluorophore. Experimentally, we were able to quench and enhance the fluorescence of Cypate, by changing the distance between the fluorophore and GNP. This ability of artificially controlling fluorescence can be beneficially used in developing contrast agents for highly sensitive and specific optical sensing and imaging. PMID:21569249
1986-05-01
In 1985, the population of the Democratic People's Republic of Korea (North Korea) stood at 20 million, with an annual growth rate of 2.3%. The infant mortality rate was 30/1000 live births and life expectancy was 66 years. The gross national product (GNP) was US$23 billion in 1984, with a per capita GNP of $1175. Both North Korea's labor force and natural resources have been concentrated in recent years on an effort to achieve rapid economic development. During the early 1970s, a large-scale modernization program involving the importation of Western technology, primarily in the heavy industiral sectors of the economy, was attempted and resulted in a massive foreign debt. North Korea has a strongly centralized government under the control of the communist Korean Workers' Party. Literacy in the country is at the 99% level. Medical treatment is free. There is 1 physician/600 population and 1 hospital bed/350 inhabitants.
Annual Defense Department Report FY 1973
1972-02-22
program of combatting Sickle- Cell Anemia. Finally, as we approach an all-volunteer force we will continually assess our recruiting and retention programs...GNP devoted to Defense continues to decline -- from 7.0% in FY 1972 to 6.4% in FY 1973. This is a 22 year low. 59 We also are requesting a suplemental ...complement Total Force Planning. Some of these initiatives will fall in areas where the U.S. bears the primary responsibility, while others stem from
U. S. Energy and Economic Growth, 1975--2010
DOE R&D Accomplishments Database
Allen, E. L.; Cooper, C. L.; Edmonds, F. C.; Edmonds, J. A.; Reister, D. B.; Weinberg, A. M.; Whittle, C. E.; Zelby, L. W.
1976-09-01
This study projects economic growth (GNP) and energy demand for the U.S. to the year 2010. The main finding is that both GNP and total energy demand are likely to grow significantly more slowly than has been assumed in most analyses of energy policy. Projections of energy, GNP, and electricity (total and per capita) are summarized, with electricity demand expected to grow more rapidly than total energy demand. Two scenarios designated ''high'' and ''low'' were developed in this study. However, even the ''high'' scenario, 126 quads (q; 1 q equals 10/sup 15/ Btu) in 2000, is much lower than most previous estimates. It is felt that this raises serious questions about fundamental energy and energy R and D policies which, generally, have been based on perceptions of more lavish energy futures. Although the aggregate demands and GNP are projected to increase rather modestly, the energy demands per capita and GNP per capita increase at rates comparable to or even higher than historic rates. The authors believe that the projections developed in this study represent a logical culmination of many trends toward lower growth. These trends have not yet been factored into the older energy projections upon which so much energy policy is based.
A Management Analysis and Systems Model of Department of Defense Acquisition Structure and Policy
1988-01-01
Production Cost 253 0 104. Structure for Capacity Utilized Effect on Production Cost 254 105. Actual vs Model GNP (1960-1985) 265 106. Actual vs Model Social...Spending (1960-1985) 266 107. Actual vs Model Defense Spending (1960-1985) 267 108. Actual vs Model Soviet Defense Expenditures 268 109. Comparison of...Actual GNP a. 800 z 0 600 400 " I I 50 60 70 80 90 Year Figure 105. Actual vs Model GNP (1960-1985) fact that the model did not generate real
Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization
NASA Astrophysics Data System (ADS)
Koger, B.; Kirkby, C.
2017-11-01
One of the main appeals of using gold nanoparticles (GNPs) as radiosensitizers is that their surface coatings can be altered to manipulate their pharmacokinetic properties. However, Monte Carlo studies of GNP dosimetry tend to neglect these coatings, potentially changing the dosimetric results. This study quantifies the dosimetric effects of including a polyethylene glycol (PEG) surface coating on GNPs over both nanoscopic and microscopic ranges. Two dosimetric scales were explored using PENELOPE Monte Carlo simulations. In microscopic simulations, 500-1000 GNPs, with and without coatings, were placed in cavities of side lengths 0.8-4 µm, and the reduction of dose deposited to surrounding medium within these volumes due to the coating was quantified. Including PEG surface coatings of up to 20 nm thickness resulted in reductions of up to 7.5%, 4.0%, and 2.0% for GNP diameters of 10, 20, and 50 nm, respectively. Nanoscopic simulations observed the dose falloff in the first 500 nm surrounding a single GNP both with and without surface coatings of various thicknesses. Over the first 500 nm surrounding a single GNP, the presence of a PEG surface coating reduced dose by 5-26%, 8-28%, 8-30%, and 8-34% for 2, 10, 20, and 50 nm diameter GNPs, respectively, for various energies and coating thicknesses. Reductions in dose enhancement due to the inclusion of a GNP surface coating are non-negligible and should be taken into consideration when investigating GNP dose enhancement. Further studies should be carried out to investigate the biological effects of these coatings.
Development of Graphene Nanoplatelet-Reinforced AZ91 Magnesium Alloy by Solidification Processing
NASA Astrophysics Data System (ADS)
Kandemir, Sinan
2018-04-01
It is a challenging task to effectively incorporate graphene nanoplatelets (GNPs) which have recently emerged as potential reinforcement for strengthening metals into magnesium-based matrices by conventional solidification processes due to their large surface areas and poor wettability. A solidification processing which combines mechanical stirring and ultrasonic dispersion of reinforcements in liquid matrix was employed to develop AZ91 magnesium alloy matrix composites reinforced with 0.25 and 0.5 wt.% GNPs. The microstructural studies conducted with scanning and transmission electron microscopes revealed that fairly uniform distribution and dispersion of GNPs through the matrix were achieved due to effective combination of mechanical and ultrasonic stirring. The GNPs embedded into the magnesium matrix led to significant enhancement in the hardness, tensile strength and ductility of the composites compared to those of unreinforced AZ91 alloy. The strength enhancement was predominantly attributed to the grain refinement by the GNP addition and dislocation generation strengthening due to the coefficient of thermal expansion mismatch between the matrix and reinforcement. The improved ductility was attributed to the refinement of β eutectics by transforming from lamellar to the divorced eutectics due to the GNP additions. In addition, the strengthening efficiency of the composite with 0.25 wt.% GNP was found to be higher than those of the composite with 0.5 wt.% GNP as the agglomeration tendency of GNPs is increased with increasing GNP content. These results were compared with those of the GNP-reinforced magnesium composites reported in the literature, indicating the potential of the process introduced in this study in terms of fabricating light and high-performance metal matrix composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, Ananta R., E-mail: aa8381@gmail.com; Rusakova, Irene; Chu, Wei-Kan
Polymer-matrix nanocomposites based on Poly(lactic-co-glycolic) acid (PLGA) and Graphene platelets (GNPs) were studied. GNPs, nanomaterials with a 2D flat surface, were chosen with or without chemical modification in PLGA/GNP nanocomposites and their microstructure, thermal property, and their compatibility as scaffolds for cell growth were investigated. PLGA/GNP nanocomposites (0, 1, and 5 wt. % of GNPs) were prepared using a solution based technique. Transmission electron microscopy, X-ray diffraction, Differential scanning calorimeter, and Thermogravimetric analyzer were used to analyze morphology and thermal properties. This work demonstrated the role of GNPs flat surface to provide a favorable platform resulting in an enhanced PLGA crystallization. Functionalizedmore » GNPs suppress both the thermal stability and the crystallization of PLGA. Finally, to determine the potential usefulness of these scaffolds for biomedical applications, mammalian cells were cultured on various PLGA/GNP nanocomposites (0, 1, and 5 wt. % GNPs). 1 wt. % PLGA/GNP nanocomposites showed better biocompatibility for cell growth with/without graphenes functionalization compared to pure PLGA and 5 wt. % PLGA/GNP. The function of GNPs in PLGA/GNPs (1 wt. %) composites is to provide a stage for PLGA crystallization where cell growth is favored. These results provide strong evidence for a new class of materials that could be important for biomedical applications.« less
Razzak, Rene; Zhou, Joe; Yang, XiaoHong; Pervez, Nadim; Bédard, Eric Lr; Moore, Ronald B; Shaw, Andrew; Amanie, John; Roa, Wilson H
2013-06-01
Gold nanoparticles (GNPs) have attracted significant attention in the treatment of cancer due to their potential as novel radiation enhancers, particularly when functionalized with various targeting ligands. The aim of this study was to assess the biodistribution and pharmacokinetic characteristics of a novel choline-bound GNP (choline-GNP) stabilized with polyethelenimine (PEI). Choline bound to 27 nm diameter GNPs was characterized using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Toxicity of choline-GNPs was examined on DU-145 prostate cancer cells using an MTT assay. Using balb/c mice bearing flank DU-145 prostate tumors, choline-GNPs bio-distribution was measured using inductively coupled mass spectroscopy (ICP-MS). Blood, heart, lung, liver, spleen, brain, kidney and tumor gold content were examined at multiple time points over a 24-hour period after tail vein injection. An MTT assay using DU-145 prostate cancer cells yielded a 95% cell viability 72 hours after choline-GNP administration. The tumor GNP area under the concentration-time curve during the first 4 hours (AUC0-4) was 2.2 µg/ml h, representing 13% of the circulating blood GNP concentration over the same time period. The maximum intra-tumor GNP concentration observed was 1.4% of the injected dose per gram of tumor tissue (%ID/g) one hour post injection. GNPs functionalized with choline demonstrates a viable future nanoparticle platform with increased intra-tumor uptake as compared to unconjugated GNPs. Decreased intra-hepatic accumulation appears to be the reason for the improved systemic bioavailability. The next logical translational investigation will incorporate external beam radiation with the observed maximum intra-tumor uptake.
Energy optimization in gold nanoparticle enhanced radiation therapy.
Sung, Wonmo; Schuemann, Jan
2018-06-25
Gold nanoparticles (GNPs) have been demonstrated as radiation dose enhancing agents. Kilovoltage external photon beams have been shown to yield the largest enhancement due to the high interaction probability with gold. While orthovoltage irradiations are feasible and promising, they suffer from a reduced tissue penetrating power. This study quantifies the effect of varying photon beam energies on various beam arrangements, body, tumor, and cellular GNP uptake geometries. Cell survival was modeled based on our previously developed GNP-local effect model with radial doses calculated using the TOPAS-nBio Monte Carlo code. Cell survival curves calculated for tumor sites with GNPs were used to calculate the relative biological effectiveness (RBE)-weighted dose. In order to evaluate the plan quality, the ratio of the mean dose between the tumor and normal tissue for 50-250 kVp beams with GNPs was compared to the standard of care using 6 MV photon beams without GNPs for breast and brain tumors. For breast using a single photon beam, kV + GNP was found to yield up to 2.73 times higher mean RBE-weighted dose to the tumor than two tangential megavoltage beams while delivering the same dose to healthy tissue. For irradiation of brain tumors using multiple photon beams, the GNP dose enhancement was found to be effective for energies above 50 keV. A small tumor at shallow depths was found to be the most effective treatment conditions for GNP enhanced radiation therapy. GNP uptake distributions in the cell (with or without nuclear uptake) and the beam arrangement were found to be important factors in determining the optimal photon beam energy.
Wu, Yuan; Wang, Yun; Mi, Xue-Fei; Shan, Jun-Xiang; Li, Xin-Min; Xu, Jian-Long; Lin, Hong-Xuan
2016-10-01
Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem. However, little is known about the crosstalk among cytokinin and GA regulators together with KNOX proteins and how KNOX-mediated dynamic balancing of hormonal activity functions. Through map-based cloning of QTLs, we cloned a GA biosynthesis gene, Grain Number per Panicle1 (GNP1), which encodes rice GA20ox1. The grain number and yield of NIL-GNP1TQ were significantly higher than those of isogenic control (Lemont). Sequence variations in its promoter region increased the levels of GNP1 transcripts, which were enriched in the apical regions of inflorescence meristems in NIL-GNP1TQ. We propose that cytokinin activity increased due to a KNOX-mediated transcriptional feedback loop resulting from the higher GNP1 transcript levels, in turn leading to increased expression of the GA catabolism genes GA2oxs and reduced GA1 and GA3 accumulation. This rebalancing process increased cytokinin activity, thereby increasing grain number and grain yield in rice. These findings uncover important, novel roles of GAs in rice florescence meristem development and provide new insights into the crosstalk between cytokinin and GA underlying development process.
Sahu, Abhishek; Hwang, Youngmin; Vilos, Cristian; Lim, Jong-Min; Kim, Sunghyun; Choi, Won Il; Tae, Giyoong
2018-05-22
The calcium (Ca2+) ion concentration in the blood serum is tightly regulated, and any abnormalities in the level of serum calcium ions are associated with many potentially dangerous diseases. Thus, monitoring of the Ca2+ ion concentration in the blood serum is of fundamental importance. Gold nanoparticle (GNP)-based colorimetric biosensors have enormous potential in clinical diagnostic applications due to their simplicity, versatility, and unique optical properties. In this study, we have developed an alendronate functionalized gold nanoparticle (GNP-ALD) system for the measurement of Ca2+ ion concentration in biological samples. The GNP-ALD system showed higher sensitivity towards the Ca2+ ion compared to adenosine diphosphate (ADP) or adenosine triphosphate (ATP). The strong interaction between the Ca2+ ion and ALD at the GNP/solution interface resulted in significant aggregation of the ALD conjugated GNPs, and induced a color change of the solution from red to blue, which could be visually observed with the naked eye. The interaction between the Ca2+ ion and GNP-ALD was characterized by UV-visible spectroscopy, transmission electron microscopy (TEM) imaging, and dynamic light scattering (DLS) analysis. Under the optimized conditions, the lower limit of Ca2+ ion detection using this method was found to be 25 μM and a linear response range from 25 μM to 300 μM Ca2+ ions was obtained with excellent discrimination against other metal ions. The GNP-ALD nanoprobe could successfully determine the ionized Ca2+ concentration in various serum samples and the results were validated using a commercial calcium assay kit. Moreover, as a practical application, we demonstrated the utility of this nanoprobe for the detection of cancer-associated hypercalcemia in a mouse model.
Modelling the role of national system of innovation in economical differentiation
NASA Astrophysics Data System (ADS)
Ruiz, Ricardo M.; Albuquerque, Eduardo; Ribeiro, Leonardo C.; Bernardes, Américo T.
2005-07-01
Nowadays it is well accepted that science and technology has a fundamental role in the economic development (GNP per capita) of any country. Aiming to study this role, we introduce a model that creates an artificial world economy that is a network of countries. Each country has its own national system of innovation (represented by a technological parameter). The interactions among the countries are given by functions that connect their prices, demands and incomes. Starting from random values, the artificial world economy self-organize itself and create hierarchies of countries.
NASA Technical Reports Server (NTRS)
Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite while the effect on the axial properties is shown to be insignificant.
NASA Technical Reports Server (NTRS)
Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
NASA Technical Reports Server (NTRS)
Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering
NASA Astrophysics Data System (ADS)
Chen, Binling; Berretta, Silvia; Evans, Ken; Smith, Kaylie; Ghita, Oana
2018-01-01
This paper proposes two methods of preparation of graphene/PEEK powders for Laser Sintering (LS) and investigates their behaviour in relation to their microstructure and their properties. Thin composite films were fabricated in an attempt to replicate the thin layer formation of the powder bed process. Both methods of composite powder preparation (wet and dry) led to enhanced mechanical performance of the composite films at 0.1 and 0.5 wt% graphene nano-platelets (GNP) concentrations. The TEM images show that the GNP act as a nucleation point in crystallisation of PEEK, being at the centre of the spherulites. The hot stage microscopy reveals a 20 s delay in the onset of GNP/PEEK nanocomposite coalescence in comparison with plain PEEK. This is a very important observation for laser sintering, as it will influence the build strategy and specific parameters (e.g. time between layers deposition, multiple exposures). The excellent electrical conductivity properties of graphene were noticeable in the nanocomposite films at concentrations above 1 wt% GNP.
Electrochemical Grafting of Graphene Nano Platelets with Aryl Diazonium Salts.
Qiu, Zhipeng; Yu, Jun; Yan, Peng; Wang, Zhijie; Wan, Qijin; Yang, Nianjun
2016-10-26
To vary interfacial properties, electrochemical grafting of graphene nano platelets (GNP) with 3,5-dichlorophenyl diazonium tetrafluoroborate (aryl-Cl) and 4-nitrobenzene diazonium tetrafluoroborate (aryl-NO 2 ) was realized in a potentiodynamic mode. The covalently bonded aryl layers on GNP were characterized using atomic force microscopy and X-ray photoelectron spectroscopy. Electrochemical conversion of aryl-NO 2 into aryl-NH 2 was conducted. The voltammetric and impedance behavior of negatively and positively charged redox probes (Fe(CN) 6 3-/4- and Ru(NH 3 ) 6 2+/3+ ) on three kinds of aryl layers grafted on GNP reveal that their interfacial properties are determined by the charge states of redox probes and reactive terminal groups (-Cl, -NO 2 , -NH 2 ) in aryl layers. On aryl-Cl and aryl-NH 2 garted GNP, selective and sensitive monitoring of positively charged lead ions as well as negatively charged nitrite and sulfite ions was achieved, respectively. Such a grafting procedure is thus a perfect way to design and control interfacial properties of graphene.
Economic evaluation of seizures associated with solitary cysticercus granuloma.
Murthy, J M K; Rajshekar, G
2007-01-01
Patients with solitary cysticercus granuloma (SCG) develop acute symptomatic seizures because of the inflammatory response of the brain and the seizures are self-limiting. Thus seizure disorder associated with SCG provides a good model to study the total cost of illness (COI). COI of new-onset seizures associated with SCG was studied in 59 consecutive patients registered at the epilepsy clinic. Direct treatment-related costs and indirect costs, man-days lost and wages lost were evaluated. The relative cost was calculated as the percentage of per capita gross national product (GNP) at current prices for the year 1997-1998. The total COI, for treating seizure disorder associated with SCG per the period of CT resolution of the lesion per patient was INR 7273.7 (US$ 174.66, I$ 943.16) and he/she would be spending 50.9% of per capita GNP The direct cost per patient was INR 5916 (US$ 137.14, 41.4% of per capita GNP). If the patient had received only AEDs for the period of resolution of CT lesion, the cost would be INR 5702.48 (US$132.2, 40% of per capita GNP). The extra expenditure on albendazole and steroid was INR 213.72 (US$ 4.95), 3.6% of the total direct cost and 20.7% of the medication cost. Indirect cost (average wage loss) per patient was INR 1312.7 (US$ 30.42) and it accounted for 9% of per capita GNP. The one-time expenditure at present costs (adjusted for inflation) to the nation to treat all the prevalence cases is to the tune of INR 1.184 billion (US$ 2.605) and 0.0037% of GNP. This study suggests that seizure disorder associated with SCG, a potentially preventable disorder, is a good model to study the total COI. The one-time expenditure at present costs to the nation to treat all the prevalence cases of seizure disorder associated with SCG is to the tune of INR 1.184 billion (US$ 2.605 million) and 0.0037% of GNP.
Truong, Quang-Trung; Lee, Seon-Suk; Lee, Dai-Soo
2011-02-01
Graphite nanoplatelets (GNP) were prepared by microwave irradiation of natural graphites intercalated with ferric chloride in nitromethane (GIC). Intercalated structure of GIC was confirmed by X-ray diffraction patterns. SEM images of GIC after microwave irradiation showed the exfoliation of GIC, the formation of GNPs. Hybrid nanocomposites of bisphenol-A type epoxy resins filled with GNP and a conductive carbon black (CB) were prepared and rheological and electrical properties of the nanocomposites were investigated. Viscosity and electrical surface resistivity of the nanocomposites showed minima at certain mixtures of GNP and CB in the epoxy resins.
ERIC Educational Resources Information Center
Kleiner, Art
1993-01-01
Environmental economists propose that the value of clean air, land, and water should count as part of the national bottom line for gross national product (GNP) considerations. Discusses the harmful effects of the present national accounting system that omits environmental costs and the efforts of environmental economists to produce an accounting…
Zhao, Hang; Bai, Jinbo
2015-05-13
The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.
NASA Astrophysics Data System (ADS)
Gong, Jiawei
Among various photovoltaic technologies available in the emerging market, dye-sensitized solar cells (DSSCs) are deemed as an effective, competitive solution to the increasing demand for high-efficiency PV devices. To move towards full commercialization, challenges remain in further improvement of device stability as well as reduction of material and manufacturing costs. This study aims at rational synthesis and photovoltaic characterization of two nanostructured electrode materials (i.e. SnO2 nanofibers and activated graphene nanoplatelets) for use as photoanode and counter electrode in dye-sensitized solar cells. The main objective is to explore the favorable charge transport features of SnO2 nanofiber network and simultaneously replace the high-priced conventional electrocatalytic nanomaterials (e.g. Pt nanoparticles) used in existing counter electrode of DSSCs. To achieve this objective, a multiphysics model of electrode kinetics was developed to optimize various design parameters and cell configurations. The porous hollow SnO2 nanofibers were successfully synthesized via a facile route consisting of electrospinning precursor polymer nanofibers, followed by controlled carbonization. The novel SnO2/TiO2 composite photoanode materials carry advantages of SnO2 nanofiber network (e.g. nanostructural continuity, high electron mobility) and TiO2 nanoparticles (e.g. high specific area), and therefore show excellent photovoltaic properties including improved short-circuit current and fill factors. In addition, hydrothermally activated graphene nanoplatelets (aGNP) were used as a catalytic counter electrode material to substitute for conventionally used platinum nanoparticles. Improved catalytic performance of aGNP electrode was achieved through increased surface area and better control of morphology. Dye-sensitized solar cells using these aGNP electrodes had power conversion efficiencies comparable to those using platinum nanoparticles with I-/I3- redox mediators. Moreover, a multiphysics model at the device level was developed to predict the power output characteristics of DSSC using different electrode materials. The developed model was validated by the experimental data acquired from lab-fabricated DSSCs. Further, parametric simulation was conducted to analyze the effect of series resistance, shunt resistance, interfacial overpotential, as well as difference between the conduction band and formal redox potentials on device performance. This model correlates the maximum power output of DSSC devices to various design and operating parameters, and it also provides insight into the working principles of newly designed devices.
An implementation of discrete electron transport models for gold in the Geant4 simulation toolkit
NASA Astrophysics Data System (ADS)
Sakata, D.; Incerti, S.; Bordage, M. C.; Lampe, N.; Okada, S.; Emfietzoglou, D.; Kyriakou, I.; Murakami, K.; Sasaki, T.; Tran, H.; Guatelli, S.; Ivantchenko, V. N.
2016-12-01
Gold nanoparticle (GNP) boosted radiation therapy can enhance the biological effectiveness of radiation treatments by increasing the quantity of direct and indirect radiation-induced cellular damage. As the physical effects of GNP boosted radiotherapy occur across energy scales that descend down to 10 eV, Monte Carlo simulations require discrete physics models down to these very low energies in order to avoid underestimating the absorbed dose and secondary particle generation. Discrete physics models for electron transportation down to 10 eV have been implemented within the Geant4-DNA low energy extension of Geant4. Such models allow the investigation of GNP effects at the nanoscale. At low energies, the new models have better agreement with experimental data on the backscattering coefficient, and they show similar performance for transmission coefficient data as the Livermore and Penelope models already implemented in Geant4. These new models are applicable in simulations focussed towards estimating the relative biological effectiveness of radiation in GNP boosted radiotherapy applications with photon and electron radiation sources.
Surface modification of polyethylene/graphene composite using corona discharge
NASA Astrophysics Data System (ADS)
Popelka, Anton; Noorunnisa Khanam, P.; AlMaadeed, Mariam Ali
2018-03-01
Polyethylene/graphene composites are suitable for electromagnetic interference shielding applications and are often fabricated as sandwich structures. However, the hydrophobic character of these composites can lead to delamination. Corona treatment was used to enhance the surface hydrophilicity of composites prepared from linear low-density polyethylene (LLDPE) and graphene nanoplatelets (GNPs) with different content (2, 4, 6, and 8 wt.%). This enhancement of wettability also led to good adhesion properties. The presence of GNPs in LLDPE had a positive effect on the surface properties after corona treatment. The surface free energy of the LLDPE/GNP composites increased by almost 64.6% for 2 wt.% of GNPs in the LLDPE/GNP composite, while the surface free energy of neat LLDPE increased by only 38.1%. The best improvement in adhesion properties after corona treatment was observed for 2 wt.% of GNPs in the LLDPE/GNP composite, while peel resistance increased by 137.9%. Various analytical techniques and methods proved that the changes in the surface morphology and chemical composition of the LLDPE/GNP composite after this treatment resulted in an improvement of adhesion.
Marimon, José María; Freire, Javier; Salcines-Cuevas, David; Carmen Fariñas, M.; onzalez-Rico, Claudia; Marradi, Marco; Garcia, Isabel; Alkorta-Gurrutxaga, Mirian; San Nicolas-Gomez, Aida; Castañeda-Sampedro, Ana; Yañez-Diaz, Sonsoles; Penades, Soledad; Punzon, Carmen; Gomez-Roman, Javier; Rivera, Fernando; Fresno, Manuel; Alvarez-Dominguez, Carmen
2017-01-01
Clinical cases of neonatal listeriosis are associated with brain disease and fetal loss due to complications in early or late pregnancy, which suggests that microglial function is altered. This is believed to be the first study to link microglial apoptosis with neonatal listeriosis and listeriosis-associated brain disease, and to propose a new nanovaccine formulation that reverses all effects of listeriosis and confers Listeria monocytogenes (LM)-specific immunity. We examined clinical cases of neonatal listeriosis in 2013–2015 and defined two useful prognostic immune biomarkers to design listeriosis vaccines: high anti-GAPDH1-22 titres and tumor necrosis factor (TNF)/interleukin (IL)-6 ratios. Therefore, we developed a nanovaccine with gold glyco-nanoparticles conjugated to LM peptide 1-22 of GAPDH (Lmo2459), GNP-GAPDH1-22 nanovaccinesformulated with a pro-inflammatory Toll-like receptor 2/4-targeted adjuvant. Neonates born to non-vaccinated pregnant mice with listeriosis, showed brain and vascular diseases and significant microglial dysfunction by induction of TNF-α-mediated apoptosis. This programmed TNF-mediated suicide explains LM dissemination in brains and livers and blocks production of early pro-inflammatory cytokines such as IL-1β and interferon-α/β. In contrast, neonates born to GNP-GAPDH1–22-vaccinated mothers before LM infection, did not develop listeriosis or brain diseases and had functional microglia. In nanovaccinated mothers, immune responses shifted towards Th1/IL-12 pro-inflammatory cytokine profiles and high production of anti-GAPDH1–22 antibodies, suggesting good induction of LM-specific memory. PMID:28903312
Calderon-Gonzalez, Ricardo; Frande-Cabanes, Elisabet; Teran-Navarro, Hector; Marimon, José María; Freire, Javier; Salcines-Cuevas, David; Carmen Fariñas, M; Onzalez-Rico, Claudia; Marradi, Marco; Garcia, Isabel; Alkorta-Gurrutxaga, Mirian; San Nicolas-Gomez, Aida; Castañeda-Sampedro, Ana; Yañez-Diaz, Sonsoles; Penades, Soledad; Punzon, Carmen; Gomez-Roman, Javier; Rivera, Fernando; Fresno, Manuel; Alvarez-Dominguez, Carmen
2017-08-15
Clinical cases of neonatal listeriosis are associated with brain disease and fetal loss due to complications in early or late pregnancy, which suggests that microglial function is altered. This is believed to be the first study to link microglial apoptosis with neonatal listeriosis and listeriosis-associated brain disease, and to propose a new nanovaccine formulation that reverses all effects of listeriosis and confers Listeria monocytogenes (LM)-specific immunity. We examined clinical cases of neonatal listeriosis in 2013-2015 and defined two useful prognostic immune biomarkers to design listeriosis vaccines: high anti-GAPDH 1-22 titres and tumor necrosis factor (TNF)/interleukin (IL)-6 ratios. Therefore, we developed a nanovaccine with gold glyco-nanoparticles conjugated to LM peptide 1-22 of GAPDH (Lmo2459), GNP-GAPDH 1-22 nanovaccinesformulated with a pro-inflammatory Toll-like receptor 2/4-targeted adjuvant. Neonates born to non-vaccinated pregnant mice with listeriosis, showed brain and vascular diseases and significant microglial dysfunction by induction of TNF-α-mediated apoptosis. This programmed TNF-mediated suicide explains LM dissemination in brains and livers and blocks production of early pro-inflammatory cytokines such as IL-1β and interferon-α/β. In contrast, neonates born to GNP-GAPDH 1-22 -vaccinated mothers before LM infection, did not develop listeriosis or brain diseases and had functional microglia. In nanovaccinated mothers, immune responses shifted towards Th1/IL-12 pro-inflammatory cytokine profiles and high production of anti-GAPDH 1-22 antibodies, suggesting good induction of LM-specific memory.
Dinda, Enakshi; Rashid, Md Harunar; Biswas, Mrinmoy; Mandal, Tarun K
2010-11-16
We describe a general one-step facile method for depositing gold nanoparticle (GNP) thin films onto any type of substrates by the in situ reduction of AuCl(3) using a newly designed redox-active ionic liquid (IL), tetrabutylphosphonium citrate ([TBP][Ci]). Various substrates such as positively charged glass, negatively charged glass/quartz, neutral hydrophobic glass, polypropylene, polystyrene, plain paper, and cellophane paper are successfully coated with a thin film of GNPs. This IL ([TBP][Ci]) is prepared by the simple neutralization of tetrabutylphosphonium hydroxide with citric acid. We also demonstrate that the [TBP][Ci] ionic liquid can be successfully used to generate GNPs in an aqueous colloidal suspension in situ. The deposited GNP thin films on various surfaces are made up of mostly discrete spherical GNPs that are well distributed throughout the film, as confirmed by field-emission scanning electron microscopy. However, it seems that some GNPs are arranged to form arrays depending on the nature of surface. We also characterize these GNP thin films via UV-vis spectroscopy and X-ray diffractometry. The as-formed GNP thin films show excellent stability toward solvent washing. We demonstrate that the thin film of GNPs on a glass/quartz surface can be successfully used as a refractive index (RI) sensor for different polar and nonpolar organic solvents. The as-formed GNP thin films on different surfaces show excellent catalytic activity in the borohydride reduction of p-nitrophenol.
NASA Astrophysics Data System (ADS)
Chen, Yu-Shiun; Hung, Yao-Ching; Lin, Wei-Hsu; Huang, Guewha Steven
2010-05-01
To assess the ability of gold nanoparticles (GNPs) to act as a size-dependent carrier, a synthetic peptide resembling foot-and-mouth disease virus (FMDV) protein was conjugated to GNPs ranging from 2 to 50 nm in diameter (2, 5, 8, 12, 17, 37, and 50 nm). An extra cysteine was added to the C-terminus of the FMDV peptide (pFMDV) to ensure maximal conjugation to the GNPs, which have a high affinity for sulfhydryl groups. The resultant pFMDV-GNP conjugates were then injected into BALB/c mice. Immunization with pFMDV-keyhole limpet hemocyanin (pFMDV-KLH) conjugate was also performed as a control. Blood was obtained from the mice after 4, 6, 8, and 10 weeks and antibody titers against both pFMDV and the carriers were measured. For the pFMDV-GNP immunization, specific antibodies against the synthetic peptide were detected in the sera of mice injected with 2, 5, 8, 12, and 17 nm pFMDV-GNP conjugates. Maximal antibody binding was noted for GNPs of diameter 8-17 nm. The pFMDV-GNPs induced a three-fold increase in the antibody response compared to the response to pFMDV-KLH. However, sera from either immunized mouse group did not exhibit an antibody response to GNPs, while the sera from pFMDV-KLH-immunized mice presented high levels of binding activity against KLH. Additionally, the uptake of pFMDV-GNP in the spleen was examined by inductively coupled plasma mass spectroscopy (ICP-MS) and transmission electron microscopy (TEM). The quantity of GNPs that accumulated in the spleen correlated to the magnitude of the immune response induced by pFMDV-GNP. In conclusion, we demonstrated the size-dependent immunogenic properties of pFMDV-GNP conjugates. Furthermore, we established that GNPs ranging from 8 to 17 nm in diameter may be ideal for eliciting a focused antibody response against a synthetic pFMDV peptide.
Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies.
Jain, Suneil; Coulter, Jonathan A; Hounsell, Alan R; Butterworth, Karl T; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Dickson, Glenn R; Prise, Kevin M; Currell, Fred J; O'Sullivan, Joe M; Hirst, David G
2011-02-01
Gold nanoparticles (GNPs) have been shown to cause sensitization with kilovoltage (kV) radiation. Differences in the absorption coefficient between gold and soft tissue, as a function of photon energy, predict that maximum enhancement should occur in the kilovoltage (kV) range, with almost no enhancement at megavoltage (MV) energies. Recent studies have shown that GNPs are not biologically inert, causing oxidative stress and even cell death, suggesting a possible biological mechanism for sensitization. The purpose of this study was to assess GNP radiosensitization at clinically relevant MV X-ray energies. Cellular uptake, intracellular localization, and cytotoxicity of GNPs were assessed in normal L132, prostate cancer DU145, and breast cancer MDA-MB-231 cells. Radiosensitization was measured by clonogenic survival at kV and MV photon energies and MV electron energies. Intracellular DNA double-strand break (DSB) induction and DNA repair were determined and GNP chemosensitization was assessed using the radiomimetic agent bleomycin. GNP uptake occurred in all cell lines and was greatest in MDA-MB-231 cells with nanoparticles accumulating in cytoplasmic lysosomes. In MDA-MB-231 cells, radiation sensitizer enhancement ratios (SERs) of 1.41, 1.29, and 1.16 were achieved using 160 kVp, 6 MV, and 15 MV X-ray energies, respectively. No significant effect was observed in L132 or DU145 cells at kV or MV energies (SER 0.97-1.08). GNP exposure did not increase radiation-induced DSB formation or inhibit DNA repair; however, GNP chemosensitization was observed in MDA-MB-231 cells treated with bleomycin (SER 1.38). We have demonstrated radiosensitization in MDA-MB-231 cells at MV X-ray energies. The sensitization was cell-specific with comparable effects at kV and MV energies, no increase in DSB formation, and GNP chemopotentiation with bleomycin, suggesting a possible biological mechanism of radiosensitization. Copyright © 2011 Elsevier Inc. All rights reserved.
Robinson, J J; Wharrad, H
2001-05-01
The relationship between attendance at birth and maternal mortality rates: an exploration of United Nations' data sets including the ratios of physicians and nurses to population, GNP per capita and female literacy. This is the third and final paper drawing on data taken from United Nations (UN) data sets. The first paper examined the global distribution of health professionals (as measured by ratios of physicians and nurses to population), and its relationship to gross national product per capita (GNP) (Wharrad & Robinson 1999). The second paper explored the relationships between the global distribution of physicians and nurses, GNP, female literacy and the health outcome indicators of infant and under five mortality rates (IMR and u5MR) (Robinson & Wharrad 2000). In the present paper, the global distribution of health professionals is explored in relation to maternal mortality rates (MMRs). The proportion of births attended by medical and nonmedical staff defined as "attendance at birth by trained personnel" (physicians, nurses, midwives or primary health care workers trained in midwifery skills), is included as an additional independent variable in the regression analyses, together with the ratio of physicians and nurses to population, female literacy and GNP. To extend our earlier analyses by considering the relationships between the global distribution of health professionals (ratios of physicians and nurses to population, and the proportion of births attended by trained health personnel), GNP, female literacy and MMR.
An Analysis on a Negotiation Model Based on Multiagent Systems with Symbiotic Learning and Evolution
NASA Astrophysics Data System (ADS)
Hossain, Md. Tofazzal
This study explores an evolutionary analysis on a negotiation model based on Masbiole (Multiagent Systems with Symbiotic Learning and Evolution) which has been proposed as a new methodology of Multiagent Systems (MAS) based on symbiosis in the ecosystem. In Masbiole, agents evolve in consideration of not only their own benefits and losses, but also the benefits and losses of opponent agents. To aid effective application of Masbiole, we develop a competitive negotiation model where rigorous and advanced intelligent decision-making mechanisms are required for agents to achieve solutions. A Negotiation Protocol is devised aiming at developing a set of rules for agents' behavior during evolution. Simulations use a newly developed evolutionary computing technique, called Genetic Network Programming (GNP) which has the directed graph-type gene structure that can develop and design the required intelligent mechanisms for agents. In a typical scenario, competitive negotiation solutions are reached by concessions that are usually predetermined in the conventional MAS. In this model, however, not only concession is determined automatically by symbiotic evolution (making the system intelligent, automated, and efficient) but the solution also achieves Pareto optimal automatically.
With a dramatic rise in complexity, needs of nanotoxicology research go beyond simple forms of nanomaterials. This study compared the phototoxicity of nano-TiO2and graphene-TiO2 nanocomposite (GNP). GNP was synthesized based on a hydrothermal method, which simultaneously performe...
Quality of life: an international comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkinson, J.; Anderson, C.F.; Liu, B.C.
Dissatisfaction with gross national product (GNP) as a realistic yardstick for comparing the well-being of societies has led to a quality of life (QOL) concept which considers the environment in which people live. QOL includes both the economic and noneconomic factors affecting an individual's happiness. An international comparison of energy, GNP, and QOL in 50 countries considers five major categories (social, economic, health and education, environmental, and national vitality and security) and 12 subcategories. The study indicates that substantial increases in energy consumption will be needed to raise the living standards of developing countries. QOL appears to decline beyond amore » certain level of GNP, while continuing a direct relationship to per capita energy consumption and electricity production. 12 references. (DCK)« less
Effect of graphenenano-platelets on the mechanical properties of Mg/3wt%Al alloy-nanocomposite
NASA Astrophysics Data System (ADS)
Kumar, Pravir; Kujur, MilliSuchita; Mallick, Ashis; Sandar Tun, Khin; Gupta, Manoj
2018-04-01
The bulk Mg/3%Al/0.1%GNP alloy-nano composite was fabricated using powder metallurgy route assisted with microwave sintering and followed by hot extrusion. The microstructural and Raman spectroscopy studies were performed to characterize the graphene nano-platelet(GNP).EDX tests confirmed the presence and the homogeneous distribution of Al and graphene nano-platelets in the magnesium alloy-nanocomposite. The addition of 3 wt% Al and 0.1wt%GNP to the Mg changed Vicker hardness, ultimate tensile strength and failure strain by +46.15%,+17.6% and -5% respectively. The fabricated composite offers higher resistance to the local deformation than monolithic Mg and Mg/3%Al alloy, revealed by the load/unload-indentation depth curve.
Lin, Yuting; McMahon, Stephen J; Scarpelli, Matthew; Paganetti, Harald; Schuemann, Jan
2014-12-21
Gold nanoparticles (GNPs) have shown potential to be used as a radiosensitizer for radiation therapy. Despite extensive research activity to study GNP radiosensitization using photon beams, only a few studies have been carried out using proton beams. In this work Monte Carlo simulations were used to assess the dose enhancement of GNPs for proton therapy. The enhancement effect was compared between a clinical proton spectrum, a clinical 6 MV photon spectrum, and a kilovoltage photon source similar to those used in many radiobiology lab settings. We showed that the mechanism by which GNPs can lead to dose enhancements in radiation therapy differs when comparing photon and proton radiation. The GNP dose enhancement using protons can be up to 14 and is independent of proton energy, while the dose enhancement is highly dependent on the photon energy used. For the same amount of energy absorbed in the GNP, interactions with protons, kVp photons and MV photons produce similar doses within several nanometers of the GNP surface, and differences are below 15% for the first 10 nm. However, secondary electrons produced by kilovoltage photons have the longest range in water as compared to protons and MV photons, e.g. they cause a dose enhancement 20 times higher than the one caused by protons 10 μm away from the GNP surface. We conclude that GNPs have the potential to enhance radiation therapy depending on the type of radiation source. Proton therapy can be enhanced significantly only if the GNPs are in close proximity to the biological target.
NASA Astrophysics Data System (ADS)
Islam, Mohammad; Khalid, Yasir; Ahmad, Iftikhar; Almajid, Abdulhakim A.; Achour, Amine; Dunn, Theresa J.; Akram, Aftab; Anwar, Saqib
2018-04-01
Silicon carbide (SiC) nanoparticles (NP) and/or graphene nanoplatelets (GNP) were incorporated into the aluminum matrix through colloidal dispersion and mixing of the powders, followed by consolidation using a high-frequency induction heat sintering process. All the nanocomposite samples exhibited high densification (> 96 pct) with a maximum increase in Vickers microhardness by 92 pct relative to that of pure aluminum. The tribological properties of the samples were determined at the normal frictional forces of 10 and 50 N. At relatively low load of 10 N, the adhesive wear was found to be the predominant wear mechanism, whereas in the case of a 50 N normal load, there was significant contribution from abrasive wear possibly by hard SiC NP. From wear tests, the values for the coefficient of friction (COF) and the normalized wear rate were determined. The improvement in hardness and wear resistance may be attributed to multiple factors, including high relative density, uniform SiC and GNP dispersion in the aluminum matrix, grain refinement through GNP pinning, as well as inhibition of dislocation movement by SiC NP. The nanocomposite sample containing 10 SiC and 0.5 GNP (by wt pct) yielded the maximum wear resistance at 10 N normal load. Microstructural characterization of the nanocomposite surfaces and wear debris was performed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The synergistic effect of the GNP and SiC nanostructures accounts for superior wear resistance in the aluminum matrix nanocomposites.
NASA Astrophysics Data System (ADS)
Islam, Mohammad; Khalid, Yasir; Ahmad, Iftikhar; Almajid, Abdulhakim A.; Achour, Amine; Dunn, Theresa J.; Akram, Aftab; Anwar, Saqib
2018-07-01
Silicon carbide (SiC) nanoparticles (NP) and/or graphene nanoplatelets (GNP) were incorporated into the aluminum matrix through colloidal dispersion and mixing of the powders, followed by consolidation using a high-frequency induction heat sintering process. All the nanocomposite samples exhibited high densification (> 96 pct) with a maximum increase in Vickers microhardness by 92 pct relative to that of pure aluminum. The tribological properties of the samples were determined at the normal frictional forces of 10 and 50 N. At relatively low load of 10 N, the adhesive wear was found to be the predominant wear mechanism, whereas in the case of a 50 N normal load, there was significant contribution from abrasive wear possibly by hard SiC NP. From wear tests, the values for the coefficient of friction (COF) and the normalized wear rate were determined. The improvement in hardness and wear resistance may be attributed to multiple factors, including high relative density, uniform SiC and GNP dispersion in the aluminum matrix, grain refinement through GNP pinning, as well as inhibition of dislocation movement by SiC NP. The nanocomposite sample containing 10 SiC and 0.5 GNP (by wt pct) yielded the maximum wear resistance at 10 N normal load. Microstructural characterization of the nanocomposite surfaces and wear debris was performed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The synergistic effect of the GNP and SiC nanostructures accounts for superior wear resistance in the aluminum matrix nanocomposites.
Economic Evaluation of New Technologies in Higher Education. N.I.E. Report Phase 1, Volume 7 of 7.
ERIC Educational Resources Information Center
Heriot-Watt Univ., Edinburgh (Scotland). Esmee Fairbairn Economics Research Centre.
Part of a series of instructional packages for use in college level economics courses, this document contains nine lecture outlines on macroeconomics. The first section deals with basic macroeconomic concepts in terms of underlying microeconomic behavior, national income and product accounting, nominal and real GNP, actual and potential GNP, and…
Graphene Nanoplatelet Reinforced Tantalum Carbide
2015-08-27
testing showed an increase in thermal conductivity in GNP reinforced composites resulting in a reduction of peak sample surface temperature. This study...showed an increase in thermal conductivity in GNP reinforced composites resulting in a reduction of peak sample surface temperature. This study resulted...Wetting angle measurements are conducted to demonstrate the effectiveness of the PLC coating . Mechanical properties of the GrF-PLC hybrid are
Khamehchian, Sedigheh; Nikkhah, Maryam; Madani, Rasool; Hosseinkhani, Saman
2016-11-01
Functionalization of gold nanoparticles (GNPs) is suitable for many applications such as biomedical imaging, clinical diagnosis, and targeted delivery by conjugating cell-penetrating peptides (CPPs). Here, we investigated intracellular uptake of GNP conjugated to MCaUF1-9(Ala) , a CPP derived from maurocalcine (MCa) animal toxin, and compared it with TAT functionalized GNP. Peptide conjugated GNP was characterized using UV-Visible spectroscopy, dynamic light scattering, zeta potential, and transmission electron microscopy. Uptake of MCaUF1-9(Ala) and TAT functionalized GNPs was evaluated in three cell lines, HeLa, MDA-MB-231, and A431, using dark field imaging and atomic absorption spectroscopy. According to peptide sequences and type of cells different cell penetrating activity was observed. Peptide functionalized GNP had little effect on cell viability and respect to net charge difference between peptide, showed interesting selectivity against three cell types. Peptide conjugated to GNPs displayed higher uptake than bare GNPs in the all cell lines except HeLa cell with lowest internalization. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2693-2700, 2016. © 2016 Wiley Periodicals, Inc.
Strankowski, Michał; Korzeniewski, Piotr; Strankowska, Justyna; A S, Anu; Thomas, Sabu
2018-01-06
Polyurethane/graphene nanocomposites were synthesized using commercial thermoplastic polyurethane (TPU, Apilon 52DE55), and two types of graphene derivatives: graphene nanoplatelets (GNP) and reduced graphene oxide (RGO). Fourier Transformation Infrared Spectroscopy Fourier Transformation Infrared Spectroscopy (FTIR) spectroscopy, TEM, and SEM microscopy and XRD techniques were used to chemically and structurally characterize GNP and RGO nanofillers. The properties of the new TPU nanocomposite materials were studied using thermal analysis techniques (Dynamical Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TG)) to describe the influence of graphene nanofillers on polyurethane matrix. Our investigation describes the comparison of two types of graphene derivatives, commercial one (GNP) and synthesized (RGO) on thermoplastic polyurethanes. These nanofillers provides opportunities to achieve compatibility with the TPU matrix. The property enhancements are attributed commonly to high aspect ratio of graphene nanoplatelets and filler-polymer interactions at the interface. The obtained nanocomposites exhibit higher thermal and mechanical properties due to the good dispersion of both nanofillers into TPU matrix. It was found that the addition of 2 wt % of the nanofiller could lead to a significant reinforcement effect on the TPU matrix. Also, with high content of nanofiller (GNP and RGO), the Payne effect was observed.
Wang, Zhuang; Gao, Yucheng; Wang, Se; Fang, Hao; Xu, Defu; Zhang, Fan
2016-06-01
Knowledge of the interaction between graphene-based materials and low-molecular-weight organic acids (LOAs) is essential to understand fate and effects of graphene-based materials in the aquatic environment, but this interaction remains poorly elucidated. In this study, the effects of LOAs on the physicochemical properties of graphene nanoplatelets (GNPs) in an aqueous medium and on the GNP toxicity to algae were studied. The unicellular green alga Scenedesmus obliquus was exposed to GNP suspensions in the presence of benzoic acid or gallic acid at various concentrations. The GNPs had smaller hydrodynamic sizes and the GNP suspensions were more stable and had higher or lower surface zeta potentials in the presence of LOAs than when LOAs were not present. The toxic effects in S. obliquus cultures incubated with GNP suspensions containing LOAs were related to the LOA concentration, and the presence of LOAs caused three effects: stimulation, alleviation, and synergistic inhibition. The intensities of the effects mainly correlated with the LOA concentration, the extent of agglomeration, and particle-induced oxidative stress. The results indicate that the environmental fates and toxicities of GNPs are strongly affected by the binding of GNPs to LOAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Di; Li Yuhua; Wong, Molly D.
Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signalmore » radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.« less
Lightweight graphene nanoplatelet/boron carbide composite with high EMI shielding effectiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Yongqiang; Luo, Heng; Zhang, Haibin, E-mail: hbzhang@caep.cn, E-mail: pengshuming@caep.cn
2016-03-15
Lightweight graphene nanoplatelet (GNP)/boron carbide (B{sub 4}C) composites were prepared and the effect of GNPs loading on the electromagnetic interference (EMI) shielding effectiveness (SE) has been evaluated in the X-band frequency range. Results have shown that the EMI SE of GNP/B{sub 4}C composite increases with increasing the GNPs loading. An EMI SE as high as 37 ∼ 39 dB has been achieved in composite with 5 vol% GNPs. The high EMI SE is mainly attributed to the high electrical conductivity, high dielectric loss as well as multiple reflections by aligned GNPs inside the composite. The GNP/B{sub 4}C composite is demonstratedmore » to be promising candidate of high-temperature microwave EMI shielding material.« less
Anusuya, Sathiyanarayanan; Sathiyabama, Muthukrishnan
2015-01-01
The rhizome rot caused by Pythium aphanidermatum is one of the most devastating diseases of the turmeric crop. Fungicides are unable to control the rapidly evolving P. aphanidermatum and new control strategies are urgently needed. This study examined the effect of β-d-glucan nanoparticles (GNP) in turmeric plants under field condition by the foliar spray method. Enhanced plant growth, rhizome yield, and curcumin content demonstrate the positive effect of the GNP on turmeric plants. Rapid activation of various defense enzymes was also observed in leaves and rhizomes of treated plants. GNP-treated plants showed a decreased rot incidence. It may be possible that increased defense enzymes might have played a role in reducing the colonization of pathogen. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
AlMansour, S; Chin, J; Sajo, E
Purpose: Dual-function fiducials loaded with radiosensitizers, like gold nanoparticles (GNP), offer an innovative approach for ensuring geometric accuracy during image-guided radiotherapy (IGRT) and significantly increasing therapeutic efficacy due to controlled in-situ release of the radiosensitizers. This study retrospectively investigates the dosimetric benefit of using up to two such dual-function fiducial markers instead of traditional single function fiducials during IGRT. Methods: A computational code was developed to investigate the dosimetric benefit for 10 real patient tumor volumes of up to 6.5 cm diameter. The intra-tumoral space-time biodistribution of the GNP was modeled as in previous studies based on Fick’s second law.more » The corresponding dose-enhancement for each tumor voxel due to the GNP was also calculated for clinical 6MV beam configurations. Various loading concentrations (25–50 mg/g) were studied, as a function of GNP size, to determine potential for clinically significant dose enhancement. The time between initial implantation of dual-function fiducials to the beginning of radiotherapy was assumed to be 14 days as typical for many clinics. Results: A single dual-function fiducial could achieve at least a DEF of 1.2 for patients with tumors less than 1.4 cm diameter after 14 days. Replacing two single function fiducials with dual-function ones at the same locations achieved at least the required minimal DEF for tumors that are 2 cm diameter in 3 patients. The results also revealed dosimetrically better fiducial locations which could enable significant DEF when using one or two dual function fiducials. 2 nm sizes showed the most feasibility. Conclusion: The results highlight the potential of tumor sub-volume radiation boosting using GNP released from fiducials, and the ability to customize the DEF throughout the tumor by using two dual-function fiducials, varying the initial concentration and nanoparticle size. The results demonstrate potential for employing dual-function fiducials in the development of GNP-aided radiotherapy.« less
Jazayeri, M H; Amani, H; Pourfatollah, A A; Avan, A; Ferns, G A; Pazoki-Toroudi, H
2016-10-01
Prostate-specific antigen (PSA) is used to screen for prostate disease, although it has several limitations in its application as an organ-specific or cancer-specific marker. Furthermore, a highly specific/sensitive and/or label-free identification of PSA still remains a challenge in the diagnosis of prostate anomalies. We aimed to develop a gold nanoparticle (GNP)-conjugated anti-PSA antibody-based localized surface plasmon resonance (LSPR) as a novel approach to detect prostatic disease. A total of 25 nm colloidal gold particles were prepared followed by conjugation with anti-PSA pAb (GNPs-PSA pAb). LSPR was used to monitor the absorption changes of the aggregation of the particles. The size, shape and stability of the GNP-anti-PSA were evaluated by dynamic light scattering transmission electron microscopy (TEM) and zetasizer. The GNPs-conjugated PSA-pAb was successfully synthesized and subsequently characterized using ultraviolet absorption spectroscopy and TEM to determine the size distribution, crystallinity and stability of the particles (for example, stability of GNP: 443 mV). To increase the stability of the particles, we pegylated GNPs using an N-(3-dimethylaminopropyl)-N*-ethylcarbodiimide hydrochloride (EDC)/N-hydroxylsuccinimide (NHS) linker (for example, stability of GNP after pegylation: 272 mV). We found a significant increase in the absorbance and intensity of the particles with extinction peak at 545/2 nm, which was shifted by ~1 nm after conjugation. To illustrate the potential of the GNPs-PSA pAb to bind specifically to PSA, LSPR was used. We found that the extinction peak shifted 3 nm for a solution of 100 nM unlabeled antigen. In summary, we have established a novel approach for improving the efficacy/sensitivity of PSA in the assessment of prostate disease, supporting further investigation on the diagnostic value of GNP-conjugated anti-PSA/LSPR for the detection of prostate cancer.
