The chemokine receptor CCR1 is identified in mast cell-derived exosomes.
Liang, Yuting; Qiao, Longwei; Peng, Xia; Cui, Zelin; Yin, Yue; Liao, Huanjin; Jiang, Min; Li, Li
2018-01-01
Mast cells are important effector cells of the immune system, and mast cell-derived exosomes carrying RNAs play a role in immune regulation. However, the molecular function of mast cell-derived exosomes is currently unknown, and here, we identify differentially expressed genes (DEGs) in mast cells and exosomes. We isolated mast cells derived exosomes through differential centrifugation and screened the DEGs from mast cell-derived exosomes, using the GSE25330 array dataset downloaded from the Gene Expression Omnibus database. Biochemical pathways were analyzed by Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the online tool DAVID. DEGs-associated protein-protein interaction networks (PPIs) were constructed using the STRING database and Cytoscape software. The genes identified from these bioinformatics analyses were verified by qRT-PCR and Western blot in mast cells and exosomes. We identified 2121 DEGs (843 up and 1278 down-regulated genes) in HMC-1 cell-derived exosomes and HMC-1 cells. The up-regulated DEGs were classified into two significant modules. The chemokine receptor CCR1 was screened as a hub gene and enriched in cytokine-mediated signaling pathway in module one. Seven genes, including CCR1, CD9, KIT, TGFBR1, TLR9, TPSAB1 and TPSB2 were screened and validated through qRT-PCR analysis. We have achieved a comprehensive view of the pivotal genes and pathways in mast cells and exosomes and identified CCR1 as a hub gene in mast cell-derived exosomes. Our results provide novel clues with respect to the biological processes through which mast cell-derived exosomes modulate immune responses.
The chemokine receptor CCR1 is identified in mast cell-derived exosomes
Liang, Yuting; Qiao, Longwei; Peng, Xia; Cui, Zelin; Yin, Yue; Liao, Huanjin; Jiang, Min; Li, Li
2018-01-01
Mast cells are important effector cells of the immune system, and mast cell-derived exosomes carrying RNAs play a role in immune regulation. However, the molecular function of mast cell-derived exosomes is currently unknown, and here, we identify differentially expressed genes (DEGs) in mast cells and exosomes. We isolated mast cells derived exosomes through differential centrifugation and screened the DEGs from mast cell-derived exosomes, using the GSE25330 array dataset downloaded from the Gene Expression Omnibus database. Biochemical pathways were analyzed by Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the online tool DAVID. DEGs-associated protein-protein interaction networks (PPIs) were constructed using the STRING database and Cytoscape software. The genes identified from these bioinformatics analyses were verified by qRT-PCR and Western blot in mast cells and exosomes. We identified 2121 DEGs (843 up and 1278 down-regulated genes) in HMC-1 cell-derived exosomes and HMC-1 cells. The up-regulated DEGs were classified into two significant modules. The chemokine receptor CCR1 was screened as a hub gene and enriched in cytokine-mediated signaling pathway in module one. Seven genes, including CCR1, CD9, KIT, TGFBR1, TLR9, TPSAB1 and TPSB2 were screened and validated through qRT-PCR analysis. We have achieved a comprehensive view of the pivotal genes and pathways in mast cells and exosomes and identified CCR1 as a hub gene in mast cell-derived exosomes. Our results provide novel clues with respect to the biological processes through which mast cell-derived exosomes modulate immune responses. PMID:29511430
Jansen, Chad; Speck, Mark; Greineisen, William E; Maaetoft-Udsen, Kristina; Cordasco, Edward; Shimoda, Lori MN; Stokes, Alexander J; Turner, Helen
2018-01-01
Objective Secretory granules (SG) and lipid bodies (LB) are the primary organelles that mediate functional responses in mast cells. SG contains histamine and matrix-active proteases, while LB are reservoirs of arachidonic acid and its metabolites, precursors for rapid synthesis of eicosanoids such as LTC4. Both of these compartments can be dynamically or ontologically regulated, with metabolic and immunological stimuli altering lipid body content and granule numbers responding to contextual signals from tissue. We previously described that chronic in vitro or in vivo hyperinsulinemia expands the LB compartment with a concomitant loss of SG capacity, suggesting that this ratio is dynamically regulated. The objective of the current study is to determine if chronic insulin exposure initiates a transcriptional program that biases model mast cells towards a lipogenic state with accompanying loss of secretory granule biogenesis. Methods We used a basophilic leukemic cell line with mucosal mast cell-like features as a model system. We tested the hypothesis that chronic insulin exposure initiates a transcriptional program that biases these model mast cells towards a lipogenic state with accompanying loss of secretory granule biogenesis. Transcriptional arrays were used to map gene expression patterns. Biochemical, immunocytochemical and mediator release assays were used to evaluate organelle numbers and functional responses. Results In a mucosal mast cell model, the rat basophilic leukemia line RBL2H3, mast cell granularity and SG numbers are inversely correlated with LB numbers. Chronic insulin exposure appears to modulate gene networks involved in both lipid body biogenesis and secretory granule formation. Western blot analysis confirms upregulation of protein levels for LB proteins, and decreases in proteins that are markers for SG cargo. Conclusions The levels of insulin in the extracellular milieu may modify the phenotype of mast cell-like cells in vitro. PMID:29430572
Scalability Assessments for the Malicious Activity Simulation Tool (MAST)
2012-09-01
the scalability characteristics of MAST. Specifically, we show that an exponential increase in clients using the MAST software does not impact...an exponential increase in clients using the MAST software does not impact network and system resources significantly. Additionally, we...31 1. Hardware .....................................31 2. Software .....................................32 3. Common PC
Mast Cell Interactions and Crosstalk in Regulating Allergic Inflammation.
Velez, Tania E; Bryce, Paul J; Hulse, Kathryn E
2018-04-17
This review summarizes recent findings on mast cell biology with a focus on IgE-independent roles of mast cells in regulating allergic responses. Recent studies have described novel mast cell-derived molecules, both secreted and membrane-bound, that facilitate cross-talk with a variety of immune effector cells to mediate type 2 inflammatory responses. Mast cells are complex and dynamic cells that are persistent in allergy and are capable of providing signals that lead to the initiation and persistence of allergic mechanisms.
Sharkia, Israa; Hadad Erlich, Tal; Landolina, Nadine; Assayag, Miri; Motzik, Alex; Rachmin, Inbal; Kay, Gillian; Porat, Ziv; Tshori, Sagi; Berkman, Neville; Levi-Schaffer, Francesca; Razin, Ehud
2017-07-01
We have recently observed that oxidative phosphorylation-mediated ATP production is essential for mast cell function. Pyruvate dehydrogenase (PDH) is the main regulator of the Krebs cycle and is located upstream of the electron transport chain. However, the role of PDH in mast cell function has not been described. Microphthalmia transcription factor (MITF) regulates the development, number, and function of mast cells. Localization of MITF to the mitochondria and its interaction with mitochondrial proteins has not been explored. We sought to explore the role played by PDH in mast cell exocytosis and to determine whether MITF is localized in the mitochondria and involved in regulation of PDH activity. Experiments were performed in vitro by using human and mouse mast cells, as well as rat basophil leukemia cells, and in vivo in mice. The effect of PDH inhibition on mast cell function was examined. PDH interaction with MITF was measured before and after immunologic activation. Furthermore, mitochondrial localization of MITF and its effect on PDH activity were determined. PDH is essential for immunologically mediated degranulation of mast cells. After activation, PDH is serine dephosphorylated. In addition, for the first time, we show that MITF is partially located in the mitochondria and interacts with PDH. This interaction is dependent on the phosphorylation state of PDH. Furthermore, mitochondrial MITF regulates PDH activity. The association of mitochondrial MITF with PDH emerges as an important regulator of mast cell function. Our findings indicate that PDH could arise as a new target for the manipulation of allergic diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Mast cell activators as novel immune regulators.
Johnson-Weaver, Brandi; Choi, Hae Woong; Abraham, Soman N; Staats, Herman F
2018-05-26
Mast cells are an important cell type of the innate immune system that when activated, play a crucial role in generating protective innate host responses after bacterial and viral infection. Additionally, activated mast cells influence lymph node composition to regulate the induction of adaptive immune responses. The recognition that mast cells play a beneficial role in host responses to microbial infection and induction of adaptive immunity has provided the rationale to evaluate mast cell activators for use as antimicrobials or vaccine adjuvants. This review summarizes the role of mast cell activators in antimicrobial responses while also discussing the use of different classes of mast cell activators as potent vaccine adjuvants that enhance the induction of protective immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Developing Simulated Cyber Attack Scenarios Against Virtualized Adversary Networks
2017-03-01
MAST is a custom software framework originally designed to facilitate the training of network administrators on live networks using SimWare. The MAST...or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services ...scenario development and testing in a virtual test environment. Commercial and custom software tools that provide the ability to conduct network
Carmi-Levy, Irit; Yannay-Cohen, Nurit; Kay, Gillian; Razin, Ehud; Nechushtan, Hovav
2008-01-01
We previously discovered that microphthalmia transcription factor (MITF) and upstream stimulatory factor 2 (USF2) each forms a complex with its inhibitor histidine triad nucleotide-binding 1 (Hint-1) and with lysyl-tRNA synthetase (LysRS). Moreover, we showed that the dinucleotide diadenosine tetraphosphate (Ap4A), previously shown to be synthesized by LysRS, binds to Hint-1, and as a result the transcription factors are released from their suppression. Thus, transcriptional activity is regulated by Ap4A, suggesting that Ap4A is a second messenger in this context. For Ap4A to be unambiguously established as a second messenger, several criteria have to be fulfilled, including the presence of a metabolizing enzyme. Since several enzymes are able to hydrolize Ap4A, we provided here evidence that the “Nudix” type 2 gene product, Ap4A hydrolase, is responsible for Ap4A degradation following the immunological activation of mast cells. The knockdown of Ap4A hydrolase modulated Ap4A accumulation, resulting in changes in the expression of MITF and USF2 target genes. Moreover, our observations demonstrated that the involvement of Ap4A hydrolase in gene regulation is not a phenomenon exclusive to mast cells but can also be found in cardiac cells activated with the β-agonist isoproterenol. Thus, we have provided concrete evidence establishing Ap4A as a second messenger in the regulation of gene expression. PMID:18644867
Carmi-Levy, Irit; Yannay-Cohen, Nurit; Kay, Gillian; Razin, Ehud; Nechushtan, Hovav
2008-09-01
We previously discovered that microphthalmia transcription factor (MITF) and upstream stimulatory factor 2 (USF2) each forms a complex with its inhibitor histidine triad nucleotide-binding 1 (Hint-1) and with lysyl-tRNA synthetase (LysRS). Moreover, we showed that the dinucleotide diadenosine tetraphosphate (Ap(4)A), previously shown to be synthesized by LysRS, binds to Hint-1, and as a result the transcription factors are released from their suppression. Thus, transcriptional activity is regulated by Ap(4)A, suggesting that Ap(4)A is a second messenger in this context. For Ap(4)A to be unambiguously established as a second messenger, several criteria have to be fulfilled, including the presence of a metabolizing enzyme. Since several enzymes are able to hydrolyze Ap(4)A, we provided here evidence that the "Nudix" type 2 gene product, Ap(4)A hydrolase, is responsible for Ap(4)A degradation following the immunological activation of mast cells. The knockdown of Ap(4)A hydrolase modulated Ap(4)A accumulation, resulting in changes in the expression of MITF and USF2 target genes. Moreover, our observations demonstrated that the involvement of Ap(4)A hydrolase in gene regulation is not a phenomenon exclusive to mast cells but can also be found in cardiac cells activated with the beta-agonist isoproterenol. Thus, we have provided concrete evidence establishing Ap(4)A as a second messenger in the regulation of gene expression.
Carbonic anhydrase enzymes regulate mast cell–mediated inflammation
Soteropoulos, Patricia
2016-01-01
Type 2 cytokine responses are necessary for the development of protective immunity to helminth parasites but also cause the inflammation associated with allergies and asthma. Recent studies have found that peripheral hematopoietic progenitor cells contribute to type 2 cytokine–mediated inflammation through their enhanced ability to develop into mast cells. In this study, we show that carbonic anhydrase (Car) enzymes are up-regulated in type 2–associated progenitor cells and demonstrate that Car enzyme inhibition is sufficient to prevent mouse mast cell responses and inflammation after Trichinella spiralis infection or the induction of food allergy–like disease. Further, we used CRISPR/Cas9 technology and illustrate that genetically editing Car1 is sufficient to selectively reduce mast cell development. Finally, we demonstrate that Car enzymes can be targeted to prevent human mast cell development. Collectively, these experiments identify a previously unrecognized role for Car enzymes in regulating mast cell lineage commitment and suggest that Car enzyme inhibitors may possess therapeutic potential that can be used to treat mast cell–mediated inflammation. PMID:27526715
Zhu, Xiang; Mose, Eucabeth; Hogan, Simon P.
2014-01-01
Extracellular acidification has been observed in allergic inflammatory diseases. Recently, we demonstrated that the proton-sensing receptor G protein-coupled receptor 65 (GPR65) regulates eosinophil survival in an acidic environment in vitro and eosinophil accumulation in an allergic lung inflammation model. For mast cells, another inflammatory cell type critical for allergic responses, it remains unknown whether GPR65 is expressed and/or regulates mast cell viability. Thus, in the present study, we employed in vitro experiments and an intestinal anaphylaxis model in which both mastocytosis and eosinophilia can be observed, particularly in the gastrointestinal tract, to enable us to directly compare the effect of GPR65 expression on these two cell types. We identified GPR65 expression on mast cells; however, unlike eosinophil viability, mast cell viability in vitro is not affected by acidification or GPR65 expression. Mechanistically, we determined that mast cells do not respond to extracellular acidification with increased cAMP levels. Furthermore, in the intestinal anaphylaxis model, we observed a significant reduction of eosinophils (59.1 ± 9.2% decrease) in the jejunum of allergen-challenged GPR65-deficient mice compared with allergen-challenged wild-type mice, despite the degree of antigen sensitization and the expression levels of Th2 cytokines (Il4, Il13) and eosinophil chemokines (Ccl11, Ccl24) in the jejunum being comparable. In contrast, the accumulation of mast cells in allergen-challenged mice was not affected by GPR65 deficiency. In conclusion, our study demonstrates differential regulation of eosinophils and mast cells in inflammatory tissue, with mast cell viability and accumulation being independent of GPR65. PMID:24742990
Huang, Weishan; Morales, J. Luis; Gozivoda, Victor P.; August, Avery
2015-01-01
Background Mast cells are indispensible for LPS-induced septic hypothermia, in which TNF-α plays an essential role to initiate septic responses. ITK and BTK regulate mast cell responses to allergen, but their roles in mast cell responses in LPS-induced sepsis are unclear. Objectives We sought to investigate the roles of ITK and BTK in mast cell responses during LPS-induced septic inflammation. Methods Mice (genetically modified or BMMC-reconstituted Sash) were given LPS to induce septic hypothermia, in the presence or absence of indicated inhibitors. Flow cytometry was used to determine LPS-induced cell influx and TNF-α production in peritoneal cells. Microarray was used for genome-wide gene expression analysis on BMMCs. Quantitative PCR and multiplex were used to determine transcribed and secreted pro-inflammatory cytokines. Microscopy and western blotting were used to determine activation of signal transduction pathways. Results The absence of ITK and BTK leads to exacerbation of LPS-induced septic hypothermia and neutrophil influx. Itk−/−Btk−/− mast cells exhibit hyperactive preformed and LPS-induced TNF-α production, and lead to more severe LPS-induced septic hypothermia when reconstituted into mast cell deficient Sash mice. LPS-induced NF-κB, Akt and p38 activation is enhanced in Itk−/−Btk−/− mast cells, and blockage of PI3K, Akt or p38 downstream MNK1 activation significantly suppresses TNF-α hyper-production and attenuates septic hypothermia. Conclusions ITK and BTK regulate thermal homeostasis during septic response through mast cell function in mice. They share regulatory function downstream of TLR4/LPS in mast cells, through regulating the activation of canonical NF-κB, PI3K/Akt and p38 signaling pathways. PMID:26581914
A mast-seeding desert shrub regulates population dynamics and behavior of its heteromyid dispersers
Janene Auger; Susan E. Meyer; Stephen H. Jenkins
2016-01-01
Granivorous rodent populations in deserts are primarily regulated through precipitation-driven resource pulses rather than pulses associated with mast-seeding, a pattern more common in mesic habitats. We studied heteromyid responses to mast-seeding in the desert shrub blackbrush (Coleogyne ramosissima), a regionally dominant species in the MojaveâGreat Basin...
Copper Regulates Maturation and Expression of an MITF:Tryptase Axis in Mast Cells.
Hu Frisk, Jun Mei; Kjellén, Lena; Kaler, Stephen G; Pejler, Gunnar; Öhrvik, Helena
2017-12-15
Copper has previously been implicated in the regulation of immune responses, but the impact of this metal on mast cells is poorly understood. In this article, we address this issue and show that copper starvation of mast cells causes increased granule maturation, as indicated by higher proteoglycan content, stronger metachromatic staining, and altered ultrastructure in comparison with nontreated cells, whereas copper overload has the opposite effects. In contrast, copper status did not impact storage of histamine in mast cells, nor did alterations in copper levels affect the ability of mast cells to degranulate in response to IgER cross-linking. A striking finding was decreased tryptase content in mast cells with copper overload, whereas copper starvation increased tryptase content. These effects were associated with corresponding shifts in tryptase mRNA levels, suggesting that copper affects tryptase gene regulation. Mechanistically, we found that alterations in copper status affected the expression of microphthalmia-associated transcription factor, a transcription factor critical for driving tryptase expression. We also found evidence supporting the concept that the effects on microphthalmia-associated transcription factor are dependent on copper-mediated modulation of MAPK signaling. Finally, we show that, in MEDNIK syndrome, a condition associated with low copper levels and a hyperallergenic skin phenotype, including pruritis and dermatitis, the number of tryptase-positive mast cells is increased. Taken together, our findings reveal a hitherto unrecognized role for copper in the regulation of mast cell gene expression and maturation. Copyright © 2017 by The American Association of Immunologists, Inc.
Mast Cells Regulate Epidermal Barrier Function and the Development of Allergic Skin Inflammation.
Sehra, Sarita; Serezani, Ana P M; Ocaña, Jesus A; Travers, Jeffrey B; Kaplan, Mark H
2016-07-01
Atopic dermatitis is a chronic inflammatory skin disease characterized by infiltration of eosinophils, T helper cells, and mast cells. The role of mast cells in atopic dermatitis is not completely understood. To define the effects of mast cells on skin biology, we observed that mast cells regulate the homeostatic expression of epidermal differentiation complex and other skin genes. Decreased epidermal differentiation complex gene expression in mice that genetically lack mast cells (Kit(W-sh/W-sh) mice) is associated with increased uptake of protein antigens painted on the skin by dendritic cells (DCs) compared with similarly treated wild-type mice, suggesting a protective role for mast cells in exposure to nominal environmental allergens. To test this further, we crossed Kit(W-sh/W-sh) mice with signal transducer and activator of transcription 6 (i.e., Stat6) VT transgenic mice that develop spontaneous atopic dermatitis-like disease that is dependent on T helper cell 2 cytokines and is associated with high serum concentrations of IgE. We observed that Stat6VT × Kit(W-sh/W-sh) mice developed more frequent and more severe allergic skin inflammation than Stat6VT transgenic mice that had mast cells. Together, these studies suggest that mast cells regulate epidermal barrier function and have a potential protective role in the development of atopic dermatitis-like disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Musante, Veronica; Li, Lu; Kanyo, Jean; Lam, Tukiet T; Colangelo, Christopher M; Cheng, Shuk Kei; Brody, A Harrison; Greengard, Paul; Le Novère, Nicolas; Nairn, Angus C
2017-06-14
ARPP-16, ARPP-19, and ENSA are inhibitors of protein phosphatase PP2A. ARPP-19 and ENSA phosphorylated by Greatwall kinase inhibit PP2A during mitosis. ARPP-16 is expressed in striatal neurons where basal phosphorylation by MAST3 kinase inhibits PP2A and regulates key components of striatal signaling. The ARPP-16/19 proteins were discovered as substrates for PKA, but the function of PKA phosphorylation is unknown. We find that phosphorylation by PKA or MAST3 mutually suppresses the ability of the other kinase to act on ARPP-16. Phosphorylation by PKA also acts to prevent inhibition of PP2A by ARPP-16 phosphorylated by MAST3. Moreover, PKA phosphorylates MAST3 at multiple sites resulting in its inhibition. Mathematical modeling highlights the role of these three regulatory interactions to create a switch-like response to cAMP. Together, the results suggest a complex antagonistic interplay between the control of ARPP-16 by MAST3 and PKA that creates a mechanism whereby cAMP mediates PP2A disinhibition.
Zinc Oxide Nanoparticles Demoted MDM2 Expression to Suppress TSLP-Induced Mast Cell Proliferation.
Kim, Min-Ho; Jeong, Hyun-Ja
2016-03-01
Activation of murine double minute 2 (MDM2) through thymic stromal lymphopoietin (TSLP)-induced signal transducers and activators of transcription (STAT6) phosphorylation plays a critical role in proliferation and survival of mast cells. Previously, we reported that zinc oxide nanoparticles (ZnO-NP) effectively decrease the mast cell-mediated allergic inflammatory reactions. Here, we evaluated the effect of ZnO-NP on TSLP-induced proliferation of mast cells. ZnO-NP significantly reduced the number of BrdU-incorporating mast cells increased by TSLP. ZnO-NP decreased the expression of MDM2 through the blockade of STAT6 phosphorylation. TSLP increased the production and mRNA expression of interleukin-13 (a growth factor of mast cells), its increase was significantly decreased by ZnO-NP (10 μg/mL). ZnO-NP induced the down-regulation of Bcl2 (an anti-apoptotic factor) and up-regulation of Bax (an apoptotic factor) through the stabilization of p53 protein. However, ZnO-NP has no effect on caspase-3 activation, cytochrome c release into cytosol, and apoptosis-inducing factor translocation into nucleus in TSLP-stimulated cells. The results of the present study demonstrated that ZnO-NP inhibited the proliferation of mast cells through the regulation of MDM2 and p53 protein levels. These finding suggest that ZnO-NP could be improved mast cell-mediated various diseases.
Network module detection: Affinity search technique with the multi-node topological overlap measure
Li, Ai; Horvath, Steve
2009-01-01
Background Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. Findings We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Conclusion Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: PMID:19619323
Network module detection: Affinity search technique with the multi-node topological overlap measure.
Li, Ai; Horvath, Steve
2009-07-20
Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/MTOM/
Gomez-Pinilla, Pedro J; Farro, Giovanna; Di Giovangiulio, Martina; Stakenborg, Nathalie; Némethova, Andrea; de Vries, Annick; Liston, Adrian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Rodewald, Hans-Reimwer; Boeckxstaens, Guy E; Matteoli, Gianluca
2014-01-01
Intestinal manipulation (IM) during abdominal surgery results in intestinal inflammation leading to hypomotility or ileus. Mast cell activation is thought to play a crucial role in the pathophysiology of postoperative ileus (POI). However, this conclusion was mainly drawn using mast cell-deficient mouse models with abnormal Kit signaling. These mice also lack interstitial cells of Cajal (ICC) resulting in aberrant gastrointestinal motility even prior to surgery, compromising their use as model to study POI. To avoid these experimental weaknesses we took advantage of a newly developed knock-in mouse model, Cpa3(Cre/+) , devoid of mast cells but with intact Kit signaling. The role of mast cells in the development of POI and intestinal inflammation was evaluated assessing gastrointestinal transit and muscularis externa inflammation after IM in two strains of mice lacking mast cells, i.e. Kit(W-sh/W-sh) and Cpa3(Cre/+) mice, and by use of the mast cell stabilizer cromolyn. Kit(W-sh/W-sh) mice lack ICC networks and already revealed significantly delayed gastrointestinal transit even before surgery. IM did not further delay intestinal transit, but induced infiltration of myeloperoxidase positive cells, expression of inflammatory cytokines and recruitment of monocytes and neutrophils into the muscularis externa. On the contrary, Cpa3(Cre/+) mice have a normal network of ICC and normal gastrointestinal. Surprisingly, IM in Cpa3(Cre/+) mice caused delay in gut motility and intestinal inflammation as in wild type littermates mice (Cpa3(+/+) ). Furthermore, treatment with the mast cell inhibitor cromolyn resulted in an inhibition of mast cells without preventing POI. Here, we confirm that IM induced mast cell degranulation. However, our data demonstrate that mast cells are not required for the pathogenesis of POI in mice. Although there might be species differences between mouse and human, our results argue against mast cell inhibitors as a therapeutic approach to shorten POI.
Gomez-Pinilla, Pedro J.; Farro, Giovanna; Di Giovangiulio, Martina; Stakenborg, Nathalie; Némethova, Andrea; de Vries, Annick; Liston, Adrian; Feyerabend, Thorsten B.; Rodewald, Hans-Reimwer; Boeckxstaens, Guy E.; Matteoli, Gianluca
2014-01-01
Introduction Intestinal manipulation (IM) during abdominal surgery results in intestinal inflammation leading to hypomotility or ileus. Mast cell activation is thought to play a crucial role in the pathophysiology of postoperative ileus (POI). However, this conclusion was mainly drawn using mast cell-deficient mouse models with abnormal Kit signaling. These mice also lack interstitial cells of Cajal (ICC) resulting in aberrant gastrointestinal motility even prior to surgery, compromising their use as model to study POI. To avoid these experimental weaknesses we took advantage of a newly developed knock-in mouse model, Cpa3Cre/+, devoid of mast cells but with intact Kit signaling. Design The role of mast cells in the development of POI and intestinal inflammation was evaluated assessing gastrointestinal transit and muscularis externa inflammation after IM in two strains of mice lacking mast cells, i.e. KitW-sh/W-sh and Cpa3Cre/+ mice, and by use of the mast cell stabilizer cromolyn. Results KitW-sh/W-sh mice lack ICC networks and already revealed significantly delayed gastrointestinal transit even before surgery. IM did not further delay intestinal transit, but induced infiltration of myeloperoxidase positive cells, expression of inflammatory cytokines and recruitment of monocytes and neutrophils into the muscularis externa. On the contrary, Cpa3Cre/+ mice have a normal network of ICC and normal gastrointestinal. Surprisingly, IM in Cpa3Cre/+ mice caused delay in gut motility and intestinal inflammation as in wild type littermates mice (Cpa3+/+). Furthermore, treatment with the mast cell inhibitor cromolyn resulted in an inhibition of mast cells without preventing POI. Conclusions Here, we confirm that IM induced mast cell degranulation. However, our data demonstrate that mast cells are not required for the pathogenesis of POI in mice. Although there might be species differences between mouse and human, our results argue against mast cell inhibitors as a therapeutic approach to shorten POI. PMID:24416383
Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)
NASA Astrophysics Data System (ADS)
Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.
1988-09-01
An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.
Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)
NASA Technical Reports Server (NTRS)
Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.
1988-01-01
An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.
Yanashima, Kensuke; Chieosilapatham, Panjit; Yoshimoto, Eri; Okumura, Ko; Ogawa, Hideoki; Niyonsaba, François
2017-08-01
Host defense (antimicrobial) peptides not only display antimicrobial activities against numerous pathogens but also exert a broader spectrum of immune-modulating functions. Innate defense regulators (IDRs) are a class of host defense peptides synthetically developed from natural or endogenous cationic host defense peptides. Of the IDRs developed to date, IDR-1018 is more efficient not only in killing bacteria but also in regulating the various functions of macrophages and neutrophils and accelerating the wound healing process. Because mast cells intimately participate in wound healing and a number of host defense peptides involved in wound healing are also known to activate mast cells, this study aimed to investigate the effects of IDR-1018 on mast cell activation. Here, we showed that IDR-1018 induced the degranulation of LAD2 human mast cells and caused their production of leukotrienes, prostaglandins and various cytokines and chemokines, including granulocyte-macrophage colony-stimulating factor, interleukin-8, monocyte chemoattractant protein-1 and -3, macrophage-inflammatory protein-1α and -1β, and tumor necrosis factor-α. Furthermore, IDR-1018 increased intracellular calcium mobilization and induced mast cell chemotaxis. The mast cell activation was markedly suppressed by pertussis toxin, U-73122, U0126, SB203580, JNK inhibitor II, and NF-κB activation inhibitor II, suggesting the involvement of G-protein, phospholipase C, ERK, p38, JNK and NF-κB pathways, respectively, in IDR-1018-induced mast cell activation. Notably, we confirmed that IDR-1018 caused the phosphorylation of MAPKs and IκB. Altogether, the current study suggests a novel immunomodulatory role of IDR-1018 through its ability to recruit and activate human mast cells at the sites of inflammation and wounds. We report that IDR-1018 stimulates various functions of human mast cells. IDR-1018-induced mast cell activation is mediated through G protein, PLC, MAPK and NF-κB pathways. IDR-1018 will be a useful therapeutic agent for wound healing.
Musante, Veronica; Li, Lu; Kanyo, Jean; Lam, Tukiet T; Colangelo, Christopher M; Cheng, Shuk Kei; Brody, A Harrison; Greengard, Paul; Le Novère, Nicolas; Nairn, Angus C
2017-01-01
ARPP-16, ARPP-19, and ENSA are inhibitors of protein phosphatase PP2A. ARPP-19 and ENSA phosphorylated by Greatwall kinase inhibit PP2A during mitosis. ARPP-16 is expressed in striatal neurons where basal phosphorylation by MAST3 kinase inhibits PP2A and regulates key components of striatal signaling. The ARPP-16/19 proteins were discovered as substrates for PKA, but the function of PKA phosphorylation is unknown. We find that phosphorylation by PKA or MAST3 mutually suppresses the ability of the other kinase to act on ARPP-16. Phosphorylation by PKA also acts to prevent inhibition of PP2A by ARPP-16 phosphorylated by MAST3. Moreover, PKA phosphorylates MAST3 at multiple sites resulting in its inhibition. Mathematical modeling highlights the role of these three regulatory interactions to create a switch-like response to cAMP. Together, the results suggest a complex antagonistic interplay between the control of ARPP-16 by MAST3 and PKA that creates a mechanism whereby cAMP mediates PP2A disinhibition. DOI: http://dx.doi.org/10.7554/eLife.24998.001 PMID:28613156
Distorted secretory granule composition in mast cells with multiple protease deficiency.
Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar
2013-10-01
Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.
Mast Cells in Gastrointestinal Disease
Ramsay, David B.; Stephen, Sindu; Borum, Marie; Voltaggio, Lysandra
2010-01-01
The function of mast cells in allergic inflammatory reactions is well documented in the literature. Mast cells also play an important role in the regulation of gastrointestinal visceral sensitivity and vascular permeability. Several studies have noted an increased number of mast cells in the mucosa of patients with gastrointestinal diseases such as irritable bowel syndrome, mastocytic enterocolitis, and systemic mastocytosis. The role of mast cells in the symptomatology of these and other diseases has only recently been fully appreciated and could provide avenues for new therapeutic opportunities. This paper examines studies that have evaluated the role of mast cells in various gastrointestinal diseases. PMID:21301631
Liu, Qing-Mei; Xie, Chun-Lan; Gao, Yuan-Yuan; Liu, Bo; Lin, Wei-Xiang; Liu, Hong; Cao, Min-Jie; Su, Wen-Jin; Yang, Xian-Wen; Liu, Guang-Ming
2018-06-06
Deep-sea-derived butyrolactone I (BTL-I), which was identified as a type of butanolide, was isolated from Aspergillus sp. Ovalbumin (OVA)-induced BALB/c anaphylaxis was established to explore the antifood allergic activity of BTL-I. As a result, BTL-I was able to alleviate OVA-induced allergy symptoms, reduce the levels of histamine and mouse mast cell proteinases, inhibit OVA-specific IgE, and decrease the population of mast cells in the spleen and mesenteric lymph nodes. BTL-I also significantly suppressed mast-dependent passive cutaneous anaphylaxis. Additionally, the maturation of bone marrow-derived mast cells (BMMCs) declined as BTL-I caused down-regulation of c-KIT receptors. Furthermore, molecular docking analyses revealed that BTL-I interacted with the inhibitory receptor, FcγRIIB. In conclusion, the reduction of mast cell function by deep-sea-derived BTL-I as well as its interactions with the inhibitory receptor, FcγRIIB, may contribute to BTL-I-related protection against food anaphylaxis.
Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer
2015-05-05
Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.
The emerging role of mast cells in liver disease.
Jarido, Veronica; Kennedy, Lindsey; Hargrove, Laura; Demieville, Jennifer; Thomson, Joanne; Stephenson, Kristen; Francis, Heather
2017-08-01
The depth of our knowledge regarding mast cells has widened exponentially in the last 20 years. Once thought to be only important for allergy-mediated events, mast cells are now recognized to be important regulators of a number of pathological processes. The revelation that mast cells can influence organs, tissues, and cells has increased interest in mast cell research during liver disease. The purpose of this review is to refresh the reader's knowledge of the development, type, and location of mast cells and to review recent work that demonstrates the role of hepatic mast cells during diseased states. This review focuses primarily on liver diseases and mast cells during autoimmune disease, hepatitis, fatty liver disease, liver cancer, and aging in the liver. Overall, these studies demonstrate the potential role of mast cells in disease progression.
Acosta-Andrade, Carlos; Lambertos, Ana; Urdiales, José L; Sánchez-Jiménez, Francisca; Peñafiel, Rafael; Fajardo, Ignacio
2016-10-01
Antizymes and antizyme inhibitors are key regulatory proteins of polyamine levels by affecting ornithine decarboxylase and polyamine uptake. Our previous studies indicated a metabolic interplay among polyamines, histamine and serotonin in mast cells, and demonstrated that polyamines are present in mast cell secretory granules, being important for histamine storage and serotonin levels. Recently, the novel antizyme inhibitor-2 (AZIN2) was proposed as a local regulator of polyamine biosynthesis in association with mast cell serotonin-containing granules. To gain insight into the role of AZIN2 in the biosynthesis and storage of serotonin and histamine, we have generated bone marrow derived mast cells (BMMCs) from both wild-type and transgenic Azin2 hypomorphic mice, and have analyzed polyamines, serotonin and histamine contents, and some elements of their metabolisms. Azin2 hypomorphic BMMCs did not show major mast cell phenotypic alterations as judged by morphology and specific mast cell proteases. However, compared to wild-type controls, these cells showed reduced spermidine and spermine levels, and diminished growth rate. Serotonin levels were also reduced, whereas histamine levels tended to increase. Accordingly, tryptophan hydroxylase-1 (TPH1; the key enzyme for serotonin biosynthesis) mRNA expression and protein levels were reduced, whereas histidine decarboxylase (the enzyme responsible for histamine biosynthesis) enzymatic activity was increased. Furthermore, microphtalmia-associated transcription factor, an element involved in the regulation of Tph1 expression, was reduced. Taken together, our results show, for the first time, an element of polyamine metabolism -AZIN2-, so far described as exclusively devoted to the control of polyamine concentrations, involved in regulating the biosynthesis and content of other amines like serotonin and histamine.
2003-03-01
is a 20-ft (6.1-m) mast supporting a cell phone antenna and a solar panel. Contained with in the enclosure is a Forest Technology Systems data...logger, a deep cycle battery, a voltage regulator, a cell phone modem, and a Motorola cell phone . The stream level, turbidity, and soil moisture sensors...DOIM) Security Protocols at Fort Hood, computers connected to the Fort Hood network cannot utilize cell phone communication to retrieve the data
Winston, John H.; Chen, Jinghong; Shi, Xuan-Zheng; Sarna, Sushil K.
2014-01-01
The initial hypothesis suggested that the interstitial cells of Cajal (ICC) played an essential role in mediating enteric neuronal input to smooth muscle cells. Much information for this hypothesis came from studies in W/Wv mice lacking ICC. However, mast cells, which play critical roles in regulating inflammation in their microenvironment, are also absent in W/Wv mice. We tested the hypothesis that the depletion of mast cells in W/Wv mice generates inflammation in fundus muscularis externa (ME) that impairs smooth muscle reactivity to Ach, independent of the depletion of ICC. We performed experiments on the fundus ME from wild type (WT) and W/Wv mice before and after reconstitution of mast cells by bone marrow transplant. We found that mast cell deficiency in W/Wv mice significantly increased COX-2 and iNOS expression and decreased smooth muscle reactivity to Ach. Mast cell reconstitution or concurrent blockade of COX-2 and iNOS restored smooth muscle contractility without affecting the suppression of c-kit in W/Wv mice. The expression of nNOS and ChAT were suppressed in W/Wv mice; mast cell reconstitution did not restore them. We conclude that innate inflammation induced by mast cell deficiency in W/Wv mice impairs smooth muscle contractility independent of ICC deficiency. The impairment of smooth muscle contractility and the suppression of the enzymes regulating the synthesis of Ach and NO in W/Wv mice need to be considered in evaluating the role of ICC in regulating smooth muscle and enteric neuronal function in W/Wv mice. PMID:24550836
Expression of Tocopherol-Associated Protein in Mast Cells
Ikeda, Teruo; Murakami, Masaru; Funaba, Masayuki
2004-01-01
Tocopherol-associated protein (TAP) was expressed in mouse mast cells. TAP was predominantly localized in the cytoplasm, and the subcellular localization was not changed by α-tocopherol. The results suggest that the physiological role of TAP in mast cells is not regulation of tocopherol function but an as-yet-unidentified activity. PMID:15539527
Li, Xian; Lee, Youn Ju; Jin, Fansi; Park, Young Na; Deng, Yifeng; Kang, Youra; Yang, Ju Hye; Chang, Jae-Hoon; Kim, Dong-Young; Kim, Jung-Ae; Chang, Young-Chae; Ko, Hyun-Jeong; Kim, Cheorl-Ho; Murakami, Makoto; Chang, Hyeun Wook
2017-07-25
Sirt1, a key regulator of metabolism and longevity, has recently been implicated in the regulation of allergic reactions, although the underlying mechanism remains unclear. Here we show that Sirt1 negatively regulates FcεRI-stimulated mast cell activation and anaphylaxis through two mutually regulated pathways involving AMP-activated protein kinase (AMPK) and protein tyrosine phosphatase 1B (PTP1B). Mast cell-specific knockout of Sirt1 dampened AMPK-dependent suppression of FcεRI signaling, thereby augmenting mast cell activation both in vitro and in vivo. Sirt1 inhibition of FcεRI signaling also involved an alternative component, PTP1B, which attenuated the inhibitory AMPK pathway and conversely enhanced the stimulatory Syk pathway, uncovering a novel role of this phosphatase. Moreover, a Sirt1 activator resveratrol stimulated the inhibitory AMPK axis, with reciprocal suppression of the stimulatory PTP1B/Syk axis, thus potently inhibiting anaphylaxis. Overall, our results provide a molecular explanation for the beneficial role of Sirt1 in allergy and underscore a potential application of Sirt1 activators as a new class of anti-allergic agents.
Redox regulation of mast cell histamine release in thioredoxin-1 (TRX) transgenic mice.
Son, Aoi; Nakamura, Hajime; Kondo, Norihiko; Matsuo, Yoshiyuki; Liu, Wenrui; Oka, Shin-ichi; Ishii, Yasuyuki; Yodoi, Junji
2006-02-01
Thioredoxin-1 (TRX) is a stress-inducible redox-regulatory protein with antioxidative and anti-inflammatory effects. Here we show that the release of histamine from mast cells elicited by cross-linking of high-affinity receptor for IgE (FcepsilonRI) was significantly suppressed in TRX transgenic (TRX-tg) mice compared to wild type (WT) mice. Intracellular reactive oxygen species (ROS) of mast cells stimulated by IgE and antigen was also reduced in TRX-tg mice compared to WT mice. Whereas there was no difference in the production of cytokines (IL-6 and TNF-alpha) from mast cells in response to 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) stimulation in TRX-tg and WT mice. Immunological status of TRX-tg mice inclined to T helper (Th) 2 dominant in primary immune response, although there was no difference in the population of dendritic cells (DCs) and regulatory T cells. We conclude that the histamine release from mast cells in TRX-tg mice is suppressed by inhibition of ROS generation. As ROS are involved in mast cell activation and facilitate mediator release, TRX may be a key signaling molecule regulating the early events in the IgE signaling in mast cells and the allergic inflammation.
Increased Bone Mass in Female Mice Lacking Mast Cell Chymase
Lind, Thomas; Gustafson, Ann-Marie; Calounova, Gabriela; Hu, Lijuan; Rasmusson, Annica; Jonsson, Kenneth B.; Wernersson, Sara; Åbrink, Magnus; Andersson, Göran; Larsson, Sune; Melhus, Håkan; Pejler, Gunnar
2016-01-01
Here we addressed the potential impact of chymase, a mast-cell restricted protease, on mouse bone phenotype. We show that female mice lacking the chymase Mcpt4 acquired a persistent expansion of diaphyseal bone in comparison with wild type controls, reaching a 15% larger diaphyseal cross sectional area at 12 months of age. Mcpt4-/- mice also showed increased levels of a bone anabolic serum marker and higher periosteal bone formation rate. However, they were not protected from experimental osteoporosis, suggesting that chymase regulates normal bone homeostasis rather than the course of osteoporosis. Further, the absence of Mcpt4 resulted in age-dependent upregulation of numerous genes important for bone formation but no effects on osteoclast activity. In spite of the latter, Mcpt4-/- bones had increased cortical porosity and reduced endocortical mineralization. Mast cells were found periosteally and, notably, bone-proximal mast cells in Mcpt4-/- mice were degranulated to a larger extent than in wild type mice. Hence, chymase regulates degranulation of bone mast cells, which could affect the release of mast cell-derived factors influencing bone remodelling. Together, these findings reveal a functional impact of mast cell chymase on bone. Further studies exploring the possibility of using chymase inhibitors as a strategy to increase bone volume may be warranted. PMID:27936149
Liu, Nan; Wang, Lin-Hui; Guo, Ling-Ling; Wang, Guo-Qing; Zhou, Xi-Ping; Jiang, Yan; Shang, Jing; Murao, Koji; Chen, Jing-Wei; Fu, Wen-Qing; Zhang, Guo-Xing
2013-01-01
Solid evidence has demonstrated that psychoemotional stress induced alteration of hair cycle through neuropeptide substance P (SP) mediated immune response, the role of reactive oxygen species (ROS) in brain-skin-axis regulation system remains unknown. The present study aims to investigate possible mechanisms of ROS in regulation of SP-mast cell signal pathway in chronic restraint stress (CRS, a model of chronic psychoemotional stress) which induced abnormal of hair cycle. Our results have demonstrated that CRS actually altered hair cycle by inhibiting hair follicle growth in vivo, prolonging the telogen stage and delaying subsequent anagen and catagen stage. Up-regulation of SP protein expression in cutaneous peripheral nerve fibers and activation of mast cell were observed accompanied with increase of lipid peroxidation levels and reduction of the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in CRS mice skin. In addition, SP receptor antagonist (RP67580) reduced mast cell activations and lipid peroxidation levels as well as increased GSH-Px activity and normalized hair cycle. Furthermore, antioxidant Tempol (a free radical scavenger) also restored hair cycle, reduced SP protein expression and mast cell activation. Our study provides the first solid evidence for how ROS play a role in regulation of psychoemotional stress induced SP-Mast cell pathway which may provide a convincing rationale for antioxidant application in clinical treatment with psychological stress induced hair loss.
Increased Differentiation of Dermal Mast Cells in Mice Lacking the Mpl Gene
Ghinassi, Barbara; Zingariello, Maria; Martelli, Fabrizio; Lorenzini, Rodolfo; Vannucchi, Alessandro M.; Rana, Rosa Alba; Nishikawa, Mitsuo; Migliaccio, Giovanni; Mascarenhas, John
2009-01-01
Thrombopoietin interactions with its receptor, Mpl, play an important role in the regulation of hematopoietic stem/progenitor cell proliferation and differentiation. In this study, we report that the mast cell restricted progenitor cells (MCP) and the mast cell precursors in the bone marrow of wild-type mice express Mpl on their surface. Furthermore, targeted deletion of the Mpl gene in mice decreases the number of MCP while increasing the number of mast cell precursors present in the marrow and spleen. It also increases the number of mast cells present in the dermis, in the peritoneal cavity, and in the gut of the mice. In addition, serosal mast cells from Mplnull mice have a distinctive differentiation profile similar to that expressed by wild-type dermal mast cells. These results suggest that not only does ligation of thrombopoietin with the Mpl receptor exert an effect at the mast cell restricted progenitor cell level, but also plays an unexpected yet important role in mast cell maturation. PMID:19025339
Benzoxazole derivatives suppress lipopolysaccharide-induced mast cell activation.
Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Choo, Hea-Young Park; Lee, Kyung Ho
2018-05-01
Mast cells are central regulators of allergic inflammation that function by releasing various proallergic inflammatory mediators, including histamine, eicosanoids and proinflammatory cytokines. Occasionally, bacterial infections may initiate or worsen allergic inflammation. A number of studies have indicated that activation of lipoxygenase in mast cells positive regulates allergic inflammatory responses by generating leukotrienes and proinflammatory cytokines. In the present study, the effects of benzoxazole derivatives on the lipopolysaccharide (LPS)‑induced expression of proinflammatory cytokines, production of histamine and surface expression of co‑stimulatory molecules on bone marrow-derived mast cells (BMMCs) were studied. The benzoxazole derivatives significantly reduced the expression of interleukin (IL)‑1β, IL‑6, IL‑13, tumor necrosis factor‑α, perilipin (PLIN) 2, and PLIN3 in BMMCs treated with LPS. Furthermore, histamine production was suppressed in BMMCs treated with LPS, or treated with phorbol-12-myristate-13-acetate/ionomycin. Benzoxazole derivatives marginally affected the surface expression of cluster of differentiation (CD)80 and CD86 on BMMCs in the presence of LPS, although LPS alone did not increase the expression of those proteins. Therefore, benzoxazole derivatives inhibited the secretion of proinflammatory cytokines in mast cells and may be potential candidate anti‑allergic agents to suppress mast cell activation.
Neuropeptides activate human mast cell degranulation and chemokine production
Kulka, Marianna; Sheen, Cecilia H; Tancowny, Brian P; Grammer, Leslie C; Schleimer, Robert P
2008-01-01
During neuronal-induced inflammation, mast cells may respond to stimuli such as neuropeptides in an FcεRI-independent manner. In this study, we characterized human mast cell responses to substance P (SP), nerve growth factor (NGF), calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) and compared these responses to human mast cell responses to immunoglobulin E (IgE)/anti-IgE and compound 48/80. Primary cultured mast cells, generated from CD34+ progenitors in the presence of stem cell factor and interleukin-6 (IL-6), and human cultured mast cells (LAD2) were stimulated with these and other stimuli (gastrin, concanavalin A, radiocontrast media, and mannitol) and their degranulation and chemokine production was assessed. VIP and SP stimulated primary human mast cells and LAD cells to degranulate; gastrin, concanavalin A, radiocontrast media, mannitol, CGRP and NGF did not activate degranulation. While anti-IgE stimulation did not induce significant production of chemokines, stimulation with VIP, SP or compound 48/80 potently induced production of monocyte chemoattractant protein-1, inducible protein-10, monokine induced by interferon-γ (MIG), RANTES (regulated on activation, normal, T-cell expressed, and secreted) and IL-8. VIP, SP and compound 48/80 also activated release of tumour necrosis factor, IL-3 and granulocyte–macrophage colony-stimulating factor, but not IL-4, interferon-γ or eotaxin. Human mast cells expressed surface neurokinin 1 receptor (NK1R), NK2R, NK3R and VIP receptor type 2 (VPAC2) but not VPAC1 and activation of human mast cells by IgE/anti-IgE up-regulated expression of VPAC2, NK2R, and NK3R. These studies demonstrate the pattern of receptor expression and activation of mast cell by a host of G-protein coupled receptor ligands and suggest that SP and VIP activate a unique signalling pathway in human mast cells. These results are likely to have direct relevance to neuronally induced inflammatory diseases. PMID:17922833
Lv, Yi-Pin; Teng, Yong-Sheng; Mao, Fang-Yuan; Peng, Liu-Sheng; Zhang, Jin-Yu; Cheng, Ping; Liu, Yu-Gang; Kong, Hui; Wang, Ting-Ting; Wu, Xiao-Long; Hao, Chuan-Jie; Chen, Weisan; Yang, Shi-Ming; Zhao, Yong-Liang; Han, Bin; Ma, Qiang; Zou, Quan-Ming; Zhuang, Yuan
2018-04-25
Interleukin (IL)-induced inflammatory responses are critical for the pathogenesis of Helicobacter pylori (H. pylori)-induced gastritis. IL-33 represents a recently discovered proinflammatory cytokine involved in inflammatory diseases, but its relevance to H. pylori-induced gastritis is unknown. Here, we found that gastric IL-33 mRNA and protein expression were elevated in gastric mucosa of both patients and mice infected with H. pylori, which is positively correlated with bacterial load and the degree of gastritis. IL-33 production was promoted via extracellular regulated protein kinases (ERK) signaling pathway activation by gastric epithelial cells in a cagA-dependent manner during H. pylori infection, and resulted in increased inflammation and bacteria burden within the gastric mucosa. Gastric epithelial cell-derived IL-33 promoted TNF-α production from mast cells in vitro, and IL-33 increased TNF-α production in vivo. Increased TNF-α inhibited gastric epithelial cell proliferation, conducing to the progress of H. pylori-associated gastritis and bacteria colonization. This study defined a patent regulatory networks involving H. pylori, gastric epithelial cell, IL-33, mast cell, and TNF-α, which jointly play a pathological effect within the gastric circumstances. It may be a valuable strategy to restrain this IL-33-dependent pathway in the treatment of H. pylori-associated gastritis.
Widespread immunological functions of mast cells: fact or fiction?
Rodewald, Hans-Reimer; Feyerabend, Thorsten B
2012-07-27
Immunological functions of mast cells are currently considered to be much broader than the original role of mast cells in IgE-driven allergic disease. The spectrum of proposed mast cell functions includes areas as diverse as the regulation of innate and adaptive immune responses, protective immunity against viral, microbial, and parasitic pathogens, autoimmunity, tolerance to graft rejection, promotion of or protection from cancer, wound healing, angiogenesis, cardiovascular diseases, diabetes, obesity, and others. The vast majority of in vivo mast cell data have been based on mast cell-deficient Kit mutant mice. However, work in new mouse mutants with unperturbed Kit function, which have a surprisingly normal immune system, has failed to corroborate some key immunological aspects, formerly attributed to mast cells. Here, we consider the implications of these recent developments for the state of the field as well as for future work, aiming at deciphering the physiological functions of mast cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Motohashi, Satoru; Koizumi, Karen; Honda, Reika; Maruyama, Atsuko; Palmer, Helen E F; Mashima, Keisuke
2014-01-01
Aggregation of the high-affinity IgE receptor (FcεRI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Tyrosine phosphorylation of proteins in response to FcεRI aggregation has been implicated in mast cell activation. Here, we determined the role of PTP-PEST (encoded by PTPN12) in the regulation of mast cell activation using the RBL-2H3 rat basophilic leukemia cell line as a model. PTP-PEST expression was significantly induced upon FcεRI-crosslinking, and aggregation of FcεRI induced the phosphorylation of PTP-PEST at Ser39, thus resulting in the suppression of PTP activity. By overexpressing a phosphatase-dead mutant (PTP-PEST CS) and a constitutively active mutant (PTP-PEST SA) in RBL-2H3 cells, we showed that PTP-PEST decreased degranulation and enhanced IL-4 and IL-13 transcription in FcεRI-crosslinked RBL-2H3 cells, but PTP activity of PTP-PEST was not necessary for this regulation. However, FcεRI-induced TNF-α transcription was increased by the overexpression of PTP-PEST SA and suppressed by the overexpression of PTP-PEST CS. Taken together, these results suggest that PTP-PEST is involved in the regulation of FcεRI-mediated mast cell activation through at least two different processes represented by PTP activity-dependent and -independent pathways. Copyright © 2014 Elsevier Inc. All rights reserved.