Chan, David; Harris, Scott; Roderick, Paul; Brown, David; Patel, Praful
2009-02-06
Dyspepsia is a common disorder in the community, with many patients referred for diagnostic gastroscopy by their General Practitioner (GP). The National Institute of Clinical Excellence (NICE) recommends follow-up after investigation for cost effective management, including lifestyle advice and drug use. An alternative strategy may be the use of a gastro-intestinal nurse practitioner (GNP) instead of the GP. The objective of this study is to compare the effectiveness and costs of systematic GNP led follow-up to usual care by GPs in dyspeptic patients following gastroscopy. Direct access adult dyspeptic patients referred for gastroscopy; without serious pathology, were followed-up in a structured nurse-led outpatient clinic. Outcome measurement used to compare the two study cohorts (GNP versus GP) included Glasgow dyspepsia severity (Gladys) score, Health Status Short Form 12 (SF12), ulcer healing drug (UHD) use and costs. One hundred and seventy five patients were eligible after gastroscopy, 89 were randomised to GNP follow-up and 86 to GP follow-up. Follow-up at 6 months was 81/89 (91%) in the GNP arm and 79/86 (92%) in the GP arm. On an intention to treat analysis, adjusted mean differences (95%CI) at follow-up between Nurse and GP follow-up were: Gladys score 2.30 (1.4-3.2) p < 0.001, SF12 140.6 (96.5-184.8) p =< 0.001 and UHD costs pound39.60 ( pound24.20- pound55.10) p =< 0.001, all in favour of nurse follow-up. A standardised and structured follow-up by one gastrointestinal nurse practitioner was effective and may save drug costs in patients after gastroscopy. These findings need replication in other centres.
An x-ray fluorescence imaging system for gold nanoparticle detection.
Ricketts, K; Guazzoni, C; Castoldi, A; Gibson, A P; Royle, G J
2013-11-07
Gold nanoparticles (GNPs) may be used as a contrast agent to identify tumour location and can be modified to target and image specific tumour biological parameters. There are currently no imaging systems in the literature that have sufficient sensitivity to GNP concentration and distribution measurement at sufficient tissue depth for use in in vivo and in vitro studies. We have demonstrated that high detecting sensitivity of GNPs can be achieved using x-ray fluorescence; furthermore this technique enables greater depth imaging in comparison to optical modalities. Two x-ray fluorescence systems were developed and used to image a range of GNP imaging phantoms. The first system consisted of a 10 mm(2) silicon drift detector coupled to a slightly focusing polycapillary optic which allowed 2D energy resolved imaging in step and scan mode. The system has sensitivity to GNP concentrations as low as 1 ppm. GNP concentrations different by a factor of 5 could be resolved, offering potential to distinguish tumour from non-tumour. The second system was designed to avoid slow step and scan image acquisition; the feasibility of excitation of the whole specimen with a wide beam and detection of the fluorescent x-rays with a pixellated controlled drift energy resolving detector without scanning was investigated. A parallel polycapillary optic coupled to the detector was successfully used to ascertain the position where fluorescence was emitted. The tissue penetration of the technique was demonstrated to be sufficient for near-surface small-animal studies, and for imaging 3D in vitro cellular constructs. Previous work demonstrates strong potential for both imaging systems to form quantitative images of GNP concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, N; Cifter, G; Ngwa, W
Purpose: Brachytherapy Application with in-situ Dose-painting Administered via Gold-Nanoparticle Eluters (BANDAGE) has been proposed as a new therapeutic strategy for radiation boosting of high-risk prostate tumor subvolume while minimizing dose to neighboring organs-at-risk. In a previous study the one-dimensional dose-painting with gold nanoparticles (GNP) released from GNP-loaded brachytherapy spacers was investigated. The current study investigates BANDAGE in three-dimensions. Methods: To simulate GNPs transport in prostrate tumors, a three dimensional, cylindrically symmetric transport model was generated using a finite element method (FEM). A mathematical model of Gold nanoparticle (GNPs) transport provides a useful strategy to optimize potential treatment planning for BANDAGE.more » Here, treatment of tumors with a radius of 2.5 cm was simulated in 3-D. This simulation phase considered one gold based cylindrical spacer (GBS of size 5mm × 0.8 mm) introduced at the center of the spherical tumor with initial concentration of 100 mg/g or 508 mol/m3 of GNP. Finite element mesh is used to stimulate the GNP transport. Gold concentrations within the tumor were obtained using a 3-D FEM solution implemented by COMSOL. Results: The analysis shows the spread of the GNPs through-out the tumor with the increase of concentration towards the periphery with time. The analysis also shows the concentration profiles and corresponding dose enhancement factors (dose boost factor) as a function of GNP size. Conclusion: This study demonstrates the use of computational modeling and optimal parameter estimation to predict local GNPs from central implant as a function of x, y and z axis . Such a study provides a useful reference for ongoing translational studies for the BANDAGE approach.« less
NASA Astrophysics Data System (ADS)
Sankar, Abhinandh; Michos, Ioannis; Dutta, Indrajit; Dong, Junhang; Angelopoulos, Anastasios P.
2018-05-01
Rotating Disk Electrode (RDE) measurements on model glassy carbon (GC) substrates and Cyclic Voltammetry on more practical commercial carbon supports are used to demonstrate that the kinetics of the positive VO2+/VO2+ redox reaction can be substantially enhanced by using electrostatic layer-by-layer assembly (LbL) to decorate their surface with graphene nanoplatelets (GNPs). An exchange current density, i0, is obtained that is more than two orders of magnitude greater than that observed with standard carbon supported Pt nanocatalyst with the deposition of only 20 GNP layers. Tafel slope analysis is compared to electron microscopy imaging to conclude that while faster redox kinetics is associated with an increase in the available active area, the prevalence of smaller GNPs and associated edge sites the can attenuate activity gains with increasing number of layers. Practical implementation to existing Vanadium Redox Flow Battery (VRFB) configurations was demonstrated through the application of a 370 nm (20 layer) LbL GNP coating on carbon felt (CF). The GNP coating yielded a 5% increase relative in voltage and overall efficiency of charge discharge curves obtained under typical VRFB cell operating conditions at 40 mA cm-2. Furthermore, a substantial increase in the discharge time is observed with this GNP coating on CF.
Korzeniewski, Piotr; Strankowska, Justyna; A. S., Anu; Thomas, Sabu
2018-01-01
Polyurethane/graphene nanocomposites were synthesized using commercial thermoplastic polyurethane (TPU, Apilon 52DE55), and two types of graphene derivatives: graphene nanoplatelets (GNP) and reduced graphene oxide (RGO). Fourier Transformation Infrared Spectroscopy Fourier Transformation Infrared Spectroscopy (FTIR) spectroscopy, TEM, and SEM microscopy and XRD techniques were used to chemically and structurally characterize GNP and RGO nanofillers. The properties of the new TPU nanocomposite materials were studied using thermal analysis techniques (Dynamical Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TG)) to describe the influence of graphene nanofillers on polyurethane matrix. Our investigation describes the comparison of two types of graphene derivatives, commercial one (GNP) and synthesized (RGO) on thermoplastic polyurethanes. These nanofillers provides opportunities to achieve compatibility with the TPU matrix. The property enhancements are attributed commonly to high aspect ratio of graphene nanoplatelets and filler–polymer interactions at the interface. The obtained nanocomposites exhibit higher thermal and mechanical properties due to the good dispersion of both nanofillers into TPU matrix. It was found that the addition of 2 wt % of the nanofiller could lead to a significant reinforcement effect on the TPU matrix. Also, with high content of nanofiller (GNP and RGO), the Payne effect was observed. PMID:29316638
Fire history of southeastern Glacier National Park: Missouri River Drainage
Barrett, Stephen W.
1993-01-01
In 1982, Glacier National Park (GNP) initiated long-term studies to document the fire history of all forested lands in the 410,000 ha. park. To date, studies have been conducted for GNP west of the Continental Divide (Barrett et al. 1991), roughly half of the total park area. These and other fire history studies in the Northern Rockies (Arno 1976, Sneck 1977, Arno 1980, Romme 1982, Romme and Despain 1989, Barrett and Arno 1991, Barrett 1993a, Barrett 1993b) have shown that fire history data can be an integral element of fire management planning, particularly wen natiral fire plans are being developed for parks and wilderness. The value of site specific fire history data is apparent when considering study results for lodgepole pin (Pinus contorta var. latifolia) forests. Lodgepole pine is a major subalpine type in the Northern Rockies and such stands experiences a wide range of presettlement fire patterns. On relatively warm-dry sites at lower elevations, such as in GNP's North Fork drainage (Barrett et al. 1991), short to moderately long interval (25-150 yr) fires occurred in a mixed severity pattern ranging from non-lethal underburns to total stand replacement (Arno 1976, Sneck 1977, Barrett and Arno 1991). Markedly different fire history occurred at high elevation lodgepole pine stands on highly unproductive sites, such as on Yellowstone National Park's (YNP) subalpine plateau. Romme (1982) found that, on some sites, stand replacing fires recurred after very long intervals (300-400 yr), and that non-lethal surface fires were rare. For somewhat more productive sites in the Absaroka Mountains in YNP, Barrett (1993a) estimated a 200 year mean replacement interval, in a pattern similar to that found in steep mountain terrain elsewhere, such as in the Middle Fork Flathead River drainage (Barrett et al. 1991, Sneck 1977). Aside from post-1900 written records (ayres 1900; fire atlas data on file, GNP Archives Div. and GNP Resources Mgt. Div.), little fire history information existed for GNP's east-side forests, which are dominated primarily by lodgepole pine. In fall 1992, the park initiated a study to determine the fire history of the Missouri River drainage portion of southeastern GNP. Given the known variation in pre-1900 fire patterns for lodgepole pine, this study was seen as a potentially important contribution to GNP's Fire Management Plan, and to the expanding data base of fire history studies in the region. Resource managers sought this information to assist their development of appropriate fire management strategies for the east-side forests, and the fire history data also would be a useful interactive component of the park's Geographic Information System (GIS). Primary objectives were to: 1) determine pre-1900 fire periodicities, severities, burning patterns, and post-fire succession for major forest types, and 2) document and map the forest age class mosaic, reflecting the history of stand replacing fires at the landscape level of analysis. Secondary objectives were to interpret the possible effects of modern fire suppression on area forests, and to determine fire regime patterns relative to other lodgepole pine ecosystems in the Northern Rockies.
NASA Astrophysics Data System (ADS)
Yamamoto, Makoto; Ueda, Rieko; Terui, Toshifumi; Imazu, Keisuke; Tamada, Kaoru; Sakano, Takeshi; Matsuda, Kenji; Ishii, Hisao; Noguchi, Yutaka
2014-01-01
We have proposed a gold nanoparticle (GNP)-based single-electron transistor (SET) doped with a dye molecule, where the molecule works as a photoresponsive floating gate. Here, we examined the source-drain current (I_{\\text{SD}}) at a constant drain voltage under light irradiation with various wavelengths ranging from 400 to 700 nm. Current change was enhanced at the wavelengths of 600 and 700 nm, corresponding to the optical absorption band of the doped molecule (copper phthalocyanine: CuPc). Moreover, several peaks appear in the histograms of I_{\\text{SD}} during light irradiation, indicating that multiple discrete states were induced in the device. The results suggest that the current change was initiated by the light absorption of CuPc and multiple CuPc molecules near the GNP working as a floating gate. Molecular doping can activate advanced device functions in GNP-based SETs.
Classification of lung cancer histology by gold nanoparticle sensors
Barash, Orna; Peled, Nir; Tisch, Ulrike; Bunn, Paul A.; Hirsch, Fred R.; Haick, Hossam
2016-01-01
We propose a nanomedical device for the classification of lung cancer (LC) histology. The device profiles volatile organic compounds (VOCs) in the headspace of (subtypes of) LC cells, using gold nanoparticle (GNP) sensors that are suitable for detecting LC-specific patterns of VOC profiles, as determined by gas chromatography–mass spectrometry analysis. Analyzing the GNP sensing signals by support vector machine allowed significant discrimination between (i) LC and healthy cells; (ii) small cell LC and non–small cell LC; and between (iii) two subtypes of non–small cell LC: adenocarcinoma and squamous cell carcinoma. The discriminative power of the GNP sensors was then linked with the chemical nature and composition of the headspace VOCs of each LC state. These proof-of-concept findings could totally revolutionize LC screening and diagnosis, and might eventually allow early and differential diagnosis of LC subtypes with detectable or unreachable lung nodules. PMID:22033081
Calderon-Gonzalez, R; Terán-Navarro, H; García, I; Marradi, M; Salcines-Cuevas, D; Yañez-Diaz, S; Solis-Angulo, A; Frande-Cabanes, E; Fariñas, M C; Garcia-Castaño, A; Gomez-Roman, J; Penades, S; Rivera, F; Freire, J; Álvarez-Domínguez, C
2017-08-03
Dendritic cell-based (DC-based) vaccines are promising immunotherapies for cancer. However, several factors, such as the lack of efficient targeted delivery and the sources and types of DCs, have limited the efficacy of DCs and their clinical potential. We propose an alternative nanotechnology-based vaccine platform with antibacterial prophylactic abilities that uses gold glyconanoparticles coupled to listeriolysin O 91-99 peptide (GNP-LLO 91-99 ), which acts as a novel adjuvant for cancer therapy. GNP-LLO 91-99 , when used to vaccinate mice, exhibited dual antitumour activities, namely, the inhibition of tumour migration and growth and adjuvant activity for recruiting and activating DCs, including those from melanoma patients. GNP-LLO 91-99 nanoparticles caused tumour apoptosis and induced antigen- and melanoma-specific cytotoxic Th1 responses (P ≤ 0.5). We propose this adjuvant nanotherapy for preventing the progression of the first stages of melanoma.
NASA Astrophysics Data System (ADS)
Chang, Ying-Feng; Chen, Ran-Chou; Li, Ying-Chang; Yu, Chih-Jen; Hsieh, Bao-Yu; Chou, Chien
2007-11-01
Alpha-fetoprotein (AFP) detection by using a localized surface plasmon coupled fluorescence (LSPCF) fiber-optic biosensor is setup and experimentally demonstrated. It is based on gold nanoparticle (GNP) and coupled with localized surface plasmon wave on the surface of GNP. In this experiment, the fluorophores are labeled on anti-AFP which are bound to protein A conjugated GNP. Thus, LSPCF is excited with high efficiency in the near field of localized surface plasmon wave. Therefore, not only the sensitivity of LSPCF biosensor is enhanced but also the specific selectivity of AFP is improved. Experimentally, the ability of real time measurement in the range of AFP concentration from 0.1ng/ml to 100ng/ml was detected. To compare with conventional methods such as enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay (RIA), the LSPCF fiber-optic biosensor performs higher or comparable detection sensitivity, respectively.
Controlling dispersion of graphene nanoplatelets in aqueous solution by ultrasonic technique
NASA Astrophysics Data System (ADS)
Wang, Baomin; Jiang, Ruishuang; Song, Wanzeng; Liu, Hui
2017-08-01
The homogenous graphene nanoplatelets (GNP) suspension had been prepared through ultrasonic exfoliation in the presence of methylcellulose (MC) as dispersant. The influence of different sonication times on dispersing of aqueous GNP suspension was monitored by UV-Vis absorbance, sedimentation test, optical microscope and transmission electron microscope (TEM). The study of UV-Vis absorbance verifies that the minimum sonication time to break the 0.1 g/L concentration of bundled GNPs is 20 min; furthermore, the GNP suspension achieved the best dispersion, when sonication time increased up to 80 min. From optical microscope images of GNPs, the agglomeration of GNPs was broken by enough sonication energy, and the distribution of GNPs particles became more uniform. The dispersing mechanism had been discussed and simulated by HRTEM image. The bundled GNPs were exfoliated by cavitation effect of ultrasonic irradiation, meanwhile, the dispersant adsorbed on the surface of GNPs prevented re-entanglement by forming steric hindrance.
Reno, Frederick E; Edwards, C Nicholas; Bendix Jensen, Morten; Török-Bathó, Magdolna; Esdaile, David J; Piché, Claude; Triest, Myriam; Carballo, Dolorès
2016-09-01
The intranasal route is a promising route of administration for several emergency rescue drugs including naloxone and glucagon. Glucagon nasal powder (GNP) is a novel, needle-free delivery system for intranasal administration of glucagon for the treatment of severe hypoglycemia, an infrequent but serious complication of insulin use in patients with diabetes. The GNP delivery device is a compact, highly portable, single-use nasal powder dosing device constructed of polypropylene that allows for simple, single-step administration. To evaluate the toxicological profile of the polypropylene resin used in the actuator part of the delivery device that will contact skin and nasal mucosal membranes of the patient, we performed an in vitro cytotoxicity study, a skin sensitization study and an irritation (intracutaneous reactivity) study in animal models. Extracts of the actuator of the GNP device were generated from HAM F12 medium with 10% fetal bovine serum, 0.9% sodium chloride (NaCl) or sesame oil. The in vitro cytotoxicity test was performed in cultured L929 mouse fibroblasts. Skin sensitization analysis was performed in 10 guinea pigs according to the Magnusson-Kligman method, using a maximization method with Freund's Complete Adjuvant. Irritation following intracutaneous/intradermal treatment with device extracts (NaCl and sesame oil extractants) was assessed in three New Zealand White rabbits. In vitro cytotoxicity test: Both undiluted and diluted extract showed no toxicity (i.e. no abnormal morphology, cell death or cell lysis) toward L929 fibroblasts (cytotoxicity grade 0). Sensitization test in guinea pigs: Challenge with device extracts did not evoke positive responses in test animals previously induced with device extracts. The net response value represented an incidence rate of 0% and a net dermal irritation score value of 0.00. Irritation (intracutaneous/intradermal) test in New Zealand White rabbits: Device extracts and corresponding vehicle controls caused similar irritation reactions. The difference between the mean scores for the device extracts and the corresponding vehicle controls was less than 1.0. Extracts of the polypropylene resin of the GNP delivery device are not cytotoxic, do not result in dermal sensitization and do not cause irritation when applied topically or intracutaneously. Given the infrequent use and very short duration of exposure to the nasal mucosa during administration of GNP, the polypropylene resin of the GNP device actuator will likely not cause adverse dermal sensitization effects or irritation effects in humans and can, therefore, be considered for use as a delivery device in clinical trials assessing the efficacy and safety of GNP for the treatment of insulin-using patients experiencing episodes of severe hypoglycemia.
Grizzly bear density in Glacier National Park, Montana
Kendall, K.C.; Stetz, J.B.; Roon, David A.; Waits, L.P.; Boulanger, J.B.; Paetkau, David
2008-01-01
We present the first rigorous estimate of grizzly bear (Ursus arctos) population density and distribution in and around Glacier National Park (GNP), Montana, USA. We used genetic analysis to identify individual bears from hair samples collected via 2 concurrent sampling methods: 1) systematically distributed, baited, barbed-wire hair traps and 2) unbaited bear rub trees found along trails. We used Huggins closed mixture models in Program MARK to estimate total population size and developed a method to account for heterogeneity caused by unequal access to rub trees. We corrected our estimate for lack of geographic closure using a new method that utilizes information from radiocollared bears and the distribution of bears captured with DNA sampling. Adjusted for closure, the average number of grizzly bears in our study area was 240.7 (95% CI = 202–303) in 1998 and 240.6 (95% CI = 205–304) in 2000. Average grizzly bear density was 30 bears/1,000 km2, with 2.4 times more bears detected per hair trap inside than outside GNP. We provide baseline information important for managing one of the few remaining populations of grizzlies in the contiguous United States.
NASA Astrophysics Data System (ADS)
Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal
2018-05-01
The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.
Kalmodia, Sushma; Parameswaran, Sowmya; Ganapathy, Kalaivani; Yang, Wenrong; Barrow, Colin J; Kanwar, Jagat R; Roy, Kislay; Vasudevan, Madavan; Kulkarni, Kirti; Elchuri, Sailaja V; Krishnakumar, Subramanian
2017-12-15
Inhibition of the interaction between p53 and HDM2 is an effective therapeutic strategy in cancers that harbor a wild-type p53 protein such as retinoblastoma (RB). Nanoparticle-based delivery of therapeutic molecules has been shown to be advantageous in localized delivery, including to the eye, by overcoming ocular barriers. In this study, we utilized biocompatible gold nanoparticles (GNPs) to deliver anti-HDM2 peptide to RB cells. Characterization studies suggested that GNP-HDM2 was stable in biologically relevant solvents and had optimal cellular internalization capability, the primary requirement of any therapeutic molecule. GNP-HDM2 treatment in RB cells in vitro suggested that they function by arresting RB cells at the G2M phase of the cell cycle and initiating apoptosis. Analysis of molecular changes in GNP-HDM2-treated cells by qRT-PCR and western blotting revealed that the p53 protein was upregulated; however, transactivation of its downstream targets was minimal, except for the PUMA-BCl2 and Bax axis. Global gene expression and in silico bioinformatic analysis of GNP-HDM2-treated cells suggested that upregulation of p53 might presumptively mediate apoptosis through the induction of p53-inducible miRNAs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
WE-G-BRE-04: Gold Nanoparticle Induced Vasculature Damage for Proton Therapy: Monte Carlo Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Paganetti, H; Schuemann, J
2014-06-15
Purpose: The aim of this work is to investigate the gold nanoparticle (GNP) induced vasculature damage in a proton beam. We compared the results using a clinical proton beam, 6MV photon beam and two kilovoltage photon beams. Methods: Monte Carlo simulations were carried out using TOPAS (TOol for PArticle Simulation) to obtain the spatial dose distribution in close proximity to GNPs up to 20μm distance. The spatial dose distribution was used as an input to calculate the additional dose deposited to the blood vessels. For this study, GNP induced vasculature damage is evaluated for three particle sources (proton beam, MVmore » photon beam and kV photon beam), various treatment depths for each particle source, various GNP uptakes and three different vessel diameters (8μm, 14μm and 20μm). Results: The result shows that for kV photon, GNPs induce more dose in the vessel wall for 150kVp photon source than 250kVp. For proton therapy, GNPs cause more dose in the vessel wall at shallower treatment depths. For 6MV photons, GNPs induce more dose in the vessel wall at deeper treatment depths. For the same GNP concentration and prescribed dose, the additional dose at the inner vessel wall is 30% more than the prescribed dose for the kVp photon source, 15% more for the proton source and only 2% more for the 6MV photon source. In addition, the dose from GNPs deceases sharper for proton therapy than kVp photon therapy as the distance from the vessel inner wall increases. Conclusion: We show in this study that GNPs can potentially be used to enhance radiation therapy by causing vasculature damage using clinical proton beams. The GNP induced damage for proton therapy is less than for the kVp photon source but significantly larger than for the clinical MV photon source.« less
Kang, Kyung Aih; Wang, Jianting
2014-12-07
Molecular sensing/imaging utilizing fluorophores has been one of the most frequently used techniques in biomedical research. As for any molecular imaging techniques, fluorescence mediated sensing always seeks for greater specificity and sensitivity. Since fluorophores emit fluorescence while their electron energy state changes, manipulating the local electromagnetic field around the fluorophores may be a way to enhance the specificity and sensitivity. Gold nanoparticles (GNPs) are known to form a very strong electromagnetic field on their surface [i.e., surface plasmon field (SPF)], upon receiving photonic energy. The level of fluorescence change by GNP-SPF may range from complete quenching to extensive enhancement, depending upon the SPF strength, excitation and emission wavelengths, and quantum yield of the fluorophore. Here, we report a novel design that utilizes BOTH fluorescence quenching and enhancement abilities of the GNP in one single nano-entity, providing high specificity and sensitivity. The construct utilizes a specially designed molecular dual-spacer that places the fluorphore at the location with an appropriate GNP-SFP strength before and after exposed to the biomarker. A model system to test the concept was an optical signal mediator activated by urokinase-type plasminogen activator (uPA; breast cancer secreting enzyme). The resulting contrast agent shows less than 10% of the natural fluorescence but, in the presence of uPA, its fluorescence emission is triggered and emits its fluorescence approximately twice of the natural form. This study demonstrated that our novel design of an optical contrast agent can be conditionally activated with enhanced sensitivity, using both quenching and enhancement phenomena of fluorophores in the electromagnetic field of the appropriate strengths (in this case, locally generated by the GNP-SPF). This entity is similar to molecular beacon in terms of specificity but with greater sensitivity. In addition, it is not restricted to only DNA or RNA sensing but for any designs that cause the change in the distance between the fluorophore and GNP, upon the time of encountering biomarker of interest.
Net ecosystem calcification and net primary production in two Hawaii back-reef systems
NASA Astrophysics Data System (ADS)
Kiili, S.; Colbert, S.; Hart, K.
2016-02-01
Back-reef systems have complex carbon cycling, driven by dominant benthic communities that change with environmental conditions and display characteristic patterns of net primary production (NP) and net ecosystem calcification (G). The G/NP ratio provides a fundamental community-level assessment to compare systems spatially and to evaluate temporal changes in carbon cycling. Carbon dynamics were examined at leeward Hōnaunau and windward Waíōpae, Hawaíi Island. Both locations discharge brackish groundwater, including geothermal water at Waíōpae. The change in total CO2 (TCO2) and total alkalinity (TA) between morning and afternoon was measured to calculate the G/NP ratio along a salinity gradient. At both sites, aragonite saturation (ΩAr) was lower than open ocean conditions, and increased with salinity. Between the morning and afternoon, ΩAr increased by at least 1 as photosynthesis consumed CO2. At Waíōpae, water was corrosive to aragonite due to the input of acidic groundwater, but not at Honaunau, demonstrating the importance of local watershed characteristics on ΩAr. Across the salinity gradient, TA and TCO2 decreased between morning and afternoon. At Hōnaunau, G/NP increased from 0.11 to 0.31 with salinity, consistent with an offshore increase in coral cover. But at Waíōpae, G/NP decreased from 0.49 to 0.0 with salinity, despite an increase in coral cover with salinity. Low G may be caused by benthic processes, including coral bleaching or high rates of carbonate dissolution in interstitial waters between tide pools. Broader environmental conditions than just salinity, including pH of fresh groundwater inputs, shape the carbon cycling in the back-reef system. Examining the G/NP ratio of a back-reef system allows for a simple method to establish community level activity, and possibly indicate changes in a dynamic system.
2010-12-20
thiolate -Au bonds,30 and so GNP/MB-MWCNT hybrids were synthesized using a modified literature procedure.31 The SEM images show sequential...4 The electrocatalytic stability of GNP/MB-MWCNT supposes to be originated from the formation of stable thiolate -Au bonds that prevent aggregation of...Moon, K.-S.; Wong, C. P. Carbon 2007, 45, 655–661. (19) Sandler, J.; Shaffer, M. S. P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A. H. Polymer
The future of the chemical industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinnar, R.
1991-01-01
As Lincoln, we first must ask where we are before we ask whither. I'd therefore like to define where our industry is and how it got there before we look at the challenges facing us. If we view the chemical and petroleum industries through the glass of macroeconomics, they look very healthy. Let's start with size. Table 1 shows that these two industries each provide about 10% of the total U.S. manufacturing output. This paper shows the fraction of the total GNP contributed by the chemical industry and by the petroleum industry and compares them with total manufacturing. The authorsmore » note that total manufacturing grew more slowly than the total GNP, whereas over the last 40 years, the chemical industry grew close to the rate of the GNP. For a large industry, this is the best we can hope for. The chemical industry is one of the very few major industries that has consistently maintained a positive trade balance.« less
Angular dose anisotropy around gold nanoparticles exposed to X-rays.
Gadoue, Sherif M; Toomeh, Dolla; Zygmanski, Piotr; Sajo, Erno
2017-07-01
Gold nanoparticle (GNP) radiotherapy has recently emerged as a promising modality in cancer treatment. The use of high atomic number nanoparticles can lead to enhanced radiation dose in tumors due to low-energy leakage electrons depositing in the vicinity of the GNP. A single metric, the dose enhancement ratio has been used in the literature, often in substantial disagreement, to quantify the GNP's capacity to increase local energy deposition. This 1D approach neglects known sources of dose anisotropy and assumes that one average value is representative of the dose enhancement. Whether this assumption is correct and within what accuracy limits it could be trusted, have not been studied due to computational difficulties at the nanoscale. Using a next-generation deterministic computational method, we show that significant dose anisotropy exists which may have radiobiological consequences, and can impact the treatment outcome as well as the development of treatment planning computational methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Potential dual imaging nanoparticle: Gd2O3 nanoparticle
NASA Astrophysics Data System (ADS)
Ahmad, Md. Wasi; Xu, Wenlong; Kim, Sung June; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Park, Ji Ae; Kim, Tae Jeong; Lee, Gang Ho
2015-02-01
Gadolinium (Gd) is a unique and powerful element in chemistry and biomedicine which can be applied simultaneously to magnetic resonance imaging (MRI), X-ray computed tomography (CT), and neutron capture therapy for cancers. This multifunctionality can be maximized using gadolinium oxide (Gd2O3) nanoparticles (GNPs) because of the large amount of Gd per GNP, making both diagnosis and therapy (i.e., theragnosis) for cancers possible using only GNPs. In this study, the T1 MRI and CT dual imaging capability of GNPs is explored by synthesizing various iodine compound (IC) coated GNPs (IC-GNPs). All the IC-GNP samples showed stronger X-ray absorption and larger longitudinal water proton relaxivities (r1 = 26-38 s-1mM-1 and r2/r1 = 1.4-1.9) than the respective commercial contrast agents. In vivo T1 MR and CT images of mice were also acquired, supporting that the GNP is a potential dual imaging agent.
Graphitic Carbon Materials Tailored for the Rapid Adsorption of Biomolecules
NASA Astrophysics Data System (ADS)
Pescatore, Nicholas A.
Sepsis is an overactive inflammatory response to an infection, with 19 million cases estimated worldwide and causing organ dysfunction if left untreated. Three pro-inflammatory cytokines are seen from literature review as vital biomarkers for sepsis and are interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-alpha), which have the potential to be removed by hemoperfusion. This thesis examines carbon nanomaterials for their adsorption capabilities in the search for an optimal material for blood cleansing hemoperfusion application, such as mediating the effects of sepsis. Non-porous and porous carbon polymorphs and their properties are investigated in this thesis for their protein adsorption capabilities. Polymer-derived mesoporous carbons were compared to non-porous graphene nanoplatelets (GNP's) to observe changes in adsorption capacity for cytokines between porous and non-porous materials. GNP's were functionalized via high temperature vacuum annealing, air oxidation, acid oxidation and amination treatments to understand the effect of surface chemistry on adsorption. For practical use in a hemoperfusion column, polymer-derived carbon beads and composite materials such as cryogel and PTFE-GNP composites were designed and tested for their adsorption capacity. At concentrations of IL-6, IL-8, and TNF-alpha seen in septic patients, these cytokines were completely removed from the blood after 5 minutes of incubation with GNP's. Overall, a low-cost, scalable carbon adsorbent was found to provide a novel approach of rapidly removing pro-inflammatory cytokines from septic patients.
Douglass, Michael; Bezak, Eva; Penfold, Scott
2013-07-01
Investigation of increased radiation dose deposition due to gold nanoparticles (GNPs) using a 3D computational cell model during x-ray radiotherapy. Two GNP simulation scenarios were set up in Geant4; a single 400 nm diameter gold cluster randomly positioned in the cytoplasm and a 300 nm gold layer around the nucleus of the cell. Using an 80 kVp photon beam, the effect of GNP on the dose deposition in five modeled regions of the cell including cytoplasm, membrane, and nucleus was simulated. Two Geant4 physics lists were tested: the default Livermore and custom built Livermore/DNA hybrid physics list. 10(6) particles were simulated at 840 cells in the simulation. Each cell was randomly placed with random orientation and a diameter varying between 9 and 13 μm. A mathematical algorithm was used to ensure that none of the 840 cells overlapped. The energy dependence of the GNP physical dose enhancement effect was calculated by simulating the dose deposition in the cells with two energy spectra of 80 kVp and 6 MV. The contribution from Auger electrons was investigated by comparing the two GNP simulation scenarios while activating and deactivating atomic de-excitation processes in Geant4. The physical dose enhancement ratio (DER) of GNP was calculated using the Monte Carlo model. The model has demonstrated that the DER depends on the amount of gold and the position of the gold cluster within the cell. Individual cell regions experienced statistically significant (p < 0.05) change in absorbed dose (DER between 1 and 10) depending on the type of gold geometry used. The DER resulting from gold clusters attached to the cell nucleus had the more significant effect of the two cases (DER ≈ 55). The DER value calculated at 6 MV was shown to be at least an order of magnitude smaller than the DER values calculated for the 80 kVp spectrum. Based on simulations, when 80 kVp photons are used, Auger electrons have a statistically insignificant (p < 0.05) effect on the overall dose increase in the cell. The low energy of the Auger electrons produced prevents them from propagating more than 250-500 nm from the gold cluster and, therefore, has a negligible effect on the overall dose increase due to GNP. The results presented in the current work show that the primary dose enhancement is due to the production of additional photoelectrons.
Alivov, Yahya; Baturin, Pavlo; Le, Huy Q.; Ducote, Justin; Molloi, Sabee
2014-01-01
We investigated the effect of different imaging parameters such as dose, beam energy, energy resolution, and number of energy bins on image quality of K-edge spectral computed tomography (CT) of gold nanoparticles (GNP) accumulated in an atherosclerotic plaque. Maximum likelihood technique was employed to estimate the concentration of GNP, which served as a targeted intravenous contrast material intended to detect the degree of plaque's inflammation. The simulations studies used a single slice parallel beam CT geometry with an X-ray beam energy ranging between 50 and 140 kVp. The synthetic phantoms included small (3 cm in diameter) cylinder and chest (33x24 cm2) phantom, where both phantoms contained tissue, calcium, and gold. In the simulation studies GNP quantification and background (calcium and tissue) suppression task were pursued. The X-ray detection sensor was represented by an energy resolved photon counting detector (e.g., CdZnTe) with adjustable energy bins. Both ideal and more realistic (12% FWHM energy resolution) implementations of photon counting detector were simulated. The simulations were performed for the CdZnTe detector with pixel pitch of 0.5-1 mm, which corresponds to the performance without significant charge sharing and cross-talk effects. The Rose model was employed to estimate the minimum detectable concentration of GNPs. A figure of merit (FOM) was used to optimize the X-ray beam energy (kVp) to achieve the highest signal-to-noise ratio (SNR) with respect to patient dose. As a result, the successful identification of gold and background suppression was demonstrated. The highest FOM was observed at 125 kVp X-ray beam energy. The minimum detectable GNP concentration was determined to be approximately 1.06 μmol/mL (0.21 mg/mL) for an ideal detector and about 2.5 μmol/mL (0.49 mg/mL) for more realistic (12% FWHM) detector. The studies show the optimal imaging parameters at lowest patient dose using an energy resolved photon counting detector to image GNP in an atherosclerotic plaque. PMID:24334301
Manohar, Nivedh; Reynoso, Francisco J; Cho, Sang Hyun
2013-08-01
To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg∕cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence∕scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm×15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73×10(-2) cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level within subcentimeter-sized ex vivo samples and superficial tumors during preclinical animal studies.
Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun
2013-01-01
Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. Methods: 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg/cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence/scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm × 15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. Results: XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73 × 10−2 cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. Conclusions:L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level within subcentimeter-sized ex vivo samples and superficial tumors during preclinical animal studies. PMID:23927295
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, R; University Medical Center Mannheim, Mannheim; Heidelberg University, Heidelberg
Purpose: Recent studies have shown that the presence of Gold Nanoparticles (GNPs) in tumor tissue can lead to significant dose enhancement (DE) during External Beam Radiation Therapy (EBRT). In this in-silico study we investigate EBRT with in-situ dose painting using GNPs released from cylindrically shaped GNP-loaded fiducials. Methods: Reported Biologically Target/Tumor Volumes (BTVs) for 12 prostate carcinoma patients were employed in this study. Distribution of the GNPs after burst release from the fiducial (1.5mm diameter and 5mm length) located in the center of the spherically assumed BTV were modeled by isotropic and free diffusion without boundary condition and under themore » assumption of superposition. An experimentally determined diffusion coefficient for 10nm nanoparticles was adapted for investigating other GNP sizes (2, 5, 15, and 20nm) using the Stokes-Einstein equation. The maximum size of GNPs to achieve a minimal DE Factor (DEF) of 1.1 for 6MV EBRT using a fiducial-load of 30mg/g was calculated for typical periods of 14 and 21 days after implantation. Further, the minimal fiducial-load needed to achieve a clinically significant DEF of 1.2 was computed for 2nm GNPs. Results: Results showed that a minimal DEF of 1.1 could be reached for the smallest patient BTV using a maximal GNP size of 10nm and 20nm after 14 and 21 days, respectively. With increasing BTV smaller GNPs are required to ensure the same DEF. In particular, the largest BTV requires 2nm GNPs for periods of 14 and 21 days. Meanwhile, the required fiducial-load to reach a minimal DEF of 1.2 after 14 days was found in the range of 17mg/g and 59mg/g for all reported BTVs. Conclusion: This preliminary study indicates a strong dependence on GNP size and fiducial-load to realize a significant DE. The findings avail further research towards development of GNP-loaded fiducials for significantly enhancing radiotherapy for cancer patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oumano, M; University of Massachusetts Lowell, Lowell, MA; Ngwa, W
Purpose: To measure the increase in in vitro radiosensitivity for A549 lung carcinoma cells due to gold nanoparticle (GNP) radiation dose enhancement in both traditional monolayer and three dimensional (3D) cell culture models. Methods: A γH2AX immunofluorescence assay is performed on monolayer A549 cell culture and quantitatively analyzed to measure the increase in double strand breaks (DSBs) resulting from GNP dose enhancement. A clonogenic survival assay (CSA) is then performed on monolayer A549 cell culture to assess true viability after treatment. And lastly, another γH2AX assay is performed on 3D A549 multicellular nodules overlaid on a bed of growth factormore » reduced matrigel to measure dose response in a model that better recapitulates treatment response to actual tumors in vivo. Results: The first γH2AX assay performed on the monolayer cell culture shows a significant increase in DSBs due to GNP dose enhancement. The maximum average observed increase in normalized fluorescent intensity for monolayer cell culture is 171% for the 6Gy-treatment groups incubated in 0.556 mg Au/ml solution. The CSA performed on monolayer cell culture also shows considerable GNP dose enhancement. The maximum decrease in the normalized surviving fraction is 12% for the 4Gy-treatment group incubated in 0.556 mg Au/ml. And lastly, the GNP dose enhancement is confirmed to be mitigated in three dimensional cell culture models as compared to the traditional monolayer model. The maximum average observed dose enhancement for 3D cell culture is 19% for the 6Gy-treatment groups and incubated in 0.556 mg Au/ml. Conclusion: A marked increase in radiosensitivity is observed for A549 lung carcinoma cells when treated with GNPs plus radiation as opposed to radiation alone. Traditional monolayer cell culture also shows a much more pronounced radiation dose enhancement than 3D cell culture.« less
Climate-induced range contraction of a rare alpine aquatic invertebrate
Giersch, J. Joseph; Jordan, Steve; Luikart, Gordon; Jones, Leslie A.; Hauer, F. Richard; Muhlfeld, Clint C.
2015-01-01
Climate warming poses a serious threat to alpine-restricted species worldwide, yet few studies have empirically documented climate-induced changes in distributions. The rare stonefly, Zapada glacier (Baumann and Gaufin), endemic to alpine streams of Glacier National Park (GNP), Montana, was recently petitioned for listing under the US Endangered Species Act because of climate-change-induced glacier loss, yet little was known about its current status and distribution. We resampled streams throughout the historical distribution of Z. glacier to investigate trends in occurrence associated with changes in temperature and glacial extent. The current geographic distribution of the species was assessed using morphological characteristics of adults and DNA barcoding of nymphs. Bayesian phylogenetic analysis of mtDNA data revealed 8 distinct clades of the genus corresponding with 7 known species from GNP, and one potentially cryptic species. Climate model simulations indicate that average summer air temperature increased (0.67–1.00°C) during the study period (1960–2012), and glacial surface area decreased by ∼35% from 1966 to 2005. We detected Z. glacier in only 1 of the 6 historically occupied streams and at 2 new locations in GNP. These results suggest that an extremely restricted historical distribution of Z. glacierin GNP has been further reduced over the past several decades by an upstream retreat to higher, cooler sites as water temperatures increased and glacial masses decreased. More research is urgently needed to determine the status, distribution, and vulnerability of Z. glacier and other alpine stream invertebrates threatened by climate change in mountainous ecosystems.
Interactions of Fluorescein Dye with Spherical and Star Shaped Gold Nanoparticles.
Pal, Gopa Dutta; Paul, Somnath; Bardhan, Munmun; Ganguly, Tapan
2018-04-01
UV-vis absorption, FT-IR, steady state fluorescence and fluorescence lifetime measurements were made on Fluorescein dye (Fl dye) molecules in presence of gold nanoparticles of different morphologies: spherical gold nanoparticles (GNP) and star shaped gold nanoparticles (GNS). The experimental observations demonstrate that Fl dye molecules form dimers when adsorbed on nanosurface of spherical gold particles. On the other hand possibly due to lack of adsorption on the surface of GNS the dye molecules were unable to form dimers. The projected tips on the surface of GNS may possibly hinder the dyes to adsorb on the surface of this nanoparticle. From the spectral analysis and measurements of thermodynamic parameters it is inferred that two different types of ground state interactions occur between Fl-dye-GNP and Fl dye-GNS systems. Both the observed negative values of the thermodynamic parameters ΔH and ΔS in the case of the former system predict the possibility of occurrences of hydrogen bonding interactions between two neighboring Fl dye molecules when adsorbed on the nanosurface of GNP. On the other hand in Fl dye-GNS system electrostatic interactions appear to occur, as evidenced from negative ΔH and positive value of ΔS, between the positive charges residing on the tips of the nanoparticles and anionic form of Fl dye. It has been concluded that as the adsorption of organic dyes on solid surfaces is prerequisite for the degradation of dye pollutants, the present experimental observations demonstrate that GNP could be used as a better candidate than GNS in degradation mechanism of the xanthenes dyes.
Dever, Daniel P.; Adham, Zachariah O.; Thompson, Bryan; Genestine, Matthieu; Cherry, Jonathan; Olschowka, John A.; DiCicco-Bloom, Emanuel; Opanashuk, Lisa A.
2015-01-01
The aryl hydrocarbon receptor (AhR) is a ligand-activated member of the basic-helix-loop-helix (bHLH)/PER-ARNT-SIM(PAS) transcription factor superfamily that also mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence suggests that AhR influences the development of many tissues, including the central nervous system. Our previous studies suggest that sustained AhR activation by TCDD and/or AhR deletion disrupts cerebellar granule neuron precursor (GNP) development. In the current study, to determine whether endogenous AhR controls GNP development in a cell autonomous manner, we created a GNP-specific AhR deletion mouse, AhRfx/fx/Math1CRE/+ (AhR CKO). Selective AhR deletion in GNPs produced abnormalities in proliferation and differentiation. Specifically, fewer GNPs were engaged in S-phase, as demonstrated by ~25% reductions in thymidine (in vitro) and BrdU (in vivo) incorporation. Furthermore, total granule neuron numbers in the IGL at PND21 and PND60 were diminished in AhR CKO mice compared to controls. On the other hand, differentiation was enhanced, including ~40% increase in neurite outgrowth and 50% increase in GABARα6 receptor expression in deletion mutants. Our results suggest that AhR activity plays a role in regulating granule neuron number and differentiation, possibly by coordinating this GNP developmental transition. These studies provide novel insights for understanding the normal roles of AhR signaling during cerebellar granule cell neurogenesis, and may have important implications for the effects of environmental factors in cerebellar dysgenesis. PMID:26243376
Correia Pinto, Viviana; Costa-Almeida, Raquel; Rodrigues, Ilda; Guardão, Luísa; Soares, Raquel; Miranda Guedes, Rui
2017-08-01
Anterior cruciate ligament (ACL) reconstructive surgeries are the most frequent orthopedic procedures in the knee. Currently, existing strategies fail in completely restoring tissue functionality and have a high failure rate associated, presenting a compelling argument towards the development of novel materials envisioning ACL reinforcement. Tendons and ligaments, in general, have a strong demand in terms of biomechanical features of developed constructs. We have previously developed polylactic acid (PLA)-based biodegradable films reinforced either with graphene nanoplatelets (PLA/GNP) or with carboxyl-functionalized carbon nanotubes (PLA/CNT-COOH). In the present study, we comparatively assessed the biological performance of PLA, PLA/GNP, and PLA/CNT-COOH by seeding human dermal fibroblasts (HFF-1) and studying cell viability and proliferation. In vivo tests were also performed by subcutaneous implantation in 6-week-old C57Bl/6 mice. Results showed that all formulations studied herein did not elicit cytotoxic responses in seeded HFF-1, supporting cell proliferation up to 3 days in culture. Moreover, animal studies indicated no physiological signs of severe inflammatory response after 1 and 2 weeks after implantation. Taken together, our results present a preliminary assessment on the compatibility of PLA reinforced with GNP and CNT-COOH nanofillers, highlighting the potential use of these carbon-based nanofillers for the fabrication of reinforced synthetic polymer-based structures for ACL reinforcement. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2182-2190, 2017. © 2017 Wiley Periodicals, Inc.
Wu, Jianfeng; Wang, Huatao; Su, Zhiwei; Zhang, Minghao; Hu, Xiaodong; Wang, Yijie; Wang, Ziao; Zhong, Bo; Zhou, Weiwei; Liu, Junpeng; Xing, Scott Guozhong
2017-11-08
Graphene and nanomaterials based flexible pressure sensors R&D activities are becoming hot topics due to the huge marketing demand on wearable devices and electronic skin (E-Skin) to monitor the human body's actions for dedicated healthcare. Herein, we report a facile and efficient fabrication strategy to construct a new type of highly flexible and sensitive wearable E-Skin based on graphite nanoplates (GNP) and polyurethane (PU) nanocomposite films. The developed GNP/PU E-Skin sensors are highly flexible with good electrical conductivity due to their unique binary microstructures with synergistic interfacial characteristics, which are sensitive to both static and dynamic pressure variation, and can even accurately and quickly detect the pressure as low as 0.005 N/50 Pa and momentum as low as 1.9 mN·s with a gauge factor of 0.9 at the strain variation of up to 30%. Importantly, our GNP/PU E-Skin is also highly sensitive to finger bending and stretching with a linear correlation between the relative resistance change and the corresponding bending angles or elongation percentage. In addition, our E-Skin shows excellent sensitivity to voice vibration when exposed to a volunteer's voice vibration testing. Notably, the entire E-Skin fabrication process is scalable, low cost, and industrially available. Our complementary experiments with comprehensive results demonstrate that the developed GNP/PU E-Skin is impressively promising for practical healthcare applications in wearable devices, and enables us to monitor the real-world force signals in real-time and in-situ mode from pressing, hitting, bending, stretching, and voice vibration.
Wagner, I; Geh, K J; Hubert, M; Winter, G; Weber, K; Classen, J; Klinger, C; Mueller, R S
2017-07-29
Cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN) are a promising new immunotherapeutic treatment option for canine atopic dermatitis (AD). The aim of this uncontrolled pilot study was to evaluate clinical and immunological effects of gelatine nanoparticle (GNP)-bound CpG ODN (CpG GNP) on atopic dogs. Eighteen dogs with AD were treated for 8 weeks (group 1, n=8) or 18 weeks (group 2, n=10). Before inclusion and after 2 weeks, 4 weeks, 6 weeks (group 1+2), 8 weeks, 12 weeks and 16 weeks (group 2) 75 µg CpG ODN/dog (bound to 1.5 mg GNP) were injected subcutaneously. Pruritus was evaluated daily by the owner. Lesions were evaluated and serum concentrations and mRNA expressions of interferon-γ, tumour necrosis factor-α, transforming growth factor-β, interleukin (IL) 10 and IL-4 (only mRNA expression) were determined at inclusion and after 8 weeks (group 1+2) and 18 weeks (group 2). Lesions and pruritus improved significantly from baseline to week 8. Mean improvements from baseline to week 18 were 23 per cent and 44 per cent for lesions and pruritus, respectively, an improvement of ≥50 per cent was seen in six out of nine and three out of six dogs, respectively. IL-4 mRNA expression decreased significantly. The results of this study show a clinical improvement of canine AD with CpG GNP comparable to allergen immunotherapy. Controlled studies are needed to confirm these findings. British Veterinary Association.
Mishra, Ashish Kumar; Ramaprabhu, S
2011-01-15
In the present wok, we have demonstrated the simultaneous removal of sodium and arsenic (pentavalent and trivalent) from aqueous solution using functionalized graphite nanoplatelets (f-GNP) based electrodes. In addition, these electrodes based water filter was used for multiple metals removal from sea water. Graphite nanoplatelets (GNP) were prepared by acid intercalation and thermal exfoliation. Functionalization of GNP was done by further acid treatment. Material was characterized by different characterization techniques. Performance of supercapacitor based water filter was analyzed for the removal of high concentration of arsenic (trivalent and pentavalent) and sodium as well as for desalination of sea water, using cyclic voltametry (CV) and inductive coupled plasma-optical emission spectroscopy (ICP-OES) techniques. Adsorption isotherms and kinetic characteristics were studied for the simultaneous removal of sodium and arsenic (both trivalent and pentavalent). Maximum adsorption capacities of 27, 29 and 32 mg/g for arsenate, arsenite and sodium were achieved in addition to good removal efficiency for sodium, magnesium, calcium and potassium from sea water. Copyright © 2010 Elsevier B.V. All rights reserved.
Dose enhancement effects of gold nanoparticles specifically targeting RNA in breast cancer cells
Metzler, Philipp; Pilarczyk, Götz; Bobu, Vladimir; Kriz, Wilhelm; Hosser, Hiltraud; Fleckenstein, Jens; Krufczik, Matthias; Bestvater, Felix; Wenz, Frederik; Hausmann, Michael
2018-01-01
Localization microscopy has shown to be capable of systematic investigations on the arrangement and counting of cellular uptake of gold nanoparticles (GNP) with nanometer resolution. In this article, we show that the application of specially modified RNA targeting gold nanoparticles (“SmartFlares”) can result in ring like shaped GNP arrangements around the cell nucleus. Transmission electron microscopy revealed GNP accumulation in vicinity to the intracellular membrane structures including them of the endoplasmatic reticulum. A quantification of the radio therapeutic dose enhancement as a proof of principle was conducted with γH2AX foci analysis: The application of both—SmartFlares and unmodified GNPs—lead to a significant dose enhancement with a factor of up to 1.2 times the dose deposition compared to non-treated breast cancer cells. This enhancement effect was even more pronounced for SmartFlares. Furthermore, it was shown that a magnetic field of 1 Tesla simultaneously applied during irradiation has no detectable influence on neither the structure nor the dose enhancement dealt by gold nanoparticles. PMID:29346397
Schwartz, Shmulik; Fixler, Dror; Popovtzer, Rachela; Shefi, Orit
2015-11-01
Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications. Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY-GNP (Middle) enable the differentiation between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nano-gold corking and enzymatic uncorking of carbon nanotube cups
Zhao, Yong; Burkert, Seth C.; Tang, Yifan; ...
2014-12-21
Because of their unique stacked, cup-shaped, hollow compartments, nitrogen-doped carbon nanotube cups (NCNCs) have promising potential as nanoscale containers. Individual NCNCs are isolated from their stacked structure through acid oxidation and subsequent probe-tip sonication. The NCNCs are then effectively corked with gold nanoparticles (GNPs) by sodium citrate reduction with chloroauric acid, forming graphitic nanocapsules with significant surface-enhanced Raman signature. Mechanistically, the growth of the GNP corks starts from the nucleation and welding of gold seeds on the open rims of NCNCs enriched with nitrogen functionalities, as confirmed by density functional theory calculations. A potent oxidizing enzyme of neutrophils, myeloperoxidase (MPO),more » can effectively open the corked NCNCs through GNP detachment, with subsequent complete enzymatic degradation of the graphitic shells. Lastly, this controlled opening and degradation was further carried out in vitro with human neutrophils. In addition, the GNP-corked NCNCs were demonstrated to function as novel drug delivery carriers, capable of effective (i) delivery of paclitaxel to tumor-associated myeloid-derived suppressor cells (MDSC), (ii) MPO-regulated release, and (iii) blockade of MDSC immunosuppressive potential.« less
NASA Astrophysics Data System (ADS)
Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.
2015-07-01
In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.
1980-07-18
person U USA, U e Japan V Jamaica •Canada 4 0 I Columbia ettaly *England TWest Germany i ceThailandsouth Africa *Australia ’ ~ Kenya 0:ac ~0 l" ya...SI Figure I-l1. The relation between the rate of population increase and GNP per person U Kenya . ’Thailand r% .Columbia Malaysia 3 3 "Phillipinesiran...ZaireTndia " .- .Indonesia -) 10-|Thailand Kenya ’ Iw 0o6 2 3000 lOCU W 600" 70W GNP per person: dollars The numbers for China are estimated. Comparison
Peitzsch, Erich H.; Fagre, Daniel B.; Dundas, Mark
2010-01-01
Snow avalanche paths are key geomorphologic features in Glacier National Park, Montana, and an important component of mountain ecosystems: they are isolated within a larger ecosystem, they are continuously disturbed, and they contain unique physical characteristics (Malanson and Butler, 1984). Avalanches impact subalpine forest structure and function, as well as overall biodiversity (Bebi et al., 2009). Because avalanches are dynamic phenomena, avalanche path geometry and spatial extent depend upon climatic regimes. The USGS/GNP Avalanche Program formally began in 2003 as an avalanche forecasting program for the spring opening of the ever-popular Going-to-the-Sun Road (GTSR), which crosses through 37 identified avalanche paths. Avalanche safety and forecasting is a necessary part of the GTSR spring opening procedures. An avalanche atlas detailing topographic parameters and oblique photographs was completed for the GTSR corridor in response to a request from GNP personnel for planning and resource management. Using ArcMap 9.2 GIS software, polygons were created for every avalanche path affecting the GTSR using aerial imagery, field-based observations, and GPS measurements of sub-meter accuracy. Spatial attributes for each path were derived within the GIS. Resulting products include an avalanche atlas book for operational use, a geoPDF of the atlas, and a Google Earth flyover illustrating each path and associated photographs. The avalanche atlas aids park management in worker safety, infrastructure planning, and natural resource protection by identifying avalanche path patterns and location. The atlas was created for operational and planning purposes and is also used as a foundation for research such as avalanche ecology projects and avalanche path runout modeling.
Klier, John; Geis, Sabine; Steuer, Jeanette; Geh, Katharina; Reese, Sven; Fuchs, Sebastian; Mueller, Ralf S.; Winter, Gerhard
2017-01-01
Abstract Introduction New therapeutic strategies to modulate the immune response of human and equine allergic asthma are still under extensive investigation. Immunomodulating agents stimulating T‐regulatory cells offer new treatment options beyond conventional symptomatic treatment or specific immunotherapy for human and equine allergic airway diseases, with the goal of a homoeostatic T‐helper cell balance. The aim of this study was to evaluate the effects of a nebulized gelatin nanoparticle‐CpG formulation (CpG‐GNP) with and without specific allergens for the treatment of spontaneous allergic equine asthma as a model for human asthma. Methods Twenty equine asthma‐affected horses were treated either with CpG‐GNP alone or CpG‐GNP with allergens. Two specific allergens were selected for each horse based on history and an in‐vitro test. Each horse received seven administrations of the respective nebulized composition and was examined before treatment, immediately after and 6 weeks after the treatment course. Results Clinical parameters such as breathing rate, indirect interpleural measurement, arterial blood gases, amount of tracheal mucus and percentage of neutrophils and cytokines in tracheal washes and serum samples were evaluated. Treatment with CpG‐GNP alone as well as in combinations with relevant allergens resulted in clinical improvement of nasal discharge, breathing rate, amount of secretion and viscosity, neutrophil percentage and partial oxygen pressure directly after and 6 weeks after treatment. There were no significant differences between the two treatments in clinical parameters or local cytokine profiles in the tracheal wash fluid (IL‐10, IFN‐g, and IL‐17). IL‐4 concentrations decreased significantly in both groups. Conclusion Nonspecific CpG‐GNP‐based immunotherapy shows potential as a treatment for equine and possibly also human allergic asthma. PMID:29094511
MO-FG-BRA-05: Next Generation Radiotherapy Biomaterials Loaded With Gold Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cifter, G; Ngwa, W; Univ Massachusetts Lowell, Lowell, MA
2015-06-15
Purpose: It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. In this work, we developed prototypes of such RT biomaterials and investigated the sustained release of GNPs from the biomaterials as a function of design parameters. Methods: Prototype smart biomaterials were produced by incorporating the GNPs in poly(D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. For comparison, commercially available spacers were also coated with a polymer film loaded with fluorescentmore » GNP. Optical/spectroscopy methods were used to monitor in vitro release of GNPs over time as a function of different design parameters: polymer weighting, type, and initial (loading) GNP concentrations. Inductively coupled plasma mass spectrometry was employed to verify GNP release. Results: Results showed that gold nanoparticles could be successfully loaded in the new RT biomaterial prototypes. Burst release of GNPs could be achieved within 1 to 25 days depending on the preparation approach. Burst release was followed by sustained release profile over time. The amount of released GNP increased with increasing loading concentration as expected. The release profiles could also be customized as a function of polymer weighting, or preparation approaches. Conclusion: Considered together, our results highlight potential for the development of next generation RT biomaterials loaded with GNPs customizable to different RT schedules. Such biomaterials could be employed as needed instead of currently used inert spacers/fiducials at no additional inconvenience to patients, to enhance RT.« less
Li, Zhong; Khun, Nay Win; Tang, Xiu-Zhi; Liu, Erjia; Khor, Khiam Aik
2017-01-01
45S5 Bioglass ® (45S5) is one of the most widely used biomaterials in ceramic-based bone graft substitutes by virtue of its excellent biocompatibility and bioactivity. However, the fracture toughness and wear resistance of 45S5 have to be improved to extend its applications in load bearing orthopedic implants. The current study reports the first use of graphene nanoplatelet (GNP) to enhance the fracture toughness and wear resistance of 45S5. Composite powders with four different loadings of graphene oxide (GO), i.e. 0, 0.1, 0.5 and 1wt%, were sintered by spark plasma sintering (SPS) at a relatively low temperature of 550°C, during which in situ thermal reduction of GO took place. It was found that by adding 0.5wt% GO to the 45S5 powder, the fracture toughness of the sintered pellets was increased by 130.2% while friction coefficient and specific wear rate were decreased by 21.3% and 62.0%, respectively. Furthermore, the viability of MG63 cells grown on the GNP-incorporated pellets was comparably high to that of the cells grown on the pure 45S5 pellets. As compared with the pure 45S5 leachates, the media conditioned by the GNP/45S5 pellets fabricated from the composite powder with 1wt% GO could enhance both the proliferation and viability of MG63 cells. It is thus envisioned that the GNP-reinforced 45S5 is a highly promising material for fabricating mechanically strong and biocompatible load-bearing bone implants. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasmin-Karim, S; Makrigiorgos, GM; Moreau, M
Purpose: Oraya Therapy uses low-voltage, stereotactic, highly targeted X-rays for the treatment of wet age-related macular degeneration (AMD) — offering a new option for patients worldwide. Neovascular endothelial cells play a crucial role in the pathogenesis of this disease. This in-vitro study investigates the potential of gold nanoparticles (GNP) to enhance endothelial cell damage during low-voltage radiotherapy towards potential applications in the treatment of wet-AMD. Methods: Primary human umbilical cord vein endothelium cells (HUVEC) were treated with 1.4 nm sized GNPs for 24 hrs and then irradiated with variable X-ray doses using an Oraya therapy system (100 kVp) or amore » Small Animal Radiation and Research platform (SARRP) at other beam qualities (up to 220 kVp). Radio-sensitization was assessed by clonogenic assays. Variable concentrations of GNPs (0.05 mg/ml, 0.1 mg/ml, 0.25 mg/ml, 0.5 mg/ml, and 1 mg/ml) where employed. The dose enhancement factor (DEF) was calculated as the ratio of radiation doses required to give the same biological effect (survival factor, SF) with and without GNPs. Results: Preliminary results show DEFs of up to 2.62 for the different combinations of x-ray doses and GNP concentrations and beam qualities. In general the DEF increased with increase in GNP concentration. However, for high doses the effect of GNP becomes less apparent likely due to already high cell kill by the radiation alone. Conclusion: The findings suggest that targeted GNPs can play a significant synergistic role in enhancing stereotactic radiosurgery for wet AMD. The results also provide impetus for ongoing studies to find the optimal synergy between the doses or beam energies and GNPs concentration. This will benefit in-vivo studies towards development of nanoparticle-aided radiotherapy for treatment of wet-AMD and potentially ocular cancers.« less
Freeland, Mark S.; Schendler, Carol Ellen
1983-01-01
Health care spending in the United States more than tripled between 1971 and 1981, increasing from $83 billion to $287 billion. This growth in health sector spending substantially outpaced overall growth in the economy, averaging 13.2 percent per year compared to 10.5 percent for the gross national product (GNP). By 1981, one out of every ten dollars of GNP was spent on health care, compared to one out of every thirteen dollars of GNP in 1971. If current trends continue and if present health care financing arrangements remain basically unchanged, national health expenditures are projected to reach approximately $756 billion in 1990 and consume roughly 12 percent of GNP. The focal issue in health care today is cost and cost Increases. The outlook for the 1980's is for continued rapid growth but at a diminished rate. The primary force behind this moderating growth is projected lower inflation. However, real growth rates are also expected to moderate slightly. The chief factors influencing the growth of health expenditures in the eighties are expected to be aging of the population, new medical technologies, increasing competition, restrained public funding, growth in real income, increased health manpower, and a deceleration in economy-wide inflation. Managers, policy makers and providers in the health sector, as in all sectors, must include in today's decisions probable future trends. Inflation, economic shocks, and unanticipated outcomes of policies over the last decade have intensified the need for periodic assessments of individual industries and their relationship to the macro economy. This article provides such an assessment for the health care industry. Baseline current-law projections of national health expenditures are made to 1990. PMID:10309852
[Cost-effectiveness of breast cancer screening policies in Mexico].
Valencia-Mendoza, Atanacio; Sánchez-González, Gilberto; Bautista-Arredondo, Sergio; Torres-Mejía, Gabriela; Bertozzi, Stefano M
2009-01-01
Generate cost-effectiveness information to allow policy makers optimize breast cancer (BC) policy in Mexico. We constructed a Markov model that incorporates four interrelated processes of the disease: the natural history; detection using mammography; treatment; and other competing-causes mortality, according to which 13 different strategies were modeled. Strategies (starting age, % of coverage, frequency in years)= (48, 25, 2), (40, 50, 2) and (40, 50, 1) constituted the optimal method for expanding the BC program, yielding 75.3, 116.4 and 171.1 thousand pesos per life-year saved, respectively. The strategies included in the optimal method for expanding the program produce a cost per life-year saved of less than two times the GNP per capita and hence are cost-effective according to WHO Commission on Macroeconomics and Health criteria.
Saeedfar, Kasra; Heng, Lee Yook; Chiang, Chew Poh
2017-12-01
Multi-wall carbon nanotubes (MWCNTs) were modified to design a new DNA biosensor. Functionalized MWCNTs were equipped with gold nanoparticles (GNPs) (~15nm) (GNP-MWCNTCOOH) to construct DNA biosensors based on carbon-paste screen-printed (SPE) electrodes. GNP attachment onto functionalized MWCNTs was carried out by microwave irradiation and was confirmed by spectroscopic studies and surface analysis. DNA biosensors based on differential pulse voltammetry (DPV) were constructed by immobilizing thiolated single-stranded DNA probes onto GNP-MWCNTCOOH. Ruthenium (III) chloride hexaammoniate [Ru(NH 3 ) 6 ,2Cl - ] (RuHex) was used as hybridization redox indicator. RuHex and MWCNT interaction was low in compared to other organic redox hybridization indicators. The linear response range for DNA determination was 1×10 -21 to 1×10 -9 M with a lower detection limit of 1.55×10 -21 M. Thus, the attachment of GNPs onto functionalized MWCNTs yielded sensitive DNA biosensor with low detection limit and stability more than 30days. Constructed electrode was used to determine gender of arowana fish. Copyright © 2017 Elsevier B.V. All rights reserved.
Ezpeleta, I; Arangoa, M A; Irache, J M; Stainmesse, S; Chabenat, C; Popineau, Y; Orecchioni, A M
1999-11-25
One approach to improve the bioavailability and efficiency of drugs consists of the association of a ligand (i.e. lectins), showing affinity for biological structures located on the mucosa surfaces, to nanoparticulate drug delivery systems. In this context, Ulex europaeus lectin-gliadin nanoparticle conjugates (UE-GNP) were prepared with the aim of evaluating their in vitro bioadhesive properties. The lectin was fixed by a covalent procedure to gliadin nanoparticles by a two-stage carbodiimide method. Typically, the amount of bound lectin was calculated to be approximately 15 microg lectin/mg nanoparticle, which represented a coupling efficiency of approximately 16% of the initial lectin concentration. In addition, the activity of these conjugates was tested with bovine submaxillary gland mucin (BSM) and the level of binding to this mucin was always much greater with UE-GNP than with controls (gliadin nanoparticles). However, the presence of 50 micromol fucose, which is the reported specific sugar for U. europaeus lectin, specifically inhibited the activity of these conjugates and, therefore, the UE-GNP binding to BSM was attenuated by 70%. These results clearly showed that the activity and specificity of U. europaeus lectin was preserved after covalent coupling to these biodegradable carriers.
Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde.
Akshath, Uchangi Satyaprasad; Bhatt, Praveena
2018-02-15
Supramolecular nanoparticle hybrids for biosensing of analytes have been a major focus due to their tunable optical and surface properties. Quantum dots-Gold nanoparticle (QDs-GNP) based FRET probes involving turn on/off principles have gained immense interest due to their specificity and sensitivity. Recent focus is on applying these supramolecular hybrids for enzyme operated biosensors that can specifically turn-on fluorescence induced by co-factor or product formed from enzymatic reaction. The present study focuses on locking and unlocking the interaction between QD-GNP pair leading to differential fluorescent properties. Cationic GNPs efficiently quenched the anionic QD fluorescence by forming nanoparticle hybrid. Quenching interaction between QD-GNP pair was unlocked by NADH leading to QD fluorescence turn-on. This phenomenon was applied for the successful detection of formaldehyde using NAD + dependent formaldehyde dehydrogenase. The proposed nano-sniffer could successfully detect formaldehyde from 0.001 to 100000ng/mL (R 2 = 0.9339) by the turn off-turn on principle. It could also detect formaldehyde in fruit juice and wine samples indicating its stability and sensitivity in real samples. The proposed nanoprobe can have wide applications in developing enzyme biosensors in future. Copyright © 2017 Elsevier B.V. All rights reserved.
Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers
NASA Astrophysics Data System (ADS)
Keong Lay, Kok; Yew Cheong, Brian Mun; Li Tong, Wei; Tan, Ming Kwang; Hung, Yew Mun
2017-04-01
A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.
Effects of graphite nanoparticles on nitrification in an activated sludge system.
Dong, Qian; Liu, Yanchen; Shi, Hanchang; Huang, Xia
2017-09-01
Graphite nanoparticles (GNPs) might result in unexpected effects during their transportation and transformation in wastewater treatment systems, including strong thermo-catalytic and catalytic effects and microbial cytotoxicity. In particular, the effects of GNPs on the nitrification process in activated sludge systems should be addressed. This study aimed to estimate the influence of GNPs on the nitrification process in a short-term nitrification reactor with exposure to different light sources. The results indicated that GNPs could only improve the efficiency of photothermal transformation slightly in the activated sludge system because of its photothermal effects under the standard illuminant (imitating 1 × sun). However, even with better photothermal effects, the nitrification efficiency still decreased significantly with GNP dosing under the standard illuminant, which might result from stronger cytotoxic effects of GNPs on the nitrifying bacteria. The disappearance of extracellular polymeric substances (EPS) around bacterial cells was observed, and the total quantity of viable bacteria decreased significantly after GNP exposuring. Variation in bacterial groups primarily occurred in nitrifying microbial communities, including Nitrosomonas sp., Nitrosospira sp., Comamonas sp. and Bradyrhizobiace sp. Nitrifiers significantly decreased, while the phyla Gammaproteobacteria, Deinocccus, and Bacteroidetes exhibited greater stability during GNP treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, J; Oklahoma State University, Stillwater, OK; Alqathami, M
Purpose: To probe physical evidences of the dose enhancement due to a low/clinically-relevant concentration of gold nanoparticles (GNPs) and Yb-169 gamma rays using PRESAGE dosimeters. Methods: A PRESAGE cuvette was placed at approximately 2 mm above the plane containing three novel Yb-169 brachytherapy seeds (3.2, 3.2, and 5.3 mCi each). Two types of PRESAGE dosimeters were used – plain PRESAGEs (controls) and PRESAGEs loaded with 0.02 wt. % of GNPs (GNP-PRESAGEs). Each PRESAGE dosimeter was irradiated with different time durations (0 to 24 hours) to deliver 0, 4, 8, 16 and 24 Gy of dose. For a reference/comparison, both typesmore » of PRESAGEs were also irradiated using 250 kVp x-rays with/without Er-filter to deliver 0, 3, 10, and 30 Gy of dose. Er-filter was used to emulate Yb-169 spectrum using 250 kVp x-rays. The absorption spectra of PRESAGEs were measured using a UV spectrophotometer and used to determine the corresponding optical densities (ODs). Results: GNP-PRESAGEs exposed to Yb-169 sources showed ∼65% increase in ODs compared with controls. When exposed to Er-filtered and unfiltered 250 kVp x-rays, they produced smaller increases in ODs, ∼41% and ∼37%, respectively. There was a linear relationship between ODs and delivered doses with a goodness-of-fit (R2) greater than 0.99. Conclusion: A notable increase in the ODs (∼65%) was observed for GNP-PRESAGEs irradiated by Yb-169 gamma rays. Considering the observed OD increases, it was highly likely that Yb-169 gamma rays were more effective than both Er-filtered and unfiltered 250 kVp x-rays, in terms of producing the dose enhancement. Due to several unknown factors (e.g., possible difference in the dose response of GNP-PRESAGEs vs. PRESAGEs), however, a further investigations is necessary to establish the feasibility of quantifying the exact amount of macroscopic or microscopic/local GNP-mediated dose enhancement using PRESAGE or similar volumetric dosimeters. Supported by DOD/PCRP grant W81XWH-12-1-0198 This investigation was supported by DOD/PCRP grant W81XWH-12-1-0198.« less
Alivov, Yahya; Baturin, Pavlo; Le, Huy Q; Ducote, Justin; Molloi, Sabee
2014-01-06
We investigated the effect of different imaging parameters, such as dose, beam energy, energy resolution and the number of energy bins, on the image quality of K-edge spectral computed tomography (CT) of gold nanoparticles (GNP) accumulated in an atherosclerotic plaque. A maximum likelihood technique was employed to estimate the concentration of GNP, which served as a targeted intravenous contrast material intended to detect the degree of the plaque's inflammation. The simulation studies used a single-slice parallel beam CT geometry with an x-ray beam energy ranging between 50 and 140 kVp. The synthetic phantoms included small (3 cm in diameter) cylinder and chest (33 × 24 cm(2)) phantoms, where both phantoms contained tissue, calcium and gold. In the simulation studies, GNP quantification and background (calcium and tissue) suppression tasks were pursued. The x-ray detection sensor was represented by an energy resolved photon counting detector (e.g., CdZnTe) with adjustable energy bins. Both ideal and more realistic (12% full width at half maximum (FWHM) energy resolution) implementations of the photon counting detector were simulated. The simulations were performed for the CdZnTe detector with a pixel pitch of 0.5-1 mm, which corresponds to a performance without significant charge sharing and cross-talk effects. The Rose model was employed to estimate the minimum detectable concentration of GNPs. A figure of merit (FOM) was used to optimize the x-ray beam energy (kVp) to achieve the highest signal-to-noise ratio with respect to the patient dose. As a result, the successful identification of gold and background suppression was demonstrated. The highest FOM was observed at the 125 kVp x-ray beam energy. The minimum detectable GNP concentration was determined to be approximately 1.06 µmol mL(-1) (0.21 mg mL(-1)) for an ideal detector and about 2.5 µmol mL(-1) (0.49 mg mL(-1)) for a more realistic (12% FWHM) detector. The studies show the optimal imaging parameters at the lowest patient dose using an energy resolved photon counting detector to image GNP in an atherosclerotic plaque.
Woo, Jun-Myung; Kim, Seok Hyang; Chun, Honnggu; Kim, Sung Jae; Ahn, Jinhong; Park, Young June
2013-09-21
In this paper, we investigate the effect of electrical pulse bias on DNA hybridization events in a biosensor platform, using a Carbon Nanotube Network (CNN) and Gold Nano Particles (GNP) as an electrical channel. The scheme provides both hybridization rate enhancement of bio molecules, and electrical measurement in a transient state to avoid the charge screening effect, thereby significantly improving the sensitivity. As an example, the probe DNA molecules oscillate with pulse trains, resulting in the enhancement of DNA hybridization efficiency, and accordingly of the sensor performances in Tris-EDTA (TE) buffer solution, by as much as over three times, compared to the non-biasing conditions. More importantly, a wide dynamic range of 10(6) (target-DNA concentration from 5 pM to 5 μM) is achieved in human serum. In addition, the pulse biasing method enables one to obtain the conductance change, before the ions within the Electrical Double Layer (EDL) are redistributed, to avoid the charge screening effect, leading to an additional sensitivity enhancement.
Ordered Array of Gold Nanoparticles Promoted by Functional Peptides
NASA Astrophysics Data System (ADS)
Matsukawa, Nozomu; Yamashita, Ichiro
2011-05-01
It was successfully demonstrated that 5-nm-diameter gold nanoparticles (GNPs) with 15% size distribution, the surface of which was modified by the synthesized peptides composed of the carbonaceous material affinity peptide (NHBP-1), linker of 11 amino acids and C-terminal cysteine, self-assembled into a two-dimensional (2D) ordered array on a silicon substrate in a spin drying process. NHBP-1 generated an attractive force large enough for the GNP to make 2D collections of GNPs in the course of the spin drying process, and the long linker of 11 amino acids cancelled out the ill effect of size distribution of GNP on the 2D ordered array formation.
TH-E-BRD-01: Innovation in (gold) Nanoparticle-Enhanced Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, S; Chithrani, B; Berbeco, R
2014-06-15
Radiation therapy relies on the concept of delivering high dose to tumor volumes whilst simultaneously aiming to minimize irradiation of healthy tissue. Gold and other metallic nanoparticles (GNPs) have the potential to greatly enhance dose depositions in their close proximity. While it was originally thought that this effect would only be significant for kV photon beams, it has been shown that GNPs also enhance dose and increase cell killing and survival fraction for MV photons as well as protons. GNPs have been shown to be preferentially taken up in tumors, depending on the GNP properties either internalized in the tumormore » cells or clustering in the tumor vasculature. Therefore GNPs offer an intriguing additional option to target the tumor while sparing healthy tissue. While a growing amount of research shows GNP induced enhancement factors in the order of 1.5 and higher, GNPs have not yet entered into clinical routine. In this symposium we will have three presentations discussing the current status of GNP based research, the potential to include GNPs in radiation therapy and the limitations and problems to use GNPs in the clinic. Physical and biological underpinnings of radiosensitization with gold nano particles An evolving body of recent literature alludes to the potential to sensitize tumors to radiation therapy using metallic nanoparticles. In preclinical studies, the techniques that hold promise for eventual clinical deployment are nanoparticle-assisted radiation dose enhancement and hyperthermic radiosensitization. To understand the underlying nanoparticle-radiation interactions, computational techniques offer an explanation for and predict the biophysical consequences at a nano-/meso-scopic scale. Nonetheless, there are persisting gaps in knowledge relating to the molecular mechanism of action of these radiosensitization approaches — some of these issues will be addressed. Since the literature relating to the diverse disciplines involved in these efforts spans across multiple specialties (clinical radiation oncology, radiation physics, radiation biology, nanotechnology, material science, biomedical engineering, pharmacology, chemistry, and tumor biology) and numerous specialty journals, there is no single compilation of extant research in this arena or forum for merging analogous concepts and paradigms. This symposium will provide such a venue — my presentation will start with familiarizing the audience with the potential applications of metallic nanoparticles in radiation therapy using specific illustrative examples and begin to explore ways to understand the underlying mechanisms of the effects observed. Biological effects of Gold nanoparticles in radiation therapy Gold nanoparticles (GNP) have been investigated as platforms to carry drugs or radio-sensitizing agents to tumors due to the biocompatibility of gold and relative ease of conjugation with therapeutic and targeting moieties. Recently, there has been interest in exploiting the physical properties of gold, specifically the high atomic number, to enhance radiation therapy. When irradiated, gold atoms will produce low energy electrons, depositing energy within a short distance. The ratio of dose deposited in the presence of the GNP to the dose deposited in the absence of GNP is referred to as the dose enhancement factor (DEF). This factor has been shown to depend on the concentration of GNP and the energy of the incident photons. The physics of this process, preliminary in vitro and in vivo experiments and future directions for this nascent field are described in this presentation. Gold Nanoparticles for improved therapeutic outcome in radiation therapy The application of nanoparticles (NPs) for improved therapeutics is at the forefront of cancer nanotechnology. Among other NP systems, gold nanoparticles (GNPs) are extensively used due to its impressive ability to act as both an anticancer drug carrier in chemotherapy and as a dose enhancer in radiotherapy. Cellular uptake of GNPs was dependent on their size. Among GNPs of diameter between 14–74 nm, GNPs of size 50 nm has the highest uptake. Radiosensitization was dependent on the size of the GNPs as well. GNPs of size 50-nm showed the highest radiosensitization enhancement factor compared to GNPs of 14 and 74 nm for lower- (105 kVp) and higher- (6 MVp) energy photons. GNPs used in those studies were predominantly localized in the cell cytoplasm. However, the therapeutic response can be further enhanced if NPs can be effectively targeted into the nucleus. Here, we present an effective strategy for designing a GNP-peptide complex for nuclear targeting. Two peptides were conjugated onto a GNP: One peptide enhanced the uptake while the other peptide enhanced the nuclear delivery. The nuclear-targeted cells displayed a fourfold increase in the therapeutic response when treated with radiation as compared to untargeted ones. DNA double-strand breaks were quantified using radiation-induced foci of γ- H2AX and 53BP1, and a modest increase in the number of foci per nucleus was observed in irradiated cell populations with internalized GNPs. This research will establish a more aggressive NP-based treatment approach for improved outcome in cancer therapy. Learning Objectives: Introduce radiosensitization concepts of metallic nanoparticle and provide the theoretical basis Provide an overview over the size and coating dependence for GNP uptake in cells Provide a compilation of the extant, multi-discipline research on metallic nanoparticles Understand the prospects for future studies and innovations and the potential for applications of metallic nanoparticles in radiation therapy.« less
Li, Yan; Zhang, Han; Crespo, Maria; Porwal, Harshit; Picot, Olivier; Santagiuliana, Giovanni; Huang, Zhaohui; Barbieri, Ettore; Pugno, Nicola M; Peijs, Ton; Bilotti, Emiliano
2016-09-14
Any industrial application aiming at exploiting the exceptional properties of graphene in composites or coatings is currently limited by finding viable production methods for large volumes of good quality and high aspect ratio graphene, few layer graphene (FLG) or graphite nanoplatelets (GNP). Final properties of the resulting composites are inherently related to those of the initial graphitic nanoparticles, which typically depend on time-consuming, resource-demanding and/or low yield liquid exfoliation processes. In addition, efficient dispersion of these nanofillers in polymer matrices, and their interaction, is of paramount importance. Here we show that it is possible to produce graphene/epoxy nanocomposites in situ and with high conversion of graphite to FLG/GNP through the process of three-roll milling (TRM), without the need of any additives, solvents, compatibilisers or chemical treatments. This readily scalable production method allows for more than 5 wt % of natural graphite (NG) to be directly exfoliated into FLG/GNP and dispersed in an epoxy resin. The in situ exfoliated graphitic nanoplatelets, with average aspect ratios of 300-1000 and thicknesses of 5-17 nm, were demonstrated to conferee exceptional enhancements in mechanical and electrical properties to the epoxy resin. The above conclusions are discussed and interpreted in terms of simple analytical models.
NASA Astrophysics Data System (ADS)
Aïssa, Brahim; Nedil, Mourad; Kroeger, Jens; Ali, Adnan; Isaifan, Rima J.; Essehli, Rachid; Mahmoud, Khaled A.
2018-03-01
Hybrid organic photovoltaic (OPV) cells based on conjugated polymer photoactive materials are promising candidates for flexible, high-performance and low-cost energy sources owing to their inexpensive materials, cost-effective processing and ease of fabrication by simple solution processes. However, the modest PV performance obtained to date—in particular the low power conversion efficiency (PCE)—has impeded the large scale deployment of OPV cells. The low PCE in OPV solar cells is mainly attributed to the low carrier mobility, which is closely correlated to the transport diffusion length of the charge carriers within the photoactive layers. The 2D graphene material could be an excellent candidate for assisting charge transport improvement in the active layer of OPV cells, due to its huge carrier mobility, thermal and chemical stability, and its compatibility with the solution process. In this work, we report on the improvement of the optoelectronic properties and photovoltaic performance of graphene nanoplatelet (GNP)-doped P3HT:PCBM photoactive blended layers, integrated into a bulk heterojunction (BHJ) organic-photovoltaic-based device, using PEDOT:PSS on an ITO/glass substrate. First, the light absorption capacity was observed to increase with respect to the GNP content, while the photoluminescence showed clear quenching, indicating electron transfer between the graphene sheets and the polymeric matrix. Then, the incorporation of GNP into the BHJ active layer resulted in enhanced PV performance with respect to the reference cell, and the best PV performance was obtained with 3 wt.% of GNP loading, with an open-circuit voltage of 1.24 V, a short-circuit current density value of 6.18 mA cm-2, a fill factor of 47.12%, and a power conversion efficiency of about 3.61%. We believe that the obtained results contribute to the development of organic photovoltaic devices and to the understanding of the impact of sp2-bonded carbon therein.
Li, Shuang; Shang, Xinxin; Liu, Jia; Wang, Yujie; Guo, Yingshu; You, Jinmao
2017-07-01
We present a universal amplified-colorimetric for detecting nucleic acid targets or aptamer-specific ligand targets based on gold nanoparticle-DNA (GNP-DNA) hybridization chain reaction (HCR). The universal arrays consisted of capture probe and hairpin DNA-GNP. First, capture probe recognized target specificity and released the initiator sequence. Then dispersed hairpin DNA modified GNPs were cross-linked to form aggregates through HCR events triggered by initiator sequence. As the aggregates accumulate, a significant red-to purple color change can be easily visualized by the naked eye. We used miRNA target sequence (miRNA-203) and aptamer-specific ligand (ATP) as target molecules for this proof-of-concept experiment. Initiator sequence (DNA2) was released from the capture probe (MNP/DNA1/2 conjugates) under the strong competitiveness of miRNA-203. Hairpin DNA (H1 and H2) can be complementary with the help of initiator DNA2 to form GNP-H1/GNP-H2 aggregates. The absorption ratio (A 620 /A 520 ) values of solutions were a sensitive function of miRNA-203 concentration covering from 1.0 × 10 -11 M to 9.0 × 10 -10 M, and as low as 1.0 × 10 -11 M could be detected. At the same time, the color changed from light wine red to purple and then to light blue have occurred in the solution. For ATP, initiator sequence (5'-end of DNA3) was released from the capture probe (DNA3) under the strong combination of aptamer-ATP. The present colorimetric for specific detection of ATP exhibited good sensitivity and 1.0 × 10 -8 M ATP could be detected. The proposed strategy also showed good performances for qualitative analysis and quantitative analysis of intracellular nucleic acids and aptamer-specific ligands. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jermoumi, M; Ngwa, W; Department of Radiation Oncology, Dana Farber Cancer Insitute, Brigham and Women’s Hospital, Harvard Medical, Boston, MA
2015-06-15
Purpose: Studies have shown that radiation boosting could help reduce prostate cancer (PCa) recurrence. Biological tumor volumes (BTV) are a high priority for such radiation boosting. The purpose of this study is to investigate the potential of radiation boosting of real patient BTVs using gold nanoparticles (GNP) released from gold-loaded brachytherapy spacers (GBS) during brachytherapy. Methods: The BTVs of 12 patients having prostate adenocarcinoma identified with positron emission tomography (PET) and CT scanner using C-11 labeled tracer [11C]acetate were investigated. The initial GNP concentration and time to achieve a dose enhancement effect (DEF) of 2 was simulated using the freelymore » downloadable software RAID APP. The investigations were carried out for low dose rate (LDR) brachytherapy sources (BTS) described in AAPM Task Group report 43: Cs-131, I-125, and Pd-103. In first case, we used 7 mg/g and 18 mg/g of GNP initial concentrations to estimate the time needed for released GNP to achieve a DEF of 2 for the different BTS, and compare with clinically relevant treatment times. In second case, we calculated the initial concentration of GNPs needed to achieve a DEF of 2 during the time the BTS would typically deliver 50%, 70% and 90% of the total dose. Results: For an initial concentration of 18 mg/g, when using Cs-131, and Pd-103, a DEF of 2 could only be achieved for BTV of 3.3 cm3 and 1 cm3 respectively. Meanwhile a DEF of 2 could be achieved for all 12 BTVs when using I-125. To achieve a DEF of 2 for all patients using Cs-131 and Pd-103, much higher initial concentrations would have to be used than have been typically employed in pre-clinical studies. Conclusion: The I-125 is the most viable BTS that can be employed with GBS to guide dose painting treatment planning for localized PCa.« less
Aïssa, Brahim; Nedil, Mourad; Kroeger, Jens; Ali, Adnan; Isaifan, Rima J; Essehli, Rachid; Mahmoud, Khaled A
2018-01-31
Hybrid organic photovoltaic (OPV) cells based on conjugated polymer photoactive materials are promising candidates for flexible, high-performance and low-cost energy sources owing to their inexpensive materials, cost-effective processing and ease of fabrication by simple solution processes. However, the modest PV performance obtained to date-in particular the low power conversion efficiency (PCE)-has impeded the large scale deployment of OPV cells. The low PCE in OPV solar cells is mainly attributed to the low carrier mobility, which is closely correlated to the transport diffusion length of the charge carriers within the photoactive layers. The 2D graphene material could be an excellent candidate for assisting charge transport improvement in the active layer of OPV cells, due to its huge carrier mobility, thermal and chemical stability, and its compatibility with the solution process. In this work, we report on the improvement of the optoelectronic properties and photovoltaic performance of graphene nanoplatelet (GNP)-doped P3HT:PCBM photoactive blended layers, integrated into a bulk heterojunction (BHJ) organic-photovoltaic-based device, using PEDOT:PSS on an ITO/glass substrate. First, the light absorption capacity was observed to increase with respect to the GNP content, while the photoluminescence showed clear quenching, indicating electron transfer between the graphene sheets and the polymeric matrix. Then, the incorporation of GNP into the BHJ active layer resulted in enhanced PV performance with respect to the reference cell, and the best PV performance was obtained with 3 wt.% of GNP loading, with an open-circuit voltage of 1.24 V, a short-circuit current density value of 6.18 mA cm -2 , a fill factor of 47.12%, and a power conversion efficiency of about 3.61%. We believe that the obtained results contribute to the development of organic photovoltaic devices and to the understanding of the impact of sp 2 -bonded carbon therein.
Aissa, Brahim; Nedil, Mourad; Kroeger, Jens; Ali, Adnan; Isaifan, Rima J; Essehli, Rachid; Mahmoud, Khaled
2018-01-09
Hybrid organic photovoltaic (OPV) cells based on conjugated polymers photoactive materials are promising candidates for flexible, high-performance and low-cost energy sources owing to their inexpensive materials, cost-effective processing, and ease of fabrication by simple solution processes. However, the modest PV performance obtained to date -in particular the low power conversion efficiency (PCE)- has impeded the large scale deployment of OPV cells. The low PCE in OPV solar cells has been mainly attributed to low carrier mobility, which is closely correlated to the transport diffusion length of the charge carriers within the photoactive layers. The 2D graphene material can be an excellent candidate for assisting the charge transport improvement in the active layer of OPV cells due to its huge carrier mobility, thermal and chemical stability, and its compatibility with the solution process. In this work, we report on the improvement of optoelectronic properties and photovoltaic performance of graphene nanoplatelets (GNP) doped P3HT:PCBM photoactive blended layers, integrated into a bulk heterojunction (BHJ) organic photovoltaic based device, using PEDOT:PSS on ITO/glass substrate. First, the light absorption capacity was observed to increase with respect to the GNP contents while the photoluminescence showed a clear quenching, indicating electrons transfer between the graphene sheets and the polymeric matrix. Then, the incorporation of GNP into the BHJ active layer has resulted in enhanced PV performance with respect to a reference cell, and the best PV performances were obtained with 3 wt. % of GNP loading, with an open-circuit voltage of 1.24 V, a short-circuit current density value of 6.18 mA/cm2, a fill factor of 47.12 %, and a power conversion efficiency of about 3.61 %. We believe that the obtained results contribute to the development of organic photovoltaic devices and to the understanding of the impact of sp2-bonded carbon therein. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Mora, A.; Han, F.; Lubineau, G.
2018-04-01
One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in the remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite’s conductivity based on these parameters.
McLoughlin, Kathleen; Rhatigan, Jim; McGilloway, Sinead; Kellehear, Allan; Lucey, Michael; Twomey, Feargal; Conroy, Marian; Herrera-Molina, Emillio; Kumar, Suresh; Furlong, Mairead; Callinan, Joanne; Watson, Max; Currow, David; Bailey, Christopher
2015-11-24
For most people, home is the preferred place of care and death. Despite the development of specialist palliative care and primary care models of community based service delivery, people who are dying, and their families/carers, can experience isolation, feel excluded from social circles and distanced from their communities. Loneliness and social isolation can have a detrimental impact on both health and quality of life. Internationally, models of social and practical support at the end of life are gaining momentum as a result of the Compassionate Communities movement. These models have not yet been subjected to rigorous evaluation. The aims of the study described in this protocol are: (1) to evaluate the feasibility, acceptability and potential effectiveness of The Good Neighbour Partnership (GNP), a new volunteer-led model of social and practical care/support for community dwelling adults in Ireland who are living with advanced life-limiting illness; and (2) to pilot the method for a Phase III Randomised Controlled Trial (RCT). The INSPIRE study will be conducted within the Medical Research Council (MRC) Framework for the Evaluation of Complex Interventions (Phases 0-2) and includes an exploratory two-arm delayed intervention randomised controlled trial. Eighty patients and/or their carers will be randomly allocated to one of two groups: (I) Intervention: GNP in addition to standard care or (II) Control: Standard Care. Recipients of the GNP will be asked for their views on participating in both the study and the intervention. Quantitative and qualitative data will be gathered from both groups over eight weeks through face-to-face interviews which will be conducted before, during and after the intervention. The primary outcome is the effect of the intervention on social and practical need. Secondary outcomes are quality of life, loneliness, social support, social capital, unscheduled health service utilisation, caregiver burden, adverse impacts, and satisfaction with intervention. Volunteers engaged in the GNP will also be assessed in terms of their death anxiety, death self efficacy, self-reported knowledge and confidence with eleven skills considered necessary to be effective GNP volunteers. The INSPIRE study addresses an important knowledge gap, providing evidence on the efficacy, utility and acceptability of a unique model of social and practical support for people living at home, with advanced life-limiting illness. The findings will be important in informing the development (and evaluation) of similar service models and policy elsewhere both nationally and internationally. ISRCTN18400594 18(th) February 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammen, D.M.
Kenya is said to be an ideal site for projects that promote renewable energy sources since it devotes over forty percent of its GNP to the purchase of imported coal and oil. The author presents a chronology of solar oven projects in Kenya and suggests that success of the program will be measured by the number of people who move on to wind turbine use. He discusses the role of renewable energy technology in reducing greenhouse gases and closes by recommending that industrialized nations that produce large amounts of carbon dioxide provide aid to develop projects that reduce carbon dioxidemore » elsewhere in the world. At the same time they would receive credit towards their carbon dioxide quotas.« less
Some comments on the World Energy Conference (WEC) energy demand model
NASA Astrophysics Data System (ADS)
Brandell, L.
1982-04-01
The WEC model, relating the energy demand for a region in a year to gross national product (GNP), aggregated energy prices and elasticity constants, is generalized. The changes that result from the assumption that the elasticity factors are not constant are examined. The resulting differential equation contains the variables energy demand per capita and GNP per capita for the region considered. The effect of time lag in energy demand and the influence of the population growth rate are also included in the model. No projections of the future energy demand were made, but model sensitiveness to the modifications were studied. Time lag effects and population growth effects can raise the projected energy demand for a region by 10% or more.
National Health Expenditures, 19801
Gibson, Robert M.; Waldo, Daniel R.
1981-01-01
The United States spent an estimated $247 billion for health care in 1980 (Figure 1), an amount equal to 9.4 percent of the Gross National Product (GNP). Highlights of the figures that underlie this estimate include the following: Health care expenditures in 1980 accelerated at a time when the economy as a whole exhibited sluggish growth. The 9.4 percent share of the GNP was a dramatic increase from the 8.9 percent share in 1979.Health care expenditures amounted to $1,067 per person in 1980 (Table 1). Of that amount, $450, or 42.2 percent, came from public funds.Expenditures for health care included $64.9 billion in premiums to private health insurance, $70.9 billion in Federal payments, and $33.3 billion in State and local government funds (Table 2).Hospital care accounted for 40.3 percent of total health care spending in 1980 (Table 3). These expenditures increased 16.2 percent between 1979 and 1980, to a level of $99.6 billion.Spending for the services of physicians increased 14.5 percent to $46.6 billion, 18.9 percent of all health care spending.All third parties combined—private health insurers, governments, philanthropists, and industry—financed 67.6 percent of the $217.9 billion spent for personal health care in 1980 (Table 4), ranging from 90.9 percent of hospital care services to 62.7 percent of physicians' services and 38.5 percent of the remainder (Table 5).Direct payments by consumers reached $70.6 billion in 1980 (Table 6). This accounted for 32.4 percent of all personal health care expenses.Outlays for health care benefits by the Medicare and Medicaid programs totaled $60.6 billion, including $35.8 billion for hospital care. The two programs combined to pay for 27.8 percent of all personal health care in the nation (Table 7). PMID:10309470
National Health Expenditures, 19811
Gibson, Robert M.; Waldo, Daniel R.
1982-01-01
The United States spent an estimated $287 billion for health care in 1981 (Figure 1), an amount equal to 9.8 percent of the Gross National Product (GNP). Highlights of the figures that underly this estimate include the following: Health care expenditures continued to grow at a rapid rate in 1981, at a time when the economy as a whole exhibited sluggish growth. The 9.8 percent share of the GNP was a dramatic increase from the 8.9 percent share seen just two years earlier.Health care expenditures amounted to $1,225 per person in 1981 (Table 1). Of that amount, $524, or 42.7 percent, came from public funds.Hospital care accounted for 41.2 percent of total health care spending in 1981 (Table 2). These expenditures increased 17.5 percent from 1980, to a level of $118 billion.Spending for the services of physicians increased 16.9 percent to $55 billion—19.1 percent of all health care spending.Public sources provided 42.7 percent of the money spent on health in 1981, including Federal payments of $84 billion and $39 billion in State and local government funds (Table 3).All third parties combined—private health insurers, governments, private charities, and Industry—financed 67.9 percent of the $255 billion in personal health care in 1981 (Table 4), covering 89.2 percent of hospital care services, 62.1 percent of physicians' services, and 41.3 percent of the remainder (Table 5).Direct patient payments for health care reached $82 billion in 1981, accounting for 32.1 percent of all personal health care expenses (Table 6). Consumers and their employers paid another $73 billion in premiums to private health insurers, $67 billion of which was returned in the form of benefits.Outlays for health care benefits by the Medicare and Medicaid programs totaled $73 billion, including $42 billion for hospital care. The two programs combined paid for 28.6 percent of all personal health care in the nation (Table 7). PMID:10309718
Wiederoder, Michael S; Nallon, Eric C; Weiss, Matt; McGraw, Shannon K; Schnee, Vincent P; Bright, Collin J; Polcha, Michael P; Paffenroth, Randy; Uzarski, Joshua R
2017-11-22
A cross-reactive array of semiselective chemiresistive sensors made of polymer-graphene nanoplatelet (GNP) composite coated electrodes was examined for detection and discrimination of chemical warfare agents (CWA). The arrays employ a set of chemically diverse polymers to generate a unique response signature for multiple CWA simulants and background interferents. The developed sensors' signal remains consistent after repeated exposures to multiple analytes for up to 5 days with a similar signal magnitude across different replicate sensors with the same polymer-GNP coating. An array of 12 sensors each coated with a different polymer-GNP mixture was exposed 100 times to a cycle of single analyte vapors consisting of 5 chemically similar CWA simulants and 8 common background interferents. The collected data was vector normalized to reduce concentration dependency, z-scored to account for baseline drift and signal-to-noise ratio, and Kalman filtered to reduce noise. The processed data was dimensionally reduced with principal component analysis and analyzed with four different machine learning algorithms to evaluate discrimination capabilities. For 5 similarly structured CWA simulants alone 100% classification accuracy was achieved. For all analytes tested 99% classification accuracy was achieved demonstrating the CWA discrimination capabilities of the developed system. The novel sensor fabrication methods and data processing techniques are attractive for development of sensor platforms for discrimination of CWA and other classes of chemical vapors.
2014-01-01
In the present study, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water. The concentrations of nanofluids were maintained at 0.025, 0.05, 0.075, and 0.1 wt.% for three different specific surface areas of 300, 500, and 750 m2/g. Transmission electron microscopy image shows that the suspensions are homogeneous and most of the materials have been well dispersed. The stability of nanofluid was investigated using a UV-visible spectrophotometer in a time span of 600 h, and zeta potential after dispersion had been investigated to elucidate its role on dispersion characteristics. The rheological properties of GNP nanofluids approach Newtonian and non-Newtonian behaviors where viscosity decreases linearly with the rise of temperature. The thermal conductivity results show that the dispersed nanoparticles can always enhance the thermal conductivity of the base fluid, and the highest enhancement was obtained to be 27.64% in the concentration of 0.1 wt.% of GNPs with a specific surface area of 750 m2/g. Electrical conductivity of the GNP nanofluids shows a significant enhancement by dispersion of GNPs in distilled water. This novel type of nanofluids shows outstanding potential for replacements as advanced heat transfer fluids in medium temperature applications including solar collectors and heat exchanger systems. PMID:24410867
Roadmap to clinical use of gold nanoparticles for radiosensitization
Schuemann, J.; Berbeco, R.; Chithrani, B. D.; Cho, S.; Kumar, R.; McMahon, S.; Sridhar, S.; Krishnan, S.
2015-01-01
The past decade has seen a dramatic increase in interest in the use of Gold Nanoparticles (GNPs) as radiation sensitizers for radiotherapy. This interest was initially driven by their strong absorption of ionizing radiation and the resulting ability to increase dose deposited within target volumes even at relatively low concentrations. These early observations are supported by extensive experimental validation, showing GNPs’ efficacy at sensitizing tumors in both in vitro and in vivo systems to a range of types of ionizing radiation, including kilovoltage and megavoltage X-rays as well as charged particles. Despite this experimental validation, there has been limited translation of GNP-mediated radiosensitization to a clinical setting. One of the key challenges in this area is the wide range of experimental systems that have been investigated, spanning a range of particle sizes, shapes and preparations. As a result, mechanisms of uptake and radiosensitization have remained difficult to clearly identify. This has proven a significant impediment to the identification of optimal GNP formulations which strike a balance among their radiosensitizing properties, their specificity to the tumors, their biocompatibility, and their imageability in vivo. This white paper reviews the current state of knowledge in each of the areas concerning the use of GNPs as radiosensitizers, and outlines the steps which will be required to advance GNP-enhanced radiation therapy from their current pre-clinical setting to clinical trials and eventual routine usage. PMID:26700713
NASA Astrophysics Data System (ADS)
Leeladhar; Raturi, Parul; Kumar, Ajeet; Singh, J. P.
2017-09-01
We demonstrate the fabrication of highly versatile photomechanical actuators based on graphene-polymer/metal bilayers that offers fast, low-cost fabrication, large deflection, reversible actuation under zero applied pre-strain, and wavelength-selective response. The photomechanical actuator consists of a graphene nanoplatelet (GNP)-polydimethylsiloxane (PDMS) nanocomposite with a thin chromium metal coating of 35 nm thickness on the backside of the structure. The photomechanical response of the GNP-PDMS/Cr photomechanical actuator was measured by recording the variation of the bending angle upon infrared (IR) light illumination. The bending in the bilayer actuator is caused by the generation of thermal stress due to the large mismatch (the ratio being 1/20) of the thermal expansion coefficient between the two layers as a result of IR absorption by GNPs and a subsequent increase in the local temperature. The maximum bending angle was found to be about 40 degrees with a corresponding large deflection value of about 6-7 mm within 6 s for IR illumination with an intensity of 550 mW cm-2. The corresponding actuation response and relaxation times were about 1 and 3 s, respectively. The GNP-PDMS/Cr bilayer combination when integrated with the standard surface micromachining technique of micro-electromechanical system fabrication can find useful applications in the realization of micro soft-robotics, controlled drug delivery, and light-driven micro switches i.e. micro-optomechanical systems.
Kheiri, F; Sabzi, R E; Jannatdoust, E; Shojaeefar, E; Sedghi, H
2011-07-15
A novel amperometric immunosensor for the detection of the p24 antigen (p24Ag) from HIV-1 was constructed using gold nanoparticles (GNP), multi-walled carbon nanotubes (MWCNTs), and an acetone-extracted propolis film (AEP). First, amino-functionalized MWCNTs (MWCNTNH₂) were prepared and dispersed in an HAuCl₄ solution to synthesize GNPs in situ. Next, the GNP/CNT/AEP nanocomposite was prepared by mixing an AEP solution and the GNP/CNT powder. The nanocomposite was dripped onto a gold electrode (GE), and then p24 antibody (anti-p24 Ab) was immobilized on the resulting modified gold electrode to construct the immunosensor. The assembly process was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The factors that were likely to influence the performance of the proposed immunosensor were studied in detail. Under optimal conditions, the proposed immunosensor exhibited good electrochemical sensitivity to the presence of p24 in a concentration range of 0.01 to 60.00 ng/mL, with a relatively low detection limit of 0.0064 ng/mL (S/N = 3). Moreover, the proposed immunosensor showed a rapid (≤ 18 s) and highly sensitive amperometric response (0.018 and 1.940 μA/ng/mL) to p24 with acceptable stability and reproducibility. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Yuan; Chopra, Nitin
2015-05-21
Patterned growth of multilayer graphene shell encapsulated gold nanoparticles (GNPs) and their covalent linking with inorganic quantum dots are demonstrated. GNPs were grown using a xylene chemical vapor deposition process, where the surface oxidized gold nanoparticles catalyze the multilayer graphene shell growth in a single step process. The graphene shell encapsulating gold nanoparticles could be further functionalized with carboxylic groups, which were covalently linked to amine-terminated quantum dots resulting in GNP-quantum dot heterostructures. The compositions, morphologies, crystallinity, and surface functionalization of GNPs and their heterostructures with quantum dots were evaluated using microscopic, spectroscopic, and analytical methods. Furthermore, optical properties of the derived architectures were studied using both experimental methods and simulations. Finally, GNP-quantum dot heterostructures were studied for photocatalytic degradation of phenol.
Miranda, Érica G. A.; Tofanello, Aryane; Brito, Adrianne M. M.; Lopes, David M.; Albuquerque, Lindomar J. C.; de Castro, Carlos E.; Costa, Fanny N.; Giacomelli, Fernando C.; Ferreira, Fabio F.; Araújo-Chaves, Juliana C.; Nantes, Iseli L.
2016-01-01
The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3–12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from 15 days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After 2 months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the gold surface. Therefore, the cysteine side chain of albumins is important for the colloidal stabilization of GNPs rather than as the reducing agent for the synthesis. Despite the presence of more reactive gold species at more acidic pH values, i.e., below 6.0, in these conditions the loss of native albumin structure impaired GNP synthesis. Alkaline pH values (9–12) combined the unfavorable conditions of denaturated protein structure with less reactive gold species. Therefore, an optimal condition for the synthesis of GNPs using serum albumins involves more reactive gold salt species combined with a reducing and negatively charged form of the protein, all favored at pH 6–7. PMID:27066476
Sakata, Dousatsu; Kyriakou, Ioanna; Okada, Shogo; Tran, Hoang N; Lampe, Nathanael; Guatelli, Susanna; Bordage, Marie-Claude; Ivanchenko, Vladimir; Murakami, Koichi; Sasaki, Takashi; Emfietzoglou, Dimitris; Incerti, Sebastien
2018-05-01
Gold nanoparticles (GNPs) are known to enhance the absorbed dose in their vicinity following photon-based irradiation. To investigate the therapeutic effectiveness of GNPs, previous Monte Carlo simulation studies have explored GNP dose enhancement using mostly condensed-history models. However, in general, such models are suitable for macroscopic volumes and for electron energies above a few hundred electron volts. We have recently developed, for the Geant4-DNA extension of the Geant4 Monte Carlo simulation toolkit, discrete physics models for electron transport in gold which include the description of the full atomic de-excitation cascade. These models allow event-by-event simulation of electron tracks in gold down to 10 eV. The present work describes how such specialized physics models impact simulation-based studies on GNP-radioenhancement in a context of x-ray radiotherapy. The new discrete physics models are compared to the Geant4 Penelope and Livermore condensed-history models, which are being widely used for simulation-based NP radioenhancement studies. An ad hoc Geant4 simulation application has been developed to calculate the absorbed dose in liquid water around a GNP and its radioenhancement, caused by secondary particles emitted from the GNP itself, when irradiated with a monoenergetic electron beam. The effect of the new physics models is also quantified in the calculation of secondary particle spectra, when originating in the GNP and when exiting from it. The new physics models show similar backscattering coefficients with the existing Geant4 Livermore and Penelope models in large volumes for 100 keV incident electrons. However, in submicron sized volumes, only the discrete models describe the high backscattering that should still be present around GNPs at these length scales. Sizeable differences (mostly above a factor of 2) are also found in the radial distribution of absorbed dose and secondary particles between the new and the existing Geant4 models. The degree to which these differences are due to intrinsic limitations of the condensed-history models or to differences in the underling scattering cross sections requires further investigation. Improved physics models for gold are necessary to better model the impact of GNPs in radiotherapy via Monte Carlo simulations. We implemented discrete electron transport models for gold in Geant4 that is applicable down to 10 eV including the modeling of the full de-excitation cascade. It is demonstrated that the new model has a significant positive impact on particle transport simulations in gold volumes with submicron dimensions compared to the existing Livermore and Penelope condensed-history models of Geant4. © 2018 American Association of Physicists in Medicine.
Jährig, K
1990-01-01
Using the official data of WHO statistics, the impact of some social, biological and medical factors on infant mortality rates (IMR) was compared for countries with very high, high, moderate and low IMR: Factors reflecting a low quality of life (illiteracy, low level of women's education, low urbanization, malnutrition etc.) showed a highly significant statistic correlation with increased IMR. The lack of a nationwide family planning program and a low level of medical care (prenatal care, presence of medical personnel during delivery, availability of contraceptives etc.) act in the same direction. In developing countries the GNP per capita did not markedly influence the IMR nor the rate of infants of low birth weight (UGR). One of the main reasons of this phenomenon is probably the wide gap of the income between different social groups in these countries. In contrast to this the GNP in economically developed countries (Europe, Australia, North America) correlates very closely with IMR and UGR. The impact of family planning differs between countries with legally artificial abortion and those with a more restrictive legislation. The nutritional status (i. e. in these countries hyperalimentation) shows a positive correlation with UGR but no impact on IMR. Some countries (in Europe Greece, Spain, Ireland/Yugoslavia, Romania) show a significant deviation (positive/negative) from the mean calculated according to the WHO data. These deviations can be (and should be) analysed for detecting and evaluating factors which could be influenced by strategies of social or/and medical interventions in order of further improvement of IMR.