Akt-Dependent Cytokine Production in Mast Cells
Kitaura, Jiro; Asai, Koichi; Maeda-Yamamoto, Mari; Kawakami, Yuko; Kikkawa, Ushio; Kawakami, Toshiaki
2000-01-01
Cross-linking of FcεRI induces the activation of three protein tyrosine kinases, Lyn, Syk, and Bruton's tyrosine kinase (Btk), leading to the secretion of a panel of proinflammatory mediators from mast cells. This study showed phosphorylation at Ser-473 and enzymatic activation of Akt/protein kinase B, the crucial survival kinase, upon FcεRI stimulation in mouse mast cells. Phosphorylation of Akt is regulated positively by Btk and Syk and negatively by Lyn. Akt in turn can regulate positively the transcriptional activity of interleukin (IL)-2 and tumor necrosis factor (TNF)-α promoters. Transcription from the nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein 1 (AP-1) sites within these promoters is under the control of Akt activity. Accordingly, the signaling pathway involving IκB-α, a cytoplasmic protein that binds NF-κB and inhibits its nuclear translocation, appears to be regulated by Akt in mast cells. Catalytic activity of glycogen synthase kinase (GSK)-3β, a serine/threonine kinase that phosphorylates NF-AT and promotes its nuclear export, seems to be inhibited by Akt. Importantly, Akt regulates the production and secretion of IL-2 and TNF-α in FcεRI-stimulated mast cells. Altogether, these results revealed a novel function of Akt in transcriptional activation of cytokine genes via NF-κB, NF-AT, and AP-1 that contributes to the production of cytokines. PMID:10974038
MicroRNA-132 targets HB-EGF upon IgE-mediated activation in murine and human mast cells.
Molnár, Viktor; Érsek, Barbara; Wiener, Zoltán; Tömböl, Zsófia; Szabó, Péter M; Igaz, Péter; Falus, András
2012-03-01
MicroRNAs provide an additional layer in the regulation of gene expression acting as repressors with several targets at the posttranscriptional level. This study describes microRNA expression patterns during differentiation and activation of mast cells. The expression levels of 567 different mouse miRNAs were compared by microarray between c-Kit+ committed progenitors, mucosal mast cells, resting and IgE-crosslinked BMMCs in vitro. The strongest upregulation of miR-132 upon IgE-mediated activation was validated in human cord blood-derived mast cells as well. HB-EGF growth factor also upregulated upon activation and was ranked high by more prediction algorithms. Co-transfection of miR-132 mimicking precursor and the 3'UTR of human Hbegf-containing luciferase vector proves that the predicted binding site is functional. In line with this, neutralization of miR-132 by anti-miR inhibitor leads to sustained production of HB-EGF protein in activated mast cells. Our data provide a novel example for negative regulation of a growth factor by an upregulated miRNA. © Springer Basel AG 2011
Mast cell inflammasome activity in the meninges regulates EAE disease severity.
Russi, Abigail E; Walker-Caulfield, Margaret E; Brown, Melissa A
2018-04-01
Inflammasomes are multiprotein complexes that assemble in response to microbial and other danger signals and regulate the secretion of biologically active IL-1β and IL-18. Although they are important in protective immunity against bacterial, viral and parasitic infections, aberrant inflammasome activity promotes chronic inflammation associated with autoimmune disease. Inflammasomes have been described in many immune cells, but the majority of studies have focused on their activity in macrophages. Here we discuss an important role for mast cell-inflammasome activity in EAE, the rodent model of multiple sclerosis, a CNS demyelinating disease. We review our evidence that mast cells in the meninges, tissues that surround the brain and spinal cord, interact with infiltrating myelin-specific T cells in early disease. This interaction elicits IL-1β expression by mast cells, which in turn, promotes GM-CSF expression by T cells. In view of the essential role that GM-CSF plays in T cell encephalitogenicity, we propose this mast cell-T cell crosstalk in the meninges is critical for EAE disease development. Copyright © 2016 Elsevier Inc. All rights reserved.
Min, Arim; Lee, Young Ah; Kim, Kyeong Ah; Shin, Myeong Heon
2018-05-31
Trichomonas vaginalis is a sexually-transmitted protozoan parasite that causes vaginitis and cervicitis. Although mast cell activation is important for provoking tissue inflammation during infection with parasites, information regarding the signaling mechanisms in mast cell activation and T. vaginalis infection is limited. O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification of serine and threonine residues that functions as a critical regulator of intracellular signaling, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). We investigated if O-GlcNAcylation was associated with mast cell activation induced by T. vaginalis-derived secretory products (TvSP). Modified TvSP collected from live trichomonads treated with the 5-lipooxygenase inhibitor AA861 inhibited migration of mast cells. This result suggested that mast cell migration was caused by stimulation of T. vaginalis-secreted leukotrienes. Using the BLT1 antagonist U75302 or BLT1 siRNA, we found that migration of mast cells was evoked via LTB 4 receptor (BLT1). Furthermore, TvSP induced protein O-GlcNAcylation and OGT expression in HMC-1 cells, which was prevented by transfection with BLT1 siRNA. TvSP-induced migration, ROS generation, CD63 expression and IL-8 release were significantly suppressed by pretreatmemnt with OGT inhibitor ST045849 or OGT siRNA. These results suggested that BLT1-mediated OGlcNAcylation was important for mast cell activation during trichomoniasis. Copyright © 2018. Published by Elsevier Masson SAS.
Activation of cutaneous immune responses in complex regional pain syndrome
Birklein, Frank; Drummond, Peter D.; Li, Wenwu; Schlereth, Tanja; Albrecht, Nahid; Finch, Philip M.; Dawson, Linda F.; Clark, J. David; Kingery, Wade S.
2014-01-01
The pathogenesis of complex regional pain syndrome (CRPS) is unresolved, but TNF-α and IL-6 are elevated in experimental skin blister fluid from CRPS affected limbs, as is tryptase, a marker for mast cells. In the rat fracture model of CRPS exaggerated sensory and sympathetic neural signaling stimulate keratinocyte and mast cell proliferation, causing the local production of high levels of inflammatory cytokines leading to pain behavior. The current investigation used CRPS patient skin biopsies to determine whether keratinocyte and mast cell proliferation occur in CRPS skin and to identify the cellular source of the up-regulated TNF-α, IL-6, and tryptase observed in CRPS experimental skin blister fluid. Skin biopsies were collected from the affected skin and the contralateral mirror site in 55 CRPS patients and the biopsy sections were immunostained for keratinocyte, cell proliferation, mast cell markers, TNF-α, and IL-6. In early CRPS keratinocytes were activated in the affected skin, resulting in proliferation, epidermal thickening, and up-regulated TNF-α and IL-6 expression. In chronic CRPS there was reduced keratinocyte proliferation with epidermal thinning in the affected skin. Acute CRPS patients also had increased mast cell accumulation in the affected skin, but there was no increase in mast cell numbers in chronic CRPS. PMID:24462502
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee
Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes,more » SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL−17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL−17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti−CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. - Highlights: • Psoriasis-like skin inflammation increase dermal mast cells. • Keratinocyte produce stem cell factor in psoriasis-like skin inflammation. • Keratinocyte promote mast cell proliferation by stem cell factor dependent manner.« less
Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity.
Russi, Abigail E; Walker-Caulfield, Margaret E; Guo, Yong; Lucchinetti, Claudia F; Brown, Melissa A
2016-09-01
GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia
2014-01-01
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role. PMID:25062998
Diverse exocytic pathways for mast cell mediators.
Xu, Hao; Bin, Na-Ryum; Sugita, Shuzo
2018-04-17
Mast cells play pivotal roles in innate and adaptive immunities but are also culprits in allergy, autoimmunity, and cardiovascular diseases. Mast cells respond to environmental changes by initiating regulated exocytosis/secretion of various biologically active compounds called mediators (e.g. proteases, amines, and cytokines). Many of these mediators are stored in granules/lysosomes and rely on intricate degranulation processes for release. Mast cell stabilizers (e.g. sodium cromoglicate), which prevent such degranulation processes, have therefore been clinically employed to treat asthma and allergic rhinitis. However, it has become increasingly clear that different mast cell diseases often involve multiple mediators that rely on overlapping but distinct mechanisms for release. This review illustrates existing evidence that highlights the diverse exocytic pathways in mast cells. We also discuss strategies to delineate these pathways so as to identify unique molecular components which could serve as new drug targets for more effective and specific treatments against mast cell-related diseases. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Martyniuk, Christopher J; Prucha, Melinda S; Doperalski, Nicholas J; Antczak, Philipp; Kroll, Kevin J; Falciani, Francesco; Barber, David S; Denslow, Nancy D
2013-01-01
Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation.
Yu, Li; Liu, Qi; Canning, Brendan J
2018-03-05
Mast cells play an essential role in immediate type hypersensitivity reactions and in chronic allergic diseases of the airways, including asthma. Mast cell mediator release can be modulated by locally released autacoids and circulating hormones, but surprisingly little is known about the autocrine effects of mediators released upon mast cell activation. We thus set out to characterize the autocrine and paracrine effects of mast cell mediators on mast cell activation in the guinea pig airways. By direct measures of histamine, cysteinyl-leukotriene and thromboxane release and with studies of allergen-evoked contractions of airway smooth muscle, we describe a complex interplay amongst these autacoids. Notably, we observed an autocrine effect of the cysteinyl-leukotrienes acting through cysLT 1 receptors on mast cell leukotriene release. We confirmed the results of previous studies demonstrating a marked enhancement of mast cell mediator release following cyclooxygenase inhibition, but we have extended these results by showing that COX-2 derived eicosanoids inhibit cysteinyl-leukotriene release and yet are without effect on histamine release. Given the prominent role of COX-1 inhibition in aspirin-sensitive asthma, these data implicate preformed mediators stored in granules as the initial drivers of these adverse reactions. Finally, we describe the paracrine signaling cascade leading to thromboxane synthesis in the guinea pig airways following allergen challenge, which occurs indirectly, secondary to cysLT 1 receptor activation on structural cells and/ or leukocytes within the airway wall, and a COX-2 dependent synthesis of the eicosanoid. The results highlight the importance of cell-cell and autocrine interactions in regulating allergic responses in the airways. Copyright © 2017. Published by Elsevier B.V.
Polukort, Stephanie H; Rovatti, Jeffrey; Carlson, Logan; Thompson, Chelsea; Ser-Dolansky, Jennifer; Kinney, Shannon R M; Schneider, Sallie S; Mathias, Clinton B
2016-06-15
IL-10 is a key pleiotropic cytokine that can both promote and curb Th2-dependent allergic responses. In this study, we demonstrate a novel role for IL-10 in promoting mast cell expansion and the development of IgE-mediated food allergy. Oral OVA challenge in sensitized BALB/c mice resulted in a robust intestinal mast cell response accompanied by allergic diarrhea, mast cell activation, and a predominance of Th2 cytokines, including enhanced IL-10 expression. In contrast, the development of intestinal anaphylaxis, including diarrhea, mast cell activation, and Th2 cytokine production, was significantly attenuated in IL-10(-/-) mice compared with wild-type (WT) controls. IL-10 also directly promoted the expansion, survival, and activation of mast cells; increased FcεRI expression on mast cells; and enhanced the production of mast cell cytokines. IL-10(-/-) mast cells had reduced functional capacity, which could be restored by exogenous IL-10. Similarly, attenuated passive anaphylaxis in IL-10(-/-) mice could be restored by IL-10 administration. The adoptive transfer of WT mast cells restored allergic symptoms in IL-10(-/-) mice, suggesting that the attenuated phenotype observed in these animals is due to a deficiency in IL-10-responding mast cells. Lastly, transfer of WT CD4 T cells also restored allergic diarrhea and intestinal mast cell numbers in IL-10(-/-) mice, suggesting that the regulation of IL-10-mediated intestinal mast cell expansion is T cell dependent. Our observations demonstrate a critical role for IL-10 in driving mucosal mast cell expansion and activation, suggesting that, in its absence, mast cell function is impaired, leading to attenuated food allergy symptoms. Copyright © 2016 by The American Association of Immunologists, Inc.
Je, In-Gyu; Kim, Duk-Sil; Kim, Sung-Wan; Lee, Soyoung; Lee, Hyun-Shik; Park, Eui Kyun; Khang, Dongwoo; Kim, Sang-Hyun
2015-01-01
Allergic diseases such as atopic dermatitis, rhinitis, asthma, and anaphylaxis are attractive research areas. Tyrosol (2-(4-hydroxyphenyl)ethanol) is a polyphenolic compound with diverse biological activities. In this study, we investigated whether tyrosol has anti-allergic inflammatory effects. Ovalbumin-induced active systemic anaphylaxis and immunoglobulin E-mediated passive cutaneous anaphylaxis models were used for the immediate-type allergic responses. Oral administration of tyrosol reduced the allergic symptoms of hypothermia and pigmentation in both animal models. Mast cells that secrete allergic mediators are key regulators on allergic inflammation. Tyrosol dose-dependently decreased mast cell degranulation and expression of inflammatory cytokines. Intracellular calcium levels and activation of inhibitor of κB kinase (IKK) regulate cytokine expression and degranulation. Tyrosol blocked calcium influx and phosphorylation of the IKK complex. To define the molecular target for tyrosol, various signaling proteins involved in mast cell activation such as Lyn, Syk, phosphoinositide 3-kinase (PI3K), and Akt were examined. Our results showed that PI3K could be a molecular target for tyrosol in mast cells. Taken together, these findings indicated that tyrosol has anti-allergic inflammatory effects by inhibiting the degranulation of mast cells and expression of inflammatory cytokines; these effects are mediated via PI3K. Therefore, we expect tyrosol become a potential therapeutic candidate for allergic inflammatory disorders.
Byrne, Scott N; Hammond, Kirsten J L; Chan, Carling Y-Y; Rogers, Linda J; Beaugie, Clare; Rana, Sabita; Marsh-Wakefield, Felix; Thurman, Joshua M; Halliday, Gary M
2015-04-01
Ultraviolet (UV) wavelengths in sunlight are the prime cause of skin cancer in humans with both the UVA and UVB wavebands making a contribution to photocarcinogenesis. UV has many different biological effects on the skin that contribute to carcinogenesis, including suppression of adaptive immunity, sunburn and altering the migration of mast cells into and away from irradiated skin. Many molecular mechanisms have been identified as contributing to skin responses to UV. Recently, using gene set enrichment analysis of microarray data, we identified the alternative complement pathway with a central role for factor B (fB) in UVA-induced immunosuppression. In the current study we used mice genetically deficient in fB (fB-/- mice) to study the functional role of the alternative complement pathway in skin responses to UV. We found that fB is required for not only UVA but also UVB-induced immunosuppression and solar-simulated UV induction of the oedemal component of sunburn. Factor B-/- mice had a larger number of resident skin mast cells than control mice, but unlike the controls did not respond to UV by increasing mast cell infiltration into the skin. This study provides evidence for a function role for fB in skin responses to UV radiation. Factor B regulates UVA and UVB induced immunosuppression, UV induced oedema and mast cell infiltration into the skin. The alternative complement pathway is therefore an important regulator of skin responses to UV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, M.; Takeishi, Takashi; Geissler, E.N.
1991-07-15
The authors investigated the effects of a newly recognized multifunctional growth factor, the c-kit ligand stem cell factor (SCF), on mouse mast cell proliferation and phenotype. Recombinant rat SCF{sup 164} (rrSCF{sup 164}) induced the development of large numbers of dermal mast cells in normal mice in vivo. Many of these mast cells had features of connective tissue-type mast cells (CTMC), in that they were reactive both with the heparin-binding fluorescent dye berberine sulfate and with safranin. In vitro, rrSCF{sup 164} induced the proliferation of cloned interleukin 3 (IL-3)-dependent mouse mast cells and primary populations of IL-3-dependent, bone marrow-derived cultured mastmore » cells (BMCMC), which represent immature mast cells, and purified peritoneal mast cells, which represent a type of mature CTMC> BMCMC maintained in rrSCF{sup 164} not only proliferated but also matured. These findings identify SCF as a single cytokine that can induce immature, IL-3-dependent mast cells to mature and to acquire multiple characteristics of CTMC. These findings also directly demonstrate that SCF can regulate the development of a cellular lineage expressing c-kit through effects on both proliferation and maturation.« less
Mast cells contribute to scar formation during fetal wound healing.
Wulff, Brian C; Parent, Allison E; Meleski, Melissa A; DiPietro, Luisa A; Schrementi, Megan E; Wilgus, Traci A
2012-02-01
Scar formation is a potentially detrimental process of tissue restoration in adults, affecting organ form and function. During fetal development, cutaneous wounds heal without inflammation or scarring at early stages of development; however, they begin to heal with significant inflammation and scarring as the skin becomes more mature. One possible cell type that could regulate the change from scarless to fibrotic healing is the mast cell. We show here that dermal mast cells in scarless wounds generated at embryonic day 15 (E15) are fewer in number, less mature, and do not degranulate in response to wounding as effectively as mast cells of fibrotic wounds made at embryonic day 18 (E18). Differences were also observed between cultured mast cells from E15 and E18 skin, with regard to degranulation and preformed cytokine levels. Injection of mast cell lysates into E15 wounds disrupted scarless healing, suggesting that mast cells interfere with scarless repair. Finally, wounds produced at E18, which normally heal with a scar, healed with significantly smaller scars in mast cell-deficient Kit(W/W-v) mice compared with Kit(+/+) littermates. Together, these data suggest that mast cells enhance scar formation, and that these cells may mediate the transition from scarless to fibrotic healing during fetal development.
Sorobetea, Daniel; Holm, Jacob Bak; Henningsson, Henrietta; Kristiansen, Karsten; Svensson-Frej, Marcus
2017-02-01
A hallmark of parasite infection is the accumulation of innate immune cells, notably granulocytes and mast cells, at the site of infection. While this is typically viewed as a transient response, with the tissue returning to steady state once the infection is cleared, we found that mast cells accumulated in the large-intestinal epithelium following infection with the nematode Trichuris muris and persisted at this site for several months after worm expulsion. Mast cell accumulation in the epithelium was associated with the induction of type-2 immunity and appeared to be driven by increased maturation of local progenitors in the intestinal lamina propria. Furthermore, we also detected increased local and systemic levels of the mucosal mast cell protease MCPt-1, which correlated highly with the persistent epithelial mast cell population. Finally, the mast cells appeared to have striking consequences on epithelial barrier integrity, by regulation of gut permeability long after worm expulsion. These findings highlight the importance of mast cells not only in the early phases of infection but also at later stages, which has functional implications on the mucosal tissue. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mast cells: potential positive and negative roles in tumor biology.
Marichal, Thomas; Tsai, Mindy; Galli, Stephen J
2013-11-01
Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.
Newbery, David M; Chuyong, George B; Zimmermann, Lukas
2006-01-01
Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995-2000. The series was extended to 1988-2004 with less detailed data. Individual transitions in phenology were analysed. Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An 'alternative bearing' system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.
Evidence for mast cells contributing to neuromuscular pathology in an inherited model of ALS
Trias, Emiliano; Ibarburu, Sofía; Barreto-Núñez, Romina; Varela, Valentina; Moura, Ivan C.; Hermine, Olivier
2017-01-01
Evidence indicates that neuroinflammation contributes to motor neuron degeneration in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease leading to progressive muscular paralysis. However, it remains elusive whether inflammatory cells can interact with degenerating distal motor axons, influencing the progressive denervation of neuromuscular junctions (NMJs). By analyzing the muscle extensor digitorum longus (EDL) following paralysis onset in the SOD1G93A rat model, we have observed a massive infiltration and degranulation of mast cells, starting after paralysis onset and correlating with progressive NMJ denervation. Remarkably, mast cells accumulated around degenerating motor axons and NMJs, and were also associated with macrophages. Mast cell accumulation and degranulation in paralytic EDL muscle was prevented by systemic treatment over 15 days with masitinib, a tyrosine kinase inhibitor currently in clinical trials for ALS exhibiting pharmacological activity affecting mast cells and microglia. Masitinib-induced mast cell reduction resulted in a 35% decrease in NMJ denervation and reduced motor deficits as compared with vehicle-treated rats. Masitinib also normalized macrophage infiltration, as well as regressive changes in Schwann cells and capillary networks observed in advanced paralysis. These findings provide evidence for mast cell contribution to distal axonopathy and paralysis progression in ALS, a mechanism that can be therapeutically targeted by masitinib. PMID:29046475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jun Ho; College of Medicine, Korea University, Seoul 136-701; Kim, Tae Hyung
Mast cells, constituents of virtually all organs and tissues, are critical cells in IgE-mediated allergic responses. The aim of this study was to investigate the effect and mechanism of an indoxyl chromogenic compound, 5-bromo-4-chloro-3-indolyl 1,3-diacetate, CAC-0982, on IgE-mediated mast cell activation and allergic responses in mice. CAC-0982 reversibly suppressed antigen-stimulated degranulation in murine mast cells (IC{sub 50}, ~ 3.8 μM) and human mast cells (IC{sub 50}, ~ 3.0 μM). CAC-0982 also inhibited the expression and secretion of IL-4 and TNF-α in mast cells. Furthermore, CAC-0982 suppressed the mast cell-mediated allergic responses in mice in a dose-dependent manner (ED{sub 50} 27.9more » mg/kg). As for the mechanism, CAC-0982 largely suppressed the phosphorylation of Syk and its downstream signaling molecules, including LAT, Akt, Erk1/2, p38, and JNK. Notably, the tyrosine kinase assay of antigen-stimulated mast cells showed that CAC-0982 inhibited Fyn kinase, one of the upstream tyrosine kinases for Syk activation in mast cells. Taken together, these results suggest that CAC-0982 may be used as a new treatment for regulating IgE-mediated allergic diseases through the inhibition of the Fyn/Syk pathway in mast cells. - Highlights: • The anti-allergic effect of 5-bromo-4-chloro-3-indolyl 1,3-diacetate, CAC-0982, was measured. • CAC-0982 reversibly suppressed the activation of mast cells by IgE and antigen. • CAC-0982 inhibited passive cutaneous anaphylaxis in mice. • CAC-0982 suppresses mast cells through inhibition of Fyn activation in mast cells.« less
Mast cells are dispensable for normal and activin-promoted wound healing and skin carcinogenesis.
Antsiferova, Maria; Martin, Caroline; Huber, Marcel; Feyerabend, Thorsten B; Förster, Anja; Hartmann, Karin; Rodewald, Hans-Reimer; Hohl, Daniel; Werner, Sabine
2013-12-15
The growth and differentiation factor activin A is a key regulator of tissue repair, inflammation, fibrosis, and tumorigenesis. However, the cellular targets, which mediate the different activin functions, are still largely unknown. In this study, we show that activin increases the number of mature mast cells in mouse skin in vivo. To determine the relevance of this finding for wound healing and skin carcinogenesis, we mated activin transgenic mice with CreMaster mice, which are characterized by Cre recombinase-mediated mast cell eradication. Using single- and double-mutant mice, we show that loss of mast cells neither affected the stimulatory effect of overexpressed activin on granulation tissue formation and reepithelialization of skin wounds nor its protumorigenic activity in a model of chemically induced skin carcinogenesis. Furthermore, mast cell deficiency did not alter wounding-induced inflammation and new tissue formation or chemically induced angiogenesis and tumorigenesis in mice with normal activin levels. These findings reveal that mast cells are not major targets of activin during wound healing and skin cancer development and also argue against nonredundant functions of mast cells in wound healing and skin carcinogenesis in general.
Influence of MRI contrast media on histamine release from mast cells.
Kun, Tomasz; Jakubowski, Lucjusz
2012-07-01
Mast cells, owing to diversity of secreted mediators, play a crucial role in the regulation of inflammatory response. Together with basophils, mast cells constitute a central pathogenetic element of anaphylactic (IgE-dependent) and anaphylactoid (IgE-independent) reactions. In severe cases, generalized degranulation of mast cells may cause symptoms of anaphylactic shock. The influence of the classical, iodine-based contrast media on mastocyte degranulation has been fully described. Our objective was to determine the influence of the gadolinium-based MRI contrast media on histamine release from mast cells and to compare the activity of ionic and non-ionic preparations of contrast media. To determine the intensity of mast cell degranulation, we used an experimental model based on mastocytes isolated from rat peritoneal fluid. Purified suspensions of mast cells were incubated with various concentrations of Gd-DTPA and Gd-DTPA-BMA, and solutions of PEG 600 which served as a non-toxic osmotic stimulus. The intensity of mast cell activation was presented as mean percentage of histamine released from cells after incubation. The obtained results demonstrate that both ionic and non-ionic preparations of the MRI contrast media are able to induce mast cell degranulation in vitro. It was also proved that the non-ionic MRI contrast media stimulate mast cells markedly more weakly than ionic contrast media at identical concentration. The aforementioned results may suggest a more profitable safety profile of the non-ionic contrast preparations. We may also conclude that triggering of mast cell degranulation after incubation with the solutions of MRI contrast media results from non-specific osmotic stimulation and direct toxicity of free ionic residues.
McPherson, Victor A.; Everingham, Stephanie; Karisch, Robert; Smith, Julie A.; Udell, Christian M.; Zheng, Jimin; Jia, Zongchao; Craig, Andrew W. B.
2009-01-01
This study investigates the roles of Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) and SH2 domains of Fes protein tyrosine kinase in regulating its activation and signaling downstream of the high-affinity immunoglobulin G (IgE) receptor (FcɛRI) in mast cells. Homology modeling of the Fes F-BAR domain revealed conservation of some basic residues implicated in phosphoinositide binding (R113/K114). The Fes F-BAR can bind phosphoinositides and induce tubulation of liposomes in vitro. Mutation of R113/K114 to uncharged residues (RK/QQ) caused a significant reduction in phosphoinositide binding in vitro and a more diffuse cytoplasmic localization in transfected COS-7 cells. RBL-2H3 mast cells expressing full-length Fes carrying the RK/QQ mutation show defects in FcɛRI-induced Fes tyrosine phosphorylation and degranulation compared to cells expressing wild-type Fes. This correlated with reduced localization to Lyn kinase-containing membrane fractions for the RK/QQ mutant compared to wild-type Fes in mast cells. The Fes SH2 domain also contributes to Fes signaling in mast cells, via interactions with the phosphorylated FcɛRI β chain and the actin regulatory protein HS1. We show that Fes phosphorylates C-terminal tyrosine residues in HS1 implicated in actin stabilization. Thus, coordinated actions of the F-BAR and SH2 domains of Fes allow for coupling to FcɛRI signaling and potential regulation the actin reorganization in mast cells. PMID:19001085
McPherson, Victor A; Everingham, Stephanie; Karisch, Robert; Smith, Julie A; Udell, Christian M; Zheng, Jimin; Jia, Zongchao; Craig, Andrew W B
2009-01-01
This study investigates the roles of Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) and SH2 domains of Fes protein tyrosine kinase in regulating its activation and signaling downstream of the high-affinity immunoglobulin G (IgE) receptor (FcepsilonRI) in mast cells. Homology modeling of the Fes F-BAR domain revealed conservation of some basic residues implicated in phosphoinositide binding (R113/K114). The Fes F-BAR can bind phosphoinositides and induce tubulation of liposomes in vitro. Mutation of R113/K114 to uncharged residues (RK/QQ) caused a significant reduction in phosphoinositide binding in vitro and a more diffuse cytoplasmic localization in transfected COS-7 cells. RBL-2H3 mast cells expressing full-length Fes carrying the RK/QQ mutation show defects in FcepsilonRI-induced Fes tyrosine phosphorylation and degranulation compared to cells expressing wild-type Fes. This correlated with reduced localization to Lyn kinase-containing membrane fractions for the RK/QQ mutant compared to wild-type Fes in mast cells. The Fes SH2 domain also contributes to Fes signaling in mast cells, via interactions with the phosphorylated FcepsilonRI beta chain and the actin regulatory protein HS1. We show that Fes phosphorylates C-terminal tyrosine residues in HS1 implicated in actin stabilization. Thus, coordinated actions of the F-BAR and SH2 domains of Fes allow for coupling to FcepsilonRI signaling and potential regulation the actin reorganization in mast cells.
Evolutionary drivers of mast-seeding in a long-lived desert shrub
Susan E. Meyer; Burton K. Pendleton
2015-01-01
Patterns of reproductive output in blackbrush did not track current growing season precipitation, but instead were regulated by prior-year weather cues. The strength of the response to the masting cue depended on habitat quality, with higher mean reproductive output, shorter intervals between years of high seed production, and lower CVp at more favorable sites...
Yang, Yoosoo; Kong, Byoungjae; Jung, Younghoon; Park, Joon-Bum; Oh, Jung-Mi; Hwang, Jaesung; Cho, Jae Youl; Kweon, Dae-Hyuk
2018-01-01
Vesicle-associated V-soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and target membrane-associated T-SNAREs (syntaxin 4 and SNAP-23) assemble into a core trans -SNARE complex that mediates membrane fusion during mast cell degranulation. This complex plays pivotal roles at various stages of exocytosis from the initial priming step to fusion pore opening and expansion, finally resulting in the release of the vesicle contents. In this study, peptides with the sequences of various SNARE motifs were investigated for their potential inhibitory effects against SNARE complex formation and mast cell degranulation. The peptides with the sequences of the N-terminal regions of vesicle-associated membrane protein 2 (VAMP2) and VAMP8 were found to reduce mast cell degranulation by inhibiting SNARE complex formation. The fusion of protein transduction domains to the N-terminal of each peptide enabled the internalization of the fusion peptides into the cells equally as efficiently as cell permeabilization by streptolysin-O without any loss of their inhibitory activities. Distinct subsets of mast cell granules could be selectively regulated by the N-terminal-mimicking peptides derived from VAMP2 and VAMP8, and they effectively decreased the symptoms of atopic dermatitis in mouse models. These results suggest that the cell membrane fusion machinery may represent a therapeutic target for atopic dermatitis.
Martyniuk, Christopher J.; Prucha, Melinda S.; Doperalski, Nicholas J.; Antczak, Philipp; Kroll, Kevin J.; Falciani, Francesco; Barber, David S.; Denslow, Nancy D.
2013-01-01
Background Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Methods Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Results Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. Conclusions This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation. PMID:23527095
Wei, Qinglv; Du, Yanru; Jin, Kai; Xia, Yuxian
2017-12-01
Homeodomain transcription factor Ste12 is a key target activated by the pathogenic mitogen-activated-protein kinase pathway, and the activated Ste12p protein regulates downstream gene expression levels to modulate phenotypes. However, the functions of Ste12-like genes in entomopathogenic fungi remain poorly understood and little is known about the downstream genes regulated by Ste12. In this study, we characterized the functions of a Ste12 orthologue in Metarhizium acridum, MaSte12, and identified its downstream target genes. The deletion mutant (ΔMaSte12) is defective in conidial germination but not in hyphal growth, conidiation, or stress tolerance. Bioassays showed that ΔMaSte12 had a dramatically decreased virulence in topical inoculations, but no significant difference was found in intrahemolymph injections when the penetration process was bypassed. The mature appressorium formation rate of ΔMaSte12 was less than 10% on locust wings, with the majority hyphae forming appressorium-like, curved but no swollen structures. Digital gene expression profiling revealed that some genes involved in cell wall synthesis and remodeling, appressorium development, and insect cuticle penetration were downregulated in ΔMaSte12. Thus, MaSte12 has critical roles in the pathogenicity of the entomopathogenic fungus M. acridum, and our study provides some explanations for the impairment of fungal virulence in ΔMaSte12. In addition, virulence is very important for fungal biocontrol agents to control insect pests effectively. This study demonstrated that MaSte12 is involved in fungal virulence but not conidial yield or fungal stress tolerance in M. acridum. Thus, MaSte12 and its downstream genes may be candidates for enhancing fungal virulence to improve mycoinsecticides.
Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction
Richart, Adèle; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Guerin, Coralie; Gautier, Gregory; Blank, Ulrich; Heymes, Christophe; Luche, Elodie; Cousin, Béatrice; Rodewald, Hans-Reimer
2016-01-01
Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit–independent MC-deficient (Cpa3Cre/+) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca2+ desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force–Ca2+ interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. PMID:27353089
Genitourinary mast cells and survival
Stewart, Julia M.
2015-01-01
Mast cells (MCs) are ubiquitous in the body, but they have historically been associated with allergies, and most recently with regulation of immunity and inflammation. However, it remains a puzzle why so many MCs are located in the diencephalon, which regulates emotions and in the genitourinary tract, including the bladder, prostate, penis, vagina and uterus that hardly ever get allergic reactions. A number of papers have reported that MCs have estrogen, gonadotropin and corticotropin-releasing hormone (CRH) receptors. Moreover, animal experiments have shown that diencephalic MCs increase in number during courting in doves. We had reported that allergic stimulation of nasal MCs leads to hypothalamic-pituitary adrenal (HPA) activation. Interestingly, anecdotal information indicates that female patients with mastocytosis or mast cell activation syndrome may have increased libido. Preliminary evidence also suggests that MCs may have olfactory receptors. MCs may, therefore, have been retained phylogenetically not only to “smell danger”, but to promote survival and procreation. PMID:26813805
Genitourinary mast cells and survival.
Theoharides, Theoharis C; Stewart, Julia M
2015-10-01
Mast cells (MCs) are ubiquitous in the body, but they have historically been associated with allergies, and most recently with regulation of immunity and inflammation. However, it remains a puzzle why so many MCs are located in the diencephalon, which regulates emotions and in the genitourinary tract, including the bladder, prostate, penis, vagina and uterus that hardly ever get allergic reactions. A number of papers have reported that MCs have estrogen, gonadotropin and corticotropin-releasing hormone (CRH) receptors. Moreover, animal experiments have shown that diencephalic MCs increase in number during courting in doves. We had reported that allergic stimulation of nasal MCs leads to hypothalamic-pituitary adrenal (HPA) activation. Interestingly, anecdotal information indicates that female patients with mastocytosis or mast cell activation syndrome may have increased libido. Preliminary evidence also suggests that MCs may have olfactory receptors. MCs may, therefore, have been retained phylogenetically not only to "smell danger", but to promote survival and procreation.
Iyer, Archana S.; Morales, J. Luis; Huang, Weishan; Ojo, Folake; Ning, Gang; Wills, Elizabeth; Baines, Joel D.; August, Avery
2011-01-01
Mast cells are critical effector cells in the pathophysiology of allergic asthma and other IgE-mediated diseases. The Tec family of tyrosine kinases Itk and Btk serve as critical signal amplifiers downstream of antigen receptors. Although both kinases are expressed and activated in mast cells following FcϵRI stimulation, their individual contributions are not clear. To determine whether these kinases play unique and/or complementary roles in FcϵRI signaling and mast cell function, we generated Itk and Btk double knock-out mice. Analyses of these mice show decreased mast cell granularity and impaired passive systemic anaphylaxis responses. This impaired response is accompanied by a significant elevation in serum IgE in Itk/Btk double knock-out mice. In vitro analyses of bone marrow-derived mast cells (BMMCs) indicated that Itk/Btk double knock-out BMMCs are defective in degranulation and cytokine secretion responses downstream to FcϵRI activation. These responses were accompanied by a significant reduction in PLCγ2 phosphorylation and severely impaired calcium responses in these cells. This defect also results in altered NFAT1 nuclear localization in double knock-out BMMCs. Network analysis suggests that although they may share substrates, Itk plays both positive and negative roles, while Btk primarily plays a positive role in mast cell FcϵRI-induced cytokine secretion. PMID:21212279
Arai, Rei; Usui-Ouchi, Ayumi; Ito, Yosuke; Mashimo, Keitaro; Murakami, Akira; Ebihara, Nobuyuki
2017-01-01
Numerous mast cells are present in the choroid, but the effects of mast cell mediators on retinal pigment epithelial (RPE) cells are not well understood. We investigated the influence of mast cell mediators on RPE cells in vitro, focusing on tryptase. Expression of receptors was examined by the reverse transcription polymerase chain reaction. We also assessed production of interleukin 8 and vascular endothelial growth factor (VEGF) after RPE cells were stimulated with mast cell mediators by using an antibody array and enzyme-linked immunosorbent assay. Furthermore, we investigated the influence of tryptase on RPE cell migration and integrity by the scratch assay and the transepithelial resistance. RPE cells expressed protease-activated receptor 2 (PAR2), histamine receptor 1, tumor necrosis factor- α (TNF- α ) receptor 1, and CCR 1, 3, 4, 8, and 11. Tryptase, PAR2 agonists, histamine, and TNF- α all enhanced interleukin 8 production by RPE cells, while only tryptase enhanced VEGF production. Tryptase also enhanced expression of phosphorylated extracellular signal-regulated kinases 1/2, resulting in increased migration of RPE cells. However, tryptase did not alter epithelial integrity or the expression of zonula occludens-1 and junctional adhesion molecule-A by RPE cells. Mast cell mediators, especially tryptase, may influence RPE cell inflammation.
Sympathetic Nervous System Modulation of Inflammation and Remodeling in the Hypertensive Heart
Levick, Scott P.; Murray, David B.; Janicki, Joseph S.; Brower, Gregory L.
2010-01-01
Chronic activation of the sympathetic nervous system (SNS) is a key component of cardiac hypertrophy and fibrosis. However, previous studies have provided evidence to also implicate inflammatory cells, including mast cells, in the development of cardiac fibrosis. The current study investigated the potential interaction of cardiac mast cells with the SNS. Eight week old male SHR were sympathectomized to establish the effect of the SNS on cardiac mast cell density, myocardial remodeling and cytokine production in the hypertensive heart. Age-matched WKY served as controls. Cardiac fibrosis and hypertension were significantly attenuated and left ventricular mass normalized while cardiac mast cell density was markedly increased in sympathectomized SHR. Sympathectomy normalized myocardial levels of IFN-γ, IL-6 and IL-10, but had no effect on IL-4. The effect of norepinephrine and substance P on isolated cardiac mast cell activation was investigated as potential mechanisms of interaction between the two. Only substance P elicited mast cell degranulation. Substance P was also shown to induce the production of angiotensin II by a mixed population of isolated cardiac inflammatory cells, including mast cells, lymphocytes and macrophages. These results demonstrate the ability of neuropeptides to regulate inflammatory cell function, providing a potential mechanism by which the SNS and afferent nerves may interact with inflammatory cells in the hypertensive heart. PMID:20048196
Tatemoto, K; Nozaki, Y; Tsuda, R; Kaneko, S; Tomura, K; Furuno, M; Ogasawara, H; Edamura, K; Takagi, H; Iwamura, H; Noguchi, M; Naito, T
2018-05-01
Mast cells play a central role in inflammatory and allergic reactions by releasing inflammatory mediators through 2 main pathways, immunoglobulin E-dependent and E-independent activation. In the latter pathway, mast cells are activated by a diverse range of basic molecules (collectively known as basic secretagogues) through Mas-related G protein-coupled receptors (MRGPRs). In addition to the known basic secretagogues, here, we discovered several endogenous protein and enzyme fragments (such as chaperonin-10 fragment) that act as bioactive peptides and induce immunoglobulin E-independent mast cell activation via MRGPRX2 (previously known as MrgX2), leading to the degranulation of mast cells. We discuss the possibility that MRGPRX2 responds various as-yet-unidentified endogenous ligands that have specific characteristics, and propose that MRGPRX2 plays an important role in regulating inflammatory responses to endogenous harmful stimuli, such as protein breakdown products released from damaged or dying cells. © 2018 The Foundation for the Scandinavian Journal of Immunology.
Type 1 diabetes in NOD mice unaffected by mast cell deficiency.
Gutierrez, Dario A; Fu, Wenxian; Schonefeldt, Susann; Feyerabend, Thorsten B; Ortiz-Lopez, Adriana; Lampi, Yulia; Liston, Adrian; Mathis, Diane; Rodewald, Hans-Reimer
2014-11-01
Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Alsaleh, Nasser B.; Persaud, Indushekhar; Brown, Jared M.
2016-01-01
Engineered nanomaterial (ENM)-mediated toxicity often involves triggering immune responses. Mast cells can regulate both innate and adaptive immune responses and are key effectors in allergic diseases and inflammation. Silver nanoparticles (AgNPs) are one of the most prevalent nanomaterials used in consumer products due to their antimicrobial properties. We have previously shown that AgNPs induce mast cell degranulation that was dependent on nanoparticle physicochemical properties. Furthermore, we identified a role for scavenger receptor B1 (SR-B1) in AgNP-mediated mast cell degranulation. However, it is completely unknown how SR-B1 mediates mast cell degranulation and the intracellular signaling pathways involved. In the current study, we hypothesized that SR-B1 interaction with AgNPs directs mast cell degranulation through activation of signal transduction pathways that culminate in an increase in intracellular calcium signal leading to mast cell degranulation. For these studies, we utilized bone marrow-derived mast cells (BMMC) isolated from C57Bl/6 mice and RBL-2H3 cells (rat basophilic leukemia cell line). Our data support our hypothesis and show that AgNP-directed mast cell degranulation involves activation of PI3K, PLCγ and an increase in intracellular calcium levels. Moreover, we found that influx of extracellular calcium is required for the cells to degranulate in response to AgNP exposure and is mediated at least partially via the CRAC channels. Taken together, our results provide new insights into AgNP-induced mast cell activation that are key for designing novel ENMs that are devoid of immune system activation. PMID:27907088
Rådinger, Madeleine; Smrž, Daniel; Metcalfe, Dean D.; Gilfillan, Alasdair M.
2011-01-01
Homeostasis of mature tissue-resident mast cells is dependent on the relative activation of pro- and anti-apoptotic regulators. In this study we investigated the role of Glycogen Synthase Kinase-3β (GSK3β) in the survival of neoplastic and non-neoplastic human mast cells. GSK3β was observed to be phosphorylated at the Y216 activating residue under resting conditions in both the neoplastic HMC1.2 cell line and in peripheral blood-derived primary human mast cells (HuMCs), suggesting constitutive activation of GSK3β in these cells. Lentiviral-transduced short hairpin RNA (shRNA) knockdown of GSK3β in both the HMC1.2 cells and HuMCs resulted in a significant reduction in cell survival as determined with the MTT assay. The decrease in SCF-mediated survival in the GSK3β knockdown HuMCs was reflected by enhancement of SCF-withdrawal-induced apoptosis, as determined by Annexin V staining and caspase cleavage; and this was associated with a pronounced reduction in SCF-mediated phosphorylation of Src homology 2 domain-containing phosphatase 2 (SHP2) and ERK1/2 and reduced expression of the anti-apoptotic proteins Bcl-xl and Bcl-2. These data show that GSK3β is an essential anti-apoptotic factor in both neopastic and non-transformed primary human mast cells through the regulation of SCF-mediated SHP2 and ERK activation. Our data suggest that targeting of GSK3β with small molecular weight inhibitors such as CHIR 99021 may thus provide a mechanism for limiting mast cell survival and thus subsequently decreasing the intensity of the allergic inflammatory response. PMID:22039301
Li, Xian; Park, Soon Jin; Jin, Fansi; Deng, Yifeng; Yang, Ju Hye; Chang, Jae-Hoon; Kim, Dong-Young; Kim, Jung-Ae; Lee, Youn Ju; Murakami, Makoto; Son, Kun Ho; Chang, Hyeun Wook
2018-06-01
AMP-activated protein kinase (AMPK) and its upstream mediators liver kinase B1 (LKB1) and sirtuin 1 (Sirt1) are generally known as key regulators of metabolism. We have recently reported that the AMPK pathway negatively regulates mast cell activation and anaphylaxis. Tanshinone IIA (Tan IIA), an active component of Salvia miltiorrhiza extract that is currently used for the treatment of cardiovascular and cerebrovascular diseases, shows anti-diabetic activity and improves insulin resistance in db/db mice through activation of AMPK. The aim of this study was to evaluate the anti-allergic activity of Tan IIA in vivo and to investigate the underlying mechanism in vitro in the context of AMPK signaling. The anti-allergic effect of Tan IIA was evaluated using mouse bone marrow-derived mast cells (BMMCs) from AMPKα2 -/- or Sirt1 -/- mice, or BMMCs transfected with siRNAs specific for AMPKα2, LKB1, or Sirt1. AMPKα2 -/- and Sirt1 -/- mice were used to confirm the anti-allergic effect of Tan IIA in anaphylaxis in vivo. Tan IIA dose-dependently inhibited FcεRI-mediated degranulation and production of eicosanoids and cytokines in BMMCs. These inhibitory effects were diminished by siRNA-mediated knockdown or genetic deletion of AMPKα2 or Sirt1. Moreover, Tan IIA inhibited a mast cell-mediated local passive anaphylactic reaction in wild-type mice, but not in AMPKα2 -/- or Sirt1 -/- mice. In conclusion, Tan IIA suppresses FcεRI-mediated mast cell activation and anaphylaxis through activation of the inhibitory Sirt1-LKB1-AMPK pathway. Thus, Tan IIA may be useful as a new therapeutic agent for mast cell-mediated allergic diseases. Copyright © 2018 Elsevier Inc. All rights reserved.
Ramírez, Carlos; Mendoza, Luis
2018-04-01
Blood cell formation has been recognized as a suitable system to study celular differentiation mainly because of its experimental accessibility, and because it shows characteristics such as hierarchical and gradual bifurcated patterns of commitment, which are present in several developmental processes. Although hematopoiesis has been extensively studied and there is a wealth of molecular and cellular data about it, it is not clear how the underlying molecular regulatory networks define or restrict cellular differentiation processes. Here, we infer the molecular regulatory network that controls the differentiation of a blood cell subpopulation derived from the granulocyte-monocyte precursor (GMP), comprising monocytes, neutrophils, eosinophils, basophils and mast cells. We integrate published qualitative experimental data into a model to describe temporal expression patterns observed in GMP-derived cells. The model is implemented as a Boolean network, and its dynamical behavior is studied. Steady states of the network can be clearly identified with the expression profiles of monocytes, mast cells, neutrophils, basophils, and eosinophils, under wild-type and mutant backgrounds. All scripts are publicly available at https://github.com/caramirezal/RegulatoryNetworkGMPModel. lmendoza@biomedicas.unam.mx. Supplementary data are available at Bioinformatics online.
Protein tyrosine phosphatase 1B (PTP1B) is dispensable for IgE-mediated cutaneous reaction in vivo.
Yang, Ting; Xie, Zhongping; Li, Hua; Yue, Lei; Pang, Zheng; MacNeil, Adam J; Tremblay, Michel L; Tang, Jin-Tian; Lin, Tong-Jun
2016-01-01
Mast cells play a critical role in allergic reactions. The cross-linking of FcεRI-bound IgE with multivalent antigen initiates a cascade of signaling events leading to mast cell activation. It has been well-recognized that cross linking of FcεRI mediates tyrosine phosphorylation. However, the mechanism involved in tyrosine dephosphorylation in mast cells is less clear. Here we demonstrated that protein tyrosine phosphatase 1B (PTP1B)-deficient mast cells showed increased IgE-mediated phosphorylation of the signal transducer and activator of transcription 5 (STAT5) and enhanced production of CCL9 (MIP-1γ) and IL-6 in IgE-mediated mast cells activation in vitro. However, IgE-mediated calcium mobilization, β-hexaosaminidase release (degranulation), and phosphorylation of IκB and MAP kinases were not affected by PTP1B deficiency. Furthermore, PTP1B deficient mice showed normal IgE-dependent passive cutaneous anaphylaxis and late phase cutaneous reactions in vivo. Thus, PTP1B specifically regulates IgE-mediated STAT5 pathway, but is redundant in influencing mast cell function in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Haenisch, Britta; Nöthen, Markus M; Molderings, Gerhard J
2012-01-01
Despite increasing understanding of its pathophysiology, the aetiology of systemic mast cell activation disease (MCAD) remains largely unknown. Research has shown that somatic mutations in kinases are necessary for the establishment of a clonal mast cell population, in particular mutations in the tyrosine kinase Kit and in enzymes and receptors with crucial involvement in the regulation of mast cell activity. However, other, as yet undetermined, abnormalities are necessary for the manifestation of clinical disease. The present article reviews molecular genetic research into the identification of disease-associated genes and their mutational alterations. The authors also present novel data on familial systemic MCAD and review the associated literature. Finally, the importance of understanding the molecular basis of inherited mutations in terms of diagnostics and therapy is emphasized. PMID:22957768
Exploring a regulatory role for mast cells: 'MCregs'?
Frossi, Barbara; Gri, Giorgia; Tripodo, Claudio; Pucillo, Carlo
2010-03-01
Regulatory cells can mould the fate of the immune response by direct suppression of specific subsets of effector cells, or by redirecting effectors against invading pathogens and infected or neoplastic cells. These functions have been classically, although not exclusively, ascribed to different subsets of T cells. Recently, mast cells have been shown to regulate physiological and pathological immune responses, and thus to act at the interface between innate and adaptive immunity assuming different functions and behaviors at discrete stages of the immune response. Here, we focus on these poorly defined, and sometimes apparently conflicting, functions of mast cells. Copyright 2010 Elsevier Ltd. All rights reserved.
Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien
2016-06-27
Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. ©2016 Ngkelo et al.
Wang, Zhiyun; Liu, Zhining; Wang, Ling; Wang, Junling; Chen, Liping; Xie, Hua; Zhang, Huiyun; He, Shaoheng
2018-05-01
IL-18 is likely to contribute to asthma. However, little is known regarding the role of IL-18 binding protein (BP) and IL-18 receptor (R) in asthma. Because the action of IL-18 in the body is regulated by IL-18BP and mast cells and basophils are key cell types involved in asthma, we investigated the expression of IL-18, IL-18BP and IL-18R in basophils and mast cells using flow cytometry and a mouse asthma model. We found that among basophils, approximately 53% and 51% were IL-18 + , 85% and 81% were IL-18BP + basophils, and 19.8% and 8.6% were IL-18R + in healthy control (HC) and asthmatic blood, respectively. The allergens tested had little effect on the expression of IL-18 and related factors. Only 3.5%, 14.3% and 2.4% of dispersed mast cells expressed IL-18, IL-18BP and IL-18R, respectively, in asthmatic sputum. In a mouse asthma model, OVA-sensitized mice exhibited decreased IL-18BP + but increased IL-18R + basophils in their blood. IL-18 increased the number of basophils but eliminated IL-18BP + basophils in mouse blood. IL-18 increased the number of mast cells and IL-18R + mast cells in the lung as well as increased the mast cell numbers and IL-18BP + mast cells in the bronchoalveolar lavage fluid (BALF) of OVA-sensitized mice. Thus, basophils and mast cells may be involved in asthma pathogenesis via an IL-18-associated mechanism. © 2018 The Foundation for the Scandinavian Journal of Immunology.
Kefiran suppresses antigen-induced mast cell activation.
Furuno, Tadahide; Nakanishi, Mamoru
2012-01-01
Kefir is a traditional fermented milk beverage produced by kefir grains in the Caucasian countries. Kefiran produced by Lactobacillus kefiranofaciens in kefir grains is an exopolysaccharide having a repeating structure with glucose and galactose residues in the chain sequence and has been suggested to exert many health-promoting effects such as immunomodulatory, hypotensive, hypocholesterolemic activities. Here we investigated the effects of kefiran on mast cell activation induced by antigen. Pretreatment with kefiran significantly inhibited antigen-induced Ca(2+) mobilization, degranulation, and tumor necrosis factor-α production in bone marrow-derived mast cells (BMMCs) in a dose-dependent manner. The phosphorylation of Akt, glycogen synthase kinase 3β, and extracellular signal-regulated kinases (ERKs) after antigen stimulation was also suppressed by pretreatment of BMMCs with kefiran. These findings indicate that kefiran suppresses mast cell degranulation and cytokine production by inhibiting the Akt and ERKs pathways, suggesting an anti-inflammatory effect for kefiran.
Humoral regulation of heart rate during digestion in pythons (Python molurus and Python regius).
Enok, Sanne; Simonsen, Lasse Stærdal; Pedersen, Signe Vesterskov; Wang, Tobias; Skovgaard, Nini
2012-05-15
Pythons exhibit a doubling of heart rate when metabolism increases several times during digestion. Pythons, therefore, represent a promising model organism to study autonomic cardiovascular regulation during the postprandial state, and previous studies show that the postprandial tachycardia is governed by a release of vagal tone as well as a pronounced stimulation from nonadrenergic, noncholinergic (NANC) factors. Here we show that infusion of plasma from digesting donor pythons elicit a marked tachycardia in fasting snakes, demonstrating that the NANC factor resides in the blood. Injections of the gastrin and cholecystokinin receptor antagonist proglumide had no effect on double-blocked heart rate or blood pressure. Histamine has been recognized as a NANC factor in the early postprandial period in pythons, but the mechanism of its release has not been identified. Mast cells represent the largest repository of histamine in vertebrates, and it has been speculated that mast cells release histamine during digestion. Treatment with the mast cell stabilizer cromolyn significantly reduced postprandial heart rate in pythons compared with an untreated group but did not affect double-blocked heart rate. While this study indicates that histamine induces postprandial tachycardia in pythons, its release during digestion is not stimulated by gastrin or cholecystokinin nor is its release from mast cells a stimulant of postprandial tachycardia.