Population growth and sustainable development in China.
Gui, S
1998-12-01
This article identifies the adverse impacts of population growth in China and offers suggestions for attaining sustainable development. Although China has below replacement level fertility, population will continue to increase. Chinese demographers project that the total fertility rate will average 2.1 each year until 2010, 2.1 until 2050, or 1.88 until 2010 and 1.6 during 2010-2050 under high, medium, and low variants, respectively. Total population would number 1.69 billion, 1.50 billion, or 1.46 billion under various projections, respectively, by 2050. Continued growth is expected to seriously slow economic development, to hinder improvements in the quality of and full use of human resources, to depress increases in per-capita economic development levels, and to impact on reasonable use of resources and environmental protection. The averting of 5 million births would save 35.5 billion yuan. Population growth has reduced the per-capita share of cultivated land from 0.19 to 0.08 hectares during 1952-95. There are about 150-190 million surplus rural laborers. Registered unemployment in cities was 3.1% in 1997. 11.5 million were laid-off workers. The working-age population will exceed 900 million during 2007-26. China's gross national product (GNP) was the 8th highest in the world in 1990, but its per-capita GNP was in 100th place. China's abundant natural resources are seriously reduced when population is considered. Environmental damage is already evident. Population growth needs to be controlled through family planning, an old-age social security program, and long-term population policies. Society needs healthier births and childbearing and better educated children.
Health care costs and financing in world perspective.
Roemer, M. I.
1991-01-01
Expenditures for health services, as a percentage of national wealth (gross national product, or GNP), have been rising throughout the world. Data to quantify this trend are available for many industrialized countries. The share of health spending derived from governmental sources has also been increasing. Mandatory or social insurance has developed to support health services in 70 nations. While widely used for paying doctors on a fee basis or by capitation, in Latin America doctors are organized in polyclinics and paid by salaries. General revenues are used to support Ministry of Health programs. Among health expenditures, the largest share goes to hospitalization. Cost sharing by patients is widely used to control rising costs. World trends have promoted equity in health care delivery. PMID:1814057
Code of Federal Regulations, 2011 CFR
2011-10-01
...). (r) GDP Price Index (GDP-PI). The estimate of the Chain-Type Price Index for Gross Domestic Product... Price Index (GNP-PI). The estimate of the “Fixed-Weighted Price Index for Gross National Product, 1982...
Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuemann, Jan, E-mail: jschuemann@mgh.harvard.edu; Berbeco, Ross; Chithrani, Devika B.
2016-01-01
The past decade has seen a dramatic increase in interest in the use of gold nanoparticles (GNPs) as radiation sensitizers for radiation therapy. This interest was initially driven by their strong absorption of ionizing radiation and the resulting ability to increase dose deposited within target volumes even at relatively low concentrations. These early observations are supported by extensive experimental validation, showing GNPs' efficacy at sensitizing tumors in both in vitro and in vivo systems to a range of types of ionizing radiation, including kilovoltage and megavoltage X rays as well as charged particles. Despite this experimental validation, there has been limited translationmore » of GNP-mediated radiation sensitization to a clinical setting. One of the key challenges in this area is the wide range of experimental systems that have been investigated, spanning a range of particle sizes, shapes, and preparations. As a result, mechanisms of uptake and radiation sensitization have remained difficult to clearly identify. This has proven a significant impediment to the identification of optimal GNP formulations which strike a balance among their radiation sensitizing properties, their specificity to the tumors, their biocompatibility, and their imageability in vivo. This white paper reviews the current state of knowledge in each of the areas concerning the use of GNPs as radiosensitizers, and outlines the steps which will be required to advance GNP-enhanced radiation therapy from their current pre-clinical setting to clinical trials and eventual routine usage.« less
Kim, Tae-Hyung; El-Said, Waleed Ahmed; An, Jeung Hee; Choi, Jeong-Woo
2013-04-01
A cell chip composed of ITO, gold nanoparticles (GNP) and RGD-MAP-C peptide composites was fabricated to enhance the electrochemical signals and proliferation of undifferentiated human neural stem cells (HB1.F3). The structural characteristics of the fabricated surfaces were confirmed by both scanning electron microscopy and surface-enhanced Raman spectroscopy. HB1.F3 cells were allowed to attach to various composites electrodes in the cell chip and the material-dependent effects on electrochemical signals and cell proliferation were analyzed. The ITO/60 nm GNP/RGD-MAP-C composite electrode was found to be the best material in regards to enhancing the voltammetric signals of HB1.F3 cells when exposed to cyclic voltammetry, as well as for increasing cell proliferation. Differential pulse voltammetry was performed to evaluate the adverse effects of doxorubicin on HB1.F3 cells. In these experiments, negative correlations between cell viability and chemical concentrations were obseved, which were more sensitive than MTT viability assay especially at low concentrations (<0.1 μg/mL). In this basic science study, a cell chip composed of ITO, gold nanoparticles and RGD-MAP-C peptide composites was fabricated to enhance electrochemical signals and proliferation of undifferentiated human neural stem cells (HB1.F3). The ITO/60 nm GNP/RGD-MAP-C composite electrode was found to best enhance the voltammetric signals of the studied cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Elzoghby, Ahmed O; Helmy, Maged W; Samy, Wael M; Elgindy, Nazik A
2013-08-01
Novel casein (CAS)-based micelles loaded with the poorly soluble anti-cancer drug, flutamide (FLT), were successfully developed in a powdered form via spray-drying technique. Genipin (GNP) was used to crosslink CAS micelles as demonstrated by color variation of the micelles. Drug solubilization was enhanced by incorporation within the hydrophobic micellar core which was confirmed by solubility study and UV spectra. Spherical core-shell micelles were obtained with a particle size below 100 nm and zeta potential around -30 mV. At low drug loading, FLT was totally incorporated within micellar core as revealed by thermal analysis. However, at higher loading, excess non-incorporated drug at micelle surface caused a significant reduction in the surface charge density. Turbidity measurements demonstrated the high physical stability of micelles for 2 weeks dependent on GNP-crosslinking degree. In a dry powdered form, the micelles were stable for 6 months with no significant changes in drug content or particle size. A sustained drug release from CAS micelles up to 5 days was observed. After i.v. administration into rats, CAS micelles exhibited a prolonged plasma circulation of FLT compared to drug solution. Furthermore, a more prolonged drug systemic circulation was observed for GNP-crosslinked micelles. Overall, this study reports the application of spray-dried natural protein-based micelles for i.v. delivery of hydrophobic anti-cancer drugs such as FLT. Copyright © 2013 Elsevier B.V. All rights reserved.
Nikfarjam, Alireza; Hosseini, Seyedsina; Salehifar, Nahideh
2017-05-10
In this research, a single-aligned nanofiber of pure TiO 2 and gold nanoparticle (GNP)-TiO 2 were fabricated using a novel electro-spinning procedure equipped with secondary electrostatic fields on highly sharp triangular and rectangular electrodes provided for gas sensing applications. The sol used for spinning nanofiber consisted of titanium tetraisopropoxide (C 12 H 28 O 4 Ti), acetic acid (CH 3 COOH), ethanol (C 2 H 5 OH), polyvinylpyrrolidone (PVP), and gold nanoparticle solution. FE-SEM, TEM, and XRD were used to characterize the single nanofiber. In triangular electrodes, the electrostatic voltage for aligning single nanofiber between electrodes depends on the angle tip of the electrode, which was around 1.4-2.1, 2-2.9, and 3.2-4.1 kV for 30°, 45°, and 60°, respectively. However, by changing the shape of the electrodes to rectangular samples and by increasing distance between electrodes from 100 to 200 μm, electro-spinning applied voltage decreased. Response of pure TiO 2 single nanofiber sensor was measured for 30-200 ppb carbon monoxide gas. The triangular sample revealed better response and lower threshold than the rectangular sample. Adding appropriate amounts of GNP decreased the operating temperature and increased the responses. CO concentration threshold for the pure TiO 2 and GNP-TiO 2 triangular samples was about 5 ppb and 700 ppt, respectively.
1985-02-01
Malta's population stood at 330,000 in 1983, with an annual growth rate of 0.5%. The infant mortality rate is 13.4/1000, and life expectancy is 73 years. 11 years of education is compulsory and the school attendance rate is 96%; the literacy rate is 90%. Malta's work force of 121,025 is distributed as follows: agriculture and fisheries, 4.5%; industry and commerce, 34.9%; services, 30.2%; and government, 22.3%. The gross national product (GNP) was estimated at US$1.04 billion in 1983 (per capita GNP, US$3162), with an annual growth rate of 3.5%. Malta lacks natural resources and a solid agricultural base, so tourism and trade are important. The government has taken steps to launch new export industries and build a more self-reliant economy. A goal is to attract export-oriented foreign direct investment that will provide needed technology and skills.
NASA Astrophysics Data System (ADS)
Popovtzer, Aron; Mizrachi, Aviram; Motiei, Menachem; Bragilovski, Dimitri; Lubimov, Leon; Levi, Mattan; Hilly, Ohad; Ben-Aharon, Irit; Popovtzer, Rachela
2016-01-01
A major problem in the treatment of head and neck cancer today is the resistance of tumors to traditional radiation therapy, which results in 40% local failure, despite aggressive treatment. The main objective of this study was to develop a technique which will overcome tumor radioresistance by increasing the radiation absorbed in the tumor using cetuximab targeted gold nanoparticles (GNPs), in clinically relevant energies and radiation dosage. In addition, we have investigated the biological mechanisms underlying tumor shrinkage and the in vivo toxicity of GNP. The results showed that targeted GNP enhanced the radiation effect and had a significant impact on tumor growth (P < 0.001). The mechanism of radiation enhancement was found to be related to earlier and greater apoptosis (TUNEL assay), angiogenesis inhibition (by CD34 level) and diminished repair mechanism (PCNA staining). Additionally, GNPs have been proven to be safe as no evidence of toxicity has been observed.
Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold naoparticles
Li, Xi; Zhou, Hongyu; Yang, Lei; Du, Guoqing; Pai-Panandiker, Atmaram; Huang, Xuefei; Yan, Bing
2011-01-01
A dual-ligand gold nanoparticle (DLGNP) was designed and synthesized to explore the therapeutic benefits of multivalent interactions between gold nanoparticles (GNPs) and cancer cells. DLGNP was tested on human epidermal cancer cells (KB), which had high expression of folate receptor. The cellular uptake of DLGNP was increased by 3.9 and 12.7 folds compared with GNP-folate or GNP-glucose. The enhanced cell recognition was due to multivalent interactions between both ligands on GNPs and cancer cells as shown by the ligand competition experiments. Furthermore, the multivalent interactions increased contrast between cells with high and low expression of folate receptors. The enhanced cell recognition enabled DLGNP to kill KB cells under X-ray irradiation at a dose that was safe to folate receptor low-expression (such as normal) cells. Thus DLGP has the potential to be a cancer-specific nano-theranostic agent. PMID:21232787
Preventing Protein Adsorption and Macrophage Uptake of Gold Nanoparticles via a Hydrophobic Shield
Larson, Timothy A.; Joshi, Pratixa P.; Sokolov, Konstantin
2012-01-01
Polyethylene glycol (PEG) surface coatings are widely used to render stealth properties to nanoparticles in biological applications. There is abundant literature on benefits of PEG coatings and their ability to reduce protein adsorption, to diminish non-specific interactions with cells, and to improve pharmacokinetics, but very little discussion of the limitations of PEG coatings. Here, we show that physiological concentrations of cysteine and cystine can displace methoxy-PEG-thiol molecules from the gold nanoparticle (GNP) surface that leads to protein adsorption and cell uptake in macrophages within 24 hours. Furthermore, we address this problem by incorporating an alkyl linker between the PEG and the thiol moieties that provides a hydrophobic shield layer between the gold surface and the hydrophilic outer PEG layer. The mPEG-alkyl-thiol coating greatly reduces protein adsorption on GNPs and their macrophage uptake. This has important implications for the design of GNP for biological systems. PMID:23009596
Climate-induced glacier and snow loss imperils alpine stream insects
Giersch, J. Joseph; Hotaling, Scott; Kovach, Ryan; Jones, Leslie A.; Muhlfeld, Clint C.
2017-01-01
Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snowmelt-driven alpine streams. Though progress has been made, existing understanding of the status, distribution, and ecology of alpine aquatic species, particularly in North America, is lacking, thereby hindering conservation and management programs. Two aquatic insects – the meltwater stonefly Lednia tumana and the glacier stonefly Zapada glacier – were recently proposed for listing under the U.S. Endangered Species Act due to climate-change-induced habitat loss. Using a large dataset (272 streams, 482 total sites) with high-resolution climate and habitat information, we describe the distribution, status, and key environmental features that limit L. tumana and Z. glacier across the northern Rocky Mountains. Lednia tumana was detected in 113 streams (175 sites) within Glacier National Park (GNP) and surrounding areas. The probability of L. tumana occurrence increased with cold stream temperatures and close proximity to glaciers and permanent snowfields. Similarly, densities of L. tumana declined with increasing distance from stream source. Zapada glacier was only detected in 10 streams (20 sites), six in GNP and four in mountain ranges up to ~600 km southwest. Our results show that both L. tumana and Z. glacier inhabit an extremely narrow distribution, restricted to short sections of cold, alpine streams often below glaciers predicted to disappear over the next two decades. Climate warming-induced glacier and snow loss clearly imperils the persistence of L. tumana and Z. glacier throughout their ranges, highlighting the role of mountaintop aquatic invertebrates as sentinels of climate change in mid-latitude regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koger, Brandon; Kirkby, Charles
2016-08-15
Introduction: Gold nanoparticles (GNPs) can enhance radiation therapy within a tumour, increasing local energy deposition under irradiation, but experimental evidence suggests the enhancement is not as large as predicted by dose enhancement alone. Many studies neglect to account for surface coatings that are frequently used to optimize GNP uptake and biological distribution. This study uses Monte Carlo methods to investigate the consequences on local dose enhancement due to including these surface coatings. Methods: Using the PENELOPE Monte Carlo code system, GNP irradiation was simulated both with and without surface coatings of polyethylene glycol (PEG) of various molecular weights. Dose wasmore » scored to the gold, coating, and surrounding water, and the dosimetric differences between these scenarios were examined. Results: The simulated PEG coating absorbs a large portion of the energy that would otherwise be deposited in the medium. The mean dose to water was reduced by up to 2.5, 3.5, and 4.5% for GNPs of diameters 50, 20, and 10 nm, respectively. This effect was more pronounced for smaller GNPs, thicker coatings, and low photon source energies where the enhancement due to GNPs is the greatest. The molecular weight of the coating material did not have a significant impact on the dose. Conclusions: The inclusion of a coating material in GNP enhanced radiation may reduce the dose enhancement due to the nanoparticles. Both the composition and size of the coating play a role in the level of this reduction and should be considered carefully.« less
Lin, Jin-Ding; Lin, Lan-Ping
2009-01-01
The purposes of the present study were to describe the welfare expenditure for people with disabilities and examine its relation to national economic growth from 1991 to 2006 in Taiwan. We analyzed data mainly from the information of population with disabilities, disability welfare expenditure and national economic growth and gross national product (GNP) per capita in Taiwan from 1991 to 2006. The percentage and overtime trend were used to examine the change in disability welfare expenditure, national economic growth and GNP per capita. Taiwan's economy continued its steady expansion on record an annual average growth of 5.4% and GNP per capita of 5.7% for the year 1991-2006. At the same period of time, the registered population with disabilities increased nearly five times (204,158 persons in 1991 to 981,015 persons in 2006), the government disability welfare expenditure was dramatically increasing to over 10 times from 1991 to 2006 (US$ 74 million to US$ 784 million). Although the total disability budget increased, the beneficiary of the individual with disability increased only 2.2 times. In the content of annual welfare budget for people with disabilities, it is difficult to figure out the increase pattern of the budget growth. However, the local government plays a vital role in disability welfare services gradually, it provides more than 85% welfare budget for people with disabilities. Finally, the author emphasizes that government should examine the long term effects of welfare budget allocation shifting from central government to local government to ensure the right of people with disabilities.
Panferov, Vasily G; Safenkova, Irina V; Varitsev, Yury A; Zherdev, Anatoly V; Dzantiev, Boris B
2017-12-06
Alkaline phosphatase (ALP) was used as an amplification tool in lateral flow immunoassay (LFIA). Potato virus Х (PVX) was selected as a target analyte because of its high economic importance. Two conjugates of gold nanoparticles were applied, one with mouse monoclonal antibody against PVX and one with ALP-labeled antibody against mouse IgG. They were immobilized to two fiberglass membranes on the test strip for use in LFIA. After exposure to the sample, a substrate for ALP (5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium) was dropped on the test strip. The insoluble dark-violet diformazan produced by ALP precipitated on the membrane and significantly increased the color intensity of the control and test zones. The limit of detection (0.3 ng mL -1 ) was 27 times lower than that of conventional LFIA for both buffer and potato leaf extracts. The ALP-enhanced LFIA does not require additional preparation procedures or washing steps and may be used by nontrained persons in resource-limited conditions. The new method of enhancement is highly promising and may lead to application for routine LFIA in different areas. Graphical abstract Two gold nanoparticles (GNP) conjugates were used - the first with monoclonal antibodies (mAb) (GNP-mAb); the second - alkaline phosphatase-labeled antibody against mAb (GNP-anti-mAb-ALP). The immuno complexes are captured by the polyclonal antibodies (pAb) in the test zone. Addition of the substrate solution (BCIP/NBT) results in the accumulation of the insoluble colored product and in a significance increase in color intensity.
Macro-/Nano- Materials Based Ultrasensitive Lateral Flow Nucleic Acid Biosensors
NASA Astrophysics Data System (ADS)
Takalkar, Sunitha
Ultrasensitive detection of nucleic acids plays a very important role in the field of molecular diagnosis for the detection of various diseases. Lateral flow biosensors (LFB) are convenient, easy-to-use, patient friendly forms of detection methods offering rapid and convenient clinical testing in close proximity to the patients thus drawing a lot of attention in different areas of research over the years. In comparison with the traditional immunoassays, the nucleic acid based lateral flow biosensors (NABLFB) has several advantages in terms of stability and interference capabilities. NABLFB utilizes nucleic acid probes as the bio-recognition element. The target analyte typically is the oligonucleotide like the DNA, mRNA, miRNA which are among the nucleic acid secretions by the tumor cells when it comes to detection of cancer. Traditionally gold nanoparticles (GNPs) have been used as labels for conjugating with the detection probes for the qualitative and semi quantitative analysis, the application of GNP-based LFB is limited by its low sensitivity. This dissertation describes the use of different nanomaterials and advanced detection technologies to enhance the sensitivities of the LFB based methods. Silica Nanorods decorated with GNP were synthesized and employed as labels for ultrasensitive detection of miRNA on the LFB. Owing to the biocompatibility and convenience in surface modification of SiNRs, they acted as good carriers to load numerous GNPs. The sensitivity of the GNP-SiNR-based LFSB was enhanced six times compared to the previous GNP-based LFSB. A fluorescent carbon nanoparticle (FCN) was first used as a tag to develop a lateral flow nucleic acid biosensor for ultrasensitive and quantitative detection of nucleic acid samples. Under optimal conditions, the FCN-based LFNAB was capable of detecting minimum 0.4 fM target DNA without complex operations and additional signal amplification. The carbon nanotube was used as a label and carrier of numerous enzyme and DNA molecules simultaneously thus resulting in the enormous amplification of the colorimetric signal. This CNT-enzyme label thus aided the ultra-sensitive detection of pancreatic cancer (PC) biomarker miRNA 210 and PC biomarker panel (miRNA 16, miRNA 21 and miRNA 196a). All these LFBs were also applied in the field of real sample detection.
NASA Astrophysics Data System (ADS)
Miranda, Érica; Tofanello, Aryane; Brito, Adrianne; Lopes, David; Giacomelli, Fernando; Albuquerque, Lindomar; Costa, Fanny; Ferreira, Fabio; Araujo-Chaves, Juliana; de Castro, Carlos; Nantes, Iseli
2016-03-01
The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from fifteen days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After two months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the gold surface. Therefore, the cysteine side chain of albumins is important for the colloidal stabilization of GNPs rather than as the reducing agent for the synthesis. Despite the presence of more reactive gold species at more acidic pH values, i.e., below
Müller, Michael Thomas; Pötzsch, Hendrik Florian; Gohs, Uwe; Heinrich, Gert
2018-06-25
An electromechanical response behavior is realized by nanostructuring the glass fiber interphase with different highly electrically conductive carbon allotropes like carbon nanotubes (CNT), graphene nanoplatelets (GNP), or conductive carbon black (CB). The operational capability of these multifunctional glass fibers for an online structural-health monitoring is demonstrated in endless glass fiber-reinforced polypropylene. The electromechanical response behavior, during a static or dynamic three-point bending test of various carbon modifications, shows qualitative differences in the signal quality and sensitivity due to the different aspect ratios of the nanoparticles and the associated electrically conductive network densities in the interphase. Depending on the embedding position within the glass fiber-reinforced composite compression, shear and tension loadings of the fibers can be distinguished by different characteristics of the corresponding electrical signal. The occurrence of irreversible signal changes during the dynamic loading can be attributed to filler reorientation processes caused by polymer creeping or by destruction of electrically conductive paths by cracks in the glass fiber interphase.
Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application
NASA Astrophysics Data System (ADS)
Abd-Ellah, Marwa; Moghimi, Nafiseh; Zhang, Lei; Thomas, Joseph. P.; McGillivray, Donald; Srivastava, Saurabh; Leung, Kam Tong
2016-01-01
Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm-2 and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance enhancement for DSSC application.Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm-2 and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance enhancement for DSSC application. Electronic supplementary information (ESI) available: UV/Vis absorption spectra of GNP/ZnO-NT photoanodes with GNPs obtained with deposition for 30, 60, 300, and 600 s, showing the similar absorbance in the visible region for deposition time above 300 s (Fig. S1); current density vs. voltage profile of GNP/ZnO-NT based DSSC with agglomerated GNPs obtained by using a 10 mM AuCl3 electrolyte. (Fig. S2); and UV/Vis absorption spectra of pristine ZnO-NT and GNP/ZnO-NT samples (Fig. S3). See DOI: 10.1039/c5nr08029k
DOT National Transportation Integrated Search
2018-01-01
This report explores the application of a discrete computational model for predicting the fracture behavior of asphalt mixtures at low temperatures based on the results of simple laboratory experiments. In this discrete element model, coarse aggregat...
Study of storage capacity in various carbon/graphene-based solid-state supercapacitors
NASA Astrophysics Data System (ADS)
Subramaniam, C. K.; Boopalan, G.
2014-09-01
Solid-state electrochemical double-layer capacitor (SEDLC) forms excellent energy storage device for high-power applications. They are highly reliable, with no electrolyte leaks, and can be packaged to suit various applications. The electrode material can be activated carbon to graphene. These can have a range of particle size, surface area, pore size and pore distribution for charge storage. The emphasis will be to optimize the graphene to carbon blend in the electrodes which would provide appreciable storage density of the SEDLC. We can use perfluorosulfonic acid polymer as the solid electrolyte in the SEDLC assembly. They have high ionic conductivity, good thermal stability, and mechanical strength. They also have excellent long-term chemical stability. Carbon is widely used for many practical applications, especially for the adsorption of ions and molecules, as it is possible to synthesize one-, two- or three-dimensional (1-, 2-, or 3-D) carbons. Some of the problems in activated carbon like varying micro or mesopores, poor ion mobility due to varying pore distribution, low electrical conductivity, can be overcome using graphene and blends of graphene with carbon of the right pore dimension and distribution. Graphene in various structural nomenclatures have been used by various groups for charge storage. Graphene nanoplates (GNP), with narrow mesopore distributions have been effectively used for SEDLCs. SEDLCs assembled with GNP and blends of GNP with Vulcan XC and solid polymer electrolyte like Nafion show exceptional performance. The cyclic voltammetric studies show that they support high scan rates with substantial smaller capacitance drop as we increase scan rates. Optimization of the electrode structure in terms of blend percentage, binder content and interface character in the frequency and time domain provides excellent insight into the double-layer interface.
MO-FG-204-06: A New Algorithm for Gold Nano-Particle Concentration Identification in Dual Energy CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L; Shen, C; Ng, M
Purpose: Gold nano-particle (GNP) has recently attracted a lot of attentions due to its potential as an imaging contrast agent and radiotherapy sensitiser. Imaging the GNP at its low contraction is a challenging problem. We propose a new algorithm to improve the identification of GNP based on dual energy CT (DECT). Methods: We consider three base materials: water, bone, and gold. Determining three density images from two images in DECT is an under-determined problem. We propose to solve this problem by exploring image domain sparsity via an optimization approach. The objective function contains four terms. A data-fidelity term ensures themore » fidelity between the identified material densities and the DECT images, while the other three terms enforces the sparsity in the gradient domain of the three images corresponding to the density of the base materials by using total variation (TV) regularization. A primal-dual algorithm is applied to solve the proposed optimization problem. We have performed simulation studies to test this model. Results: Our digital phantom in the tests contains water, bone regions and gold inserts of different sizes and densities. The gold inserts contain mixed material consisting of water with 1g/cm3 and gold at a certain density. At a low gold density of 0.0008 g/cm3, the insert is hardly visible in DECT images, especially for those with small sizes. Our algorithm is able to decompose the DECT into three density images. Those gold inserts at a low density can be clearly visualized in the density image. Conclusion: We have developed a new algorithm to decompose DECT images into three different material density images, in particular, to retrieve density of gold. Numerical studies showed promising results.« less
Introduction: population migration and urbanization in developing countries.
Kojima, R
1996-12-01
This introductory article discusses the correlation between migration and rapid urbanization and growth in the largest cities of the developing world. The topics include the characteristics of urbanization, government policies toward population migration, the change in absolute size of the rural population, and the problems of maintaining megacities. Other articles in this special issue are devoted to urbanization patterns in China, South Africa, Iran, Korea and Taiwan as newly industrialized economies (NIEs), informal sectors in the Philippines and Thailand, and low-income settlements in Bogota, Colombia, and India. It is argued that increased urbanization is produced by natural population growth, the expansion of the urban administrative area, and the in-migration from rural areas. A comparison of urbanization rates of countries by per capita gross national product (GNP) reveals that countries with per capita GNP of under US$2000 have urbanization rates of 10-60%. Rates are under 30% in Africa, the Middle East, South Asia, China, and Indonesia. Rapid urbanization appears to follow the economic growth curve. The rate of urbanization in Latin America is high enough to be comparable to urbanization in Europe and the US. Taiwan and Korea have high rates of urbanization that surpass the rate of industrialization. Thailand and Malaysia have low rates of urbanization compared to the size of their per capita GNP. Urbanization rates under 20% occur in countries without economic development. Rates between 20% and 50% occur in countries with or without industrialization. East Asian urbanization is progressing along with industrialization. Africa and the Middle East have urbanization without industrialization. In 1990 there were 20 developing countries and 5 developed countries with populations over 5 million. In 10 of 87 developing countries rural population declined in absolute size. The author identifies and discusses four patterns of urban growth.
Medicaid: Methods for Setting Nursing Home Rates Should be Improved.
1986-05-01
care facility SNF skilled nursing facility Page 7 GAO/HRJD.W626 Medicaid Nursing Home Rate Setting A,, I-?A -WI...consumer price index GNP Gross National Product HCFA Health Care Financing Administration HHS Department of Health and Human Services ICF intermediate
U. S. economy: some problems are ahead
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merklein, H.A.
1977-02-15
This article compares the performance of several key indicators under the last three Administrations: Eisenhower (Republican, 1953 to 1961); Kennedy-Johnson (Democratic, 1961 to 1969); and Nixon-Ford (Republican, 1969 to 1977). The methodology is as follows: to the extent that the indicators lend themselves to such a treatment, the beginning year in each Administration will be considered as a zero-point of departure, a base year, and subsequent performance of the indicator will be indexed to that base year. Tracing through the performance of each indicator for each of the three administrations' eight years of tenure permits a comparison of these administrations.more » The variables examined are inflation, unemployment, union activities, interest rates, deficit spending, money relative to GNP, increase in real GNP, money printing, and the breaking-point criterion. The author concludes that the U.S. President is relatively powerless in regard to improving the economy, although he can exert great power to harm it. (MCW)« less
NASA Astrophysics Data System (ADS)
Saboori, Abdollah; Pavese, Matteo; Badini, Claudio; Fino, Paolo
2018-01-01
Copper/graphene nanoplatelet (GNP) nanocomposites were produced by a wet mixing method followed by a classical powder metallurgy technique. A qualitative evaluation of the structure of graphene after mixing indicated that wet mixing is an appropriate dispersion method. Thereafter, the effects of two post-processing techniques such as repressing-annealing and hot isostatic pressing (HIP) on density, interfacial bonding, hardness, and thermal and electrical conductivity of the nanocomposites were analyzed. Density evaluations showed that the relative density of specimens increased after the post-processing steps so that after HIPing almost full densification was achieved. The Vickers hardness of specimens increased considerably after the post-processing techniques. The thermal conductivity of pure copper was very low in the case of the as-sintered samples containing 2 to 3 pct porosity and increased considerably to a maximum value in the case of HIPed samples which contained only 0.1 to 0.2 pct porosity. Electrical conductivity measurements showed that by increasing the graphene content electrical conductivity decreased.
NASA Astrophysics Data System (ADS)
Behera, M.; Ram, S.
2013-02-01
In this article, we report a facile one-step chemical synthesis of gold (Au) nanoparticles (GNPs) from a new precursor salt i.e., gold hydroxide in the presence of poly(vinyl pyrrolidone) (PVP) polymer. The non-aqueous dispersion of GNPs was comprehensively characterized by UV-Visible, FTIR, zeta potential, and transmission electron microscope (TEM). A strong surface plasmon resonance band at 529 nm in the UV-Visible spectrum confirms the formation of GNPs in the Au colloid. The FTIR spectroscopic results showed that PVP molecules get chemisorbed onto the surface of GNP via O-atom of carbonyl group. A negative zeta potential of (-)16 mV reveals accumulation of nonbonding electrons of O-atom of carbonyl group of PVP molecules on the nanosurface of GNP. TEM images demonstrate a core-shell nanostructure with an Au-crystalline core covered by a thin amorphous PVP-shell. PVP-capped GNPs could be a potential candidate for bio-sensing, catalysis, and other applications.
NASA Astrophysics Data System (ADS)
Cordero, E.; Centeno, D.
2015-12-01
Over the last four years, the Green Ninja Project (GNP) has been developing educational media (e.g., videos, games and online lessons) to help motivate student interest and engagement around climate science and solutions. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, the GNP is developing a technology focused, integrative, and yearlong science curriculum focused around solutions to climate change. Recognizing the importance of teacher training on the successful implementation of NGSS, we have also integrated teacher professional development into our curriculum. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that are piloting the curriculum during Fall 2015. We will also share our perspectives on how data, media creation and engineering can be used to create educational experiences that model the type of 'three-dimensional learning' encouraged by NGSS.
Nature vs. nurture: gold perpetuates "stemness".
Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip
2011-01-01
Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs.
IMAGE-GUIDED TREATMENT USING AN X-RAY THERAPY UNIT AND GOLD NANOPARTICLES: TEST OF CONCEPT.
Le Loirec, Cindy; Chambellan, Dominique; Tisseur, David
2016-06-01
Gold nanoparticles (GNPs) have the potential to enhance the radiation dose locally in conjunction with kV X-rays used for radiation therapy. As for other radiotherapy modalities, the absorbed dose needs to be controlled. To do that, it is an advantage to know the distribution of GNPs. However, no effective imaging tool exists to determine the GNP distribution in vivo. Various approaches have been proposed to determine the concentration of GNPs and its distribution in a tumour and in other organs and tissues. X-ray fluorescence computed tomography (XFCT) is a promising imaging technique to do that. A new experimental device based on the XFCT technique allowing the in vivo control of GNP radiotherapy treatments is proposed. As a test of concept, experimental acquisitions and Monte Carlo simulations were performed to determine the performance that a XFCT detector has to fulfil. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rapid screening test for detection of oxytetracycline residues in milk using lateral flow assay.
Naik, Laxmana; Sharma, Rajan; Mann, Bimlesh; Lata, Kiran; Rajput, Y S; Surendra Nath, B
2017-03-15
A rapid, semi-quantitative lateral flow assay (LFA) was developed to screen the oxytetracycline (OTC) antibiotics residues in milk samples. In this study a competitive immuno-assay format was established. Colloidal gold nano-particles (GNP) were prepared and used as labelling material in LFA. Polyclonal antibodies were generated against OTC molecule (anti-OTC), purified and the quality was assessed by enzyme linked immuno sorbet assay. For the first time membrane components required for LFA in milk system was optimized. GNP and anti-OTC stable conjugate preparation method was standardized, and then these components were placed over the conjugate pad. OTC coupled with carrier protein was placed on test line; species specific secondary antibodies were placed on the control line of the membrane matrix. Assay was validated by spiking OTC to antibiotic free milk samples and results could be accomplished within 5min. without need of any equipment. The visual detection limit was 30ppb. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nigeria`s rich resources for renewable energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayankoya, J.O.
It has been observed in Nigeria, that there is a correlation between the standard of living as measured by per capita GNP, and per capita energy consumption. As energy use per capita is tied to the importance of population increase it tends to drop during economic slow down. The per capita energy usage is put at 0.2 kw compared to 10 kw for USA and 4 kw for Europe respectively. Furthermore, analysis shows with the increase in population per year and a 2--5% growth in per capita GNP, require an increase of 5--8% in energy supply per year. The Countrymore » derives almost all its energy need from fossil fuels (petroleum, gas and coal), hydropower (the only renewable energy used for generating electricity at present) Wood, Animal, Human power and Wind. With the introduction of solar energy, wind energy, micro hydro power, ocean energy, geothermal energy, biomass conversion, and municipal waste energy, the generating of electricity is bound to take a new turn.« less
Novel Organo-Soluble Optically Tunable Chiral Hybrid Gold Nanorods
2014-12-04
in a polydimethylsiloxane film, the area with gold nanoparticles showed significant quenching effect under a UV light but appeared visually...Schematic depiction of the molecular state of PDI molecules mixing with GNP1 in the solution and solid states. Middle: Picture of a PDMS film containing a
Photoelectronic Sensor with Gold Nanoparticle Plasmon Antenna
2016-07-20
on glass substrate, GNP is absorbed on the film. After removing outer protein by UV ozone, TiO2 is deposited again and annealed. As optical... SiO2 Thin Films by CO2 Laser Annealing for Polycrystalline Silicon Thin Film Transistors”, AMD8-3L, The International Display Workshops Volume 21
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuting, E-mail: yutingl188@gmail.com; Paganetti, Harald; Schuemann, Jan
2015-10-15
Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photonmore » beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.« less
Lin, Yuting; Paganetti, Harald; McMahon, Stephen J; Schuemann, Jan
2015-10-01
The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.
Lin, Yuting; Paganetti, Harald; McMahon, Stephen J.; Schuemann, Jan
2015-01-01
Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor. PMID:26429263
NASA Astrophysics Data System (ADS)
Zhao, Jie; Song, Man; Wen, Chenyu; Majee, Subimal; Yang, Dong; Wu, Biao; Zhang, Shi-Li; Zhang, Zhi-Bin
2018-03-01
We present a method for fabricating highly conductive graphene-silver composite films with a tunable microstructure achieved by means of an inkjet printing process and low temperature annealing. This is implemented by starting from an aqueous ink formulation using a reactive silver solution mixed with graphene nanoplatelets (GNPs), followed by inkjet printing deposition and annealing at 100 °C for silver formation. Due to the hydrophilic surfaces and the aid of a polymer stabilizer in an aqueous solution, the GNPs are uniformly covered with a silver layer. Simply by adjusting the content of GNPs in the inks, highly conductive GNP/Ag composites (>106 S m-1), with their microstructure changed from a large-area porous network to a compact film, is formed. In addition, the printed composite films show superior quality on a variety of unconventional substrates compared to its counterpart without GNPs. The availability of composite films paves the way to the metallization in different printed devices, e.g. interconnects in printed circuits and electrodes in energy storage devices.
Rational design of gold nanocarrier for the delivery of JAG-1 peptide.
Matea, Cristian T; Mocan, Teodora; Tabaran, Flaviu; Iancu, Cornel; Mocan, Lucian-Constantin
2015-06-16
Unique properties exhibited by nanoparticles makes them great candidates for applications in physics, chemistry, biology, material science and medicine. The biological applications of water-soluble gold nanoparticles range from contrast agents, delivery vehicles to therapeutics. Notch signaling is a complex network that orchestrates cell fate decisions, which involves proliferation, migration, differentiation and cell death in organisms ranging from insects to humans. Studies have showed that a correct orientation of the Jag-1 signalling protein on the substrates proves to be of great importance when promoting Jagged-1 Notch interactions, also the availability of the ligands, super cedes the importance of their concentration. The aim of the present study was to synthetize a Jag-1 functionalized nanocarrier, which would promote an efficient interaction between the Jag-1 peptide and the Notch receptor. To this end, two routes for gold nanoparticle-peptide assembly were investigated, and the synthetized bio-nanostructures were characterized and compared by means of UV-Vis, FT-IR, DLS and AFM techniques. We have obtained a stable, monodisperse, hetero-functionalized GNP-PEG-JAG-1 bio-nanostructure for Notch pathway activation applications.
An overview of the situation in radiotherapy with emphasis on the developing countries.
Hanson, G P; Stjernswärd, J; Nofal, M; Durosinmi-Etti, F
1990-11-01
Radiotherapy services are closely linked to the level of medical care which, in turn, is an important component of the overall health care program, with its development related to social, economic, and educational factors. As a basis for understanding the situation regarding adequate coverage of the population by radiotherapy services, general information about the world population (currently 5 billion), age distribution, frequency of cancer occurrence, and causes of death is presented. For an appreciation of the obstacles that must be overcome, the situation with regard to Gross National Product (GNP), transfer of economic resources, and per capita expenditures for health services is shown. For example, in the developing world, most countries spend less than 5% of their GNP for health, and on a macro scale at least 20 billion U.S. dollars per year are being transferred from the poor nations of the southern hemisphere to the northern hemisphere. Information about the wide range of population coverage with radiotherapy resources and the trend regarding high-energy radiotherapy machines is presented. For example, in North America (USA) there are six high-energy machines for each one million persons, and each machine is used to treat about 230 new patients per year. In other parts of the world, such as large areas of Africa and South-East Asia, there may only be one high-energy radiotherapy machine for 20 to 40 million people, and one machine may be used to treat more than 600 new patients per year. Many cancer patients have no access to radiotherapy services. When estimates of the need for radiotherapy services in the developing world as a consequence of cancer incidence are compared with the current health expenditures, it is concluded that a combined effort of national authorities, donor and financial institutions, professional and scientific societies, and international organizations is required. The knowledge, skills, and technology are available in many excellent radiotherapy centers throughout the world. The key issues are priority and the commitment of sufficient resources.
Political non-speak. Gadfly: Norman Myers.
Myers, N
1992-01-01
Election years in Britain, the USA, France, and Italy have not granted the environment a high place on the political agenda even in the year of the UN Conference on Environment and Development (UNCED). The erosion of the natural resources base is not included as natural resource accounting in the computation of gross national product (GNP). In countries such as Germany, Australia, Indonesia, and Costa Rica, 50% of GNP growth annually is cancelled out by soil erosion, pollution, excessive logging, and other environmental degradation. The economic health of the country including recovery from recessions is related to environmental protection. The economic practices involve ecological deficit accounting. It has been suggested by Lester Brown of the Worldwatch Institute that an economical deflator is needed to gage economic progress. The ecological illiteracy of politicians prevents the American people from realizing the actual cost of ignoring the problems. Politicians fight against raising taxes on gasoline and ignore the cost of carbon dioxide emissions and destabilization of climate. Americans pay a 1/4 the price Europeans pay for gasoline. Energy conservation must be expanded from current levels. Improvements have been made since the first OPEC price hike in 1973; the economy saved $100 billion a year and improved efficiency and production. American conservation in line with European conservation would save $200 billion a year; matching Japanese conservation would generate a savings of $300 billion. This sum exceeds the Federal deficit or the Pentagon budget. It is enough to save 8 million children who die from preventable causes or provide $4.5 billion/year annually to the year 2000 for foreign aid for UN family planning programs. The savings compares favorable with the UNCED estimates of $125 billion/year for environmental protection in the South. The question is whether politicians really would be committing political suicide by listening less to oil and car lobbyists and listening more to those promoting long term interests and security.
Climate-induced glacier and snow loss imperils alpine stream insects.
Giersch, J Joseph; Hotaling, Scott; Kovach, Ryan P; Jones, Leslie A; Muhlfeld, Clint C
2017-07-01
Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snow melt-driven alpine streams. Although progress has been made, existing understanding of the status, distribution, and ecology of alpine aquatic species, particularly in North America, is lacking, thereby hindering conservation and management programs. Two aquatic insects - the meltwater stonefly (Lednia tumana) and the glacier stonefly (Zapada glacier) - were recently proposed for listing under the U.S. Endangered Species Act due to climate-change-induced habitat loss. Using a large dataset (272 streams, 482 total sites) with high-resolution climate and habitat information, we describe the distribution, status, and key environmental features that limit L. tumana and Z. glacier across the northern Rocky Mountains. Lednia tumana was detected in 113 streams (175 sites) within Glacier National Park (GNP) and surrounding areas. The probability of L. tumana occurrence increased with cold stream temperatures and close proximity to glaciers and permanent snowfields. Similarly, densities of L. tumana declined with increasing distance from stream source. Zapada glacier was only detected in 10 streams (24 sites), six in GNP and four in mountain ranges up to ~600 km southwest. Our results show that both L. tumana and Z. glacier inhabit an extremely narrow distribution, restricted to short sections of cold, alpine streams often below glaciers predicted to disappear over the next two decades. Climate warming-induced glacier and snow loss clearly imperils the persistence of L. tumana and Z. glacier throughout their ranges, highlighting the role of mountaintop aquatic invertebrates as sentinels of climate change in mid-latitude regions. © 2016 Published by John Wiley & Sons, Ltd. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
The Military Procurement System--Can It Be Improved?
1983-05-03
reprice the outyears of the budget. Repricing upwards, however, tends to be a self -fulfilling prophecy so we must be very careful about adding costs...Congress must be more economically resposible . A- Up to now, we haven’t been very good in this regard. Our economic asump- tions: GNP, inflation rates
The Prenatal, Perinatal, and Postnatal Status of Children in Idaho. Volume 1.
ERIC Educational Resources Information Center
Rudeen, Scott; And Others
This report attempts to identify the relevant environmental factors which have an impact upon the quality of life of the child. The following are discussed: (1) introduction--population growth, population growth and natural resource reserves, GNP and the quality of life, regulation of population size, population quality; (2) prenatal…
World Inequality: Social and Economic Data for Selected Developing Countries.
ERIC Educational Resources Information Center
Social Education, 1998
1998-01-01
Presents a chart of socioeconomic data for 38 developing countries and the United States. Includes statistics on GNP per capita, percent of people living on less than one dollar a day, under-age-5 mortality rate, percent of population without access to safe water, and total adult-literacy rate. (DSK)
The Financing of Higher Education: Issues and Prospects.
ERIC Educational Resources Information Center
Bowen, Howard R.
For the past 13 years, the growth in resources for higher education has been rapid and steady. But, although institutional costs are rising and will require a greater share of the GNP, certain adverse features of the political climate, competing claims for public and philanthropic funds, and likely continued high defense expenditures will make it…
A new electrocatalyst and its application method for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Wei, Guanjie; Jing, Minghua; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei
2015-08-01
The edge plane in carbon structure has good electrocatalytic activity toward vanadium redox reaction. To apply it in vanadium redox flow battery (VRFB) practically, the graphite nanopowders (GNPs) containing amounts of edge planes are used as electrocatalyst and embedded in the electrospun carbon nanofibers (ECNFs) by different mass ratios to make composite electrodes. The morphology and electrochemical activity of the GNPs and the composite electrodes containing them are characterized. Compared with the pristine ECNFs, the composite electrodes show much higher electrochemical activity. With the increase of GNPs content in composite electrodes, the electrochemical reversibility of the vanadium redox couples also increases. It proves the addition of GNPs can surely improve the electrochemical activity of ECNFs. Among the composite electrodes, the ECNFs containing 30 nm GNP by mass ratio of 1:50 show the best electrochemical activity, largest active surface area and excellent stability. Due to the high performance of GNP/ECNFs composite electrode and its relatively low cost preparation process, the GNPs are expected to be used as electrocatalyst in VRFB on a large scale to improve the cell performance.
Kong, Fen-Ying; Xu, Mao-Tian; Xu, Jing-Juan; Chen, Hong-Yuan
2011-10-15
In this paper, gold nanoparticle-thionine-reduced graphene oxide (GNP-THi-GR) nanocomposites were prepared to design a label-free immunosensor for the sensitive detection of carcinoembryonic antigen (CEA). The nanocomposites with good biocompatibility, excellent redox electrochemical activity and large surface area were coated onto the glassy carbon electrode (GCE) surface and then CEA antibody (anti-CEA) was immobilized on the electrode to construct the immunosensor. The morphologies and electrochemistry of the formed nanocomposites were investigated by using scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectrometry, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). CV and differential pulse voltammetry (DPV) studies demonstrated that the formation of antibody-antigen complexes decreased the peak current of THi in the GNP-THi-GR nanocomposites. The decreased currents were proportional to the CEA concentration in the range of 10-500 pg/mL with a detection limit of 4 pg/mL. The proposed method was simple, fast and inexpensive for the determination of CEA at very low levels. Copyright © 2011 Elsevier B.V. All rights reserved.
Evaluation of a novel ultra-sensitive nanoparticle probe-based assay for ricin detection.
Yin, Hui-qiong; Jia, Min-xian; Shi, Li-jun; Liu, Jun; Wang, Rui; Lv, Mao-min; Ma, Yu-yuan; Zhao, Xiong; Zhang, Jin-gang
2014-01-01
A gold nanoparticle (GNP) probe-based assay (GNPA) modified from the bio-barcode assay (BCA) was developed for ultrasensitive detection of ricin, a potential biothreat agent. In the GNPA, a chain of ricin was captured by a GNP probe coated with polyclonal antibodies and single-stranded signal DNA. A magnetic microparticle (MMP) probe coated with ricin A chain monoclonal antibody was then added to form an immuno-complex. After being magnetically separated, the immuno-complex containing the single-stranded signal DNA was characterized by PCR and real-time PCR. A detection limit of 10(-2) fg/ml was determined for the ricin A chain; this is eight orders of magnitude more sensitive than that achieved with an ELISA and two orders more sensitive than that obtained with the BCA. The coefficients of variation (CV) of the intra- and inter-assay values ranged from 3.82-6.46%. The results here show that this novel assay is an ultrasensitive method for detection of ricin proteins and may be suitable for the ultrasensitive detection of other proteins.
Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods.
Qin, Zhenpeng; Wang, Yiru; Randrianalisoa, Jaona; Raeesi, Vahid; Chan, Warren C W; Lipiński, Wojciech; Bischof, John C
2016-07-21
Gold nanoparticles (GNPs) are widely used for biomedical applications due to unique optical properties, established synthesis methods, and biological compatibility. Despite important applications of plasmonic heating in thermal therapy, imaging, and diagnostics, the lack of quantification in heat generation leads to difficulties in comparing the heating capability for new plasmonic nanostructures and predicting the therapeutic and diagnostic outcome. This study quantifies GNP heat generation by experimental measurements and theoretical predictions for gold nanospheres (GNS) and nanorods (GNR). Interestingly, the results show a GNP-type dependent agreement between experiment and theory. The measured heat generation of GNS matches well with theory, while the measured heat generation of GNR is only 30% of that predicted theoretically at peak absorption. This then leads to a surprising finding that the polydispersity, the deviation of nanoparticle size and shape from nominal value, significantly influences GNR heat generation (>70% reduction), while having a limited effect for GNS (<10% change). This work demonstrates that polydispersity is an important metric in quantitatively predicting plasmonic heat generation and provides a validated framework to quantitatively compare the heating capabilities between gold and other plasmonic nanostructures.
Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods
NASA Astrophysics Data System (ADS)
Qin, Zhenpeng; Wang, Yiru; Randrianalisoa, Jaona; Raeesi, Vahid; Chan, Warren C. W.; Lipiński, Wojciech; Bischof, John C.
2016-07-01
Gold nanoparticles (GNPs) are widely used for biomedical applications due to unique optical properties, established synthesis methods, and biological compatibility. Despite important applications of plasmonic heating in thermal therapy, imaging, and diagnostics, the lack of quantification in heat generation leads to difficulties in comparing the heating capability for new plasmonic nanostructures and predicting the therapeutic and diagnostic outcome. This study quantifies GNP heat generation by experimental measurements and theoretical predictions for gold nanospheres (GNS) and nanorods (GNR). Interestingly, the results show a GNP-type dependent agreement between experiment and theory. The measured heat generation of GNS matches well with theory, while the measured heat generation of GNR is only 30% of that predicted theoretically at peak absorption. This then leads to a surprising finding that the polydispersity, the deviation of nanoparticle size and shape from nominal value, significantly influences GNR heat generation (>70% reduction), while having a limited effect for GNS (<10% change). This work demonstrates that polydispersity is an important metric in quantitatively predicting plasmonic heat generation and provides a validated framework to quantitatively compare the heating capabilities between gold and other plasmonic nanostructures.
Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation
NASA Astrophysics Data System (ADS)
Chen, Kui; Zhang, Mingyi; Chang, Ya-Nan; Xia, Lin; Gu, Weihong; Qin, Yanxia; Li, Juan; Cui, Suxia; Xing, Gengmei
2016-06-01
The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met- p16). The probe, paired with Met- p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases.
Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.
Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn
2015-08-26
In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.
Priyadarshini, E; Pradhan, N; Panda, P K; Mishra, B K
2015-06-15
The ability of self-functionalized biogenic GNPs towards highly selective colorimetric detection of rare earth element cerium is being reported for the first time. GNPs underwent rapid aggregation on addition of cerium indicated by red shift of SPR peak followed by complete precipitation. Hereby, this concept of co-ordination of cerium ions onto the GNP surface has been utilized for detection of cerium. The remarkable capacity of GNPs to sensitively detect Ce without proves beneficial compared to previous reports of colorimetric sensing. MDL was 15 and 35 ppm by DLS and UV-vis spectroscopy respectively, suggesting DLS to be highly sensitive and a practical alternative in ultrasensitive detection studies. The sensing system showed a good linear fit favouring feasible detection of cerium in range of 2-50 ppm. Similar studies further showed the superior selectivity of biogenic GNPs compared to chemically synthesized counterparts. The sensing system favours on-site analysis as it overcomes need of complex instrumentation, lengthy protocols and surface modification of GNP. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhou, Xin; Cao, Peng; Zhu, Ye; Lu, Wuguang; Gu, Ning; Mao, Chuanbin
2015-10-01
The ability to count biomolecules such as cancer-biomarker miRNAs with the naked eye is seemingly impossible in molecular diagnostics. Here, we show an ultrasensitive naked-eye-counting strategy for quantifying miRNAs by employing T7 phage-a bacteria-specific virus nanoparticle-as a surrogate. The phage is genetically engineered to become fluorescent and capable of binding a miRNA-capturing gold nanoparticle (GNP) in a one-to-one manner. Target miRNAs crosslink the resultant phage-GNP couple and miRNA-capturing magnetic microparticles, forming a sandwich complex containing equimolar phage and miRNA. The phage is then released from the complex and developed into one macroscopic fluorescent plaque in a Petri dish by plating it in a host bacterial medium. Counting the plaques by the naked eye enables the quantification of miRNAs with detection limits of ∼3 and ∼5 aM for single-target and two-target miRNAs, respectively. This approach offers ultrasensitive and convenient quantification of disease biomarkers by the naked eye.
NASA Astrophysics Data System (ADS)
Zhou, Xin; Cao, Peng; Zhu, Ye; Lu, Wuguang; Gu, Ning; Mao, Chuanbin
2015-10-01
The ability to count biomolecules such as cancer-biomarker miRNAs with the naked eye is seemingly impossible in molecular diagnostics. Here, we show an ultrasensitive naked-eye-counting strategy for quantifying miRNAs by employing T7 phage--a bacteria-specific virus nanoparticle--as a surrogate. The phage is genetically engineered to become fluorescent and capable of binding a miRNA-capturing gold nanoparticle (GNP) in a one-to-one manner. Target miRNAs crosslink the resultant phage-GNP couple and miRNA-capturing magnetic microparticles, forming a sandwich complex containing equimolar phage and miRNA. The phage is then released from the complex and developed into one macroscopic fluorescent plaque in a Petri dish by plating it in a host bacterial medium. Counting the plaques by the naked eye enables the quantification of miRNAs with detection limits of ~3 and ~5 aM for single-target and two-target miRNAs, respectively. This approach offers ultrasensitive and convenient quantification of disease biomarkers by the naked eye.
Chen, Xia; Zhang, Min; Tan, Jie; Huang, Shuping; Wang, Chunli; Zhang, Hongyuan; Tan, Taiming
2017-01-01
Genetic control of parthenocarpy, a desirable trait in edible fruit with hard seeds, has been extensively studied. However, the molecular mechanism of parthenocarpic fruit development in eggplant (Solanum melongena L.) is still unclear. To provide insights into eggplant parthenocarpy, the transcriptomic profiles of a natural parthenocarpic (PP05) and two non-parthenocarpic (PnP05 and GnP05) eggplant lines were analyzed using RNA-sequencing (RNA-seq) technology. These sequences were assembled into 38925 unigenes, of which 22683 had an annotated function and 3419 were predicted as novel genes or from alternative splicing. 4864 and 1592 unigenes that were identified as DEGs between comparison groups PP05 vs PnP05 and PP05 vs GnP05, respectively. 506 common DEGs were found contained in both comparison groups, including 258 up-regulated and 248 down-regulated genes. Functional enrichment analyses identified many common or specific biological processes and gene set potentially associated with plant development. The most pronounced findings are that differentially regulated genes potentially-related with auxin signaling between parthenocarpic and non-parthenocarpic eggplants, e.g. calcium-binding protein PBP1 and transcription factor E2FB, which mediate the auxin distribution and auxin-dependent cell division, respectively, are up-regulated in the PP05; whereas homologs of GH3.1 and AUX/IAA, which are involved in inactivation of IAA and interference of auxin signaling, respectively, are down-regulated in PP05. Furthermore, gibberellin and cytokinin signaling genes and genes related to flower development were found differentially regulated between these eggplant lines. The present study provides comprehensive transcriptomic profiles of eggplants with or without parthenocarpic capacity. The information will deepen our understanding of the molecular mechanisms of eggplant parthenocarpy. The DEGs, especially these filtered from PP05 vs PnP05 + GnP05, will be valuable for further investigation of key genes involved in the parthenocarpic fruit development and genomics-assisted breeding.
Weinberger, R; Weisman, O; Guri, Y; Harel, T; Weizman, A; Gothelf, D
2018-02-01
The 22q11.2 deletion syndrome (22q11DS) is the most common genetic syndrome associated with schizophrenia. The goal of this study was to evaluate longitudinally the interaction between neurocognitive functioning, the presence of subthreshold psychotic symptoms (SPS) and conversion to psychosis in individuals with 22q11DS. In addition, we attempted to identify the specific neurocognitive domains that predict the longitudinal evolution of positive and negative SPS, as well as the effect of psychiatric medications on 22q11DS psychiatric and cognitive developmental trajectories. Forty-four participants with 22q11DS, 19 with Williams syndrome (WS) and 30 typically developing (TD) controls, age range 12-35years, were assessed at two time points (15.2±2.1months apart). Evaluation included the Structured Interview for Prodromal Symptoms (SIPS), structured psychiatric evaluation and the Penn Computerized Neurocognitive Battery (CNB). 22q11DS individuals with SPS had a yearly conversion rate to psychotic disorders of 8.8%, compared to none in both WS and TD controls. Baseline levels of negative SPS were associated with global neurocognitive performance (GNP), executive function and social cognition deficits, in individuals with 22q11DS, but not in WS. Deficits in GNP predicted negative SPS in 22q11DS and the emergence or persistence of negative SPS. 22q11DS individuals treated with psychiatric medications showed significant improvement in GNP score between baseline and follow-up assessments, an improvement that was not seen in untreated 22q11DS. Our results highlight the time-dependent interplay among positive and negative SPS symptoms, neurocognition and pharmacotherapy in the prediction of the evolution of psychosis in 22q11DS. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkby, C; The University of Calgary, Calgary, AB; Koger, B
2016-06-15
Purpose: Gold nanoparticles (GNPs) can enhance radiotherapy effects. The high photoelectric cross section of gold relative to tissue, particularly at lower energies, leads to localized dose enhancement. However in a clinical context, photon energies must also be sufficient to reach a target volume at a given depth. These properties must be balanced to optimize such a therapy. Given that nanoscale energy deposition patterns around GNPs play a role in determining biological outcomes, in this work we seek to establish their role in this optimization process. Methods: The PENELOPE Monte Carlo code was used to generate spherical dose deposition kernels inmore » 1000 nm diameter spheres around 50 nm diameter GNPs in response to monoenergetic photons incident on the GNP. Induced “lesions” were estimated by either a local effect model (LEM) or a mean dose model (MDM). The ratio of these estimates was examined for a range of photon energies (10 keV to 2 MeV), for three sets of linear-quadratic parameters. Results: The models produce distinct differences in expected lesion values, the lower the alpha-beta ratio, the greater the difference. The ratio of expected lesion values remained constant within 5% for energies of 40 keV and above across all parameter sets and rose to a difference of 35% for lower energies only for the lowest alpha-beta ratio. Conclusion: Consistent with other work, these calculations suggest nanoscale energy deposition patterns matter in predicting biological response to GNP-enhanced radiotherapy. However the ratio of expected lesions between the different models is largely independent of energy, indicating that GNP-enhanced radiotherapy scenarios can be optimized in photon energy without consideration of the nanoscale patterns. Special attention may be warranted for energies of 20 keV or below and low alpha-beta ratios.« less
Theoretical foundations for environmental Kuznets curve analysis
NASA Astrophysics Data System (ADS)
Lantz, Van
This thesis provides a dynamic theory for analyzing the paths of aggregate output and pollution in a country over time. An infinite horizon, competitive growth-pollution model is explored in order to determine the role that economic scale, production techniques, and pollution regulations play in explaining the inverted U-shaped relationship between output and some forms of pollution (otherwise known as the Environmental Kuznets Curve, or EKC). Results indicate that the output-pollution relationship may follow a strictly increasing, strictly decreasing (but bounded), inverted U-shaped, or some combination of curves. While the 'scale' effect may cause output and pollution to exhibit a monotonic relationship, 'technique' and 'regulation' effects may ultimately cause a de-linking of these two variables. Pollution-minimizing energy regulation policies are also investigated within this framework. It is found that the EKC may be 'flattened' or even eliminated moving from a poorly-regulated economy to one that minimizes pollution. The model is calibrated to the US economy for output (gross national product, GNP) and two pollutants (sulfur dioxide, SO2, and carbon dioxide, CO2) over the period 1900 to 1990. Results indicate that the model replicates the observations quite well. The predominance of 'scale' effects cause aggregate SO2 and CO2 levels to increase with GNP in the early stages of development. Then, in the case of SO 2, 'technique' and 'regulation' effects may be the cause of falling SO2 levels with continued economic growth (establishing the EKC). CO2 continues to monotonically increase as output levels increase over time. The positive relationship may be due to the lack of regulations on this pollutant. If stricter regulation policies were instituted in the two case studies, an improved allocation of resources may result. While GNP may be 2.596 to 20% lower than what has been realized in the US economy (depending on the pollution variable analyzed), individual welfare may increase from lower pollution levels.
The World Bank Atlas, 1995. 27th Edition.
ERIC Educational Resources Information Center
World Bank, Washington, DC.
This twenty-seventh World Bank Atlas presents key social and economic information for every country on the globe organized under three headings, People, Economy, and Environment. The emphasis is on how these themes are important in the development process. A new addition is that of a new measure of GNP per capita converted at purchasing power…
[Value-Added--Adding Economic Value in the Food Industry].
ERIC Educational Resources Information Center
Welch, Mary A., Ed.
1989-01-01
This booklet focuses on the economic concept of "value added" to goods and services. A student activity worksheet illustrates how the steps involved in processing food are examples of the concept of value added. The booklet further links food processing to the idea of value added to the Gross National Product (GNP). Discussion questions,…
Women, Men, and the Division of Labor. Worldwatch Paper 37.
ERIC Educational Resources Information Center
Newland, Kathleen
Because of the vital elements of economic life that national accounts often leave out, great skepticism should be attached to the use of GNP as a measure of country's well-being. National accounts in both developed and developing nations consistently overlook and undervalue work done by women, whether in the subsistence sector, the informal labor…
A Simple Forecasting Model Linking Macroeconomic Policy to Industrial Employment Demand.
ERIC Educational Resources Information Center
Malley, James R.; Hady, Thomas F.
A study detailed further a model linking monetary and fiscal policy to industrial employment in metropolitan and nonmetropolitan areas of four United States regions. The model was used to simulate the impacts on area and regional employment of three events in the economy: changing real gross national product (GNP) via monetary policy, holding the…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
...). Those NITUs permitted railbanking/interim trail use negotiations under the Trails Act, 16 U.S.C. 1247(d... November 19, 2010. ADDRESSES: Comments may be submitted either via the Board's e-filing format or in the traditional paper format. Any person using e-filing should attach a document and otherwise comply with the...
Labeling and tracking exosomes within the brain using gold nanoparticles
NASA Astrophysics Data System (ADS)
Betzer, Oshra; Perets, Nisim; Barnoy, Eran; Offen, Daniel; Popovtzer, Rachela
2018-02-01
Cell-to-cell communication system involves Exosomes, small, membrane-enveloped nanovesicles. Exosomes are evolving as effective therapeutic tools for different pathologies. These extracellular vesicles can bypass biological barriers such as the blood-brain barrier, and can function as powerful nanocarriers for drugs, proteins and gene therapeutics. However, to promote exosomes' therapy development, especially for brain pathologies, a better understanding of their mechanism of action, trafficking, pharmacokinetics and bio-distribution is needed. In this research, we established a new method for non-invasive in-vivo neuroimaging of mesenchymal stem cell (MSC)-derived exosomes, based on computed tomography (CT) imaging with glucose-coated gold nanoparticle (GNP) labeling. We demonstrated that the exosomes were efficiently and directly labeled with GNPs, via an energy-dependent mechanism. Additionally, we found the optimal parameters for exosome labeling and neuroimaging, wherein 5 nm GNPs enhanced labeling, and intranasal administration produced superior brain accumulation. We applied our technique in a mouse model of focal ischemia. Imaging and tracking of intranasally-administered GNP-labeled exosomes revealed specific accumulation and prolonged presence at the lesion area, up to 24 hrs. We propose that this novel exosome labeling and in-vivo neuroimaging technique can serve as a general platform for brain theranostics.
Prabhakar, Amit; Mukherji, Soumyo
2010-12-21
In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.
Health Insurance and Health Policy In The Federal Republic of Germany
Reinhardt, Uwe E.
1981-01-01
This paper presents a structured survey of the West German health care and health insurance system. The West German health insurance system is very comprehensive and generous. The scheme provides full coverage for all medically necessary services, including ambulatory and inpatient care, prescription drugs, dental care, medical appliances and even prolonged rehabilitation in the so called Kurorten (localities with health spas). Typically, patients do not bear any copayment at the point of service, or only very modest ones. Physicians are paid on a fee-for-service basis (according to negotiated fee schedules), hospitals are reimbursed on the basis of prospectively negotiated per diems, and the suppliers of drugs and appliances are reimbursed at what is referred to as “market prices” (that is, at prices set by suppliers with only mild indirect control from the public sector or third-party payors). This extraordinarily liberal insurance system causes West Germany to devote no greater a proportion of their Gross National Product (GNP) to health care than does the United States. Using the American definition of “national health care expenditures,” both nations currently devote about 9.4 percent of their GNP to health care. PMID:10309554
Kersten, Roland D; Ziemert, Nadine; Gonzalez, David J; Duggan, Brendan M; Nizet, Victor; Dorrestein, Pieter C; Moore, Bradley S
2013-11-19
Glycosyl groups are an essential mediator of molecular interactions in cells and on cellular surfaces. There are very few methods that directly relate sugar-containing molecules to their biosynthetic machineries. Here, we introduce glycogenomics as an experiment-guided genome-mining approach for fast characterization of glycosylated natural products (GNPs) and their biosynthetic pathways from genome-sequenced microbes by targeting glycosyl groups in microbial metabolomes. Microbial GNPs consist of aglycone and glycosyl structure groups in which the sugar unit(s) are often critical for the GNP's bioactivity, e.g., by promoting binding to a target biomolecule. GNPs are a structurally diverse class of molecules with important pharmaceutical and agrochemical applications. Herein, O- and N-glycosyl groups are characterized in their sugar monomers by tandem mass spectrometry (MS) and matched to corresponding glycosylation genes in secondary metabolic pathways by a MS-glycogenetic code. The associated aglycone biosynthetic genes of the GNP genotype then classify the natural product to further guide structure elucidation. We highlight the glycogenomic strategy by the characterization of several bioactive glycosylated molecules and their gene clusters, including the anticancer agent cinerubin B from Streptomyces sp. SPB74 and an antibiotic, arenimycin B, from Salinispora arenicola CNB-527.
Glacier-derived August runoff in northwest Montana
Clark, Adam; Harper, Joel T.; Fagre, Daniel B.
2015-01-01
The second largest concentration of glaciers in the U.S. Rocky Mountains is located in Glacier National Park (GNP), Montana. The total glacier-covered area in this region decreased by ∼35% over the past 50 years, which has raised substantial concern about the loss of the water derived from glaciers during the summer. We used an innovative weather station design to collect in situ measurements on five remote glaciers, which are used to parameterize a regional glacier melt model. This model offered a first-order estimate of the summer meltwater production by glaciers. We find, during the normally dry month of August, glaciers in the region produce approximately 25 × 106 m3 of potential runoff. We then estimated the glacier runoff component in five gaged streams sourced from GNP basins containing glaciers. Glacier-melt contributions range from 5% in a basin only 0.12% glacierized to >90% in a basin 28.5% glacierized. Glacier loss would likely lead to lower discharges and warmer temperatures in streams draining basins >20% glacier-covered. Lower flows could even be expected in streams draining basins as little as 1.4% glacierized if glaciers were to disappear.
Condoms becoming more popular.
Manuel, J
1993-05-01
Social marketing is a strategy which addresses a public health problem with private-sector marketing and sales techniques. In condom social marketing programs, condoms are often offered for sale to the public at low prices. 350 million condoms were sold to populations in developing countries through such programs in 1992, and another 650 million were distributed free through public clinics. The major donors of these condoms are the US Agency for International Development, the World Health Organization, the UN Population Fund, the International Planned Parenthood Federation, the World Bank, and the European Community. This marketing approach has promoted condom use as prevention against HIV transmission and has dramatically increased the number of condoms distributed and used throughout much of Africa, Latin America, and Asia. Donors are now concerned that they will not be able to provide condoms in sufficient quantities to keep pace with rapidly rising demand. Findings in selected countries, however, suggest that people seem willing to buy condoms which are well promoted and distributed. Increasing demand for condoms may therefore be readily met through greater dependence upon social marketing programs and condom sales. Researchers generally agree that a social marketing program must change for 100 condoms no more than 1% of a country's GNP in order to sell an amount of condoms equal to at least half of the adult male population. Higher prices may be charged for condoms in countries with relatively high per-capita incomes. Since prices charged tend to be too low to cover all promotional, packaging, distribution, and logistical management costs, most condom distribution programs will have to be subsidized on an ongoing basis.
1985-09-01
Rwanda's population characteristics, history, government, political situation, economy, and foreign relations were briefly discribed. Rwanda, a small African country, covers an area of 10,160 square miles and is situated between Zaire, Uganda, Burundi, and Tanzania. During the 1400s, Tutsi cattle breeders moved into the region and turned the Hutu farmers, the original occupants of the region, into serfs. The Tutsi maintained their dominant position until 1959. Rwanda was a German protectorate between 1899-1916 and a territory under the administration of Belgium following World War I. During the 1950s, the Tutsi resisted efforts by the Belgians to democratize the country, and in 1959, the Party of the Hutu Emancipation Movement (PARMEHUTU) overthrew the Tutsi monarchy. The PARMEHUTU leader, Gregoire Kayibanda was selected by the elected unicameral National Assembly to head the government following the granting of independence to Rwanda in 1962. In 1973 growing government inefficiency and corruption led to the takeover of the country by the military leader, Major General Juvenal Habyarimana, who in 1975 formed the National Revolutionary Movement for Development. Although civilian rule is being gradually restored, Habyarimana, who is now the elected president of the country, retains considerable power. In addition to the president, the country is run by a 17-member cabinet and a 70-member elected legislative body, the National Development Council. The current goverment is strongly committed to the developing the country's economy. Rwanda is a poor and overpopulated country, and its economy is based mainly on subsistence level farming. 93% of the work force is engaged in agriculture. 35% of the gross national product (GNP) is derived from agriculture, and the main agricultural products are tea, pyrethrum, and cinchona. Small-scale industries account for another 21.6% of the GNP. The government is working to increase the country's energy sources and to attract foreign investments. The country has some mineral desposits which contribute toward the country's foreign exchange. In 1984, the GNP was US$1.7 billion, the annual economic growth rate was 2.9%, the per capita GNP was US$270, and exports and imports were US$147.9 million and US$204.9 million respectively. Rwanda's population size is 6.3 million, and 85% of the population is Hutu and 14% is Tutsi. The annual population growth rate is 3.7%. The dominant religion is Christianity. The literacy rate is 37%, schooling is compulsory for 8 years, the infant mortality rate is 102/1000 live births, and life expectancy is 48 years. In 1981, the government established the National Population Office to develop and implement a national family planning policy. Rwanda follows a moderate and nonaligned course in foreign matters and maintains friendly relations with the US. In 1984 the US provided Rwanda with US$6.2 million in development assistance and US$1.5 million in food assistance. Most US aid is directed toward agricultural and health development.
A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β-lactams
NASA Astrophysics Data System (ADS)
Chen, Yanni; Wang, Yongwei; Liu, Liqiang; Wu, Xiaoling; Xu, Liguang; Kuang, Hua; Li, Aike; Xu, Chuanlai
2015-10-01
A novel gold immunochromatographic assay (GICA) based on anti-β-lactam receptors was innovatively developed that successfully allowed rapid and simultaneous detection of fifteen β-lactams in milk samples in 5-10 minutes. By replacing the antibodies used in traditional GICA with anti-β-lactam receptors, the difficulty in producing broad specific antibodies against β-lactams was overcome. Conjugates of ampicillin with BSA and goat anti-mouse immunoglobulin (IgG) were immobilized onto the test and control lines on the nitrocellulose membrane, respectively. Since goat anti-mouse IgG does not combine with receptors, negative serum from mice labelled with gold nanoparticles (GNP) was mixed with GNP-labelled receptors. Results were obtained within 20 min using a paper-based sensor. The utility of the assay was confirmed by the analysis of milk samples. The limits of detection (LOD) for amoxicillin, ampicillin, penicillin G, penicillin V, cloxacillin, dicloxacillin, nafcillin, oxacillin, cefaclor, ceftezole, cefotaxime, ceftiofur, cefoperazone, cefathiamidine, and cefepime were 0.25, 0.5, 0.5, 0.5, 1, 5, 5, 10, 25, 10, 100, 10, 5, 5, and 2 ng mL-1, respectively, which satisfies the maximum residue limits (MRL) set by the European Union (EU). In conclusion, our newly developed GICA-based anti-β-lactam receptor assay provides a rapid and effective method for one-site detection of multiple β-lactams in milk samples.A novel gold immunochromatographic assay (GICA) based on anti-β-lactam receptors was innovatively developed that successfully allowed rapid and simultaneous detection of fifteen β-lactams in milk samples in 5-10 minutes. By replacing the antibodies used in traditional GICA with anti-β-lactam receptors, the difficulty in producing broad specific antibodies against β-lactams was overcome. Conjugates of ampicillin with BSA and goat anti-mouse immunoglobulin (IgG) were immobilized onto the test and control lines on the nitrocellulose membrane, respectively. Since goat anti-mouse IgG does not combine with receptors, negative serum from mice labelled with gold nanoparticles (GNP) was mixed with GNP-labelled receptors. Results were obtained within 20 min using a paper-based sensor. The utility of the assay was confirmed by the analysis of milk samples. The limits of detection (LOD) for amoxicillin, ampicillin, penicillin G, penicillin V, cloxacillin, dicloxacillin, nafcillin, oxacillin, cefaclor, ceftezole, cefotaxime, ceftiofur, cefoperazone, cefathiamidine, and cefepime were 0.25, 0.5, 0.5, 0.5, 1, 5, 5, 10, 25, 10, 100, 10, 5, 5, and 2 ng mL-1, respectively, which satisfies the maximum residue limits (MRL) set by the European Union (EU). In conclusion, our newly developed GICA-based anti-β-lactam receptor assay provides a rapid and effective method for one-site detection of multiple β-lactams in milk samples. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04987c
Soviet Economic Growth: 1928-1985
1988-05-01
com- munications systems has little taste for the information revolution 81 (Colton, 1986, p. 170; on the general theme see also Graham, 1984 , pp. 129...much less successful. George Orwell and others viewed the development of modern com- munications and information technologies as the ultimate weapon...Bolshevik Revolution of 1917, the Soviet Union has transformed itself from an undeveloped economy into a modern indus- trial state with a GNP second
Hage, S J
1990-01-01
Yes, Mr. Hage admits the cost for health care is high--it's now 11% of the GNP. However, "society reaps real and tangible benefits from its availability," defends the author. This article questions a government which on the one hand denies appropriate care to many of those who need it most through health care cutbacks while on the other hand accepts a $500 billion bill for the S&L bailout.
What Makes Industries Strategic
1990-01-01
1988, America’s dollar GNP per employee fell below the average of the next six largest market econo- mies for the first time in this century (chart...manufacturing value added divided by full-time equivalent employees (with and without SIC 35, which contains computers). Chart 2. Productivity in...been available in English. Employees at Convex, a mini-supercomputer maker, had to learn the Japanese alphabet before they realized the opportunity
Gannon, Christopher J; Patra, Chitta Ranjan; Bhattacharya, Resham; Mukherjee, Priyabrata; Curley, Steven A
2008-01-01
Background Novel approaches to treat human cancer that are effective with minimal toxicity profiles are needed. We evaluated gold nanoparticles (GNPs) in human hepatocellular and pancreatic cancer cells to determine: 1) absence of intrinsic cytotoxicity of the GNPs and 2) external radiofrequency (RF) field-induced heating of intracellular GNPs to produce thermal destruction of malignant cells. GNPs (5 nm diameter) were added to 2 human cancer cell lines (Panc-1, Hep3B). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and propidium iodide-fluorescence associated cell sorting (PI-FACS) assessed cell proliferation and GNP-related cytotoxicity. Other GNP-treated cells were exposed to a 13.56 MHz RF field for 1, 2, or 5 minutes, and then incubated for 24 hours. PI-FACS measured RF-induced cytotoxicity. Results GNPs had no impact on cellular proliferation by MTT assay. PI-FACS confirmed that GNPs alone produced no cytotoxicity. A GNP dose-dependent RF-induced cytotoxicity was observed. For Hep3B cells treated with a 67 μM/L dose of GNPs, cytotoxicity at 1, 2 and 5 minutes of RF was 99.0%, 98.5%, and 99.8%. For Panc-1 cells treated at the 67 μM/L dose, cytotoxicity at 1, 2, and 5 minutes of RF was 98.5%, 98.7%, and 96.5%. Lower doses of GNPs were associated with significantly lower rates of RF-induced thermal cytotoxicity for each cell line (P < 0.01). Cells not treated with GNPs but treated with RF for identical time-points had less cytotoxicity (Hep3B: 17.6%, 21%, and 75%; Panc-1: 15.3%, 26.4%, and 39.8%, all P < 0.01). Conclusion We demonstrate that GNPs 1) have no intrinsic cytotoxicity or anti-proliferative effects in two human cancer cell lines in vitro and 2) GNPs release heat in a focused external RF field. This RF-induced heat release is lethal to cancer cells bearing intracellular GNPs in vitro. PMID:18234109
NASA Astrophysics Data System (ADS)
Ernenwein, Dawn M.
2011-12-01
Bottom-up self-assembly of peptides has driven the research progress for the following two projects: protein delivery vehicles of collagen microflorettes and the assembly of gold nanoparticles with coiled-coil peptides. Collagen is the most abundant protein in the mammals yet due to immunogenic responses, batch-to-batch variability and lack of sequence modifications, synthetic collagen has been designed to self-assemble into native collagen-like structures. In particular with this research, metal binding ligands were incorporated on the termini of collagen-like peptides to generate micron-sized particles, microflorettes. The over-arching goal of the first research project is to engineer MRI-active microflorettes, loaded with His-tagged growth factors with differential release rates while bound to stem cells that can be implemented toward regenerative cell-based therapies. His-tagged proteins, such as green fluorescent protein, have successfully been incorporated on the surface and throughout the microflorettes. Protein release was monitored under physiological conditions and was related to particle degradation. In human plasma full release was obtained within six days. Stability of the microflorettes under physiological conditions was also examined for the development of a therapeutically relevant delivery agent. Additionally, MRI active microflorettes have been generated through the incorporation of a gadolinium binding ligand, DOTA within the collagen-based peptide sequence. To probe peptide-promoted self-assemblies of gold nanoparticles (GNPs) by non-covalent, charge complementary interactions, a highly anionic coiled-coil peptide was designed and synthesized. Upon formation of peptide-GNP interactions, the hydrophobic domain of the coiled-coil were shown to promote the self-assembly of peptide-GNPs clustering. Hydrophobic forces were found to play an important role in the assembly process, as a peptide with an equally overall negative charge, but lacking an ordered hydrophobic face had no effect on GNP assembly. The self-assembly system herein is advantageous due to its reversible nature upon addition of high salt concentrations which masks the surface charge. There is great potential for using this uniquely designed self-assembled peptide-gold nanoparticle system for exploring the interplay between peptide ligation and GNP self-assembly.
Gold Nanoparticles for Brain Tumor Imaging: A Systematic Review.
Meola, Antonio; Rao, Jianghong; Chaudhary, Navjot; Sharma, Mayur; Chang, Steven D
2018-01-01
Demarcation of malignant brain tumor boundaries is critical to achieve complete resection and to improve patient survival. Contrast-enhanced brain magnetic resonance imaging (MRI) is the gold standard for diagnosis and pre-surgical planning, despite limitations of gadolinium (Gd)-based contrast agents to depict tumor margins. Recently, solid metal-based nanoparticles (NPs) have shown potential as diagnostic probes for brain tumors. Gold nanoparticles (GNPs) emerged among those, because of their unique physical and chemical properties and biocompatibility. The aim of the present study is to review the application of GNPs for in vitro and in vivo brain tumor diagnosis. We performed a PubMed search of reports exploring the application of GNPs in the diagnosis of brain tumors in biological models including cells, animals, primates, and humans. The search words were "gold" AND "NP" AND "brain tumor." Two reviewers performed eligibility assessment independently in an unblinded standardized manner. The following data were extracted from each paper: first author, year of publication, animal/cellular model, GNP geometry, GNP size, GNP coating [i.e., polyethylene glycol (PEG) and Gd], blood-brain barrier (BBB) crossing aids, imaging modalities, and therapeutic agents conjugated to the GNPs. The PubMed search provided 100 items. A total of 16 studies, published between the 2011 and 2017, were included in our review. No studies on humans were found. Thirteen studies were conducted in vivo on rodent models. The most common shape was a nanosphere (12 studies). The size of GNPs ranged between 20 and 120 nm. In eight studies, the GNPs were covered in PEG. The BBB penetration was increased by surface molecules (nine studies) or by means of external energy sources (in two studies). The most commonly used imaging modalities were MRI (four studies), surface-enhanced Raman scattering (three studies), and fluorescent microscopy (three studies). In two studies, the GNPs were conjugated with therapeutic agents. Experimental studies demonstrated that GNPs might be versatile, persistent, and safe contrast agents for multimodality imaging, thus enhancing the tumor edges pre-, intra-, and post-operatively improving microscopic precision. The diagnostic GNPs might also be used for multiple therapeutic approaches, namely as "theranostic" NPs.
Ahn, Sang Hee; Chung, Kwangzoo; Shin, Jung Wook; Cheon, Wonjoong; Han, Youngyih; Park, Hee Chul; Choi, Doo Ho
2017-09-15
Gold nanoparticles (GNPs) injected in a body for dose enhancement in radiation therapy are known to form clusters. We investigated the dependence of dose enhancement on the GNP morphology using Monte-Carlo simulations and compared the model predictions with experimental data. The cluster morphology was approximated as a body-centred cubic (BCC) structure by placing GNPs at the 8 corners and the centre of a cube with an edge length of 0.22-1.03 µm in a 4 × 4 × 4 µm 3 water-filled phantom. We computed the dose enhancement ratio (DER) for 50 and 260 kVp photons as a function of the distance from the cube centre for 12 different cube sizes. A 10 nm-wide concentric shell shaped detector was placed up to 100 nm away from a GNP at the cube centre. For model validation, simulations based on BCC and nanoparticle random distribution (NRD) models were performed using parameters that corresponded to the experimental conditions, which measured increases in the relative biological effect due to GNPs. We employed the linear quadratic model to compute cell surviving fraction (SF) and sensitizer enhancement ratio (SER). The DER is inversely proportional to the distance to the GNPs. The largest DERs were 1.97 and 1.80 for 50 kVp and 260 kVp photons, respectively. The SF predicted by the BCC model agreed with the experimental value within 10%, up to a 5 Gy dose, while the NRD model showed a deviation larger than 10%. The SERs were 1.21 ± 0.13, 1.16 ± 0.11, and 1.08 ± 0.11 according to the experiment, BCC, and NRD models, respectively. We most accurately predicted the GNP radiosensitization effect using the BCC approximation and suggest that the BCC model is effective for use in nanoparticle dosimetry.
Cho, Jongmin; Gonzalez-Lepera, Carlos; Manohar, Nivedh; Kerr, Matthew; Krishnan, Sunil; Cho, Sang Hyun
2016-03-21
Some investigators have shown tumor cell killing enhancement in vitro and tumor regression in mice associated with the loading of gold nanoparticles (GNPs) before proton treatments. Several Monte Carlo (MC) investigations have also demonstrated GNP-mediated proton dose enhancement. However, further studies need to be done to quantify the individual physical factors that contribute to the dose enhancement or cell-kill enhancement (or radiosensitization). Thus, the current study investigated the contributions of particle-induced x-ray emission (PIXE), particle-induced gamma-ray emission (PIGE), Auger and secondary electrons, and activation products towards the total dose enhancement. Specifically, GNP-mediated dose enhancement was measured using strips of radiochromic film that were inserted into vials of cylindrical GNPs, i.e. gold nanorods (GNRs), dispersed in a saline solution (0.3 mg of GNRs/g or 0.03% of GNRs by weight), as well as vials containing water only, before proton irradiation. MC simulations were also performed with the tool for particle simulation code using the film measurement setup. Additionally, a high-purity germanium detector system was used to measure the photon spectrum originating from activation products created from the interaction of protons and spherical GNPs present in a saline solution (20 mg of GNPs/g or 2% of GNPs by weight). The dose enhancement due to PIXE/PIGE recorded on the films in the GNR-loaded saline solution was less than the experimental uncertainty of the film dosimetry (<2%). MC simulations showed highly localized dose enhancement (up to a factor 17) in the immediate vicinity (<100 nm) of GNRs, compared with hypothetical water nanorods (WNRs), mostly due to GNR-originated Auger/secondary electrons; however, the average dose enhancement over the entire GNR-loaded vial was found to be minimal (0.1%). The dose enhancement due to the activation products from GNPs was minimal (<0.1%) as well. In conclusion, under the currently investigated conditions that are considered clinically relevant, PIXE, PIGE, and activation products contribute minimally to GNP/GNR-mediated proton dose enhancement, whereas Auger/secondary electrons contribute significantly but only at short distances (<100 nm) from GNPs/GNRs.
NASA Astrophysics Data System (ADS)
Ahn, Sang Hee; Chung, Kwangzoo; Shin, Jung Wook; Cheon, Wonjoong; Han, Youngyih; Park, Hee Chul; Choi, Doo Ho
2017-10-01
Gold nanoparticles (GNPs) injected in a body for dose enhancement in radiation therapy are known to form clusters. We investigated the dependence of dose enhancement on the GNP morphology using Monte-Carlo simulations and compared the model predictions with experimental data. The cluster morphology was approximated as a body-centred cubic (BCC) structure by placing GNPs at the 8 corners and the centre of a cube with an edge length of 0.22-1.03 µm in a 4 × 4 × 4 µm3 water-filled phantom. We computed the dose enhancement ratio (DER) for 50 and 260 kVp photons as a function of the distance from the cube centre for 12 different cube sizes. A 10 nm-wide concentric shell shaped detector was placed up to 100 nm away from a GNP at the cube centre. For model validation, simulations based on BCC and nanoparticle random distribution (NRD) models were performed using parameters that corresponded to the experimental conditions, which measured increases in the relative biological effect due to GNPs. We employed the linear quadratic model to compute cell surviving fraction (SF) and sensitizer enhancement ratio (SER). The DER is inversely proportional to the distance to the GNPs. The largest DERs were 1.97 and 1.80 for 50 kVp and 260 kVp photons, respectively. The SF predicted by the BCC model agreed with the experimental value within 10%, up to a 5 Gy dose, while the NRD model showed a deviation larger than 10%. The SERs were 1.21 ± 0.13, 1.16 ± 0.11, and 1.08 ± 0.11 according to the experiment, BCC, and NRD models, respectively. We most accurately predicted the GNP radiosensitization effect using the BCC approximation and suggest that the BCC model is effective for use in nanoparticle dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, S; Chung, K; Han, Y
Purpose: Injected gold nano particles (GNPs) to a body for dose enhancement are known to form in the tumorcell cluster morphology. We investigated the dependence of dose enhancement on the morphology characteristic with an approximated morphology model by using Monte Carlo simulations. Methods: For MC simulation, TOPAS version 2.0P-03 was used. GNP cluster morphology was approximated as a body center cubic(BCC) model by placing 8 GNPs at the corner and one at the center of cube with length from 2.59 µm to 0.25 µm located in a 4 µm length water filled cube phantom. 4 µm length square shaped beamsmore » of poly-energetic 50, 260 kVp photons were irradiated to the water filled cube phantom with 100 nm diameter GNPs in it. Dose enhancement ratio(DER) was computed as a function of distance from the surface of the GNP at the cube center for 18 cubes geometries. For scoring particles, 10 nm width of concentric shell shaped detector was constructed up to 100 nm from the center. Total dose in a sphere of 100 nm radius of detector were normalized to 2.59 µm length cube morphology. To verified biological effect of BCC model applied to cell survival curve fitting. Results: DER increase as the distance of the GNPs reduces. DER was largest for 0.25 µm length cube. Dependence of GNP distance DER increment was 1.73, 1.60 for 50 kVp, 260 kVp photons, respectively. Also, Using BCC model applied to cell survival curve was well prediction. Conclusion: DER with GNPs was larger when they are closely packed in the phantom. Therefore, better therapeutic effects can be expected with close-packed GNPs. This research was supported by the NRF funded by the Ministry of Science, ICT & Future Planning (2012M3A9B6055201 and 2012R1A1A2042414), Samsung Medical Center grant[GFO1130081].« less
Candiota, Ana Paula; Acosta, Milena; Simões, Rui Vasco; Delgado-Goñi, Teresa; Lope-Piedrafita, Silvia; Irure, Ainhoa; Marradi, Marco; Bomati-Miguel, Oscar; Miguel-Sancho, Nuria; Abasolo, Ibane; Schwartz, Simó; Santamaria, Jesús; Penadés, Soledad; Arús, Carles
2014-04-05
Magnetic resonance imaging (MRI) plays an important role in tumor detection/diagnosis. The use of exogenous contrast agents (CAs) helps to improve the discrimination between lesion and neighbouring tissue, but most of the currently available CAs are non-specific. Assessing the performance of new, selective CAs requires exhaustive assays and large amounts of material. Accordingly, in a preliminary screening of new CAs, it is important to choose candidate compounds with good potential for in vivo efficiency. This screening method should reproduce as close as possible the in vivo environment. In this sense, a fast and reliable method to select the best candidate CAs for in vivo studies would minimize time and investment cost, and would benefit the development of better CAs. The post-mortem ex vivo relative contrast enhancement (RCE) was evaluated as a method to screen different types of CAs, including paramagnetic and superparamagnetic agents. In detail, sugar/gadolinium-loaded gold nanoparticles (Gd-GNPs) and iron nanoparticles (SPIONs) were tested. Our results indicate that the post-mortem ex vivo RCE of evaluated CAs, did not correlate well with their respective in vitro relaxivities. The results obtained with different Gd-GNPs suggest that the linker length of the sugar conjugate could modulate the interactions with cellular receptors and therefore the relaxivity value. A paramagnetic CA (GNP (E_2)), which performed best among a series of Gd-GNPs, was evaluated both ex vivo and in vivo. The ex vivo RCE was slightly worst than gadoterate meglumine (201.9 ± 9.3% versus 237 ± 14%, respectively), while the in vivo RCE, measured at the time-to-maximum enhancement for both compounds, pointed to GNP E_2 being a better CA in vivo than gadoterate meglumine. This is suggested to be related to the nanoparticule characteristics of the evaluated GNP. We have developed a simple, cost-effective relatively high-throughput method for selecting CAs for in vivo experiments. This method requires approximately 800 times less quantity of material than the amount used for in vivo administrations.
2014-01-01
Background Magnetic resonance imaging (MRI) plays an important role in tumor detection/diagnosis. The use of exogenous contrast agents (CAs) helps to improve the discrimination between lesion and neighbouring tissue, but most of the currently available CAs are non-specific. Assessing the performance of new, selective CAs requires exhaustive assays and large amounts of material. Accordingly, in a preliminary screening of new CAs, it is important to choose candidate compounds with good potential for in vivo efficiency. This screening method should reproduce as close as possible the in vivo environment. In this sense, a fast and reliable method to select the best candidate CAs for in vivo studies would minimize time and investment cost, and would benefit the development of better CAs. Results The post-mortem ex vivo relative contrast enhancement (RCE) was evaluated as a method to screen different types of CAs, including paramagnetic and superparamagnetic agents. In detail, sugar/gadolinium-loaded gold nanoparticles (Gd-GNPs) and iron nanoparticles (SPIONs) were tested. Our results indicate that the post-mortem ex vivo RCE of evaluated CAs, did not correlate well with their respective in vitro relaxivities. The results obtained with different Gd-GNPs suggest that the linker length of the sugar conjugate could modulate the interactions with cellular receptors and therefore the relaxivity value. A paramagnetic CA (GNP (E_2)), which performed best among a series of Gd-GNPs, was evaluated both ex vivo and in vivo. The ex vivo RCE was slightly worst than gadoterate meglumine (201.9 ± 9.3% versus 237 ± 14%, respectively), while the in vivo RCE, measured at the time-to-maximum enhancement for both compounds, pointed to GNP E_2 being a better CA in vivo than gadoterate meglumine. This is suggested to be related to the nanoparticule characteristics of the evaluated GNP. Conclusion We have developed a simple, cost-effective relatively high-throughput method for selecting CAs for in vivo experiments. This method requires approximately 800 times less quantity of material than the amount used for in vivo administrations. PMID:24708566
Spark plasma sintering of tantalum carbide and graphene reinforced tantalum carbide composites
NASA Astrophysics Data System (ADS)
Kalluri, Ajith Kumar
Tantalum carbide (TaC), an ultra-high temperature ceramic (UHTC), is well known for its exceptional properties such as high hardness (15-19 GPa), melting point (3950 °C), elastic modulus (537 GPa), chemical resistance, and thermal shock resistance. To make TaC to be the future material for hypersonic vehicles, it is required to improve its thermal conductivity, strength, and fracture toughness. Researchers have previously reinforced TaC ceramic with carbides of silicon and boron as well as carbon nanotubes (CNTs), however, these reinforcements either undergo chemical changes or induce defects in the matrix during processing. In addition, these reinforcements exhibit a very minimal improvement in the properties. In the present work, we attempted to improve TaC fracture toughness by reinforcing with graphene nano-platelets (GNPs) and processing through spark plasma sintering at high temperature of 2000 °C, pressure of 70 MPa, and soaking time of 10 min. In addition, we investigated the active densification mechanism during SPS of TaC powder and the effect of ball milling time on mechanical properties of sintered TaC. A relative density of >96% was achieved using SPS of monolithic TaC (<3 μm). Ball milling improved the sintering kinetics and improved the mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness). Activation energy (100 kJ/mol) and stress exponent (1.2) were obtained using the analytical model developed for power-law creep. Grain boundary sliding is proposed as active densification mechanism based on these calculations. Reinforcing GNPs (2-6 vol.% ) in the TaC matrix improved relative density (99.8% for TaC-6 vol.% GNP). Also ˜150% and ˜180% increase in flexural strength and fracture toughness, respectively, was observed for TaC-6 vol.% GNP composite. The significant improvement in these properties is attributed to improved densification and toughening mechanisms such as sheet pull-out and crack deflection due to reinforcement of graphene. Uniform dispersion of GNPs in the TaC matrix is observed from microstructural analysis. Raman spectroscopy analysis also indicated that GNPs are successfully retained in sintered TaC-GNP composites without any damage.
2010-12-08
strength masks significant intra-party divisions. Lee’s most significant rival is GNP stalwart Park Geun- hye , the popular daughter of Korea’s former...bilateral dialogues were down from 55 in 2007 to 6 in 2008; South Korea’s governmental humanitarian assistance declined from 3.5 million won ($215 million...South interaction, including all business transactions except for those associated with the inter-Korean industrial park in the North Korean city
Legislative Environmental Impact Statement. Strategic Arms Reduction Treaty (START)
1991-12-01
accordance with National Environmental Policy Act (NEPA) and other applicable requirements. Chapter 2 describes the proposed action and alternatives...Missile Ft Feet GNP Gross National Product H2 Hydrogen H20 Water HC Hydrocarbons HCI Hydrogen Chloride HCN Hydrogen Cyanide HMTA Hazardous Materials...J pg/rr? Micrograms Per Cubic Meter ILJ Micrograms mg Milligram j MM Minuteman MOU Memorandum of Understanding N2 Nitrogen I NAAQS National Ambient
JPRS Report, East Asia: Southeast Asia.
1991-11-20
namese Embassy in Kuala Lumpur this month to help Malaysian investors interested in entering our markets , as Malaysia has done through its consulate...in Increase of Imports [KOMPAS 10 Oct] 4 Metal Corrosion Expense 1 Percent of GNP [KOMPAS 9 Oct] 5 MALAYSIA ECONOMIC Vietnamese Officials... markets . The 15 projects are scheduled for the 1991-1992 to 1994-1995 fiscal years and do not include four mega- projects that were rescheduled two
Security Implications of US Arms Transfers to China
1986-06-01
allied countries. 5. integrate arms transfers into a borader overall relationship. US freedom of action may be limited by the constraints discussed...administration’s arms transfer policy, it is first necessary to determine their relative validity. 1. Improve Balance Of Payments During the FY 86...favorable balance of payments, support growth of the Gross National Product (GNP), and generate tax revenues for the government.[Ref. 71] If the US wants
Pan, Wanma; Peng, Wen; Ning, Fengling; Zhang, Yu; Zhang, Yunfei; Wang, Yinhang; Xie, Weiyi; Zhang, Jing; Xin, Hong; Li, Cong; Zhang, Xuemei
2018-06-29
The early diagnosis of kidney diseases, which can remarkably impair the quality of life and are costly, has encountered great difficulties. Therefore, the development of methods for early diagnosis has great clinical significance. In this study, we used an emerging technique of photoacoustic (PA) imaging, which has relatively high spatial resolution and good imaging depth. Two kinds of PA gold nanoparticle (GNP)-based bioprobes were developed based on their superior photo detectability, size controllability and biocompatibility. The kidney injury mouse model was developed by unilateral ureteral obstruction for 96 h and the release of obstruction model). Giving 3.5 and 5.5 nm bioprobes by tail vein injection, we found that the 5.5 nm probe could be detected in the bladder in the model group, but not in the control group. These results were confirmed by computed tomography imaging. Furthermore, the model group did not show changes in the blood biochemical indices (BUN and Scr) and histologic examination. The 5.5 nm GNPs were found to be the critical point for early diagnosis of kidney injury. This new method was faster and more sensitive and accurate for the detection of renal injury, compared with conventional methods, and can be used for the development of a PA GNP-based bioprobe for diagnosing renal injury.
Alea-Reyes, María E; Penon, Oriol; García Calavia, Paula; Marín, María J; Russell, David A; Pérez-García, Lluïsa
2018-07-01
Metalloporphyrins are extensively investigated for their ability to form reactive oxygen species and as potent photosensitisers for use in photodynamic therapy. However, their hydrophobicity generally causes solubility issues concerning in vivo delivery due to lack of distribution and low clearance from the body. Immobilising porphyrins on carriers, such as gold nanoparticles (GNP), can overcome some of these drawbacks. The mode of assembling the porphyrins to the carrier influences the properties of the resulting drug delivery systems. We describe the synthesis and characterisation of new porphyrin decorated water soluble GNP and we explore Zn-imidazole axial coordination as the mode of linking the porphyrin to the metallic core of the nanoparticles. Quantification of singlet oxygen production, toxicity in dark, cellular uptake by SK-BR-3 cells and phototoxicity have been assessed. Axial coordination limits the number of porphyrins on the gold surface, reduces the formation of aggregates, and diminishes metal exchange in the porphyrin, all of which contribute to enhance the efficiency of singlet oxygen generation from the immobilised porphyrin. In vitro experiments on SK-BR-3 cells reveal a fast uptake followed by more than 80% cell death after irradiation with low doses of light. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Guangwu; Wang, Fuzhong; Dai, Jing; Huang, Zhixiong
2016-01-01
This study investigated the effect of silane and surfactant treatments of graphene nanoplatelets (GnPs) on the mechanical and thermal properties of silicone rubber (SR) composites. GnPs were modified with aminopropyltriethoxysilane (APTES), vinyltrimethoxysilane (VTMS), and Triton X-100, and then the pristine GnPs and functionalized GnPs were individually incorporated into the SR. Compared with the pristine GnP/SR composite, the composites reinforced with modified GnP showed better tensile strength, elongation at break, and thermal conductivity properties due to better dispersion of modified GnPs and stronger interfacial interactions between the modified GnPs and matrix. The mechanical properties and thermal conductivity of the VTMS-GnP/SR composite were comparable to the properties of the Triton-GnP counterpart, but better than that of the APTES-GnP/SR composite. In addition, the VTMS-GnP/SR composite demonstrated the highest thermal stability and crystallization temperature among the four types of composites. The remarkable improvement of mechanical and thermal properties of the VTMS-GnP/SR composite was mainly due to the covalent linkage of VTMS-GnP with SR. The VTMS treatment was a more appropriate modification of GnP particles to improve the multifunctional properties of SR. PMID:28787891
Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer
NASA Astrophysics Data System (ADS)
Zhang, Zhenxi; Wang, Sijia; Xu, Hao; Wang, Bo; Yao, Cuiping
2015-05-01
There are three possible mechanisms for 5-aminolevulinic acid (5-ALA) conjugated gold nanoparticles (GNPs) through electrostatic bonding for photodynamic therapy (PDT) of cancer: GNPs delivery function, singlet oxygen generation (SOG) by GNPs irradiated by light, and surface resonance enhancement (SRE) of SOG. Figuring out the exact mechanism is important for further clinical treatment. 5-ALA-GNPs and human chronic myeloid leukemia K562 cells were used to study delivery function and SOG by GNPs. The SRE of SOG enabled by GNPs was explored by protoporphyrin IX (PpIX)-GNPs conjugate through electrostatic bonding. Cell experiments show that the GNPs can improve the efficiency of PDT, which is due to the vehicle effect of GNPs. PpIX-GNPs conjugate experiments demonstrated that SOG can be improved about 2.5 times over PpIX alone. The experiments and theoretical results show that the local field enhancement (LFE) via localized surface plasmon resonance (LSPR) of GNPs is the major role; the LFE was dependent on the irradiation wavelength and the GNP's size. The LFE increased with an increase of the GNP size (2R ≤50 nm). However, the LSPR function of the GNPs was not found in cell experiments. Our study shows that in 5-ALA-conjugated GNPs PDT, the delivery function of GNPs is the major role.
Izanloo, Cobra
2017-09-02
An understanding of the mechanism of DNA interactions with gold nanoparticles is useful in today medicine applications. We have performed a molecular dynamics simulation on a B-DNA duplex (CCTCAGGCCTCC) in the vicinity of a gold nanoparticle with a truncated octahedron structure composed of 201 gold atoms (diameter ∼1.8 nm) to investigate gold nanoparticle (GNP) effects on the stability of DNA. During simulation, the nanoparticle is closed to DNA and phosphate groups direct the particles into the major grooves of the DNA molecule. Because of peeling and untwisting states that are occur at end of DNA, the nucleotide base lies flat on the surface of GNP. The configuration entropy is estimated using the covariance matrix of atom-positional fluctuations for different bases. The results show that when a gold nanoparticle has interaction with DNA, entropy increases. The results of conformational energy and the hydrogen bond numbers for DNA indicated that DNA becomes unstable in the vicinity of a gold nanoparticle. The radial distribution function was calculated for water hydrogen-phosphate oxygen pairs. Almost for all nucleotide, the presence of a nanoparticle around DNA caused water molecules to be released from the DNA duplex and cations were close to the DNA.
Zhang, Guangwu; Wang, Fuzhong; Dai, Jing; Huang, Zhixiong
2016-02-02
This study investigated the effect of silane and surfactant treatments of graphene nanoplatelets (GnPs) on the mechanical and thermal properties of silicone rubber (SR) composites. GnPs were modified with aminopropyltriethoxysilane (APTES), vinyltrimethoxysilane (VTMS), and Triton X-100, and then the pristine GnPs and functionalized GnPs were individually incorporated into the SR. Compared with the pristine GnP/SR composite, the composites reinforced with modified GnP showed better tensile strength, elongation at break, and thermal conductivity properties due to better dispersion of modified GnPs and stronger interfacial interactions between the modified GnPs and matrix. The mechanical properties and thermal conductivity of the VTMS-GnP/SR composite were comparable to the properties of the Triton-GnP counterpart, but better than that of the APTES-GnP/SR composite. In addition, the VTMS-GnP/SR composite demonstrated the highest thermal stability and crystallization temperature among the four types of composites. The remarkable improvement of mechanical and thermal properties of the VTMS-GnP/SR composite was mainly due to the covalent linkage of VTMS-GnP with SR. The VTMS treatment was a more appropriate modification of GnP particles to improve the multifunctional properties of SR.
Wu, Haiyun; Zuo, Yueming; Cui, Chuanjin; Yang, Wei; Ma, Haili; Wang, Xiaowen
2013-01-01
A rapid and simple method for quantitative monitoring of Brucella melitensis using electrochemical impedance spectroscopy (EIS) is reported for the first time. The label-free immunosensors were fabricated by immobilizing Brucella melitensis antibody on the surface of gold nanoparticle-modified screen-printed carbon electrodes (GNP-SPCEs). Cyclic voltammetry (CV) and EIS were used to characterize the Brucella melitensis antigen interaction on the surface of GNP-SPCEs with antibody. A general electronic equivalent model of an electrochemical cell was introduced for interpretation of the impedance components of the system. The results showed that the change in electron-transfer resistance (Rct) was significantly different due to the binding of Brucella melitensis cells. A linear relationship between the Rct variation and logarithmic value of the cell concentration was found from 4 × 104 to 4 × 106 CFU/mL in pure culture. The label-free impedance biosensor was able to detect as low as 1 × 104 and 4 × 105 CFU/mL of Brucella melitensis in pure culture and milk samples, respectively, in less than 1.5 h. Moreover, a good selectivity versus Escherichia coli O157:H7 and Staphylococcus aureus cells was obtained for our developed immunosensor demonstrating its specificity towards only Brucella melitensis. PMID:23881126
Winuprasith, Thunnalin; Suphantharika, Manop; McClements, David Julian; He, Lili
2014-02-15
In this work, we investigated the conformational changes of a globular protein (β-lactoglobulin, β-lg) coated on the surface of 200 nm gold nanoparticles (GNPs) using a number of analytical techniques: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); localized surface plasmon resonance (LSPR) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The β-lg (pH 3) concentration had a pronounced effect on the aggregation and surface charge of β-lg-coated GNPs. The surface charge of GNPs changed from negative to positive as increasing amounts of β-lg molecule were added, indicating that the globular protein molecules adsorbed to the surfaces of the particles. Extensive particle aggregation occurred when β-lg did not saturate the GNP surfaces, which was attributed to electrostatic bridging flocculation. Modifications in LSPR and SERS spectra after addition of β-lg to the GNP suspensions supported the adsorption of β-lg to the particle surfaces. Moreover, SERS highlighted the importance of a number of specific molecular groups in the binding interaction, and suggested conformational changes of the globular protein after adsorption. This research provides useful information for characterizing and understanding the interactions between globular proteins and colloidal particles. Copyright © 2013 Elsevier Inc. All rights reserved.
Le, Minh-Tai; Huang, Shyh-Chour
2015-01-01
In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs. PMID:28793521
NASA Astrophysics Data System (ADS)
Wachiralurpan, Sirirat; Sriyapai, Thayat; Areekit, Supatra; Sriyapai, Pichapak; Augkarawaritsawong, Suphitcha; Santiwatanakul, Somchai; Chansiri, Kosum
2018-04-01
ABSTRACT Listeria monocytogenes is a major foodborne pathogen of global health concern. Herein, the rapid diagnosis of L. monocytogenes has been achieved using loop-mediated isothermal amplification (LAMP) based on the phosphatidylcholine-phospholipase C gene (plcB). Colorimetric detection was then performed through the formation of DNA concatemers and a gold nanoparticle/DNA probe complex (GNP/DNA probe). The overall detection process was accomplished within approximately 1 h with no need for complicated equipment. The limits of detection for L. monocytogenes in the forms of purified genomic DNA and pure culture were 800 fg and 2.82 CFU mL-1, respectively. No cross reactions were observed from closely related bacteria species. The LAMP-GNP/DNA probe assay was applied to the detection of 200 raw chicken meat samples and compared to routine standard methods. The data revealed that the specificity, sensitivity and accuracy were 100%, 90.20% and 97.50%, respectively. The present assay was 100% in conformity with LAMP-agarose gel electrophoresis assay. Five samples that were negative by both assays appeared to have the pathogen at below the level of detection. The assay can be applied as a rapid direct screening method for L. monocytogenes.