Nakamura, Takao; Ohbayashi, Masaharu; Kuo, Chuan Hui; Komatsu, Naoki; Yakura, Keiko; Tominaga, Takeshi; Inoue, Yoshitsugu; Higashi, Hidemitsu; Murata, Meguru; Takeda, Shuzo; Fukushima, Atsuki; Liu, Fu-Tong; Rothenberg, Marc E.; Ono, Santa Jeremy
2009-01-01
The immune response is regulated, in part, by effector cells whose activation requires multiple signals. For example, T cells require signals emanating from the T cell antigen receptor and co-stimulatory molecules for full activation. Here, we present evidence indicating that IgE-mediated hypersensitivity reactions in vivo also require cognate signals to activate mast cells. Immediate hypersensitivity reactions in the conjunctiva are ablated in mice deficient in eotaxin-1, despite normal numbers of tissue mast cells and levels of IgE. To further define the co-stimulatory signals mediated by chemokine receptor 3 (CCR3), an eotaxin-1 receptor, effects of CCR3 blockade were tested with an allergic conjunctivitis model and in ex vivo isolated connective tissue-type mast cells. Our results show that CCR3 blockade significantly suppresses allergen-mediated hypersensitivity reactions as well as IgE-mediated mast cell degranulation. We propose that a co-stimulatory axis by CCR3, mainly stimulated by eotaxin-1, is pivotal in mast cell-mediated hypersensitivity reactions. PMID:19147836
Larson, Alice A.; Thomas, Mark J.; McElhose, Alex; Kovács, Katalin J.
2011-01-01
Mast cells are located in the central nervous system (CNS) of many mammals and stress induces their degranulation. We postulated that mast cells are associated with wakefulness and stimulatory tone in the CNS, as reflected by spontaneous motor activity. Because stress also precipitates drug-seeking behavior in cocaine addicts, we also postulated that cocaine manifests its effects through this relationship. We investigated the influence of single and repeated injections of cocaine on circulating corticosterone, motor activity and degranulation of mast cells in both the thalamus and meninges of mice. Mice were subjected to 5 consecutive days of cocaine or saline followed by a single injection of cocaine or saline 11 days later. Spontaneous locomotor activity was measure for one hour after the final injection before death. Neither a single injection nor prior treatment with cocaine increased motor activity compared to saline-injected controls, however, repeated administration of cocaine induced a significant sensitization to its behavioral effect when delivered 11 days later. In mice that received only saline, motor activity correlated positively with mast cell degranulation in the meninges but not in the thalamus. Cocaine, regardless of the treatment schedule, disrupted this correlation. The concentration of corticosterone did not differ amongst groups and did not correlate with either behavior or mast cell parameters in any group. The correlation between behavioral activity and the mast cell degranulation in the meninges suggests that these parameters are linked. The disruptive effect of cocaine on this relationship indicates a role downstream from mast cells in the regulation of motor activity. PMID:21561602
PAI1 mediates fibroblast-mast cell interactions in skin fibrosis.
Pincha, Neha; Hajam, Edries Yousaf; Badarinath, Krithika; Batta, Surya Prakash Rao; Masudi, Tafheem; Dey, Rakesh; Andreasen, Peter; Kawakami, Toshiaki; Samuel, Rekha; George, Renu; Danda, Debashish; Jacob, Paul Mazhuvanchary; Jamora, Colin
2018-05-01
Fibrosis is a prevalent pathological condition arising from the chronic activation of fibroblasts. This activation results from the extensive intercellular crosstalk mediated by both soluble factors and direct cell-cell connections. Prominent among these are the interactions of fibroblasts with immune cells, in which the fibroblast-mast cell connection, although acknowledged, is relatively unexplored. We have used a Tg mouse model of skin fibrosis, based on expression of the transcription factor Snail in the epidermis, to probe the mechanisms regulating mast cell activity and the contribution of these cells to this pathology. We have discovered that Snail-expressing keratinocytes secrete plasminogen activator inhibitor type 1 (PAI1), which functions as a chemotactic factor to increase mast cell infiltration into the skin. Moreover, we have determined that PAI1 upregulates intercellular adhesion molecule type 1 (ICAM1) expression on dermal fibroblasts, rendering them competent to bind to mast cells. This heterotypic cell-cell adhesion, also observed in the skin fibrotic disorder scleroderma, culminates in the reciprocal activation of both mast cells and fibroblasts, leading to the cascade of events that promote fibrogenesis. Thus, we have identified roles for PAI1 in the multifactorial program of fibrogenesis that expand its functional repertoire beyond its canonical role in plasmin-dependent processes.
Danelli, Luca; Frossi, Barbara; Gri, Giorgia; Mion, Francesca; Guarnotta, Carla; Bongiovanni, Lucia; Tripodo, Claudio; Mariuzzi, Laura; Marzinotto, Stefania; Rigoni, Alice; Blank, Ulrich; Colombo, Mario P; Pucillo, Carlo E
2015-01-01
Inflammation plays crucial roles at different stages of tumor development and may lead to the failure of immune surveillance and immunotherapy. Myeloid-derived suppressor cells (MDSC) are one of the major components of the immune-suppressive network that favors tumor growth, and their interaction with mast cells is emerging as critical for the outcome of the tumor-associated immune response. Herein, we showed the occurrence of cell-to-cell interactions between MDSCs and mast cells in the mucosa of patients with colon carcinoma and in the colon and spleen of tumor-bearing mice. Furthermore, we demonstrated that the CT-26 colon cancer cells induced the accumulation of CD11b(+)Gr1(+) immature MDSCs and the recruitment of protumoral mast cells at the tumor site. Using ex vivo analyses, we showed that mast cells have the ability to increase the suppressive properties of spleen-derived monocytic MDSCs, through a mechanism involving IFNγ and nitric oxide production. In addition, we demonstrated that the CD40:CD40L cross-talk between the two cell populations is responsible for the instauration of a proinflammatory microenvironment and for the increase in the production of mediators that can further support MDSC mobilization and tumor growth. In light of these results, interfering with the MDSC:mast cell axis could be a promising approach to abrogate MDSC-related immune suppression and to improve the antitumor immune response. ©2014 American Association for Cancer Research.
Neuroimmune interactions: potential target for mitigating or treating intestinal radiation injury.
Wang, J; Hauer-Jensen, M
2007-09-01
Intestinal radiation injury is characterized by breakdown of the epithelial barrier and mucosal inflammation. In addition to replicative and apoptotic cell death, radiation also induces changes in cellular function, as well as alterations secondary to tissue injury. The recognition of these "non-cytocidal" radiation effects has enhanced the understanding of normal tissue radiation toxicity, thus allowing an integrated systems biology-based approach to modulating radiation responses and providing a mechanistic rationale for interventions to mitigate or treat radiation injuries. The enteric nervous system regulates intestinal motility, blood flow and enterocyte function. The enteric nervous system also plays a central role in maintaining the physiological state of the intestinal mucosa and in coordinating inflammatory and fibroproliferative processes. The afferent component of the enteric nervous system, in addition to relaying sensory information, also exerts important effector functions and contributes critically to preserving mucosal integrity. Interactions between afferent nerves, mast cells as well as other cells of the resident mucosal immune system serve to maintain mucosal homeostasis and to ensure an appropriate response to injury. Notably, enteric sensory neurons regulate the activation threshold of mast cells by secreting substance P, calcitonin gene-related peptide and other neuropeptides, whereas mast cells signal to enteric nerves by the release of histamine, nerve growth factor and other mediators. This article reviews how enteric neurons interact with mast cells and other immune cells to regulate the intestinal radiation response and how these interactions may be modified to mitigate intestinal radiation toxicity. These data are not only applicable to radiation therapy, but also to intestinal injury in a radiological terrorism scenario.
Mast cells are present in the choroid of the normal eye in most vertebrate classes.
McMenamin, Paul Gerard; Polla, Emily
2013-07-01
Mast cells are bone marrow-derived tissue-homing leukocytes, which have traditionally been regarded as effector cells in allergic disorders, responses against parasites, and regulation of blood flow, but a broader perspective of their functional heterogeneity, such as immunomodulation, angiogenesis, tissue repair, and remodeling after injury, is now emerging. The persistence of mast cells in connective tissues throughout the evolution of vertebrates is evidence of strong selective pressure suggesting that these cells must have multiple beneficial and important roles in normal homeostasis. While mast cells are present within the uveal tract of eutherian mammals, there is little known about their presence in the choroid of other vertebrate classes. Eye tissues from a range of vertebrate species (fish, amphibian, reptiles, birds, marsupials, monotreme, and eutherian mammals) were investigated. Tissues were fixed in either 2% glutaraldehyde, 2% paraformaldehyde or a mixture of both and processed for resin embedding. Semi-thin sections of the retina and choroid were cut and stained with toluidine blue. Mast cells were identified in the choroid of all classes of vertebrates investigated except sharks. Their morphology, location, and staining characteristics were remarkably similar from teleost fish through to eutherian mammals and bore close morphological resemblance to mammalian connective tissue mast cells. The similar morphology and distribution of mast cells in the choroid of all vertebrate classes studied suggest a basic physiological function that has been retained since the evolution of the vertebrate eye. © 2013 American College of Veterinary Ophthalmologists.
2015-05-01
HNW line-of-sight network is mounted on a 10-meter telescoping mast located just aft of the TCN’s cab. The flat plate Range Throughput Extension Kit... TAC – Tactical Command Post ATH – At-the-Halt PoP – Point of Presence SNE – Soldier Network Extension NOSC – Network Operations & Security...Survivability/Lethality Analysis Directorate (ARL/SLAD) conducted a Cooperative Vulnerability and Penetration Assessment on WIN-T Increment 2. The Army
Torres-Atencio, Ivonne; Ainsua-Enrich, Erola; de Mora, Fernando; Picado, César; Martín, Margarita
2014-01-01
Background Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1–4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition. PMID:25329458
Larson, Alice A; Thomas, Mark J; McElhose, Alex; Kovács, Katalin J
2011-06-13
Mast cells are located in the central nervous system (CNS) of many mammals and stress induces their degranulation. We postulated that mast cells are associated with wakefulness and stimulatory tone in the CNS, as reflected by spontaneous motor activity. Because stress also precipitates drug-seeking behavior in cocaine addicts, we also postulated that cocaine manifests its effects through this relationship. We investigated the influence of single and repeated injections of cocaine on circulating corticosterone, motor activity and degranulation of mast cells in both the thalamus and meninges of mice. Mice were subjected to 5 consecutive days of cocaine or saline followed by a single injection of cocaine or saline 11 days later. Spontaneous locomotor activity was measure for 1h after the final injection before death. Neither a single injection nor prior treatment with cocaine increased motor activity compared to saline-injected controls, however, repeated administration of cocaine induced a significant sensitization to its behavioral effect when delivered 11 days later. In mice that received only saline, motor activity correlated positively with mast cell degranulation in the meninges but not in the thalamus. Cocaine, regardless of the treatment schedule, disrupted this correlation. The concentration of corticosterone did not differ amongst groups and did not correlate with either behavior or mast cell parameters in any group. The correlation between behavioral activity and the mast cell degranulation in the meninges suggests that these parameters are linked. The disruptive effect of cocaine on this relationship indicates a role downstream from mast cells in the regulation of motor activity. Copyright © 2011 Elsevier B.V. All rights reserved.
Army Networks: Opportunities Exist to Better Utilize Results from Network Integration Evaluations
2013-08-01
monitor operations; a touch screen-based mission command planning tool; and an antenna mast . The Army will field only one of these systems in capability...Office JTRS Joint Tactical Radio System NIE Network Integration Evaluation OSD Office of the Secretary of Defense SUE System under Evaluation...command systems . A robust transport layer capable of delivering voice, data, imagery, and video to the tactical edge (i.e., the forward battle lines
Rup, B J
1989-08-15
A number of different mouse strains and immunization protocols were used to attempt to make monoclonal antibodies against rat IgE for use in studies of the structure, biological activities and regulation of this class of antibody. Successful production of large numbers of monoclonal antibodies was achieved when mast cell deficient (w/wv and sl/sld) but not conventional (BALB/c, CAF1 or SJL) mice were used. These results suggest that the poor response of conventional strains of mice to rat IgE may be due to the presence of mast cells bearing high affinity receptors for IgE in these mice.
Mast cells in systemic and cutaneous lupus erythematosus.
Kaczmarczyk-Sekuła, Karolina; Dyduch, Grzegorz; Kostański, Marcin; Wielowieyska-Szybińska, Dorota; Szpor, Joanna; Białas, Magdalena; Okoń, Krzysztof
2015-12-01
Mast cells (MCs) are known to be regulators of inflammation and immunity, due to the released mediators and expressed cell surface molecules. Lupus erythematosus (LE) is a group of diseases which can be systemic or limited to the skin. Due to the fact that cytokines and chemokines produced by inflammatory cells contribute to the pathogenesis of LE, we quantified the number of mast cells present in the skin. The aim of the study was to compare the chymase-positive and tryptase-positive mast cell counts within skin biopsies from patients with systemic lupus erythematosus (SLE), discoid lupus erythematosus (DLE) and subacute cutaneous lupus erythematosus (SCLE). The material consisted of 45 skin biopsies: 6 with SLE, 34 with DLE and 5 with SCLE. Chymase- and tryptase-positive cells were stained by immunohistochemistry and counted. The mean count of chymase-positive mast cells was 85.14 hpf for the whole group, 35.83 for SLE, 88.48 for DLE and 121.6 for SCLE. The mean count of tryptase-positive cells was 120.05 hpf for the entire group, 59.17 for SLE, 126.42 for DLE and 149.8 for SCLE. The differences between groups were significant for chymase- and tryptase-positive cells.
Kojima, Reiji; Ohno, Tatsukuni; Iikura, Motoyasu; Niki, Toshiro; Hirashima, Mitsuomi; Iwaya, Keichi; Tsuda, Hitoshi; Nonoyama, Shigeaki; Matsuda, Akio; Saito, Hirohisa; Matsumoto, Kenji; Nakae, Susumu
2014-01-01
Galectin-9 (Gal-9), a lectin having a β-galactoside-binding domain, can induce apoptosis of Th1 cells by binding to TIM-3. In addition, Gal-9 inhibits IgE/Ag-mediated degranulation of mast cell/basophilic cell lines by binding to IgE, thus blocking IgE/Ag complex formation. However, the role of Gal-9 in mast cell function in the absence of IgE is not fully understood. Here, we found that recombinant Gal-9 directly induced phosphorylation of Erk1/2 but not p38 MAPK in a human mast cell line, HMC-1, which does not express FcεRI. Gal-9 induced apoptosis and inhibited PMA/ionomycin-mediated degranulation of HMC-1 cells. On the other hand, Gal-9 induced cytokine and/or chemokine production by HMC-1 cells, dependent on activation of ERK1/2 but not p38 MAPK. In addition, the lectin activity of Gal-9 was required for Gal-9-mediated cytokine secretion by HMC-1 cells. These observations suggest that Gal-9 has dual properties as both a regulator and an activator of mast cells.
Zoltowska Nilsson, A M; Lei, Y; Adner, M; Nilsson, G P
2018-03-01
Interleukin-33 (IL-33) and its receptor ST2 have been influentially associated with the pathophysiology of asthma. Due to the divergent roles of IL-33 in regulating mast cell functions, there is a need to further characterize IL-33/ST2-dependent mast cell responses and their significance in the context of asthma. This study aimed to investigate how IL-33/ST2-dependent mast cell responses contribute to the development of airway hyperresponsiveness (AHR) and airway inflammation in a mouse model of house dust mite (HDM)-induced asthma. Mast cell-deficient C57BL/6-Kit W-sh (Wsh) mice engrafted with either wild-type (Wsh + MC-WT) or ST2-deficient bone marrow-derived mast cells (Wsh + MC-ST2KO) were exposed to HDM delivered intranasally. An exacerbated development of AHR in response to HDM was seen in Wsh + MC-ST2KO compared with Wsh + MC-WT mice. The contribution of this IL-33/ST2-dependent mast cell response to AHR seems to reside within the smaller airways in the peripheral parts of the lung, as suggested by the isolated yet marked effect on tissue resistance. Considering the absence of a parallel increase in cellular inflammation in bronchoalveolar lavage fluid (BALF) and lung, the aggravated AHR in Wsh + MC-ST2KO mice seems to be independent of cellular inflammation. We observed an association between the elevated AHR and reduced PGE 2 levels in BALF . Due to the protective properties of PGE 2 in airway responses, it is conceivable that IL-33/ST2-dependent mast cell induction of PGE 2 could be responsible for the dampening effect on AHR. In conclusion, we reveal that IL-33/ST2-dependent mast cell responses can have a protective, rather than causative role, in the development of AHR.
Dysregulation of Aldosterone Secretion in Mast Cell-Deficient Mice.
Boyer, Hadrien-Gaël; Wils, Julien; Renouf, Sylvie; Arabo, Arnaud; Duparc, Céline; Boutelet, Isabelle; Lefebvre, Hervé; Louiset, Estelle
2017-12-01
Resident adrenal mast cells have been shown to activate aldosterone secretion in rat and man. Especially, mast cell proliferation has been observed in adrenal tissues from patients with aldosterone-producing adrenocortical adenoma. In the present study, we show that the activity of adrenal mast cells is stimulated by low-sodium diet and correlates with aldosterone synthesis in C57BL/6 and BALB/c mice. We have also investigated the regulation of aldosterone secretion in mast cell-deficient C57BL/6 Kit W-sh/W-sh mice in comparison with wild-type C57BL/6 mice. Kit W-sh/W-sh mice submitted to normal sodium diet had basal plasma aldosterone levels similar to those observed in wild-type animals. Conversely, low-sodium diet unexpectedly induced an exaggerated aldosterone response, which seemed to result from an increase in adrenal renin and angiotensin type 1 receptor expression. Severe hyperaldosteronism was associated with an increase in systolic blood pressure and marked hypokalemia, which favored polyuria. Adrenal renin and angiotensin type 1 receptor overexpression may represent a compensatory mechanism aimed at activating aldosterone production in the absence of mast cells. Finally, C57BL/6 Kit W-sh/W-sh mice represent an unexpected animal model of primary aldosteronism, which has the particularity to be triggered by sodium restriction. © 2017 American Heart Association, Inc.
Yamaki, Kouya; Yoshino, Shin
2009-09-01
The effect of ethyl tertiary-butyl ether (ETBE), which is widely used as a fuel oxygenate commonly produced from bioethanol, on immunoglobulin (Ig)E-dependent mast cell activation was investigated. The rat mast cell line RBL2H3 sensitised with monoclonal anti-ovalbumin IgE was challenged with ovalbumin in the presence or absence of ETBE, tert-butanol (TBA), which is the main metabolite of ETBE in humans, and ethanol. Degranulation of RBL2H3 was examined by the release of beta-hexosaminidase. To understand the mechanisms responsible for regulating mast cell function, the effects of ETBE, TBA and ethanol on the levels of intracellular calcium, phosphorylation of Akt (as a marker of phosphatidylinositol 3-kinase) and global tyrosine phosphorylation were also measured as indicators of mast cell activation. In the presence of ETBE, TBA or ethanol, IgE-induced release of beta-hexosaminidase was decreased. These compounds also attenuated the IgE-mediated increase in the levels of intracellular Ca(2+), phosphorylation of Akt and global tyrosine phosphorylation in RBL2H3 cells. ETBE, TBA and ethanol inhibited mast cell degranulation by inhibiting the increase in intracellular calcium ion concentration and activation of phosphatidylinositol 3-kinase and protein tyrosine kinase activation, suggesting that exposure to ETBE might affect immune responses, particularly in allergic diseases.
Duguay, Brett A; Huang, Kate Wei-Chen; Kulka, Marianna
2018-04-18
Mast cells are important immune cells that have significant roles in mediating allergy and asthma. Therefore, studying the molecular mechanisms regulating these and other processes in mast cells is important to elucidate. Methods such as lipofection, transduction, and electroporation are often employed to dissect these mechanisms by disrupting gene expression in mast cell lines. However, as with other leukocytes, human mast cells (HMCs) are often refractory to the delivery of plasmids by lipofection. In this study, we investigated the utility of lipid nanoparticles (LNPs) containing the ionizable cationic lipids 1,2-dioleoyloxy-3-dimethylaminopropane, 1,2-dioleyloxy-3-dimethylaminopropane, or 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane for the delivery of plasmid DNA into HMC lines. Herein, we demonstrate for the first time the use of LNPs to achieve significant and reproducible levels of plasmid DNA transfection in HMC-1.2 and laboratory of allergic diseases 2 (LAD2) cells. These levels reached 53.2% and 16.0% in HMC-1.2 and LAD2 cells, respectively; and outperformed Lipofectamine 3000 in both cases. Moreover, cell viability in the transfected cells remained above 65% for all LNP conditions tested. Together, these observations illustrate the efficacy of this technique for mast cell researchers and further support the use of LNPs for nucleic acid delivery into leukocytes. ©2018 Society for Leukocyte Biology.
Funaba, Masayuki; Ikeda, Teruo; Murakami, Masaru; Ogawa, Kenji; Tsuchida, Kunihiro; Sugino, Hiromu; Abe, Matanobu
2003-12-26
Previous studies have revealed that activin A and transforming growth factor-beta1 (TGF-beta1) induced migration and morphological changes toward differentiation in bone marrow-derived cultured mast cell progenitors (BMCMCs). Here we show up-regulation of mouse mast cell protease-7 (mMCP-7), which is expressed in differentiated mast cells, by activin A and TGF-beta1 in BMCMCs, and the molecular mechanism of the gene induction of mmcp-7. Smad3, a signal mediator of the activin/TGF-beta pathway, transcriptionally activated mmcp-7. Microphthalmia-associated transcription factor (MITF), a tissue-specific transcription factor predominantly expressed in mast cells, melanocytes, and heart and skeletal muscle, inhibited Smad3-mediated mmcp-7 transcription. MITF associated with Smad3, and the C terminus of MITF and the MH1 and linker region of Smad3 were required for this association. Complex formation between Smad3 and MITF was neither necessary nor sufficient for the inhibition of Smad3 signaling by MITF. MITF inhibited the transcriptional activation induced by the MH2 domain of Smad3. In addition, MITF-truncated N-terminal amino acids could associate with Smad3 but did not inhibit Smad3-mediated transcription. The level of Smad3 was decreased by co-expression of MITF but not of dominant-negative MITF, which resulted from proteasomal protein degradation. The changes in the level of Smad3 protein were paralleled by those in Smad3-mediated signaling activity. These findings suggest that MITF negatively regulates Smad-dependent activin/TGF-beta signaling in a tissue-specific manner.
Sayed, Blayne A; Christy, Alison L; Walker, Margaret E; Brown, Melissa A
2010-06-15
Mast cells contribute to the pathogenesis of experimental autoimmune encephalomyelitis, a rodent model of the human demyelinating disease multiple sclerosis. Yet their site and mode of action is unknown. In both diseases, myelin-specific T cells are initially activated in peripheral lymphoid organs. However, for disease to occur, these cells must enter the immunologically privileged CNS through a breach in the relatively impermeable blood-brain barrier. In this study, we demonstrate that a dense population of resident mast cells in the meninges, structures surrounding the brain and spinal cord, regulate basal CNS barrier function, facilitating initial T cell CNS entry. Through the expression of TNF, mast cells recruit an early wave of neutrophils to the CNS. We propose that neutrophils in turn promote the blood-brain barrier breach and together with T cells lead to further inflammatory cell influx and myelin damage. These findings provide specific targets for intervention in multiple sclerosis as well as other immune-mediated CNS diseases.
Lee, Yu-Nee; Nechushtan, Hovav; Figov, Navah; Razin, Ehud
2004-02-01
The involvement of microphthalmia transcription factor (MITF) in the function of mast cells, melanocytes, and osteoclasts has recently started to be investigated in depth. In a previous study, we found Hint to be associated with MITF in mast cells and showed that it suppresses MITF's transcriptional activity. Here, we have found that lysyl-tRNA synthetase (LysRS) is also associated with MITF and forms a multicomplex with MITF and Hint. We have also shown that Ap4A, an endogenous molecule consisting of two adenosine linked by four phosphate which is known to be synthesized by LysRS, is accumulated intracellularily above 700 microM in IgE-Ag-activated mast cells, binds to Hint, liberates MITF, and thus leads to the activation of MITF-dependent gene expression. This implies that LysRS plays a key role via Ap4A as an important signaling molecule in MITF transcriptional activity.
Morgado, José Mário T; Sánchez-Muñoz, Laura; Teodósio, Cristina G; Jara-Acevedo, Maria; Alvarez-Twose, Iván; Matito, Almudena; Fernández-Nuñez, Elisa; García-Montero, Andrés; Orfao, Alberto; Escribano, Luís
2012-04-01
Aberrant expression of CD2 and/or CD25 by bone marrow, peripheral blood or other extracutaneous tissue mast cells is currently used as a minor World Health Organization diagnostic criterion for systemic mastocytosis. However, the diagnostic utility of CD2 versus CD25 expression by mast cells has not been prospectively evaluated in a large series of systemic mastocytosis. Here we evaluate the sensitivity and specificity of CD2 versus CD25 expression in the diagnosis of systemic mastocytosis. Mast cells from a total of 886 bone marrow and 153 other non-bone marrow extracutaneous tissue samples were analysed by multiparameter flow cytometry following the guidelines of the Spanish Network on Mastocytosis at two different laboratories. The 'CD25+ and/or CD2+ bone marrow mast cells' World Health Organization criterion showed an overall sensitivity of 100% with 99.0% specificity for the diagnosis of systemic mastocytosis whereas CD25 expression alone presented a similar sensitivity (100%) with a slightly higher specificity (99.2%). Inclusion of CD2 did not improve the sensitivity of the test and it decreased its specificity. In tissues other than bone marrow, the mast cell phenotypic criterion revealed to be less sensitive. In summary, CD2 expression does not contribute to improve the diagnosis of systemic mastocytosis when compared with aberrant CD25 expression alone, which supports the need to update and replace the minor World Health Organization 'CD25+ and/or CD2+' mast cell phenotypic diagnostic criterion by a major criterion based exclusively on CD25 expression.
2012-03-01
to sell fake antivirus software ; Gammima, which was used to steal gaming login information; and Zeus, which was used to steal banking information...13 3. Viruses ......................................14 C. PROOF OF CONCEPT OF SOFTWARE TRAINING USING MALWARE MIMICS...33 2. Software .....................................34 3. COMPOSE CG-71 Virtual Machines ...............37 a. Integrated Shipboard Network System
Oyama, Satomi; Funasaka, Yoko; Tsuchiya, Shin-Ichi; Kawana, Seiji; Saeki, Hidehisa
2017-08-01
Actinic keratosis (AK) is a cutaneous cancer in situ which develops as a result of excessive exposure to ultraviolet (UV). Toll-like receptor (TLR)7 agonist imiquimod is a topical immune response modifier and is effective for the treatment of non-melanoma skin cancers. Recently, the diagnostic role of the dermatoscope has been reported in the course of treatment of AK. In addition, mast cells are now considered to contribute to both the innate and adaptive immune systems in topical imiquimod therapy. We assessed the effect of imiquimod treatment by dermatoscopic and immunohistochemical findings in 14 patients with a total of 21 AK lesions. With the dermatoscope, though the mean erythema score was not significantly different between the cured lesions and the unresponsive lesions, the erythema/red pseudo-network ("strawberry") pattern was decreased significantly in the cured lesions. By immunohistochemistry, the number of Ki-67-positive proliferative cells in the epidermis was decreased and that of CD117-positive mast cells in the dermis was increased in the responding lesions. To the best of our knowledge, this is the first study demonstrating that the number of mast cells in the dermis was increased in AK lesions effectively treated with imiquimod. Our present result suggests that mast cells may contribute an antitumor effect in human skin treated with topical imiquimod. © 2017 Japanese Dermatological Association.
Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.
Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.
1994-01-01
The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330
Singh, Soudamani; Arthur, Subha; Talukder, Jamilur; Palaniappan, Balasubramanian; Coon, Steven; Sundaram, Uma
2015-04-15
In the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells (mediated by B0AT1), while it is stimulated in crypt cells (mediated by SN2/SNAT5). How mast cells, known to be enhanced in the chronically inflamed intestine, may regulate B0AT1 in villus and SN2/SNAT5 in crypt cell is unknown. Thus, the aim of the present study is to determine the regulation of B0AT1 and SN2/SNAT5 by mast cells during chronic enteritis. Chronic intestinal inflammation was induced in male rabbits with intra-gastric inoculation of Eimeria magna oocytes. Rabbits with chronic inflammation were treated with ketotifen (10 mg/day) or saline (Placebo) for 2 days. Villus and crypts cells were isolated from the rabbit intestine using the Ca++ chelation technique. Na/K-ATPase activity was measured as Pi from cellular homogenate. BBM vesicles (BBMV) were prepared from villus and crypt cells and uptake studies were performed using rapid filtration technique with (3)H-Glutamine. Western blot analyses were done using B0AT1 and SN2 specific antibodies. In villus cells, Na-glutamine co-transport inhibition observed during inflammation was completely reversed by ketotifen, a mast cell stabilizer. In contrast, in crypt cells, Na-glutamine co-transport stimulation was reversed to normal levels by ketotifen. Kinetic studies demonstrated that ketotifen reversed the inhibition of B0AT1 in villus cells by restoring co-transporter numbers in the BBM, whereas the stimulation of SN2/SNAT5 in crypts cells was reversed secondary to restoration of affinity of the co-transporter. Western blot analysis showed that ketotifen restored immune-reactive levels of B0AT1 in villus cells, while SN2/SNAT5 levels from crypts cell remained unchanged. In the present study we demonstrate that mast cells likely function as a common upstream immune pathway regulator of the Na-dependent glutamine co-transporters, B0AT1 in villus cells and SN2 in crypts cells that are uniquely altered in the chronically inflamed small intestine.
Rojas, I Gina; Martínez, Alejandra; Brethauer, Ursula; Grez, Patricia; Yefi, Roger; Luza, Sandra; Marchesani, Francisco J
2009-03-01
Cyclooxygenase-2 (COX-2) is overexpressed in various types of human malignancies, including oral cancers. Recent studies have shown that mast cell-derived protease tryptase can induce COX-2 expression by the cleavage of proteinase-activated receptor-2 (PAR-2). Actinic cheilitis (AC) is a premalignant form of lip cancer characterized by an increased density of tryptase-positive mast cells. To investigate the possible contribution of tryptase to COX-2 overexpression during early lip carcinogenesis, normal lip (n=24) and AC (n=45) biopsies were processed for COX-2, PAR-2 and tryptase detection, using RT-PCR and immunohistochemistry. Expression scores were obtained for each marker and tested for statistical significance using Mann-Whitney and Spearmann's correlation tests as well as multivariate logistic regression analysis. Increased epithelial co-expression of COX-2 and PAR-2, as well as, elevated subepithelial density of tryptase-positive mast cells were found in AC as compared to normal lip (P<0.001). COX-2 overexpression was found to be a significant predictor of AC (P<0.034, forward stepwise, Wald), and to be correlated with both tryptase-positive mast cells and PAR-2 expression (P<0.01). The results suggest that epithelial COX-2 overexpression is a key event in AC, which is associated with increased tryptase-positive mast cells and PAR-2. Therefore, tryptase may contribute to COX-2 up-regulation by epithelial PAR-2 activation during early lip carcinogenesis.
Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells.
Park, Hyo-Hyun; Lee, Soyoung; Son, Hee-Young; Park, Seung-Bin; Kim, Mi-Sun; Choi, Eun-Ju; Singh, Thoudam S K; Ha, Jeoung-Hee; Lee, Maan-Gee; Kim, Jung-Eun; Hyun, Myung Chul; Kwon, Taeg Kyu; Kim, Yeo Hyang; Kim, Sang-Hyun
2008-10-01
Mast cells participate in allergy and inflammation by secreting inflammatory mediators such as histamine and proinflammatory cytokines. Flavonoids are naturally occurring molecules with antioxidant, cytoprotective, and antiinflammatory actions. However, effect of flavonoids on the release of histamine and proinflammatory mediator, and their comparative mechanism of action in mast cells were not well defined. Here, we compared the effect of six flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) on the mast cell-mediated allergic inflammation. Fisetin, kaempferol, myricetin, quercetin, and rutin inhibited IgE or phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-mediated histamine release in RBL-2H3 cells. These five flavonoids also inhibited elevation of intracellular calcium. Gene expressions and secretion of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, IL-6, and IL-8 were assessed in PMACI-stimulated human mast cells (HMC-1). Fisetin, quercetin, and rutin decreased gene expression and production of all the proinflammatory cytokines after PMACI stimulation. Myricetin attenuated TNF-alpha and IL-6 but not IL-1beta and IL-8. Fisetin, myricetin, and rutin suppressed activation of NF-kappaB indicated by inhibition of nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. The pharmacological actions of these flavonoids suggest their potential activity for treatment of allergic inflammatory diseases through the down-regulation of mast cell activation.
Login, G R; Aoki, M; Yamakawa, M; Lunardi, L O; Digenis, E C; Tanda, N; Schwartz, L B; Dvorak, A M
1997-10-01
The subcellular events responsible for release of mediators by mast cells may help to clarify roles for mast cells in health and disease. In this study we show that the granule-associated protease chymase is also within cytoplasmic vesicles in appropriately stimulated rat peritoneal mast cells. Rat peritoneal mast cells were recovered before or 1-10 sec after exposure to the secretogogue compound 48/80 (10 micrograms/ml) and then were examined by radioimmunoassay to quantify histamine release or were processed, using routine methods for postembedding immunoelectron microscopy, to identify the subcellular localization of chymase. In comparison to unstimulated cells, compound 48/80 stimulated cells in two independent experiments showed an increase (15%, 28%) in the surface area of the cell and a decrease (12%, 6%) in the surface area of the total granule compartment before degranulation channel formation. These global cellular changes occurred in a background of transient but significant (p < 0.01) increases in the area and number of chymase-immunoreactive vesicles per microns2 cytoplasm. These changes were detectable at 5 or 7 sec after stimulation with compound 48/80 but returned to near prestimulation levels by 9 or 10 sec after addition of compound 48/80 (total cumulative histamine release was 28% by 8 sec and 47% by 14 sec). These observations suggest that vesicles participate in the early stages of regulated secretion of chymase from rat peritoneal mast cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Liangchang; Jin, Guangyu; Jiang, Jingzhi
Aims: The present study is to investigate the effect of cornuside on mast cell-mediated allergic response, as well as its possible mechanisms of action. Methods: To test the anti-allergic effects of cornuside in vivo, local extravasation was induced by local injection of anti-dinitrophenyl immunoglobulin E (IgE) followed by intravenous antigenic challenge in passive cutaneous anaphylaxis model rats. Mast cell viability was determined using MTT assay. Histamine content from rat peritoneal mast cells was measured by the radioenzymatic method. To investigate the mechanisms by which cornuside affects the reduction of histamine release, the levels of calcium uptake were measured. To examine whethermore » cornuside affects the expression of pro-inflammatory cytokines, Western blotting and ELISA were carried out. Results: Oral administration of cornuside inhibited passive cutaneous anaphylaxis in rats. Presence of cornuside attenuated IgE-induced histamine release from rat peritoneal mast cells. The inhibitory effect of cornuside on histamine release was mediated by the modulation of intracellular calcium. In addition, cornuside decreased phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated production and secretion of pro-inflammatory cytokines such as TNF-α and IL-6 in human mast cells. The inhibitory effect of cornuside on pro-inflammatory cytokines was dependent on nuclear factor-κB and p38 mitogen-activated protein kinase. Conclusions: The present study provides evidence that cornuside inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. Furthermore, in vivo and in vitro anti-allergic effects of cornuside suggest a possible therapeutic application of this agent in inflammatory allergic diseases.« less
Jyothsna, M; Rammanohar, M; Kumar, Kiran
2017-01-01
Mast cells have been implicated in promoting angiogenesis in malignant tumors of lung, oesophagus and breast, but there are few studies on Oral Squamous Cell Carcinomas (OSCC). Most oral squamous cell carcinomas arise from pre-existing precancerous lesions exhibiting epithelial dysplasia. The present pilot study attempts to compare Mast Cell Density (MCD), Microvessel Density (MVD), Microvessel Area (MVA) histomorphometrically between normal buccal mucosa, severe epithelial dysplasia and OSCC and to correlate the role of mast cells and angiogenesis in tumor progression. The retrospective study was conducted on eight cases of OSCC, eight cases of severe epithelial dysplasia and five cases of normal buccal mucosa. Immunohistochemical staining with anti CD-31, to demonstrate angiogenesis and toluidine blue staining for mast cells were employed. MVA, MVD and MCD were calculated using the measurement tools of the image analysis software and compared between the groups. One way ANOVA (Analysis of Variance) was used for comparing the parameter for multiple groups followed by Games Howell test. To assess the relationship between micro vessel density and mast cell density, Karl Pearson's correlation was used. MCD and MVD increased with disease progression and were statistically higher in OSCC than in severe epithelial dysplasia and normal buccal mucosa (p<0.001). MVA increased from normal to severe dysplasia and decreased from dysplasia to OSCC, may be due to revascularization of tumor tissue. A positive correlation was observed between MCD and MVD in OSCC and dysplasia, though were not statistically significant. These findings suggest that mast cells may up regulate angiogenesis in OSCC. MCD and MVD may be used as indicators for disease progression.
Westbury, Charlotte B; Freeman, Alex; Rashid, Mohammed; Pearson, Ann; Yarnold, John R; Short, Susan C
2014-05-01
Mast cells are involved in the pathogenesis of radiation fibrosis and may be a therapeutic target. The mechanism of increased mast cell number in relation to acute and late tissue responses in human skin was investigated. Punch biopsies of skin 1 and 15-18 months after breast radiotherapy and a contralateral control biopsy were collected. Mast cells were quantified by immunohistochemistry using the markers c-Kit and tryptase. Stem cell factor (SCF) and collagen-1 expression was analysed by qRT-PCR. Clinical photographic scores were performed at post-surgical baseline and 18 months and 5 years post-radiotherapy. Primary human dermal microvascular endothelial cell (HDMEC) cultures were exposed to 2Gy ionising radiation and p53 and SCF expression was analysed by Western blotting and ELISA. Dermal mast cell numbers were increased at 1 (p=0.047) and 18 months (p=0.040) using c-Kit, and at 18 months (p=0.024) using tryptase immunostaining. Collagen-1 mRNA in skin was increased at 1 month (p=0.047) and 18 months (p=0.032) and SCF mRNA increased at 1 month (p=0.003). None of 16 cases scored had a change in photographic appearance at 5 years, compared to baseline. SCF expression was not increased in HDMECs irradiated in vitro. Increased mast cell number was associated with up-regulated collagen-1 expression in human skin at early and late time points. This increase could be secondary to elevated SCF expression at 1 month after radiotherapy. Although mast cells accumulate around blood vessels, no endothelial cell secretion of SCF was seen after in vitro irradiation. Modification of mast cell number and collagen-1 expression may be observed in skin at 1 and 18 months after radiotherapy in breast cancer patients with no change in photographic breast appearance at 5 years. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ishihara, Masae Iwamoto; Kikuzawa, Kihachiro
2009-01-01
Backgrounds and Aims Shoot demography affects the growth of the tree crown and the number of leaves on a tree. Masting may cause inter-annual and spatial variation in shoot demography of mature trees, which may in turn affect the resource budget of the tree. The aim of this study was to evaluate the effect of masting on the temporal and spatial variations in shoot demography of mature Betula grossa. Methods The shoot demography was analysed in the upper and lower parts of the tree crown in mature trees and saplings over 7 years. Mature trees and saplings were compared to differentiate the effect of masting from the effect of exogenous environment on shoot demography. The fate of different shoot types (reproductive, vegetative, short, long), shoot length and leaf area were investigated by monitoring and by retrospective survey using morphological markers on branches. The effects of year and branch position on demographic parameters were evaluated. Key Results Shoot increase rate, production of long shoots, bud mortality, length of long shoots and leaf area of a branch fluctuated periodically from year to year in mature trees over 7 years, in which two masting events occurred. Branches within a crown showed synchronized annual variation, and the extent of fluctuation was larger in the upper branches than the lower branches. Vegetative shoots varied in their bud differentiation each year and contributed to the dynamic shoot demography as much as did reproductive shoots, suggesting physiological integration in shoot demography through hormonal regulation and resource allocation. Conclusions Masting caused periodic annual variation in shoot demography of the mature trees and the effect was spatially variable within a tree crown. Since masting is a common phenomenon among tree species, annual variation in shoot demography and leaf area should be incorporated into resource allocation models of mature masting trees. PMID:19734164
Kempuraj, Duraisamy; Thangavel, Ramasamy; Selvakumar, Govindhasamy P; Zaheer, Smita; Ahmed, Mohammad E; Raikwar, Sudhanshu P; Zahoor, Haris; Saeed, Daniyal; Natteru, Prashant A; Iyer, Shankar; Zaheer, Asgar
2017-01-01
Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1-42 (Aβ1-42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.
Cimpean, Anca Maria; Raica, Marius
2016-12-01
Scattered data suggested that disodium cromolyn, well known as a mast cell stabilizer shows some effects on tumor cells and tumor-associated newly formed vascular networks. Most of these studies used tumor cell lines assessed by in vitro studies. Nor disodium cromolyn effects on melanoma cell lines were studied yet, neither its influence on recruited tumor blood vessels or angiogenic growth factors expression. We designed here a study regarding disodium cromolyn effects on A375 melanoma tumor cells implanted on chick embryo chorioallantoic membrane (CAM) and on blood vessels recruited by the experimental melanoma in the absence of mast cells, knowing that within CAM, the existence of mast cells are not certified yet. We also assessed the role of disodium cromolyn on the expression of several angiogenic growth factors. Disodium cromoglycate differentially acts on tumor cells and blood vessels. Extensive necrotic areas of experimental melanoma together with an increased number of peritumor blood vessels were observed in treated specimens as compared with untreated tumors. Disodium cromolyn inhibited VEGF and PDGF-BB expression, and had no effects on EG VEGF expression between treated and non treated specimens in a mast cells free microenvironment. Our results sustain the direct antitumor effects of sodium cromolyn and suggest the involvement of several growth factors in the recruitment of tumor vessels by A375 melanoma tumor cells. The expression of growth factors is differentially influenced by sodium cromolyn treatment.
Mast cell tryptase changes with Aspergillus fumigatus - Host crosstalk in cystic fibrosis patients.
Gomez, Carine; Carsin, Ania; Gouitaa, Marion; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Mège, Jean-Louis; Ranque, Stéphane; Vitte, Joana
2018-02-15
Pulmonary and systemic antifungal immunity influences quality of life and survival of people with cystic fibrosis. Aspergillus fumigatus (Af) induces specific IgG and IgE. Mast cells respond to IgE, IgG and direct interactions with Af. Mast cells are the source of the protease tryptase. We aimed at evaluating serum baseline tryptase as a potential biomarker of the Af-host interaction in cystic fibrosis patients. Serum baseline tryptase, IgE and IgG directed to Af extract and Af molecular allergens were measured in 76 cystic fibrosis patients. The main findings were (i) lower levels of serum baseline tryptase in patients displaying specific IgE to Af (p < 0.0001) and (ii) an association between tryptase levels and IgE or IgG responses to Af and ribotoxin (Asp f 1). These findings suggest that serum baseline tryptase is influenced by Af-host interactions and thus might be a marker for mast cell regulation and pulmonary immune defenses. Copyright © 2018 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil
Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy.more » During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.« less
Lessmann, Eva; Ngo, Mike; Leitges, Michael; Minguet, Susana; Ridgway, Neale D; Huber, Michael
2007-02-01
The oxysterol-binding protein and oxysterol-binding protein-related protein family has been implicated in lipid transport and metabolism, vesicle trafficking and cell signaling. While investigating the phosphorylation of Akt/protein kinase B in stimulated bone marrow-derived mast cells, we observed that a monoclonal antibody directed against phospho-S473 Akt cross-reacted with oxysterol-binding protein-related protein 9 (ORP9). Further analysis revealed that mast cells exclusively express ORP9S, an N-terminal truncated version of full-length ORP9L. A PDK-2 consensus phosphorylation site in ORP9L and OPR9S at S287 (VPEFS(287)Y) was confirmed by site-directed mutagenesis. In contrast to Akt, increased phosphorylation of ORP9S S287 in stimulated mast cells was independent of phosphatidylinositol 3-kinase but sensitive to inhibition of conventional PKC isotypes. PKC-beta dependence was confirmed by lack of ORP9S phosphorylation at S287 in PKC-beta-deficient, but not PKC-alpha-deficient, mast cells. Moreover, co-immunoprecipitation of PKC-beta and ORP9S, and in vitro phosphorylation of ORP9S in this complex, argued for direct phosphorylation of ORP9S by PKC-beta, introducing ORP9S as a novel PKC-beta substrate. Akt was also detected in a PKC-beta/ORP9S immune complex and phosphorylation of Akt on S473 was delayed in PKC-deficient mast cells. In HEK293 cells, RNAi experiments showed that depletion of ORP9L increased Akt S473 phosphorylation 3-fold without affecting T308 phosphorylation in the activation loop. Furthermore, mammalian target of rapamycin was implicated in ORP9L phosphorylation in HEK293 cells. These studies identify ORP9 as a PDK-2 substrate and negative regulator of Akt phosphorylation at the PDK-2 site.
Wang, Zhigang; Yi, Tao; Long, Man; Ding, Fengmin; Ouyang, Lichen; Chen, Zebin
2018-06-01
In this study, we aimed to investigate the effect of electro-acupuncture (EA) at the Zusanli acupoint (ST36) on interleukin (IL)-33-mediated mast cell activation. Firstly, 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in rats was developed with or without EA treatment. Then, rat peritoneal mast cells (RPMCs) were obtained and cultured in the presence of IL-33. EA treatment relieved ear swelling and reduced mast cell infiltration in the local inflammation area with DNFB challenge, accompanying the decrement of IL-33 production. RPMCs isolated from ACD rats with EA treatment showed significant downregulation of IL-6, TNF-α, IL-13, and MCP-1 production following IL-33 stimulation. However, there was no obvious difference in surface ST2 receptor expression among different groups. In addition, EA selectively altered IL-33 signaling, suppressing p38 phosphorylation as well as NF-κB- and AP-1-mediated transcription but not Akt phosphorylation. Importantly, EA lowered microRNA (miR)-155 expression in the RPMCs, which presented a positive correlation with IL-33-induced IL-6 production. Furthermore, overexpression of miR-155 in the RPMCs was established following miR-155 mimic transfection. RPMCs with the overexpressed miR-155 displayed an obvious increment of inflammatory cytokine and abrogated the inhibitive effect of EA on NF-κB- and AP-1-regulated transcription in response to IL-33 compared with those without transfected-miR-155. These findings demonstrate EA treatment inhibits NF-κB and AP-1 activation as well as promotes the negative feedback regulation of IL-33 signaling via targeting miR-155 in mast cells, which contribute to the anti-inflammatory effect of EA on DNFB-induced ACD in rats.
Sohn, Youngjoo; Han, Na-Young; Lee, Min Jung; Cho, Hyun-Joo; Jung, Hyuk-Sang
2013-08-01
[6]-Shogaol is a major bioactive component of Zingiber officinale. Although [6]-shogaol has a number of pharmacological activities including antipyretic, analgesic, antitussive and anti-inflammatory effects, the specific mechanisms of its anti-allergic effects have not been studied. In this study, we present the effects of [6]-shogaol on mast cell-mediated allergic reactions in vivo and in vitro. Sprague-Dawley rats received intradermal injections of anti-DNP IgE was injected into dorsal skin sites. After 48 h, [6]-shogaol was administered orally 1 h prior to challenge with DNP-HSA in saline containing 4% Evans blue through the dorsal vein of the penis. In addition, rat peritoneal mast cells (RPMCs) were cultured and purified to investigate histamine release. In vitro, we evaluated the regulatory effects of [6]-shogaol on the level of inflammatory mediators in phorbol 12-myristate 13-acetate plus calcium ionomycin A23187-stimulated human mast cells (HMC-1). [6]-Shogaol reduced the passive cutaneous anaphylaxis reaction compared to the control group, and histamine release decreased significantly following the treatment of RPMCs with [6]-shogaol. In HMC-1 cells, [6]-shogaol inhibited the production of TNF-α, IL-6 and IL-8, as well as the activation of nuclear factor-κB (NF-κB) and phosphorylation of JNK in compound 48/80-induced HMC-1 cells. [6]-shogaol inhibited mast cell-mediated allergic reactions by inhibiting the release of histamine and the production of proinflammatory cytokines with the involvement of regulation of NF-κB and phosphorylation of JNK.
Lefebvre, Hervé; Thomas, Michaël; Duparc, Céline; Bertherat, Jérôme; Louiset, Estelle
2016-01-01
In the normal human adrenal gland, steroid secretion is regulated by a complex network of autocrine/paracrine interactions involving bioactive signals released by endothelial cells, nerve terminals, chromaffin cells, immunocompetent cells, and adrenocortical cells themselves. ACTH can be locally produced by medullary chromaffin cells and is, therefore, a major mediator of the corticomedullary functional interplay. Plasma ACTH also triggers the release of angiogenic and vasoactive agents from adrenocortical cells and adrenal mast cells and, thus, indirectly regulates steroid production through modulation of the adrenal blood flow. Adrenocortical neoplasms associated with steroid hypersecretion exhibit molecular and cellular defects that tend to reinforce the influence of paracrine regulatory loops on corticosteroidogenesis. Especially, ACTH has been found to be abnormally synthesized in bilateral macronodular adrenal hyperplasia responsible for hypercortisolism. In these tissues, ACTH is detected in a subpopulation of adrenocortical cells that express gonadal markers. This observation suggests that ectopic production of ACTH may result from impaired embryogenesis leading to abnormal maturation of the adrenogonadal primordium. Globally, the current literature indicates that ACTH is a major player in the autocrine/paracrine processes occurring in the adrenal gland in both physiological and pathological conditions. PMID:27489549
16 CFR 1512.18 - Tests and test procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... plane containing both wheels and the centerlines of the down tube and seat mast. (ii) Post test: The... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Tests and test procedures. 1512.18 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.18 Tests and test procedures. (a) Sharp edge test...
16 CFR 1512.18 - Tests and test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... plane containing both wheels and the centerlines of the down tube and seat mast. (ii) Post test: The... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Tests and test procedures. 1512.18 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.18 Tests and test procedures. (a) Sharp edge test...
16 CFR 1512.18 - Tests and test procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... seat mast. (ii) Post test: The optical axis of the reflector shall remain parallel within 5° to the... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Tests and test procedures. 1512.18 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.18 Tests and test procedures. (a) Sharp edge test...
16 CFR 1512.18 - Tests and test procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... seat mast. (ii) Post test: The optical axis of the reflector shall remain parallel within 5° to the... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Tests and test procedures. 1512.18 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.18 Tests and test procedures. (a) Sharp edge test...
16 CFR § 1512.18 - Tests and test procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of the down tube and seat mast. (ii) Post test: The optical axis of the reflector shall remain... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Tests and test procedures. § 1512.18... ACT REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.18 Tests and test procedures. (a) Sharp...
Roles for Ca2+ mobilization and its regulation in mast cell functions: recent progress.
Holowka, David; Wilkes, Marcus; Stefan, Christopher; Baird, Barbara
2016-04-15
Ca(2+)mobilization in response to cross-linking of IgE bound to its high affinity receptor, FcεRI, on mast cells is central to immune allergic responses. Stimulated tyrosine phosphorylation caused by this cross-linking activates store-operated Ca(2+)entry that results in sustained Ca(2+)oscillations dependent on Rho family GTPases and phosphoinositide synthesis. Coupling of the endoplasmic reticulum (ER) Ca(2+)sensor, stromal interaction molecule 1 (STIM1), to the Ca(2+)-selective channel, Orai1, is regulated by these elements and depends on membrane organization, both at the plasma membrane and at the ER. Mitochondria also contribute to the regulation of Ca(2+)mobilization, and we describe recent evidence that the ER membrane protein vesicle-associated membrane protein-associated protein (VAP) plays a significant role in the coupling between ER and mitochondria in this process. In addition to granule exocytosis, Ca(2+)mobilization in these cells also contributes to stimulated outward trafficking of recycling endosomes and to antigen-stimulated chemotaxis, and it is pathologically regulated by protozoan parasitic invasion. © 2016 Authors; published by Portland Press Limited.
Andrade, Erika C.; Musante, Veronica; Horiuchi, Atsuko; Greengard, Paul; Taylor, Jane R.