Jiang, Shanghai
2017-01-01
X-ray fluorescence computed tomography (XFCT) based on sheet beam can save a huge amount of time to obtain a whole set of projections using synchrotron. However, it is clearly unpractical for most biomedical research laboratories. In this paper, polychromatic X-ray fluorescence computed tomography with sheet-beam geometry is tested by Monte Carlo simulation. First, two phantoms (A and B) filled with PMMA are used to simulate imaging process through GEANT 4. Phantom A contains several GNP-loaded regions with the same size (10 mm) in height and diameter but different Au weight concentration ranging from 0.3% to 1.8%. Phantom B contains twelve GNP-loaded regions with the same Au weight concentration (1.6%) but different diameter ranging from 1 mm to 9 mm. Second, discretized presentation of imaging model is established to reconstruct more accurate XFCT images. Third, XFCT images of phantoms A and B are reconstructed by filter back-projection (FBP) and maximum likelihood expectation maximization (MLEM) with and without correction, respectively. Contrast-to-noise ratio (CNR) is calculated to evaluate all the reconstructed images. Our results show that it is feasible for sheet-beam XFCT system based on polychromatic X-ray source and the discretized imaging model can be used to reconstruct more accurate images. PMID:28567054
NASA Astrophysics Data System (ADS)
Pan, Wanma; Peng, Wen; Ning, Fengling; Zhang, Yu; Zhang, Yunfei; Wang, Yinhang; Xie, Weiyi; Zhang, Jing; Xin, Hong; Li, Cong; Zhang, Xuemei
2018-06-01
The early diagnosis of kidney diseases, which can remarkably impair the quality of life and are costly, has encountered great difficulties. Therefore, the development of methods for early diagnosis has great clinical significance. In this study, we used an emerging technique of photoacoustic (PA) imaging, which has relatively high spatial resolution and good imaging depth. Two kinds of PA gold nanoparticle (GNP)-based bioprobes were developed based on their superior photo detectability, size controllability and biocompatibility. The kidney injury mouse model was developed by unilateral ureteral obstruction for 96 h and the release of obstruction model). Giving 3.5 and 5.5 nm bioprobes by tail vein injection, we found that the 5.5 nm probe could be detected in the bladder in the model group, but not in the control group. These results were confirmed by computed tomography imaging. Furthermore, the model group did not show changes in the blood biochemical indices (BUN and Scr) and histologic examination. The 5.5 nm GNPs were found to be the critical point for early diagnosis of kidney injury. This new method was faster and more sensitive and accurate for the detection of renal injury, compared with conventional methods, and can be used for the development of a PA GNP-based bioprobe for diagnosing renal injury.
The Budget of the United States Government. Department of Defense Extract for Fiscal Year 1985
1984-02-01
with real GNP rising over 6% and industrial production by 16%. Unemployment, though still unacceptably high , has declined by a record 2l/z...the administration will focus its legislative effort on three of those proposals, in modified form: cost-of-living adjustment (COLA) reform, a high 5...computer matching, adjusted payment schedules, contractor and grantee performance incentives, and a streamlined field structure. All of these efforts
The Emerging Threat of Illicit Drug Funding of Terrorist Operations
2003-04-01
discrepancies associated with the study of drug exports and its specific weight in the Gross National Product (GNP). “Some consider that Colombia is not...fewer hands, contaminates exports , and distorts the relative prices of the goods desired by traffickers as well as the assignation of resources in the...stabilizing effect on the Nation’s financial institutions and currency. As such it (illicit drug exports ) are seen as being inextricably linked to the
Sociological and economic theories of suicide: a comparison of the U.S.A. and Taiwan.
Yang, B; Lester, D; Yang, C H
1992-02-01
Time-series analyses were carried out to explore the importance of sociological and economic variables in accounting for the suicide rate in the U.S.A. and in Taiwan for 1952-1984. Sociological variables (divorce and female labor force participation) played similar roles in the multiple regressions for both nations while economic variables (GNP per capita/growth and unemployment) played a role only in the U.S.A.
JPRS Report, Soviet Union, Economic Affairs
1988-10-05
for a more detailed and systematic approach to working up data on the GNP. We should mention that today the national income is computed within the...process of reproduction. This approach imposes a strict sequence in the develop- ment and analysis of data on the various phases of movement of the...variants for reorganization. The plans were reviewed on a competitive basis and this made it easier to select the best one. There was still one other
The burden of smoking in Israel-attributable mortality and costs (2014).
Ginsberg, Gary M; Geva, Haim
2014-01-01
Tobacco use is the single most preventable cause of death, incurring huge resource costs in terms of treating morbidity and lost productivity. This paper estimates smoking attributable mortality (SAM) as health costs in 2014 in Israel. Longitudinal data on prevalence of smokers and ex-smokers were combined with diagnostic and gender specific data on Relative Risks (RR) to gender and disease specific population attributable risks (PAR). PAR was then applied to mortality and hospitalization data from 2011, adjusted by population growth to 2014 to calculate SAM and hospitalization days (SAHD) caused by active smoking. These were used as a base for calculating deaths, hospital days and costs attributable to passive smoking, smoking by pregnant women, residential fires and productivity losses based on international literature. The lagged model estimated active SAM in Israel in 2014 to be 7,025 deaths. Cardio-vascular causes accounted for 45.0% of SAM, malignant neoplasms (39.2%) and respiratory diseases (15.5%). Lung cancer alone accounted for 24.1% of SAM. There were an estimated 793, 17 and 12 deaths from passive smoking, mothers-to-be smoking and residential fires. Total SAM is around 7,847 deaths (95% CI 7,698-7,997) in 2014. We estimated 319,231 active SAHD days (95% CI 313,135-325,326). Respiratory care accounted for around one-half of active SAHD (50.5%). Cardio-Vascular causes for 33.5% and malignant neoplasms (13.2%). Lung cancer only for 4.6%. Total SAHD was around 356,601 days including 36,049 days from passive smoking. Estimated direct acute care costs of 356,601 days in a general hospital amount to around 849 (95% CI 832-865) million NIS ($244 million). Non acute care costs amount to an additional 830 million NIS ($238 million). The total health service costs amount to 1,678 million NIS (95% CI 1,646-1,710) or $482 million, 0.2% of GNP. Productivity losses account for a further 1,909 million NIS ($548 million), giving an overall smoking related cost of 3,587 million NIS (95% CI 3,519-3,656) or $1,030 million, 0.41% of GNP). Smoking causes a considerable burden in Israel, both in terms of the expected 7,847 lives lost and the financial costs of around 3.6 million NIS ($1,030 million or 0.42% of GNP).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Affiliation agreements and network program practices; territorial exclusivity in non-network program arrangements. 73.658 Section 73.658... Television Broadcast Stations § 73.658 Affiliation agreements and network program practices; territorial...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Affiliation agreements and network program practices; territorial exclusivity in non-network program arrangements. 73.658 Section 73.658... Television Broadcast Stations § 73.658 Affiliation agreements and network program practices; territorial...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Affiliation agreements and network program practices; territorial exclusivity in non-network program arrangements. 73.658 Section 73.658... Television Broadcast Stations § 73.658 Affiliation agreements and network program practices; territorial...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Affiliation agreements and network program practices; territorial exclusivity in non-network program arrangements. 73.658 Section 73.658... Television Broadcast Stations § 73.658 Affiliation agreements and network program practices; territorial...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Affiliation agreements and network program practices; territorial exclusivity in non-network program arrangements. 73.658 Section 73.658... Television Broadcast Stations § 73.658 Affiliation agreements and network program practices; territorial...
Functionalization of Graphene Nanoplatelets Using Sugar Azide for Graphene/Epoxy Nanocomposites
2014-06-20
temperature to 200°C in the single cantilever mode at a heating rate and frequency of 3°C/min and 1 Hz, respectively. Thermogravimetric analysis (TGA) of...14. ABSTRACT We report a covalent functionalization of graphene nanoparticles (GnPs) employing 2,3,4-Tri-O-acetyl-β-D-xylopyranosyl azide...and glass transition temperature (~10C) compared to an un-functionalized GnP based epoxy composite. 15. SUBJECT TERMS Graphene nanoparticles
Economic Models for Projecting Industrial Capacity for Defense Production: A Review
1983-02-01
macroeconomic forecast to establish the level of civilian final demand; all use the DoD Bridge Table to allocate budget category outlays to industries. Civilian...output table.’ 3. Macroeconomic Assumptions and the Prediction of Final Demand All input-output models require as a starting point a prediction of final... macroeconomic fore- cast of GNP and its components and (2) a methodology to transform these forecast values of consumption, investment, exports, etc. into
Rosenzweig, Shirley; Sorial, George A; Sahle-Demessie, Endalkachew; McAvoy, Drew C
2014-08-30
Systematic experiments of copper adsorption on 10 different commercially available nanomaterials were studied for the influence of physical-chemical properties and their interactions. Design of experiment and response surface methodology was used to develop a polynomial model to predict maximum copper adsorption (initial concentration, Co=10mg/L) per mass of nanomaterial, qe, using multivariable regression and maximum R-square criterion. The best subsets of properties to predict qe in order of significant contribution to the model were: bulk density, ID, mesopore volume, tube length, pore size, zeta-charge, specific surface area and OD. The highest experimental qe observed was for an alcohol-functionalized MWCNT (16.7mg/g) with relative high bulk density (0.48g/cm(3)), ID (2-5nm), 10-30μm long and OD<8nm. Graphene nanoplatelets (GNP) showed poor adsorptive capacity associated to stacked-nanoplatelets, but good colloidal stability due to high functionalized surface. Good adsorption results for pristine SWCNT indicated that tubes with small diameter were more associated with good adsorption than functionalized surface. XPS and ICP analysis explored surface chemistry and purity, but pHpzc and zeta-charge were ultimately applied to indicate the degree of functionalization. Optimum CNT were identified in the scatter plot, but actual manufacturing processes introduced size and shape variations which interfered with final property results. Copyright © 2014 Elsevier B.V. All rights reserved.
Shahgholian, Narges; Rajabzadeh, Ghadir; Malaekeh-Nikouei, Bizhan
2017-11-01
One of the most interesting functions of albumin is the ability to interact with bioactive compounds. This study describes preparation of protein-based nanoparticles (NPs) for the preparation of solid dispersion of curcumin (CN). Fabrication of hydrosol system of dispersed CN in bovine serum albumin (BSA) was approached, followed by cross-linking with glutaraldehyde (Gta). Response surface methodology (RSM) was used to investigate the influence of input factors (pH, CN content and organic phase ratio (r)), on the particle size and CN entrapment efficiency (EE). Particle size, EE and CN loading efficiency (LE) at optimum condition (pH 7, r 10% and 3.4mg of CN content), were found to be in the range of 153-184.4nm, 72.54%, and 14.508μg/mg, respectively. In the optimum formulation, genipin (Gnp) was used at three different levels (0.1-0.2 and 0.3% w/w of BSA), as a safe, natural cross-linker instead of toxic Gta, to address the limitation of oral delivery purpose. AFM and SEM analysis revealed the spherical and smooth surface of Nps. Ninhydrin (NHD) assay and FT-IR analysis confirmed the cross-linking between BSA and Gnp. In vitro release studies ensure the efficiency of the formulation for sustained release of soluble CN. Copyright © 2017 Elsevier B.V. All rights reserved.
Razzaq, Humaira; Saira, Farhat; Yaqub, Azra; Qureshi, Rumana; Mumtaz, Misbah; Saleemi, Samia
2016-08-01
The present study investigates the interaction of citrate stabilized gold nanoparticles (12±1.5nm) (GNPs) with free radicals; 1,1-diphenyl-2-picrylhydrazyl (DPPH) stable and electrochemically generated superoxide, O2(-). Different experiments were designed to understand the interaction between GNPs and DPPH by employing cyclic voltammetry, UV-vis spectroscopy and computational chemistry using 6-311G basis set. The increase in heterogeneous rate constant, ksh, of DPPH upon addition of GNPs pointed towards possible complex formation, DPPH-GNPs which were further explained by a model assuming surface adsorption of DPPH on GNPs. Further, the model was validated by studying interaction of GNPs with a biologically important free radical, O2(-). Exciting result in terms of disappearance of anodic peak after GNPs addition confirmed that gold nanoparticles interacted with stable as well as unstable free radicals. Also, the stoichiometry of the most stable complex GNP-DPPH was determined from UV-vis spectroscopy by applying Job's method. The GNP-DPPH complex was found to be active with 46.0% reduction of the IC50 value of standard antioxidant, ascorbic acid (AA), indicating its role in enhancing antioxidant activity. Hence, this study presents a simple and potential approach to enhance the efficiency of natural antioxidants without modifying their structure, or involving the complex functionalization of GNPs with antioxidants. Copyright © 2016. Published by Elsevier B.V.
Ding, Yanjun; Liu, Jia; Wang, Hua; Shen, Guoli; Yu, Ruqin
2007-04-01
The ideal immobilization methods that are suitable for binding immuno-active materials with high efficiency onto the sensing surface are the key target to pursue in the current biosensor design. In this paper, a new hybrid material formed by assembling gold nanoparticles (GNP) onto nano-sized hydroxyapatite (HA) has been employed for the interface design of piezoelectric immunosensor, on which the antibodies were bound. The detection performances of the resulting immunosensor were investigated by use of the antibody-antigen model system of alpha-Fetoprotein (AFP), an important indicator in the diagnosis of clinical cancers. The hybrid material was characterized by the UV-vis spectroscopy, the SEM and TEM measurements. The frequency and electrochemical impedance responses characteristics for the processes of immobilization and immunoreaction of anchored anti-AFP antibodies were studied in detail. The immunoresponse of the proposed immunosensor was compared with those antibodies immobilized by using HA or GNP alone. It was found that the developed sensing interface has some advantages such as the activation-free immobilization and the high antigen-binding activities of antibodies. The as-prepared immunosensor can allow for the determination of AFP in the concentration range of 15.3-600.0ngml(-1). Such an interface design with the nano-sized hybrid materials should be tailored as a new alternative used for biosensor design.
A quantitative x-ray detection system for gold nanoparticle tumour biomarkers.
Ricketts, K; Castoldi, A; Guazzoni, C; Ozkan, C; Christodoulou, C; Gibson, A P; Royle, G J
2012-09-07
X-ray fluorescence techniques have proven beneficial for identifying and quantifying trace elements in biological tissues. A novel approach is being developed that employs x-ray fluorescence with an aim to locate heavy nanoparticles, such as gold, which are embedded into tissues. Such nanoparticles can be functionalized to act as markers for tumour characteristics to map the disease state, with the future aim of imaging them to inform cancer therapy regimes. The uptake of functionalized nanoparticles by cancer cells will also enable detection of small clusters of infiltrating cancer cells which are currently missed by commonly used imaging modalities. The novel system, consisting of an energy-resolving silicon drift detector with high spectral resolution, shows potential in both quantification of and sensitivity to nanoparticle concentrations typically found in tumours. A series of synchrotron measurements are presented; a linear relationship between fluorescence intensity and gold nanoparticle (GNP) concentration was found down to 0.005 mgAu ml(-1), the detection limit of the system. Successful use of a bench-top source, suitable for possible future clinical use, is also demonstrated, and found not to degrade the detection limit or accuracy of the GNP concentration measurement. The achieved system sensitivity suggests possible future clinical usefulness in measuring tumour uptake in vivo, particularly in shallow tumour sites and small animals, in ex vivo tissue and in 3D in vitro research samples.
NASA Astrophysics Data System (ADS)
Koger, B.; Kirkby, C.
2016-03-01
Gold nanoparticles (GNPs) have shown potential in recent years as a means of therapeutic dose enhancement in radiation therapy. However, a major challenge in moving towards clinical implementation is the exact characterisation of the dose enhancement they provide. Monte Carlo studies attempt to explore this property, but they often face computational limitations when examining macroscopic scenarios. In this study, a method of converting dose from macroscopic simulations, where the medium is defined as a mixture containing both gold and tissue components, to a mean dose-to-tissue on a microscopic scale was established. Monte Carlo simulations were run for both explicitly-modeled GNPs in tissue and a homogeneous mixture of tissue and gold. A dose ratio was obtained for the conversion of dose scored in a mixture medium to dose-to-tissue in each case. Dose ratios varied from 0.69 to 1.04 for photon sources and 0.97 to 1.03 for electron sources. The dose ratio is highly dependent on the source energy as well as GNP diameter and concentration, though this effect is less pronounced for electron sources. By appropriately weighting the monoenergetic dose ratios obtained, the dose ratio for any arbitrary spectrum can be determined. This allows complex scenarios to be modeled accurately without explicitly simulating each individual GNP.
Wu, Haiyun; Zuo, Yueming; Cui, Chuanjin; Yang, Wei; Ma, Haili; Wang, Xiaowen
2013-07-04
A rapid and simple method for quantitative monitoring of Brucella melitensis using electrochemical impedance spectroscopy (EIS) is reported for the first time. The label-free immunosensors were fabricated by immobilizing Brucella melitensis antibody on the surface of gold nanoparticle-modified screen-printed carbon electrodes (GNP-SPCEs). Cyclic voltammetry (CV) and EIS were used to characterize the Brucella melitensis antigen interaction on the surface of GNP-SPCEs with antibody. A general electronic equivalent model of an electrochemical cell was introduced for interpretation of the impedance components of the system. The results showed that the change in electron-transfer resistance (Rct) was significantly different due to the binding of Brucella melitensis cells. A linear relationship between the Rct variation and logarithmic value of the cell concentration was found from 4 × 10(4) to 4 × 10(6) CFU/mL in pure culture. The label-free impedance biosensor was able to detect as low as 1 × 10(4) and 4 × 10(5) CFU/mL of Brucella melitensis in pure culture and milk samples, respectively, in less than 1.5 h. Moreover, a good selectivity versus Escherichia coli O157:H7 and Staphylococcus aureus cells was obtained for our developed immunosensor demonstrating its specificity towards only Brucella melitensis.
NASA Astrophysics Data System (ADS)
In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute's book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems - the focus of work at SFI - involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, and the Gross National Product (GNP) of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.
Livestock grazing for management of reclaimed land at Navajo Mine: Animal response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, D.C.; Gadzia, K.L.; Raisbeck, M.F.
1997-12-31
Livestock responses dining grazing of reclaimed land were monitored at the Navajo Mine since 1994. The Navajo Mine Grazing Management Program (GNP) began in 1991 to prepare for bond release and return of reclaimed land to the Navajo Nation by demonstrating the ability of the land to sustain the post-mining land use of livestock grazing. Local Navajos, whose livestock are used in the GMP, are interested in the ability of the land to sustain their livestock. Sustainable livestock grazing implies the ability of animals to thrive, successfully reproduce and maintain the health of the land. Daily care and monitoring ofmore » livestock health was carried out by herders hired by the mining company. General animal health parameters including blood selenium levels were monitored quarterly. Livestock responses to grazing reclaimed land have been largely positive. Cows have produced healthy offspring and owners indicate satisfaction with calf size, and overall performance of the cows. Selenium and other blood testing parameters indicate no adverse effect on animal health to date. Hazards associated with reclamation and ongoing mining activities are important considerations for lands being reclaimed for livestock grazing as a post-mining land use and must be monitored carefully during any grazing program. Preliminary results indicate that planned grazing by cattle on reclaimed land at Navajo Mine is feasible and does not adversely affect animal health.« less
1992 annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of workmore » at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.« less
SNAP: A computer program for generating symbolic network functions
NASA Technical Reports Server (NTRS)
Lin, P. M.; Alderson, G. E.
1970-01-01
The computer program SNAP (symbolic network analysis program) generates symbolic network functions for networks containing R, L, and C type elements and all four types of controlled sources. The program is efficient with respect to program storage and execution time. A discussion of the basic algorithms is presented, together with user's and programmer's guides.
NASA Astrophysics Data System (ADS)
Luo, Sida
Individual carbon nanotubes (CNTs) possess excellent piezoresistive performance, which is manifested by the significant electrical resistance change when subject to mechanical deformation. In comparison to individual CNTs, the CNT thin films, formed by a random assembly of individual tubes or bundles, show much lower piezoresistive sensitivity. Given the progress made to date in developing CNT ensemble based-piezoresistive sensors, the related piezoresistive mechanism(s) are still not well understood. The crucial step to obtain a better understanding of this issue is to study the effects of CNT structure in the dispersion on the piezoresistivity of CNT ensemble based-piezoresistive sensors. To reach this goal, my Ph.D. research first focuses on establishing the processing-structure-property relationship of SWCNT thin film piezoresistive sensors. The key accomplishment contains: 1) developing the combined preparative ultracentrifuge method (PUM) and dynamic light scattering (DLS) method to quantitatively characterized SWCNT particle size in dispersions under various sonication conditions; 2) designing combined ultrasonication and microfluidization processing protocol for high throughput and large-scale production of high quality SWCNT dispersions; 3) fabricating varied SWCNT thin film piezoresistive sensors through spray coating technique and immersion-drying post-treatment; and 4) investigating the effect of microstructures of SWCNTs on piezoresistivity of SWCNT thin film sensors. This experimental methodology for quantitative and systematic investigation of the processing-structure-property relationships provides a means for the performance optimization of CNT ensemble based piezoresistive sensors. As a start to understand the piezoresistive mechanism, the second focus of my Ph.D. research is studying charge transport behaviors in SWCNT thin films. It was found that the temperature-dependent sheet resistance of SWCNT thin films could be explained by a 3D variable range hopping (3D-VRH) model. More importantly, a strong correlation between the length of SWCNTs and the VRH parameter T0, indicating the degree of disorder of the electronic system, has been identified. With the structure dependent transport mechanism study, a very interesting topic - how T0 changes when SWCNT thin film is under a mechanical deformation, would be helpful for better understanding the piezoresistive mechanism of SWCNT thin film sensors. As demonstrated in transport mechanism study, SWCNT thin film exhibits a negative temperature coefficient (NTC) of resistance. In contrast, another family of carbon nanomaterials, graphite nanoplatelets (GNPs), shows positive temperature coefficient (PTC) of resistance, attributed to their metallic nature. Therefore, upon a wise selection of mass ratio of SWCNTs to GNPs for fabrication of hybrid SWCNT/GNP thin film piezoresistive sensors, a near zero temperature coefficients of resistance in a broad temperature range has been achieved. This unique self-temperature compensation feature along with the high sensitivity of SWCNT/GNP hybrid sensors provides them a vantage for readily and accurately measuring the strain/stress levels in different conditions. With the unique features of SWCNT/GNP hybrid thin film sensors, my future work will focus on application exploration on SWCNT/GNP thin film sensor based devices. For example, we have demonstrated that it is potential for man-machine interaction and body monitoring when coating the hybrid sensor on highly stretchable nitrile glove. The structure health monitoring (SHM) of composite materials could also be realized by coating the thin film sensor on a glass fiber surface and then embedding the fiber sensor in composite structure.
National Health Expenditures, 1978
Gibson, Robert M.
1979-01-01
Outlays for health care in the Nation reached $192.4 billion in calendar year 1978--13 percent higher than in 1977, according to preliminary figures compiled by the Health Care Financing Administration. This estimate represented $863 per person in the United States and was equal to 9.1 percent of the GNP. This latest report in the annual series representing national health expenditures provides detailed estimates of health care spending by type of service and method of financing. Revised estimates are presented extending back to 1965. PMID:10309049
International energy indicators
NASA Astrophysics Data System (ADS)
Rosoi, E., Jr.
1982-01-01
Data are presented under the following headings: world crude oil production, OPEC crude oil productive capacity; world crude oil and refined product inventory levels; and oil consumption in the OECD countries. The USSR crude oil production and exports; free world and US nuclear electricity generation; US domestic oil supply; US gross imports of crude oil and products; landed cost of Saudi crude, current and 1974 dollars; US coal trade; US natural gas trade; summary of US merchandise trade; and energy/GNP ratio data are also included.
United States - Republic of Korea Security Relations: Policy/Strategy for the Future
1990-06-01
assistance. And since this time, Seoul has shared in the cost of US forces in Korea. Seoul c irrently funds $300 million in actual won expenditures for US...Print. Off., 1989), p. 38. ROK has increased its actual won expenditures each year, defense expenditures, as a percentage of GNP, have declined. This...October 1989, p. 31. 5Ahn Seung -Chul, "A New Perspective on U.S.-Korean Economic Relations," Robert A. Scalapino and Han Sung-joo, eds., United States
Domestic & International Air Cargo Activity: National and Selected Hub Forecasts.
1979-11-01
111371 1991 1887811 2?. 768 :297968 Forecast utilizes 1972 dollar GNP from Wharton’s annual model, December 6, 1978, Post-Meeting Control Solution...mile based on 1973 revenue ton-miles reported in the DOT/CAB, Air Carrier Traffic Statistics. South America - RSA - simple average of American (Latin...9518 F (2/11) = 129.347 DW = 1.41 (b) South America (ESA) 4 = 11.8926 + 18.2908* (GDPSA.C) - 8.94307* ( RSA ) 4 (0.14) (6.08) (-0.46) R2 .8717 F (2/11
Biochemical Changes and their Regulation during Spore Formation and Germination.
1980-04-09
r contain a very low level of cyclic GNP (cGMP), but cGMP Is not found in spores and it appears unlikely to be a modulator of sporulation, gemination...obtained that the regulation of this enzyme in vivo is accomplished at leas in part by regulation of levels of free Mn". 8TTatabolism during spore g...and germination, especially with regard to the following questions: 1) what are the levels and oxidation states of these compounds; 2) what are the
40 CFR 51.353 - Network type and program evaluation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Network type and program evaluation. 51... Requirements § 51.353 Network type and program evaluation. Basic and enhanced I/M programs can be centralized.... (a) Presumptive equivalency. A decentralized network consisting of stations that only perform...
Paina, Ligia; Ssengooba, Freddie; Waswa, Douglas; M'imunya, James M; Bennett, Sara
2013-05-20
Whether and how research training programs contribute to research network development is underexplored. The Fogarty International Center (FIC) has supported overseas research training programs for over two decades. FIC programs could provide an entry point in the development of research networks and collaborations. We examine whether FIC's investment in research training contributed to the development of networks and collaborations in two countries with longstanding FIC investments - Uganda and Kenya - and the factors which facilitated this process. As part of two case studies at Uganda's Makerere University and Kenya's University of Nairobi, we conducted 53 semi-structured in-depth interviews and nine focus group discussions. To expand on our case study findings, we conducted a focused bibliometric analysis on two purposively selected topic areas to examine scientific productivity and used online network illustration tools to examine the resulting network structures. FIC support made important contributions to network development. Respondents from both Uganda and Kenya confirmed that FIC programs consistently provided trainees with networking skills and exposure to research collaborations, primarily within the institutions implementing FIC programs. In both countries, networks struggled with inclusiveness, particularly in HIV/AIDS research. Ugandan respondents perceived their networks to be more cohesive than Kenyan respondents did. Network cohesiveness was positively correlated with the magnitude and longevity of FIC's programs. Support from FIC grants to local and regional research network development and networking opportunities, such as conferences, was rare. Synergies between FIC programs and research grants helped to solidify and maintain research collaborations. Networks developed where FIC's programs focused on a particular institution, there was a critical mass of trainees with similar interests, and investments for network development were available from early implementation. Networks were less likely to emerge where FIC efforts were thinly scattered across multiple institutions. The availability of complementary research grants created opportunities for researchers to collaborate in grant writing, research implementation, and publications. FIC experiences in Uganda and Kenya showcase the important role of research training programs in creating and sustaining research networks. FIC programs should consider including support to research networks more systematically in their capacity development agenda.
47 CFR Alphabetical Index - Part 76
Code of Federal Regulations, 2010 CFR
2010-10-01
...: Notification 76.94 Network programming 76.5 Network programs: nonduplication protection 76.92 Network station....209 Possession of rules 76.301 Prime time 76.5 Program carriages, STV 76.64 Programming, Network 76.5... candidates for 76.205 PURPOSE—Part 76 76.1 Q Qualified TV station, Showing 76.55 R Rate regulation standards...
Mohammadniaei, Mohsen; Yoon, Jinho; Lee, Taek; Choi, Jeong-Woo
2018-05-20
We fabricated a microRNA biosensor using the combination of surface enhanced Raman spectroscopy (SERS) and electrochemical (EC) techniques. For the first time, the weaknesses of each techniques for microRNA detection was compensated by the other ones to give rise to the specific and wide-range detection of miR-155. A single stranded 3' methylene blue (MB) and 5' thiol-modified RNA (MB-ssRNA-SH) was designed to detect the target miR-155 and immobilized onto the gold nanoparticle-modified ITO (ITO/GNP). Upon the invasion of target strand, the double-stranded RNA transformed rapidly to an upright structure resulting in a notable decrease in SERS and redox signals of the MB. For the first time, by combination of SERS and EC techniques in a single platform we extended the dynamic range of both techniques from 10 pM to 450 nM (SERS: 10 pM-5 nM and EC: 5 nM-450 nM). As well, the SERS technique improved the detection limit of the EC method from 100 pM to 100 fM, while the EC method covered single-mismatch detection which was the SERS deficiency. The fabricated single-step biosensor possessing a good capability of miRNA detection in human serum, could be employed throughout the broad ranges of biomedical and bioelectronics applications. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sunatkari, A. L.; Talwatkar, S. S.; Tamgadge, Y. S.; Muley, G. G.
2018-05-01
Highly stable colloidal gold nanoparticles (GNPs) stabilised in l-arginine were synthesized and embedded in polyvinyl pyrrolidone (PVP) polymer matrix to fabricate thin films by spin coating method. Nonlinear optical response of GNP-PVP nanocomposite were investigated using single beam Z-scan technique using He-Ne laser beam in CW regime operated at 632.8 nm as an excitation source. The sign of nonlinear refractive index was found negative, which is of self-defocusing nature. The nonlinear optical parameters estimated for GNP-PVP nanocomposite and found values as large as n2≈(1.7 -3.1 ) ×10-4c m2W-1, β ≈(2.40 -4.69 ) ×10-5c m W-1 and χef f (3 )≈(2.30 -4.34 ) ×10-4e s u . The nonlinear refractive index, absorption coefficient and third order nonlinear susceptibility have found decreasing with the increase in the concentration of l-arginine. Localized surface plasmon resonance (LSPR) peaks show the blue shift. The average size of the GNPs is found reducing from 11 nm to 7.5 nm with the increase in the stabilizer concentration, as analysed by transmission electron microscopy. The XRD study reveals face-centred cubic (fcc) structure of GNPs. The huge nonlinearity is attributed to the thermo-optic phenomenon. The huge enhancement in third order nonlinear susceptibility and nonlinear refractive index indicates that this optical material possess a high potential for various optoelectronic devices applications.
An interactive graphics program for manipulation and display of panel method geometry
NASA Technical Reports Server (NTRS)
Hall, J. F.; Neuhart, D. H.; Walkley, K. B.
1983-01-01
Modern aerodynamic panel methods that handle large, complex geometries have made evident the need to interactively manipulate, modify, and view such configurations. With this purpose in mind, the GEOM program was developed. It is a menu driven, interactive program that uses the Tektronix PLOT 10 graphics software to display geometry configurations which are characterized by an abutting set of networks. These networks are composed of quadrilateral panels which are described by the coordinates of their corners. GEOM is divided into fourteen executive controlled functions. These functions are used to build configurations, scale and rotate networks, transpose networks defining M and N lines, graphically display selected networks, join and split networks, create wake networks, produce symmetric images of networks, repanel and rename networks, display configuration cross sections, and output network geometry in two formats. A data base management system is used to facilitate data transfers in this program. A sample session illustrating various capabilities of the code is included as a guide to program operation.
Kruse, Dustin E.; Stephens, Douglas N.; Lindfors, Heather A.; Ingham, Elizabeth S.; Paoli, Eric E.; Ferrara, Katherine W.
2012-01-01
Gold nanoparticles (GNPs) are non-toxic, can be functionalized with ligands, and preferentially accumulate in tumors. We have developed a 13.56 MHz radiofrequency-electromagnetic field (RF-EM) delivery system capable of generating high electric field strengths required for non-invasive, non-contact heating of GNPs. The bulk heating and specific heating rates were measured as a function of NP size and concentration. It was found that heating is both size and concentration dependent, with 5 nm particles producing a 50.6±0.2°C temperature rise in 30 s for 25 μg/mL gold (125 W input). The specific heating rate was also size and concentration dependent, with 5 nm particles producing a specific heating rate of 356±78 kW/g gold at 16 μg/mL (125 W input). Furthermore, we demonstrate that cancer cells incubated with GNPs are killed when exposed to 13.56 MHz RFEM fields. Compared to cells that were not incubated with GNPs, 3 out of 4 RF-treated groups showed a significant enhancement of cell death with GNPs (p<0.05). GNP-enhanced cell killing appears to require temperatures above 50°C for the experimental parameters used in this study. Transmission electron micrographs show extensive vacuolization with the combination of GNPs and RF treatment. PMID:21402506
Informal Training in Staff Networks to Support Dissemination of Health Promotion Programs
Ramanadhan, Shoba; Wiecha, Jean L.; Gortmaker, Steven L.; Emmons, Karen M.; Viswanath, Kasisomayajula
2011-01-01
Purpose To study informal skill transfer via staff networks as a complement to formal training among afterschool childcare providers implementing a health promotion program. Design Cross-sectional, sociometric network analysis. Setting Boston Young Men’s Christian Association (YMCA) afterschool programs implementing the iPLAY program. Participants All 91 staff members at 20 sites were eligible; 80 completed the survey (88% response rate). Measures At the network level, network density measured system-level connectedness. At the staff level, the independent variable was out degree, the number of individuals to whom respondents noted a program-related connection. The dependent variable was skill gains, the number of key implementation skills gained from the network. Analysis We mapped the staff program-related social network. We utilized multiple linear regression to estimate the relationship between out degree and skill gains, and we adjusted for clustering of staff in sites. Results Most staff (77%) reported gaining at least one skill from the network, but only 2% of potential network connections were established. The regression model showed that out degree (i.e., number of program-related contacts) was significantly associated with skill gains (β = .48, p < .01) independent of other variables. Conclusion Informal skill transfer in staff networks may be a useful complement to formal training for implementation of health promotion programs, but informal skill transfer was likely underutilized in this network. Future research employing longitudinal and/or multisite data should examine these findings in greater detail. PMID:20809826
Forman, L T
1979-01-01
Prospects for a stable, prospering economy in Malaysia appear threatened by an uneven distribution of wealth among non-Malay, particularly Chinese, residents. Native Malays, Bumiputra, have benefitted from the government's 20 year New Economic Policy, a system of subsidies to correct economic imbalances among the races. Malay corporate ownership has increased from 2.4% in 1970 to 28% in 1979. However, equity must increase by 26% annually to meet NEP targets. Without the GNP expanding 7-8% yearly, the government will be tempted to acquire assets at low prices. 70% of the total Malay ownership was held by public enterprises holding equity in trust. An elite group of Bumiputra will own a fair number of shares reserved by 1970. 1/5 of the population of Kuala Lumpur are squatters. Among these groups, communal tension is high. The Chinese businessmen are most resistant to native management. Since they control private domestic investment, they have political power. The Industrial Coordination Act (ICA), which gives power to civil servants through a licensing system, protects the system. The Asian Foundation supports management training, business development, and university demonstration projects in legal aid, solar energy, and community psychiatry. Malaysian competence in English enables widespread distribution of the Books for Asia program.
Hakkert, R; Wieringa, R
1986-05-01
In 1964, at independence, Zambia's economic future looked brighter than that of most other developing countries. Its copper production accounted for 8% of total world production, and only neighboring Zaire outpaced it in the production of cobalt. Its Central Province around Kabwe held rich deposits of both zinc and lead; uranium deposits also had been found, but their projected yield remained undetermined. Since 1974, the decline in the price of copper and the increase in the price of oil have played havoc with Zambia's balance of payments. Copper, which accounted for 40% of the gross national product (GNP) and 98% of all foreign exchange in 1964, shrank to 12% of the GNP in 1978 while still generating most of the foreign exchange. As a result, imports were cut back markedly from $1.5 billion in 1973 to $690 million in 1983. Although this trend is beginning to make a U-turn, Zambia's economic situation is grave. In 1984 the GNP continued to register negative growth and inflation stood at 25%. With its urbanization rate doubling from 21% in 1964 to 43% in 1985, Zambia is now the most urbanized country south of the Sahara. Zambia's 1985 population is estimated to be 6.8 million. Between 1963 and 1969, the average annual population growth rate was 2.5: it was 3.1% between 1969-80. The current birthrate of about 48/1000 is expected to decline only marginally in the next 15 years, but the death rate is declining more rapidly -- from 19/1000 in the late 1960s to 15/1000 in 1985. Life expectancy is expected to rise from the current 51 years to about 58 years. As a result of the high growth rate, Zambia's population is young, with a median age of about 16.3 years. Traditional African values stress the importance of large families. Zambia's total fertility rate was 6.9 in 1985. According to the World Bank, only 1% of married women of childbearing age in 1982 used contraceptives. Although tribal links are weakening, Zambia still counts 73 officially recognized tribes. Together, they speak about 40 different dialects. Zambia now apportions over 15% of its national budget to education. Despite some noticeable progress, the public health structure remains deficient. Principal health problems include malaria, tuberculosis, and, in Northern Province and Luapula Province, sleeping sickness and river blindness. About 2/3 of the labor force, an estimated 2.2 million persons in 1982, still work in agriculture. Female labor force participation is lower in Zambia than in many African nations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-20
... (NOA) for Strategic Network Optimization (SNO) Program Environmental Assessment AGENCY: Defense Logistics Agency, DoD. ACTION: Notice of Availability (NOA) for Strategic Network Optimization (SNO) Program... implement the SNO initiative for improvements to material distribution network for the Department of Defense...
Scheduling: A guide for program managers
NASA Technical Reports Server (NTRS)
1994-01-01
The following topics are discussed concerning scheduling: (1) milestone scheduling; (2) network scheduling; (3) program evaluation and review technique; (4) critical path method; (5) developing a network; (6) converting an ugly duckling to a swan; (7) network scheduling problem; (8) (9) network scheduling when resources are limited; (10) multi-program considerations; (11) influence on program performance; (12) line-of-balance technique; (13) time management; (14) recapitulization; and (15) analysis.
NASA Astrophysics Data System (ADS)
Sagala, S.; Rosyidie, A.; Sasongko, M. A.; Syahbid, M. M.
2018-05-01
As an important contributor to the improvement of economic and social aspects within communities, tourism is a sector whose development must be paid careful attention to. Tourist attractions, especially for nature based tourism, have been proven to provide employment and a significant contribution to both the GDP and GNP of Indonesia. Various areas in Indonesia have natural tourist attractions. A recent popular type of natural tourism attraction in Indonesia are geoparks, which involve protection and utilization of wide geological heritage areas. One of the geoparks that have been recognized by UNESCO within its Global Geopark Network (GGN) is Batur Geopark, in the province of Bali, Indonesia. The development of a geopark should consider the local economic development within its surrounding area. In addition, the further development of a geopark area that is included within the Global Geopark Network must meet the criteria for social and economic aspects prepared by UNESCO. The establishment of these criteria is intended to ensure that the management of the geopark is also beneficiary for the development of local communities as well as contribute positively to their sustainable development. Indonesia has a number of initiatives to promote the establishment of new geoparks, such as Geopark Merangin, Geopark Ciletuh and Geopark Sewu. The most recent one to be considered is Toba Lake Area. Therefore, taking lessons learned from an existing geopark regarding its economic impacts is important. This study explored the positive and negative impacts of Batur Geopark on the local economic development of its surrounding area after its inclusion in the Global Geopark Network of UNESCO. Further recommendations are and formulated in order to enhance the mutual linkage between tourism development and economic benefits to the communities. Prior to the analyses, a literature review on best practices of geoparks was done. Qualitative analyses were conducted by interviewing 41 stakeholders that were involved in the tourism and local economic development in Bangli Regency of Bali. This study provides descriptive information on types of economic activities that have appeared after the establishment of Batur Geopark.
Gray, Heather M; Shaffer, Paige M; Nelson, Sarah E; Shaffer, Howard J
2016-10-01
Social networks play important roles in mental and physical health among the general population. Building healthier social networks might contribute to the development of self-sufficiency among people struggling to overcome homelessness and substance use disorders. In this study of homeless adults completing a job- and life-skills program (i.e., the Moving Ahead Program at St. Francis House, Boston), we prospectively examined changes in social network quality, size, and composition. Among the sample of participants (n = 150), we observed positive changes in social network quality over time. However, social network size and composition did not change among the full sample. The subset of participants who reported abstaining from alcohol during the months before starting the program reported healthy changes in their social networks; specifically, while completing the program, they re-structured their social networks such that fewer members of their network used alcohol to intoxication. We discuss practical implications of these findings.
Computing single step operators of logic programming in radial basis function neural networks
NASA Astrophysics Data System (ADS)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
2014-07-01
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.
1991 Annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less
1991 Annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less
Photoresponses in Gold Nanoparticle Single-Electron Transistors with Molecular Floating Gates
NASA Astrophysics Data System (ADS)
Noguchi, Yutaka; Yamamoto, Makoto; Ishii, Hisao; Ueda, Rieko; Terui, Toshifumi; Imazu, Keisuke; Tamada, Kaoru; Sakano, Takeshi; Matsuda, Kenji
2013-11-01
We have proposed a simple method of activating advanced functions in single-electron transistors (SETs) based on the specific properties of individual molecules. As a prototype, we fabricated a copper phthalocyanine (CuPc)-doped SET. The device consists of a gold-nanoparticle (GNP)-based SET doped with CuPc as a photoresponsive floating gate. In this paper, we report the details of the photoresponses of the CuPc-doped SET, such as conductance switching, sensitivity to the wavelength of the incident light, and multiple induced states.
1974-01-01
5.3 .7 131 United States .506.7 54,452 10.7 1.5 2704 --aGNF shown in this table is based on factor cost. This method of computation is used in NATO and...gives figures significantly different from those arrived at through the method’of computation normally used by U.S. economists. GNP at factor cost...in Table 5, page 31. This is true because once a reliable stateside source was established for an item, its management method changed from overseas
2006-06-01
TABLES Table 1. Japan’s Defense expenditure 1975-2004 calculated in yen and US dollars, and as a percentage of GNP and annual government expenditure...and I can only hope to adequately reflect the time and effort you invested in me to the rest of the Navy and throughout the rest of my career and...life. In particular, Dr. Olsen and Dr. Twomey, thank you for your time and effort in seeing me through the gauntlet that is the thesis process. Your
NASA Technical Reports Server (NTRS)
Yates, W. J.
1981-01-01
The geographic climatic, political, economic and demographic environment of 75 countries was analyzed with respect to helicopter procurement history and usage. Key environmental indicators which are variables were projected into strengths and weaknesses of U.S. technology are reviewed. The civil market sensitivity to new technology is forecast with selected premises as to vehicle life, noise standards, fuel costs, GNP expansion and traffic growth. The forecast is based on a scenario of helicopter technology improvements resulting in increased size and performance.
Future U.S. Security in the Caribbean: The Caribbean Basin Initiative and the Economics of Jamaica
1985-03-01
important part in its system. The Jamaican economy is a complex dynamic 14 KSKSSS W^^^M$MM^k^M^^iM^mk^%M^^ SmM ■nuCTHmrx«.M«WB«».SJUUa*UVaJI£A/U&.UIUIII...export markets due to worldwide recession, and a decline in tourism . The cumulative GNP of these nations is only 40 billion dollars annually...countries already have a well developed infrastructure for tourism , while others have enormous potential as convention sites. In both instances
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for two programs in the state's postsecondary-level computer information systems technology cluster: computer programming and network support. Presented in the introduction are program descriptions and suggested course…
Warm, Eric; Arora, Vineet M; Chaudhry, Saima; Halvorsen, Andrew; Schauer, Daniel; Thomas, Kris; McDonald, Furman S
2018-03-22
Networking has positive effects on career development; however, personal characteristics of group members such as gender or diversity may foster or hinder member connectedness. Social network analysis explores interrelationships between people in groups by measuring the strength of connection between all possible pairs in a given network. Social network analysis has rarely been used to examine network connections among members in an academic medical society. This study seeks to ascertain the strength of connection between program directors in the Association of Program Directors in Internal Medicine (APDIM) and its Education Innovations Project subgroup and to examine possible associations between connectedness and characteristics of program directors and programs. We hypothesize that connectedness will be measurable within a large academic medical society and will vary significantly for program directors with certain measurable characteristics (e.g., age, gender, rank, location, burnout levels, desire to resign). APDIM program directors described levels of connectedness to one another on the 2012 APDIM survey. Using social network analysis, we ascertained program director connectedness by measuring out-degree centrality, in-degree centrality, and eigenvector centrality, all common measures of connectedness. Higher centrality was associated with completion of the APDIM survey, being in a university-based program, Educational Innovations Project participation, and higher academic rank. Centrality did not vary by gender; international medical graduate status; previous chief resident status; program region; or levels of reported program director burnout, callousness, or desire to resign. In this social network analysis of program directors within a large academic medical society, we found that connectedness was related to higher academic rank and certain program characteristics but not to other program director characteristics like gender or international medical graduate status. Further research is needed to optimize our understanding of connection in organizations such as these and to determine which strategies promote valuable connections.
A novel recurrent neural network with finite-time convergence for linear programming.
Liu, Qingshan; Cao, Jinde; Chen, Guanrong
2010-11-01
In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.
State criminal justice telecommunications (STACOM). Volume 4: Network design software user's guide
NASA Technical Reports Server (NTRS)
Lee, J. J.
1977-01-01
A user's guide to the network design program is presented. The program is written in FORTRAN V and implemented on a UNIVAC 1108 computer under the EXEC-8 operating system which enables the user to construct least-cost network topologies for criminal justice digital telecommunications networks. A complete description of program features, inputs, processing logic, and outputs is presented, and a sample run and a program listing are included.
Social network analysis of public health programs to measure partnership.
Schoen, Martin W; Moreland-Russell, Sarah; Prewitt, Kim; Carothers, Bobbi J
2014-12-01
In order to prevent chronic diseases, community-based programs are encouraged to take an ecological approach to public health promotion and involve many diverse partners. Little is known about measuring partnership in implementing public health strategies. We collected data from 23 Missouri communities in early 2012 that received funding from three separate programs to prevent obesity and/or reduce tobacco use. While all of these funding programs encourage partnership, only the Social Innovation for Missouri (SIM) program included a focus on building community capacity and enhancing collaboration. Social network analysis techniques were used to understand contact and collaboration networks in community organizations. Measurements of average degree, density, degree centralization, and betweenness centralization were calculated for each network. Because of the various sizes of the networks, we conducted comparative analyses with and without adjustment for network size. SIM programs had increased measurements of average degree for partner collaboration and larger networks. When controlling for network size, SIM groups had higher measures of network density and lower measures of degree centralization and betweenness centralization. SIM collaboration networks were more dense and less centralized, indicating increased partnership. The methods described in this paper can be used to compare partnership in community networks of various sizes. Further research is necessary to define causal mechanisms of partnership development and their relationship to public health outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Network Analysis of a Demonstration Program for the Developmentally Disabled
ERIC Educational Resources Information Center
Fredericks, Kimberly A.
2005-01-01
This chapter presents the findings from a network analysis of a demonstration program for the developmentally disabled to show the application of graphical network analysis in program evaluation. The developmentally disabled demonstration (DDD) program was a five-year pilot project to provide person-centered service environments to people with …
Munding, Elizabeth M.; Igel, A. Haller; Shiue, Lily; Dorighi, Kristel M.; Treviño, Lisa R.; Ares, Manuel
2010-01-01
Splicing regulatory networks are essential components of eukaryotic gene expression programs, yet little is known about how they are integrated with transcriptional regulatory networks into coherent gene expression programs. Here we define the MER1 splicing regulatory network and examine its role in the gene expression program during meiosis in budding yeast. Mer1p splicing factor promotes splicing of just four pre-mRNAs. All four Mer1p-responsive genes also require Nam8p for splicing activation by Mer1p; however, other genes require Nam8p but not Mer1p, exposing an overlapping meiotic splicing network controlled by Nam8p. MER1 mRNA and three of the four Mer1p substrate pre-mRNAs are induced by the transcriptional regulator Ume6p. This unusual arrangement delays expression of Mer1p-responsive genes relative to other genes under Ume6p control. Products of Mer1p-responsive genes are required for initiating and completing recombination and for activation of Ndt80p, the activator of the transcriptional network required for subsequent steps in the program. Thus, the MER1 splicing regulatory network mediates the dependent relationship between the UME6 and NDT80 transcriptional regulatory networks in the meiotic gene expression program. This study reveals how splicing regulatory networks can be interlaced with transcriptional regulatory networks in eukaryotic gene expression programs. PMID:21123654
Moniruzzaman, Syed; Andersson, Ragnar
2005-01-01
This study examined the association between homicide rates and GNP per capita (as a measure of economic development) among all age- and sex-specific groups in 53 countries. Cross-sectional data on homicide rates by age- and sex- specific groups were obtained for 53 countries from World Health Statistics Annual 1996. The association between homicide rates and economic development was studied by using two methods: (1) with regression analysis and (2) by categorizing the data into four income-based country groups and then comparing the differences in their mean values. Results indicate that there was a negative correlation between homicide rates and economic development. The association between homicide rates and country GNP per capita became stronger with increasing age. Pearson's product moment correlation coefficient was strongest among older age groups (65+year) in both sexes (male, r = -0.77 and female, r = -0.71). The correlation was weakest and positive among 1- to 4-year-old children (males, r = 0.17 and females, r = 0.07). The homicide rate among females was highest for <1-year-old children in low income countries (LICs) (12.8 per 100,000). Lower middle-income countries are in the stage of high priority where both homicide rates and homicide as percentage of total death are high, and its impact was greatest for young males. However, infanticide as a public health problem seems highly concentrated in the poorest countries, while homicide among small children, 1-4 years old, appears to be a universal phenomenon across all nations.
NASA Astrophysics Data System (ADS)
Stitt, Erik
Adhesive bonding is a more efficient joining method for composites than traditional mechanical fasteners and provides advantages in weight reduction, simplicity, and cost. In addition, the utilization of mechanical fasteners introduces stress concentrations and damage to the fiber-matrix interface. Adhesive bonding with thermoset polymers distributes mechanical loads but also makes disassembly for repair and recycling difficult. The ability to utilize thermoplastic polymers as adhesives offers an approach to address these limitations and can even produce a reversible adhesive joining technology through combining conductive nanoparticles with a thermoplastic polymer. The incorporation of the conductive nanoparticles allows for selective heating of the adhesive via exposure to electromagnetic (EM) radiation and simultaneously can augment the mechanical properties of the adhesive and the adhesive joint. This approach provides a versatile mechanism for efficiently creating and reversing structural adhesive joints across a wide range of materials. In this work, a high-impact polystyrene (HIPS) co-polymer containing butadiene as a toughness modifier is compounded with graphene nano-platelets (GnP) for investigation as a thermoplastic adhesive. The properties of the bulk composite adhesive are tailored by altering the morphology, dispersion, and concentration of GnP. The thermal response of the material to EM radiation in the microwave frequency spectrum was investigated and optimized. Surface treatments of the adhesive films were explored to enhance the viability of this nanoparticle thermoplastic polymer to function as a reversible adhesive. As a result, it has been shown that lap-shear strengths of multi-material joints produced from aforementioned thermoplastic adhesives were comparable to similar thermoset bonded joints.
1987-06-01
The population of St Lucia was 123,000 in 1986, with an annual growth rate of 2%. The infant mortality rate stands at 22.2/1000 live births, and life expectancy is 70.3 years for males and 74.9 years for females. The literacy rate is 78%. St Lucia's labor force is allocated as follows: agriculture, 36.6%; industry and commerce, 20.1%; and services, 18.1%. The gross national product (GNP) was US$146 million in 1985, with an annual growth rate of 3% and a per capita GNP of $1071. St Lucia is a parliamentary democracy modeled on the British Westminster system. The island is divided into 16 parishes and 1 urban area (the capital, Castries). St Lucia is currently a politically stable country, although the high level of youth unemployment is a cause for concern. Ongoing stability may depend on the government's ability to provide services such as jobs and housing. The economy has evolved from a monocrop sugar plantation type to a diversified economy based on agriculture, industry, and tourism. Agriculture, dominated by the banana industry, is characterized by the participation of a large number of small and medium-sized enterprises. Industry is being encouraged through the provision of incentives such as tax rebates. The government is attempting to maintain a sound investment climate through a tripartite dialogue with the private sector and trade unions. Overall economic policy is predicated on the attraction of sound investments, by both local and foreign entities, to accelerate the rate of economic growth, solve the unemployment problem, and generate a solid balance-of-payments position.
Trophic relationships between a native and a nonnative predator in a system of natural lakes
Meeuwig, Michael H.; Guy, Christopher S.; Fedenberg, Wade A.