2017-01-01
ARPP-16 (cAMP-regulated phospho-protein of molecular weight 16 kDa) is one of several small acid-soluble proteins highly expressed in medium spiny neurons of striatum that are phosphorylated in response to dopamine acting via D1 receptor/protein kinase A (PKA) signaling. We show here that ARPP-16 is also phosphorylated in vitro and in vivo by microtubule-associated serine/threonine kinase 3 (MAST3 kinase), an enzyme of previously unknown function that is enriched in striatum. We find that ARPP-16 interacts directly with the scaffolding A subunit of the serine/threonine protein phosphatase, PP2A, and that phosphorylation of ARPP-16 at Ser46 by MAST3 kinase converts the protein into a selective inhibitor of B55α- and B56δ-containing heterotrimeric forms of PP2A. Ser46 of ARPP-16 is phosphorylated to a high basal stoichiometry in striatum, suggestive of basal inhibition of PP2A in striatal neurons. In support of this hypothesis, conditional knock-out of ARPP-16 in CaMKIIα::cre/floxed ARPP-16/19 mice results in dephosphorylation of a subset of PP2A substrates including phospho-Thr75-DARPP-32, phospho-T308-Akt, and phospho-T202/Y204-ERK. Conditional knock-out of ARPP-16/19 is associated with increased motivation measured on a progressive ratio schedule of food reinforcement, yet an attenuated locomotor response to acute cocaine. Our previous studies have shown that ARPP-16 is phosphorylated at Ser88 by PKA. Activation of PKA in striatal slices leads to phosphorylation of Ser88, and this is accompanied by marked dephosphorylation of Ser46. Together, these studies suggest that phospho-Ser46-ARPP-16 acts to basally control PP2A in striatal medium spiny neurons but that dopamine acting via PKA inactivates ARPP-16 leading to selective potentiation of PP2A signaling. SIGNIFICANCE STATEMENT We describe a novel mechanism of signal transduction enriched in medium spiny neurons of striatum that likely mediates effects of the neurotransmitter dopamine acting on these cells. We find that the protein ARPP-16, which is highly expressed in striatal medium spiny neurons, acts as a selective inhibitor of certain forms of the serine/threonine protein phosphatase, PP2A, when phosphorylated by the kinase, MAST3. Under basal conditions, ARPP-16 is phosphorylated by MAST3 to a very high stoichiometry. However, the actions of MAST3 are antagonized by dopamine and cAMP-regulated signaling leading to disinhibition of ARPP-16 and increased PP2A action. PMID:28167675
Andrade, Erika C; Musante, Veronica; Horiuchi, Atsuko; Matsuzaki, Hideo; Brody, A Harrison; Wu, Terence; Greengard, Paul; Taylor, Jane R; Nairn, Angus C
2017-03-08
ARPP-16 (cAMP-regulated phospho-protein of molecular weight 16 kDa) is one of several small acid-soluble proteins highly expressed in medium spiny neurons of striatum that are phosphorylated in response to dopamine acting via D1 receptor/protein kinase A (PKA) signaling. We show here that ARPP-16 is also phosphorylated in vitro and in vivo by microtubule-associated serine/threonine kinase 3 (MAST3 kinase), an enzyme of previously unknown function that is enriched in striatum. We find that ARPP-16 interacts directly with the scaffolding A subunit of the serine/threonine protein phosphatase, PP2A, and that phosphorylation of ARPP-16 at Ser46 by MAST3 kinase converts the protein into a selective inhibitor of B55α- and B56δ-containing heterotrimeric forms of PP2A. Ser46 of ARPP-16 is phosphorylated to a high basal stoichiometry in striatum, suggestive of basal inhibition of PP2A in striatal neurons. In support of this hypothesis, conditional knock-out of ARPP-16 in CaMKIIα::cre/floxed ARPP-16/19 mice results in dephosphorylation of a subset of PP2A substrates including phospho-Thr75-DARPP-32, phospho-T308-Akt, and phospho-T202/Y204-ERK. Conditional knock-out of ARPP-16/19 is associated with increased motivation measured on a progressive ratio schedule of food reinforcement, yet an attenuated locomotor response to acute cocaine. Our previous studies have shown that ARPP-16 is phosphorylated at Ser88 by PKA. Activation of PKA in striatal slices leads to phosphorylation of Ser88, and this is accompanied by marked dephosphorylation of Ser46. Together, these studies suggest that phospho-Ser46-ARPP-16 acts to basally control PP2A in striatal medium spiny neurons but that dopamine acting via PKA inactivates ARPP-16 leading to selective potentiation of PP2A signaling. SIGNIFICANCE STATEMENT We describe a novel mechanism of signal transduction enriched in medium spiny neurons of striatum that likely mediates effects of the neurotransmitter dopamine acting on these cells. We find that the protein ARPP-16, which is highly expressed in striatal medium spiny neurons, acts as a selective inhibitor of certain forms of the serine/threonine protein phosphatase, PP2A, when phosphorylated by the kinase, MAST3. Under basal conditions, ARPP-16 is phosphorylated by MAST3 to a very high stoichiometry. However, the actions of MAST3 are antagonized by dopamine and cAMP-regulated signaling leading to disinhibition of ARPP-16 and increased PP2A action. Copyright © 2017 the authors 0270-6474/17/372709-14$15.00/0.
Hirsch, Robert M.; Hooper, Richard P.; Kelly, Valerie J.
2001-01-01
The mission of the US Geological Survey (USGS) is to assess the quantity and quality of the earth resources of the USA and to provide information that will assist resource managers and policymakers at federal, state and local levels in making sound decisions. Characterizing the water quality of the largest rivers of the USA is a daunting prospect, especially given the resources available for the task. The most effective approach is uncertain and is legitimately a research topic. The National Stream Quality Accounting Network (NASQAN) was redesigned in 1995 to estimate the annual mass flux of constituents at a network of fixed stations in the Mississippi, Rio Grande, Colorado, and Columbia River basins. This special volume of Hydrological Processes contains a series of papers evaluating the data collected by NASQAN during its first 3 years of operation under this design. The NASQAN network complements other USGS national programs that are designed to address water quality at different scales. The National Water-Quality Assessment Program (Hirsch et al., 1988) is designed around river basins of 10 000 to 100 000 km2 (versus these NASQAN basins, which are 650 000 to 3 100 000 km2 at their most downstream stations). The USGS also operates the Hydrologic Benchmark Network that is focused on relatively pristine basins of only 10 to 100 km2 (Mast and Turk, 1999a,b; Clark et al., 2000; Mast et al., 2000).
Is a subtype of autism an allergy of the brain?
Theoharides, Theoharis C
2013-05-01
Autism spectrum disorders (ASDs) are characterized by deficits in social communication and language and the presence of repetitive behaviors that affect as many as 1 in 50 US children. Perinatal stress and environmental factors appear to play a significant role in increasing the risk for ASDs. There is no definitive pathogenesis, which therefore significantly hinders the development of a cure. We aimed to identify publications using basic or clinical data that suggest a possible association between atopic symptoms and ASDs, as well as evidence of how such an association could lead to brain disease, that may explain the pathogenesis of ASD. PubMed was searched for articles published since 1995 that reported any association between autism and/or ASDs and any one of the following terms: allergy, atopy, brain, corticotropin-releasing hormone, cytokines, eczema, food allergy, food intolerance, gene mutation, inflammation, mast cells, mitochondria, neurotensin, phenotype, stress, subtype, or treatment. Children with ASD respond disproportionally to stress and also present with food and skin allergies that involve mast cells. Brain mast cells are found primarily in the hypothalamus, which participates in the regulation of behavior and language. Corticotropin-releasing hormone is secreted from the hypothalamus under stress and, together with neurotensin, stimulates brain mast cells that could result in focal brain allergy and neurotoxicity. Neurotensin is significantly increased in serum of children with ASD and stimulates mast cell secretion of mitochondrial adenosine triphosphate and DNA, which is increased in these children; these mitochondrial components are misconstrued as innate pathogens, triggering an autoallergic response in the brain. Gene mutations associated with higher risk of ASD have been linked to reduction of the phosphatase and tensin homolog, which inhibits the mammalian target of rapamycin (mTOR). These same mutations also lead to mast cell activation and proliferation. Corticotropin-releasing hormone, neurotensin, and environmental toxins could further trigger the already activated mTOR, leading to superstimulation of brain mast cells in those areas responsible for ASD symptoms. Preliminary evidence indicates that the flavonoid luteolin is a stronger inhibitor of mTOR than rapamycin and is a potent mast cell blocker. Activation of brain mast cells by allergic, environmental, immune, neurohormonal, stress, and toxic triggers, especially in those areas associated with behavior and language, lead to focal brain allergies and subsequent focal encephalitis. This possibility is more likely in the subgroup of patients with ASD susceptibility genes that also involve mast cell activation. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanakura, Y.; Kuriu, A.; Waki, N.
Two different types of cells in the peritoneal cavity of mice produce mast cell colonies in methylcellulose. Large mast cell colonies are produced by bone marrow-derived precursors resembling lymphoid cells by light microscopy (L-CFU-Mast), whereas medium and small mast cell colonies are produced by morphologically identifiable mast cells (M-CFU-Mast and S-CFU-Mast, respectively). In the present study we eradicated peritoneal mast cells by intraperitoneal (IP) injection of distilled water. The regeneration process was investigated to clarify the relationship between L-CFU-Mast, M-CFU-Mast, and S-CFU-Mast. After injection of distilled water, M-CFU-Mast and S-CFU-Mast disappeared, but L-CFU-Mast increased, and then M-CFU-Mast and S-CFU-Mast appeared,more » suggesting the presence of a hierarchic relationship. When purified peritoneal mast cells were injected two days after the water injection, the L-CFU-Mast did not increase. In the peritoneal cavity of WBB6F1-+/+ mice that had been lethally irradiated and rescued by bone marrow cells of C57BL/6-bgJ/bgJ (beige, Chediak-Higashi syndrome) mice, L-CFU-Mast were of bgJ/bgJ type, but M-CFU-Mast and S-CFU-Mast were of +/+ type. The injection of distilled water to the radiation chimeras resulted in the development of bgJ/bgJ-type M-CFU-Mast and then S-CFU-Mast. The presence of mast cells appeared to suppress the recruitment of L-CFU-Mast from the bloodstream and to inhibit the differentiation of L-CFU-Mast to M-CFU-Mast.« less
Hálová, Ivana; Dráberová, Lubica; Bambousková, Monika; Machyna, Martin; Stegurová, Lucie; Smrž, Daniel; Dráber, Petr
2013-01-01
Chemotaxis, a process leading to movement of cells toward increasing concentrations of chemoattractants, is essential, among others, for recruitment of mast cells within target tissues where they play an important role in innate and adaptive immunity. Chemotaxis is driven by chemoattractants, produced by various cell types, as well as by intrinsic cellular regulators, which are poorly understood. In this study we prepared a new mAb specific for the tetraspanin CD9. Binding of the antibody to bone marrow-derived mast cells triggered activation events that included cell degranulation, Ca2+ response, dephosphorylation of ezrin/radixin/moesin (ERM) family proteins, and potent tyrosine phosphorylation of the non-T cell activation linker (NTAL) but only weak phosphorylation of the linker for activation of T cells (LAT). Phosphorylation of the NTAL was observed with whole antibody but not with its F(ab)2 or Fab fragments. This indicated involvement of the Fcγ receptors. As documented by electron microscopy of isolated plasma membrane sheets, CD9 colocalized with the high-affinity IgE receptor (FcϵRI) and NTAL but not with LAT. Further tests showed that both anti-CD9 antibody and its F(ab)2 fragment inhibited mast cell chemotaxis toward antigen. Experiments with bone marrow-derived mast cells deficient in NTAL and/or LAT revealed different roles of these two adaptors in antigen-driven chemotaxis. The combined data indicate that chemotaxis toward antigen is controlled in mast cells by a cross-talk among FcϵRI, tetraspanin CD9, transmembrane adaptor proteins NTAL and LAT, and cytoskeleton-regulatory proteins of the ERM family. PMID:23443658
Roviezzo, Fiorentina; Rossi, Antonietta; Caiazzo, Elisabetta; Orlando, Pierangelo; Riemma, Maria A.; Iacono, Valentina M.; Guarino, Andrea; Ialenti, Armando; Cicala, Carla; Peritore, Alessio; Capasso, Raffaele; Di Marzo, Vincenzo; Izzo, Angelo A.
2017-01-01
One important risk factor for the development of asthma is allergen sensitization. Recent increasing evidence suggests a prominent role of mast cells in asthma pathophysiology. Since Palmitoylethanolamide (PEA), an endogenous lipid mediator chemically related to – and co-released with- the endocannabinoid anandamide, behaves as a local autacoid down-regulator of mast cell activation and inflammation, we explored the possible contribution of PEA in allergic sensitization, by using ovalbumin (OVA) as sensitizing agent in the mouse. PEA levels were dramatically reduced in the bronchi of OVA-treated animals. This effect was coupled to a significant up-regulation of CB2 and GPR55 receptors, two of the proposed molecular PEA targets, in bronchi harvested from allergen-sensitized mice. PEA supplementation (10 mg/kg, 15 min before each allergen exposure) prevented OVA-induced bronchial hyperreactivity, but it did not affect IgE plasma increase. On the other hand, PEA abrogated allergen-induced cell recruitment as well as pulmonary inflammation. Evaluation of pulmonary sections evidenced a significant inhibitory action of PEA on pulmonary mast cell recruitment and degranulation, an effect coupled to a reduction of leukotriene C4 production. These findings demonstrate that allergen sensitization negatively affects PEA bronchial levels and suggest that its supplementation has the potential to prevent the development of asthma-like features. PMID:29311913
2012-01-01
Background Canine mast cell tumour proliferation depends to a large extent on the activity of KIT, a tyrosine kinase receptor. Inhibitors of the KIT tyrosine kinase have recently been introduced and successfully applied as a therapeutic agent for this tumour type. However, little is known on the downstream target genes of this signaling pathway and molecular changes after inhibition. Results Transcriptome analysis of the canine mast cell tumour cell line C2 treated for up to 72 hours with the tyrosine kinase inhibitor masitinib identified significant changes in the expression levels of approximately 3500 genes or 16% of the canine genome. Approximately 40% of these genes had increased mRNA expression levels including genes associated with the pro-proliferative pathways of B- and T-cell receptors, chemokine receptors, steroid hormone receptors and EPO-, RAS and MAP kinase signaling. Proteome analysis of C2 cells treated for 72 hours identified 24 proteins with changed expression levels, most of which being involved in gene transcription, e.g. EIA3, EIA4, TARDBP, protein folding, e.g. HSP90, UCHL3, PDIA3 and protection from oxidative stress, GSTT3, SELENBP1. Conclusions Transcriptome and proteome analysis of neoplastic canine mast cells treated with masitinib confirmed the strong important and complex role of KIT in these cells. Approximately 16% of the total canine genome and thus the majority of the active genes were significantly transcriptionally regulated. Most of these changes were associated with reduced proliferation and metabolism of treated cells. Interestingly, several pro-proliferative pathways were up-regulated, which may represent attempts of masitinib treated cells to activate alternative pro-proliferative pathways. These pathways may contain hypothetical targets for a combination therapy with masitinib to further improve its therapeutic effect. PMID:22747577
Carmi-Levy, Irit; Motzik, Alex; Ofir-Birin, Yifat; Yagil, Zohar; Yang, Christopher Maolin; Kemeny, David Michael; Han, Jung Min; Kim, Sunghoon; Kay, Gillian; Nechushtan, Hovav; Suzuki, Ryo; Rivera, Juan; Razin, Ehud
2011-01-01
We recently reported that diadenosine tetraphosphate hydrolase (Ap4A hydrolase) plays a critical role in gene expression via regulation of intracellular Ap4A levels. This enzyme serves as a component of our newly described lysyl tRNA synthetase (LysRS)-Ap4A biochemical pathway that is triggered upon immunological challenge. Here we explored the mechanism of this enzyme's translocation into the nucleus and found its immunologically dependent association with importin beta. Silencing of importin beta prevented Ap4A hydrolase nuclear translocation and affected the local concentration of Ap4A, which led to an increase in microphthalmia transcription factor (MITF) transcriptional activity. Furthermore, immunological activation of mast cells resulted in dephosphorylation of Ap4A hydrolase, which changed the hydrolytic activity of the enzyme. PMID:21402779
Berings, Margot; Karaaslan, Cagatay; Altunbulakli, Can; Gevaert, Philippe; Akdis, Mübeccel; Bachert, Claus; Akdis, Cezmi A
2017-11-01
Allergen immunotherapy (AIT) is an effective treatment strategy for allergic diseases and has been used for more than 100 years. In recent years, however, the expectations on concepts, conduct, statistical evaluation, and reporting have developed significantly. Products have undergone dose-response and confirmative studies in adults and children to provide evidence for the optimal dosage, safety, and efficacy of AIT vaccines using subcutaneous and sublingual delivery pathways in large patient cohorts, ensuring solid conclusions to be drawn from them for the advantage of patients and societies alike. Those standards should be followed today, and products answering to them should be preferred over others lacking optimization and proof of efficacy and safety. Molecular and cellular mechanisms of AIT include early mast cell and basophil desensitization effects, regulation of T- and B-cell responses, regulation of IgE and IgG 4 production, and inhibition of responses from eosinophils, mast cells, and basophils in the affected tissues. There were many developments to improve vaccination strategies, demonstration of new molecules involved in molecular mechanisms, and demonstration of new biomarkers for AIT during the last few years. The combination of probiotics, vitamins, and biological agents with AIT is highlighting current advances. Development of allergoids and recombinant and hypoallergenic vaccines to skew the immune response from IgE to IgG 4 and regulation of dendritic cell, mast cell, basophil, innate lymphoid cell, T-cell, and B-cell responses to allergens are also discussed in detail. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
77 FR 32394 - Drawbridge Operation Regulation; The Straights, Harkers Island, NC
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... across The Straights, in Harkers Island, NC. The bridge has a vertical clearance in the closed position... routes available for vessels with mast heights greater than 14 feet. In the event of an emergency, the...
Monument, Michael J.; Hart, David A.; Salo, Paul T.; Befus, A. Dean; Hildebrand, Kevin A.
2015-01-01
Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies. PMID:25785237
Xu, Sha-Sha; Liu, Qing-Mei; Xiao, An-Feng; Maleki, Soheila J; Alcocer, Marcos; Gao, Yuan-Yuan; Cao, Min-Jie; Liu, Guang-Ming
2017-04-19
In the present study, the anti-food allergy activity of Eucheuma cottonii sulfated oligosaccharide (ESO) was investigated. ESO was obtained by enzymatic degradation and purified by column chromatography. RBL-2H3 cells and BALB/c mouse model were used to test the anti-food allergy activity of ESO. The effects of ESO on the regulatory T (Treg) cells and bone marrow-derived mast cells (BMMCs) were investigated by flow cytometry. The results of in vivo assay showed that ESO decreased the levels of mast cell protease-1 and histamine and inhibited the levels of specific IgE by 77.7%. In addition, the production of interleukin (IL)-4 and IL-13 was diminished in the ESO groups compared to the non-ESO-treated group. Furthermore, ESO could up-regulate Treg cells by 22.2-97.1%. In conclusion, ESO decreased the allergy response in mice by reducing basophil degranulation, up-regulating Treg cells via Forkhead box protein 3 (Foxp3), and releasing IL-10. ESO may have preventive and therapeutic potential in allergic disease.
Regulation of exocytotic fusion by cell inflation.
Solsona, C; Innocenti, B; Fernández, J M
1998-01-01
We have inflated patch-clamped mast cells by 3.8 +/- 1.6 times their volume by applying a hydrostatic pressure of 5-15 cm H2O to the interior of the patch pipette. Inflation did not cause changes in the cell membrane conductance and caused only a small reversible change in the cell membrane capacitance (36 +/- 5 fF/cm H2O). The specific cell membrane capacitance of inflated cells was found to be 0.5 microF/cm2. High-resolution capacitance recordings showed that inflation reduced the frequency of exocytotic fusion events by approximately 70-fold, with the remaining fusion events showing an unusual time course. Shortly after the pressure was returned to 0 cm H2O, mast cells regained their normal size and appearance and degranulated completely, even after remaining inflated for up to 60 min. We interpret these observations as an indication that inflated mast cells reversibly disassemble the structures that regulate exocytotic fusion. Upon returning to its normal size, the cell cytosol reassembles the fusion pore scaffolds and allows exocytosis to proceed, suggesting that exocytotic fusion does not require soluble proteins. Reassembly of the fusion pore can be prevented by inflating the cells with solutions containing the protease pronase, which completely blocked exocytosis. We also interpret these results as evidence that the activity of the fusion pore is sensitive to the tension of the plasma membrane. PMID:9533718
Schiemann, Florian; Brandt, Ernst; Gross, Roland; Lindner, Buko; Mittelstädt, Jessica; Sommerhoff, Christian P; Schulmistrat, Jan; Petersen, Frank
2009-08-15
The cathelicidin LL-37 represents a potent antimicrobial and cell-stimulating agent, most abundantly expressed in peripheral organs such as lung and skin during inflammation. Because mast cells (MC) overtake prominent immunomodulatory roles in these organs, we wondered whether interactions exist between MC and LL-37. In this study, we show for the first time to our knowledge that physiological concentrations of LL-37 induce degranulation in purified human lung MC. Intriguingly, as a consequence LL-37 rapidly undergoes limited cleavage by a released protease. The enzyme was identified as beta-tryptase by inhibitor studies and by comparison to the recombinant protease. Examining the resulting LL-37 fragments for their functional activity, we found that none of the typical capacities of intact LL-37, i.e., MC degranulation, bactericidal activity, and neutralization of LPS, were retained. Conversely, we found that another inflammatory protein, the platelet-derived chemokine CXCL4, protects LL-37 from cleavage by beta-tryptase. Interestingly, CXCL4 did not act as a direct enzyme inhibitor, but destabilized active tetrameric beta-tryptase by antagonizing the heparin component required for the integrity of the tetramer. Altogether our results suggest that interaction of LL-37 and MC initiates an effective feedback loop to limit cathelicidin activity during inflammation, whereas CXCL4 may represent a physiological counter-regulator of beta-tryptase activity.
Anti-allergic effects of Lycopus lucidus on mast cell-mediated allergy model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Tae-Yong; Kim, Sang-Hyun; Suk, Kyoungho
2005-12-15
The current study characterizes the mechanism by which the aqueous extract of Lycopus lucidus Turcz. (Labiatae) (LAE) decreases mast cell-mediated immediate-type allergic reaction. The immediate-type allergic reaction is involved in many allergic diseases such as asthma and allergic rhinitis. LAE has been used as a traditional medicine in Korea and is known to have an anti-inflammatory effect. However, its specific mechanism of action is still unknown. LAE was anally administered to mice for high and fast absorption. LAE inhibited compound 48/80-induced systemic reactions in mice. LAE decreased the local allergic reaction, passive cutaneous anaphylaxis, activated by anti-dinitrophenyl (DNP) IgE antibody.more » LAE dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE. Furthermore, LAE decreased the secretion of TNF-{alpha} and IL-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cells. The inhibitory effect of LAE on the pro-inflammatory cytokine was p38 mitogen-activated protein kinase (MAPK) and nuclear factor-{kappa}B (NF-{kappa}B) dependent. LAE attenuated PMA plus A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B, and specifically blocked activation of p38 MAPK, but not that of c-jun N-terminal kinase and extracellular signal-regulated kinase. Our findings provide evidence that LAE inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines, p38 MAPK, and NF-{kappa}B in these effects.« less
Lim, Sue Ji; Kim, Myungsuk; Randy, Ahmad; Nho, Chu Won
2015-04-01
Hovenia dulcis Thunb. (Rhamnaceae) is a hardy tree native to Europe, the Middle East, and North Africa, and it is also grown in parts of Asia and has been used in traditional medicine to treat liver toxicity, stomach disorders, and inflammation. This study investigated the anti-allergy potential of an extract of the branches of H. dulcis (HDB) using the antigen-stimulated mast cell-like cell line rat basophilic leukemia (RBL)-2H3 and a passive cutaneous anaphylaxis (PCA) mouse model. Degranulation assay, reverse transcription PCR, enzyme-lined immunosorbent assays, western blot analyses, and PCA were performed to measure allergic responses and proinflammatory mediators in antigen-stimulated rat basophilic leukemia (RBL)-2H3 mast cells and the PCA mouse model. In antigen-stimulated RBL-2H3 cells, HDB inhibited the secretion of β-hexosaminidase (indicating the inhibition of degranulation) and histamine release; decreased expression and production of the inflammatory mediators, cyclooxygenase-2 and prostaglandin E2, and cytokines interleukin-4 and tumor necrosis factor-α; and suppressed activation of nuclear factor κB, a transcription factor involved in the response to cytokines. HDB attenuated phosphorylation of the mast cell downstream effectors Lyn, Syk, phospholipase Cγ, protein kinase Cμ, extracellular signal-regulated kinase and p38. In IgE-sensitized mice, HDB inhibited mast cell-dependent PCA. Furthermore, HDB contained pinosylvin and possessed significant anti-allergic activities. These results suggest that HDB would be of value in the prevention and treatment of allergic diseases.
Weckesser, Lisa J; Enge, Sören; Riedel, Philipp; Kirschbaum, Clemens; Miller, Robert
2017-10-01
Proceeding from a biophysical network model, the present study hypothesized that glutamatergic neurotransmission across the NMDA receptor (NMDAR) plays a key role in visual perception and its modulation by acute stress. To investigate these hypotheses, behavioral and electroencephalographic (EEG) indicators of partial report task processing were assessed in twenty-four healthy young men who randomly received a non-competitive NMDAR antagonist (0.8 mg/kg dextromethorphan, DXM) or a placebo, and concurrently accomplished a stress-induction (MAST) or control protocol in three consecutive sessions. Saliva samples served to quantify cortisol responses to the MAST, whereas a passive auditory oddball paradigm was implemented to verify the impact of DXM on the EEG-derived mismatch negativity component (MMN). DXM administration significantly increased MMN amplitudes but not salivary cortisol concentrations. By contrast, concurrent MAST exposure significantly reduced MMN latencies but also increased cortisol concentrations. With regard to EEG indicators, DXM administration reduced visually "evoked" (30Hz to 50Hz) and "induced" occipital gamma-band activity (70Hz to 100Hz), which was partly compensated by additional MAST exposure. However, neither the interventions nor EEG activity were significantly associated with behavioral partial report sensitivities. In summary, the present data suggest that glutamatergic neurotransmission across the NMDAR is only one among many determinants of intact visual perception. Accordingly, therapeutic doses of DXM and their inhibitory modulation by stress probably yield more pronounced electroencephalographic as compared with behavioural effects. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
A gene regulatory network armature for T-lymphocyte specification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fung, Elizabeth-sharon
Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through whichmore » T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.« less
Lefrançais, Emma; Duval, Anais; Mirey, Emilie; Roga, Stéphane; Espinosa, Eric; Cayrol, Corinne; Girard, Jean-Philippe
2014-01-01
Interleukin-33 (IL-33) is an alarmin cytokine from the IL-1 family. IL-33 activates many immune cell types expressing the interleukin 1 receptor-like 1 (IL1RL1) receptor ST2, including group-2 innate lymphoid cells (ILC2s, natural helper cells, nuocytes), the major producers of IL-5 and IL-13 during type-2 innate immune responses and allergic airway inflammation. IL-33 is likely to play a critical role in asthma because the IL33 and ST2/IL1RL1 genes have been reproducibly identified as major susceptibility loci in large-scale genome-wide association studies. A better understanding of the mechanisms regulating IL-33 activity is thus urgently needed. Here, we investigated the role of mast cells, critical effector cells in allergic disorders, known to interact with ILC2s in vivo. We found that serine proteases secreted by activated mast cells (chymase and tryptase) generate mature forms of IL-33 with potent activity on ILC2s. The major forms produced by mast cell proteases, IL-3395–270, IL-33107–270, and IL-33109–270, were 30-fold more potent than full-length human IL-331–270 for activation of ILC2s ex vivo. They induced a strong expansion of ILC2s and eosinophils in vivo, associated with elevated concentrations of IL-5 and IL-13. Murine IL-33 is also cleaved by mast cell tryptase, and a tryptase inhibitor reduced IL-33–dependent allergic airway inflammation in vivo. Our study identifies the central cleavage/activation domain of IL-33 (amino acids 66–111) as an important functional domain of the protein and suggests that interference with IL-33 cleavage and activation by mast cell and other inflammatory proteases could be useful to reduce IL-33–mediated responses in allergic asthma and other inflammatory diseases. PMID:25313073
Mast cells enhance T cell activation: Importance of mast cell-derived TNF
NASA Astrophysics Data System (ADS)
Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.
2005-05-01
Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response
Nonomura, N; Takayama, H; Nishimura, K; Oka, D; Nakai, Y; Shiba, M; Tsujimura, A; Nakayama, M; Aozasa, K; Okuyama, A
2007-01-01
Mast cell infiltration is often observed around human tumours. Inflammatory cells such as macrophages, neutrophils and mast cells infiltrating around tumours are known to contribute to tumour growth; however, the clinical significance of mast cell invasion in prostate cancer (PCa) has not been investigated. Mast cell infiltration was evaluated in 104 patients (age range, 45–88 years; median, 72 years), who underwent needle biopsy of the prostate and were confirmed to have PCa. Needle biopsy specimens of prostate were sliced into 5-μm-thick sections and immunostained for mast cells with monoclonal antibody against mast cell-specific tryptase. Mast cells were counted systematically under a microscope (× 400 magnification), and the relations between mast cell numbers and clinicopathologic findings were evaluated. The mast cell count was evaluated for prognostic value by multivariate analysis. Mast cells were immunostained around the cancer foci. The median number of mast cells in each case was 16. The mast cell count was higher around cancer foci in patients with higher Gleason scores than in those with low Gleason scores. The mast cell number correlated well with clinical stage (P<0.001). Prostate-specific antigen-free survival of patients with higher mast cell counts was better than that in patients with lower mast cell counts (P<0.001). Multivariate analysis revealed that mast cell count was a significant prognostic factor (P<0.005). The number of mast cells infiltrating around cancer foci in prostate biopsy specimens can be a significant prognostic factor of PCa. PMID:17848955
Approaches for Analyzing the Roles of Mast Cells and Their Proteases In Vivo
Galli, Stephen J.; Tsai, Mindy; Marichal, Thomas; Tchougounova, Elena; Reber, Laurent L.; Pejler, Gunnar
2016-01-01
The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such “controversial” results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified. PMID:25727288
Proteome analysis identifies L1CAM/CD171 and DPP4/CD26 as novel markers of human skin mast cells.
Gschwandtner, M; Paulitschke, V; Mildner, M; Brunner, P M; Hacker, S; Eisenwort, G; Sperr, W R; Valent, P; Gerner, C; Tschachler, E
2017-01-01
The function of skin mast cells has been well documented in IgE-mediated allergic reactions, whereas other mast cell functions are poorly defined. This study aimed at identifying novel mast cell proteins by proteome analysis of primary human skin mast cells. The proteome of skin mast cells was compared to other cell types and analyzed using bioinformatics. The expression and function of two proteins hitherto not described in skin mast cells was investigated in isolated mast cells as well as in mast cells in situ. Within the mast cell proteome, we identified 49 highly expressed proteins previously not described in mast cells; 21 of these proteins were found to be selectively expressed in mast cells. Two proteins, the neural cell adhesion molecule L1 and dipeptidyl peptidase 4, were further studied. L1 was found to be highly expressed in mast cells in normal, psoriasis, and mastocytosis skin. Dipeptidyl peptidase 4 was found to be expressed in mast cells in normal, psoriasis, and mastocytosis skin as well as in bone marrow mast cells in patients with systemic mastocytosis. In normal skin, mast cells were identified as a major source of dipeptidyl peptidase 4 and we also found that skin mast cells and fibroblasts secrete an active form of this enzyme. In a systematic proteomics approach we identified two novel mast cell proteins potentially relevant to skin homeostasis: neural cell adhesion molecule L1 and dipeptidyl peptidase 4. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tan, Xiahui; Khalil, Najwa; Tesarik, Candice; Vanapalli, Karunasri; Yaputra, Viki; Alkhouri, Hatem; Oliver, Brian G G; Armour, Carol L; Hughes, J Margaret
2012-04-01
In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.
Regulation of the Cardiovascular System by Histamine.
Hattori, Yuichi; Hattori, Kohshi; Matsuda, Naoyuki
2017-01-01
Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H 1 - and H 2 -receptors has become recognized adequately. Besides the recognized H 1 - and H 2 -receptor-mediated cardiovascular responses, novel roles of H 3 - and H 4 -receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H 3 - and H 4 -receptors, their potential mechanisms of action, and their pathological significance.
Regulation of a mammalian gene bearing a CpG island promoter and a distal enhancer.
Berrozpe, Georgina; Bryant, Gene O; Warpinski, Katherine; Ptashne, Mark
2013-08-15
A quantitative nucleosome occupancy assay revealed rules for nucleosome disposition in yeast and showed how disposition affects regulation of the GAL genes. Here, we show how those findings apply to the control of Kit, a mammalian gene. The Kit promoter lies in a CpG island, and its enhancer (active in mast cells) lies some 150 kb upstream. Nucleosomes form with especially high avidities at the Kit promoter, a reaction that, we surmise, ensures extremely low basal expression. In mast cells, transcriptional activators displace nucleosomes that are less tightly formed at the Kit enhancer. In turn, the active enhancer replaces a single Kit promoter nucleosome with the transcriptional machinery, thereby inducing transcription over 1,000-fold. As at the yeast GAL genes, the inhibitory effects of nucleosomes facilitate high factors of induction by mammalian activators working in the absence of specific repressors. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
75 FR 63086 - Drawbridge Operation Regulations; Duluth Ship Canal (Duluth-Superior Harbor).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
...Commander, Ninth Coast Guard District, has issued a temporary deviation from the regulation governing the operation of the Duluth Ship Canal Aerial Bridge at Mile 0.1 over the Duluth Ship Canal, at Duluth, MN, for scheduled maintenance. During this temporary deviation the bridge will be secured to masted navigation. Vessels that can pass under the bridge without an opening may do so at any time.
Lee, Ji H; Lee, Yun S; Lee, Eun-Jung; Lee, Ji H; Kim, Tae-Yoon
2015-08-01
Capsaicin has many biological effects, such as antioxidant, anticancer, and antiangiogenic effects, but it is rarely used because of its high pungency. Capsiate, a nonpungent capsaicin analog, also has multiple biological effects, similar to those of capsaicin, but does not cause irritation. However, the effect of capsiate on allergic responses and immune cells has not been well studied. In this study, we investigated the effect of capsiate on atopic dermatitis, mouse CD4+ T cells, and mast cell activation. Capsiate inhibited DNFB-induced atopic dermatitis in NC/Nga mice. Topical treatment with capsiate suppressed serum IgE levels and cytokine and chemokine expression in the skin of DNFB-treated NC/Nga mice. In addition, it suppressed the activation of CD4+ T cells and mast cells, which are implicated in allergic diseases. Capsiate inhibited the differentiation of naïve CD4+ T cells into T helper type 1 (Th1), Th2, and Th17 cells. Treatment with capsiate inhibited the expression of pro-inflammatory cytokines and degranulation from activated bone marrow-derived mast cells through the inhibition of extracellular signal-regulated kinase signal pathways. Consistent with these results, treatment with capsiate inhibited passive cutaneous anaphylaxis. Taken together, our results suggest that capsiate might be a good candidate molecule for the treatment of allergic diseases such as atopic dermatitis.
Mast Cells: Key Contributors to Cardiac Fibrosis
Widiapradja, Alexander
2018-01-01
Historically, increased numbers of mast cells have been associated with fibrosis in numerous cardiac pathologies, implicating mast cells in the development of cardiac fibrosis. Subsequently, several approaches have been utilised to demonstrate a causal role for mast cells in animal models of cardiac fibrosis including mast cell stabilising compounds, rodents deficient in mast cells, and inhibition of the actions of mast cell-specific proteases such as chymase and tryptase. Whilst most evidence supports a pro-fibrotic role for mast cells, there is evidence that in some settings these cells can oppose fibrosis. A major gap in our current understanding of cardiac mast cell function is identification of the stimuli that activate these cells causing them to promote a pro-fibrotic environment. This review will present the evidence linking mast cells to cardiac fibrosis, as well as discuss the major questions that remain in understanding how mast cells contribute to cardiac fibrosis. PMID:29329223
On the Development of Models for Height Profiles of the Wind Speed in the Atmospheric Surface Layer
NASA Astrophysics Data System (ADS)
Nikolaev, V. G.; Ganaga, S. V.; Kudryashov, Yu. I.; Nikolaev, V. V.
2018-03-01
The reliability of the known models of a height profile of the wind speed V( h) in the atmospheric boundary layer (ABL) and near-surface layer (NSL) is analyzed using the data of long-term ABL measurements accumulated in Russia in the state network of meteorological and aerological stations and the data of multilevel measurements at mast wind-measuring complexes. A new multilayer semiempirical model of V( h) is proposed which is based on aerodynamic and physical representations of the ABL vertical structure and relies on the hypothesis that wind-speed profiles providing the minimum wind friction on the ground and satisfying the conditions of profile smoothness are feasible in the ABL. This model ensures the best agreement with the data of meteorological, aerological, and mast wind measurements.
Yang, Min; Pan, Zengkai; Huang, Kezhi; Büsche, Guntram; Feuerhake, Friedrich; Chaturvedi, Anuhar; Nie, Danian; Heuser, Michael; Thol, Felicitas; von Neuhoff, Nils; Ganser, Arnold; Li, Zhixiong
2017-09-26
The neurotrophins (NTs) play a key role in neuronal survival and maintenance. The TRK (tropomyosin-related kinase) tyrosine kinase receptors (TRKA, TRKB, TRKC) are high affinity receptors for NTs. There is increasing data demonstrating an important role of the TRK family in cancer initiation and progression. NTs have been known for many years to promote chemotaxis, maturation, and survival of mast cells. However, the role of NT signaling in the pathogenesis of mastocytosis is not well understood. In this study, we demonstrate that activation of TRKA by its ligand nerve growth factor (NGF) is potent to trigger a disease in mice with striking similarities to human systemic mastocytosis (SM). Moreover, activation of TRKA by NGF strongly rescues KIT inhibition-induced cell death of mast cell lines and primary mast cells from patients with SM, and this rescue effect can be efficiently blocked by entrectinib (a new pan TRK specific inhibitor). HMC-1 mast cell leukemia cells that are resistant to KIT inhibition induced by TRKA activation show reactivation of MAPK/ERK (extracellular signal-regulated kinase) and strong upregulation of early growth response 3 (EGR3), suggesting an important role of MAPK-EGR3 axis in the development of resistance to KIT inhibition. Targeting both TRK and KIT significantly prolongs survival of mice xenotransplanted with HMC-1 cells compared with targeting KIT alone. Thus, these data strongly suggest that TRKA signaling can improve neoplastic mast cell fitness. This might explain at least in part why treatment with KIT inhibitors alone so far has been disappointing in most published clinical trials for mastocytosis. Our data suggest that targeting both KIT and TRKs might improve efficacy of molecular therapy in SM with KIT mutations.
Cruse, Glenn; Beaven, Michael A.; Music, Stephen C.; Bradding, Peter; Gilfillan, Alasdair M.; Metcalfe, Dean D.
2015-01-01
MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. PMID:25717186
Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer
2011-11-23
Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.
Raica, Marius; Cimpean, Anca Maria; Nico, Beatrice; Guidolin, Diego; Ribatti, Domenico
2010-02-01
Mast cells (MCs) are widely distributed in human and animal tissues and have been shown to play an important role in angiogenesis in normal and pathological conditions. Few data are available about the relationship between MCs and blood vessels in the normal human thymus, and there are virtually no data about their distribution and significance in thymoma. The aim of this study was to analyse the spatial distribution of MCs and microvessels in the normal foetal and adult thymus and thymoma. Twenty biopsy specimens of human thymus, including foetal and adult normal thymus and thymoma were analysed. Double staining with CD34 and mast cell tryptase was used to count both mast cells and microvessels in the same fields. Computer-assisted image analysis was performed to characterize the spatial distribution of MCs and blood vessels in selected specimens. Results demonstrated that MCs were localized exclusively to the medulla. Their number was significantly higher in thymoma specimens as compared with adult and foetal normal specimens respectively. In contrast the microvessel area was unchanged. The analysis of the spatial distribution and relationship between MCs and microvessels revealed that only in the thymoma specimens was there a significant spatial association between MCs and microvessels. Overall, these data suggest that MCs do not contribute significantly to the development of the vascular network in foetal and adult thymus, whereas in thymoma they show a close relationship to blood vessels. This could be an expression of their involvement not only in endothelial cells but also in tumour cell proliferation.
Systemic mastocytosis--a systematic review.
Andersen, Christen Lykkegaard; Kristensen, Thomas Kielsgaard; Severinsen, Marianne Tang; Møller, Michael Boe; Vestergaard, Hanne; Bergmann, Olav J; Hasselbalch, Hans Carl; Bjerrum, Ole Weis
2012-03-01
The mast cell lives a hidden life, but it is implicated in several physiological reactions. Its ability to react to different stimuli impacts a variety of conditions such as asthma, atopic dermatitis, urticaria and anaphylaxis. It is not until recent decades that the evolution of the cell has been described and its fascinating biology has only recently been depicted. We here give a review of systemic mastocytosis in regards to cell biology, diagnostic approaches and clinical practice. A search was made in PubMed in August 2011 entering the keywords: mastocytosis, (systemic, cutaneous, aggressive), mast cell leukaemia, mast cell sarcoma, chromosome, mutation, haematology and treatment. Mastocytosis is characterized by an abnormal proliferation of mast cells, which accumulate in one or several organ systems, primarily the skin and bone marrow. The disease is clinically heterogeneous and varies from a relatively benign condition with isolated cutaneous lesions to a very aggressive systemic condition with a grave prognosis. The condition affects men and women equally. Children are especially affected by the cutaneous form. In most children, the condition will improve or remit spontaneously before adulthood. Mastocytosis in adults, however, is more often systemic and tends to persist. Patients with mastocytosis represent a heterogeneous group in terms of clinical presentation, management and prognosis. Furthermore, a range of medical specialties serve as the primary entrance to health services, which can be a challenge in respect of achieving uniform management. In order to improve diagnostics and management of systemic mastocytosis, the European Competence Network on Mastocytosis has been established. Patients under suspicion of systemic mastocytosis should be conferred with or referred to a haematological and a dermatological/allergological department.
Imaging immune response of skin mast cells in vivo with two-photon microscopy
NASA Astrophysics Data System (ADS)
Li, Chunqiang; Pastila, Riikka K.; Lin, Charles P.
2012-02-01
Intravital multiphoton microscopy has provided insightful information of the dynamic process of immune cells in vivo. However, the use of exogenous labeling agents limits its applications. There is no method to perform functional imaging of mast cells, a population of innate tissue-resident immune cells. Mast cells are widely recognized as the effector cells in allergy. Recently their roles as immunoregulatory cells in certain innate and adaptive immune responses are being actively investigated. Here we report in vivo mouse skin mast cells imaging with two-photon microscopy using endogenous tryptophan as the fluorophore. We studied the following processes. 1) Mast cells degranulation, the first step in the mast cell activation process in which the granules are released into peripheral tissue to trigger downstream reactions. 2) Mast cell reconstitution, a procedure commonly used to study mast cells functioning by comparing the data from wild type mice, mast cell-deficient mice, and mast-cell deficient mice reconstituted with bone marrow-derived mast cells (BMMCs). Imaging the BMMCs engraftment in tissue reveals the mast cells development and the efficiency of BMMCs reconstitution. We observed the reconstitution process for 6 weeks in the ear skin of mast cell-deficient Kit wsh/ w-sh mice by two-photon imaging. Our finding is the first instance of imaging mast cells in vivo with endogenous contrast.
Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.
Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E
2009-11-01
Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.
Mast Cells Mediate the Immune Suppression Induced by Dermal Exposure to JP-8 Jet Fuel
Limón-Flores, Alberto Y.; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E.
2009-01-01
Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell–mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel–induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell “knock-in mice”) restored JP-8–induced immune suppression. When, however, mast cells from prostaglandin E2 (PGE2)–deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell–derived PGE2 was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8–induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel–induced immune suppression. PMID:19726579
Song, Hyuk-Hwan; Chae, Hee-Sung; Oh, Sei-Ryang; Lee, Hyeong-Kyu; Chin, Young-Won
2012-01-01
In this study, the anti-inflammatory and anti-allergic effects of the chloroform-soluble extract of Agaricus blazei in mouse bone marrow-derived mast cells (BMMCs) were investigated. The chloroform-soluble extract inhibited IL-6 production in PMA plus A23187-stimulated BMMCs, and down-regulated the phosphorylation of Akt. In addition, this extract demonstrated inhibition of the degranulation of β-hexosaminidase and the production of IL-6, prostaglandin D(2) and leukotriene C(4) in PMA plus A23187-induced BMMCs. In conclusion, the chloroform-soluble extract of Agaricus blazei exerted anti-inflammatory and anti-allergic activities mediated by influencing IL-6, prostaglandin D(2), leukotriene C(4), and the phosphorylation of Akt.
Germundson, Danielle L; Smith, Nicholas A; Vendsel, Lane P; Kelsch, Andrea V; Combs, Colin K; Nagamoto-Combs, Kumi
2018-04-23
Growing evidence has strengthened the association of food allergy with neuropsychiatric symptoms such as depression, anxiety, and autism. However, underlying mechanisms by which peripheral allergic responses lead to behavioral dysfunction are yet to be determined. Allergen-activated mast cells may serve as mediators by releasing histamine and other inflammatory factors that could adversely affect brain function. We hypothesized that eliciting food allergy in experimental animals would result in behavioral changes accompanied by mast cell accumulation in the brain. Our hypothesis was tested in a mouse model of milk allergy using bovine milk whey proteins (WP) as the allergen. Male and female C57BL/6 mice at 4 weeks (young) and 10 months (old) of age underwent 5-week WP sensitization with weekly intragastric administration of 20 mg WP and 10 μg cholera toxin as an adjuvant. Age-matched sham animals were given the vehicle containing only the adjuvant. All animals were orally challenged with 50 mg WP in week 6 and their intrinsic digging behavior was assessed the next day. Animals were sacrificed 3 days after the challenge, and WP-specific serum IgE, intestinal and brain mast cells, glial activation, and epigenetic DNA modification in the brain were examined. WP-sensitized males showed significantly less digging activity than the sham males in both age groups while no apparent difference was observed in females. Mast cells and their activities were evident in the intestines in an age- and sex-dependent manner. Brain mast cells were predominantly located in the region between the lateral midbrain and medial hippocampus, and their number increased in the WP-sensitized young, but not old, male brains. Noticeable differences in for 5-hydroxymethylcytosine immunoreactivity were observed in WP mice of both age groups in the amygdala, suggesting epigenetic regulation. Increased microglial Iba1 immunoreactivity and perivascular astrocytes hypertrophy were also observed in the WP-sensitized old male mice. Our results demonstrated that food allergy induced behavioral abnormality, increases in the number of mast cells, epigenetic DNA modification in the brain, microgliosis, and astrocyte hypertrophy in a sex- and age-dependent manner, providing a potential mechanism by which peripheral allergic responses evoke behavioral dysfunction.
Mast Cells Synthesize, Store, and Release Nerve Growth Factor
NASA Astrophysics Data System (ADS)
Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.
1994-04-01
Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.
Batth, B K; Parshad, R K
2000-02-01
The distribution of mast cells in various ovarian compartments was studied during different stages of the reproductive cycles in Rattus rattus. Two types of mast cell populations were recognized with light microscopy i.e., light purple and deep purple, the latter also includes deeply stained cells with extruded granules. Mast cells identified by electron microscopy showed the ultrastructural features during granule formation and release of their content. Significantly higher numbers of mast cells per unit area of ovary were seen at estrus and diestrus. Numbers of mast cells also remained high during pregnancy with possible involvement of mast cell products in vascularization of corpora lutea. A positive correlation existed between mast cell counts and embryo number during pregnancy. However, numbers of mast cells declined significantly after parturition.
Deficient Differentiation of Mast Cells in the Skin of mi/mi Mice
Kasugai, Tsutomu; Oguri, Kayoko; Jippo-Kanemoto, Tomoko; Morimoto, Masahiro; Yamatodani, Atsushi; Yoshida, Keiichi; Ebi, Yoshitaka; Isozaki, Koji; Tei, Hideki; Tsujimura, Tohru; Nomura, Shintaro; Okayama, Minoru; Kitamura, Yukihiko
1993-01-01
The staining property of skin mast cells changed from Alcian blue+/berberine sulfate- to Alcian blue +/berberine sulfate+ in the skin of normal (+/+) and Wv/Wv mice. In contrast, this change did not occur in the skin of mi/mi mice. Heparin content and histamine content per a mi/mi skin mast cell were estimated to be 34% and 18% those of a +/+ skin mast cell, respectively. The low heparin content of mi/mi skin mast cells seemed to be consistent with the Alcian blue+/berberine sulfate- staining property. Expression of genes encoding mast cell-specific proteolytic enzymes was examined by Northern blotting and in situ hybridization. Messenger RNA of mast cell carboxypeptidase A was expressed most of all by +/+, WV Wv/W+ and mi/mi skin mast cells, but mRNA of mouse mast cell protease (MMCP)-6 was expressed by approximately a half of +/+ and Wv/Wv skin mast cells and by only 3% of mi/mi skin mast cells. A significant amount of MMCP-2 mRNA was not expressed in the skin of all +/+, Wv/Wv and mi/mi mice. This shows the presence of at least three phenotypes in skin mast cells of mice: berberine sulfate+/MMCP-6+, berberine sulfate+/MMCP-6-, and berberine sulfate-/ MMCP-6-. The in situ hybridization of mRNA of mast cell-specific proteolytic enzymes seemed to be useful to describe abnormalities of mast cell differentiation in the skin of mi/mi mice. ImagesFigure 4Figure 5 PMID:8238251
Sources and methods to reconstruct past masting patterns in European oak species.
Szabó, Péter
2012-01-01
The irregular occurrence of good seed years in forest trees is known in many parts of the world. Mast year frequency in the past few decades can be examined through field observational studies; however, masting patterns in the more distant past are equally important in gaining a better understanding of long-term forest ecology. Past masting patterns can be studied through the examination of historical written sources. These pose considerable challenges, because data in them were usually not recorded with the aim of providing information about masting. Several studies examined masting in the deeper past, however, authors hardly ever considered the methodological implications of using and combining various source types. This paper provides a critical overview of the types of archival written that are available for the reconstruction of past masting patterns for European oak species and proposes a method to unify and evaluate different types of data. Available sources cover approximately eight centuries and can be put into two basic categories: direct observations on the amount of acorns and references to sums of money received in exchange for access to acorns. Because archival sources are highly different in origin and quality, the optimal solution for creating databases for past masting data is a three-point scale: zero mast, moderate mast, good mast. When larger amounts of data are available in a unified three-point-scale database, they can be used to test hypotheses about past masting frequencies, the driving forces of masting or regional masting patterns.
46. BASE OF UMBILICAL MAST FROM UMBILICAL MAST TRENCH. ERECTION ...
46. BASE OF UMBILICAL MAST FROM UMBILICAL MAST TRENCH. ERECTION AND RETRACTION CYLINDERS BETWEEN MAST AND TRENCH WALL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Mast Cells Produce a Unique Chondroitin Sulfate Epitope.
Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S
2016-02-01
The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells. © 2016 The Histochemical Society.
44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. ...
44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. DOORS FOR THE UMBILICAL MAST TRENCH RAISED FOR MAINTENANCE POSITION OF 10 DEGREES. LAUNCHER IS RIGHT OF MAST; RAILS PARALLEL TO MAST. CONTROL PANELS LEFT TO RIGHT: ELECTRICAL PANEL, COMMUNICATIONS PANEL, AND MAST CONTROL PANEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Mast importance, production, and management
Harmon P., Jr. Weeks
1989-01-01
Mast is a broad term that refers to the various nuts and fruits produced by woody plants. It is usually subdivided into hard mast (nuts) and soft mast (fleshy fruits). Forest tree and shrub mast is an important seasonal food for many forest wildlife species.
[Ultrastructural characteristics of mast cells and eosinophils in nasal inverted papilloma].
Yokoshima, K; Ohnishi, M; Okuda, M; Okubo, K
1994-12-01
We previously found that an increased number of mast cells and eosinophils accumulated in nasal inverted papilloma and in the nasal mucosa of allergic subjects. Two subtypes of mast cells, i.e., mucosal mast cells and connective tissue mast cells are known to be present in the allergic nasal mucosa. Eosinophils in the allergic nasal mucosa are also heterogeneous. In addition, we demonstrated accumulation of formalin-sensitive mast cells at the tumor site of nasal inverted papilloma. The morphological characteristics and function of mast cells and eosinophils, however, have not yet been identified. The purpose of this study was to determine the ultrastructural characteristics of mast cells and eosinophils in relation to their function in tumor tissue. The results revealed two subtypes of mast cells in nasal inverted papilloma, one distributed mainly in the tumor site, the other mainly in the stromal site. These two subtypes of mast cells had different ultrastructural characteristics. In contrast to stromal mast cells, mast cells in the tumor site were characterized by a smaller cell diameter, fewer specific granules and a higher rate of degranulation. This suggested that they may have played some role in the pathogenesis of the tumor, however, their precise function is still unknown. In comparison with the mast cells in the allergic nasal mucosa, previously reported by Okuda et al, the mast cells in the tumor site were similar to those in the epithelial layer of the allergic nasal mucosa (MMCs), while mast cells in the stromal site resembled those in the lamina propria (CTMCs). There were no marked morphological differences between eosinophils in the tumor site and the stromal site.(ABSTRACT TRUNCATED AT 250 WORDS)
Nakamura, Teppei; Otsuka, Saori; Ichii, Osamu; Sakata, Yuko; Nagasaki, Ken-Ichi; Hashimoto, Yoshiharu; Kon, Yasuhiro
2013-01-01
In the neonatal mouse ovary, clusters of oocytes called nests break into smaller cysts and subsequently form individual follicles. During this period, we found numerous mast cells in the ovary of MRL/MpJ mice and investigated their appearance and morphology with follicular development. The ovarian mast cells, which were already present at postnatal day 0, tended to localize adjacent to the surface epithelium. Among 11 different mouse strains, MRL/MpJ mice possessed the greatest number of ovarian mast cells. Ovarian mast cells were also found in DBA/1, BALB/c, NZW, and DBA/2 mice but rarely in C57BL/6, NZB, AKR, C3H/He, CBA, and ICR mice. The ovarian mast cells expressed connective tissue mast cell markers, although mast cells around the surface epithelium also expressed a mucosal mast cell marker in MRL/MpJ mice. Some ovarian mast cells migrated into the oocyte nests and directly contacted the compressed and degenerated oocytes. In MRL/MpJ mice, the number of oocytes in the nest was significantly lower than in the other strains, and the number of oocytes showed a positive correlation with the number of ovarian mast cells. The gene expression of a mast cell marker also correlated with the expression of an oocyte nest marker, suggesting a link between the appearance of ovarian ? 4mast cells and early follicular development. Furthermore, the expression of follicle developmental markers was significantly higher in MRL/MpJ mice than in C57BL/6 mice. These results indicate that the appearance of ovarian mast cells is a unique phenotype of neonatal MRL/MpJ mice, and that ovarian mast cells participate in early follicular development, especially nest breakdown. PMID:24124609
Infiltrating mast cells enhance benign prostatic hyperplasia through IL-6/STAT3/Cyclin D1 signals
Ou, Zhenyu; He, Yao; Qi, Lin; Zu, Xiongbin; Wu, Longxiang; Cao, Zhenzhen; Li, Yuan; Liu, Longfei; Dube, Daud Athanasius; Wang, Zhi; Wang, Long
2017-01-01
Early evidences have showed that mast cells could infiltrate into benign prostatic hyperplasia (BPH) tissues, but the exact role of mast cells in BPH development remains unclear. In this study, we identified more mast cells existing in human BPH tissues compared with that in the normal prostate. In the in vitro co-culture system, BPH-1 prostate cells promoted activation and migration of mast cells, and mast cells conversely stimulated BPH-1 cells proliferation significantly. Molecular analysis demonstrated that mast cell-derived interleukin 6 (IL-6) could activate STAT3/Cyclin D1 signals in BPH-1 cells. Blocking IL-6 or STAT3 partially reverse the capacity of mast cells to enhance BPH-1 cell proliferation. Our findings suggest that infiltrating mast cells in BPH tissues could promote BPH development via IL-6/STAT3/Cyclin D1 signals. Therefore, targeting infiltrating mast cells may improve the therapeutic effect of BPH. PMID:28938626
Masting promotes individual- and population-level reproduction by increasing pollination efficiency.
Moreira, Xoaquín; Abdala-Roberts, Luis; Linhart, Yan B; Mooney, Kailen A
2014-04-01
Masting is a reproductive strategy defined as the intermittent and synchronized production of large seed crops by a plant population. The pollination efficiency hypothesis proposes that masting increases pollination success in plants. Despite its general appeal, no previous studies have used long-term data together with population- and individual-level analyses to assess pollination efficiency between mast and non-mast events. Here we rigorously tested the pollination efficiency hypothesis in ponderosa pine (Pinus ponderosa), a long-lived monoecious, wind-pollinated species, using a data set on 217 trees monitored annually for 20 years. Relative investment in male and female function by individual trees did not vary between mast and non-mast years. At both the population and individual level, the rate of production of mature female cones relative to male strobili production was higher in mast than non-mast years, consistent with the predicted benefit of reproductive synchrony on reproductive success. In addition, at the individual level we found a higher conversion of unfertilized female conelets into mature female cones during a mast year compared to a non-mast year. Collectively, parallel results at the population and individual tree level provide robust evidence for the ecological, and potentially also evolutionary, benefits of masting through increased pollination efficiency.
Spatial patterns and broad-scale weather cues of beech mast seeding in Europe.
Vacchiano, Giorgio; Hacket-Pain, Andrew; Turco, Marco; Motta, Renzo; Maringer, Janet; Conedera, Marco; Drobyshev, Igor; Ascoli, Davide
2017-07-01
Mast seeding is a crucial population process in many tree species, but its spatio-temporal patterns and drivers at the continental scale remain unknown . Using a large dataset (8000 masting observations across Europe for years 1950-2014) we analysed the spatial pattern of masting across the entire geographical range of European beech, how it is influenced by precipitation, temperature and drought, and the temporal and spatial stability of masting-weather correlations. Beech masting exhibited a general distance-dependent synchronicity and a pattern structured in three broad geographical groups consistent with continental climate regimes. Spearman's correlations and logistic regression revealed a general pattern of beech masting correlating negatively with temperature in the summer 2 yr before masting, and positively with summer temperature 1 yr before masting (i.e. 2T model). The temperature difference between the two previous summers (DeltaT model) was also a good predictor. Moving correlation analysis applied to the longest eight chronologies (74-114 yr) revealed stable correlations between temperature and masting, confirming consistency in weather cues across space and time. These results confirm widespread dependency of masting on temperature and lend robustness to the attempts to reconstruct and predict mast years using temperature data. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Wang, Shan; Li, Linmei; Shi, Renren; Liu, Xueting; Zhang, Junyan; Zou, Zehong; Hao, Zhuofang; Tao, Ailin
2016-01-01
The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors. PMID:26978404
Silverman, Michael A; Shoag, Jonathan; Wu, Jennifer; Koretzky, Gary A
2006-03-01
We developed a confocal real-time imaging approach that allows direct observation of the subcellular localization pattern of proteins involved in proximal FcepsilonRI signaling in RBL cells and primary bone marrow-derived mast cells. The adaptor protein Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is critical for FcepsilonRI-induced calcium flux, degranulation, and cytokine secretion. In this study, we imaged SLP-76 and found it in the cytosol of unstimulated cells. Upon FcepsilonRI cross-linking, SLP-76 translocates to the cell membrane, forming clusters that colocalize with the FcepsilonRI, the tyrosine kinase Syk, the adaptor LAT, and phosphotyrosine. The disruption of the SLP-76 interaction with its constitutive binding partner, Gads, through the mutation of SLP-76 or the expression of the Gads-binding region of SLP-76, inhibits the translocation and clustering of SLP-76, suggesting that the interaction of SLP-76 with Gads is critical for appropriate subcellular localization of SLP-76. We further demonstrated that the expression of the Gads-binding region of SLP-76 in bone marrow-derived mast cells inhibits FcepsilonRI-induced calcium flux, degranulation, and cytokine secretion. These studies revealed, for the first time, that SLP-76 forms signaling clusters following FcepsilonRI stimulation and demonstrated that the Gads-binding region of SLP-76 regulates clustering of SLP-76 and FcepsilonRI-induced mast cell responses.
Self-anchoring mast for deploying a high-speed submersible mixer in a tank
Cato, Jr., Joseph E.; Shearer, Paul M [Aiken, SC; Rodwell, Philip O [Evans, GA
2004-10-12
A self-anchoring mast for deploying a high-speed submersible mixer in a tank includes operably connected first and second mast members (20, 22) and a foot member 46 operably connected to the second mast member for supporting the mast in a tank. The second mast member includes a track (36, 38) for slidably receiving a bearing of the mixer to change the orientation of the mixer in the tank.
New developments in mast cell biology
Kalesnikoff, Janet; Galli, Stephen J.
2010-01-01
Mast cells can function as effector and immunoregulatory cells in IgE-associated allergic disorders, as well as in certain innate and adaptive immune responses. This review will focus on exciting new developments in the field of mast cell biology published within the last year. It will highlight advances in the understanding of FcεRI-mediated signaling and mast cell activation events, as well as in the use of genetic models to study mast cell function in vivo. Finally, we will discuss newly identified roles of mast cells or individual mast cell products, such as proteases and IL-10, in host defense, cardiovascular disease and tumor biology, and in settings in which mast cells have anti-inflammatory or immunosuppressive functions. PMID:18936782
In Depth Analysis of Citrulline Specific CD4 T Cells in Rheumatoid Arthritis
2018-01-01
activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is regarded a...Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA Jane Buckner...IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in
Loss of histochemical identity in mast cells lacking carboxypeptidase A.
Feyerabend, Thorsten B; Hausser, Heinz; Tietz, Annette; Blum, Carmen; Hellman, Lars; Straus, Anita H; Takahashi, Hélio K; Morgan, Ellen S; Dvorak, Ann M; Fehling, Hans Jörg; Rodewald, Hans-Reimer
2005-07-01
Mast cell carboxypeptidase A (Mc-cpa) is a highly conserved secretory granule protease. The onset of expression in mast cell progenitors and lineage specificity suggest an important role for Mc-cpa in mast cells. To address the function of Mc-cpa, we generated Mc-cpa-null mice. Mc-cpa-/- mast cells lacked carboxypeptidase activity, revealing that Mc-cpa is a nonredundant enzyme. While Mc-cpa-/- peritoneal mast cells were ultrastructurally normal and synthesized normal amounts of heparin, they displayed striking histochemical and biochemical hallmarks of immature mast cells. Wild-type peritoneal mast cells had a mature phenotype characterized by differential histochemical staining with proteoglycan-reactive dyes (cells do not stain with alcian blue but stain with safranin and with berberine) and a high side scatter to forward scatter ratio by flow cytometry and were detergent resistant. In contrast, Mc-cpa-/- peritoneal mast cells, like immature bone marrow-derived cultured mast cells, stained with alcian blue normally or weakly and either did not stain with safranin and berberine or stained weakly, had a low side scatter to forward scatter ratio, and were detergent sensitive. This phenotype was partially ameliorated with age. Thus, histochemistry and flow cytometry, commonly used to measure mast cell maturation, deviated from morphology in Mc-cpa-/- mice. The Mc-cpa-/- mast cell phenotype was not associated with defects in degranulation in vitro or passive cutaneous anaphylaxis in vivo. Collectively, Mc-cpa plays a crucial role for the generation of phenotypically mature mast cells.
Loss of Histochemical Identity in Mast Cells Lacking Carboxypeptidase A
Feyerabend, Thorsten B.; Hausser, Heinz; Tietz, Annette; Blum, Carmen; Hellman, Lars; Straus, Anita H.; Takahashi, Hélio K.; Morgan, Ellen S.; Dvorak, Ann M.; Fehling, Hans Jörg; Rodewald, Hans-Reimer
2005-01-01
Mast cell carboxypeptidase A (Mc-cpa) is a highly conserved secretory granule protease. The onset of expression in mast cell progenitors and lineage specificity suggest an important role for Mc-cpa in mast cells. To address the function of Mc-cpa, we generated Mc-cpa-null mice. Mc-cpa−/− mast cells lacked carboxypeptidase activity, revealing that Mc-cpa is a nonredundant enzyme. While Mc-cpa−/− peritoneal mast cells were ultrastructurally normal and synthesized normal amounts of heparin, they displayed striking histochemical and biochemical hallmarks of immature mast cells. Wild-type peritoneal mast cells had a mature phenotype characterized by differential histochemical staining with proteoglycan-reactive dyes (cells do not stain with alcian blue but stain with safranin and with berberine) and a high side scatter to forward scatter ratio by flow cytometry and were detergent resistant. In contrast, Mc-cpa−/− peritoneal mast cells, like immature bone marrow-derived cultured mast cells, stained with alcian blue normally or weakly and either did not stain with safranin and berberine or stained weakly, had a low side scatter to forward scatter ratio, and were detergent sensitive. This phenotype was partially ameliorated with age. Thus, histochemistry and flow cytometry, commonly used to measure mast cell maturation, deviated from morphology in Mc-cpa−/− mice. The Mc-cpa−/− mast cell phenotype was not associated with defects in degranulation in vitro or passive cutaneous anaphylaxis in vivo. Collectively, Mc-cpa plays a crucial role for the generation of phenotypically mature mast cells. PMID:15988029
Zhang, Huiyun; Wang, Junling; Wang, Ling; Zhan, Mengmeng; Li, Shigang; Fang, Zeman; Xu, Ciyan; Zheng, Yanshan; He, Shaoheng
2018-02-01
Chymase is a unique, abundant secretory product of mast cells and a potent chemoattractant for eosinophils, monocytes and neutrophils, but little is known of its influence on mast cell accumulation. A mouse peritoneal inflammation model, cell migration assay and flowcytometry analysis, were used to investigate the role of chymase in recruiting mast cells. Chymase increased, by up to 5.4-fold, mast cell numbers in mouse peritoneum. Inhibitors of chymase, heat-inactivation of the enzyme, sodium cromoglycate and terfenadine, and pretreatment of mice with anti-intercellular adhesion molecule 1, anti-L-selectin, anti-CD11a and anti-CD18 antibodies dramatically diminished the chymase-induced increase in mast cell accumulation. These findings indicate that this effect of chymase is dependent on its enzymatic activity and activation of adhesion molecules. In addition, chymase provoked a significant increase in 5-HT and eotaxin release (up to 1.8- and 2.2-fold, respectively) in mouse peritoneum. Since 5-HT, eotaxin and RANTES can induce marked mast cell accumulation, these indirect mechanisms may also contribute to chymase-induced mast cell accumulation. Moreover, chymase increased the trans-endothelium migration of mast cells in vitro indicating it also acts as a chemoattractant. The finding that mast cells accumulate in response to chymase implies further that chymase is a major pro-inflammatory mediator of mast cells. This effect of chymase, a major product of mast cell granules, suggests a novel self-amplification mechanism for mast cell accumulation in allergic inflammation. Mast cell stabilizers and inhibitors of chymase may have potential as a treatment of allergic disorders. © 2017 The British Pharmacological Society.
Akahoshi, Mitsuteru; Song, Chang Ho; Piliponsky, Adrian M.; Metz, Martin; Guzzetta, Andrew; Åbrink, Magnus; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.
2011-01-01
Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell–derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell–deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function. PMID:21926462
Impact of centralized evaluation of bone marrow histology in systemic mastocytosis.
Jawhar, Mohamad; Schwaab, Juliana; Horny, Hans-Peter; Sotlar, Karl; Naumann, Nicole; Fabarius, Alice; Valent, Peter; Cross, Nicholas C P; Hofmann, Wolf-Karsten; Metzgeroth, Georgia; Reiter, Andreas
2016-05-01
Bone marrow (BM) histology/immunohistochemistry, KIT D816V mutation analysis and serum tryptase measurements are mandatory tools for diagnosis of systemic mastocytosis (SM). Within the 'German Registry of Disorders on Eosinophils and Mast Cells', we identified 65 patients with SM who had two consecutive BM biopsies. The first biopsy was evaluated by a local pathologist (LP) and the second biopsy by a reference pathologist (RP) of the 'European Competence Network on Mastocytosis (ECNM)'. Final diagnoses by RP were SM (n = 27), SM or aggressive SM (ASM) with associated clonal haematological non-mast cell lineage disease [(A)SM-AHNMD, n = 34)] or mast cell leukaemia ± AHNMD (n = 4). In 15 of 65 patients (23%), initial diagnoses by LP were incorrect (by overlooking SM), for example primary myelofibrosis (n = 3), myelodysplastic/myeloproliferative neoplasm unclassified (n = 3) or B-cell lymphoma (n = 2). Fourteen of 15 patients (93%) with incorrect diagnosis had an advanced SM, mostly (A)SM-AHNMD. In the 50 concordantly diagnosed patients, immunohistochemical markers for quantitative assessment of mast cell infiltration, for example CD117 (KIT) or CD25, were applied by LP in only 34 of 50 patients (68%), and mutational analysis for KIT D816V was performed or recommended in only 13 of 50 patients (26%). Finally, the subclassification of SM was discordant because LP did not diagnose AHNMD in nine of 50 (18%) patients. In summary, adequate diagnosis and subclassification of SM requires an in-depth evaluation of the BM by experienced haematopathologists (preferably in a reference centre) in combination with molecular genetics, serum tryptase level and clinical parameters. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.
Oksaharju, Anna; Kooistra, Teake; Kleemann, Robert; van Duyvenvoorde, Wim; Miettinen, Minja; Lappalainen, Jani; Lindstedt, Ken A; Kovanen, Petri T; Korpela, Riitta; Kekkonen, Riina A
2013-07-14
A high-fat diet disturbs the composition and function of the gut microbiota and generates local gut-associated and also systemic responses. Intestinal mast cells, for their part, secrete mediators which play a role in the orchestration of physiological and immunological functions of the intestine. Probiotic bacteria, again, help to maintain the homeostasis of the gut microbiota by protecting the gut epithelium and regulating the local immune system. In the present study, we explored the effects of two probiotic bacteria, Lactobacillus rhamnosus GG (GG) and Propionibacterium freudenreichii spp. shermanii JS (PJS), on high fat-fed ApoE*3Leiden mice by estimating the mast cell numbers and the immunoreactivity of TNF-α and IL-10 in the intestine, as well as plasma levels of several markers of inflammation and parameters of lipid metabolism. We found that mice that received GG and PJS exhibited significantly lower numbers of intestinal mast cells compared with control mice. PJS lowered intestinal immunoreactivity of TNF-α, while GG increased intestinal IL-10. PJS was also observed to lower the plasma levels of markers of inflammation including vascular cell adhesion molecule 1, and also the amount of gonadal adipose tissue. GG lowered alanine aminotransferase, a marker of hepatocellular activation. Collectively, these data demonstrate that probiotic GG and PJS tend to down-regulate both intestinal and systemic pro-inflammatory changes induced by a high-fat diet in this humanised mouse model.
Lightning Protection System for Space Shuttle
NASA Technical Reports Server (NTRS)
1977-01-01
The suitability and cost effectiveness of using a lightning mast for the shuttle service and access tower (SSAT) similar to the type used for the Apollo Soyuz Test Project (ASTP) mobile launcher (ML) was evaluated. Topics covered include: (1) ASTP launch damage to mast, mast supports, grounded overhead wires, and the instrumentation system; (2) modifications required to permit reusing the ASTP mast on the SSAT; (3) comparative costing factors per launch over a 10 year period in repetitive maintenance and refurbishment of the existing and modified masts, mast supports, grounded overhead wires, and ground instrumentation required to sustain mechanical and electrical integrity of the masts; (4) effects of blast testing samples of the ASTP ML type mast (corrosion and electrical flashover); (5) comparison of damages from ASTP launch and from blast testing.
Graphic representation of STS-99 orbiter during mission
2000-02-04
JSC2000E01551 (January 2000) --- An "exploded" drawing depicts the Space Shuttle Endeavour and the Shuttle Radar Topography Mission (SRTM) mast, along with the pallet for SRTM and supportive antennae. The mast will be deployed and retracted by a motor-driven nut within the mast canister. This nut will pull the mast from its stowed configuration and allow it to unfold like an accordion. A crew member inside the shuttle will initiate the mast deployment, a chore which will take about 20 minutes. The mast also can be deployed manually during a contingency extravehicular activity (EVA) using a hand-held motor. The mast is 200 feet (60 meters) long.
Tsai, Chung-Che; Kuo, Ting-Yu; Hong, Zhi-Wei; Yeh, Ying-Chieh; Shih, Kuo-Shun; Du, Shin-Yi; Fu, Hua-Wen
2015-01-01
Helicobacter pylori neutrophil-activating protein (HP-NAP) activates several innate leukocytes including neutrophils, monocytes, and mast cells. It has been reported that HP-NAP induces degranulation and interleukin-6 (IL-6) secretion of rat peritoneal mast cells. However, the molecular mechanism is not very clear. Here, we show that HP-NAP activates human mast cell line-1 (HMC-1) cells to secrete histamine and IL-6. The secretion depends on pertussis toxin (PTX)-sensitive heterotrimeric G proteins but not on Toll-like receptor 2. Moreover, HP-NAP induces PTX-sensitive G protein-mediated activation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38-mitogen-activated protein kinase (p38 MAPK), and Akt in HMC-1 cells. Inhibition of ERK1/2, p38 MAPK, or phosphatidylinositol 3-kinase (PI3K) suppresses HP-NAP-induced release of histamine and IL-6 from HMC-1 cells. Thus, the activation of HMC-1 cells by HP-NAP is through Gi-linked G protein-coupled receptor-mediated MAPKs and PI3K/Akt pathways.
Jin, Meihua; Lu, Yue; Yang, Ju Hye; Jo, Tae Hyung; Park, Young In; Lee, Chong-Kil; Park, Sang-Jo; Son, Kun Ho; Chang, Hyeun Wook
2011-09-01
6-Hydroxy-2,7-dimethoxy-1,4-phenanthraquinone (PAQ) isolated from the tuberous roots of Yam (Dioscorea batatas) inhibited cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1) dependent prostaglandin D(2) (PGD(2)) generation in mouse bone marrow-derived mast cells in a concentration-dependent manner with IC(50) values of 0.08 μM and 0.27 μM, respectively. In the Western blotting with specific anti-COX-2 antibodies, the decrease of the quantity of PGD(2) was accompanied by a decrease in the COX-2 protein level. But PAQ did not affect COX-1 protein level. In addition, this compound inhibited 5-lipoxygenase (5-LOX) dependent production of leukotriene C(4) in a dose-dependent manner, with an IC(50) of 0.032 μM. These results demonstrate that PAQ has a dual COX-2/5-LOX inhibitory activity. This compound also inhibited the degranulation reaction in a dose-dependent manner with an IC(50) of 2.7 μM. Thus, these results suggest that PAQ may be useful in regulating mast cell-mediated inflammatory diseases.
Xue, Li; Geng, Yan; Li, Ming; Jin, Yao-Feng; Ren, Hui-Xun; Li, Xia; Wu, Feng; Wang, Biao; Cheng, Wei-Ying; Chen, Teng; Chen, Yan-Jiong
2018-04-01
Previous studies have demonstrated that methamphetamine (MA) influences host immunity; however, the effect of MA on lipopolysaccharide (LPS)-induced immune responses remains unknown. Mast cells (MCs) are considered to serve an important role in the innate and acquired immune response, but it remains unknown whether MA modulates MC activation and LPS-stimulated cytokine production. The present study aimed to investigate the effect of MA on LPS-induced MC activation and the production of MC-derived cytokines in mice. Markers for MC activation, including cluster of differentiation 117 and the type I high affinity immunoglobulin E receptor, were assessed in mouse intestines. Levels of MC-derived cytokines in the lungs and thymus were also examined. The results demonstrated that cytokines were produced in the bone marrow-derived mast cells (BMMCs) of mice. The present study demonstrated that MA suppressed the LPS-mediated MC activation in mouse intestines. MA also altered the release of MC cytokines in the lung and thymus following LPS stimulation. In addition, LPS-stimulated cytokines were decreased in the BMMCs of mice following treatment with MA. The present study demonstrated that MA may regulate LPS-stimulated MC activation and cytokine production.
Structural health monitoring using smart optical fiber sensors
NASA Astrophysics Data System (ADS)
Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.
2001-04-01
This paper describes the potential of a smart monitoring system, incorporating optical fiber sensing techniques, to provide important structural information to designers and users alike. This technology has application in all areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35 m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions and the resulting strain information could be used by engineers to improve the structural design process. The optical strain sensor system comprises of three main components: the sensor network, the opto-electronic data acquisition unit (OFSSS) and the external PC which acts as a data log and display. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electromagnetic interference. The capability of this system has been demonstrated within the maritime environment, but can be adapted for any application.
DU, T; FRIEND, D S; AUSTEN, K F; KATZ, H R
1996-01-01
The time courses of the appearance of tissue mast cells in six sites were compared in normal WBB6F1-+/+ mice (+/+) and in congenic mast cell-deficient WBB6F1-W/Wv mice (W/Wv) that received an intravenous infusion of bone marrow cells from +/+mice (BM→W/Wv). As assessed by morphometric analysis of Carnoy's solution-fixed, methylene blue-stained tissue sections, the density of mast cells in the stomach mucosa, stomach submucosa, and spleen of +/+ mice reached maximal levels by 8 weeks of age, whereas the density of mast cells in the skin, extraparenchymal airway walls, and lung parenchyma did not reach maximal levels until 18 weeks of age. When 8-week-old W/Wv mice were infused with 2×107 bone marrow cells from +/+ mice, mast cells appeared in the stomach mucosa and submucosa after 2.5 weeks, in the spleen and extraparenchymal airway walls after 5 weeks, and in the lung parenchyma after 10 weeks. Twenty weeks after bone marrow infusion, the mast cell densities in the spleen, stomach mucosa, and stomach submucosa were seven-, 13-, and five-fold greater, respectively, than those in age-matched +/+ mice, but were eight-, two-, and five-fold lower in the skin, extraparenchymal airway walls, and lung parenchyma, respectively. Thus, those tissues that in +/+ mice reached maximal mast cell densities earlier exhibited abnormally high mast cell densities in BM→W/Wv mice, and those that reached maximal mast cell densities later in +/+ mice had abnormally low mast cell densities in BM→W/Wv mice. Immunological and inflammatory responses are often compared in W/Wv and BM→W/Wv mice to assess mast cell dependency. Our results indicate that the capacity to restore a mast cell-dependent response in a particular tissue of the latter mice may relate to the local mast cell density and whether the immunological challenge activates mast cells only in that tissue or systematically with attendant widespread release of proinflammatory mediators. PMID:8565318
Association of 3BP2 with SHP-1 regulates SHP-1-mediated production of TNF-α in RBL-2H3 cells.
Chihara, Kazuyasu; Nakashima, Kenji; Takeuchi, Kenji; Sada, Kiyonao
2011-12-01
Adaptor protein 3BP2, a c-Abl Src homology 3 (SH3) domain-binding protein, is tyrosine phosphorylated and positively regulates mast cell signal transduction after the aggregation of the high affinity IgE receptor (FcεRI). Overexpression of the Src homology 2 (SH2) domain of 3BP2 results in the dramatic suppression of antigen-induced degranulation in rat basophilic leukemia RBL-2H3 cells. Previously, a linker for activation of T cells (LAT) was identified as one of the 3BP2 SH2 domain-binding protein. In this report, to further understand the functions of 3BP2 in FcεRI-mediated activation of mast cell, we explored the protein that associates with the SH2 domain of 3BP2 and found that SH2 domain-containing phosphatase-1 (SHP-1) inducibly interacts with the SH2 domain of 3BP2 after the aggregation of FcεRI. The phosphorylation of Tyr(564) in the carboxy (C)-terminal tail region of SHP-1 is required for the direct interaction of SHP-1 to the SH2 domain of 3BP2. The expression of the mutant form of SHP-1 which was unable to interact with 3BP2 resulted in the significant reduction in SHP-1-mediated tumor necrosis factor-α (TNF-α) production without any effects on the degranulation in antigen-stimulated RBL-2H3 cells. These findings suggest that 3BP2 directly interacts with Tyr(564) -phosphorylated form of SHP-1 and positively regulates the function of SHP-1 in FcεRI-mediated signaling in mast cells. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
Gilchrist, M; Befus, A D
2008-01-01
Mast cells (MCs) are critical immune effector cells that release cytokines and chemokines involved in both homeostasis and disease. Interferon-γ (IFN-γ) is a pleiotropic cytokine that regulates multiple cellular activities. IFN-γ modulates rodent MC responsiveness via production of nitric oxide (NO), although the effects in human MC populations is unknown. We sought to investigate the effects of IFN-γ on expression of the chemokines interleukin-8 (IL-8) and CCL1 (I-309) in a human mast cell line (HMC1) and to determine the underlying regulatory mechanism. Nitric oxide synthase (NOS), IL-8 and CCL1 expression was determined using real-time polymerase chain reaction (PCR). NOS protein expression was analysed using western blot. NOS activity was determined using the citrulline assay. IL-8 and CCL1 release was measured by specific enzyme-linked immunosorbent assay (ELISA). IFN-γ inhibited phorbol 12-myristate 13-acetate (PMA)-induced release of IL-8 and CCL1 (by 47 and 38%). Real-time PCR analysis of IFN-γ-treated HMC1 showed a significant (P < 0·05) time-dependent increase in NOS1 and NOS3 mRNA. NOS3 protein was significantly increased at 18 hr, which correlated with a significant (P < 0·05) increase in constitutive NOS (cNOS) activity. IFN-γ-induced inhibition of chemokine expression and release was NO dependent, as treatment with the NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME) reduced the IFN-γ inhibitory effect on IL-8 and CCL1 mRNA expression. NO donors mimicked the IFN-γ effect. IFN-γ inhibited PMA-induced cAMP response element binding protein (CREB) phosphorylation and DNA-binding activity. Our observations indicate for the first time that IFN-γ enhances endogenous NO formation through NOS3 activity, and that NO regulates the transcription and release of IL-8 and CCL1 in a human MC line. PMID:17662042
Lipid Rafts in Mast Cell Biology
Silveira e Souza, Adriana Maria Mariano; Mazucato, Vivian Marino; Jamur, Maria Célia; Oliver, Constance
2011-01-01
Mast cells have long been recognized to have a direct and critical role in allergic and inflammatory reactions. In allergic diseases, these cells exert both local and systemic responses, including allergic rhinitis and anaphylaxis. Mast cell mediators are also related to many chronic inflammatory conditions. Besides the roles in pathological conditions, the biological functions of mast cells include roles in innate immunity, involvement in host defense mechanisms against parasites, immunomodulation of the immune system, tissue repair, and angiogenesis. Despite their growing significance in physiological and pathological conditions, much still remains to be learned about mast cell biology. This paper presents evidence that lipid rafts or raft components modulate many of the biological processes in mast cells, such as degranulation and endocytosis, play a role in mast cell development and recruitment, and contribute to the overall preservation of mast cell structure and organization. PMID:21490812
Ablation of human skin mast cells in situ by lysosomotropic agents.
Hagforsen, Eva; Paivandy, Aida; Lampinen, Maria; Weström, Simone; Calounova, Gabriela; Melo, Fabio R; Rollman, Ola; Pejler, Gunnar
2015-07-01
Mast cells are known to have a detrimental impact on numerous types of inflammatory skin diseases such as contact dermatitis, atopic eczema and cutaneous mastocytosis. Regimens that dampen skin mast cell-mediated activities can thus offer an attractive therapeutic option under such circumstances. As mast cells are known to secrete a large array of potentially pathogenic compounds, both from preformed stores in secretory lysosomes (granules) and after de novo synthesis, mere inhibition of degranulation or interference with individual mast cell mediators may not be sufficient to provide an effective blockade of harmful mast cell activities. An alternative strategy may therefore be to locally reduce skin mast cell numbers. Here, we explored the possibility of using lysosomotropic agents for this purpose, appreciating the fact that mast cell granules contain bioactive compounds prone to trigger apoptosis if released into the cytosolic compartment. Based on this principle, we show that incubation of human skin punch biopsies with the lysosomotropic agents siramesine or Leu-Leu methyl ester preferably ablated the mast cell population, without causing any gross adverse effects on the skin morphology. Subsequent analysis revealed that mast cells treated with lysosomotropic agents predominantly underwent apoptotic rather than necrotic cell death. In summary, this study raises the possibility of using lysosomotropic agents as a novel approach to targeting deleterious mast cell populations in cutaneous mastocytosis and other skin disorders negatively influenced by mast cells. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanakura, Y.; Thompson, H.; Nakano, T.
1988-09-01
Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of (35S) sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate (35S)more » proteoglycans. When ''MMC-like'' cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1-W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these ''second generation PMC'' formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.« less
Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression.
Wezel, Anouk; Lagraauw, H Maxime; van der Velden, Daniël; de Jager, Saskia C A; Quax, Paul H A; Kuiper, Johan; Bot, Ilze
2015-08-01
Activated mast cells have been identified in the intima and perivascular tissue of human atherosclerotic plaques. As mast cells have been described to release a number of chemokines that mediate leukocyte fluxes, we propose that activated mast cells may play a pivotal role in leukocyte recruitment during atherosclerotic plaque progression. Systemic IgE-mediated mast cell activation in apoE(-/-)μMT mice resulted in an increase in atherosclerotic lesion size as compared to control mice, and interestingly, the number of neutrophils was highly increased in these lesions. In addition, peritoneal mast cell activation led to a massive neutrophil influx into the peritoneal cavity in C57Bl6 mice, whereas neutrophil numbers in mast cell deficient Kit(W(-sh)/W(-sh)) mice were not affected. Within the newly recruited neutrophil population, increased levels of CXCR2(+) and CXCR4(+) neutrophils were observed after mast cell activation. Indeed, mast cells were seen to contain and release CXCL1 and CXCL12, the ligands for CXCR2 and CXCR4. Intriguingly, peritoneal mast cell activation in combination with anti-CXCR2 receptor antagonist resulted in decreased neutrophil recruitment, thus establishing a prominent role for the CXCL1/CXCR2 axis in mast cell-mediated neutrophil recruitment. Our data suggest that chemokines, and in particular CXCL1, released from activated mast cells induce neutrophil recruitment to the site of inflammation, thereby aggravating the ongoing inflammatory response and thus affecting plaque progression and destabilization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Mast cell hyperactivity underpins the development of oxygen-induced retinopathy
Matsuda, Kenshiro; Okamoto, Noriko; Kondo, Masatoshi; Arkwright, Peter D.; Karasawa, Kaoru; Ishizaka, Saori; Yokota, Shinichi; Matsuda, Akira; Jung, Kyungsook; Oida, Kumiko; Jang, Hyosun; Noda, Eiichiro; Kakinuma, Ryota; Yasui, Koujirou; Kaku, Uiko; Mori, Yasuo; Onai, Nobuyuki; Ohteki, Toshiaki; Tanaka, Akane
2017-01-01
Mast cells are classically thought to play an important role in protection against helminth infections and in the induction of allergic diseases; however, recent studies indicate that these cells also contribute to neovascularization, which is critical for tissue remodeling, chronic inflammation, and carcinogenesis. Here, we demonstrate that mast cells are essential for sprouting angiogenesis in a murine model of oxygen-induced retinopathy (OIR). Although mouse strains lacking mast cells did not exhibit retinal neovascularization following hypoxia, these mice developed OIR following infusion of mast cells or after injection of mast cell tryptase (MCT). Relative hypoxia stimulated mast cell degranulation via transient receptor potential ankyrin 1. Subsequent surges in MCT stimulated retinal endothelial cells to produce monocyte chemotactic protein-1 (MCP1) and angiogenic factors, leading to sprouting angiogenesis. Mast cell stabilizers as well as specific tryptase and MCP1 inhibitors prevented the development of OIR in WT mice. Preterm infants with early retinopathy of prematurity had markedly higher plasma MCT levels than age-matched infants without disease, suggesting mast cells contribute to human disease. Together, these results suggest therapies that suppress mast cell activity should be further explored as a potential option for preventing eye diseases and subsequent blindness induced by neovascularization. PMID:28990934
Coutinho, Agnes E; Brown, Jeremy K; Yang, Fu; Brownstein, David G; Gray, Mohini; Seckl, Jonathan R; Savill, John S; Chapman, Karen E
2013-01-01
Mast cells are key initiators of allergic, anaphylactic and inflammatory reactions, producing mediators that affect vascular permeability, angiogenesis and fibrosis. Glucocorticoid pharmacotherapy reduces mast cell number, maturation and activation but effects at physiological levels are unknown. Within cells, glucocorticoid concentration is modulated by the 11β-hydroxysteroid dehydrogenases (11β-HSDs). Here we show expression and activity of 11β-HSD1, but not 11β-HSD2, in mouse mast cells with 11β-HSD activity only in the keto-reductase direction, regenerating active glucocorticoids (cortisol, corticosterone) from inert substrates (cortisone, 11-dehydrocorticosterone). Mast cells from 11β-HSD1-deficient mice show ultrastructural evidence of increased activation, including piecemeal degranulation and have a reduced threshold for IgG immune complex-induced mast cell degranulation. Consistent with reduced intracellular glucocorticoid action in mast cells, levels of carboxypeptidase A3 mRNA, a glucocorticoid-inducible mast cell-specific transcript, are lower in peritoneal cells from 11β-HSD1-deficient than control mice. These findings suggest that 11β-HSD1-generated glucocorticoids may tonically restrain mast cell degranulation, potentially influencing allergic, anaphylactic and inflammatory responses.
Bot, Martine; de Jager, Saskia C. A.; MacAleese, Luke; Lagraauw, H. Maxime; van Berkel, Theo J. C.; Quax, Paul H. A.; Kuiper, Johan; Heeren, Ron M. A.; Biessen, Erik A. L.; Bot, Ilze
2013-01-01
Lysophosphatidic acid (LPA), a bioactive lysophospholipid, accumulates in the atherosclerotic plaque. It has the capacity to activate mast cells, which potentially exacerbates plaque progression. In this study, we thus aimed to investigate whether LPA contributes to plaque destabilization by modulating mast cell function. We here show by an imaging mass spectrometry approach that several LPA species are present in atherosclerotic plaques. Subsequently, we demonstrate that LPA is a potent mast cell activator which, unlike other triggers, favors release of tryptase. Local perivascular administration of LPA to an atherosclerotic carotid artery segment increases the activation status of perivascular mast cells and promotes intraplaque hemorrhage and macrophage recruitment without impacting plaque cell apoptosis. The mast cell stabilizer cromolyn could prevent intraplaque hemorrhage elicited by LPA-mediated mast cell activation. Finally, the involvement of mast cells in these events was further emphasized by the lack of effect of perivascular LPA administration in mast cell deficient animals. We demonstrate that increased accumulation of LPA in plaques induces perivascular mast cell activation and in this way contributes to plaque destabilization in vivo. This study points to local LPA availability as an important factor in atherosclerotic plaque stability. PMID:23396975
Bot, Martine; de Jager, Saskia C A; MacAleese, Luke; Lagraauw, H Maxime; van Berkel, Theo J C; Quax, Paul H A; Kuiper, Johan; Heeren, Ron M A; Biessen, Erik A L; Bot, Ilze
2013-05-01
Lysophosphatidic acid (LPA), a bioactive lysophospholipid, accumulates in the atherosclerotic plaque. It has the capacity to activate mast cells, which potentially exacerbates plaque progression. In this study, we thus aimed to investigate whether LPA contributes to plaque destabilization by modulating mast cell function. We here show by an imaging mass spectrometry approach that several LPA species are present in atherosclerotic plaques. Subsequently, we demonstrate that LPA is a potent mast cell activator which, unlike other triggers, favors release of tryptase. Local perivascular administration of LPA to an atherosclerotic carotid artery segment increases the activation status of perivascular mast cells and promotes intraplaque hemorrhage and macrophage recruitment without impacting plaque cell apoptosis. The mast cell stabilizer cromolyn could prevent intraplaque hemorrhage elicited by LPA-mediated mast cell activation. Finally, the involvement of mast cells in these events was further emphasized by the lack of effect of perivascular LPA administration in mast cell deficient animals. We demonstrate that increased accumulation of LPA in plaques induces perivascular mast cell activation and in this way contributes to plaque destabilization in vivo. This study points to local LPA availability as an important factor in atherosclerotic plaque stability.
Karakus, Gulderen; Akin Polat, Zubeyde; Sahin Yaglıoglu, Ayse; Karahan, Mesut; Yenidunya, Ali Fazil
2013-01-01
Poly(maleic anhydride-co-styrene) (MAST) was synthesized by a free-radical polymerization reaction. A bioactive molecule, procainamide hydrochloride (PH), was then conjugated to MAST. The conjugation product was named as MAST/PH. Structural characterization of MAST and MAST/PH was carried out by Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. Their molecular weights were determined by size-exclusion chromatography. A mechanism was then suggested for the conjugation reaction. The results of the cytotoxicity assay, employing a mouse fibroblast cell line (L929), indicated that MAST/PH had no cytotoxicity at concentrations [Formula: see text] 62 μg mL(-1) (p > 0.05). Antiproliferative activities of MAST/PH and PH were determined by the BrdU cell proliferation ELISA assay, using C6 and HeLa cell lines. In the experiment, two anticancer chemotherapy drugs, cisplatin and 5-fluorouracil, were included as positive control. Antiproliferative activity results demonstrated that MAST/PH yielded the highest suppression profile (approximately 42%) at 20 μg/ml, while free PH exerted the same activity at 100 μg/ml. Interestingly, both MAST/PH and PH suppressed the proliferation of only one of the cell lines, C6 cells. Both cisplatin and 5-fluorouracil yielded approximately 60% antiproliferative activity on C6 cells at 20 and 100 μg/ml concentrations. Antiangiogenic capacity of both MAST and MAST/PH was also investigated by using the chicken chorioallantoic membrane assay. Results obtained indicated that while MAST/PH could be included into the category of good antiangiogenic substances, the activity score of MAST was within the weak category.
Miller, L A; Cochrane, D E; Feldberg, R S; Carraway, R E
1998-06-01
Neurotensin (NT), a peptide found in brain and several peripheral tissues, is a potent stimulus for mast cell secretion and its actions are blocked by the specific NT receptor antagonist, SR 48692. Subsequent to stimulation, NT is rapidly degraded by mast cell carboxypeptidase A (CPA). In the experiments described here, we tested for the involvement of CPA activity in the activation of mast cell secretion by the peptide, NT. Mast cells were isolated from the peritoneal and pleural cavities of rats, purified over metrizamide gradients and incubated at 37 degrees C in Locke solution or Locke containing the appropriate inhibitors. For some experiments, media derived from mast cells stimulated by compound 48/80 were used as a source of mast cell CPA activity. Treatment of mast cells with the highly specific peptide inhibitor of CPA derived from potato (PCI) inhibited histamine release in response to NT and NT8-13 (the biologically active region of NT). This inhibition required some 20 min to develop and was only partially reversed by a 20-min wash period. PCI (10 microM) did not inhibit histamine release in response to NT1-12, bradykinin, compound 48/80, the calcium ionophore, A23187, or anti-IgE serum. PCI also inhibited mast cell CPA activity. SR 48692, a highly selective antagonist of the brain NT receptor and of NT-stimulated mast cell secretion, also inhibited mast cell CPA activity as well as bovine pancreatic CPA activity in a concentration-dependent manner. It is suggested that the mast cell binding site for NT and the active site for CPA may share similar characteristics. The results are discussed in terms of NT mechanism of action on the mast cell.
Ingram, David A.; Yang, Feng-Chun; Travers, Jeffrey B.; Wenning, Mary Jo; Hiatt, Kelly; New, Sheryl; Hood, Antoinette; Shannon, Kevin; Williams, David A.; Clapp, D. Wade
2000-01-01
Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's “two hit” model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1−/− murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W41 mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras–mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W41) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types. PMID:10620616
Ingram, D A; Yang, F C; Travers, J B; Wenning, M J; Hiatt, K; New, S; Hood, A; Shannon, K; Williams, D A; Clapp, D W
2000-01-03
Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's "two hit" model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1-/- murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W(41) mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras-mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W(41)) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.
Mast cells in airway diseases and interstitial lung disease.
Cruse, Glenn; Bradding, Peter
2016-05-05
Mast cells are major effector cells of inflammation and there is strong evidence that mast cells play a significant role in asthma pathophysiology. There is also a growing body of evidence that mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast cells play in airway diseases and highlights how mast cell microlocalisation within specific lung compartments and their cellular interactions are likely to be critical for their effector function in disease. Published by Elsevier B.V.
Kempuraj, Duraisamy; Selvakumar, Govindhasamy P; Thangavel, Ramasamy; Ahmed, Mohammad E; Zaheer, Smita; Raikwar, Sudhanshu P; Iyer, Shankar S; Bhagavan, Sachin M; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar
2017-01-01
Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD.
Kempuraj, Duraisamy; Selvakumar, Govindhasamy P.; Thangavel, Ramasamy; Ahmed, Mohammad E.; Zaheer, Smita; Raikwar, Sudhanshu P.; Iyer, Shankar S.; Bhagavan, Sachin M.; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar
2017-01-01
Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD. PMID:29302258
The effect of capsaicin application on mast cells in normal human skin.
Bunker, C B; Cerio, R; Bull, H A; Evans, J; Dowd, P M; Foreman, J C
1991-05-01
Peptides released from sensory nerves during an axon reflex are thought to cause mast cell degranulation, histamine (Hi) release and Hi-induced vasodilatation leading to the flare of the triple response. Capsaicin stimulates peptide release from sensory neurones and causes flare in vivo but does not cause Hi release from mast cells in vitro. The effects of capsaicin on mast cell degranulation in human skin in vivo has been studied by histological examination of skin biopsies after topical capsicin (1%) treatment of stratum corneum-denuded forearm in four volunteers. The results show a significant reduction in the visible numbers of mast cells and the appearance of degranulated mast cells ghosts in the skin six hours after capsaicin application. Since capsaicin itself does not release Hi from mast cells, these data suggest that capsaicin-induced release of peptides from neurones could cause mast cell degranulation.
Mast Cells in Allergic Diseases and Mastocytosis
Marquardt, Diana L.; Wasserman, Stephen I.
1982-01-01
Mast cells with their stores of vasoactive and chemotactic mediators are central to the pathogenesis of allergic diseases. The cross-linking of receptorbound IgE molecules on the surface of mast cells initiates a complex chain of events, including calcium ion influx, phospholipid methylation and turnover and cyclic nucleotide metabolism, ultimately resulting in the release of mediators of immediate hypersensitivity. These mast cell mediators are important in smooth muscle reactivity, in the recruitment of eosinophilic and neutrophilic leukocytes and in the generation of secondary chemical mediators. Histologic evidence of mast cell degranulation, biochemical evidence of mast cell mediators in blood and tissues and clinical evidence of signs and symptoms reproducible by these mediators have strongly supported the crucial role of mast cells in asthma, urticaria, anaphylaxis, rhinitis and mastocytosis. Because of their unique location at host environment interfaces, mast cells may both participate in allergic diseases and promote homeostasis. ImagesFigure 1.Figure 2.Figure 3. PMID:6293204
Antibacterial agent triclosan suppresses RBL-2H3 mast cell function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Rachel K., E-mail: rachel.palmer@maine.edu; Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469; Hutchinson, Lee M.
2012-01-01
Triclosan is a broad-spectrum antibacterial agent, which has been shown previously to alleviate human allergic skin disease. The purpose of this study was to investigate the hypothesis that the mechanism of this action of triclosan is, in part, due to effects on mast cell function. Mast cells play important roles in allergy, asthma, parasite defense, and carcinogenesis. In response to various stimuli, mast cells degranulate, releasing allergic mediators such as histamine. In order to investigate the potential anti-inflammatory effect of triclosan on mast cells, we monitored the level of degranulation in a mast cell model, rat basophilic leukemia cells, clonemore » 2H3. Having functional homology to human mast cells, as well as a very well defined signaling pathway leading to degranulation, this cell line has been widely used to gain insight into mast-cell driven allergic disorders in humans. Using a fluorescent microplate assay, we determined that triclosan strongly dampened the release of granules from activated rat mast cells starting at 2 μM treatment, with dose-responsive suppression through 30 μM. These concentrations were found to be non-cytotoxic. The inhibition was found to persist when early signaling events (such as IgE receptor aggregation and tyrosine phosphorylation) were bypassed by using calcium ionophore stimulation, indicating that the target for triclosan in this pathway is likely downstream of the calcium signaling event. Triclosan also strongly suppressed F-actin remodeling and cell membrane ruffling, a physiological process that accompanies degranulation. Our finding that triclosan inhibits mast cell function may explain the clinical data mentioned above and supports the use of triclosan or a mechanistically similar compound as a topical treatment for allergic skin disease, such as eczema. -- Highlights: ►The effects of triclosan on mast cell function using a murine mast cell model. ►Triclosan strongly inhibits degranulation of mast cells. ►Triclosan suppresses membrane ruffling of activated mast cells. ►Triclosan's effects persist when early mast cell signaling events are bypassed. ►Supports use of triclosan as a topical treatment for eczema.« less
Illustrating MastCam Capabilities with a Terrestrial Scene
2011-11-28
This set of views illustrates capabilities of the Mast Camera MastCam instrument on NASA Mars Science Laboratory Curiosity rover, using a scene on Earth as an example of what MastCam two cameras can see from different distances.
Mechanism of mast cell adhesion to human tenocytes in vitro.
Behzad, Hayedeh; Tsai, Shu-Huei; Nassab, Paulina; Mousavizadeh, Rouhollah; McCormack, Robert G; Scott, Alex
2015-01-01
Mast cells and fibroblasts are two key players involved in many fibrotic and degenerative disorders. In the present study we examined the nature of binding interactions between human mast cells and tendon fibroblasts (tenocytes). In the mast cell-fibroblast co-culture model, mast cells were shown to spontaneously bind to tenocytes, in a process that was partially mediated by α5β1 integrin receptors. The same receptors on mast cells significantly mediated binding of these cells to tissue culture plates in the presence of tenocyte-conditioned media; the tenocyte-derived fibronectin in the media was shown to also play a major role in these binding activities. Upon binding to tenocytes or tissue culture plates, mast cells acquired an elongated phenotype, which was dependent on α5β1 integrin and tenocyte fibronectin. Additionally, tenocyte-derived fibronectin significantly enhanced mRNA expression of the adhesion molecule, THY1, by mast cells. Our data suggests that α5β1 integrin mediates binding of mast cells to human tenocyte and to tenocyte-derived ECM proteins, in particular fibronectin. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Genead, Rami; Fischer, Helene; Hussain, Alamdar; Jaksch, Marie; Andersson, Agneta B; Ljung, Karin; Bulatovic, Ivana; Franco-Cereceda, Anders; Elsheikh, Elzafir; Corbascio, Matthias; Smith, C I Edvard; Sylvén, Christer; Grinnemo, Karl-Henrik
2012-01-01
To explore how cardiac regeneration and cell turnover adapts to disease, different forms of stress were studied for their effects on the cardiac progenitor cell markers c-Kit and Isl1, the early cardiomyocyte marker Nkx2.5, and mast cells. Adult female rats were examined during pregnancy, after myocardial infarction and ischemia-reperfusion injury with/out insulin like growth factor-1(IGF-1) and hepatocyte growth factor (HGF). Different cardiac sub-domains were analyzed at one and two weeks post-intervention, both at the mRNA and protein levels. While pregnancy and myocardial infarction up-regulated Nkx2.5 and c-Kit (adjusted for mast cell activation), ischemia-reperfusion injury induced the strongest up-regulation which occurred globally throughout the entire heart and not just around the site of injury. This response seems to be partly mediated by increased endogenous production of IGF-1 and HGF. Contrary to c-Kit, Isl1 was not up-regulated by pregnancy or myocardial infarction while ischemia-reperfusion injury induced not a global but a focal up-regulation in the outflow tract and also in the peri-ischemic region, correlating with the up-regulation of endogenous IGF-1. The addition of IGF-1 and HGF did boost the endogenous expression of IGF and HGF correlating to focal up-regulation of Isl1. c-Kit expression was not further influenced by the exogenous growth factors. This indicates that there is a spatial mismatch between on one hand c-Kit and Nkx2.5 expression and on the other hand Isl1 expression. In conclusion, ischemia-reperfusion injury was the strongest stimulus with both global and focal cardiomyocyte progenitor cell marker up-regulations, correlating to the endogenous up-regulation of the growth factors IGF-1 and HGF. Also pregnancy induced a general up-regulation of c-Kit and early Nkx2.5+ cardiomyocytes throughout the heart. Utilization of these pathways could provide new strategies for the treatment of cardiac disease.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... unique features of the Murray Morgan Bridge is its height above the waterway providing 60 feet of clearance at mean high water (MHW) in the closed position. Because of this vertical clearance the... bridge openings are for locally moored and operated recreational sailboats with mast heights over 60 feet...
Dong, Hongquan; Zhang, Xiang; Wang, Yiming; Zhou, Xiqiao; Qian, Yanning; Zhang, Shu
2017-03-01
Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the "first responder" in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the "mast cell degranulator" compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. "Mast cell stabilizer" disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H 1 R), histamine receptor 4 (H 4 R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient Kit W-sh/W-sh mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.
Humphrey, J. H.; Mota, I.