2011-01-01
Bull trout, a species of char listed as threatened under the US Endangered Species Act, have been displaced from portions of their historic range following the introduction of nonnative lake trout. It has been suggested that competitive exclusion as a result of trophic overlap between bull trout and lake trout may be the causal mechanism associated with displacement of bull trout. This study used stable isotope data to evaluate trophic relationships among native bull trout, nonnative lake trout and other fishes in seven lakes in Glacier National Park (GNP), Montana. Bull trout and lake trout had greater δ15N values relative to other fishes among lakes (δ15N = 3.0). Lake trout had greater δ15N values relative to bull trout (δ15N = +1.0). Bull trout had greater δ13C values relative to lake trout in six of the seven lakes examined. Although both bull trout and lake trout had greater δ15N values relative to other fishes within lakes in GNP, differences in δ15N and 13C between bull trout and lake trout suggest that they are consuming different prey species or similar prey species in different proportions. Therefore, displacement of bull trout as a direct result of complete overlap in food resource use is not anticipated unless diet shifts occur or food resources become limiting. Additionally, future studies should evaluate food habits to identify important prey species and sources of partial dietary overlap between bull trout and lake trout.
Ferreira, Gabriela Kozuchovski; Cardoso, Eria; Vuolo, Francieli Silva; Michels, Monique; Zanoni, Elton Torres; Carvalho-Silva, Milena; Gomes, Lara Mezari; Dal-Pizzol, Felipe; Rezin, Gislaine Tezza; Streck, Emilio L; Paula, Marcos Marques da Silva
2015-12-01
This study evaluated the parameters of oxidative stress and energy metabolism after the acute and long-term administration of gold nanoparticles (GNPs, 10 and 30 nm in diameter) in different organs of rats. Adult male Wistar rats received a single intraperitoneal injection or repeated injections (once daily for 28 days) of saline solution, GNPs-10 or GNPs-30. Twenty-four hours after the last administration, the animals were killed, and the liver, kidney, and heart were isolated for biochemical analysis. We demonstrated that acute administration of GNPs-30 increased the TBARS levels, and that GNPs-10 increased the carbonyl protein levels. The long-term administration of GNPs-10 increased the TBARS levels, and the carbonyl protein levels were increased by GNPs-30. Acute administration of GNPs-10 and GNPs-30 increased SOD activity. Long-term administration of GNPs-30 increased SOD activity. Acute administration of GNPs-10 decreased the activity of CAT, whereas long-term administration of GNP-10 and GNP-30 altered CAT activity randomly. Our results also demonstrated that acute GNPs-30 administration decreased energy metabolism, especially in the liver and heart. Long-term GNPs-10 administration increased energy metabolism in the liver and decreased energy metabolism in the kidney and heart, whereas long-term GNPs-30 administration increased energy metabolism in the heart. The results of our study are consistent with other studies conducted in our research group and reinforce the fact that GNPs can lead to oxidative damage, which is responsible for DNA damage and alterations in energy metabolism.
NASA Technical Reports Server (NTRS)
Benbenek, Daniel; Soloff, Jason; Lieb, Erica
2010-01-01
Selecting a communications and network architecture for future manned space flight requires an evaluation of the varying goals and objectives of the program, development of communications and network architecture evaluation criteria, and assessment of critical architecture trades. This paper uses Cx Program proposed exploration activities as a guideline; lunar sortie, outpost, Mars, and flexible path options are described. A set of proposed communications network architecture criteria are proposed and described. They include: interoperability, security, reliability, and ease of automating topology changes. Finally a key set of architecture options are traded including (1) multiplexing data at a common network layer vs. at the data link layer, (2) implementing multiple network layers vs. a single network layer, and (3) the use of a particular network layer protocol, primarily IPv6 vs. Delay Tolerant Networking (DTN). In summary, the protocol options are evaluated against the proposed exploration activities and their relative performance with respect to the criteria are assessed. An architectural approach which includes (a) the capability of multiplexing at both the network layer and the data link layer and (b) a single network layer for operations at each program phase, as these solutions are best suited to respond to the widest array of program needs and meet each of the evaluation criteria.
2015-11-01
more detail. Table 1: Overview of DARPA Programs Selected for GAO Case Study Analyses Program name Program description Advanced Wireless Networks ...Selected DARPA Programs Program name According to DARPA portfolio-level database According to GAO analysis Advanced Wireless Networks for the Soldier...with potential transition partners Achievement of clearly defined technical goals Successful transition Advanced Wireless Networks for Soldier
ERIC Educational Resources Information Center
DiRamio, David; Theroux, Ryan; Guarino, Anthony J.
2009-01-01
Using network analysis we investigated faculty hiring at 21 U. S. News top-ranked programs in higher education administration. Our research questions were as follows. Do top programs hire from each other? Are faculty from the "outside" finding positions at top programs? Mixed results hint at implications for the "health" of the hiring network.…
Using Organizational Network Analysis to Plan Cancer Screening Programs for Vulnerable Populations
Carothers, Bobbi J.; Lofters, Aisha K.
2014-01-01
Objectives. We examined relationships among organizations in a cancer screening network to inform the development of interventions to improve cancer screening for South Asians living in the Peel region of Ontario. Methods. From April to July 2012, we surveyed decision-makers, program managers, and program staff in 22 organizations in the South Asian cancer screening network in the Peel region. We used a network analytic approach to evaluate density (range = 0%–100%, number of ties among organizations in the network expressed as a percentage of all possible ties), centralization (range = 0–1, the extent of variability in centrality), and node characteristics for the communication, collaboration, and referral networks. Results. Density was similar across communication (15%), collaboration (17%), and referral (19%) networks. Centralization was greater in the collaboration network (0.30) than the communication network (0.24), and degree centralization was greater in the inbound (0.42) than the outbound (0.37) referral network. Diverse organizations were central to the networks. Conclusions. Certain organizations were unexpectedly important to the South Asian cancer screening network. Program planning was informed by identifying opportunities to strengthen linkages between key organizations and to leverage existing ties. PMID:24328613
Using organizational network analysis to plan cancer screening programs for vulnerable populations.
Lobb, Rebecca; Carothers, Bobbi J; Lofters, Aisha K
2014-02-01
We examined relationships among organizations in a cancer screening network to inform the development of interventions to improve cancer screening for South Asians living in the Peel region of Ontario. From April to July 2012, we surveyed decision-makers, program managers, and program staff in 22 organizations in the South Asian cancer screening network in the Peel region. We used a network analytic approach to evaluate density (range = 0%-100%, number of ties among organizations in the network expressed as a percentage of all possible ties), centralization (range = 0-1, the extent of variability in centrality), and node characteristics for the communication, collaboration, and referral networks. Density was similar across communication (15%), collaboration (17%), and referral (19%) networks. Centralization was greater in the collaboration network (0.30) than the communication network (0.24), and degree centralization was greater in the inbound (0.42) than the outbound (0.37) referral network. Diverse organizations were central to the networks. Certain organizations were unexpectedly important to the South Asian cancer screening network. Program planning was informed by identifying opportunities to strengthen linkages between key organizations and to leverage existing ties.
A Compiler and Run-time System for Network Programming Languages
2012-01-01
A Compiler and Run-time System for Network Programming Languages Christopher Monsanto Princeton University Nate Foster Cornell University Rob...Foster, R. Harrison, M. Freedman, C. Monsanto , J. Rexford, A. Story, and D. Walker. Frenetic: A network programming language. In ICFP, Sep 2011. [10] A
A program to compute the soft Robinson-Foulds distance between phylogenetic networks.
Lu, Bingxin; Zhang, Louxin; Leong, Hon Wai
2017-03-14
Over the past two decades, phylogenetic networks have been studied to model reticulate evolutionary events. The relationships among phylogenetic networks, phylogenetic trees and clusters serve as the basis for reconstruction and comparison of phylogenetic networks. To understand these relationships, two problems are raised: the tree containment problem, which asks whether a phylogenetic tree is displayed in a phylogenetic network, and the cluster containment problem, which asks whether a cluster is represented at a node in a phylogenetic network. Both the problems are NP-complete. A fast exponential-time algorithm for the cluster containment problem on arbitrary networks is developed and implemented in C. The resulting program is further extended into a computer program for fast computation of the Soft Robinson-Foulds distance between phylogenetic networks. Two computer programs are developed for facilitating reconstruction and validation of phylogenetic network models in evolutionary and comparative genomics. Our simulation tests indicated that they are fast enough for use in practice. Additionally, the distribution of the Soft Robinson-Foulds distance between phylogenetic networks is demonstrated to be unlikely normal by our simulation data.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... Underground Railroad Network to Freedom Program AGENCY: National Park Service, Interior. ACTION: Notice... Miller, National Manager, National Underground Railroad Network to Freedom Program, National Park Service...: OMB Control Number: 1024-0232. Title: National Underground Railroad Network to Freedom Program...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,827] Verizon Business Networks... Verizon Business Network Services, Inc., Senior Analyst-Service Program Delivery, Hilliard, Ohio (subject.... Specifically, the worker group supplies service program delivery services. At the request of the State of Ohio...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-09
... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5484-N-06] Notice of Proposed Information Collection: Comment Request; Tenant Resource Network Program AGENCY: Office of the Assistant...: Tenant Resource Network Program. OMB Control Number, if applicable: 2502-new-65pTRNP. Description of the...
Interorganizational relationships within state tobacco control networks: a social network analysis.
Krauss, Melissa; Mueller, Nancy; Luke, Douglas
2004-10-01
State tobacco control programs are implemented by networks of public and private agencies with a common goal to reduce tobacco use. The degree of a program's comprehensiveness depends on the scope of its activities and the variety of agencies involved in the network. Structural aspects of these networks could help describe the process of implementing a state's tobacco control program, but have not yet been examined. Social network analysis was used to examine the structure of five state tobacco control networks. Semi-structured interviews with key agencies collected quantitative and qualitative data on frequency of contact among network partners, money flow, relationship productivity, level of network effectiveness, and methods for improvement. Most states had hierarchical communication structures in which partner agencies had frequent contact with one or two central agencies. Lead agencies had the highest control over network communication. Networks with denser communication structures had denser productivity structures. Lead agencies had the highest financial influence within the networks, while statewide coalitions were financially influenced by others. Lead agencies had highly productive relationships with others, while agencies with narrow roles had fewer productive relationships. Statewide coalitions that received Robert Wood Johnson Foundation funding had more highly productive relationships than coalitions that did not receive the funding. Results suggest that frequent communication among network partners is related to more highly productive relationships. Results also highlight the importance of lead agencies and statewide coalitions in implementing a comprehensive state tobacco control program. Network analysis could be useful in developing process indicators for state tobacco control programs.
National Defense Budget Estimates for FY 1990/1991
1989-03-01
but have no effect on TOA. These are collections from the public that arise out of the business-type or market -oriented activities of the Government...magnitude and direction of changes in supply and demand in various markets . There are many different measures of inflation: a. GNP Implicit Price...m a Dmo 0 o~o 0 NCDC wm~ 0 CMI-r- CC40~ ’jU.", 101,0. >a% r- Ln -m I*CN Ln LA CO -4 M m 04 w-4 to 0 C Dr- CN c * -m oNLn -,r mm m -ddL -ia a o Nr, r
NASA Astrophysics Data System (ADS)
Abourabia, Assya
Pancreatic cancer is a major cause of cancer-related death worldwide after lung cancer and colorectal cancer Pancreatic treatment modalities consist of surgery, chemotherapy, and radiation therapy or combination of these therapies. These modalities are good to some extents but they do have some limitations. For example, during the chemotherapy, tumor cells can develop some escape mechanisms and become chemoresistant to protect themselves against the chemo drugs and pass on theses escape mechanisms to their offspring, despite the treatment given. Cancer Cells can become chemoresistant by many mechanisms, for example, decreased drug influx mechanisms, decreased of drug transport molecules, decreased drug activation, altered drug metabolism that diminishes the capacity of cytotoxic drugs, and enhanced repair of DNA damage. Given that some of these chemoresistance mechanisms may impact sensitivity to radiation. Therefore, there is a strong need for a new alternative treatment option to amplify the therapeutic efficacy of radiotherapy and eventually increase the overall efficacy of cancer treatment. Nano-radiation therapy is an emerging and promising modality aims to enhance the therapeutic efficacy of radiotherapy through the use of radiosensitizing nanoparticles. The primary goal of using GNP-enhanced radiation is that GNPs are potent radiosensitizer agents that sensitize the tumor cells to radiation, and these agents promote generation of the free radicals produced by Photo- and Auger- electrons emission at the molecular level which can enhance the effectiveness of radiation-induced cancer cell death. The main aim of this research is to analyze and compare the response to radiation of pancreatic cancer cells, PANC-1, and PANC-1 cells that are resistant to oxaliplatin, PANC-1/OR, and investigate the radiation dose enhancement effect attributable to GNP when irradiating the cells with low-energy (220 kVp) beam at various doses. Based on evidence from the existing literature, we hypothesize that oxaliplatin-resistant pancreatic cancer cells, PANC-1/OR, are much more resistant to radiation exposure than their drug-sensitive analogues, PANC-1 cells. We think that the acquisition of chemoresistance entails mechanisms that also impart some loss of radiation sensitivity in PANC-1/OR cells. Responsiveness of pancreatic cancer cells to the radiation was measured by clonogenic survival. The results presented in this thesis show that drug-resistant PANC- 1/OR cells survive high doses of radiation exposure better than PANC-1 cells. Moreover, the presence of gold nanoparticles decreases cell survival when combined with the X-ray radiation. In conclusion, the combination of GNP and X-rays radiation produces a slight radiosensitizing effect for pancreatic cancer cells, PANC-1, and their chemoresistance variant, and we can speculate that this is a good mean of achieving additive cytotoxic effects on pancreatic cells.
Li, Shuai; Li, Yangming; Wang, Zheng
2013-03-01
This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Harriman, Sigrid G., Ed.
The December 1985 program session of the Library of Congress Network Advisory Committee (NAC) focused on determining the effectiveness of networking, identifying a common vision or goal, and developing a strategy to accomplish that goal. The program session included remarks on the role of the regional networks in national networking by Louella V.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed amore » new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.« less
A computer program for the generation of logic networks from task chart data
NASA Technical Reports Server (NTRS)
Herbert, H. E.
1980-01-01
The Network Generation Program (NETGEN), which creates logic networks from task chart data is presented. NETGEN is written in CDC FORTRAN IV (Extended) and runs in a batch mode on the CDC 6000 and CYBER 170 series computers. Data is input via a two-card format and contains information regarding the specific tasks in a project. From this data, NETGEN constructs a logic network of related activities with each activity having unique predecessor and successor nodes, activity duration, descriptions, etc. NETGEN then prepares this data on two files that can be used in the Project Planning Analysis and Reporting System Batch Network Scheduling program and the EZPERT graphics program.
Murayama, Hiroshi; Kojima, Tomoko; Tomaru, Meiko; Narabu, Harumi; Tachibana, Reiko; Yamaguchi, Takuhiro; Murashima, Sachiyo
2010-10-01
To examine the effectiveness of a program promoting network building between disciplinary agencies and informal community organizations (IGOs) comprising community residents, by implemention with staff of a community comprehensive support center (CJCSG). The program was implemented for nine staff of a GGSG in Setagaya Ward, Tokyo for a year. For process evaluation, items were assessed concerning the contents of the program such as satisfaction and understandability, participants' goal attainment level at each period of the program, and program satisfaction as a whole. Outcome evaluation included measurement of participants' self-efficacy regarding network building with ICOs before and after the program, using interviews of the members who completed the program. Eight out of the nine participants completed the program. All positively evaluated the contents of the program and their own goal attainment at each period of the program. After its completion, they felt highly satisfied. Moreover, there was an improvement in the cognition of the participants, including self-efficacy on network building with IGOs and the atmosphere in the GGSG with regard to network building. The efficacy of this program could be confirmed as demonstrated by the staff of the CCSC, although a more detailed assessment of validity and effectiveness will be necessary in the future.
Telecommunications Network Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1989-05-01
The Office of Civilian Radioactive Waste Management (OCRWM) must, among other things, be equipped to readily produce, file, store, access, retrieve, and transfer a wide variety of technical and institutional data and information. The data and information regularly produced by members of the OCRWM Program supports, and will continue to support, a wide range of program activities. Some of the more important of these information communication-related activities include: supporting the preparation, submittal, and review of a license application to the Nuclear Regulatory Commission (NRC) to authorize the construction of a geologic repository; responding to requests for information from parties affectedmore » by and/or interested in the program; and providing evidence of compliance with all relevant Federal, State, local, and Indian Tribe regulations, statutes, and/or treaties. The OCRWM Telecommunications Network Plan (TNP) is intended to identify, as well as to present the current strategy for satisfying, the telecommunications requirements of the civilian radioactive waste management program. The TNP will set forth the plan for integrating OCRWM`s information resources among major program sites. Specifically, this plan will introduce a telecommunications network designed to establish communication linkages across the program`s Washington, DC; Chicago, Illinois; and Las Vegas, Nevada, sites. The linkages across these and associated sites will comprise Phase I of the proposed OCRWM telecommunications network. The second phase will focus on the modification and expansion of the Phase I network to fully accommodate access to the OCRWM Licensing Support System (LSS). The primary components of the proposed OCRWM telecommunications network include local area networks; extended local area networks; and remote extended (wide) area networks. 10 refs., 6 figs.« less
Youth Education Programs for Neighborhood Networks Centers. Neighborhood Networks.
ERIC Educational Resources Information Center
Department of Housing and Urban Development, Washington, DC. Office of Multifamily Housing.
This handbook is designed to help the sponsors, staff, and partners of Neighborhood Networks Centers, which serve apartment properties assisted or insured by the Department of Housing and Urban Development, to develop effective programs for young people under the age of 18. Part 1 identifies key issues in creating programs and highlights effective…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5480-N-64] Notice of Submission of Proposed Information Collection to OMB Tenant Resource Network Program AGENCY: Office of the Chief...: Tenant Resource Network Program. OMB Approval Number: 2502-Pending. Form Numbers: HUD-50080-TRNP...
Factors Impacting Adult Learner Achievement in a Technology Certificate Program on Computer Networks
ERIC Educational Resources Information Center
Delialioglu, Omer; Cakir, Hasan; Bichelmeyer, Barbara A.; Dennis, Alan R.; Duffy, Thomas M.
2010-01-01
This study investigates the factors impacting the achievement of adult learners in a technology certificate program on computer networks. We studied 2442 participants in 256 institutions. The participants were older than age 18 and were enrolled in the Cisco Certified Network Associate (CCNA) technology training program as "non-degree" or…
Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H
2003-01-01
Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935
A phase Ib study of pembrolizumab plus chemotherapy in patients with advanced cancer (PembroPlus).
Weiss, Glen J; Waypa, Jordan; Blaydorn, Lisa; Coats, Jessica; McGahey, Kayla; Sangal, Ashish; Niu, Jiaxin; Lynch, Cynthia A; Farley, John H; Khemka, Vivek
2017-06-27
Pembrolizumab (P) is an anti-PD-1 antibody that blocks the interaction between programmed cell death protein 1 (PD-1) on T-cells and PD-L1 and PD-L2 on tumour cells. A phase Ib trial of P plus chemotherapy was undertaken to evaluate the safety and efficacy. Patients with advanced, metastatic solid tumours were enrolled onto one of six treatment arms. Pembrolizumab was given: with gemcitabine (G), G+docetaxel (D), G+nab-paclitaxel (NP), G+vinorelbine (V) or irinotecan (I) until progression or toxicity, or with liposomal doxorubicin (LD) for up to 15 cycles, progression or toxicity. Safety monitoring and response assessments were conducted. Forty-nine patients were enrolled and treated. The most common adverse events were transaminitis, cytopenias, rash, diarrhoea, fatigue, nausea and vomiting. Arm 2 was closed due to poor accrual. The recommended phase II dose (RP2D) was determined for Arms 1, 3a, 4, 5 and 6. There were eight partial responses across multiple tumour types. Standard dose P can be safely combined with G, G+NP, G+V, I and LD. Efficacy was observed in multiple tumour types and evaluation to determine if response and duration of response are more robust than what would be expected for chemotherapy or immunotherapy alone requires further validation.
Program Spotlight: National Outreach Network's Community Health Educators
National Outreach Network of Community Health Educators located at Community Network Program Centers, Partnerships to Advance Cancer Health Equity, and NCI-designated cancer centers help patients and their families receive survivorship support.
Designing a CTSA‐Based Social Network Intervention to Foster Cross‐Disciplinary Team Science
McCarty, Christopher; Conlon, Michael; Nelson, David R.
2015-01-01
Abstract This paper explores the application of network intervention strategies to the problem of assembling cross‐disciplinary scientific teams in academic institutions. In a project supported by the University of Florida (UF) Clinical and Translational Science Institute, we used VIVO, a semantic‐web research networking system, to extract the social network of scientific collaborations on publications and awarded grants across all UF colleges and departments. Drawing on the notion of network interventions, we designed an alteration program to add specific edges to the collaboration network, that is, to create specific collaborations between previously unconnected investigators. The missing collaborative links were identified by a number of network criteria to enhance desirable structural properties of individual positions or the network as a whole. We subsequently implemented an online survey (N = 103) that introduced the potential collaborators to each other through their VIVO profiles, and investigated their attitudes toward starting a project together. We discuss the design of the intervention program, the network criteria adopted, and preliminary survey results. The results provide insight into the feasibility of intervention programs on scientific collaboration networks, as well as suggestions on the implementation of such programs to assemble cross‐disciplinary scientific teams in CTSA institutions. PMID:25788258
Deep space network energy program
NASA Technical Reports Server (NTRS)
Friesema, S. E.
1980-01-01
If the Deep Space Network is to exist in a cost effective and reliable manner in the next decade, the problems presented by international energy cost increases and energy availability must be addressed. The Deep Space Network Energy Program was established to implement solutions compatible with the ongoing development of the total network.
Wetherbee, Gregory A.; Martin, RoseAnn
2016-07-05
The Mercury Deposition Network programs include the system blank program and an interlaboratory comparison program. System blank results indicated that maximum total mercury contamination concentrations in samples were less than the third percentile of all Mercury Deposition Network sample concentrations. The Mercury Analytical Laboratory produced chemical concentration results with low bias and variability compared with other domestic and international laboratories that support atmospheric-deposition monitoring.
NASA Technical Reports Server (NTRS)
1976-01-01
Assumptions made and techniques used in modeling the power network to the 480 volt level are discussed. Basic computational techniques used in the short circuit program are described along with a flow diagram of the program and operational procedures. Procedures for incorporating network changes are included in this user's manual.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
Butchart, Alexander; Engström, Karin
2002-01-01
To test whether relations between economic development, economic inequality, and child and youth homicide rates are sex- and age-specific, and whether a country's wealth modifies the impact of economic inequality on homicide rates. Outcome variables were homicide rates around 1994 in males and females in the age ranges 0-4, 5-9, 10-14, 15-19 and 20-24 years from 61 countries. Predictor variables were per capita gross domestic product (GDP), GINI coefficient, percentage change in per capita gross national product (GNP) and female economic activity as a percentage of male economic activity. Relations were analysed by ordinary least squares regression. All predictors explained significant variances in homicide rates in those aged 15-24. Associations were stronger for males than females and weak for children aged 0-9. Models that included female economic inequality and percentage change in GNP increased the effect in children aged 0-9 and the explained variance in females aged 20-24. For children aged 0-4, country clustering by income increased the explained variance for both sexes. For males aged 15-24, the association with economic inequality was strong in countries with low incomes and weak in those with high incomes. Relations between economic factors and child and youth homicide rates varied with age and sex. Interventions to target economic factors would have the strongest impact on rates of homicide in young adults and late adolescent males. In societies with high economic inequality, redistributing wealth without increasing per capita GDP would reduce homicide rates less than redistributions linked with overall economic development.
Jones, Bernard L; Cho, Sang Hyun
2011-06-21
A recent study investigated the feasibility to develop a bench-top x-ray fluorescence computed tomography (XFCT) system capable of determining the spatial distribution and concentration of gold nanoparticles (GNPs) in vivo using a diagnostic energy range polychromatic (i.e. 110 kVp) pencil-beam source. In this follow-up study, we examined the feasibility of a polychromatic cone-beam implementation of XFCT by Monte Carlo (MC) simulations using the MCNP5 code. In the current MC model, cylindrical columns with various sizes (5-10 mm in diameter) containing water loaded with GNPs (0.1-2% gold by weight) were inserted into a 5 cm diameter cylindrical polymethyl methacrylate phantom. The phantom was then irradiated by a lead-filtered 110 kVp x-ray source, and the resulting gold fluorescence and Compton-scattered photons were collected by a series of energy-sensitive tallies after passing through lead parallel-hole collimators. A maximum-likelihood iterative reconstruction algorithm was implemented to reconstruct the image of GNP-loaded objects within the phantom. The effects of attenuation of both the primary beam through the phantom and the gold fluorescence photons en route to the detector were corrected during the image reconstruction. Accurate images of the GNP-containing phantom were successfully reconstructed for three different phantom configurations, with both spatial distribution and relative concentration of GNPs well identified. The pixel intensity of regions containing GNPs was linearly proportional to the gold concentration. The current MC study strongly suggests the possibility of developing a bench-top, polychromatic, cone-beam XFCT system for in vivo imaging.
NASA Astrophysics Data System (ADS)
Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh
2018-06-01
Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.
Socioeconomic status and obesity in adult populations of developing countries: a review.
Monteiro, Carlos A.; Moura, Erly C.; Conde, Wolney L.; Popkin, Barry M.
2004-01-01
A landmark review of studies published prior to 1989 on socioeconomic status (SES) and obesity supported the view that obesity in the developing world would be essentially a disease of the socioeconomic elite. The present review, on studies conducted in adult populations from developing countries, published between 1989 and 2003, shows a different scenario for the relationship between SES and obesity. Although more studies are necessary to clarify the exact nature of this relationship, particularly among men, three main conclusions emerge from the studies reviewed: 1. Obesity in the developing world can no longer be considered solely a disease of groups with higher SES. 2. The burden of obesity in each developing country tends to shift towards the groups with lower SES as the country's gross national product (GNP) increases. 3. The shift of obesity towards women with low SES apparently occurs at an earlier stage of economic development than it does for men. The crossover to higher rates of obesity among women of low SES is found at a GNP per capita of about US$ 2500, the mid-point value for lower-middle-income economies. The results of this review reinforce the urgent need to: include obesity prevention as a relevant topic on the public health agenda in developing countries; improve the access of all social classes in these countries to reliable information on the determinants and consequences of obesity; and design and implement consistent public actions on the physical, economic, and sociocultural environment that make healthier choices concerning diet and physical activity feasible for all. A significant step in this direction was taken with the approval of the Global Strategy on Diet, Physical Activity and Health by the World Health Assembly in May 2004. PMID:15654409
2010-01-01
The International Study of Asthma and Allergies in Childhood (ISAAC) Phase One showed large worldwide variations in the prevalence of symptoms of asthma, rhinoconjunctivitis and eczema, up to 10 to 20 fold between countries. Ecological analyses were undertaken with ISAAC Phase One data to explore factors that may have contributed to these variations, and are summarised and reviewed here. In ISAAC Phase One the prevalence of symptoms in the past 12 months of asthma, rhinoconjunctivitis and eczema were estimated from studies in 463,801 children aged 13 - 14 years in 155 centres in 56 countries, and in 257,800 children aged 6-7 years in 91 centres in 38 countries. Ecological analyses were undertaken between symptom prevalence and the following: Gross National Product per capita (GNP), food intake, immunisation rates, tuberculosis notifications, climatic factors, tobacco consumption, pollen, antibiotic sales, paracetamol sales, and outdoor air pollution. Symptom prevalence of all three conditions was positively associated with GNP, trans fatty acids, paracetamol, and women smoking, and inversely associated with food of plant origin, pollen, immunisations, tuberculosis notifications, air pollution, and men smoking. The magnitude of these associations was small, but consistent in direction between conditions. There were mixed associations of climate and antibiotic sales with symptom prevalence. The potential causality of these associations warrant further investigation. Factors which prevent the development of these conditions, or where there is an absence of a positive correlation at a population level may be as important from the policy viewpoint as a focus on the positive risk factors. Interventions based on small associations may have the potential for a large public health benefit. PMID:20092649
Rambhatla, Lakshmi; Ram-Mohan, Sumati; Cheng, Jennifer J; Sherley, James L
2005-04-15
Because they are long-lived and cycle continuously, adult stem cells (ASCs) are predicted as the most common precursor for cancers in adult mammalian tissues. Two unique attributes have been proposed to restrict the carcinogenic potential of ASCs. These are asymmetric self-renewal that limits their number and immortal DNA strand cosegregation that limits their accumulation of mutations due to DNA replication errors. Until recently, the molecular basis and regulation of these important ASC-specific functions were unknown. We developed engineered cultured cells that exhibit asymmetric self-renewal and immortal DNA strand cosegregation. These model cells were used to show that both ASC-specific functions are regulated by the p53 cancer gene. Previously, we proposed that IMP dehydrogenase (IMPDH) was an essential factor for p53-dependent asymmetric self-renewal. We now confirm this proposal and provide quantitative evidence that asymmetric self-renewal is acutely sensitive to even modest changes in IMPDH expression. These analyses reveal that immortal DNA strand cosegregation is also regulated by IMPDH and confirm the original implicit precept that immortal DNA strand cosegregation is specific to cells undergoing asymmetric self-renewal (i.e., ASCs). With IMPDH being the rate-determining enzyme for guanine ribonucleotide (rGNP) biosynthesis, its requirement implicates rGNPs as important regulators of ASC asymmetric self-renewal and immortal DNA strand cosegregation. An in silico analysis of global gene expression data from human cancer cell lines underscored the importance of p53-IMPDH-rGNP regulation for normal tissue cell kinetics, providing further support for the concept that ASCs are key targets for adult tissue carcinogenesis.
Tanner, M; Inlameia, O; Michel, A; Maxlhuza, G; Pondja, A; Fafetine, J; Macucule, B; Zacarias, M; Manguele, J; Moiane, I C; Marranangumbe, A S; Mulandane, F; Schönfeld, C; Moser, I; van Helden, P; Machado, A
2015-12-01
Bovine tuberculosis (BTB) and brucellosis are prevalent in buffaloes of the Kruger National Park (KNP, South Africa). Both diseases were considered to have no or a very low prevalence in wildlife and livestock in and around the Limpopo National Park (LNP, Mozambique). The same applies for tuberculosis in Gonarezhou National Park (GNP, Zimbabwe), but just recently, BTB was detected in buffaloes in the GNP and fears arose that the disease might also spread to the LNP as a result of the partial removal of the fences between the three parks to form the Great Limpopo Transfrontier Park. To assess the status of both diseases in and around LNP, 62 buffaloes were tested for bovine tuberculosis (BTB) and bovine brucellosis. The percentage of positive BTB reactors in buffalo was 8.06% using BovidTB Stat-Pak® and 0% with BOVIGAM® IFN-γ test and IDEXX ELISA. The brucellosis seroprevalence in buffalo was found to be 17.72% and 27.42% using Rose Bengal Test (RBT) and ELISA, respectively. In addition, 2445 cattle in and around the LNP were examined for BTB using the single intradermal cervical comparative tuberculin test (SICCT), and an apparent prevalence of 0.98% was found with no significant difference inside (0.5%) and outside (1.3%) the park. This is the first published report on the presence of positive reactors to BTB and bovine brucellosis in buffalo and cattle in and outside the LNP. Monitoring the wildlife-livestock-human interface of zoonotic high-impact diseases such as BTB and brucellosis is of outmost importance for the successful implementation and management of any transfrontier park that aims to improve the livelihoods of the local communities. © 2014 Blackwell Verlag GmbH.
The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3; end of 16S rRNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Chao; Zhou, Xiaomei; Tarasov, Sergey G.
2012-03-26
Era, composed of a GTPase domain and a K homology domain, is essential for bacterial cell viability. It is required for the maturation of 16S rRNA and assembly of the 30S ribosomal subunit. We showed previously that the protein recognizes nine nucleotides (1531{sup AUCACCUCC}1539) near the 3{prime} end of 16S rRNA, and that this recognition stimulates GTP-hydrolyzing activity of Era. In all three kingdoms of life, the 1530{sup GAUCA}1534 sequence and helix 45 (h45) (nucleotides 1506-1529) are highly conserved. It has been shown that the 1530{sup GA}1531 to 1530{sup AG}1531 double mutation severely affects the viability of bacteria. However, whethermore » Era interacts with G1530 and/or h45 and whether such interactions (if any) contribute to the stimulation of Era's GTPase activity were not known. Here, we report two RNA structures that contain nucleotides 1506-1542 (RNA301), one in complex with Era and GDPNP (GNP), a nonhydrolysable GTP-analogue, and the other in complex with Era, GNP, and the KsgA methyltransferase. The structures show that Era recognizes 10 nucleotides, including G1530, and that Era also binds h45. Moreover, GTPase assay experiments show that G1530 does not stimulate Era's GTPase activity. Rather, A1531 and A1534 are most important for stimulation and h45 further contributes to the stimulation. Although G1530 does not contribute to the intrinsic GTPase activity of Era, its interaction with Era is important for binding and is essential for the protein to function, leading to the discovery of a new cold-sensitive phenotype of Era.« less
Petti, Stefano; Scully, Crispian
2010-07-01
In addition to individual-based prevention strategies, the burden of oral cancer could be decreased by controlling its national level determinants. Population-based studies have found smoking, drinking, and wealth to be associated with oral cancer incidence and mortality rates. However, these studies merely reported trends, or did not account for confounders or for intercorrelation between predictor variables. This ecologic study sought to investigate oral cancer determinants at the country level. The male, age-standardized mortality rate was the dependent variable. The explanatory variables, obtained from reliable international agencies, were life expectancy, frequency of physicians, gross national product (GNP), expenditure on health, literacy rate, human immunodeficiency virus (HIV) prevalence, smoking prevalence, alcohol drinking prevalence, drinking modality, average daily calorie consumption, and average calorie intake from fruit and vegetables. Common factor analysis was used to generate a new dimension that incorporated all of the strongly intercorrelated variables. These were life expectancy, physician frequency, GNP, expenditure on health, literacy rate, calorie consumption, smoking prevalence, and drinking modality. According to this dimension, arbitrarily called the country development level (CDL), countries were split into quartiles. The ecologic risk for high mortality from oral cancer, estimated using logistic regression analysis, was three to five times higher among the second, third, and fourth CDL quartiles than among the first CDL quartile, which included the highest-income countries. HIV, drinking prevalence, and fruit and vegetable intake did not affect significantly mortality. These results suggest that it might be possible to improve oral cancer mortality by modifying country-based determinants related to aberrant lifestyles (not only smoking and drinking prevalence) and improving healthcare system efficiency, approximately estimated by CDL, as well as general socioeconomic and cultural conditions.
Comparison of parameters affecting GNP-loaded choroidal melanoma dosimetry; Monte Carlo study
NASA Astrophysics Data System (ADS)
Sharabiani, Marjan; Asadi, Somayeh; Barghi, Amir Rahnamai; Vaezzadeh, Mehdi
2018-04-01
The current study reports the results of tumor dosimetry in the presence of gold nanoparticles (GNPs) with different sizes and concentrations. Due to limited number of works carried out on the brachytherapy of choroidal melanoma in combination with GNPs, this study was performed to determine the optimum size and concentration for GNPs which contributes the highest dose deposition in tumor region, using two phantom test cases namely water phantom and a full Monte Carlo model of human eye. Both water and human eye phantoms were simulated with MCNP5 code. Tumor dosimetry was performed for a typical point photon source with an energy of 0.38 MeV as a high energy source and 103Pd brachytherapy source with an average energy of 0.021 MeV as a low energy source in water phantom and eye phantom respectively. Such a dosimetry was done for different sizes and concentrations of GNPs. For all of the diameters, increase in concentration of GNPs resulted in an increase in dose deposited in the region of interest. In a certain concentration, GNPs with larger diameters contributed more dose to the tumor region, which was more pronounced using eye phantom. 100 nm was reported as the optimum size in order to achieve the highest energy deposition within the target. This work investigated the optimum parameters affecting macroscopic dose enhancement in GNP-aided brachytherapy of choroidal melanoma. The current work also had implications on using low energy photon sources in the presence of GNPs to acquire the highest dose enhancement. This study is conducted through four different sizes and concentrations of GNPs. Considering the sensitivity of human eye tissue, in order to report the precise optimum parameters affecting radiosensitivity, a comprehensive study on a wide range of sizes and concentrations are required.
Butchart, Alexander; Engström, Karin
2002-01-01
OBJECTIVE: To test whether relations between economic development, economic inequality, and child and youth homicide rates are sex- and age-specific, and whether a country's wealth modifies the impact of economic inequality on homicide rates. METHODS: Outcome variables were homicide rates around 1994 in males and females in the age ranges 0-4, 5-9, 10-14, 15-19 and 20-24 years from 61 countries. Predictor variables were per capita gross domestic product (GDP), GINI coefficient, percentage change in per capita gross national product (GNP) and female economic activity as a percentage of male economic activity. Relations were analysed by ordinary least squares regression. FINDINGS: All predictors explained significant variances in homicide rates in those aged 15-24. Associations were stronger for males than females and weak for children aged 0-9. Models that included female economic inequality and percentage change in GNP increased the effect in children aged 0-9 and the explained variance in females aged 20-24. For children aged 0-4, country clustering by income increased the explained variance for both sexes. For males aged 15-24, the association with economic inequality was strong in countries with low incomes and weak in those with high incomes. CONCLUSION: Relations between economic factors and child and youth homicide rates varied with age and sex. Interventions to target economic factors would have the strongest impact on rates of homicide in young adults and late adolescent males. In societies with high economic inequality, redistributing wealth without increasing per capita GDP would reduce homicide rates less than redistributions linked with overall economic development. PMID:12471400
NASA Astrophysics Data System (ADS)
Visco, Angelo; Foust, Jon; Belobradich, Joseph; Mahmood, Rizwan; Zapien, Donald
We have explored electro-optical and thermal properties of gold nanoparticles (GNPs) colloids in 4-cyano- 4'-pentylbiphenyl (5CB) liquid crystals (LCs). GNP's do not readily disperse in a LC host and, so, have been treated with either, 1-Hexane-thiol, 1-Dodecane-thiol, or 1-Octadecyl-thiol. This treatment suppresses the aggregation of GNPs within the 5CB host to a threshold of approximately 0.7% GNP by weight. Our measurements on dodecanethiol and hexanethiol treated GNPs showed an unusual, steep trough in the dielectric anisotropy and elastic constants at a critical concentration of 0.0862 wt. % GNPs in 5CB. Due to the order parameter, we have observed a peak in the transition temperature at the same critical concentration. Above the critical concentration the transition temperatures, dielectric anisotropy, and elastic constants level off to within experimental uncertainty. Measurements of dodecanethiol treated GNPs in 5CB reveal distinctions in the rate of change in dielectric anisotropy as compared to hexanethiol treated GNPs in 5CB. This effect is possibly due to the increased carbon concentration in dodeccanethiol compared to hexanethiol. Attempts to mix the Smectic A (SmA), 8CB liquid crystal using our hexanethiol and dodecanethiol GNPs were unsuccessful for particle sizes of 100nm and 28nm. We suspect that this is due to an insufficient length of the carbon-chain and U.V. spectroscopy measurements may prove useful in characterizing the resulting aggregation. We hope the system will be helpful in modifying the properties of mesophases that may ultimately results in developing new electro-optical devices. Acknowledgements: The funding for the project was provided by Slippery Rock University (2015-2016).
Xu, Fang; Dong, Haifeng; Cao, Yu; Lu, Huiting; Meng, Xiangdan; Dai, Wenhao; Zhang, Xueji; Al-Ghanim, Khalid Abdullah; Mahboob, Shahid
2016-12-14
A highly sensitive and multiple microRNA (miRNA) detection method by combining three-dimensional (3D) DNA tetrahedron-structured probes (TSPs) to increase the probe reactivity and accessibility with duplex-specific nuclease (DSN) for signal amplification for sensitive miRNA detection was proposed. Briefly, 3D DNA TSPs labeled with different fluorescent dyes for specific target miRNA recognition were modified on a gold nanoparticle (GNP) surface to increase the reactivity and accessibility. Upon hybridization with a specific target, the TSPs immobilized on the GNP surface hybridized with the corresponding target miRNA to form DNA-RNA heteroduplexes, and the DSN can recognize the formed DNA-RNA heteroduplexes to hydrolyze the DNA in the heteroduplexes to produce a specific fluorescent signal corresponding to a specific miRNA, while the released target miRNA strands can initiate another cycle, resulting in a significant signal amplification for sensitive miRNA detection. Different targets can produce different fluorescent signals, leading to the development of a sensitive detection for multiple miRNAs in a homogeneous solution. Under optimized conditions, the proposed assay can simultaneously detect three different miRNAs in a homogeneous solution with a logarithmic linear range spanning 5 magnitudes (10 -12 -10 -16 ) and achieving a limit of detection down to attomolar concentrations. Meanwhile, the proposed miRNA assay exhibited the capability of discriminating single bases (three bases mismatched miRNAs) and showed good eligibility in the analysis of miRNAs extracted from cell lysates and miRNAs in cell incubation media, which indicates its potential use in biomedical research and clinical analysis.
Nutritional situation of Beijing residents.
Zhao, X H
1992-01-01
Beijing is the capital of China with the population of 10.32 million in 1990 and the area of 1687.8 km2. It is the economic and cultural center of the country. Since the founding of new China, the development of Beijing city has been very fast. The gross national product (GNP) of Beijing in 1988 is 2.78 times the average GNP of the whole country. The sanitary institution has increased 71 times from 1949 to 1989. The prevalence of infectious diseases decreased significantly. The infant mortality is 11.6 per thousand approaching the figure of developed countries. The main food products increased rapidly. The grain, meat and egg increased from 100.7 kg and 0.48 kg per capita per year in 1949 to 217.1 kg and 20.17 kg in 1988 respectively. The food consumption of residents have been increasing consistently with the increasing of food production in Beijing. The food available in Beijing is well both in quantity and in quality. The results of the nutritional survey in 1985 showed that the daily average energy intake was 2549 kcal per capita. The average protein intake was 70g per person per day. The fat intake as the percentage of the total energy was 25.7. The average nutrients intake of Beijing residents meets the Chinese RDA basically. The nutritional status of people living in the city is good in general. But there are still some nutritional problem exist. Zn and Fe deficiencies anemia are common in infants and children along with the decreasing rate of breast feeding. Riboflavin, Zn and Ca intakes are inadequate in a lot of adults and the elderly.(ABSTRACT TRUNCATED AT 250 WORDS)
Program/Commercial Separators in Children's Television Programming.
ERIC Educational Resources Information Center
McDowell, Cynthia N.; Palmer, Edward L.
1979-01-01
Reports on three types of separation techniques used by networks to assist children in distinguishing between programs and commercials. Results indicate that children were unable to make effective program/commercial distinctions on the basis of any of the network separators. (PD)
The interaction of social networks and child obesity prevention program effects: the pathways trial.
Shin, Hee-Sung; Valente, Thomas W; Riggs, Nathaniel R; Huh, Jimi; Spruijt-Metz, Donna; Chou, Chih-Ping; Ann Pentz, Mary
2014-06-01
Social network analysis was used to examine whether peer influence from one's social networks moderates obesity prevention program effects on obesity-related behaviors: healthful and unhealthful. Participants included 557 children residing in Southern California. The survey assessed health-promoting behaviors (i.e., physical activity at school, physical activity outside of school, and fruit and vegetable intake), as well as unhealthful behaviors (high-calorie, low-nutrient intake and sedentary activity), and peer exposure calculated from social network nominations as indicators of peer influence. Multilevel models were conducted separately on outcomes predicted by program participation, peer exposure, and program participation by peer exposure. Results indicated that peer exposure was positively associated with one's own healthful and unhealthful behaviors. Program participation effects were moderated by peer influence, but only when unhealthful peer influence was present. Results suggest that peer influence can diminish or amplify prevention programs Future interventions should consider peer-led components to promote healthful influence of peers on healthful and unhealthful behaviors, and programs should be mindful that their effects are moderated by social networks. Copyright © 2014 The Obesity Society.
Neural-Network Object-Recognition Program
NASA Technical Reports Server (NTRS)
Spirkovska, L.; Reid, M. B.
1993-01-01
HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacon, Charles; Bell, Greg; Canon, Shane
The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SCmore » organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.« less
Social network analysis for program implementation.
Valente, Thomas W; Palinkas, Lawrence A; Czaja, Sara; Chu, Kar-Hai; Brown, C Hendricks
2015-01-01
This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach.
Social Network Analysis for Program Implementation
Valente, Thomas W.; Palinkas, Lawrence A.; Czaja, Sara; Chu, Kar-Hai; Brown, C. Hendricks
2015-01-01
This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach. PMID:26110842
How To Design and Deliver an Effective Job Development and Placement Program. Neighborhood Networks.
ERIC Educational Resources Information Center
Department of Housing and Urban Development, Washington, DC. Office of Multifamily Housing.
This second of four publications in the Neighborhood Networks Employment Series focuses on how Neighborhood Networks centers can deliver effective job development and placement programs for residents who are on public assistance, are unemployed, or are underemployed. This guide explains how Neighborhood Networks centers can develop relationships…
Reducing readmissions to detoxification: an interorganizational network perspective.
Spear, Suzanne E
2014-04-01
The high cost of detoxification (detox) services and health risks associated with continued substance abuse make readmission to detox an important indicator of poor performance for substance use disorder treatment systems. This study examined the extent to which the structure of local networks available to detox programs affects patients' odds of readmission to detox within 1 year. Administrative data from 32 counties in California in 2008-2009 were used to map network ties between programs based on patient transfers. Social network analysis was employed to measure structural features of detox program networks. Contextual predictors included efficiency (proportion of ties within a network that are non-redundant) and out-degree (number of outgoing ties to other programs). A binary mixed model was used to predict the odds of readmission among detox patients in residential (non-hospital) facilities (N=18,278). After adjusting for patient-level covariates and continuity of service from detox to outpatient or residential treatment, network efficiency was associated with lower odds of readmission. The impact of network structure on detox readmissions suggests that the interorganizational context in which detox programs operate may be important for improving continuity of service within substance use disorder treatment systems. Implications for future research are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Reducing Readmissions to Detoxification: An Interorganizational Network Perspective
Spear, Suzanne E.
2014-01-01
Background The high cost of detoxification (detox) services and health risks associated with continued substance abuse make readmission to detox an important indicator of poor performance for substance use disorder treatment systems. This study examined the extent to which the structure of local networks available to detox programs affects patients’ odds of readmission to detox within 1 year. Methods Administrative data from 32 counties in California in 2008–2009 were used to map network ties between programs based on patient transfers. Social network analysis was employed to measure structural features of detox program networks. Contextual predictors included efficiency (proportion of ties within a network that are non-redundant) and out-degree (number of outgoing ties to other programs). A binary mixed model was used to predict the odds of readmission among detox patients in residential (non-hospital) facilities (N =18,278). Results After adjusting for patient-level covariates and continuity of service from detox to outpatient or residential treatment, network efficiency was associated with lower odds of readmission. Conclusion The impact of network structure on detox readmissions suggests that the interorganizational context in which detox programs operate may be important for improving continuity of service within substance use disorder treatment systems. Implications for future research are discussed. PMID:24529966
OPTIMAL NETWORK TOPOLOGY DESIGN
NASA Technical Reports Server (NTRS)
Yuen, J. H.
1994-01-01
This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.
Valente, Thomas W; Chou, Chich Ping; Pentz, Mary Ann
2007-05-01
We examined the effect of community coalition network structure on the effectiveness of an intervention designed to accelerate the adoption of evidence-based substance abuse prevention programs. At baseline, 24 cities were matched and randomly assigned to 3 conditions (control, satellite TV training, and training plus technical assistance). We surveyed 415 community leaders at baseline and 406 at 18-month follow-up about their attitudes and practices toward substance abuse prevention programs. Network structure was measured by asking leaders whom in their coalition they turned to for advice about prevention programs. The outcome was a scale with 4 subscales: coalition function, planning, achievement of benchmarks, and progress in prevention activities. We used multiple linear regression and path analysis to test hypotheses. Intervention had a significant effect on decreasing the density of coalition networks. The change in density subsequently increased adoption of evidence-based practices. Optimal community network structures for the adoption of public health programs are unknown, but it should not be assumed that increasing network density or centralization are appropriate goals. Lower-density networks may be more efficient for organizing evidence-based prevention programs in communities.
The role of social networking web sites in influencing residency decisions.
Schweitzer, Justin; Hannan, Alexander; Coren, Joshua
2012-10-01
Social networking Web sites such as Facebook have grown rapidly in popularity. It is unknown how such sites affect the ways in which medical trainees investigate and interact with graduate medical education (GME) programs. To evaluate the use of social networking Web sites as a means for osteopathic medical students, interns, residents, and fellows to interact with GME programs and report the degree to which that interaction impacts a medical trainee's choice of GME program. An anonymous, 10-item electronic survey on social networking Web sites was e-mailed to osteopathic medical student, intern, resident, and fellow members of the American College of Osteopathic Family Physicians. The weighted least squares test and the Fisher exact test were used for data analysis. A total of 9606 surveys were distributed, and 992 (10%) were completed. Nine hundred twenty-eight (93%) of the respondents used social networking Web sites, with the most popular services being Facebook (891 [90%]; P=.03), the Student Doctor Network (278 [28%]), and LinkedIn (89 [9%]; P=.03). Three hundred fifty-three respondents (36%; P=.52) were connected with a professional organization and 673 (68%; P=.73) used social networking Web sites for job searching related to GME programs or postresidency employment. Within the population of 497 third-, fourth-, and fifth-year osteopathic medical students, 136 (27%) reported gleaning information about programs through social networking Web sites (P=.01). Within the total population, 100 of 992 (10%) reported that this information influenced their decisions (P=.07). Of note, 144 (14%) of the total 992 respondents reported that the programs they applied to did not have any presence on social networking Web sites (P=.05). Our results indicate that social networking Web sites have a present and growing influence on how osteopathic medical students, interns, residents, and fellows learn about and select a GME program.
Designing a CTSA-Based Social Network Intervention to Foster Cross-Disciplinary Team Science.
Vacca, Raffaele; McCarty, Christopher; Conlon, Michael; Nelson, David R
2015-08-01
This paper explores the application of network intervention strategies to the problem of assembling cross-disciplinary scientific teams in academic institutions. In a project supported by the University of Florida (UF) Clinical and Translational Science Institute, we used VIVO, a semantic-web research networking system, to extract the social network of scientific collaborations on publications and awarded grants across all UF colleges and departments. Drawing on the notion of network interventions, we designed an alteration program to add specific edges to the collaboration network, that is, to create specific collaborations between previously unconnected investigators. The missing collaborative links were identified by a number of network criteria to enhance desirable structural properties of individual positions or the network as a whole. We subsequently implemented an online survey (N = 103) that introduced the potential collaborators to each other through their VIVO profiles, and investigated their attitudes toward starting a project together. We discuss the design of the intervention program, the network criteria adopted, and preliminary survey results. The results provide insight into the feasibility of intervention programs on scientific collaboration networks, as well as suggestions on the implementation of such programs to assemble cross-disciplinary scientific teams in CTSA institutions. © 2015 Wiley Periodicals, Inc.
Program Helps Simulate Neural Networks
NASA Technical Reports Server (NTRS)
Villarreal, James; Mcintire, Gary
1993-01-01
Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.
ERIC Educational Resources Information Center
Gregson, Jennifer; Sowa, Marcy; Flynn, Heather Kohler
2011-01-01
Objective: To evaluate the partnership structure of the "Network for a Healthy California" ("Network"), a social marketing program, from 2001-2007, to determine if California's program was able to establish and maintain partnerships that (1) provided access to a local audience, (2) facilitated regional collaboration, (3)…
Atmospheric Mercury Deposition Monitoring – National Atmospheric Deposition Program (NADP)
The National Atmospheric Deposition Program (NADP) developed and operates a collaborative network of atmospheric mercury monitoring sites based in North America – the Atmospheric Mercury Network (AMNet). The justification for the network was growing interest and demand from many ...
NASA Technical Reports Server (NTRS)
Wong, M. D.
1974-01-01
The role of technology in nontraditional higher education with particular emphasis on technology-based networks is analyzed nontraditional programs, institutions, and consortia are briefly reviewed. Nontraditional programs which utilize technology are studied. Technology-based networks are surveyed and analyzed with regard to kinds of students, learning locations, technology utilization, interinstitutional relationships, cost aspects, problems, and future outlook.
Barker, Andrew L; Wehbe-Janek, Hania; Bhandari, Naumit S; Bittenbinder, Timothy M; Jo, ChanHee; McAllister, Russell K
2012-12-01
To determine the social networking practices of directors of anesthesiology residency programs. Cross-sectional survey. Online and paper survey tool. 132 anesthesiology residency program directors in the United States. A 13-item survey including dichotomous and multiple choice responses was administered using an online survey tool and a paper survey. Data analysis was conducted by descriptive and analytical statistics (chi-square test). A P-value < 0.05 indicated statistical significance. 50% of anesthesiology program directors responded to the survey (66/132). Policies governing social networking practices were in place for 30.3% (n=20) of the programs' hospitals. The majority of program directors (81.8%, 54) reported never having had an incident involving reprimand of a resident or fellow for inappropriate social networking practices. The majority (66.7%, n=44) of responding programs reported that departments did not provide lectures or educational activities related to appropriate social networking practices. Monitoring of social networking habits of residents/fellows by program directors mainly occurs if they are alerted to a problem (54.5%, n=36). Frequent use of the Internet for conducting searches on a resident applicant was reported by 12.1% (n=8) of program directors, 30.3% (n=20) reported use a few times, and 57.6% (n=38) reported never using the Internet in this capacity. Residency programs should have a written policy related to social media use. Residency program directors should be encouraged to become familiar with the professionalism issues related to social media use in order to serve as adequate resident mentors within this new and problematic aspect of medical ethics and professionalism. Copyright © 2012 Elsevier Inc. All rights reserved.