1959-01-01
Mast cell damage, characterized by loss of granules, occurs when the tissues of sensitized guinea pigs are brought into contact with antigen in vivo or in vitro. Quantitative studies on the mesenteries of passively sensitized guinea pigs show that the mast cell response to antigen is well correlated with the development of anaphylactic shock. After multiple sensitization contact with different antigens caused cumulative, but not complete, disappearance of mast cells. Antigen-antibody interactions, in which antisera were from species which do not sensitize guinea pigs passively for anaphylaxis, did not cause mast cell damage. Reversed passive anaphylaxis and mast cell damage were elicited when the antigen was a suitable γ-globulin, but not an albumin. Antiserum against homologous γ-globulin causes typical anaphylaxis and mast cell degranulation, whereas antiserum against Forssman antigen causes capillary damage without mast cell changes, and antiserum against homologous albumin is ineffective. These findings can be explained by the hypothesis that mast cell damage occurs as a result of antigen-antibody interaction, when one of the reagents is reversibly adsorbed at the mast cell surface, and when they are together capable of activating some process or agent whose further action depends upon the metabolic integrity of the cells. PMID:13640678
Biomarkers for evaluation of mast cell and basophil activation.
Kabashima, Kenji; Nakashima, Chisa; Nonomura, Yumi; Otsuka, Atsushi; Cardamone, Chiara; Parente, Roberta; De Feo, Giulia; Triggiani, Massimo
2018-03-01
Mast cells and basophils play a pathogenetic role in allergic, inflammatory, and autoimmune disorders. These cells have different development, anatomical location and life span but share many similarities in mechanisms of activation and type of mediators. Mediators secreted by mast cells and basophils correlate with clinical severity in asthma, chronic urticaria, anaphylaxis, and other diseases. Therefore, effective biomarkers to measure mast cell and basophil activation in vivo could potentially have high diagnostic and prognostic values. An ideal biomarker should be specific for mast cells or basophils, easily and reproducibly detectable in blood or biological fluids and should be metabolically stable. Markers of mast cell and basophil include molecules secreted by stimulated cells and surface molecules expressed upon activation. Some markers, such as histamine and lipid mediators are common to mast cells and basophils whereas others, such as tryptase and other proteases, are relatively specific for mast cells. The best surface markers of activation expressed on mast cells and basophils are CD63 and CD203. While these mediators and surface molecules have been associated to a variety of diseases, none of them fulfills requirements for an optimal biomarker and search for better indicators of mast cell/basophil activation in vivo is ongoing. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Distribution and characterisation of rat choroidal mast cells.
Steptoe, R J; McMenamin, P G; McMenamin, C
1994-01-01
Despite the implication that choroidal mast cells are involved in the onset of experimental autoimmune uveoretinitis (EAU), a widely used animal model of uveoretinitis, little is known of these cells. In the present study the distribution, total number, regional density, and phenotype of choroidal mast cells were examined in Lewis, Wistar Furth, PVG/c, and brown Norway rats. Choroidal mast cells were predominantly associated with arteries and arterioles of more than 30 microns diameter which lie in the outer (sclerad) choroid. The density of mast cells was greatest in the posterior choroid with density diminishing anteriorly. The choroid of male Lewis rats contained significantly greater number of mast cells than that of females (p < 0.01). Histochemical (Alcian blue/safranin) and immunohistochemical (anti-rat mast cell protease I and II monoclonal antibodies) studies revealed choroidal mast cells were of the connective tissue type. However, granule proteinase content appeared less than that of well characterised connective tissue mast cell populations such as those in mesentery and skin. Lewis rats exhibited the highest density of choroidal mast cells (23.6 (SD 1.2)/mm2), Wistar Furth approximately half that of Lewis (13.5 (0.7)/mm2) while PVG/c and brown Norway rats had very low densities (3.06(0.3); 1.95(0.2/mm2 respectively). These studies provide valuable choroidal mast cell data for rats which may have implications for our understanding of experimental models of intraocular inflammation and clinical uveitis. Images PMID:8148338
Mast cells and exosomes in hyperoxia-induced neonatal lung disease.
Veerappan, A; Thompson, M; Savage, A R; Silverman, M L; Chan, W S; Sung, B; Summers, B; Montelione, K C; Benedict, P; Groh, B; Vicencio, A G; Peinado, H; Worgall, S; Silver, R B
2016-06-01
Chronic lung disease of prematurity (CLD) is a frequent sequela of premature birth and oxygen toxicity is a major associated risk factor. Impaired alveolarization, scarring, and inflammation are hallmarks of CLD. Mast cell hyperplasia is a feature of CLD but the role of mast cells in its pathogenesis is unknown. We hypothesized that mast cell hyperplasia is a consequence of neonatal hyperoxia and contributes to CLD. Additionally, mast cell products may have diagnostic and prognostic value in preterm infants predisposed to CLD. To model CLD, neonatal wild-type and mast cell-deficient mice were placed in an O2 chamber delivering hyperoxic gas mixture [inspired O2 fraction (FiO2 ) of 0.8] (HO) for 2 wk and then returned to room air (RA) for an additional 3 wk. Age-matched controls were kept in RA (FiO2 of 0.21). Lungs from HO mice had increased numbers of mast cells, alveolar simplification and enlargement, and increased lung compliance. Mast cell deficiency proved protective by preserving air space integrity and lung compliance. The mast cell mediators β-hexosaminidase (β-hex), histamine, and elastase increased in the bronchoalveolar lavage fluid of HO wild-type mice. Tracheal aspirate fluids (TAs) from oxygenated and mechanically ventilated preterm infants were analyzed for mast cell products. In TAs from infants with confirmed cases of CLD, β-hex was elevated over time and correlated with FiO2 Mast cell exosomes were also present in the TAs. Collectively, these data show that mast cells play a significant role in hyperoxia-induced lung injury and their products could serve as potential biomarkers in evolving CLD. Copyright © 2016 the American Physiological Society.
Giardia lamblia: identification of molecules that contribute to direct mast cell activation.
Muñoz-Cruz, Samira; Gomez-García, Argelia; Matadamas-Martínez, Félix; Alvarado-Torres, Juan A; Meza-Cervantez, Patricia; Arriaga-Pizano, Lourdes; Yépez-Mulia, Lilián
2018-06-02
Mast cells play a central role in the early clearance of the intestinal parasite Giardia lamblia. In a previous study, we reported that G. lamblia live trophozoites or trophozoite-derived total soluble extract induced direct activation (IgE-independent) of mast cells and release of IL-6 and TNF-α. To identify the Giardia molecules and the mast cell receptors involved in this activation, trophozoite-derived total soluble proteins separated into three fractions (F1-F3) were evaluated for its ability to activate mast cells in vitro. F2 activated mast cells in a greater extent than F1 and F3. Furthermore, F2 induced the release of IL-6 and TNF-α by mast cells. TLR2 and TLR4 expression increased slightly after mast cell stimulation with either F2 or total soluble extract; however, these receptors were not involved in F2 or total soluble extract-induced proinflammatory cytokine production. Proteins present in F2 as unique and high-intensity bands identified by liquid chromatography coupled with tandem mass spectrometry, include molecules with important biological activities such as enolase and arginine deiminase (ADI). Recombinant ADI and enolase were tested for their ability to activate mast cells, but only ADI induced a significant release of IL-6 and TNF-α. ADI product, citrulline but not ammonium, also induced mast cell release of TNF-α. Interestingly, recombinant ADI still stimulated the secretion of TNF-α by mast cells in a arginine-free medium, although in a lower extend that in the presence of arginine, indicating that either ADI itself can stimulate mast cells or through its metabolic product, citrulline.
Autonomous Aerial Sensors for Wind Power Meteorology
NASA Astrophysics Data System (ADS)
Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim; La Cour-Harbo, Anders; Thomsen, Carsten; Bange, Jens; Buschmann, Marco
2010-05-01
This poster describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. During a week of flying a lighter-than-air vehicle, two small electrically powered aeroplanes and a larger helicopter at the Risø test station at Høvsøre, we will compare wind speed measurements with fixed mast and LIDAR measurements, investigate optimal flight patterns for each measurement task, and measure other interesting meteorological features like the air-sea boundary in the vicinity of the wind farm. In order to prepare the measurement campaign, a workshop is held, soliciting input from various communities. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. While the wake structure behind single wind turbines onshore is fairly well understood, there are different problems offshore, thought to be due mainly to the low turbulence. Good measurements of the wake and wake structure are not easy to come by, as the use of a met mast is static and expensive, while the use of remote sensing instruments either needs significant access to the turbine to mount an instrument, or is complicated to use on a ship due to the ship's own movement. In any case, a good LIDAR or SODAR will cost many tens of thousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12 MW class, with tip heights of over 200 m. Very few measurement masts exist to verify our knowledge of atmospheric physics - all that is known is that the boundary layer description we used so far is not valid any more. Here, automated Unmanned Aerial Vehicles (UAVs) could be used as either an extension of current high masts or to build a network of very high ‘masts' in a region of complex terrain or coastal flow conditions. In comparison to a multitude of high masts, UAVs could be quite cost-effective. In order to test this assumption and to test the limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø will build a lighter-than-air kite with a long tether, Bergen University flies a derivative of the Funjet, a pusher airplane below 1 kg total weight, Mavionics or TU Braunschweig flies the Carolo, a 2m wide two prop model with a pitot tube on the nose, and Aalborg University will use a helicopter for their part. All those platforms will be flown during one week at the Danish national test station for large wind turbines at Høvsøre. The site is strongly instrumented, with 6 masts reaching up to 167m. The comparison of wind speed measurements from planes and fixed masts should give an indication of the accuracy of the measured wind field. A workshop is planned as preparation, where everyone with an interest in the program can give input.
Regulatory roles of mast cells in immune responses.
Morita, Hideaki; Saito, Hirohisa; Matsumoto, Kenji; Nakae, Susumu
2016-09-01
Mast cells are important immune cells for host defense through activation of innate immunity (via toll-like receptors or complement receptors) and acquired immunity (via FcεRI). Conversely, mast cells also act as effector cells that exacerbate development of allergic or autoimmune disorders. Yet, several lines of evidence show that mast cells act as regulatory cells to suppress certain inflammatory diseases. Here, we review the mechanisms by which mast cells suppress diseases.
Genomic Analysis of the Appearance of Ovarian Mast Cells in Neonatal MRL/MpJ Mice
Nakamura, Teppei; Sakata, Yuko; Otsuka-Kanazawa, Saori; Ichii, Osamu; Chihara, Masataka; Nagasaki, Ken-ichi; Namiki, Yuka; Kon, Yasuhiro
2014-01-01
In MRL/MpJ mice, ovarian mast cells (OMCs) are more abundant than in other mouse strains, and tend to distribute beneath the ovarian surface epithelium at birth. This study investigated the factors regulating the appearance of neonatal OMCs in progeny of the cross between MRL/MpJ and C57BL/6N strains. F1 neonates had less than half the number of OMCs than MRL/MpJ. Interestingly, MRLB6F1 had more neonatal OMCs than B6MRLF1, although they were distributed over comparable areas. Furthermore, in MRL/MpJ fetuses for which parturition was delayed until embryonic day 21.5, the number of OMCs was significantly higher than in age-matched controls at postnatal day 2. These results suggest that the number of OMCs was influenced by the environmental factors during pregnancy. Quantitative trait locus analysis using N2 backcross progeny revealed two significant loci on chromosome 8: D8Mit343–D8Mit312 for the number of OMCs and D8Mit86–D8Mit89 for their distribution, designated as mast cell in the ovary of MRL/MpJ 1 (mcom1) and mcom2, respectively. Among MC migration-associated genes, ovarian expression of chemokine (C-C motif) ligand 17 at mcom1 locus was significantly higher in MRL/MpJ than in C57BL/6N, and positively correlated with the expression of OMC marker genes. These results indicate that the appearance of neonatal OMCs in MRL/MpJ is controlled by environmental factors and filial genetic factors, and that the abundance and distribution of OMCs are regulated by independent filial genetic elements. PMID:24956472
Linking resources with demography to understand resource limitation for bears
Reynolds-Hogland, M. J.; Pacifici, L.B.; Mitchell, M.S.
2007-01-01
1. Identifying the resources that limit growth of animal populations is essential for effective conservation; however, resource limitation is difficult to quantify. Recent advances in geographical information systems (GIS) and resource modelling can be combined with demographic modelling to yield insights into resource limitation. 2. Using long-term data on a population of black bears Ursus americanus, we evaluated competing hypotheses about whether availability of hard mast (acorns and nuts) or soft mast (fleshy fruits) limited bears in the southern Appalachians, USA, during 1981-2002. The effects of clearcutting on habitat quality were also evaluated. Annual survival, recruitment and population growth rate were estimated using capture-recapture data from 101 females. The availability of hard mast, soft mast and clearcuts was estimated with a GIS, as each changed through time as a result of harvest and succession, and then availabilities were incorporated as covariates for each demographic parameter. 3. The model with the additive availability of hard mast and soft mast across the landscape predicted survival and population growth rate. Availability of young clearcuts predicted recruitment, but not population growth or survival. 4. Availability of hard mast stands across the landscape and availability of soft mast across the landscape were more important than hard mast production and availability of soft mast in young clearcuts, respectively. 5. Synthesis and applications. Our results indicate that older stands, which support high levels of hard mast and moderate levels of soft mast, should be maintained to sustain population growth of bears in the southern Appalachians. Simultaneously, the acreage of intermediate aged stands (10-25 years), which support very low levels of both hard mast and soft mast, should be minimized. The approach used in this study has broad application for wildlife management and conservation. State and federal wildlife agencies often possess long-term data on both resource availability and capture-recapture for wild populations. Combined, these two data types can be used to estimate survival, recruitment, population growth, elasticities of vital rates and the effects of resource availability on demographic parameters. Hence data that are traditionally used to understand population trends can be used to evaluate how and why demography changes over time. ?? 2007 The Authors.
Bernard, Quentin; Wang, Zhenping; Di Nardo, Anna; Boulanger, Nathalie
2017-06-27
Borrelia burgdorferi (sensu lato), the causative agent of Lyme borreliosis is a bacterium transmitted by hard ticks, Ixodes spp. Bacteria are injected into the host skin during the tick blood meal with tick saliva. There, Borrelia and saliva interact together with skin cells such as keratinocytes, fibroblasts, mast cells and other specific immune cells before disseminating to target organs. To study the role of mast cells in the transmission of Lyme borreliosis, we isolated mouse primary mast cells from bone marrow and incubated them in the presence of Borrelia burgdorferi (sensu stricto) and tick salivary gland extract. We further analyzed their potential role in vivo, in a mouse model of deficient in mast cells (Kit wsh-/- mice). To our knowledge, we report here for the first time the bacteria ability to induce the inflammatory response of mouse primary mast cells. We show that OspC, a major surface lipoprotein involved in the early transmission of Borrelia, induces the degranulation of primary mast cells but has a limited effect on the overall inflammatory response of these cells. In contrast, whole bacteria have an opposite effect. We also show that mast cell activation is significantly inhibited by tick salivary gland extract. Finally, we demonstrate that mast cells are likely not the only host cells involved in the early transmission and dissemination of Borrelia since the use of mast cell deficient Kit wsh-/- mice shows a limited impact on these two processes in the context of this mouse genetic background. The absence of mast cells did not change the replication rate of Borrelia in the skin. However, in the absence of mast cells, Borrelia dissemination to the joints was faster. Mast cells do not control skin bacterial proliferation during primary infection and the establishment of the primary infection, as shown in the C57BL/6 mouse model studied. Nevertheless, the Borrelia induced cytotokine modulation on mast cells might be involved in long term and/or repeated infections and protect from Lyme borreliosis due to the development of a hypersensitivity to tick saliva.
Shiromany, Aseem; Sood, Rahul; Akifuddin, Syed; Sidhu, Gagandeep Kaur; Khan, Nadia; Singla, Kapil
2014-12-01
The role of mast cells as the key effector of allergic inflammation, anaphylactic inflammatory reactions and in the pathogenesis of chronic inflammation, is well-known. The present study is adopted to compare mast cells and inflammatory cells within periapical granuloma and cysts and localize the mast cells and quantify their number in the periapical cysts so as to propose a role of mast cells in the pathogenesis of this lesion. Biopsy specimens of 30 periapical lesions were stained with hematoxylin-eosin, and immunohistochemical Mast Cell Tryptase from Bio SB (IHC detection system kit) antibody. The tryptase positive mast cells and mononuclear inflammatory cells were counted in 10 consecutive high power fields (100X) using the binocular microscope from Motic attached to a computer with Motic Advanced Images 3.2 software. Comparative microscopic analysis indicated that periapical cyst shows more percentage of mast cells and less percentage of inflammatory cell than periapical granuloma (comparison of mean and standard deviation of total number of mast cells and inflammatory cells, mast cells 3.15±1.39 in the granuloma group and 4.43±1.91in the cyst group, inflammatory cells, 67.11±1.2 in the granuloma group and 52.66±0.8 in the cyst group). Numerous degranulated mast cells were observed in the fibrous wall than the inflammatory infiltrate of the periapical cysts. The mean and standard deviation of degranulated mast cells between the inflammatory and fibrous zone within the cyst group, being 0.95±1.10 and1.68±1.34 respectively. The values varied significantly between the two zones. The number of inflammatory cells in the cyst group is less than periapical granuloma and total number of mast cells in the cyst group is more as compared to periapical granuloma. The degranulated cells were quantified and they were higher in the fibrous area of the cysts than the inflammatory zone. This study could support the fact that the various mediators released on degranulation play a role in the connective tissue remodeling, chronicity and expansion of the periapical lesion.
Thrombopoietin inhibits murine mast cell differentiation
Martelli, Fabrizio; Ghinassi, Barbara; Lorenzini, Rodolfo; Vannucchi, Alessandro M; Rana, Rosa Alba; Nishikawa, Mitsuo; Partamian, Sandra; Migliaccio, Giovanni; Migliaccio, Anna Rita
2009-01-01
We have recently shown that Mpl, the thrombopoietin receptor, is expressed on murine mast cells and on their precursors and that targeted deletion of the Mpl gene increases mast cell differentiation in mice. Here we report that treatment of mice with thrombopoietin, or addition of this growth factor to bone marrow-derived mast cell cultures, severely hampers the generation of mature cells from their precursors by inducing apoptosis. Analysis of the expression profiling of mast cells obtained in the presence of thrombopoietin suggests that thrombopoietin induces apoptosis of mast cells by reducing expression of the transcription factor Mitf and its target anti-apoptotic gene Bcl2. PMID:18276801
Are mast cells important in diabetes?
Kempuraj, Duraisamy; Caraffa, Alessandro; Ronconi, Gianpaolo; Lessiani, Gianfranco; Conti, Pio
Diabetes is a metabolic disorder characterized by hyperglycemia and associated with microvascular and macrovascular syndromes mediated by mast cells. Mast cells are activated through cross-linking of their surface high affinity receptors for IgE (FcRI) or other antigens, leading to degranulation and release of stored inflammatory mediators, and cytokines/chemokines without degranulation. Mast cells are implicated in innate and acquired immunity, inflammation and metabolic disorders such as diabetes. Histamine and tryptase genes in mast cells are overexpressed in pancreatic tissue of type 2 diabetes mellitus (T2DM) patients. Histamine is a classic inflammatory mediator generated by activated receptors of mast cells from the histamine-forming enzyme histidine decarboxylase (HDC), which can be activated by two inflammatory chemokines, RANTES and MPC1, when injected intramuscularly or intradermally in mice. This activation is inhibited in genetically mast cell-deficient W/Wv mice, which show higher insulin sensitivity and glucose tolerance. This study contributes to understanding the mechanism by which mast cells profoundly affect diabetes, and their manipulation could represent a new therapeutic strategy. However, further studies are needed to clarify the role of mast cells in inflammation and metabolic disorders such as diabetes.
Mast Cells and Irritable Bowel Syndrome: From the Bench to the Bedside
Zhang, Lei; Song, Jun; Hou, Xiaohua
2016-01-01
Irritable bowel syndrome (IBS) is traditionally defined as a functional disorder since it lacks demonstrable pathological abnormalities. However, in recent years, low grade inflammatory infiltration, often rich in mast cells, in both the small and large bowel, has been observed in some patients with IBS. The close association of mast cells with major intestinal functions, such as epithelial secretion and permeability, neuroimmune interactions, visceral sensation, and peristalsis, makes researchers and gastroenterologists to focus attention on the key roles of mast cells in the pathogenesis of IBS. Numerous studies have been carried out to identify the mechanisms in the development, infiltration, activation, and degranulation of intestinal mast cells, as well as the actions of mast cells in the processes of mucosal barrier disruption, mucosal immune dysregulation, visceral hypersensitivity, dysmotility, and local and central stress in IBS. Moreover, therapies targeting mast cells, such as mast cell stabilizers (cromoglycate and ketotifen) and antagonists of histamine and serotonin receptors, have been tried in IBS patients, and have partially exhibited considerable efficacy. This review focuses on recent advances in the role of mast cells in IBS, with particular emphasis on bridging experimental data with clinical therapeutics for IBS patients. PMID:26755686
Pearson, Richard J; Morf, Laura; Singh, Upinder
2013-02-08
Outcome of infection depends upon complex interactions between the invading pathogen and the host. As part of the host's innate immune response, the release of reactive oxygen and nitrogen species by phagocytes represents a major obstacle to the establishment of infection. The ability of the human parasite Entamoeba histolytica to survive reactive oxygen and nitrogen species is central to its pathogenic potential and contributes to disease outcome. In order to define the transcriptional network associated with oxidative stress, we utilized the MEME and MAST programs to analyze the promoter regions of 57 amoebic genes that had increased expression specifically in response to H(2)O(2) exposure. We functionally characterized an H(2)O(2)-regulatory motif (HRM) ((1)AAACCTCAATGAAGA(15)), which was enriched in these promoters and specifically bound amoebic nuclear protein(s). Assays with promoter-luciferase fusions established the importance of key residues and that the HRM motif directly impacted the ability of H(2)O(2)-responsive promoters to drive gene expression. DNA affinity chromatography and mass spectrometry identified EHI_108720 as an HRM DNA-binding protein. Overexpression and down-regulation of EHI_108720 demonstrated the specificity of EHI_108720 protein binding to the HRM, and overexpression increased basal expression from an H(2)O(2)-responsive wild-type promoter but not from its mutant counterpart. Thus, EHI_108720, or HRM-binding protein, represents a new stress-responsive transcription factor in E. histolytica that controls a transcriptional regulatory network associated with oxidative stress. Overexpression of EHI_108720 increased parasite virulence. Insight into how E. histolytica responds to oxidative stress increases our understanding of how this important human pathogen establishes invasive disease.
Pearson, Richard J.; Morf, Laura; Singh, Upinder
2013-01-01
Outcome of infection depends upon complex interactions between the invading pathogen and the host. As part of the host's innate immune response, the release of reactive oxygen and nitrogen species by phagocytes represents a major obstacle to the establishment of infection. The ability of the human parasite Entamoeba histolytica to survive reactive oxygen and nitrogen species is central to its pathogenic potential and contributes to disease outcome. In order to define the transcriptional network associated with oxidative stress, we utilized the MEME and MAST programs to analyze the promoter regions of 57 amoebic genes that had increased expression specifically in response to H2O2 exposure. We functionally characterized an H2O2-regulatory motif (HRM) (1AAACCTCAATGAAGA15), which was enriched in these promoters and specifically bound amoebic nuclear protein(s). Assays with promoter-luciferase fusions established the importance of key residues and that the HRM motif directly impacted the ability of H2O2-responsive promoters to drive gene expression. DNA affinity chromatography and mass spectrometry identified EHI_108720 as an HRM DNA-binding protein. Overexpression and down-regulation of EHI_108720 demonstrated the specificity of EHI_108720 protein binding to the HRM, and overexpression increased basal expression from an H2O2-responsive wild-type promoter but not from its mutant counterpart. Thus, EHI_108720, or HRM-binding protein, represents a new stress-responsive transcription factor in E. histolytica that controls a transcriptional regulatory network associated with oxidative stress. Overexpression of EHI_108720 increased parasite virulence. Insight into how E. histolytica responds to oxidative stress increases our understanding of how this important human pathogen establishes invasive disease. PMID:23250742
Tumor microvessel density–associated mast cells in canine nodal lymphoma
Mann, Elizabeth; Whittington, Lisa
2014-01-01
Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended. PMID:26770752
Are Mast Cells MASTers in Cancer?
Varricchi, Gilda; Galdiero, Maria Rosaria; Loffredo, Stefania; Marone, Giancarlo; Iannone, Raffaella; Marone, Gianni; Granata, Francescopaolo
2017-01-01
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin’s lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers. PMID:28446910
Are Mast Cells MASTers in Cancer?
Varricchi, Gilda; Galdiero, Maria Rosaria; Loffredo, Stefania; Marone, Giancarlo; Iannone, Raffaella; Marone, Gianni; Granata, Francescopaolo
2017-01-01
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.
Mast cells in the sheep, hedgehog and rat forebrain
MICHALOUDI, HELEN C.; PAPADOPOULOS, GEORGIOS C.
1999-01-01
The study was designed to reveal the distribution of various mast cell types in the forebrain of the adult sheep, hedgehog and rat. Based on their histochemical and immunocytochemical characteristics, mast cells were categorised as (1) connective tissue-type mast cells, staining metachromatically purple with the toluidine blue method, or pale red with the Alcian blue/safranin method, (2) mucosal-type or immature mast cells staining blue with the Alcian blue/safranin method and (3) serotonin immunopositive mast cells. All 3 types of brain mast cells in all species studied were located in both white and grey matter, often associated with intraparenchymal blood vessels. Their distribution pattern exhibited interspecies differences, while their number varied considerably not only between species but also between individuals of each species. A distributional left-right asymmetry, with more cells present on the left side, was observed in all species studied but it was most prominent in the sheep brain. In the sheep, mast cells were abundantly distributed in forebrain areas, while in the hedgehog and the rat forebrain, mast cells were less widely distributed and were relatively or substantially fewer in number respectively. A limited number of brain mast cells, in all 3 species, but primarily in the rat, were found to react both immunocytochemically to 5-HT antibody and histochemically with Alcian blue/safranin staining. PMID:10634696
New models for analyzing mast cell functions in vivo
Reber, Laurent L.; Marichal, Thomas; Galli, Stephen J.
2013-01-01
In addition to their well-accepted role as critical effector cells in anaphylaxis and other acute IgE-mediated allergic reactions, mast cells have been implicated in a wide variety of process that contribute to disease or help to maintain health. While some of these roles were first suggested by analyses of mast cell products or functions in vitro, it is critical to determine whether, and under which circumstances, such potential roles actually can be performed by mast cells in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of mast cells and mast cell-associated products during biological responses in vivo, and comments on some of the similarities and differences in the results obtained with these newer versus older models of mast cell deficiency. PMID:23127755
Mast cells as effectors in atherosclerosis
Bot, Ilze; Shi, Guo-Ping; Kovanen, Petri T.
2014-01-01
The mast cell is a potent immune cell known for its functions in host defense responses and diseases such as asthma and allergies. In the past years, accumulating evidence established the contribution of the mast cell to cardiovascular diseases as well, in particular by its effects on atherosclerotic plaque progression and destabilization. Through its release of mediators, such as the mast cell-specific proteases chymase and tryptase, but also of growth factors, histamine and chemokines, activated mast cells can have detrimental effects on its immediate surroundings in the vessel wall. This results in matrix degradation, apoptosis and enhanced recruitment of inflammatory cells, thereby actively contributing to cardiovascular diseases. In this review, we will discuss the current knowledge on mast cell function in cardiovascular diseases and speculate on potential novel therapeutic strategies to prevent acute cardiovascular syndromes via targeting of mast cells. PMID:25104798
Carvalho, Ricardo Filipe da Silva; Nilsson, Gunnar; Harvima, Ilkka Tapani
2010-02-01
Mast cells are increasingly present in the lesional skin of chronic skin inflammatory diseases including psoriasis and basal cell carcinoma (BCC). It has previously been shown that proteinase-activated receptor (PAR)-2 is expressed by mast cells, and tryptase is a potent activator of this receptor. In this study, skin biopsies from both healthy-looking and lesional skin of patients with psoriasis and superficial spreading BCC were collected and the expression of PAR-2 immunoreactivity in tryptase-positive mast cells was analysed. PAR-2 expression was confirmed in vitro in different mast cell populations. Cord-blood derived mast cells (CBMC) were stimulated with a PAR-2 activating peptide, 2-furoyl-LIGRLO-NH(2). Consequently, IL-8 and histamine production was analysed in the supernatants. We observed a significant increase in the percentage of mast cells expressing PAR-2 in the lesional skin of psoriasis and BCC patients compared with the healthy-looking skin. HMC-1.2, LAD-2 and CBMC mast cells all expressed PAR-2 both intracellularly and on the cell surface. CBMC activation with the PAR-2 activating peptide resulted in an increased secretion of IL-8, but no histamine release was observed. Furthermore, both PAR-2 and IL-8 were co-localized to the same tryptase-positive mast cells in the lesional BCC skin. These results show that mast cells express increased levels of PAR-2 in chronic skin inflammation. Also, mast cells can be activated by a PAR-2 agonist to secrete IL-8, a chemokine which can contribute to the progress of inflammation.
Mast cells promote melanoma colonization of lungs.
Öhrvik, Helena; Grujic, Mirjana; Waern, Ida; Gustafson, Ann-Marie; Ernst, Nancy; Roers, Axel; Hartmann, Karin; Pejler, Gunnar
2016-10-18
Mast cells have been implicated in malignant processes, mainly through clinical correlative studies and by experiments performed using animals lacking mast cells due to defective c-kit signaling. However, mast cell-deficient mouse models based on c-kit defects have recently been questioned for their relevance. Here we addressed the effect of mast cells in a tumor setting by using transgenic Mcpt5-Cre+ R-DTA+ mice, in which the deficiency of mast cells is independent of c-kit defects. Melanoma cells (B16.F10) were administered either subcutaneously or intravenously into Mcpt5-Cre+ R-DTA+ mice or Mcpt5-Cre- R-DTA+ littermate controls, followed by the assessment of formed tumors. In the subcutaneous model, mast cells were abundant in the tumor stroma of control mice but were absent in Mcpt5-Cre+ R-DTA+ mice. However, the absence of mast cells did not affect tumor size. In contrast, after intravenous administration of B16.F10 cells, melanoma colonization of the lungs was markedly reduced in Mcpt5-Cre+ R-DTA+ vs. Mcpt5-Cre- R-DTA+ animals. Decreased melanoma colonization of the lungs in Mcpt5-Cre+ R-DTA+ animals was accompanied by increased inflammatory cell recruitment into the bronchoalveolar lavage fluid, suggesting that mast cells suppress inflammation in this setting. Further, qPCR analysis revealed significant alterations in the expression of Twist and E-cadherin in lungs of Mcpt5-Cre+ R-DTA+ vs. control Mcpt5-Cre- R-DTA+ animals, suggesting an impact of mast cells on epithelial-mesenchymal transition. In conclusion, this study reveals that mast cells promote melanoma colonization of the lung.
International Space Station 2A Array Modal Analysis
NASA Technical Reports Server (NTRS)
Laible, Michael; Fitzpatrick, Kristin; Grygier, Michael
2012-01-01
On December 9th 2009, the International Space Station (ISS) 2A solar array mast experienced prolonged longeron shadowing during a Soyuz undocking. Analytical reconstruction of induced thermal and dynamic structural loads showed an exceedance of the mast buckling limit. Possible structural damage to the solar array mast could have occurred during this event. A Low fidelity video survey of the 2A mast showed no obvious damage of the mast longerons or battens. The decision was made to conduct an on-orbit dynamic test of the 2A array on December 18th, 2009. The test included thruster pluming on the array while photogrammetry data was recorded. The test was similar to other Dedicated Thruster Firings (DTFs) that were performed to measure structural frequency and damping of a solar array. Results of the DTF indicated lower frequency mast modes than model predictions, thus leading to speculation of mast damage. A detailed nonlinear analysis was performed on the 2A array model to assess possible solutions to modal differences. The setup of the parametric nonlinear trade study included the use of a detailed array model and the reduced mass and stiffness matrices of the entire ISS being applied to the array interface. The study revealed that the array attachment structure is nonlinear and thus was the source of error in the model prediction of mast modes. In addition, a detailed study was performed to determine mast mode sensitivity to mast longeron damage. This sensitivity study was performed to assess if the ISS program has sufficient instrumentation for mast damage detection.
Mast cell heterogeneity underlies different manifestations of food allergy in mice
Benedé, Sara
2018-01-01
Food can trigger a diverse array of symptoms in food allergic individuals from isolated local symptoms affecting skin or gut to multi-system severe reactions (systemic anaphylaxis). Although we know that gastrointestinal and systemic manifestations of food allergy are mediated by tissue mast cells (MCs), it is not clear why allergen exposure by the oral route can result in such distinct clinical manifestations. Our aim was to assess the contribution of mast cell subsets to different manifestations of food allergy. We used two common models of IgE-mediated food allergy, one resulting in systemic anaphylaxis and the other resulting in acute gastrointestinal symptoms, to study the immune basis of allergic reactions. We used responders and non-responders in each model system, as well as naïve controls to identify the association of mast cell activation with clinical reactivity rather than sensitization. Systemic anaphylaxis was uniquely associated with activation of connective tissue mast cells (identified by release of mouse mast cell protease (MMCP) -7 into the serum) and release of histamine, while activation of mucosal mast cells (identified by release of MMCP-1 in the serum) did not correlate with symptoms. Gastrointestinal manifestations of food allergy were associated with an increase of MMCP-1-expressing mast cells in the intestine, and evidence of both mucosal and connective tissue mast cell activation. The data presented in this paper demonstrates that mast cell heterogeneity is an important contributor to manifestations of food allergy, and identifies the connective tissue mast cell subset as key in the development of severe systemic anaphylaxis. PMID:29370173
de Noronha Santos Netto, Juliana; Pires, Fábio Ramôa; da Fonseca, Eliene Carvalho; Silva, Licínio Esmeraldo; de Queiroz Chaves Lourenço, Simone
2012-09-01
Several cell types are associated with the development of cystic and tumoral odontogenic lesions. Among inflammatory cells, mast cells can be associated with their pathogenesis. The aim of this study was to analyze mast cells in periapical cysts, dentigerous cysts, and keratocystic odontogenic tumors. Tissue sections were submitted to toluidine blue staining and immunohistochemistry with antibody anti-tryptase (clone G3). Mast cells were quantitated using Image-Pro Plus software to obtain the mean number of mast cells in three regions: epithelial, superficial portion of the fibrous wall and deep portion of the fibrous wall from 20 periapical cysts, 20 dentigerous cysts (six non-inflamed and 14 inflamed) and 20 keratocystic odontogenic tumors (four non-inflamed and 16 inflamed). The mean number of mast cells detected per lesion by immunohistochemistry (4.1) was higher than by histochemistry (1.5) (P<0.0001). Inflamed dentigerous cysts and keratocystic odontogenic tumors showed a higher mean number of mast cells than non-inflamed lesions in all regions. The deep region from all cysts showed the highest mean number of degranulated mast cells, except for non-inflamed keratocystic odontogenic tumors analyzed by immunohistochemistry. Immunohistochemical staining detected higher number of mast cells than histochemistry. The higher number of mast cells observed in inflamed lesions could indicate the participation of these cells in the inflammatory response in odontogenic lesions. The prevalence of degranulated mast cells in the deep region suggests intense activity of these cells, possibly related to growth of cystic lesions. © 2012 John Wiley & Sons A/S.
Sverrild, A; Bergqvist, A; Baines, K J; Porsbjerg, C; Andersson, C K; Thomsen, S F; Hoffmann, H J; Gibson, P; Erjefält, J S; Backer, V
2016-02-01
Airway hyperresponsiveness (AHR) to inhaled mannitol is associated with indirect markers of mast cell activation and eosinophilic airway inflammation. It is unknown how AHR to mannitol relates to mast cell phenotype, mast cell function and measures of eosinophilic inflammation in airway tissue. We compared the number and phenotype of mast cells, mRNA expression of mast cell-associated genes and number of eosinophils in airway tissue of subjects with asthma and healthy controls in relation to AHR to mannitol. Airway hyperresponsiveness to inhaled mannitol was measured in 23 non-smoking, corticosteroid-free asthmatic individuals and 10 healthy controls. Mast cells and eosinophils were identified in mucosal biopsies from all participants. Mast cells were divided into phenotypes based on the presence of chymase. mRNA expression of mast cell-associated genes was measured by real-time PCR. The proportion of submucosal MCTC was higher in asthmatic individuals with AHR to mannitol compared with asthmatic individuals without AHR (median: 40.3% vs. 18.7%, P = 0.03). Increased submucosal MCTC numbers were associated with increased levels of mRNA for thymic stromal lymphopoietin (TSLP) and CPA3 in asthmatics. Reactivity to mannitol correlated significantly with eosinophils in submucosa (r(s): 0.56, P = 0.01). Airway hyperresponsiveness to inhaled mannitol is associated with an altered submucosal mast cell profile in asthmatic individuals. This mast cell profile is associated with increased levels of TSLP and CPA3. The degree of AHR to mannitol is correlated with the degree of eosinophilic inflammation in the airway submucosa. © 2015 John Wiley & Sons Ltd.
Cochrane, David E; Carraway, Robert E; Harrington, Kimberly; Laudano, Melissa; Rawlings, Stephen; Feldberg, Ross S
2011-12-01
To determine if mast cells synthesize the inflammatory peptide, neurotensin (NT), secrete immunoreactive and bioactive NT, and express the NT receptor NTS1. HMC-1 cells, pleural mast cells from Sprague-Dawley rats, LAD2 mast cells, and human cord blood mast cells were used. HMC-1 cells were stimulated with NT, C48/80, mastoparan, or PGE(2). For changes in cutaneous vascular permeability, anesthetized rats were injected intravenously with Evans Blue dye and intradermally with saline, NT, histamine, diphenhydramine, and C48/80. RT-PCR was used to identify RNA transcripts. Histamine was measured by fluorometric assay. In vivo cutaneous vascular permeability assays, radio-immunoassays for NT, Western blotting for the NT precursor protein and NTS1 protein from HMC-1 cells and tissues from rats were used. Immunohistochemistry was used to identify NT precursor-like proteins in HMC-1 mast cells. HMC-1 cells express mRNAs for NT precursor, PC5A processing enzyme and NTS1 receptor. Human cord blood mast cells and LAD2 mast cells express mRNA transcripts for NT precursor and NTS1. Western blotting showed NT precursor and NTS1 receptor in HMC1. Rat tissues with high numbers of mast cells contained NT precursor proteins. NT-like peptides from HMC-1 displayed NT-like bioactivity. HMC-1 mast cells synthesize and secrete immunoreactive and bioactive NT-like peptide(s) and express the NT receptor, suggesting that NT from mast cells might serve autocrine and paracrine roles.
Mast cell migration to Th2 stimulated airway smooth muscle from asthmatics
Sutcliffe, A; Kaur, D; Page, S; Woodman, L; Armour, C L; Baraket, M; Bradding, P; Hughes, J M; Brightling, C E
2006-01-01
Background Mast cell microlocalisation within the airway smooth muscle (ASM) bundle is an important determinant of the asthmatic phenotype. We hypothesised that mast cells migrate towards ASM in response to ASM derived chemokines. Methods Primary ASM cultures from subjects with and without asthma were stimulated with interleukin (IL)‐1β, IL‐4, and IL‐13 alone and in combination. Mast cell chemotaxis towards these ASM supernatants was investigated, and the chemotaxins mediating migration by using specific blocking antibodies for stem cell factor (SCF) and the chemokine receptors CCR3, CXCR1, 3 and 4 as well as the Gi inhibitor pertussis toxin and the tyrosine kinase inhibitor genistein were defined. The concentrations of CCL11, CXCL8, CXCL10, TGF‐β, and SCF in the supernatants were measured and the effect of non‐asthmatic ASM supernatants on the mast cell chemotactic activity of asthmatic ASM was examined. Results Human lung mast cells and HMC‐1 cells migrated towards Th2 stimulated ASM from asthmatics but not non‐asthmatics. Mast cell migration was mediated through the combined activation of CCR3 and CXCR1. CCL11 and CXCL8 expression by ASM increased markedly after stimulation, but was similar in those with and without asthma. ASM supernatants from non‐asthmatics inhibited mast cell migration towards the asthmatic ASM supernatant. Conclusion Th2 stimulated ASM from asthmatics is chemotactic for mast cells. Non‐asthmatic ASM releases a mediator or mediators that inhibit mast cell migration towards stimulated asthmatic ASM. Specifically targeting mast cell migration into the ASM bundle may provide a novel treatment for asthma. PMID:16601090
Kimura, Y.; Inoue, Yoshie; Honda, H.
1974-01-01
With a modified rat mast cell degranulation (RMCD) technique developed by Korotzer, Haddad and Lopapa (1971), the mechanism of mast cell degranulation by IgE—anti-IgE reaction and the inhibitory effect of cAMP-related compounds upon IgE-mediated mast cell degranulation were studied. Degranulations of 90 per cent or more were decreased to 13–16 per cent when the mast cells were pretreated with human IgE or normal human serum. However, if rat mast cells were pretreated with anti-human IgE rabbit serum or normal rabbit serum, the degranulation per cent in these cells by IgE—anti-IgE reaction was the same as in the nontreated cells. These results suggest the presence of receptors in rat mast cells for human IgE or normal human serum, and the lack of receptors in these cells for anti-human IgE rabbit serum or normal rabbit serum. Treatment of isolated rat mast cells with adenyl cyclase stimulating agents (isoprenaline, adrenaline, prostaglandin E1 and E2) and theophylline or aminophylline, which inhibit the enzymatic degradation of cAMP, also inhibited the morphological degranulation of the mast cells. Cromoglycate or chlorophenes in derivatives, which might have a stabilizing effect of the cell membrane, also inhibited the degranulation of the rat mast cells mediated by IgE—anti-IgE reaction. These results support the attractive hypothesis that cAMP occupies a central modulatory role in the in vitro mast cell degranulation by IgE—anti-IgE reaction. PMID:4368738
43. TOP PART OF UMBILICAL MAST, NORTH AND WEST SIDES. ...
43. TOP PART OF UMBILICAL MAST, NORTH AND WEST SIDES. AIR CONDITIONING DUCTING IS VISIBLE ON INTERIOR OF MAST. RAIL IS VISIBLE LEFT OF THE MAST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST ...
42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST BASE. LAUNCHER IS BEHIND UMBILICAL MAST AND RAIL SYSTEM IS PARALLEL TO MAST ON RIGHT AND LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Siebenhaar, Frank; Sharov, Andrey A; Peters, Eva M J; Sharova, Tatyana Y; Syska, Wolfgang; Mardaryev, Andrei N; Freyschmidt-Paul, Pia; Sundberg, John P; Maurer, Marcus; Botchkarev, Vladimir A
2007-06-01
Alopecia areata (AA) is an autoimmune disorder of the hair follicle characterized by inflammatory cell infiltrates around actively growing (anagen) hair follicles. Substance P (SP) plays a critical role in the cutaneous neuroimmune network and influences immune cell functions through the neurokinin-1 receptor (NK-1R). To better understand the role of SP as an immunomodulatory neuropeptide in AA, we studied its expression and effects on immune cells in a C3H/HeJ mouse model for AA. During early stages of AA development, the number of SP-immunoreactive nerve fibers in skin is increased, compared to non-affected mice. However, during advanced stages of AA, the number of SP-immunoreactive nerves and SP protein levels in skin are decreased, whereas the expression of the SP-degrading enzyme neutral endopeptidase (NEP) is increased, compared to control skin. In AA, NK-1R is expressed on CD8+ lymphocytes and macrophages accumulating around affected hair follicles. Additional SP supply to the skin of AA-affected mice leads to a significant increase of mast cell degranulation and to accelerated hair follicle regression (catagen), accompanied by an increase of CD8+ cells-expressing granzyme B. These data suggest that SP, NEP, and NK-1R serve as important regulators in the molecular signaling network modulating inflammatory response in autoimmune hair loss.
Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity?
Frossi, Barbara; Mion, Francesca; Sibilano, Riccardo; Danelli, Luca; Pucillo, Carlo E M
2018-03-01
Mast cells (MCs) are derived from committed precursors that leave the hematopoietic tissue, migrate in the blood, and colonize peripheral tissues where they terminally differentiate under microenvironment stimuli. They are distributed in almost all vascularized tissues where they act both as immune effectors and housekeeping cells, contributing to tissue homeostasis. Historically, MCs were classified into 2 subtypes, according to tryptic enzymes expression. However, MCs display a striking heterogeneity that reflects a complex interplay between different microenvironmental signals delivered by various tissues, and a differentiation program that decides their identity. Moreover, tissue-specific MCs show a trained memory, which contributes to shape their function in a specific microenvironment. In this review, we summarize the current state of our understanding of MC heterogeneity that reflects their different tissue experiences. We describe the discovery of unique cell molecules that can be used to distinguish specific MC subsets in vivo, and discuss how the improved ability to recognize these subsets provided new insights into the biology of MCs. These recent advances will be helpful for the understanding of the specific role of individual MC subsets in the control of tissue homeostasis, and in the regulation of pathological conditions such as infection, autoimmunity, and cancer. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-20
... shape in the ``Actions'' column. If you submit your comments by mail or hand delivery, submit them in an... unique features of the Murray Morgan Bridge is its height above the waterway providing 60 feet of... bridge openings are for locally moored and operated recreational sailboats with mast heights over 60 feet...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... placement of lights on this vessel in a manner differently from that prescribed herein will adversely affect...: Authority: 33 U.S.C. 1605. 0 2. Section 706.2 is amended in Table Five by revising the entry for USS LAKE... U.S.C. 1605. * * * * * Table Five After mast- head Masthead lights Forward masthead light less than...
IL-4 downregulates expression of the target receptor CD30 in neoplastic canine mast cells
Bauer, K.; Hadzijusufovic, E.; Cerny-Reiterer, S.; Hoermann, G.; Reifinger, M.; Pirker, A.; Valent, P.; Willmann, M.
2018-01-01
CD30 is a novel therapeutic target in human mast cell (MC) neoplasms. In this ‘comparative oncology’ study, we examined CD30 expression and regulation in neoplastic canine MC using a panel of immunomodulatory cytokines [interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-13 and stem cell factor (SCF)] and the canine mastocytoma cell lines NI-1 and C2. Of all cytokines tested IL-4 was found to downregulate expression of CD30 in NI-1 and C2 cells. We also found that the CD30-targeting antibody-conjugate brentuximab vedotin induces growth inhibition and apoptosis in both MC lines. Next, we asked whether IL-4-induced downregulation of CD30 interferes with brentuximab vedotin-effects. Indeed, pre-incubation of NI-1 cells with IL-4 decreased responsiveness towards brentuximab vedotin. To overcome IL-4-mediated resistance, we applied drug combinations and found that brentuximab vedotin synergizes with the Kit-targeting drugs masitinib and PKC412 in inhibiting growth of NI-1 and C2 cells. In summary, CD30 is a new marker and IL-4-regulated target in neoplastic canine MC. PMID:27507155
Mast cells as effectors in atherosclerosis.
Bot, Ilze; Shi, Guo-Ping; Kovanen, Petri T
2015-02-01
The mast cell is a potent immune cell known for its functions in host defense responses and diseases, such as asthma and allergies. In the past years, accumulating evidence established the contribution of the mast cell to cardiovascular diseases as well, in particular, by its effects on atherosclerotic plaque progression and destabilization. Through its release not only of mediators, such as the mast cell-specific proteases chymase and tryptase, but also of growth factors, histamine, and chemokines, activated mast cells can have detrimental effects on its immediate surroundings in the vessel wall. This results in matrix degradation, apoptosis, and enhanced recruitment of inflammatory cells, thereby actively contributing to cardiovascular diseases. In this review, we will discuss the current knowledge on mast cell function in cardiovascular diseases and speculate on potential novel therapeutic strategies to prevent acute cardiovascular syndromes via targeting of mast cells. © 2014 American Heart Association, Inc.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill mast. 56.7004 Section 56.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in operation unless...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill mast. 57.7004 Section 57.7004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7004 Drill mast. Persons shall not be on a mast while the drill-bit is in...
The Michigan Alcoholism Screening Test (MAST): A Statistical Validation Analysis
ERIC Educational Resources Information Center
Laux, John M.; Newman, Isadore; Brown, Russ
2004-01-01
This study extends the Michigan Alcoholism Screening Test (MAST; M. L. Selzer, 1971) literature base by examining 4 issues related to the validity of the MAST scores. Specifically, the authors examine the validity of the MAST scores in light of the presence of impression management, participant demographic variables, and item endorsement…
Schneider, Lars A.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Wunderlin, Markus; Rodewald, Hans-Reimer
2007-01-01
Mast cells are protective against snake venom sarafotoxins that belong to the endothelin (ET) peptide family. The molecular mechanism underlying this recently recognized innate defense pathway is unknown, but secretory granule proteases have been invoked. To specifically disrupt a single protease function without affecting expression of other proteases, we have generated a mouse mutant selectively lacking mast cell carboxypeptidase A (Mc-cpa) activity. Using this mutant, we have now identified Mc-cpa as the essential protective mast cell enzyme. Mass spectrometry of peptide substrates after cleavage by normal or mutant mast cells showed that removal of a single amino acid, the C-terminal tryptophan, from ET and sarafotoxin by Mc-cpa is the principle molecular mechanism underlying this very rapid mast cell response. Mast cell proteases can also cleave ET and sarafotoxin internally, but such “nicking” is not protective because intramolecular disulfide bridges maintain peptide function. We conclude that mast cells attack ET and sarafotoxin exactly at the structure required for toxicity, and hence sarafotoxins could not “evade” Mc-cpa's substrate specificity without loss of toxicity. PMID:17923505
Developmental changes of mast cell populations in the cerebral meninges of the rat
Michaloudi, Helen; Batzios, Christos; Chiotelli, Maria; Papadopoulos, Georgios C
2007-01-01
It is known that both the dura and the pia mater attract and support the differentiation of mast cells. The present study shows that unevenly distributed mast cells in the cerebral meninges of the rat can be found in perivascular sites and vessel ramification points, but can also be unrelated to the meningeal vasculature. It also documents changes in the number, localization and staining preferences of the mast cells in the two meninges of the developing and mature rat brain. Quantitative examination of all types of histochemically differentiated meningeal mast cells reveals no major (although some exist) differences between right and left side subpopulations, but strongly suggests a different origin and fate of the dural and the pial mast cells. The number of dural mast cells, already high from postnatal day 0, although declining from postnatal day 21 onwards, remains conspicuous up to postnatal day 180. In contrast, pial mast cells are comparatively very few in the first day of the postnatal life, and despite a transient significant increase in the following two weeks, they reach almost zero levels from postnatal day 21. PMID:17822416
Developmental changes of mast cell populations in the cerebral meninges of the rat.
Michaloudi, Helen; Batzios, Christos; Chiotelli, Maria; Papadopoulos, Georgios C
2007-10-01
It is known that both the dura and the pia mater attract and support the differentiation of mast cells. The present study shows that unevenly distributed mast cells in the cerebral meninges of the rat can be found in perivascular sites and vessel ramification points, but can also be unrelated to the meningeal vasculature. It also documents changes in the number, localization and staining preferences of the mast cells in the two meninges of the developing and mature rat brain. Quantitative examination of all types of histochemically differentiated meningeal mast cells reveals no major (although some exist) differences between right and left side subpopulations, but strongly suggests a different origin and fate of the dural and the pial mast cells. The number of dural mast cells, already high from postnatal day 0, although declining from postnatal day 21 onwards, remains conspicuous up to postnatal day 180. In contrast, pial mast cells are comparatively very few in the first day of the postnatal life, and despite a transient significant increase in the following two weeks, they reach almost zero levels from postnatal day 21.
Expression and function of CD8 alpha/beta chains on rat and human mast cells.
Kim, Mi-Sun; Kim, Sung-Hoon; Lee, Hye-Jung; Kim, Hyung-Min
2004-03-01
The expression and functional role of CD8 glycoprotein, a marker of cytotoxic/suppressor T lymphocytes and NK cells, were not studied on freshly isolated connective tissue type rat peritoneal mast cells, a rat mucosal type mast cell line (RBL 2H3), or human mast cell line (HMC-1). We used the reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, immunohistochemistry and enzyme-linked immunosorbent assay. RT-PCR and Western blot analysis identified the presence of CD8 alpha/beta chains on the mast cells, and immunohistochemistry confirmed CD8alpha expression on rat or human mast cells. Functional studies demonstrated that stimulation of CD8 alpha/beta chains on rat mast cells induced the secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), which are regarded as important mediators during infection. However, co-stimulation with stem cell factor had no effect on CD8-induced mediator secretion. Our findings demonstrate novel biological roles of CD8 molecules in mast cells.
Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation
NASA Astrophysics Data System (ADS)
Johnson, Monica M.; Mendoza, Ryan; Raghavendra, Achyut J.; Podila, Ramakrishna; Brown, Jared M.
2017-03-01
The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcɛRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.
Chacón-Salinas, Rommel; Chen, Limo; Chávez-Blanco, Alma D.; Limón-Flores, Alberto Y.; Ma, Ying; Ullrich, Stephen E.
2014-01-01
The UVB (290–320 nm) radiation in sunlight is responsible for inducing skin cancer. Exposure to UV radiation is also immunosuppressive, and the systemic immune suppression induced by UV is a well-recognized risk factor for cancer induction. As UVB radiation is absorbed within the upper layers of the skin, indirect mechanisms must play a role in activating systemic immune suppression. One prominent example is mast cell migration, which from the skin to the draining LN is an essential step in the cascade of events leading to immune suppression. What triggers mast cell migration is not entirely clear. Here, we tested the hypothesis that PAF, a lipid mediator of inflammation produced by the skin in response to UV exposure, is involved. Mast cell-deficient mice (KitW-sh/W-sh) are resistant to the suppressive effect of UV radiation, and reconstituting mast cell-deficient mice with normal bone marrow-derived mast cells restores susceptibility to immunosuppression. However, when mast cells from PAFR−/− mice were used, the reconstituted mice were not susceptible to the suppressive effects of UV. Furthermore, PAFR−/− mice showed impaired UV-induced mast cell migration when compared with WT mice. Finally, injecting PAF into WT mice mimicked the effect of UV irradiation and induced mast cell migration but not in PAFR−/− mice. Our findings indicate that PAFR binding induces mast cells to migrate from the skin to the LNs, where they mediate immune suppression. PMID:24009177
Zwolak, Rafał; Bogdziewicz, Michał; Wróbel, Aleksandra; Crone, Elizabeth E
2016-03-01
The predator satiation and predator dispersal hypotheses provide alternative explanations for masting. Both assume satiation of seed-eating vertebrates. They differ in whether satiation occurs before or after seed removal and caching by granivores (predator satiation and predator dispersal, respectively). This difference is largely unrecognized, but it is demographically important because cached seeds are dispersed and often have a microsite advantage over nondispersed seeds. We conducted rodent exclosure experiments in two mast and two nonmast years to test predictions of the predator dispersal hypothesis in our study system of yellow-necked mice (Apodemus flavicollis) and European beech (Fagus sylvatica). Specifically, we tested whether the fraction of seeds removed from the forest floor is similar during mast and nonmast years (i.e., lack of satiation before seed caching), whether masting decreases the removal of cached seeds (i.e., satiation after seed storage), and whether seed caching increases the probability of seedling emergence. We found that masting did not result in satiation at the seed removal stage. However, masting decreased the removal of cached seeds, and seed caching dramatically increased the probability of seedling emergence relative to noncached seeds. European beech thus benefits from masting through the satiation of scatterhoarders that occurs only after seeds are removed and cached. Although these findings do not exclude other evolutionary advantages of beech masting, they indicate that fitness benefits of masting extend beyond the most commonly considered advantages of predator satiation and increased pollination efficiency.
Dahlin, Joakim S; Malinovschi, Andrei; Öhrvik, Helena; Sandelin, Martin; Janson, Christer; Alving, Kjell; Hallgren, Jenny
2016-01-28
Mast cells are rare tissue-resident immune cells that are involved in allergic reactions, and their numbers are increased in the lungs of asthmatics. Murine lung mast cells arise from committed bone marrow-derived progenitors that enter the blood circulation, migrate through the pulmonary endothelium, and mature in the tissue. In humans, mast cells can be cultured from multipotent CD34(+) progenitor cells. However, a population of distinct precursor cells that give rise to mast cells has remained undiscovered. To our knowledge, this is the first report of human lineage-negative (Lin(-)) CD34(hi) CD117(int/hi) FcεRI(+) progenitor cells, which represented only 0.0053% of the isolated blood cells in healthy individuals. These cells expressed integrin β7 and developed a mast cell-like phenotype, although with a slow cell division capacity in vitro. Isolated Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells had an immature mast cell-like appearance and expressed high levels of many mast cell-related genes as compared with human blood basophils in whole-transcriptome microarray analyses. Furthermore, serglycin, tryptase, and carboxypeptidase A messenger RNA transcripts were detected by quantitative reverse transcription-polymerase chain reaction. Altogether, we propose that the Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells are closely related to human tissue mast cells and likely constitute an immediate precursor population, which can give rise to predominantly mast cells. Furthermore, asthmatics with reduced lung function had a higher frequency of Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood mast cell progenitors than asthmatics with normal lung function. © 2016 by The American Society of Hematology.
Beyond The Prime Directive: The MAST Discovery Portal and High Level Science Products
NASA Astrophysics Data System (ADS)
Fleming, Scott W.; Abney, Faith; Donaldson, Tom; Dower, Theresa; Fraquelli, Dorothy A.; Koekemoer, Anton M.; Levay, Karen; Matuskey, Jacob; McLean, Brian; Quick, Lee; Rogers, Anthony; Shiao, Bernie; Thompson, Randy; Tseng, Shui-Ay; Wallace, Geoff; White, Richard L.
2015-01-01
The Mikulski Archive for Space Telescopes (MAST) is a NASA-funded archive for a wide range of astronomical missions, primarily supporting space-based UV and optical telescopes. What is less well-known is that MAST provides much more than just a final resting place for primary data products and documentation from these missions. The MAST Discovery Portal is our new search interface that integrates all the missions that MAST supports into a single interface, allowing users to discover (and retrieve) data from other missions that overlap with your targets of interest. In addition to searching MAST, the Portal allows users to search the Virtual Observatory, granting access to data from thousands of collections registered with the VO, including large missions spanning the electromagnetic spectrum (e.g., Chandra, SDSS, Spitzer, 2MASS, WISE). The Portal features table import/export, coordinate-based cross-matching, dynamic chart plotting, and the AstroView sky viewer with footprint overlays. We highlight some of these capabilities with science-driven examples. MAST also accepts High Level Science Products (HLSPs) from the community. These HLSPs are user-generated data products that can be related to a MAST-supported mission. MAST provides a permanent archive for these data with linked references, and integrates it within MAST infrastructure and services. We highlight some of the most recent HLSPs MAST has released, including the HST Frontier Fields, GALEX All-Sky Diffuse Radiation Mapping, a survey of the intergalactic medium with HST-COS, and one of the most complete line lists ever derived for a white dwarf using FUSE AND HST-STIS. These HLSPs generate substantial interest from the community, and are an excellent way to increase visibility and ensure the longevity of your data.
Equine Airway Mast Cells are Sensitive to Cell Death Induced by Lysosomotropic Agents.
Wernersson, S; Riihimäki, M; Pejler, G; Waern, I
2017-01-01
Mast cells are known for their detrimental effects in various inflammatory conditions. Regimens that induce selective mast cell apoptosis may therefore be of therapeutic significance. Earlier studies have demonstrated that murine- and human-cultured mast cells are highly sensitive to apoptosis induced by the lysosomotropic agent LeuLeuOMe (LLME). However, the efficacy of lysosomotropic agents for inducing apoptosis of in vivo-derived airway mast cells and the impact on mast cells in other species have not been assessed. Here we addressed whether lysosomotropic agents can induce cell death of equine in vivo-derived mast cells. Bronchoalveolar lavage (BAL) fluids from horses were incubated with LLME at 15-100 μm for up to 48 h. The overall cell viability was unaffected by 15 μm LLME up to 48 h, whereas a relatively modest drop in total cell counts (~30%) was seen at the highest LLME dose used. In contrast to the relatively low effect on total cell counts, LLME efficiently and dose dependently reduced the number of mast cells in BAL fluids, with an almost complete depletion (96%) of mast cells after 24 h of incubation with 100 μm LLME. A significant but less dramatic reduction (up to ~45%) of lymphocytes was also seen, whereas macrophages and neutrophils were essentially resistant. The appearance of apoptotic bodies suggested a mechanism involving apoptosis rather than necrosis. These findings suggest that equine airway mast cells are highly sensitive to lysosomotropic agents. Possibly, lysosomotropic agents could be of therapeutic value to treat disorders involving harmful accumulation of mast cells in the airways. © 2016 The Foundation for the Scandinavian Journal of Immunology.
Anfinsen, Kristin P; Berghoff, Nora; Priestnall, Simon L; Suchodolski, Jan S; Steiner, Jörg M; Allenspach, Karin
2014-12-21
This study sought to correlate faecal and urinary N-methylhistamine (NMH) concentrations with resting versus degranulated duodenal mast cell numbers in dogs with chronic enteropathies (CE), and investigate correlations between intestinal mast cell activation and clinical severity of disease as assessed by canine chronic enteropathy clinical activity index (CCECAI), and between urinary and faecal NMH concentrations, mast cell numbers, and histopathological scores. Twenty-eight dogs with CE were included. Duodenal biopsies were stained with haematoxylin and eosin (H&E), toluidine blue, and by immunohistochemical labelling for tryptase. Duodenal biopsies were assigned a histopathological severity score, and duodenal mast cell numbers were counted in five high-power fields after metachromatic and immunohistochemical staining. Faecal and urinary NMH concentrations were measured by gas chromatography-mass spectrometry. There was no correlation between the CCECAI and faecal or urinary NMH concentrations, mast cell numbers, or histopathological score - or between faecal or urinary NMH concentration and mast cell numbers. Post hoc analysis revealed a statistically significant difference in toluidine blue positive mast cells between two treatment groups (exclusion diet with/without metronidazole versus immunosuppression (IS)), with higher numbers among dogs not requiring IS. Faecal and urinary NMH concentrations and duodenal mast cell numbers were not useful indicators of severity of disease as assessed by the CCECAI or histological evaluation. The number of duodenal mast cells was higher in dogs that did not need IS, i.e. in dogs responding to an exclusion diet (with/without metronidazole), than in dogs requiring IS. Further studies comparing the role of mast cells in dogs with different forms of CE are needed.
Chatterjee, Victor
2012-01-01
We had previously proposed the presence of permanent stimulatory influences in the tissue microenvironment surrounding the aged mesenteric lymphatic vessels (MLV), which influence aged lymphatic function. In this study, we performed immunohistochemical labeling of proteins known to be present in mast cells (mast cell tryptase, c-kit, prostaglandin D2 synthase, histidine decarboxylase, histamine, transmembrane protein 16A, and TNF-α) with double verification of mast cells in the same segment of rat mesentery containing MLV by labeling with Alexa Fluor 488-conjugated avidin followed by toluidine blue staining. Additionally, we evaluated the aging-associated changes in the number of mast cells located by MLV and in their functional status by inducing mast cell activation by various activators (substance P; anti-rat DNP Immunoglobulin E; peptidoglycan from Staphyloccus aureus and compound 48/80) in the presence of ruthenium red followed by subsequent staining by toluidine blue. We found that there was a 27% aging-associated increase in the total number of mast cells, with an ∼400% increase in the number of activated mast cells in aged mesenteric tissue in resting conditions with diminished ability of mast cells to be newly activated in the presence of inflammatory or chemical stimuli. We conclude that higher degree of preactivation of mast cells in aged mesenteric tissue is important for development of aging-associated impairment of function of mesenteric lymphatic vessels. The limited number of intact aged mast cells located close to the mesenteric lymphatic compartments to react to the presence of acute stimuli may be considered contributory to the aging-associated deteriorations in immune response. PMID:22796537
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kui Lea; Ko, Na Young; Lee, Jun Ho
2011-12-15
4-Chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. We aimed to study the effects of 4-chlorotetrazolo[1,5-a]quinoxaline on activation of mast cells in vitro and in mice. 4-Chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited degranulation of mast cells in a dose-dependent manner, and also suppressed the expression and secretion of TNF-{alpha} and IL-4 in mast cells. Mechanistically, 4-chlorotetrazolo[1,5-a]quinoxaline inhibited activating phosphorylation of Syk and LAT, which are crucial for early Fc{epsilon}RI-mediated signaling events, as well as Akt and MAP kinases, which play essential roles in the production of various pro-inflammatory cytokines in mast cells. Notably, although 4-chlorotetrazolo[1,5-a]quinoxaline inhibited the activation of Fyn and Syk, minimal inhibition was observedmore » in mast cells in the case of Lyn. Furthermore, consistent with its in vitro activity, 4-chlorotetrazolo[1,5-a]quinoxaline significantly suppressed mast cell-mediated passive cutaneous anaphylaxis in mice. In summary, the results from this study demonstrate that 4-chlorotetrazolo[1,5-a]quinoxaline shows an inhibitory effect on mast cells in vitro and in vivo, and that this is mediated by inhibiting the activation of Syk in mast cells. Therefore, 4-chlorotetrazolo[1,5-a]quinoxaline could be useful in the treatment of mast cell-mediated allergic diseases. -- Highlights: Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. Black-Right-Pointing-Pointer The effect of 4-chlorotetrazolo[1,5-a]quinoxaline on mast cells was investigated. Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited Syk activation. Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline could be useful for IgE-mediated allergy.« less
Calcium Imaging of Nerve-Mast Cell Signaling in the Human Intestine
Buhner, Sabine; Barki, Natasja; Greiter, Wolfgang; Giesbertz, Pieter; Demir, Ihsan E.; Ceyhan, Güralp O.; Zeller, Florian; Daniel, Hannelore; Schemann, Michael
2017-01-01
Introduction: It is suggested that an altered microenvironment in the gut wall alters communication along a mast cell nerve axis. We aimed to record for the first time signaling between mast cells and neurons in intact human submucous preparations. Methods: We used the Ca2+ sensitive dye Fluo-4 AM to simultaneously image changes in intracellular calcium [Ca+2]i (%ΔF/F) in neurons and mast cells. Data are presented as median with interquartile ranges (25/75%). Results: We recorded nerve responses in 29 samples upon selective activation of 223 mast cells by IgE receptor cross linking with the antibody mAb22E7. Mast cells responded to mAb22E7 with a median [Ca+2]i increase of 20% (11/39) peaking 90 s (64/144) after the application. Only very few neurons responded and the median percentage of responding neuronal area was 0% (0/5.9). Mast cell activation remained in the presence of the fast sodium channel blocker tetrodotoxin. Specific neuronal activation by transmural electrical field stimulation (EFS) in 34 samples evoked instantaneously [Ca+2]i signals in submucous neurons. This was followed by a [Ca+2]i peak response of 8%ΔF/F (4/15) in 33% of 168 mast cells in the field of view. The mast cell response was abolished by the nerve blocker tetrododoxin, reduced by the Calcitonin Gene-Related Peptide receptor 1 antagonist BIBN-4096 and the Vasoactive Intestinal Peptide receptor antagonist PG97-269, but not by blockade of the neurokinin receptors 1–3. Conclusion: The findings revealed bidirectional signaling between mast cells and submucous neurons in human gut. In our macroscopically normal preparations a nerve to mast cell signaling was very prominent whereas a mast cell to nerve signaling was rather rare. PMID:29238306
Jobbings, Catherine E.; Sandig, Hilary; Whittingham-Dowd, Jayde K.; Roberts, Ian S.; Bulfone-Paus, Silvia
2013-01-01
Whilst mast cells participate in the immune defence against the intracellular bacterium Listeria monocytogenes, there is conflicting evidence regarding the ability of L. monocytogenes to infect mast cells. It is known that the pore-forming toxin listeriolysin (LLO) is important for mast cell activation, degranulation and the release of pro-inflammatory cytokines. Mast cells, however, are a potential source of a wide range of cytokines, chemokines and other mediators including osteopontin, which contributes to the clearing of L. monocytogenes infections in vivo, although its source is unknown. We therefore aimed to resolve the controversy of mast cell infection by L. monocytogenes and investigated the extent of mediator release in response to the bacterium. In this paper we show that the infection of bone marrow-derived mast cells by L. monocytogenes is inefficient and LLO-independent. LLO, however, is required for calcium-independent mast cell degranulation as well as for the transient and selective downregulation of cell surface CD117 (c-kit) on mast cells. We demonstrate that in addition to the key pro-inflammatory cytokines TNF-α and IL-6, mast cells release a wide range of other mediators in response to L. monocytogenes. Osteopontin, IL-2, IL-4, IL-13 and granulocyte macrophage colony-stimulating factor (GM-CSF), and chemokines including CCL2, CCL3, CCL4 and CCL5 are released in a MyD88-dependent manner. The wide range of mediators released by mast cells in response to L. monocytogenes may play an important role in the recruitment and activation of a variety of immune cells in vivo. The cocktail of mediators, however, is unlikely to skew the immune response to a particular effector response. We propose that mast cells provide a hitherto unreported source of osteopontin, and may provide an important role in co-ordinating the immune response during Listeria infection. PMID:23460827
Johnson, Monica; Alsaleh, Nasser; Mendoza, Ryan P; Persaud, Indushekhar; Bauer, Alison K; Saba, Laura; Brown, Jared M
2018-01-01
Mast cells represent a crucial cell type in host defense; however, maladaptive responses are contributing factors in the pathogenesis of allergic diseases. Previous work in our laboratory has shown that exposure to silver nanoparticles (AgNPs) results in mast cell degranulation via a non-immunoglobulin E (IgE) mechanism. In this study, we utilized a systems biology approach to identify novel genetic factors playing a role in AgNP-induced mast cell degranulation compared to the classical activation by antigen-mediated FcεRI crosslinking. Mast cell degranulation was assessed in bone marrow-derived mast cells isolated from 23 strains of mice following exposure to AgNPs or FcεRI crosslinking with dinitrophenyl (DNP). Utilizing strain-dependent mast cell degranulation, an association mapping study identified 3 chromosomal regions that were significantly associated with mast cell degranulation by AgNP and one non-overlapping region associated with DNP-mediated degranulation. Two of the AgNP-associated regions correspond to genes previously reported to be associated with allergic disorders (Trac2 on chromosome 1 and Traf6 on chromosome 2) and an uncharacterized gene identified on chromosome 1 (Fam126b). In conjunction, RNA-sequencing performed on mast cells from the high and low responder strains revealed 3754 and 34 differentially expressed genes that were unique to DNP and AgNP exposures, respectively. Select candidate genes include Ptger4, a gene encoding a G-protein coupled receptor in addition to a multifunctional adaptor protein, Txnip, that may be driving mast cell degranulation by AgNP. Taken together, we identified novel genes that have not been previously shown to play a role in nanoparticle-mediated mast cell activation. With further functional evaluation in the future, these genes may be potential therapeutic targets in the treatment of non-IgE mediated mast cell-linked disorders.
1994-01-01
Chronic allergic diseases and other disorders associated with mast cell activation can also be associated with tissue fibrosis, but a direct link between mast cell mediator release and fibroblast collagen gene expression has not been established. Using in situ hybridization, we show that the elicitation of an IgE-dependent passive cutaneous anaphylaxis (PCA) reaction in mice results in a transient, but marked augmentation of steady state levels of type alpha-1 (I) collagen mRNA in the dermis. While peak levels of collagen mRNA expression in the skin are observed 16-24 h after mast cell activation, substantial numbers of dermal cells are strongly positive for collagen mRNA at 1 and 2 h after antigen challenge, before circulating inflammatory cells are recruited into the tissues. Furthermore, experiments in mast cell- reconstituted or genetically mast cell-deficient WBB6F1-W/Wv mice demonstrate that the increased expression of collagen mRNA at sites of PCA reactions is entirely mast cell dependent. In vitro studies show that the supernatants of mouse serosal mast cells activated via the Fc epsilon RI markedly increase type alpha-1 (I) collagen mRNA levels in mouse embryonic skin fibroblasts, and also upregulate collagen secretion by these cells. The ability of mast cell supernatants to induce increased steady state levels of collagen mRNA in mouse skin fibroblasts is markedly diminished by absorption with antibodies specific for either of two mast cell-derived cytokines, transforming growth factor beta (TGF-beta 1) or tumor necrosis factor alpha (TNF- alpha), and is eliminated entirely by absorption with antibodies against both cytokines. Taken together, these findings demonstrate that IgE-dependent mouse mast cell activation can induce a transient and marked increase in steady state levels of type alpha-1 (I) collagen mRNA in dermal fibroblasts and that mast cell-derived TGF-beta 1 and TNF-alpha importantly contribute to this effect. PMID:7964480
Mast Cell Proteases as Protective and Inflammatory Mediators
Caughey, George H.
2014-01-01
Proteases are the most abundant class of proteins produced by mast cells. Many of these are stored in membrane-enclosed intracellular granules until liberated by degranulating stimuli, which include cross-linking of high affinity IgE receptor FcεRI by IgE bound to multivalent allergen. Understanding and separating the functions of the proteases is important because expression differs among mast cells in different tissue locations. Differences between laboratory animals and humans in protease expression also influence the degree of confidence with which results obtained in animal models of mast cell function can be extrapolated to humans. The inflammatory potential of mast cell proteases was the first aspect of their biology to be explored and has received the most attention, in part because some of them—notably tryptases and chymases—are biomarkers of local and systemic mast cell degranulation and anaphylaxis. Although some of the proteases indeed augment allergic inflammation and are potential targets for inhibition to treat asthma and related allergic disorders, they are protective and even anti-inflammatory in some settings. For example, mast cell tryptases may protect from serious bacterial lung infections and may limit the “rubor” component of inflammation caused by vasodilating neuropeptides in the skin. Chymases help to maintain intestinal barrier function and to expel parasitic worms, and may support blood pressure during anaphylaxis by generating angiotensin II. In other life-or-death examples, carboxypeptidase A3 and other mast cell peptidases limit systemic toxicity of endogenous peptides like endothelin and neurotensin during septic peritonitis, and inactivate venom-associated peptides. On the other hand, mast cell peptidase-mediated destruction of protective cytokines, like IL-6, can enhance mortality from sepsis. Peptidases released from mast cells also influence non-mast cell proteases, such as by activating matrix metalloproteinase cascades, which are important in responses to infection and resolution of tissue injury. Overall, mast cell proteases have a variety of roles—inflammatory and anti-inflammatory, protective and deleterious—in keeping with the increasingly well-appreciated contributions of mast cells in allergy, tissue homeostasis, and innate immunity. PMID:21713659
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Ji Wei; Israf, Daud Ahmad; Harith, Hanis Haze
tHGA, a geranyl acetophenone compound originally isolated from a local shrub called Melicope ptelefolia, has been previously reported to prevent ovalbumin-induced allergic airway inflammation in a murine model of allergic asthma by targeting cysteinyl leukotriene synthesis. Mast cells are immune effector cells involved in the pathogenesis of allergic diseases including asthma by releasing cysteinyl leukotrienes. The anti-asthmatic properties of tHGA could be attributed to its inhibitory effect on mast cell degranulation. As mast cell degranulation is an important event in allergic responses, this study aimed to investigate the anti-allergic effects of tHGA in cellular and animal models of IgE-mediated mastmore » cell degranulation. For in vitro model of IgE-mediated mast cell degranulation, DNP-IgE-sensitized RBL-2H3 cells were pre-treated with tHGA before challenged with DNP-BSA to induce degranulation. For IgE-mediated passive systemic anaphylaxis, Sprague Dawley rats were sensitized by intraperitoneal injection of DNP-IgE before challenged with DNP-BSA. Both in vitro and in vivo models showed that tHGA significantly inhibited the release of preformed mediators (β-hexosaminidase and histamine) as well as de novo mediators (interleukin-4, tumour necrosis factor-α, prostaglandin D{sub 2} and leukotriene C{sub 4}). Pre-treatment of tHGA also prevented IgE-challenged RBL-2H3 cells and peritoneal mast cells from undergoing morphological changes associated with mast cell degranulation. These findings indicate that tHGA possesses potent anti-allergic activity via attenuation of IgE-mediated mast cell degranulation and inhibition of IgE-mediated passive systemic anaphylaxis. Thus, tHGA may have the potential to be developed as a mast cell stabilizer for the treatment of allergic diseases in the future. - Highlights: • The in vitro and in vivo mast cell stabilizing effects of tHGA were examined. • tHGA counteracts the plasma membrane deformation in degranulating mast cells. • tHGA attenuates preformed and de novo mediators released by degranulating mast cells. • tHGA prevents in vivo mast cell activation and passive systemic anaphylaxis in rats. • tHGA could be a potential mast cell stabilizer for the treatment of allergic diseases.« less
Sood, Rahul; Akifuddin, Syed; Sidhu, Gagandeep Kaur; Khan, Nadia; Singla, Kapil
2014-01-01
Objective: The role of mast cells as the key effector of allergic inflammation, anaphylactic inflammatory reactions and in the pathogenesis of chronic inflammation, is well-known. The present study is adopted to compare mast cells and inflammatory cells within periapical granuloma and cysts and localize the mast cells and quantify their number in the periapical cysts so as to propose a role of mast cells in the pathogenesis of this lesion. Materials and Methods: Biopsy specimens of 30 periapical lesions were stained with hematoxylin–eosin, and immunohistochemical Mast Cell Tryptase from Bio SB (IHC detection system kit) antibody. The tryptase positive mast cells and mononuclear inflammatory cells were counted in 10 consecutive high power fields (100X) using the binocular microscope from Motic attached to a computer with Motic Advanced Images 3.2 software. Results: Comparative microscopic analysis indicated that periapical cyst shows more percentage of mast cells and less percentage of inflammatory cell than periapical granuloma (comparison of mean and standard deviation of total number of mast cells and inflammatory cells, mast cells 3.15±1.39 in the granuloma group and 4.43±1.91in the cyst group, inflammatory cells, 67.11±1.2 in the granuloma group and 52.66±0.8 in the cyst group). Numerous degranulated mast cells were observed in the fibrous wall than the inflammatory infiltrate of the periapical cysts. The mean and standard deviation of degranulated mast cells between the inflammatory and fibrous zone within the cyst group, being 0.95±1.10 and1.68±1.34 respectively. The values varied significantly between the two zones. Conclusion: The number of inflammatory cells in the cyst group is less than periapical granuloma and total number of mast cells in the cyst group is more as compared to periapical granuloma. The degranulated cells were quantified and they were higher in the fibrous area of the cysts than the inflammatory zone. This study could support the fact that the various mediators released on degranulation play a role in the connective tissue remodeling, chronicity and expansion of the periapical lesion. PMID:25654034
Perinatal stress, brain inflammation and risk of autism-review and proposal.
Angelidou, Asimenia; Asadi, Shahrzad; Alysandratos, Konstantinos-Dionysios; Karagkouni, Anna; Kourembanas, Stella; Theoharides, Theoharis C
2012-07-02
Autism Spectrum Disorders (ASD) are neurodevelopmental disorders characterized by varying deficits in social interactions, communication, and learning, as well as stereotypic behaviors. Despite the significant increase in ASD, there are few if any clues for its pathogenesis, hampering early detection or treatment. Premature babies are also more vulnerable to infections and inflammation leading to neurodevelopmental problems and higher risk of developing ASD. Many autism "susceptibility" genes have been identified, but "environmental" factors appear to play a significant role. Increasing evidence suggests that there are different ASD endophenotypes. We review relevant literature suggesting in utero inflammation can lead to preterm labor, while insufficient development of the gut-blood-brain barriers could permit exposure to potential neurotoxins. This risk apparently may increase in parents with "allergic" or autoimmune problems during gestation, or if they had been exposed to stressors. The presence of circulating auto-antibodies against fetal brain proteins in mothers is associated with higher risk of autism and suggests disruption of the blood-brain-barrier (BBB). A number of papers have reported increased brain expression or cerebrospinal fluid (CSF) levels of pro-inflammatory cytokines, especially TNF, which is preformed in mast cells. Recent evidence also indicates increased serum levels of the pro-inflammatory mast cell trigger neurotensin (NT), and of extracellular mitochondrial DNA (mtDNA), which is immunogenic. Gene mutations of phosphatase and tensin homolog (PTEN), the negative regulator of the mammalian target of rapamycin (mTOR), have been linked to higher risk of autism, but also to increased proliferation and function of mast cells. Premature birth and susceptibility genes may make infants more vulnerable to allergic, environmental, infectious, or stress-related triggers that could stimulate mast cell release of pro-inflammatory and neurotoxic molecules, thus contributing to brain inflammation and ASD pathogenesis, at least in an endophenotype of ASD patients.
An Inflammation-Centric View of Neurological Disease: Beyond the Neuron
Skaper, Stephen D.; Facci, Laura; Zusso, Morena; Giusti, Pietro
2018-01-01
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation. PMID:29618972
Bui, Thi Tho; Piao, Chun Hua; Song, Chang Ho; Shin, Hee Soon; Shon, Dong-Hwa; Chai, Ok Hee
2017-12-01
Piper nigrum (Piperaceae) is commonly used as a spice and traditional medicine in many countries. P. nigrum has been reported to have anti-oxidant, anti-bacterial, anti-tumor, anti-mutagenic, anti-diabetic, and anti-inflammatory properties. However, the effect of P. nigrum on allergic asthma has not been known. This study investigated the effect of P. nigrum ethanol extracts (PNE) on airway inflammation in asthmatic mice model. In the ovalbumin (OVA)-induced allergic asthma model, we analysed the number of inflammatory cells and cytokines production in bronchoalveolar lavage fluid (BALF) and lung tissue; histological structure; as well as the total immunoglobulin (Ig)E, anti-OVA IgE, anti-OVA IgG 1 and histamine levels in serum. The oral administration (200 mg/kg) of PNE reduced the accumulation of inflammatory cells (eosinophils, neutrophils in BALF and mast cells in lung tissue); regulated the balance of the cytokines production of Th1, Th2, Th17 and Treg cells, specifically, inhibited the expressions of GATA3, IL-4, IL-6, IL-1β, RORγt, IL-17A, TNF-α and increased the secretions of IL-10, INF-γ in BALF and lung homogenate. Moreover, PNE suppressed the levels of total IgE, anti-OVA IgE, anti-OVA IgG 1 and histamine release in serum. The histological analysis showed that the fibrosis and infiltration of inflammatory cells were also ameliorated in PNE treated mice. On the other hand, PNE inhibited the allergic responses via inactivation of rat peritoneal mast cells degranulation. These results suggest that PNE has therapeutic potential for treating allergic asthma through inhibiting Th2/Th17 responses and mast cells activation. Copyright © 2017 Elsevier Inc. All rights reserved.
Abrogation of Airway Hyperresponsiveness but not Inflammation by Rho kinase Insufficiency
Kasahara, David I.; Ninin, Fernanda M.C.; Wurmbrand, Allison P.; Liao, James K.; Shore, Stephanie A.
2015-01-01
Background Major features of allergic asthma include airway hyperresponsiveness (AHR), eosinophilic inflammation, and goblet cell metaplasia. Rho kinase (ROCK) is a serine/threonine protein kinase that regulates the actin cytoskeleton. By doing so, it can modulate airway smooth muscle cell contraction and leukocyte migration and proliferation. This study was designed to determine the contributions of the two ROCK isoforms, ROCK1 and ROCK2, to AHR, inflammation and goblet cell metaplasia in a mast-cell dependent model of allergic airways disease. Methods and Results Repeated intranasal challenges with OVA caused AHR, eosinophilic inflammation, and goblet cell hyperplasia in wildtype (WT) mice. OVA-induced AHR was partially or completely abrogated in mice haploinsufficient for ROCK2 (ROCK2+/−) or ROCK1 (ROCK1+/−), respectively. In contrast, there was no effect of ROCK insufficiency on allergic airways inflammation, although both ROCK1 and ROCK2 insufficiency attenuated mast cell degranulation. Goblet cell hyperplasia, as indicated by PAS staining, was not different in ROCK1+/− versus WT mice. However, in ROCK2+/− mice, goblet cell hyperplasia was reduced in medium but not large airways. Maximal acetylcholine-induced force generation was reduced in tracheal rings from ROCK1+/− and ROCK2+/− versus WT mice. The ROCK inhibitor, fasudil, also reduced airway responsiveness in OVA-challenged mice, without affecting inflammatory responses. Conclusion In a mast cell model of allergic airways disease, ROCK1 and ROCK2 both contribute to AHR, likely through direct effects on smooth muscle cell and effects on mast-cell degranulation. In addition, ROCK2 but not ROCK1 plays a role in allergen-induced goblet cell hyperplasia. PMID:25323425
Advances in mechanisms of asthma, allergy, and immunology in 2010.
Broide, David H; Finkelman, Fred; Bochner, Bruce S; Rothenberg, Marc E
2011-03-01
2010 was marked by rapid progress in our understanding of the cellular and molecular mechanisms involved in the pathogenesis of allergic inflammation and asthma. Studies published in the Journal of Allergy and Clinical Immunology described advances in our knowledge of cells associated with allergic inflammation (mast cells, eosinophils, dendritic cells, and T cells), as well as IgE, cytokines, receptors, signaling molecules, and pathways. Studies used animal models, as well as human cells and tissues, to advance our understanding of mechanisms of asthma, eosinophilic esophagitis, food allergy, anaphylaxis and immediate hypersensitivity, mast cells and their disorders, atopic dermatitis, nasal polyposis, and hypereosinophilic syndromes. Additional studies provided novel information about the induction and regulation of allergic inflammation and the genetic contribution to allergic inflammation. Critical features of these studies and their potential effects on human atopic disorders are summarized here. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Roger W. Perry; Ronald E. Thill; Philip A. Tappe; David G. Peitz
2004-01-01
Abstract - Recent policy changes have eliminated clearcutting as the primary pine regeneration method on Federal lands in the Southern United States. However, the effects of alternative natural regeneration methods on soft mast production are unknown. We compared plant coverage and mast production of 37 soft mast-producing plants among four...
Nesheim, Nils; Ellem, Stuart; Dansranjavin, Temuujin; Hagenkötter, Christina; Berg, Elena; Schambeck, Rupert; Schuppe, Hans-Christian; Pilatz, Adrian; Risbridger, Gail; Weidner, Wolfgang
2018-01-01
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is associated with urinary tract symptoms and hormonal imbalances amongst others. The heterogeneous clinical presentation, unexplored molecular background and lack of prostate biopsies complicate therapy. Here, using liquid biopsies, we performed a comprehensive translational study on men diagnosed with CP/CPPS type III (n = 50; median age 39.8, range 23–65) and age-matched controls (n = 61; median age 36.8, range 20–69), considering biochemical parameters of blood and ejaculates, and epigenetic regulation of the estrogen receptor genes (ESR1 and ESR2) in leukocytes isolated from blood (systemic regulation) and in somatic cells isolated from ejaculates (local regulation). We found elevated 17β-estradiol (E2) levels in seminal plasma, but not in blood plasma, that was significantly associated with CP/CPPS and impaired urinary tract symptoms. In ejaculated somatic cells of CP/CPPS patients we found that ESR1 and ESR2 were both significantly higher methylated in CpG-promoters and expressionally down-regulated in comparison to controls. Mast cells are reported to contribute to CP/CPPS and are estrogen responsive. Consistent with this, we found that E2 –treatment of human mast cell lines (HMC-1 and LAD2) resulted in altered cytokine and chemokine expression. Interestingly, in HMC-1 cells, possessing epigenetically inactivated ESR1 and ESR2, E2 –treatment led to a reduced transcription of a number of inflammatory genes. Overall, these data suggest that elevated local E2 levels associate with an epigenetic down-regulation of the estrogen receptors and have a prominent role in CP/CPPS. Investigating E2 levels in semen could therefore serve as a promising biomarker to select patients for estrogen targeted therapy. PMID:29731970
Nesheim, Nils; Ellem, Stuart; Dansranjavin, Temuujin; Hagenkötter, Christina; Berg, Elena; Schambeck, Rupert; Schuppe, Hans-Christian; Pilatz, Adrian; Risbridger, Gail; Weidner, Wolfgang; Wagenlehner, Florian; Schagdarsurengin, Undraga
2018-04-13
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is associated with urinary tract symptoms and hormonal imbalances amongst others. The heterogeneous clinical presentation, unexplored molecular background and lack of prostate biopsies complicate therapy. Here, using liquid biopsies, we performed a comprehensive translational study on men diagnosed with CP/CPPS type III ( n = 50; median age 39.8, range 23-65) and age-matched controls ( n = 61; median age 36.8, range 20-69), considering biochemical parameters of blood and ejaculates, and epigenetic regulation of the estrogen receptor genes ( ESR1 and ESR2 ) in leukocytes isolated from blood (systemic regulation) and in somatic cells isolated from ejaculates (local regulation). We found elevated 17β-estradiol (E 2 ) levels in seminal plasma, but not in blood plasma, that was significantly associated with CP/CPPS and impaired urinary tract symptoms. In ejaculated somatic cells of CP/CPPS patients we found that ESR1 and ESR2 were both significantly higher methylated in CpG-promoters and expressionally down-regulated in comparison to controls. Mast cells are reported to contribute to CP/CPPS and are estrogen responsive. Consistent with this, we found that E 2 -treatment of human mast cell lines (HMC-1 and LAD2) resulted in altered cytokine and chemokine expression. Interestingly, in HMC-1 cells, possessing epigenetically inactivated ESR1 and ESR2, E 2 -treatment led to a reduced transcription of a number of inflammatory genes. Overall, these data suggest that elevated local E 2 levels associate with an epigenetic down-regulation of the estrogen receptors and have a prominent role in CP/CPPS. Investigating E 2 levels in semen could therefore serve as a promising biomarker to select patients for estrogen targeted therapy.
Santos, Pedro Paulo de Andrade; Nonaka, Cassiano Francisco Weege; Pinto, Leão Pereira; de Souza, Lélia Batista
2011-03-01
This study analysed the immunohistochemical expression of mast cell tryptase in giant cell fibromas (GCFs). In addition, the possible interaction of mast cells with stellate giant cells, as well as their role in fibrosis and tumour progression, was investigated. For this purpose, the results were compared with cases of inflammatory fibrous hyperplasia (IFH) and normal oral mucosa. Thirty cases of GCF, 30 cases of IFH and 10 normal mucosa specimens used as control were selected. Immunoreactivity of mast cells to the anti-tryptase antibody was analysed quantitatively in the lining epithelium and in connective tissue. In the epithelial component (p=0.250) and connective tissue (p=0.001), the largest mean number of mast cells was observed in IFHs and the smallest mean number in GCFs. In connective tissue, the mean percentage of degranulated mast cells was higher in GCFs than in IFHs and normal mucosa specimens (p<0.001). Analysis of the percentage of degranulated mast cells in areas of fibrosis and at the periphery of blood vessels also showed a larger mean number in GCFs compared to IFHs and normal mucosa specimens (p<0.001). The percent interaction between mast cells and stellate giant cells in GCFs was 59.62%. In conclusion, although mast cells were less numerous in GCFs, the cells exhibited a significant interaction with stellate giant cells present in these tumours. In addition, the results suggest the involvement of mast cells in the induction of fibrosis and modulation of endothelial cell function in GCFs. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Hepatic mucosal mast cell hyperplasia in rats with secondary biliary cirrhosis.
Rioux, K P; Sharkey, K A; Wallace, J L; Swain, M G
1996-04-01
Mast cells have been shown to play a role in many chronic inflammatory and fibrotic disorders. However, their possible contribution to the pathological changes that occur in liver cirrhosis is unknown. To explore this, we examined whether changes in hepatic mast cell number and mediator content were associated with fibrotic changes in experimental biliary cirrhosis. Rats were studied 7, 14, or 21 days after bile duct resection (BDR). Hepatic mast cells were identified by histochemical and immunohistochemical stains. Rat mast cell protease II (RMCP-II), a marker of mast cell degranulation, was measured in liver by enzyme-linked immunosorbent assay. Hepatic collagen deposition was assessed by Sirius Red F3BA staining. In day 21 BDR rats, there was a one- to twofold increase (P < .001) in the number of hepatic mast cells, but this was not observed in day 7 or 14 BDR rats. Mild fibrotic changes were noted in BDR rat livers as early as 7 days after induction of cholestasis. Significant expansion and organization of fibrous tissue had occurred in day 14 BDR rats which progressed to bridging fibrosis by day 21. Liver RMCP-II levels were decreased by 50 percent (P < .05) and mast cell degranulation was apparent as shown by histamine immunostaining. These results suggest that hepatic mast cell hyperplasia and degranulation occur during prolonged cholestasis in the rat. Although these changes do not correlate with the onset of hepatic fibrosis, they do occur at a time during which there is significant deposition and organization extracellular matrix elements. Hepatic mast cells, by releasing profibrogenic mediators, may contribute to fibrotic changes in biliary cirrhosis.
Moreira, X; Abdala-Roberts, L; Zas, R; Merlo, E; Lombardero, M J; Sampedro, L; Mooney, K A
2016-11-01
Context-dependency in species interactions is widespread and can produce concomitant patterns of context-dependent selection. Masting (synchronous production of large seed crops at irregular intervals by a plant population) has been shown to reduce seed predation through satiation (reduction in rates of seed predation with increasing seed cone output) and thus represents an important source of context-dependency in plant-animal interactions. However, the evolutionary consequences of such dynamics are not well understood. Here we describe masting behaviour in a Mediterranean model pine species (Pinus pinaster) and present a test of the effects of masting on selection by seed predators on reproductive output. We predicted that masting, by enhancing seed predator satiation, could in turn strengthen positive selection by seed predators for larger cone output. For this we collected six-year data (spanning one mast year and five non-mast years) on seed cone production and seed cone predation rates in a forest genetic trial composed by 116 P. pinaster genotypes. Following our prediction, we found stronger seed predator satiation during the masting year, which in turn led to stronger seed predator selection for increased cone production relative to non-masting years. These findings provide evidence that masting can alter the evolutionary outcome of plant-seed predator interactions. More broadly, our findings highlight that changes in consumer responses to resource abundance represent a widespread mechanism for predicting and understanding context dependency in plant-consumer evolutionary dynamics. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Haenisch, B; Herms, S; Molderings, G J
2013-05-01
To circumvent the costly isolation procedure associated with tissue mast cells, human mast cell lines such as HMC-1 are employed in mastocytosis research, but their relation to mutated mast cells in systemic mastocytosis has not been investigated systematically. In the present study, we determined the transcriptome of HMC-1.2 cells and compared the expression data with those reported in the literature for normal human resting lung and tonsillar mast cells as well as leukocytes from peripheral blood and mononuclear cells from bone marrow aspirates of patients with D816 V-positive systemic mastocytosis. Our results suggest that HMC-1.2 cells are an appropriate model for the investigation of this variant of systemic mast cell activation disease. The data confirm previous suggestions that the pathologically increased activity of mast cells in patients with D816 V-positive systemic mastocytosis can be deduced from the detection of mutation-related changes in the gene expression profile in leukocytes from peripheral blood and in mononuclear cells from bone marrow aspirates. Thus, mutation-related changes of the expression profile can serve as surrogates (besides clustering of mast cells, expression of CD25, and increased release of tryptase) for the presence of the mutation D816 V in tyrosine kinase Kit in patients with systemic mastocytosis according to the WHO criteria. Whether this also holds true for systemic mast cell activation disease caused by other mutations in Kit or other mast cell activity-related genes is a subject for future studies.
Sohn, Won; Lee, Oh Young; Lee, Sang Pyo; Lee, Kang Nyeong; Jun, Dae Won; Lee, Hang Lak; Yoon, Byung Chul; Choi, Ho Soon; Sim, Jongmin; Jang, Ki-Seok
2014-01-01
Recent studies have shown that mast cells play an important role in irritable bowel syndrome (IBS). We investigated the relationship between mast cells and the gut hormones substance P and vasoactive intestinal peptide (VIP) in irritable bowel syndrome with diarrhea (IBS-D). Colonoscopic biopsies were performed on the rectal mucosa of 43 subjects (IBS-D patients: 22, healthy volunteers: 21) diagnosed according to the Rome III criteria. Mast cells, and substance P & VIP were evaluated by quantitative immunohistology and image analysis. Mast cells were counted as tryptase-positive cells in the lamina propria, and substance P and VIP levels were expressed as percentages of total areas of staining. Mast cell counts were higher in IBS-D patients than healthy volunteers (9.6 ± 3.3 vs. 5.7 ± 2.5/high power field (HPF), p < 0.01). Substance P was also elevated (0.11 ± 0.08% vs. 0.03 ± 0.02 %, p < 0.01) while VIP was only high in women with IBS-D. Mast cell counts were positively correlated with levels of substance P & VIP in women but not men (women: r = 0.625, p < 0.01 for substance P and r = 0.651, p < 0.01 for VIP). However, mast cell counts were not correlated with IBS symptoms including abdominal pain. Mast cells are activated leading to the raised levels of substance P & VIP in IBS-D patients. However, the correlation between mast cells and levels of substance P & VIP differs according to gender.
Eosinophilic Esophagitis: Relevance of Mast Cell Infiltration.
Strasser, Daniel S; Seger, Shanon; Bussmann, Christian; Pierlot, Gabin M; Groenen, Peter M A; Stalder, Anna K; Straumann, Alex
2018-05-17
Eosinophilic esophagitis (EoE) is a chronic-inflammatory disease characterized clinically by symptoms of esophageal dysfunction and histopathologically by a prominent eosinophilic inflammation. Despite eosinophils having histologically a pre-dominant position, their role in the immunopathogenesis of the disease is still questionable. Several other inflammatory cells are involved and may play a critical role as well. The purpose of this study was to characterize the mast cell infiltration, and to correlate it with clinical state of EoE. Using immunohistochemistry and quantitative morphometry, we extensively investigated eosinophils and mast cells in esophageal biopsies from patients with active EoE and from patients with EoE in remission, and compared the findings with healthy individuals. In EoE, epithelium and lamina propria were similarly infiltrated with eosinophils. In contrast, mast cells infiltration was limited to the epithelium, displaying a localized immune response. Interestingly, whereas epithelial mast cells and eosinophils were high in active EoE, some patients in remission e.g. normalized epithelial eosinophils, showed remaining high numbers of mast cells. Patient clustering supported 2 groups of patients in clinical remission, differentiating based on presence or absence of epithelial mast cells. Active EoE is characterized - in addition to the well-known tissue eosinophilia by a marked epithelium-restricted mast cell infiltration. Of interest, in a subgroup of patients, mast cell infiltration persisted despite clinical remission. To elucidate the clinical consequence of persistent epithelial mast cells infiltration further studies are required following patients in clinical remission longitudinally. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Sánchez-Muñoz, Laura; Teodósio, Cristina; Morgado, José M; Escribano, Luis
2011-01-01
Mastocytosis is a term used to designate a heterogeneous group of disorders characterized by an abnormal proliferation and accumulation of mast cells (MCs) in one or multiple tissues including skin, bone marrow (BM), liver, spleen, and lymph nodes, among others. Recent advances in our understanding of mast cell biology and disease resulted in the identification of important differences in the expression of mast cell surface antigens between normal and neoplastic mast cells. Most notably, detection of aberrant expression of CD25 and CD2 on the surface of neoplastic mast cells but not on their normal counterparts lead to the inclusion of this immunophenotypic abnormality in the World Health Organization diagnostic criteria for systemic mastocytosis. Aberrant mast cell surface marker expression can be detected in the bone marrow aspirate by flow cytometry, even in patients lacking histopathologically detectable aggregates of mast cells in bone marrow biopsy sections. These aberrant immunophenotypic features are of great relevance for the assessment of tissue involvement in mastocytosis with consequences in the diagnosis, classification, and follow-up of the disease and in its differential diagnosis with other entities. In this chapter, we provide the reader with information for the objective and reproducible identification of pathologic MCs by using quantitative multiparametric flow cytometry, for their phenotypic characterization, and the criteria currently used for correct interpretation of the immunophenotypic results obtained. Copyright © 2011 Elsevier Inc. All rights reserved.
Walczak-Drzewiecka, Aurelia; Wyczólkowska, Janina; Dastych, Jaroslaw
2003-01-01
Upon contact with allergen, sensitized mast cells release highly active proinflammatory mediators. Allergen-mediated mast cell activation is an important mechanism in the pathogenesis of atopic asthma. Asthmatic patients are especially susceptible to air pollution. Epidemiologic studies found a positive correlation between severity of symptoms among asthmatic patients and the level of particulate matter (PM) in the air. Among the constituents of PM are metals and transition metals, which could mediate some of its adverse effects on human health. We sought to determine the effect of metal and transition metal ions on allergen-mediated mast cell activation. We observed that several metal and transition metal ions activated mast cells and enhanced allergen-mediated mast cell activation. Thus, Al(3+), Cd(2+), and Sr(2+) induced release of granule-associated N-acetyl-ss-d-hexosaminidase, and Al(3+) and Ni(2+) enhanced antigen-mediated release. Metal and transition metal ions also induced significant secretion of interleukin (IL)-4 and increased antigen-mediated IL-4 secretion in mast cells. These effects of metal and transition metal ions on mast cells were observed at concentrations that do not result in direct cytotoxicity and might be relevant for environmental exposure. Thus, metals and transition metals could increase the level of allergen-mediated mast cell activation, which might be one of the mechanisms mediating exacerbation of allergen-driven asthma symptoms by air pollution. PMID:12727598
Changing the threshold-Signals and mechanisms of mast cell priming.
Halova, Ivana; Rönnberg, Elin; Draberova, Lubica; Vliagoftis, Harissios; Nilsson, Gunnar P; Draber, Petr
2018-03-01
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E 2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
30 CFR 56.7051 - Loose objects on the mast or drill platform.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Loose objects on the mast or drill platform. 56... Drilling and Rotary Jet Piercing Drilling § 56.7051 Loose objects on the mast or drill platform. To prevent injury to personnel, tools and other objects shall not be left loose on the mast or drill platform. ...
Seasonal Mast Availability for Wildlife in the Piedmont Region of Georgia
John W. Edwards; David C. Guynn; Susan C. Loeb
1993-01-01
We measured mast production by traditional and buffer species for 2 years on the Piedmont National Wildlife Refuge in Georgia. Our objectives were to determine how these two types varied on a seasonal, annual, and habitat basis. Mast from buffer species was more frequent and diverse than that from traditional mast producers. Our findings suggest that although...
53. VIEW FROM FLOOR OF MAST TRENCH SHOWING BASE OF ...
53. VIEW FROM FLOOR OF MAST TRENCH SHOWING BASE OF ERECT UMBILICAL MAST. AIR-CONDITIONING DUCTS VISIBLE ON RIGHT SIDE OF MAST. HYDRAULIC ACTUATOR ARMS FOR OPENING TRENCH DOORS VISIBLE ON LEFT SIDE OF PHOTO. 'DOOR STOP' PEDESTAL IN FOREGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
30 CFR 56.7051 - Loose objects on the mast or drill platform.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Loose objects on the mast or drill platform. 56... Drilling and Rotary Jet Piercing Drilling § 56.7051 Loose objects on the mast or drill platform. To prevent injury to personnel, tools and other objects shall not be left loose on the mast or drill platform. ...
30 CFR 56.7051 - Loose objects on the mast or drill platform.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Loose objects on the mast or drill platform. 56... Drilling and Rotary Jet Piercing Drilling § 56.7051 Loose objects on the mast or drill platform. To prevent injury to personnel, tools and other objects shall not be left loose on the mast or drill platform. ...
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This module is part of a set of management and supervisor training (MAST) materials developed by the Department of Energy for the Waste Isolation Division. Its stated purpose is to provide participants with knowledge and skills necessary to take full advantage of the MAST learning experience. The module contains program guidelines, sample…
Roger W. Perry; Ronald E. Thill
2003-01-01
We compared indices of total hard mast production (oak and hickory combined) in 20, second-growth, pine-hardwood stands under five treatments to determine the effects of different reproduction treatments on mast production in the Ouachita Mountains. We evaluated mast production in mature unharvested controls and stands under four reproduction cutting methods (single-...
Substance P enhances electrical field stimulation-induced mast cell degranulation in rat trachea.
Hua, X Y; Back, S M; Tam, E K
1996-06-01
We previously demonstrated in an ex vivo rat tracheal model that chymotryptic activity is an index of mast cell degranulation and that substance P (SP) and electrical field stimulation (EFS) synergistically degranulate mucosal and connective tissue mast cells. In the current study, we found that the facilitatory effect of SP was apparent at concentrations as low as 10(-9) M. This effect was mimicked by 10(-7) M neurokinin A or by 10(-6) M capsaicin and was blocked by the NK1 receptor antagonist CP-96,345. SP + EFS-induced mast cell secretion was significantly attenuated by 10(-6) M tetrodotoxin. The response was also attenuated in tracheas from rats in which sensory nerves had been depleted by systemic pretreatment with capsaicin or in which sympathetic nerves had been depleted by systemic pretreatment with 6-hydroxy-dopamine. Atropine (10(-6) M) or indomethacin (10(-5) M) also attenuated SP + EFS-induced mast cell secretion. Our findings suggest the importance of a sensitizing rather than a direct stimulating effect of SP on mast cell degranulation. SP may increase the sensitivity of mast cells to EFS-discharged mediators or facilitate the release of mast cell-stimulating mediators from autonomic nerves.
Mast cells in atherosclerotic cardiovascular disease - Activators and actions.