Potential Market for Satellite Technology in Meeting Telecommunication Needs of Developing Nations
NASA Technical Reports Server (NTRS)
1996-01-01
A recent study examined the potential for satellite technology to meet the telecommunication needs of developing nations. The growth of these nations depends on their attracting and holding the industrial investments of developed nations. This will not be likely with the antiquated telecommunications infrastructure typical of developing nations. On the contrary, it will require an infrastructure that is compatible with international standards. Most of the developing nations perceive this necessity and are pursuing the necessary upgrades. The rate of replacement, types of technology, services affected, and the terrestrial/satellite mix differ by each nation's priorities and gross national product (GNP).
Energy, affluence, and poverty. [United Arab Emirates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Otaiba, M.S.
The United Arab Emirates realizes that its newly found wealth imposes upon it certain humanistic obligations towards the less-fortunate nations. Accordingly, it allocated 30 percent of its 1975 national income or $1.24 billion for aid to the developing countries. Two points discussed for bridging the gap between the rich and the poor countries involve two commitments: (1) developed or developing, wealthy countries should allocate a reasonable percentage of their GNP to aid poor nations; and (2) the industrial countries, in addition, must provide the technical expertise necessary for the construction of such projects as are appropriate to the particular conditionsmore » in each underdeveloped country. (MCW)« less
Amateur Astronomers: Secret Agents of EPO
NASA Astrophysics Data System (ADS)
Berendsen, M.; White, V.; Devore, E.; Reynolds, M.
2008-06-01
Amateur astronomers prime the public to be more interested, receptive, and excited about space science, missions, and programs. Through recent research and targeted programs, amateur astronomy outreach is being increasingly recognized by professional astronomers, educators, and other amateurs as a valued and important service. The Night Sky Network program, administered by the ASP, is the first nationwide research-based program specifically targeted to support outreach by amateur astronomers. This Network of trained and informed amateur astronomers can provide a stimulating introduction to your EPO programs as Network members share the night sky with families, students, and youth groups.
Inner-City Networking: Models and Opportunities.
ERIC Educational Resources Information Center
Sparrow, Judith; Vedantham, Anu
1995-01-01
Explores possibilities of inner-city networking, and provides a description of the federal government's Telecommunications and Information Infrastructure Assistance Program (TIIAP). The authors also enumerate the challenges faced by inner-city communities establishing such networks and describes TIIAP-funded programs meeting those challenges that…
ERIC Educational Resources Information Center
Lewis, Mary G., Comp.
This catalog contains descriptions of the science education programs in the National Diffusion Network (NDN). These programs are available to school systems or other educational institutions for implementation in their classrooms. Some programs may be able to offer consultant services and limited assistance with the training and materials…
ERIC Educational Resources Information Center
Office of Educational Research and Improvement (ED), Washington, DC. National Diffusion Network.
The National Diffusion Network (NDN) is a federally funded system that makes exemplary educational programs available for use by schools, colleges, and other institutions. This publication contains information describing the science education programs currently in the NDN, along with procedural information on how to access these programs. The…
Programs for road network planning.
Ward W. Carson; Dennis P. Dykstra
1978-01-01
This paper describes four computer programs developed to assist logging engineers to plan transportation in a forest. The objective of these programs, to be used together, is to find the shortest path through a transportation network from a point of departure to a destination. Three of the programs use the digitizing and plotting capabilities of a programable desk-top...
Social Network Analysis of the Farabi Exchange Program: Student Mobility
ERIC Educational Resources Information Center
Ugurlu, Zeynep
2016-01-01
Problem Statement: Exchange programs offer communication channels created through student and instructor exchanges; a flow of information takes place through these channels. The Farabi Exchange Program (FEP) is a student and instructor exchange program between institutions of higher education. Through the use of social network analysis and…
Jeffrey V. Wells; Daniel K. Niven; John Cecil
2005-01-01
The Important Bird Area (IBA) program is an international effort to identify, conserve, and monitor a network of sites that provide essential habitat for bird populations. BirdLife International began the IBA program in Europe in 1985. Since that time, BirdLife partners in more than 100 countries have joined together to build the global IBA network. Audubon (BirdLife...
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.
2012-01-01
We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.
Network Speech Systems Technology Program
NASA Astrophysics Data System (ADS)
Weinstein, C. J.
1980-09-01
This report documents work performed during FY 1980 on the DCA-sponsored Network Speech Systems Technology Program. The areas of work reported are: (1) communication systems studies in Demand-Assignment Multiple Access (DAMA), voice/data integration, and adaptive routing, in support of the evolving Defense Communications System (DCS) and Defense Switched Network (DSN); (2) a satellite/terrestrial integration design study including the functional design of voice and data interfaces to interconnect terrestrial and satellite network subsystems; and (3) voice-conferencing efforts dealing with support of the Secure Voice and Graphics Conferencing (SVGC) Test and Evaluation Program. Progress in definition and planning of experiments for the Experimental Integrated Switched Network (EISN) is detailed separately in an FY 80 Experiment Plan Supplement.
Defense switched network technology and experiments program
NASA Astrophysics Data System (ADS)
Weinstein, C. J.
1983-09-01
This report documents work performed during FY 1983 on the DCA-sponsored Defense Switched Network Technology and Experiments Program. The areas of work reported are: (1) development of routing algorithms for application in the Defense Switched Network (DSN); (2) instrumentation and integration of the Experimental Integrated Switched Network (EISN) test facility; (3) development and test of data communication techniques using DoD-standard data protocols in an integrated voice/data network; and (4) EISN system coordination and experiment planning.
ERIC Educational Resources Information Center
Sivertsen, Mary Lewis, Comp.
These programs are available to school systems or other educational institutions for implementation in the classroom. Some programs may be able to offer consultant services and limited assistance with the training and materials associated with installing one of these programs in schools. Information about the National Diffusion Network (NDN) is…
ERIC Educational Resources Information Center
Lewis, Mary G., Comp.
This catalog contains descriptions of the science education programs and materials in the National Diffusion Network (NDN). These programs and materials are available to school systems or other educational institutions for implementation in their classrooms. Some programs may be able to offer consultant services and limited assistance with the…
ERIC Educational Resources Information Center
Barcus, F. Earle
A study analyzed the programing and advertising matter in the after-school hours on independent commercial television stations unaffiliated with the major networks. These stations, primarily UHF, relied almost entirely on syndicated programing that is often reruns of former network programs. These programs draw large after-school audiences. By…
NASA Astrophysics Data System (ADS)
Jasuja, Kabeer
2011-12-01
Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs' interaction with graphene, and applied to address the challenge of dispersing bare-surfaced GNPs for efficient liquid-phase catalysis. We also revisited the functionalization of graphene and present a non-invasive surface introduction of interfaceable moieties. Isostructural to graphene, ultrathin BN sheet is another atomic-thick nanomaterial possessing a highly diverse set of properties inconceivable from graphene. Exfoliating UTBNSs has been challenging due to their exceptional intersheet-bonding and chemical-inertness. To develop applications of BN monolayers and evolve research, a facile lab-scale approach was desired that can produce processable dispersions of BN monolayers. We demonstrated a novel chlorosulfonic acid based treatment that resulted in protonation assisted layer-by-layer exfoliation of BN monolayers with highest reported yields till date. Further, the BN monolayers exhibited extensively protonated N centers, which are utilized for chemically interfacing GNPs, demonstrating their ability to act as excellent nano-templates. The scientific details obtained from the research shown here will significantly support current research activities and greatly impact their future applications. Our research findings have been published in ACS Nano, Small, Journal of Physical Chemistry Letters, MRS Proceedings and have gathered >45 citations.
Lipid nanoparticle interactions and assemblies
NASA Astrophysics Data System (ADS)
Preiss, Matthew Ryan
Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron oxide nanoparticles encapsulated in the lipid bilayer, the local temperature and membrane fluidity could be observed. DLNAs were encapsulated with different sized nanoparticles and concentrations in order to observe the effect of the bilayer nanoparticles on the lipid bilayer's phase behavior and leakage. Two different sized nanoparticles were used, a 2 nm gold nanoparticle (GNP) much smaller than the thickness of the bilayer and a 4 nm GNP near the thickness of the lipid bilayer. The 2 nm GNPs were shown to affect the lipid bilayer differently than the 4 nm GNP. Specifically, the two nanoparticles altered the phase behavior and leakage differently in a temperature dependent fashion, demonstrating that embedded nanoparticle size can be used induce or inhibit bilayer leakage. A dual solvent exchange method was used to control the lipid surface composition of an iron oxide nanoparticle with a cationic lipid and a polyethylene glycol (PEG) lipid to produce lipid coated magnetic nanoparticles (LMNPs). PEG is well known for its ability to enhance the pharmacokinetics of nanostructures by preventing uptake by the immune system. By controlling the lipid surface composition, the surface charge and PEG conformation can be controlled which allowed the LMNPs to be used as an MRI contrast agent and a delivery system for siRNA that could be triggered with temperature.
NCCN Mountain Lakes Monitoring Strategy: Guidelines to Resolution
Hoffman, Robert L.; Huff, Mark H.
2008-01-01
The North Coast and Cascades Network (NCCN) Inventory and Monitoring Program provides funds to its Network Parks to plan and implement the goals and objectives of the National Park Services? (NPS) Inventory and Monitoring (I&M) Program. The primary purpose of the I&M program is to develop and implement a long-term monitoring program in each network. The purpose of this document is to describe the outcome of a meeting held to find solutions to obstacles inhibiting development of a unified core design and methodology for mountain lake monitoring.
Global Rural Autism Asperger Information Network: A Distance Learning Inservice Training Program.
ERIC Educational Resources Information Center
Bock, Marjorie A.; Swinney, Lori; Smart, Kathy
The University of North Dakota's Global Rural Autism Asperger Information Network (GRAAIN) provides a special graduate certificate program in Autistic Spectrum Disorder (ASD) consisting of six online courses. The program started over 4 years ago as a pilot program to provide specialized ASD training to educators and personnel serving children with…
Wölfer, Ralf; Scheithauer, Herbert
2014-01-01
Bullying is a social phenomenon and although preventive interventions consequently address social mechanisms, evaluations hardly consider the complexity of peer processes. Therefore, the present study analyzes the efficacy of the fairplayer.manual bullying prevention program from a social network perspective. Within a pretest-posttest control group design, longitudinal data were available from 328 middle-school students (MAge = 13.7 years; 51% girls), who provided information on bullying behavior and interaction patterns. The revealed network parameters were utilized to examine the network change (MANCOVA) and the network dynamics (SIENA). Across both forms of analyses, findings revealed the hypothesized intervention-based decrease of bullies' social influence. Hence the present bullying prevention program, as one example of programs that successfully addresses both individual skills and social mechanisms, demonstrates the desired effect of reducing contextual opportunities for the exhibition of bullying behavior. © 2014 Wiley Periodicals, Inc.
Application-oriented programming model for sensor networks embedded in the human body.
Barbosa, Talles M G de A; Sene, Iwens G; da Rocha, Adson F; Nascimento, Fransisco A de O; Carvalho, Hervaldo S; Camapum, Juliana F
2006-01-01
This work presents a new programming model for sensor networks embedded in the human body which is based on the concept of multi-programming application-oriented software. This model was conceived with a top-down approach of four layers and its main goal is to allow the healthcare professionals to program and to reconfigure the network locally or by the Internet. In order to evaluate this hypothesis, a benchmarking was executed in order to allow the assessment of the mean time spent in the programming of a multi-functional sensor node used for the measurement and transmission of the electrocardiogram.
Microcomputer Network for Computerized Adaptive Testing (CAT): Program Listing. Supplement.
1984-03-01
UMICROCOMPUTER NETWORK FOR COMPUTERIZED ADAPTIVE TESTING ( CAT ): PROGRAM LISTING in APPROVED FOR PUBLIC RELEASE;IDISTRIBUTION UNLIMITEDPs DTIC ’ Akf 3 0 1-d84...NETWORK FOR COMPUTERIZED ADAPTIVE TESTING ( CAT ).- PROGRAM LISTING , ,j Baldwin Quan Thomas A. Park Gary Sandahl John H. Wolfe Reviewed by James R. McBride A...Center San Diego, California 92152 V.% :-, CONTENTrS Page CATPROJECT.TEXT CAT system driver textfile I 1 ADMINDIR- Subdirectory - Test administration
Teaching Heat Exchanger Network Synthesis Using Interactive Microcomputer Graphics.
ERIC Educational Resources Information Center
Dixon, Anthony G.
1987-01-01
Describes the Heat Exchanger Network Synthesis (HENS) program used at Worcester Polytechnic Institute (Massachusetts) as an aid to teaching the energy integration step in process design. Focuses on the benefits of the computer graphics used in the program to increase the speed of generating and changing networks. (TW)
Community intervention to increase neighborhood social network among Japanese older adults.
Harada, Kazuhiro; Masumoto, Kouhei; Katagiri, Keiko; Fukuzawa, Ai; Chogahara, Makoto; Kondo, Narihiko; Okada, Shuichi
2018-03-01
Strengthening neighborhood social networks is important for promoting health among older adults. However, effective intervention strategies aimed at increasing older adults' social networks have not yet been established. The present study examined whether a university-led community intervention that provided communication opportunities could increase older Japanese adults' neighborhood social networks. The present study used a quasi-experimental design. Before the intervention, using postal mail, we carried out a baseline questionnaire survey that was sent to all people living in the Tsurukabuto community aged ≥60 years (n = 1769), of whom 1068 responded. For the community intervention, 18 event-based programs were provided over the course of 1 year at Kobe University. Academic staff at Kobe University organized all the programs. During the program, social interactions among participants were promoted. A follow-up survey was distributed to those who responded to the baseline survey, and 710 individuals answered the question about their participation in the intervention programs (138 respondents were participants, 572 were non-participants). The neighborhood social network was measured in both the baseline and follow-up surveys. Analysis of covariance showed that the changes in neighborhood social network among participants in the program was significantly higher than the changes among non-participants (P = 0.046) after adjusting for the baseline score of social network. The present study found that participants of the intervention expanded their neighborhood social network, but non-participants did not. This finding shows that community interventions using university resources could increase older adults' neighborhood social networks. Geriatr Gerontol Int 2018; 18: 462-469. © 2017 Japan Geriatrics Society.
Rieckmann, Traci R; Abraham, Amanda J; Bride, Brian E
Despite considerable empirical evidence that psychosocial interventions improve addiction treatment outcomes across populations, implementation remains problematic. A small body of research points to the importance of research network participation as a facilitator of implementation; however, studies examined limited numbers of evidence-based practices. To address this gap, the present study examined factors impacting implementation of motivational interviewing (MI). This study used data from a national sample of privately funded treatment programs (n = 345) and programs participating in the National Drug Abuse Treatment Clinical Trials Network (CTN) (n = 156). Data were collected via face-to-face interviews with program administrators and clinical directors (2007-2009). Analysis included bivariate t tests and chi-square tests to compare private and CTN programs, and multivariable logistic regression of MI implementation. A majority (68.0%) of treatment programs reported use of MI. Treatment programs participating in the CTN (88.9%) were significantly more likely to report use of MI compared with non-CTN programs (58.5%; P < 0.01). CTN programs (82.1%) also were more likely to use trainers from the Motivational Interviewing Network of Trainers as compared with private programs (56.1%; P < 0.05). Multivariable logistic regression models reveal that CTN-affiliated programs and programs with a psychiatrist on staff were more likely to use MI. Programs that used the Stages of Change Readiness and Treatment Eagerness Scale assessment tool were more likely to use MI, whereas programs placing greater emphasis on confrontational group therapy were less likely to use MI. Findings suggest the critical role of research network participation, access to psychiatrists, and organizational compatibility in adoption and sustained use of MI.
McGwin, G; Modjarrad, K; Reiland, A; Tanner, S; Rue, L W
2006-12-01
To determine the prevalence of transportation related safety behaviors, such as seatbelt and helmet use, in primetime US television programs and commercials. Cross sectional study. Top rated television programs and associated commercials from four major US television networks were reviewed for the prevalence of transportation safety related behaviors during a one month period in 2005. Programs were categorized according to the time and network of airing, program type, program rating, and--for commercials--type of product being advertised Occupants of automobiles, motorcycles, or bicycles in 507 instances in which a transportation scene was aired. Seatbelt use was depicted in 62% and 86% of individuals in television program and commercial automobile scenes, respectively. The prevalence of motorcycle helmet use was 47% in television programs and 100% in commercials. Bicycle helmets were used in 9% of television programs and 84% of commercials. The frequency of seatbelt use in programs and commercials varied by television rating and genre but did not differ by network, time of airing, or age of character portrayed. The prevalence of safety related behaviors aired on major US networks during primetime slots is higher than previous reports but still much lower than national averages. Commercials, in contrast, portray transportation safety measures with a frequency that exceeds that of US television programs or most national surveys.
Buchwald, Dedra; Dick, Rhonda Wiegman
2011-06-01
American Indian and Alaska Native scientists are consistently among the most underrepresented minority groups in health research. The authors used social network analysis (SNA) to evaluate the Native Investigator Development Program (NIDP), a career development program for junior Native researchers established as a collaboration between the University of Washington and the University of Colorado Denver. The study focused on 29 trainees and mentors who participated in the NIDP. Data were collected on manuscripts and grant proposals produced by participants from 1998 to 2007. Information on authorship of manuscripts and collaborations on grant applications was used to conduct social network analyses with three measures of centrality and one measure of network reach. Both visual and quantitative analyses were performed. Participants in the NIDP collaborated on 106 manuscripts and 83 grant applications. Although three highly connected individuals, with critical and central roles in the program, accounted for much of the richness of the network, both current core faculty and "graduates" of the program were heavily involved in collaborations on manuscripts and grants. This study's innovative application of SNA demonstrates that collaborative relationships can be an important outcome of career development programs for minority investigators and that an analysis of these relationships can provide a more complete assessment of the value of such programs.
Learning polynomial feedforward neural networks by genetic programming and backpropagation.
Nikolaev, N Y; Iba, H
2003-01-01
This paper presents an approach to learning polynomial feedforward neural networks (PFNNs). The approach suggests, first, finding the polynomial network structure by means of a population-based search technique relying on the genetic programming paradigm, and second, further adjustment of the best discovered network weights by an especially derived backpropagation algorithm for higher order networks with polynomial activation functions. These two stages of the PFNN learning process enable us to identify networks with good training as well as generalization performance. Empirical results show that this approach finds PFNN which outperform considerably some previous constructive polynomial network algorithms on processing benchmark time series.
NASA Astrophysics Data System (ADS)
Piao, Chunhui; Han, Xufang; Wu, Harris
2010-08-01
We provide a formal definition of an e-commerce transaction network. Agent-based modelling is used to simulate e-commerce transaction networks. For real-world analysis, we studied the open application programming interfaces (APIs) from eBay and Taobao e-commerce websites and captured real transaction data. Pajek is used to visualise the agent relationships in the transaction network. We derived one-mode networks from the transaction network and analysed them using degree and betweenness centrality. Integrating multi-agent modelling, open APIs and social network analysis, we propose a new way to study large-scale e-commerce systems.
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. Network Development and MARC Standards Office.
Papers delivered at the 1989 program session of the Library of Congress Network Advisory Committee (NAC) focused on ways in which newer technologies and document delivery networks are changing current practices in document delivery and information services. Charles P. Bourne, chair of the program committee, presented an overview of document…
ERIC Educational Resources Information Center
Moran, Kristin C.
2006-01-01
The landscape of children's programming is changing because of the increased exportation of children's television programs created in the USA. Networks have been aggressively marketing programs to an international audience through individual program sales and satellite network expansion. Some see problems as a result of the potential shift in…
ERIC Educational Resources Information Center
Huntsberger, Paul E.
This report presents results of a survey of U.S. postsecondary institutions with agriculture and natural resources programs, concerning institutional support for reentry orientation and alumni networking programs. Reentry orientation" involves programs that help international students become aware of the adjustment aspects of returning home,…
ERIC Educational Resources Information Center
Harrison, Yvonne D.; Kostic, Kevin; Toton, Suzanne C.; Zurek, Jerome
2010-01-01
This paper documents the development, implementation, and evaluation of "The Global Solidarity Network Study e-Broad Program (GSNSeBP)", an online social justice educational program that is blended into an onsite academic course. This global electronic program, which was developed through a partnership between Catholic Relief Services (CRS) and…
Network speech systems technology program
NASA Astrophysics Data System (ADS)
Weinstein, C. J.
1981-09-01
This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.
NASA Technical Reports Server (NTRS)
Mitchell, Paul H.
1991-01-01
F77NNS (FORTRAN 77 Neural Network Simulator) computer program simulates popular back-error-propagation neural network. Designed to take advantage of vectorization when used on computers having this capability, also used on any computer equipped with ANSI-77 FORTRAN Compiler. Problems involving matching of patterns or mathematical modeling of systems fit class of problems F77NNS designed to solve. Program has restart capability so neural network solved in stages suitable to user's resources and desires. Enables user to customize patterns of connections between layers of network. Size of neural network F77NNS applied to limited only by amount of random-access memory available to user.
NASA Technical Reports Server (NTRS)
Burken, John J.
2005-01-01
This viewgraph presentation covers the following topics: 1) Brief explanation of Generation II Flight Program; 2) Motivation for Neural Network Adaptive Systems; 3) Past/ Current/ Future IFCS programs; 4) Dynamic Inverse Controller with Explicit Model; 5) Types of Neural Networks Investigated; and 6) Brief example
A Critical Agency Network Model for Building an Integrated Outreach Program
ERIC Educational Resources Information Center
Kiyama, Judy Marquez; Lee, Jenny J.; Rhoades, Gary
2012-01-01
This study considers a distinct case of a college outreach program that integrates student affairs staff, academic administrators, and faculty across campus. The authors find that social networks and critical agency help to understand the integration of these various professionals and offer a critical agency network model of enacting change.…
ERIC Educational Resources Information Center
Pham, Andy V.
2014-01-01
Social networking and social media have undoubtedly proliferated within the past decade, allowing widespread communication and dissemination of user-generated content and information. Some psychology graduate programs, including school psychology, have started to embrace social networking and media for instructional and training purposes; however,…
NASA Technical Reports Server (NTRS)
Baffes, Paul T.
1993-01-01
NETS development tool provides environment for simulation and development of neural networks - computer programs that "learn" from experience. Written in ANSI standard C, program allows user to generate C code for implementation of neural network.
Social network diagnostics: a tool for monitoring group interventions
2013-01-01
Background Many behavioral interventions designed to improve health outcomes are delivered in group settings. To date, however, group interventions have not been evaluated to determine if the groups generate interaction among members and how changes in group interaction may affect program outcomes at the individual or group level. Methods This article presents a model and practical tool for monitoring how social ties and social structure are changing within the group during program implementation. The approach is based on social network analysis and has two phases: collecting network measurements at strategic intervention points to determine if group dynamics are evolving in ways anticipated by the intervention, and providing the results back to the group leader to guide implementation next steps. This process aims to initially increase network connectivity and ultimately accelerate the diffusion of desirable behaviors through the new network. This article presents the Social Network Diagnostic Tool and, as proof of concept, pilot data collected during the formative phase of a childhood obesity intervention. Results The number of reported advice partners and discussion partners increased during program implementation. Density, the number of ties among people in the network expressed as a percentage of all possible ties, increased from 0.082 to 0.182 (p < 0.05) in the advice network, and from 0.027 to 0.055 (p > 0.05) in the discussion network. Conclusions The observed two-fold increase in network density represents a significant shift in advice partners over the intervention period. Using the Social Network Tool to empirically guide program activities of an obesity intervention was feasible. PMID:24083343
Creation of lumped parameter thermal model by the use of finite elements
NASA Technical Reports Server (NTRS)
1978-01-01
In the finite difference technique, the thermal network is represented by an analogous electrical network. The development of this network model, which is used to describe a physical system, often requires tedious and mental data preparation and checkout by the analyst which can be greatly reduced through the use of the computer programs to develop automatically the mathematical model and associated input data and graphically display the analytical model to facilitate model verification. Three separate programs are involved which are linked through common mass storage files and data card formats. These programs are SPAR, CINGEN and GEOMPLT, and are used to (1) develop thermal models for the MITAS II thermal analyzer program; (2) produce geometry plots of the thermal network; and (3) produce temperature distribution and time history plots.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
...): Refining standards, materials, and equipment for additive manufacturing to enable low- cost, low-volume...-01] Request for Information on Proposed New Program: National Network for Manufacturing Innovation...: Request for information. SUMMARY: The NIST-hosted Advanced Manufacturing National Program Office (AMNPO...
ERIC Educational Resources Information Center
Middle Grades Reading Network, Evansville, IN.
This booklet presents descriptions of 19 reading programs that encourage Indiana middle-grade students to read. The programs described in the booklet were part of the Middle Grades Reading Network and were funded with competitive $5000 "minigrants." Essays (descriptions of the reading programs) in the booklet are: "Building a…
A new neural network model for solving random interval linear programming problems.
Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza
2017-05-01
This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cost-effectiveness of introducing a rotavirus vaccine in developing countries: The case of Mexico
Valencia-Mendoza, Atanacio; Bertozzi, Stefano M; Gutierrez, Juan-Pablo; Itzler, Robbin
2008-01-01
Background In developing countries rotavirus is the leading cause of severe diarrhoea and diarrhoeal deaths in children under 5. Vaccination could greatly alleviate that burden, but in Mexico as in most low- and middle-income countries the decision to add rotavirus vaccine to the national immunisation program will depend heavily on its cost-effectiveness and affordability. The objective of this study was to assess the cost-effectiveness of including the pentavalent rotavirus vaccine in Mexico's national immunisation program. Methods A cost-effectiveness model was developed from the perspective of the health system, modelling the vaccination of a hypothetical birth cohort of 2 million children monitored from birth through 60 months of age. It compares the cost and disease burden of rotavirus in an unvaccinated cohort of children with one vaccinated as recommended at 2, 4, and 6 months. Results Including the pentavalent vaccine in the national immunisation program could prevent 71,464 medical visits (59%), 5,040 hospital admissions (66%), and 612 deaths from rotavirus gastroenteritis (70%). At US$10 per dose and a cost of administration of US$13.70 per 3-dose regimen, vaccination would cost US$122,058 per death prevented, US$4,383 per discounted life-year saved, at a total net cost of US$74.7 million dollars to the health care system. Key variables influencing the results were, in order of importance, case fatality, vaccine price, vaccine efficacy, serotype prevalence, and annual loss of efficacy. The results are also very sensitive to the discount rate assumed when calculated per life-year saved. Conclusion At prices below US $15 per dose, the cost per life-year saved is estimated to be lower than one GNP per capita and hence highly cost effective by the WHO Commission on Macroeconomics and Health criteria. The cost-effectiveness estimates are highly dependent upon the mortality in the absence of the vaccine, which suggests that the vaccine is likely to be significantly more cost-effective among poorer populations and among those with less access to prompt medical care – such that poverty reduction programs would be expected to reduce the future cost-effectiveness of the vaccine. PMID:18664280
Cost-effectiveness of introducing a rotavirus vaccine in developing countries: the case of Mexico.
Valencia-Mendoza, Atanacio; Bertozzi, Stefano M; Gutierrez, Juan-Pablo; Itzler, Robbin
2008-07-29
In developing countries rotavirus is the leading cause of severe diarrhoea and diarrhoeal deaths in children under 5. Vaccination could greatly alleviate that burden, but in Mexico as in most low- and middle-income countries the decision to add rotavirus vaccine to the national immunisation program will depend heavily on its cost-effectiveness and affordability. The objective of this study was to assess the cost-effectiveness of including the pentavalent rotavirus vaccine in Mexico's national immunisation program. A cost-effectiveness model was developed from the perspective of the health system, modelling the vaccination of a hypothetical birth cohort of 2 million children monitored from birth through 60 months of age. It compares the cost and disease burden of rotavirus in an unvaccinated cohort of children with one vaccinated as recommended at 2, 4, and 6 months. Including the pentavalent vaccine in the national immunisation program could prevent 71,464 medical visits (59%), 5,040 hospital admissions (66%), and 612 deaths from rotavirus gastroenteritis (70%). At US$10 per dose and a cost of administration of US$13.70 per 3-dose regimen, vaccination would cost US$122,058 per death prevented, US$4,383 per discounted life-year saved, at a total net cost of US$74.7 million dollars to the health care system. Key variables influencing the results were, in order of importance, case fatality, vaccine price, vaccine efficacy, serotype prevalence, and annual loss of efficacy. The results are also very sensitive to the discount rate assumed when calculated per life-year saved. At prices below US $15 per dose, the cost per life-year saved is estimated to be lower than one GNP per capita and hence highly cost effective by the WHO Commission on Macroeconomics and Health criteria. The cost-effectiveness estimates are highly dependent upon the mortality in the absence of the vaccine, which suggests that the vaccine is likely to be significantly more cost-effective among poorer populations and among those with less access to prompt medical care - such that poverty reduction programs would be expected to reduce the future cost-effectiveness of the vaccine.
ERIC Educational Resources Information Center
Palmer, Jackie; Powell, Mary Jo
The Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia, operating as the Curriculum Frameworks Task Force, jointly convened a group of educators involved in implementing state-level mathematics or science curriculum frameworks (CF). The Hilton Head (South Carolina) conference had a dual…
ERIC Educational Resources Information Center
Baker-Doyle, Kira J.; Yoon, Susan A.
2011-01-01
This paper presents the first in a series of studies on the informal advice networks of a community of teachers in an in-service professional development program. The aim of the research was to use Social Network Analysis as a methodological tool to reveal the social networks developed by the teachers, and to examine whether these networks…
The prevention research centers' managing epilepsy well network.
DiIorio, Colleen K; Bamps, Yvan A; Edwards, Ariele L; Escoffery, Cam; Thompson, Nancy J; Begley, Charles E; Shegog, Ross; Clark, Noreen M; Selwa, Linda; Stoll, Shelley C; Fraser, Robert T; Ciechanowski, Paul; Johnson, Erica K; Kobau, Rosemarie; Price, Patricia H
2010-11-01
The Managing Epilepsy Well (MEW) Network was created in 2007 by the Centers for Disease Control and Prevention's (CDC) Prevention Research Centers and Epilepsy Program to promote epilepsy self-management research and to improve the quality of life for people with epilepsy. MEW Network membership comprises four collaborating centers (Emory University, University of Texas Health Science Center at Houston, University of Michigan, and University of Washington), representatives from CDC, affiliate members, and community stakeholders. This article describes the MEW Network's background, mission statement, research agenda, and structure. Exploratory and intervention studies conducted by individual collaborating centers are described, as are Network collaborative projects, including a multisite depression prevention intervention and the development of a standard measure of epilepsy self-management. Communication strategies and examples of research translation programs are discussed. The conclusion outlines the Network's role in the future development and dissemination of evidence-based epilepsy self-management programs. Copyright © 2010 Elsevier Inc. All rights reserved.
Combatting Global Infectious Diseases: A Network Effect of Specimen Referral Systems.
Fonjungo, Peter N; Alemnji, George A; Kebede, Yenew; Opio, Alex; Mwangi, Christina; Spira, Thomas J; Beard, R Suzanne; Nkengasong, John N
2017-02-13
The recent Ebola virus outbreak in West Africa clearly demonstrated the critical role of laboratory systems and networks in responding to epidemics. Because of the huge challenges in establishing functional laboratories at all tiers of health systems in developing countries, strengthening specimen referral networks is critical. In this review article, we propose a platform strategy for developing specimen referral networks based on 2 models: centralized and decentralized laboratory specimen referral networks. These models have been shown to be effective in patient management in programs in resource-limited settings. Both models lead to reduced turnaround time and retain flexibility for integrating different specimen types. In Haiti, decentralized specimen referral systems resulted in a 182% increase in patients enrolling in human immunodeficiency virus treatment programs within 6 months. In Uganda, cost savings of up to 62% were observed with a centralized model. A platform strategy will create a network effect that will benefit multiple disease programs.
Liu, Qingshan; Dang, Chuangyin; Huang, Tingwen
2013-02-01
This paper presents a decision-making model described by a recurrent neural network for dynamic portfolio optimization. The portfolio-optimization problem is first converted into a constrained fractional programming problem. Since the objective function in the programming problem is not convex, the traditional optimization techniques are no longer applicable for solving this problem. Fortunately, the objective function in the fractional programming is pseudoconvex on the feasible region. It leads to a one-layer recurrent neural network modeled by means of a discontinuous dynamic system. To ensure the optimal solutions for portfolio optimization, the convergence of the proposed neural network is analyzed and proved. In fact, the neural network guarantees to get the optimal solutions for portfolio-investment advice if some mild conditions are satisfied. A numerical example with simulation results substantiates the effectiveness and illustrates the characteristics of the proposed neural network.
Computer interpretation of thallium SPECT studies based on neural network analysis
NASA Astrophysics Data System (ADS)
Wang, David C.; Karvelis, K. C.
1991-06-01
A class of artificial intelligence (Al) programs known as neural networks are well suited to pattern recognition. A neural network is trained rather than programmed to recognize patterns. This differs from "expert system" Al programs in that it is not following an extensive set of rules determined by the programmer, but rather bases its decision on a gestalt interpretation of the image. The "bullseye" images from cardiac stress thallium tests performed on 50 male patients, as well as several simulated images were used to train the network. The network was able to accurately classify all patients in the training set. The network was then tested against 50 unknown patients and was able to correctly categorize 77% of the areas of ischemia and 92% of the areas of infarction. While not yet matching the ability of a trained physician, the neural network shows great promise in this area and has potential application in other areas of medical imaging.
NASA Technical Reports Server (NTRS)
Barry, Matthew R.
2006-01-01
The X-Windows Socket Widget Class ("Class" is used here in the object-oriented-programming sense of the word) was devised to simplify the task of implementing network connections for graphical-user-interface (GUI) computer programs. UNIX Transmission Control Protocol/Internet Protocol (TCP/IP) socket programming libraries require many method calls to configure, operate, and destroy sockets. Most X Windows GUI programs use widget sets or toolkits to facilitate management of complex objects. The widget standards facilitate construction of toolkits and application programs. The X-Windows Socket Widget Class encapsulates UNIX TCP/IP socket-management tasks within the framework of an X Windows widget. Using the widget framework, X Windows GUI programs can treat one or more network socket instances in the same manner as that of other graphical widgets, making it easier to program sockets. Wrapping ISP socket programming libraries inside a widget framework enables a programmer to treat a network interface as though it were a GUI.
Community networks in chronic disease management.
Pyne, Diane
2009-01-01
Community networks are being established as part of the Chronic Disease Management program in Edmonton, Alberta. These networks are programs and services from profit and not-for-profit organizations that support people with chronic conditions to address lifestyle choices and issues. Evidence-informed standards and criteria have been developed that have to be met to belong to such a network. The community network approach is developing a "community" of resources that are available and committed to assist healthcare professionals and the public with health promotion for people with chronic conditions.
Neural network error correction for solving coupled ordinary differential equations
NASA Technical Reports Server (NTRS)
Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.
1992-01-01
A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.
Near-infrared light-controlled tunable grating based on graphene/elastomer composites
NASA Astrophysics Data System (ADS)
Wang, Fei; Jia, Shuhai; Wang, Yonglin; Tang, Zhenhua
2018-02-01
A near-infrared (nIR) light actuated tunable transmission optical grating based on graphene nanoplatelet (GNP)/polydimethylsiloxane (PDMS) and PDMS is proposed. A simple fabrication protocol is studied that allows integration of the grating with the actuation mechanism; both components are made from soft elastomers, and this ensure the tunability and the light-driven operation of the grating. The resulting grating structure demonstrates continuous period tunability of 2.7% under an actuation power density of 220 mW cm-2 within a period of 3 s and also demonstrates a time-independent characteristic. The proposed infrared activated grating can be developed for wireless remote light splitting in bio/chemical sensing and optical telecommunications applications.
Profiles of the Caribbean Basin in 1960/1980: Changing Geopolitical and Geostrategic Dimensions.
1983-12-01
8.816.000 (SI = I quetzal ) ARM1Y: 8,400 regs 2 bns 18 60mm (US). 99 80mm (Ger), 8 81mm (US), 2 lnchr (flare) mor; 17 3. 5 -in rkt lnchr (US), 8 57mm rclss...service: conscription; 2 years Total armed forces: 15,050 Estimated GNP 1979: S6.9 bn Defense excpenditure 1980: 76.8 m quetzal ’S69.S m) S51 1.1 quetzal ...1980), 1.0 quetzal (1979) ARMY: 14,000 4 bde H{Q 1 Presidential Guard bde 9 jnf bps 1 Para bn 1 engr bn I armd car co 13 arty btys 7 M-3 Sruart It tks
Japanese experiences of environmental management.
Matsuo, T
2003-01-01
Japan experienced a very rapid industrialization and economic growth in the era of income doubling in 1960s and at the same time Japan experienced very severe damage from various types of environmental pollution. In this paper, historical development of population, GNP, energy consumption with classification of petroleum, coal and electric power, and CO2 emission are introduced as basic background data on Japanese development. The tragic experience of Minamata disease and Itai-itai disease caused by methyl mercury and cadmium, respectively, are introduced. In two tables, historical development of water pollution and air pollution are summarized. Regarding solid wastes management, the total mass balance in Japan and recent development in legislation framework for enhancement of recycling of wastes are introduced briefly.
International energy indicators
NASA Astrophysics Data System (ADS)
Rossi, E., Jr.
1981-12-01
Data on international energy indicators were tabulated and graphically represented. The following data are presented: world crude oil production, 1974 to October 1981; OPEC crude oil productive capacity; world crude oil and refined product inventory levels, 1975 to October, 1981; oil consumption in OECD countries, 1975 to October 1981; USSR crude oil production and exports, 1975 to October 1981; free world and US nuclear electricity generation, 1973 to December, 1981 and current capacity. Specific US data presented are: US domestic oil supply, 1977 to June, 1981; US gross imports of crude oil and products, 1973 to October, 1981; landed cost of Saudi crude current and 1974 dollars; US coal trade, 1975 to September, 1981; US natural gas trade, 1981; and energy/GNP ratio.
NASA Astrophysics Data System (ADS)
Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.
2017-05-01
In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.
National health expenditures, 1986-2000
1987-01-01
Patterns of spending for health during 1986 and beyond reflect a mixture of adherence to and change from historical trends. From a level of $458 billion in 1986—10.9 percent of the GNP—national health expenditures are projected to reach $1.5 trillion by the year 2000—15.0 percent of the GNP. This article presents a provisional estimate of spending in 1986 and projections of spending (under the assumption of current law) through the year 2000. Also discussed are the effects of the demographic composition of the population on spending for health, and how spending would increase in the future simply as a result of the evolution of that composition. PMID:10312184
Wetherbee, Gregory A.; Martin, RoseAnn; Rhodes, Mark F.; Chesney, Tanya A.
2014-01-01
The U.S. Geological Survey operated six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program/National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2009–2010. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples; a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory (CAL) and Mercury (Hg) Analytical Laboratory (HAL). The blind-audit program was also implemented for the MDN to evaluate analytical bias in total Hg concentration data produced by the HAL. The co-located-sampler program was used to identify and quantify potential shifts in NADP data resulting from replacement of original network instrumentation with new electronic recording rain gages (E-gages) and precipitation collectors that use optical sensors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the United States. Results also suggest that retrofit of the NADP networks with the new precipitation collectors could cause –8 to +14 percent shifts in NADP annual precipitation-weighted mean concentrations and total deposition values for ammonium, nitrate, sulfate, and hydrogen ion, and larger shifts (+13 to +74 percent) for calcium, magnesium, sodium, potassium, and chloride. The prototype N-CON Systems bucket collector is more efficient in the catch of precipitation in winter than Aerochem Metrics Model 301 collector, especially for light snowfall.
Wetherbee, Gregory A.; Martin, RoseAnn
2014-01-01
The U.S. Geological Survey operated six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program (NADP) / National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2011–2012. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples; a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory and Mercury Analytical Laboratory (HAL). A blind-audit program was implemented for the MDN during 2011 to evaluate analytical bias in HAL total mercury concentration data. The co-located–sampler program was used to identify and quantify potential shifts in NADP data resulting from the replacement of original network instrumentation with new electronic recording rain gages and precipitation collectors that use optical precipitation sensors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the United States. Co-located rain gage results indicate -3.7 to +6.5 percent bias in NADP precipitation-depth measurements. Co-located collector results suggest that the retrofit of the NADP networks with the new precipitation collectors could cause +10 to +36 percent shifts in NADP annual deposition values for ammonium, nitrate, and sulfate; -7.5 to +41 percent shifts for hydrogen-ion deposition; and larger shifts (-51 to +52 percent) for calcium, magnesium, sodium, potassium, and chloride. The prototype N-CON Systems bucket collector typically catches more precipitation than the NADP-approved Aerochem Metrics Model 301 collector.
NASA Astrophysics Data System (ADS)
Wu, H.; Zhou, L.; Xu, T.; Fang, W. L.; He, W. G.; Liu, H. M.
2017-11-01
In order to improve the situation of voltage violation caused by the grid-connection of photovoltaic (PV) system in a distribution network, a bi-level programming model is proposed for battery energy storage system (BESS) deployment. The objective function of inner level programming is to minimize voltage violation, with the power of PV and BESS as the variables. The objective function of outer level programming is to minimize the comprehensive function originated from inner layer programming and all the BESS operating parameters, with the capacity and rated power of BESS as the variables. The differential evolution (DE) algorithm is applied to solve the model. Based on distribution network operation scenarios with photovoltaic generation under multiple alternative output modes, the simulation results of IEEE 33-bus system prove that the deployment strategy of BESS proposed in this paper is well adapted to voltage violation regulation invariable distribution network operation scenarios. It contributes to regulating voltage violation in distribution network, as well as to improve the utilization of PV systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
... Conservation Program: Proposed Determination of Set-Top Boxes and Network Equipment as a Covered Consumer... published June 15, 2011 that set-top boxes (STBs) and network equipment qualify as a covered product under... action in light of a consensus agreement entered by a broadly representative group that DOE believes has...
Buchwald, Dedra; Dick, Rhonda Wiegman
2011-01-01
Purpose American Indian and Alaska Native scientists are consistently among the most underrepresented minority groups in health research. The authors used social network analysis (SNA) to evaluate the Native Investigator Development Program (NIDP), a career development program for junior Native researchers established as a collaboration between the University of Washington and the University of Colorado Denver. Method The study focused on 29 trainees and mentors who participated in the NIDP. Data were collected on manuscripts and grant proposals produced by participants from 1998 to 2007. Information on authorship of manuscripts and collaborations on grant applications was used to conduct social network analyses with 3 measures of centrality and 1 measure of network reach. Both visual and quantitative analyses were performed. Results Participants in the NIDP collaborated on 106 manuscripts and 83 grant applications. Although 3 highly connected individuals, with critical and central roles in the program, accounted for much of the richness of the network, both current core faculty and “graduates” of the program were heavily involved in collaborations on manuscripts and grants. Conclusions This study’s innovative application of SNA demonstrates that collaborative relationships can be an important outcome of career development programs for minority investigators, and that an analysis of these relationships can provide a more complete assessment of the value of such programs. PMID:21512364
Rice, Eric; Tulbert, Eve; Cederbaum, Julie; Barman Adhikari, Anamika; Milburn, Norweeta G
2012-04-01
The objective of the study is to use social network analysis to examine the acceptability of a youth-led, hybrid face-to-face and online social networking HIV prevention program for homeless youth.Seven peer leaders (PLs) engaged face-to-face homeless youth (F2F) in the creation of digital media projects (e.g. You Tube videos). PL and F2F recruited online youth (OY) to participate in MySpace and Facebook communities where digital media was disseminated and discussed. The resulting social networks were assessed with respect to size, growth, density, relative centrality of positions and homophily of ties. Seven PL, 53 F2F and 103 OY created two large networks. After the first 50 F2F youth participated, online networks entered a rapid growth phase. OY were among the most central youth in these networks. Younger aged persons and females were disproportionately connected to like youth. The program appears highly acceptable to homeless youth. Social network analysis revealed which PL were the most critical to the program and which types of participants (younger youth and females) may require additional outreach efforts in the future.
Rice, Eric; Tulbert, Eve; Cederbaum, Julie; Barman Adhikari, Anamika; Milburn, Norweeta G.
2012-01-01
The objective of the study is to use social network analysis to examine the acceptability of a youth-led, hybrid face-to-face and online social networking HIV prevention program for homeless youth.Seven peer leaders (PLs) engaged face-to-face homeless youth (F2F) in the creation of digital media projects (e.g. You Tube videos). PL and F2F recruited online youth (OY) to participate in MySpace and Facebook communities where digital media was disseminated and discussed. The resulting social networks were assessed with respect to size, growth, density, relative centrality of positions and homophily of ties. Seven PL, 53 F2F and 103 OY created two large networks. After the first 50 F2F youth participated, online networks entered a rapid growth phase. OY were among the most central youth in these networks. Younger aged persons and females were disproportionately connected to like youth. The program appears highly acceptable to homeless youth. Social network analysis revealed which PL were the most critical to the program and which types of participants (younger youth and females) may require additional outreach efforts in the future. PMID:22247453
Biological and Environmental Research Network Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaji, V.; Boden, Tom; Cowley, Dave
2013-09-01
The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organizedmore » a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.« less
Inferring Network Controls from Topology Using the Chomp Database
2015-12-03
AFRL-AFOSR-VA-TR-2016-0033 INFERRING NETWORK CONTROLS FROM TOPOLOGY USING THE CHOMP DATABASE John Harer DUKE UNIVERSITY Final Report 12/03/2015...INFERRING NETWORK CONTROLS FROM TOPOLOGY USING THE CHOMP DATABASE 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-10-1-0436 5c. PROGRAM ELEMENT NUMBER 6...area of Topological Data Analysis (TDA) and it’s application to dynamical systems. The role of this work in the Complex Networks program is based on
Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks
Roy, Sushmita; Lagree, Stephen; Hou, Zhonggang; Thomson, James A.; Stewart, Ron; Gasch, Audrey P.
2013-01-01
Regulatory networks that control gene expression are important in diverse biological contexts including stress response and development. Each gene's regulatory program is determined by module-level regulation (e.g. co-regulation via the same signaling system), as well as gene-specific determinants that can fine-tune expression. We present a novel approach, Modular regulatory network learning with per gene information (MERLIN), that infers regulatory programs for individual genes while probabilistically constraining these programs to reveal module-level organization of regulatory networks. Using edge-, regulator- and module-based comparisons of simulated networks of known ground truth, we find MERLIN reconstructs regulatory programs of individual genes as well or better than existing approaches of network reconstruction, while additionally identifying modular organization of the regulatory networks. We use MERLIN to dissect global transcriptional behavior in two biological contexts: yeast stress response and human embryonic stem cell differentiation. Regulatory modules inferred by MERLIN capture co-regulatory relationships between signaling proteins and downstream transcription factors thereby revealing the upstream signaling systems controlling transcriptional responses. The inferred networks are enriched for regulators with genetic or physical interactions, supporting the inference, and identify modules of functionally related genes bound by the same transcriptional regulators. Our method combines the strengths of per-gene and per-module methods to reveal new insights into transcriptional regulation in stress and development. PMID:24146602
Bordeianou, Liliana; Cauley, Christy E; Antonelli, Donna; Bird, Sarah; Rattner, David; Hutter, Matthew; Mahmood, Sadiqa; Schnipper, Deborah; Rubin, Marc; Bleday, Ronald; Kenney, Pardon; Berger, David
2017-01-01
Two systems measure surgical site infection rates following colorectal surgeries: the American College of Surgeons National Surgical Quality Improvement Program and the Centers for Disease Control and Prevention National Healthcare Safety Network. The Centers for Medicare & Medicaid Services pay-for-performance initiatives use National Healthcare Safety Network data for hospital comparisons. This study aimed to compare database concordance. This is a multi-institution cohort study of systemwide Colorectal Surgery Collaborative. The National Surgical Quality Improvement Program requires rigorous, standardized data capture techniques; National Healthcare Safety Network allows 5 data capture techniques. Standardized surgical site infection rates were compared between databases. The Cohen κ-coefficient was calculated. This study was conducted at Boston-area hospitals. National Healthcare Safety Network or National Surgical Quality Improvement Program patients undergoing colorectal surgery were included. Standardized surgical site infection rates were the primary outcomes of interest. Thirty-day surgical site infection rates of 3547 (National Surgical Quality Improvement Program) vs 5179 (National Healthcare Safety Network) colorectal procedures (2012-2014). Discrepancies appeared: National Surgical Quality Improvement Program database of hospital 1 (N = 1480 patients) routinely found surgical site infection rates of approximately 10%, routinely deemed rate "exemplary" or "as expected" (100%). National Healthcare Safety Network data from the same hospital and time period (N = 1881) revealed a similar overall surgical site infection rate (10%), but standardized rates were deemed "worse than national average" 80% of the time. Overall, hospitals using less rigorous capture methods had improved surgical site infection rates for National Healthcare Safety Network compared with standardized National Surgical Quality Improvement Program reports. The correlation coefficient between standardized infection rates was 0.03 (p = 0.88). During 25 site-time period observations, National Surgical Quality Improvement Program and National Healthcare Safety Network data matched for 52% of observations (13/25). κ = 0.10 (95% CI, -0.1366 to 0.3402; p = 0.403), indicating poor agreement. This study investigated hospitals located in the Northeastern United States only. Variation in Centers for Medicare & Medicaid Services-mandated National Healthcare Safety Network infection surveillance methodology leads to unreliable results, which is apparent when these results are compared with standardized data. High-quality data would improve care quality and compare outcomes among institutions.
Coping with Aging and Amputation
... Find Support Certified Peer Visitor (CPV) Program Support Group Network Support Group Meeting Calendar Hospital/Rehab Facility Partners ... Find Support Certified Peer Visitor (CPV) Program Support Group Network Support Group Meeting Calendar Hospital/Rehab Facility Partners ...
Mercury Deposition Network Site Operator Training for the System Blank and Blind Audit Programs
Wetherbee, Gregory A.; Lehmann, Christopher M.B.
2008-01-01
The U.S. Geological Survey operates the external quality assurance project for the National Atmospheric Deposition Program/Mercury Deposition Network. The project includes the system blank and blind audit programs for assessment of total mercury concentration data quality for wet-deposition samples. This presentation was prepared to train new site operators and to refresh experienced site operators to successfully process and submit system blank and blind audit samples for chemical analysis. Analytical results are used to estimate chemical stability and contamination levels of National Atmospheric Deposition Program/Mercury Deposition Network samples and to evaluate laboratory variability and bias.
Evaluation of thermal network correction program using test temperature data
NASA Technical Reports Server (NTRS)
Ishimoto, T.; Fink, L. C.
1972-01-01
An evaluation process to determine the accuracy of a computer program for thermal network correction is discussed. The evaluation is required since factors such as inaccuracies of temperatures, insufficient number of temperature points over a specified time period, lack of one-to-one correlation between temperature sensor and nodal locations, and incomplete temperature measurements are not present in the computer-generated information. The mathematical models used in the evaluation are those that describe a physical system composed of both a conventional and a heat pipe platform. A description of the models used, the results of the evaluation of the thermal network correction, and input instructions for the thermal network correction program are presented.
Goodman, Lisa A; Banyard, Victoria; Woulfe, Julie; Ash, Sarah; Mattern, Grace
2016-01-01
Despite powerful evidence that informal social support contributes to survivors' safety and well-being, mainstream domestic violence (DV) programs have not developed comprehensive models for helping isolated survivors re-engage with these networks. Although many advocates use network-oriented strategies informally, they often do so without resources, funding, or training. This qualitative focus group study explored advocates' use and perceptions of network-oriented strategies. Advocates working in a range of DV programs across one state described the importance of network-oriented work and articulated its five dimensions, including helping survivors build their capacity to form healthy relationships, identify helpful and harmful network members, re-engage with existing networks, develop new relationships, and respond more effectively to network members. © The Author(s) 2015.
Kolomitro, Klodiana; Stockley, Denise; Egan, Rylan; MacDonald, Michelle L
2015-01-01
The Technology Evaluation in the Elderly Network (TVN) was funded in July 2012 under the Canadian Networks of Centres of Excellence program. This article highlights the development and preliminary evaluation of the TVN Interdisciplinary Training Program. This program is based on an experiential learning approach that crosses a multitude of disciplines including health sciences, law, social sciences, and ethical aspects of working with the frail elderly. Opportunities within the program include mentorship, interdisciplinary online collaborative projects, external placements, academic products, pre-grant submission, trainee-driven requirements, Network meetings, online modules/webinars, and most importantly active involvement with patients, families, and their support systems. The authors have 120 trainees from approximately 23 different disciplines including law, ethics, public policy, social work, and engineering engaged in the program. Based on our evaluation this program has been perceived as highly valuable by the participants and the community.
Lifelong Learning in German Learning Cities/Regions
ERIC Educational Resources Information Center
Reghenzani-Kearns, Denise; Kearns, Peter
2012-01-01
This paper traces the policies and lessons learned from two consecutive German national programs aimed at developing learning cities/regions. Known as Learning Regions Promotion of Networks, this first program transitioned into the current program, Learning on Place. A case study chosen is from the Tolzer region where a network has self-sustained…
Transient Analysis Generator /TAG/ simulates behavior of large class of electrical networks
NASA Technical Reports Server (NTRS)
Thomas, W. J.
1967-01-01
Transient Analysis Generator program simulates both transient and dc steady-state behavior of a large class of electrical networks. It generates a special analysis program for each circuit described in an easily understood and manipulated programming language. A generator or preprocessor and a simulation system make up the TAG system.
NASA Technical Reports Server (NTRS)
1972-01-01
Satellite tracking and earth dynamics research programs are discussed. Geodetic and geophysical investigations are reported along with atmospheric research using satellite drag data. Satellite tracking network functions and support groups which are discussed include: network operations, communications, data-services division, moonwatch, and programming group.