Kovanen, Petri T; Bot, Ilze
2017-12-05
Mast cells are potent actors involved in inflammatory reactions in various tissues, including both in the intimal and the adventitial layers of atherosclerotic arteries. In the arterial intima, the site of atherogenesis, mast cells are activated to degranulate, and thereby triggered to release an abundance of preformed inflammatory mediators, notably histamine, heparin, neutral proteases and cytokines stored in their cytoplasmic secretory granules. Depending on the stimulus, mast cell activation may also launch prolonged synthesis and secretion of single bioactive molecules, such as cytokines and derivatives of arachidonic acid. The mast cell-derived mediators may impede the functions of different types of cells present in atherosclerotic lesions, and also compromise the structural and functional integrity of the intimal extracellular matrix. In the adventitial layer of atherosclerotic coronary arteries, mast cells locate next to peptidergic sensory nerve fibers, which, by releasing neuropeptides may activate mast cells to release vasoactive compounds capable of triggering local vasoconstriction. The concerted actions of arterial mast cells have the potential to contribute to the initiation and progression of atherosclerosis, and ultimately to destabilization and rupture of an advanced atherosclerotic plaque with ensuing atherothrombotic complications. Copyright © 2017 Elsevier B.V. All rights reserved.
Mast Cell, the Neglected Member of the Tumor Microenvironment: Role in Breast Cancer.
Aponte-López, Angélica; Fuentes-Pananá, Ezequiel M; Cortes-Muñoz, Daniel; Muñoz-Cruz, Samira
2018-01-01
Mast cells are unique tissue-resident immune cells that secrete a diverse array of biologically active compounds that can stimulate, modulate, or suppress the immune response. Although mounting evidence supports that mast cells are consistently infiltrating tumors, their role as either a driving or an opposite force for cancer progression is still controversial. Particularly, in breast cancer, their function is still under discussion. While some studies have shown a protective role, recent evidence indicates that mast cells enhance blood and lymphatic vessel formation. Interestingly, one of the most important components of the mast cell cargo, the serine protease tryptase, is a potent angiogenic factor, and elevated serum tryptase levels correlate with bad prognosis in breast cancer patients. Likewise, histamine is known to induce tumor cell proliferation and tumor growth. In agreement, mast cell depletion reduces the size of mammary tumors and metastasis in murine models that spontaneously develop breast cancer. In this review, we will discuss the evidence supporting protumoral and antitumoral roles of mast cells, emphasizing recent findings placing mast cells as important drivers of tumor progression, as well as the potential use of these cells or their mediators as therapeutic targets.
Zhang, Li; Paine, Catherine
2010-01-01
Nuclear orphan receptors 4A (NR4A) are early responsive genes that belong to the superfamily of hormone receptors and comprise NR4A1, NR4A2 and NR4A3. They have been associated to transcriptional activation of multiple genes involved in inflammation, apoptosis and cell cycle control. Here, we establish a link between NR4As and adenosine, a paradoxical inflammatory molecule that can contribute to persistence of inflammation or mediate inflammatory shutdown. Transcriptomics screening of the human mast cell-line HMC-1 revealed a sharp induction of transcriptionally active NR4A2 and NR4A3 by the adenosine analogue NECA. The concomitant treatment of NECA and the adenosine receptor A2A (A2AAR) selective antagonist SCH-58261 exaggerated this effect, suggesting that upregulation of these factors in mast cells is mediated by other AR subtypes (A2B and A3) and that A2AAR activation counteracts NR4A2 and NR4A3 induction. In agreement with this, A2AAR-silencing amplified NR4A induction by NECA. Interestingly, a similar A2AAR modulatory effect was observed on ERK1/2 phosphorylation because A2AAR blockage exacerbated NECA-mediated phosphorylation of ERK1/2. In addition, PKC or MEK1/2 inhibition prevented ERK1/2 phosphorylation and antagonized AR-mediated induction of NR4A2 and NR4A3, suggesting the involvement of these kinases in AR to NR4A signaling. Finally, we observed that selective A2AAR activation with CGS-21680 blocked PMA-induced ERK1/2 phosphorylation and modulated the overexpression of functional nuclear orphan receptors 4A. Taken together, these results establish a novel PKC/ERK/nuclear orphan receptors 4A axis for adenosinergic signaling in mast cells, which can be modulated by A2AAR activation, not only in the context of adenosine but of other mast cell activating stimuli as well. PMID:21234122
Nonlinear Modeling of Joint Dominated Structures
NASA Technical Reports Server (NTRS)
Chapman, J. M.
1990-01-01
The development and verification of an accurate structural model of the nonlinear joint-dominated NASA Langley Mini-Mast truss are described. The approach is to characterize the structural behavior of the Mini-Mast joints and struts using a test configuration that can directly measure the struts' overall stiffness and damping properties, incorporate this data into the structural model using the residual force technique, and then compare the predicted response with empirical data taken by NASA/LaRC during the modal survey tests of the Mini-Mast. A new testing technique, referred to as 'link' testing, was developed and used to test prototype struts of the Mini-Masts. Appreciable nonlinearities including the free-play and hysteresis were demonstrated. Since static and dynamic tests performed on the Mini-Mast also exhibited behavior consistent with joints having free-play and hysteresis, nonlinear models of the Mini-Mast were constructed and analyzed. The Residual Force Technique was used to analyze the nonlinear model of the Mini-Mast having joint free-play and hysteresis.
The role of mast cells in oral squamous cell carcinoma
Gudiseva, Swetha; Chitturi, Raviteja; Anumula, Vamsikrishna; Poosarla, Chandrashekar; Baddam, Venkat Ramana Reddy
2017-01-01
The mast cells are initial effective lineage in both humoral and adaptive immunity. They are ubiquitous in skin, mucosa, and in function. They contain biologically essential and dynamic mediators in healthy and harmful conditions of tissue. Mast cell malfunctioning could be attributed to various chronic allergic diseases. Considerately, emerging evidence of mast cell involvement in various cancers shows them to have both positive and negative roles in tumour growth. It mostly indulges in tumour progression and metastasis via angiogenesis, extracellular matrix degradation, and mitogenic activity in the tumour microenvironment. The current paper reviewed research papers on mast cells in oral squamous cell carcinoma through the PubMed database from 1980 to the present date. The present paper is an attempt to summarise the research reports on the role of mast cells in oral squamous cell carcinoma. Further to this note, this paper also outlines the role of mast cells in normal physiological processes and tumour biology. PMID:28435394
Ascoli, Davide; Vacchiano, Giorgio; Turco, Marco; Conedera, Marco; Drobyshev, Igor; Maringer, Janet; Motta, Renzo; Hacket-Pain, Andrew
2017-12-20
Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.
Controversial role of mast cells in skin cancers.
Varricchi, Gilda; Galdiero, Maria R; Marone, Giancarlo; Granata, Francescopaolo; Borriello, Francesco; Marone, Gianni
2017-01-01
Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumor initiation and progression. The stromal microenvironment can promote tumor development. Mast cells, widely distributed throughout all tissues, are a stromal component of many solid and haematologic tumors. Mast cells can be found in human and mouse models of skin cancers such as melanoma, basal and squamous cell carcinomas, primary cutaneous lymphomas, haemangiomas and Merkel cell carcinoma. However, human and animal studies addressing potential functions of mast cells and their mediators in skin cancers have provided conflicting results. In several studies, mast cells play a pro-tumorigenic role, whereas in others, they play an anti-tumorigenic role. Other studies have failed to demonstrate a clear role for tumor-associated mast cells. Many unanswered questions need to be addressed before we understand whether tumor-associated mast cells are adversaries, allies or simply innocent bystanders in different types and subtypes of skin cancers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Brain mast cells link the immune system to anxiety-like behavior
Nautiyal, Katherine M.; Ribeiro, Ana C.; Pfaff, Donald W.; Silver, Rae
2008-01-01
Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links. PMID:19004805
Brain mast cells link the immune system to anxiety-like behavior.
Nautiyal, Katherine M; Ribeiro, Ana C; Pfaff, Donald W; Silver, Rae
2008-11-18
Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient Kit(W-sh/W-sh) (sash(-/-)) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amagai, Yosuke; Tanaka, Akane; Ohmori, Keitaro
Much is known regarding participations of mast cells with innate and acquired immunity by secreting various cytokines and chemical mediators. However, details of mast cell biology still remain unclear. In this study, we successfully established a novel growth factor-independent mast cell line (MPT-1) derived from canine mast cell tumor. MPT-1 cells manifested factor-independent proliferation as floating cells containing a large amount of histamine, as well as chymase-like dog mast cell protease 3, in cytosolic granules. Particularly, MPT-1 cells expressed high-affinity IgE receptors (Fc{epsilon}RI) and wild-type c-kit receptors. Degranulation of MPT-1 cells was induced not only by stimulation with calcium ionophoremore » but also by cross-linkage of the surface IgE. Given that MPT-1 is the first mast cell line with Fc{epsilon}RI which has no c-kit mutations, MPT-1 cells may provide great contribution for investigation of IgE-mediated activation mechanisms of mast cells, leading to development of effective treatment for allergic disorders.« less
Stokes, Alexander J; Wakano, Clay; Del Carmen, Kimberly A; Koblan-Huberson, Murielle; Turner, Helen
2005-03-01
The transient receptor potential, sub-family Vanilloid (TRPV)(2) cation channel is activated in response to extreme temperature elevations in sensory neurons. However, TRPV2 is widely expressed in tissues with no sensory function, including cells of the immune system. Regulation of GRC, the murine homolog of TRPV2 has been studied in insulinoma cells and myocytes. GRC is activated in response to certain growth factors and neuropeptides, via a mechanism that involves regulated access of the channel to the plasma membrane. This is likely to be an important primary control mechanism for TRPV2 outside the CNS. Here, we report that a regulated trafficking step controls the access of TRPV2 to the cell surface in mast cells. In mast cells, elevations in cytosolic cAMP are sufficient to drive plasma membrane localization of TRPV2. We have previously proposed that the recombinase gene activator protein (RGA), a four-transmembrane domain, intracellular protein, associates with TRPV2 during the biosynthesis and early trafficking of the channel. We use a polyclonal antibody to RGA to confirm the formation of a physiological complex between RGA and TRPV2. Finally, we show that over-expression of the RGA protein potentiates the basal surface localization of TRPV2. We propose that trafficking and activation mechanisms intersect for TRPV2, and that cAMP mobilizing stimuli may regulate TRPV2 localization in non-sensory cells. RGA participates in the control of TRPV2 surface levels, and co-expression of RGA may be a key component of experimental systems that seek to study TRPV2 physiology.
Wound Healing in Mac-1 Deficient Mice
2017-05-01
36. Rosenkranz AR, Coxon A, Maurer M, Gurish MF, Austen KF, Friend DS, Galli SJ, Mayadas TN. Impaired mast cell development and innate immunity in Mac...genetically deficient mice. 3 INTRODUCTION Wound healing is a complex yet well-regulated process in which multiple resident cells ...recruited inflammatory cells , and stem cells interact to create an environment that supports the healing process. An optimal inflammatory response is a
2013-09-01
Malicious Activity Simulation Tool MMORPG Massively Multiplayer Online Role-Playing Game MMS Mission Management Server MOA Memorandum of Agreement MS...conferencing, and massively multiplayer online role- playing games (MMORPG). During all of these Internet-based exchanges and transactions, the Internet user...In its 2011 Internet Crime Report, the Internet Crime Complaint Center (IC3) stated there were more than 300,000 complaints of online criminal
Neutrophil Recruitment by Tumor Necrosis Factor from Mast Cells in Immune Complex Peritonitis
NASA Astrophysics Data System (ADS)
Zhang, Yan; Ramos, Bernard F.; Jakschik, Barbara A.
1992-12-01
During generalized immune complex-induced inflammation of the peritoneal cavity, two peaks of tumor necrosis factor (TNF) were observed in the peritoneal exudate of normal mice. In mast cell-deficient mice, the first peak was undetected, and the second peak of TNF and neutrophil influx were significantly reduced. Antibody to TNF significantly inhibited neutrophil infiltration in normal but not in mast cell-deficient mice. Mast cell repletion of the latter normalized TNF, neutrophil mobilization, and the effect of the antibody to TNF. Thus, in vivo, mast cells produce the TNF that augments neutrophil emigration.
Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms
NASA Astrophysics Data System (ADS)
Metz, Martin; Piliponsky, Adrian M.; Chen, Ching-Cheng; Lammel, Verena; Åbrink, Magnus; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.
2006-07-01
Snake or honeybee envenomation can cause substantial morbidity and mortality, and it has been proposed that the activation of mast cells by snake or insect venoms can contribute to these effects. We show, in contrast, that mast cells can significantly reduce snake-venom-induced pathology in mice, at least in part by releasing carboxypeptidase A and possibly other proteases, which can degrade venom components. Mast cells also significantly reduced the morbidity and mortality induced by honeybee venom. These findings identify a new biological function for mast cells in enhancing resistance to the morbidity and mortality induced by animal venoms.
... occurs when there are too many inflammatory cells (mast cells) in the skin. Mast cells are immune system cells that help the body fight infections. Mast cells make and release histamine, which causes nearby tissues ...
Mast cell proteases as pharmacological targets
Caughey, George H.
2015-01-01
Mast cells are rich in proteases, which are the major proteins of intracellular granules and are released with histamine and heparin by activated cells. Most of these proteases are active in the granule as well outside of the mast cell when secreted, and can cleave targets near degranulating mast cells and in adjoining tissue compartments. Some proteases released from mast cells reach the bloodstream and may have far-reaching actions. In terms of relative amounts, the major mast cell proteases include the tryptases, chymases, cathepsin G, carboxypeptidase A3, dipeptidylpeptidase I/cathepsin C, and cathepsins L and S. Some mast cells also produce granzyme B, plasminogen activators, and matrix metalloproteinases. Tryptases and chymases are almost entirely mast cell-specific, whereas other proteases, such as cathepsins G, C, and L are expressed by a variety of inflammatory cells. Carboxypeptidase A3 expression is a property shared by basophils and mast cells. Other proteases, such as mastins, are largely basophil-specific, although human basophils are protease-deficient compared with their murine counterparts. The major classes of mast cell proteases have been targeted for development of therapeutic inhibitors. Also, a human β-tryptase has been proposed as a potential drug itself, to inactivate of snake venins. Diseases linked to mast cell proteases include allergic diseases, such as asthma, eczema, and anaphylaxis, but also include non-allergic diseases such inflammatory bowel disease, autoimmune arthritis, atherosclerosis, aortic aneurysms, hypertension, myocardial infarction, heart failure, pulmonary hypertension and scarring diseases of lungs and other organs. In some cases, studies performed in mouse models suggest protective or homeostatic roles for specific proteases (or groups of proteases) in infections by bacteria, worms and other parasites, and even in allergic inflammation. At the same time, a clearer picture has emerged of differences in the properties and patterns of expression of proteases expressed in human mast cell subsets, and in humans versus other mammals. These considerations are influencing prioritization of specific protease targets for therapeutic inhibition, as well as options of pre-clinical models, disease indications, and choice of topical versus systemic routes of inhibitor administration. PMID:25958181
Mast cell proteases as protective and inflammatory mediators.
Caughey, George H
2011-01-01
Proteases are the most abundant class of proteins produced by mast cells. Many of these are stored in membrane-enclosed intracellular granules until liberated by degranulating stimuli, which include cross-linking of high affinity IgE receptor F(c)εRI by IgE bound to multivalent allergen. Understanding and separating the functions of the proteases is important because expression differs among mast cells in different tissue locations. Differences between laboratory animals and humans in protease expression also influence the degree of confidence with which results obtained in animal models of mast cell function can be extrapolated to humans. The inflammatory potential of mast cell proteases was the first aspect of their biology to be explored and has received the most attention, in part because some of them, notably tryptases and chymases, are biomarkers of local and systemic mast cell degranulation and anaphylaxis. Although some of the proteases indeed augment allergic inflammation and are potential targets for inhibition to treat asthma and related allergic disorders, they are protective and even anti-inflammatory in some settings. For example, mast cell tryptases may protect from serious bacterial lung infections and may limit the "rubor" component of inflammation caused by vasodilating neuropeptides in the skin. Chymases help to maintain intestinal barrier function and to expel parasitic worms and may support blood pressure during anaphylaxis by generating angiotensin II. In other life-or-death examples, carboxypeptidase A3 and other mast cell peptidases limit systemic toxicity of endogenous peptideslike endothelin and neurotensin during septic peritonitis and inactivate venom-associated peptides. On the other hand, mast cell peptidase-mediated destruction of protective cytokines, like IL-6, can enhance mortality from sepsis. Peptidases released from mast cells also influence nonmast cell proteases, such as by activating matrix metalloproteinase cascades, which are important in responses to infection and resolution of tissue injury. Overall, mast cell proteases have a variety of roles, inflammatory and anti-inflammatory, protective and deleterious, in keeping with the increasingly well-appreciated contributions of mast cells in allergy, tissue homeostasis and innate immunity.
Johnson-Greene, Doug; McCaul, Mary E; Roger, Patricia
2009-09-01
Effective and valid screening methods are needed to identify hazardous drinking in elderly persons with new onset acute medical illness. The goal of the current study was to examine the effectiveness of the Michigan Alcohol Screening Test-Geriatric Version (MAST-G) in identifying hazardous drinking among elderly patients with acute cerebrovascular accidents (CVA) and to compare the effectiveness of 2 shorter versions of the MAST-G with the full instrument. The study sample included 100 men and women who averaged 12 days posthemorrhagic or ischemic CVA admitted to a rehabilitation unit and who were at least 50 years of age and free of substance use other than alcohol. This cross-sectional validation study compared the 24-item full MAST-G, the 10-item Short MAST-G (SMAST-G), and a 2-item regression analysis derived Mini MAST-G (MMAST-G) to the reference standard of hazardous drinking during the past 3 months. Alcohol use was collected using the Timeline Followback (TLFB). Recent and lifetime alcohol-related consequences were collected using the Short Inventory of Problems (SIP). Nearly one-third (28%) of the study sample met the World Health Organization (WHO) criteria for hazardous drinking. Moderately strong associations were found for the MAST-G, SMAST-G, and MMAST-G with alcohol quantity and frequency and recent and lifetime alcohol consequences. All 3 MAST-G versions could differentiate hazardous from nonhazardous drinkers and had nearly identical area under the curve characteristics. Comparable sensitivity was found across the 3 MAST-G measures. The optimal screening threshold for hazardous drinking was 5 for the MAST-G, 2 for the SMAST-G, and 1 for the MMAST-G. The 10-item SMAST-G and 2-item MMAST-G are brief screening tests that show comparable effectiveness in detecting hazardous drinking in elderly patients with acute CVA compared with the full 24-item MAST-G. Implications for research and clinical practice are discussed.
Dahlin, Joakim S.; Ivarsson, Martin A.; Heyman, Birgitta; Hallgren, Jenny
2011-01-01
Mast cell numbers and allergen specific IgE are increased in the lungs of patients with allergic asthma and this can be reproduced in mouse models. The increased number of mast cells is likely due to recruitment of mast cell progenitors that mature in situ. We hypothesized that formation of IgE immune complexes in the lungs of sensitized mice increase the migration of mast cell progenitors to this organ. To study this, a model of allergic airway inflammation where mice were immunized with ovalbumin (OVA) in alum twice followed by three daily intranasal challenges of either OVA coupled to trinitrophenyl (TNP) alone or as immune complexes with IgE-anti-TNP, was used. Mast cell progenitors were quantified by a limiting dilution assay. IgE immune complex challenge of sensitized mice elicited three times more mast cell progenitors per lung than challenge with the same dose of antigen alone. This dose of antigen challenge alone did not increase the levels of mast cell progenitors compared to unchallenged mice. IgE immune complex challenge of sensitized mice also enhanced the frequency of mast cell progenitors per 106 mononuclear cells by 2.1-fold. The enhancement of lung mast cell progenitors by IgE immune complex challenge was lost in FcRγ deficient mice but not in CD23 deficient mice. Our data show that IgE immune complex challenge enhances the number of mast cell progenitors in the lung through activation of an Fc receptor associated with the FcRγ chain. This most likely takes place via activation of FcεRI, although activation via FcγRIV or a combination of the two receptors cannot be excluded. IgE immune complex-mediated enhancement of lung MCp numbers is a new reason to target IgE in therapies against allergic asthma. PMID:21625525
Mast cells contribute to the mucosal adjuvant effect of CTA1-DD after IgG-complex formation.
Fang, Yu; Larsson, Lisa; Mattsson, Johan; Lycke, Nils; Xiang, Zou
2010-09-01
Mast cell activation is one of the most dramatic immune-mediated responses the body can encounter. In the worst scenario (i.e., anaphylaxis), this response is fatal. However, the importance of mast cells as initiators and effectors of both innate and adaptive immunity in healthy individuals has recently been appreciated. It was reported that mast cell activation can be used as an adjuvant to promote Ag-specific humoral immune responses upon vaccination. In this study, we have used a clinically relevant mucosal adjuvant, cholera toxin A1 subunit (CTA1)-DD, which is a fusion protein composed of CTA1, the ADP-ribosylating part of cholera toxin, and DD, two Ig-binding domains derived from Staphylococcus aureus protein A. CTA1-DD in combination with polyclonal IgG induced degranulation and production of TNF-alpha from mouse mast cells. Furthermore, CTA1-DD and polyclonal IgG complex induced mast cell degranulation in mouse skin tissue and nasal mucosa. We also found that intranasal immunization with hapten (4-hydroxy-3-nitrophenyl) acetyl (NP) coupled to chicken gammaglobulin admixed with CTA1-DD complexed with polyclonal IgG greatly enhanced serum IgG anti-NP Ab responses and stimulated higher numbers of NP-specific plasma cells in the bone marrow as compared with that observed in mice immunized with NP-chicken gammaglobulin with CTA1-DD alone. This CTA1-DD/IgG complex-mediated enhancement was mast cell dependent because it was absent in mast cell-deficient Kit(W-sh/W-sh) mice. In conclusion, our data suggest that a clinically relevant adjuvant, CTA1-DD, exerts additional augmenting effects through activation of mucosal mast cells, clearly demonstrating that mast cells could be further exploited for improving the efficacy of mucosal vaccines.
Asadi, Shahrzad; Sismanopoulos, Nikolaos; Butcher, Alan; Fu, Xueyan; Katsarou-Katsari, Alexandra; Antoniou, Christina; Theoharides, Theoharis C.
2012-01-01
Mast cells are immune cells critical in the pathogenesis of allergic, but also inflammatory and autoimmune diseases through release of many pro-inflammatory cytokines such as IL-8 and TNF. Contact dermatitis and photosensitivity are skin conditions that involve non-immune triggers such as substance P (SP), and do not respond to conventional treatment. Inhibition of mast cell cytokine release could be effective therapy for such diseases. Unfortunately, disodium cromoglycate (cromolyn), the only compound marketed as a mast cell “stabilizer”, is not particularly effective in blocking human mast cells. Instead, flavonoids are potent anti-oxidant and anti-inflammatory compounds with mast cell inhibitory actions. Here, we first compared the flavonoid quercetin (Que) and cromolyn on cultured human mast cells. Que and cromolyn (100 µM) can effectively inhibit secretion of histamine and PGD2. Que and cromolyn also inhibit histamine, leukotrienes and PGD2 from primary human cord blood-derived cultured mast cells (hCBMCs) stimulated by IgE/Anti-IgE. However, Que is more effective than cromolyn in inhibiting IL-8 and TNF release from LAD2 mast cells stimulated by SP. Moreover, Que reduces IL-6 release from hCBMCs in a dose-dependent manner. Que inhibits cytosolic calcium level increase and NF-kappa B activation. Interestingly, Que is effective prophylactically, while cromolyn must be added together with the trigger or it rapidly loses its effect. In two pilot, open-label, clinical trials, Que significantly decreased contact dermatitis and photosensitivity, skin conditions that do not respond to conventional treatment. In summary, Que is a promising candidate as an effective mast cell inhibitor for allergic and inflammatory diseases, especially in formulations that permit more sufficient oral absorption. PMID:22470478
Debta, Priyanka; Debta, Fakir Mohan; Chaudhary, Minal; Bussari, Smita
2016-01-01
The multifunctional involvement and infiltration of myeloid cells (tumor-associated tissue eosinophils [TATE] and mast cells) can provide a unique opportunity to define relevant effectors functions that may represent novel, therapeutic options for modulation of tumor onset/growth. Our study aimed to evaluate infiltration of myeloid cells (TATE and Mast cells) infiltration in different grades (WHO grading) of oral squamous cell carcinoma (OSCC). Total 30 cases of OSCC were selected for this study. Hematoxylin and eosin stain and toluidine blue special stain, to evaluate TATE and the mast cells infiltration, were used. Three-year follow-up of OSCC cases was done. Among 30 cases, 63.33% cases of OSCC showed TATE-positive and 36.66% cases showed TATE-negative. Regarding mast cells infiltration, 66.66% OSCC cases showed mast cells positive and 33.33% cases did not show significant mast cells infiltration. We found significant association of TATE and mast cells infiltration in OSCC cases. These myeloid cells infiltration significantly associated with age of patients but did not show any significant association with gender, site, and habit of cases. When we compared these cells infiltration with clinical stages and different histological grades of tumor, we found their infiltration is decreasing, from Stages 1 to Stage 3 of tumor and from well to poorly differentiated carcinoma. We have also found the less infiltration of these myeloid in recurrence cases of OSCC. As the infiltration of TATE and mast cells are correlated, along with evaluation of TATE, we should also evaluate the presence of mast cells infiltration in OSCC. The assessment of myeloid cells could become, in the future, useful for therapeutic approaches in this subset of the patient.
Upregulated expression of substance P (SP) and NK1R in eczema and SP-induced mast cell accumulation.
Zhan, Mengmeng; Zheng, Wenjiao; Jiang, Qijun; Zhao, Zuotao; Wang, Zhiyun; Wang, Junling; Zhang, Huiyun; He, Shaoheng
2017-08-01
Substance P (SP) was reported to be associated with eczema and acts as a potent skin mast cell secretagogue. However, little is known of its expression in inflammatory cells in eczema and its ability in induction of mast cell accumulation. In the present study, we investigated expression of SP and neurokinin-1 receptor (NK1R) on peripheral blood leukocytes and mast cells from patients with eczema and influence of SP on mast cell accumulation by using flow cytometry analysis, trans-epithelial cell migration assay and mouse peritoneal model. The results showed that plasma SP and IL-17A levels in eczema patients were higher than that in healthy control subject. The percentages of SP+ and NK1R+ expression populations of monocytes, helper T cells, natural killer T cells and basophils in peripheral blood of eczema patients were markedly elevated. It was observed that not only absolute number of mast cells but also SP+ and NK1R+ mast cells are enhanced in the lesion skin of eczema. SP showed a potent chemoattractant action on mast cells as assessed by a mouse peritoneal model and a trans-endothelium cell migration assay. SP-induced mast cell accumulation appears a CD18/CD11a complex, L-selectin and ICAM-1-dependent event which can be blocked by a NK-1R antagonist RP67580. In conclusion, elevated expression of SP in patients with eczema and the ability of SP in induction of mast cell accumulation indicate strongly that SP is a potent proinflammatory mediator, which contributes to the pathogenesis of eczema. Inhibitors of SP and blockers of NK1R are likely useful agents for treatment of eczema.
Baba, Asuka; Tachi, Masahiro; Ejima, Yutaka; Endo, Yasuhiro; Toyama, Hiroaki; Saito, Kazutomo; Abe, Nozomu; Yamauchi, Masanori; Miura, Chieko; Kazama, Itsuro
2017-02-01
Chronic renal failure (CRF) is histopathologically characterized by tubulointerstitial fibrosis in addition to glomerulosclerosis. Although mast cells are known to infiltrate into the kidneys with chronic inflammation, we know little about their contribution to the pathogenesis of renal fibrosis associated with CRF. The aim of this study was to reveal the involvement of mast cells in the progression of renal fibrosis in CRF. Using a rat model with CRF resulting from 5/6 nephrectomy, we examined the histopathological features of the kidneys and the infiltration of mast cells into the renal interstitium. By treating the rats with a potent mast cell stabilizer, tranilast, we also examined the involvement of mast cells in the progression of renal fibrosis associated with CRF. The CRF rat kidneys were characterized by the wide staining of collagen III and increased number of myofibroblasts, indicating the progression of renal fibrosis. Compared to T-lymphocytes or macrophages, the number of tryptase-positive mast cells was much smaller within the fibrotic kidneys and they did not proliferate in situ. The mRNA expression of mast cell-derived fibroblast-activating factors was not increased in the renal cortex isolated from CRF rat kidneys. Treatment with tranilast did not suppress the progression of renal fibrosis, nor did it ameliorate the progression of glomerulosclerosis and the interstitial proliferation of inflammatory leukocytes. This study demonstrated for the first time that mast cells are neither increased nor activated in the fibrotic kidneys of CRF rats. Compared to T-lymphocytes or macrophages that proliferate in situ within the fibrotic kidneys, mast cells were less likely to contribute to the progression of renal fibrosis associated with CRF. © 2016 Asian Pacific Society of Nephrology.
Quantification and localization of mast cells in periapical lesions.
Mahita, V N; Manjunatha, B S; Shah, R; Astekar, M; Purohit, S; Kovvuru, S
2015-01-01
Periapical lesions occur in response to chronic irritation in periapical tissue, generally resulting from an infected root canal. Specific etiological agents of induction, participating cell population and growth factors associated with maintenance and resolution of periapical lesions are incompletely understood. Among the cells found in periapical lesions, mast cells have been implicated in the inflammatory mechanism. Quantifications and the possible role played by mast cells in the periapical granuloma and radicular cyst. Hence, this study is to emphasize the presence (localization) and quantification of mast cells in periapical granuloma and radicular cyst. A total of 30 cases and out of which 15 of periapical granuloma and 15 radicular cyst, each along with the case details from the previously diagnosed cases in the department of oral pathology were selected for the study. The gender distribution showed male 8 (53.3%) and females 7 (46.7%) in periapical granuloma cases and male 10 (66.7%) and females 5 (33.3%) in radicular cyst cases. The statistical analysis used was unpaired t-test. Mean mast cell count in periapical granuloma subepithelial and deeper connective tissue, was 12.40 (0.99%) and 7.13 (0.83%), respectively. The mean mast cell counts in subepithelial and deeper connective tissue of radicular cyst were 17.64 (1.59%) and 12.06 (1.33%) respectively, which was statistically significant. No statistical significant difference was noted among males and females. Mast cells were more in number in radicular cyst. Based on the concept that mast cells play a critical role in the induction of inflammation, it is logical to use therapeutic agents to alter mast cell function and secretion, to thwart inflammation at its earliest phases. These findings may suggest the possible role of mast cells in the pathogenesis of periapical lesions.
Saavedra, Y; Vergara, P
2003-03-28
Several studies demonstrate that intestinal mucosal mast cells (IMMC) are modulated by nervous reflexes as well as by intraluminal content. We recently demonstrated that peptones, such as ovalbumin hydrolysate (OVH), induce the release of rat mast cell protease II (RMCP II), indicating IMMC degranulation. The response is due to complex neuroendocrine reflexes. Somatostatin (SS) and its analogues have been used as potential treatments for inflammation in other body systems with contradictory results. The aim of this study was to evaluate if somatostatin could contribute to the reduction of intestinal mucosal mast cell degranulation. Anesthetized rats were prepared for duodenal perfusion and mast cell activation was measured by analysis of RMCP II concentration in the duodenal perfusate. Somatostatin significantly decreased RMCP II concentration in both nonstimulated conditions and after ovalbumin hydrolysate perfusion. However, when somatostatin was given previously to OVH, the peptone still induced a slight increase of RMCP II. Similar effects were observed in animals previously treated with capsaicin. These protocols were repeated in animals infected with Trichinella spiralis, which induces mucosal mast cell hyperplasia. In these cases, somatostatin blocked the effect of OVH, thus, preventing an increase in RMCP II concentration. Fresh frozen tissue sections from the duodenum were processed in an attempt to demonstrate the presence of SS receptors in mast cells using immunofluorescence and Fluo-peptide labeling techniques. Confocal images from duodenum specimens demonstrate the existence of SS receptors in positive cells for RMCP II. Taken together, these results indicate that somatostatin diminishes mast cell activity and in consequence could prevent the intestinal responses to mast cell hyperplasia. Copyright 2002 Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Meichun; Department of Physiology, Hubei University of Medicine, Shiyan; Li, Jianjie
Mast cells play a key role in the pathogenesis of asthma and are a promising target for therapeutic intervention in asthma. This study investigated the effects of polydatin (PD), a resveratrol glucoside, on mast cell degranulation upon cross-linking of the high-affinity IgE receptors (FcεRI), as well as the anti-allergic activity of PD in vivo. Herein, we demonstrated that PD treatment for 30 min suppressed FcεRI-mediated mast cell degranulation in a dose-dependent manner. Concomitantly, PD significantly decreased FcεRI-mediated Ca{sup 2+} increase in mast cells. The suppressive effects of PD on FcεRI-mediated Ca{sup 2+} increase were largely inhibited by using LaCl{sub 3}more » to block the Ca{sup 2+} release-activated Ca{sup 2+} channels (CRACs). Furthermore, PD significantly inhibited Ca{sup 2+} entry through CRACs evoked by thapsigargin (TG). Knocking down protein expression of Orai1, the pore-forming subunit of CRACs, significantly decreased PD suppression of FcεRI-induced intracellular Ca{sup 2+} influx and mast cell degranulation. In a mouse model of mast cell-dependent passive cutaneous anaphylaxis (PCA), in vivo PD administration suppressed mast cell degranulation and inhibited anaphylaxis. Taken together, our data indicate that PD stabilizes mast cells by suppressing FcεRI-induced Ca{sup 2+} mobilization mainly through inhibiting Ca{sup 2+} entry via CRACs, thus exerting a protective effect against PCA. -- Highlights: ► Polydatin can prevent the pathogenesis of passive cutaneous anaphylaxis in mice. ► Polydatin stabilizes mast cells by decreasing FcεRI-mediated degranulation. ► Polydatin suppresses Ca{sup 2+} entry through CRAC channels in mast cells.« less
Alterations in MAST suit pressure with changes in ambient temperature.
Sanders, A B; Meislin, H W; Daub, E
1983-01-01
A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.
NASA Astrophysics Data System (ADS)
Walsh, Laurence J.; Trinchieri, Giorgio; Waldorf, Heidi A.; Whitaker, Diana; Murphy, George F.
1991-05-01
Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine that mediates endothelial leukocyte interactions by inducing expression of adhesion molecules. In this report, we demonstrate that human dermal mast cells contain sizeable stores of immunoreactive and biologically active TNF-α within granules, which can be released rapidly into the extracellular space upon degranulation. Among normal human dermal cells, mast cells are the predominant cell type that expresses both TNF-α protein and TNF-α mRNA. Moreover, induction of endothelial leukocyte adhesion molecule 1 expression is a direct consequence of release of mast cell-derived TNF-α. These findings establish a role for human mast cells as "gatekeepers" of the dermal microvasculature and indicate that mast cell products other than vasoactive amines influence endothelium in a proinflammatory fashion.
The role of colonic mast cells and myenteric plexitis in patients with diverticular disease.
Bassotti, Gabrio; Villanacci, Vincenzo; Nascimbeni, Riccardo; Antonelli, Elisabetta; Cadei, Moris; Manenti, Stefania; Lorenzi, Luisa; Titi, Amin; Salerni, Bruno
2013-02-01
Gut mast cells represent an important cell population involved in intestinal homeostasis and inflammatory processes. However, their possible role has not to date been investigated in colonic diverticular disease. This study aims to evaluate colonic mast cells in patients undergoing surgery for diverticular disease. Surgical resection samples from 27 patients undergoing surgery for diverticular disease (12 emergency procedures for severe disease and 15 elective procedures) were evaluated. The number of mast cells was assessed in the various layers by means of a specific antibody (tryptase) and compared with those evaluated in ten controls. In patients with mast cells degranulation, double immunohistochemistry, also assessing nerve fibres, was carried out. In addition, the presence of myenteric plexitis was sought. Compared with controls, the number of mast cells in diverticular patients was significantly increased, both as an overall figure and in the various layers of the large bowel. In patients in whom mast cells degranulation was present, these were always closed to nerve fibres. No differences were found between the two subgroups of patients with respect to the number and distribution of mast cells; however, all patients undergoing emergency surgery (but none of those undergoing elective procedures) had myenteric plexitis, represented by lymphocytic infiltration in 67 % and eosinophilic infiltration in 33 % of cases. Patients with diverticular disease display an increase of mast cells in the large bowel. The presence of myenteric plexitis in those with complicated, severe disease, suggest that this could represent a histopathologic marker of more aggressive disease.
Proliferation of protease-enriched mast cells in sarcoptic skin lesions of raccoon dogs.
Noviana, D; W Harjanti, D; Otsuka, Y; Horii, Y
2004-07-01
Skin sites, tongue, lung, liver, jejunum and rectum from two raccoon dogs with Sarcoptes scabiei infestation and five normal (control) raccoon dogs were examined in terms of the distribution, proteoglycan properties and protease activity of mast cells. Infestation with S. scabiei caused a significant increase in the number of dermal mast cells. While the number of mast cells (average +/- standard deviation) in specimens of skin from the dorsum, dorsal neck, dorsal hind foot and dorsal fore foot was 40.0 +/- 19.8/mm2 in control animals, it was 236.1 +/- 58.9/mm2 in the skin of mange-infested animals. Histochemical analysis revealed the glycosaminoglycan, heparin, within the mast cells of all organs examined in both control and affected animals. Enzyme-histochemical detection of serine proteases demonstrated an increase in mast-cell-specific protease activity (i.e., chymase and tryptase) in the skin of infested animals. The percentage of mast cells demonstrating chymase activity was 53.0 +/- 27.4% in control animals and 73.8 +/- 19.4% in mite-infested animals. The corresponding results for tryptase activity were 53.5 +/- 25.2% and 89.4 +/- 9.8%. Increases in mast cell chymase or tryptase activity, or both, were also observed within other organs of the infected animals, but the total number of mast cells found at such sites (with the exception of liver and ventrolateral pinna) did not differ from those of control animals. Copyright 2004 Elsevier Ltd.
Hydrocortisone and dexamethasone dose-dependently stabilize mast cells derived from rat peritoneum.
Mori, Tomohiro; Abe, Nozomu; Saito, Kazutomo; Toyama, Hiroaki; Endo, Yasuhiro; Ejima, Yutaka; Yamauchi, Masanori; Goto, Mariko; Mushiake, Hajime; Kazama, Itsuro
2016-12-01
Besides their anti-inflammatory properties, corticosteroid drugs exert anti-allergic effects. Exocytosis of mast cells is electrophysiologically detected as the increase in the whole-cell membrane capacitance (Cm). Therefore, the lack of such increase after exposure to the drugs suggests their mast cell-stabilizing effects. We examined the effects of 1, 10, 100 and 200μM hydrocortisone or dexamethasone on the degranulation from rat peritoneal mast cells. Employing the whole-cell patch-clamp recording technique, we also tested their effects on the Cm during exocytosis. At relatively lower concentrations (1, 10μM), both hydrocortisone and dexamethasone did not significantly affect the degranulation from mast cells and the increase in the Cm induced by GTP-γ-S. Nevertheless, at higher doses (100, 200μM), these drugs inhibited the degranulation from mast cells and markedly suppressed the GTP-γ-S-induced increase in the Cm. Our results provided electrophysiological evidence for the first time that corticosteroid drugs, such as hydrocortisone and dexamethasone, inhibited the exocytotic process of mast cells in a dose-dependent manner. The mast cell-stabilizing effects of these drugs may be attributable to their "non-genomic" action, by which they exert rapid anti-allergic effects. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.
Burton, Oliver T; Darling, Alanna R; Zhou, Joseph S; Noval-Rivas, Magali; Jones, Tatiana G; Gurish, Michael F; Chatila, Talal A; Oettgen, Hans C
2012-01-01
IL-4 plays critical roles in allergic disorders, including food hypersensitivity. The direct effects of the cytokine on the survival and function of mast cells, the key effectors of food anaphylaxis, have not been established. In this study we demonstrate that IL-4 induces a marked intestinal mastocytosis in mice. This phenotype is reproduced in animals expressing Il4rαF709, an activating variant of the IL-4 receptor α (IL-4Rα)-chain. Il4rαF709 mice exhibit enhanced anaphylactic reactions but unaltered physiologic responses to vasoactive mediators. IL-4 induces Bcl-2 and Bcl-XL, and enhances survival and stimulates proliferation in cultured bone marrow mast cells (BMMC). These effects are STAT6-dependent and are amplified in Il4rαF709 BMMC. In competitive bone marrow chimeras, Il4rαF709 mast cells display a substantial competitive advantage over wild-type mast cells which, in turn, prevail over IL-4Rα−/− mast cells in populating the intestine, establishing a cell intrinsic effect of IL-4 in intestinal mast cell homeostasis. Our results demonstrate that IL-4-signaling is a key determinant of mast cell expansion in food allergy. PMID:23149659
Increased mast cell density in haemorrhoid venous blood vessels suggests a role in pathogenesis.
Taweevisit, M; Wisadeopas, N; Phumsuk, U; Thorner, P S
2008-12-01
Haemorrhoids are an abnormal, tortuous dilatation of the arteriovenous plexus of the anus. Although increased resting anorectal pressure is deemed to be a major initiating factor, a thorough understanding of the pathogenesis is still lacking. Mast cells, through release of granules, can affect local vessels with respect to changes in calibre, changes in permeability and thrombosis. Thus, mast cells could play a role in haemorrhoid pathophysiology, although this has not been previously investigated. 48 cases of haemorrhoids were retrospectively collected at King Chulalongkorn Memorial Hospital, with normal anorectal tissue from surgically-removed colorectal cancer serving as controls. Mast cells were identified by toluidine blue staining and quantitated around venous vessels. Mast cells around haemorrhoidal vessels were significantly more numerous than in normal specimens (p-value is less than 0.001). Similar values were found for haemorrhoids showing chronic changes and those in a more acute stage. These findings support the hypothesis that mast cells may play a role in the pathophysiology of haemorrhoids. Mast cells appear to participate equally in the early and later stages of these lesions. Mast cells are known to affect local vascular conditions through release of their chemical mediators and cytokines, and may influence haemorrhoid symptomatology and progression at this level.
Human intestinal mucosal mast cells: expanded population in untreated coeliac disease.
Strobel, S; Busuttil, A; Ferguson, A
1983-01-01
Previous retrospective studies of intestinal mucosal mast cells in coeliac disease have given divergent results, and we have recently reported that inappropriate methodology could account for these discrepancies. In this prospective study, mucosal mast cell counts were performed in Carnoy fixed, peroral jejunal biopsy specimens from patients with coeliac disease, both untreated and treated with a gluten-free diet; and from controls (mainly irritable bowel syndrome). Mean mucosal mast cell count in 27 control subjects was 146/mm2, SD 29. Significantly higher values were obtained in untreated coeliac disease (mean 243, SD 41, p less than 0.001) returning to the normal range in coeliacs treated with a gluten-free diet with normal jejunal biopsy morphology. In seven patients mucosal mast cell counts were performed in multiple jejunal biopsies, and these showed that mucosal mast cell distribution was not patchy. There was no evidence of degranulation of intestinal mucosal mast cells under the conditions of routine biopsy (overnight fast). An increase in mucosal mast cells in untreated coeliac disease may be one explanation for the high number of IgE positive stained cells in the intestinal mucosa that has been reported by some authors. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:6826106
Drube, Sebastian; Beyer, Mandy; Rothe, Mandy; Rabenhorst, Anja; Göpfert, Christiane; Meininger, Isabel; Diamanti, Michaela A.; Stegner, David; Häfner, Norman; Böttcher, Martin; Reinecke, Kirstin; Herdegen, Thomas; Greten, Florian R.; Nieswandt, Bernhard; Hartmann, Karin; Krämer, Oliver H.; Kamradt, Thomas
2015-01-01
Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca2+-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term “subthreshold IKK activation”. This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33. We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo. Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure. PMID:25749030
Fang, Hui; Zhang, Yang; Li, Ning; Wang, Gang; Liu, Zhi
2018-01-01
Bullous pemphigoid (BP) is an autoimmune and inflammatory skin disease associated with subepidermal blistering and autoantibodies directed against the hemidesmosomal components BP180 and BP230. Animal models of BP were developed by passively transferring anti-BP180 IgG into mice, which recapitulates the key features of human BP. By using these in vivo model systems, key cellular and molecular events leading to the BP disease phenotype are identified, including binding of pathogenic IgG to its target, complement activation of the classical pathway, mast cell degranulation, and infiltration and activation of neutrophils. Proteinases released by infiltrating neutrophils cleave BP180 and other hemidesmosome-associated proteins, causing DEJ separation. Mast cells and mast cell-derived mediators including inflammatory cytokines and proteases are increased in lesional skin and blister fluids of BP. BP animal model evidence also implicates mast cells in the pathogenesis of BP. However, recent studies questioned the pathogenic role of mast cells in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and epidermolysis bullosa acquisita. This review highlights the current knowledge on BP pathophysiology with a focus on a potential role for mast cells in BP and mast cell-related critical issues needing to be addressed in the future. PMID:29545809
Mast cell-neural interactions contribute to pain and itch.
Gupta, Kalpna; Harvima, Ilkka T
2018-03-01
Mast cells are best recognized for their role in allergy and anaphylaxis, but increasing evidence supports their role in neurogenic inflammation leading to pain and itch. Mast cells act as a "power house" by releasing algogenic and pruritogenic mediators, which initiate a reciprocal communication with specific nociceptors on sensory nerve fibers. Consequently, nerve fibers release inflammatory and vasoactive neuropeptides, which in turn activate mast cells in a feedback mechanism, thus promoting a vicious cycle of mast cell and nociceptor activation leading to neurogenic inflammation and pain/pruritus. Mechanisms underlying mast cell differentiation, activation, and intercellular interactions with inflammatory, vascular, and neural systems are deeply influenced by their microenvironment, imparting enormous heterogeneity and complexity in understanding their contribution to pain and pruritus. Neurogenic inflammation is central to both pain and pruritus, but specific mediators released by mast cells to promote this process may vary depending upon their location, stimuli, underlying pathology, gender, and species. Therefore, in this review, we present the contribution of mast cells in pathological conditions, including distressing pruritus exacerbated by psychologic stress and experienced by the majority of patients with psoriasis and atopic dermatitis and in different pain syndromes due to mastocytosis, sickle cell disease, and cancer. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pavlovian Conditioning of Rat Mucosal Mast Cells to Secrete Rat Mast Cell Protease II
NASA Astrophysics Data System (ADS)
MacQueen, Glenda; Marshall, Jean; Perdue, Mary; Siegel, Shepard; Bienenstock, John
1989-01-01
Antigen (egg albumin) injections, which stimulate mucosal mast cells to secrete mediators, were paired with an audiovisual cue. After reexposure to the audiovisual cue, a mediator (rat mast cell protease II) was measured with a sensitive and specific assay. Animals reexposed to only the audiovisual cue released a quantity of protease not significantly different from animals reexposed to both the cue and the antigen; these groups released significantly more protease than animals that had received the cue and antigen in a noncontingent manner. The results support a role for the central nervous system as a functional effector of mast cell function in the allergic state.
Curiosity on Tilt Table with Mast Up
2011-03-25
The Mast Camera Mastcam on NASA Mars rover Curiosity has two rectangular eyes near the top of the rover remote sensing mast. This image shows Curiosity on a tilt table NASA Jet Propulsion Laboratory, Pasadena, California.
Honjoh, Chisato; Chihara, Kazuyasu; Yoshiki, Hatsumi; Yamauchi, Shota; Takeuchi, Kenji; Kato, Yuji; Hida, Yukio; Ishizuka, Tamotsu; Sada, Kiyonao
2017-04-10
Macrophage-inducible C-type lectin (Mincle) interacts with the γ-subunit of high-affinity IgE receptor (FcεRIγ) and activates Syk by recognizing its specific ligand, trehalose-6,6'-dimycolate, a glycolipid produced by Mycobacterium tuberculosis. It has been suggested that mast cells participate in the immune defense against pathogenic microbes including M. tuberculosis, although the functions are still uncertain. In this study, we examined the Mincle-mediated signaling pathway and cellular responses using RBL-2H3 cells. Mincle formed a protein complex with not only FcεRIγ but also FcεRIβ in a stable cell line expressing myc-tagged Mincle. In addition, engagement of Mincle increased the levels of protein tyrosine phosphorylation and ERK phosphorylation. A pull-down assay demonstrated that cross-linking of Mincle induced binding of FcεRIβγ subunits to the Src homology 2 domain of Syk. Pharmacological and genetic studies indicated that activation of Syk was critical for Mincle-mediated activation of phospholipase Cγ2, leading to the activation of ERK and nuclear factor of activated T cells. Moreover, engagement of Mincle efficiently induced up-regulation of characteristic mast cell genes in addition to degranulation. Taken together, our present results suggest that mast cells contribute to Mincle-mediated immunity through Syk activation triggered by association with the FcεRIβγ complex.
Brown, Melissa A; Weinberg, Rebecca B
2018-01-01
Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.
Freitas, M A R; Segatto, N; Tischler, N; de Oliveira, E C; Brehmer, A; da Silveira, A B M
2017-03-01
Chagas' disease is still reaching about 10 million people in the world. In South America, one of the most severe forms of this disease is the megacolon, characterized by severe constipation, dilated sigmoid colon and rectum and severe malnutrition. Previous data suggested that mast cells and serotonin (5-hydroxytryptamine [5-HT]) expression could be involved in intestinal homeostasis control, avoiding the chagasic megacolon development. The aim at this study was to characterize the presence of mast cells and expression of serotonin in chagasic patients with and without megacolon and evaluate the relation between mast cells, serotonin and megacolon development. Our results demonstrated that patients without megacolon feature a large amount of serotonin and few mast cells, while patients with megacolon feature low serotonin expression and a lot of mast cells. We believe that serotonin may be involved in the inflammatory process control, triggered by mast cells, and the presence of this substance in large quantities of the intestine could represent a mechanism of megacolon prevention. © 2017 John Wiley & Sons Ltd.
Thrombomodulin inhibits the activation of eosinophils and mast cells.
Roeen, Ziaurahman; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Onishi, Masahiro; Kobayashi, Tetsu; Yasuma, Taro; Urawa, Masahito; Taguchi, Osamu; Gabazza, Esteban C
2015-01-01
Eosinophils and mast cells play critical roles in the pathogenesis of bronchial asthma. Activation of both cells leads to the release of pro-inflammatory mediators in the airway of asthmatic patients. Recently, we have shown that inhaled thrombomodulin inhibits allergic bronchial asthma in a mouse model. In the present study, we hypothesize that thrombomodulin can inhibit the activation of eosinophils and mast cells. The effect of thrombomodulin on the activation and release of inflammatory mediators from eosinophils and mast cells was evaluated. Thrombomodulin inhibited the eotaxin-induced chemotaxis, upregulation of CD11b and degranulation of eosinophils. Treatment with thrombomodulin also significantly suppressed the degranulation and synthesis of inflammatory cytokines and chemokines in eosinophils and mast cells. Mice treated with a low-dose of inhaled thrombomodulin have decreased number of eosinophils and activated mast cells and Th2 cytokines in the lungs compared to untreated mice. The results of this study suggest that thrombomodulin may modulate allergic responses by inhibiting the activation of both eosinophils and mast cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Ueshima, Chiyuki; Kataoka, Tatsuki R; Hirata, Masahiro; Sugimoto, Akihiko; Iemura, Yoshiki; Minamiguchi, Sachiko; Nomura, Takashi; Haga, Hironori
2018-06-01
The involvement of mast cells in the establishment of pregnancy is unclear. Herein, we found that human mast cells are present in the decidual tissues of parous women and expressed a human-specific protein killer cell Ig-like receptor (KIR) 2DL4, a receptor for human leukocyte antigen G expressed on human trophoblasts. In contrast, decreased numbers of decidual mast cells and reduced KIR2DL4 expression were observed in these cells of infertile women who had undergone long-term corticosteroid treatment. Co-culture of the human mast cell line, LAD2, and human trophoblast cell line, HTR-8/SVneo, accelerated the migration and tube formation of HTR-8/SVneo cells in a KIR2DL4-dependent manner. These observations suggest the possible involvement of human mast cells in the establishment of pregnancy via KIR2DL4 and that long-term corticosteroid treatment may cause infertility by influencing the phenotypes of decidual mast cells. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Chatura, K R; Sangeetha, S
2012-01-01
To assess the utility of a single stain for both mast cell count and bacillary index (BI), 50 skin-biopsie patients were stained with Fite-Faraco (FF) stain, viewed under oil immersion and BI calculated using the Ridley's logarithmic scale, and mast cells counted as the number of cells per mm2. Mean mast cell count per mm2 at the tuberculoid pole was lowest in TT 7.9 and highest in BT 14.23. At the lepromatous end, it was highest in BL 9.21, while in LL it was 8.23. Highest counts were seen in the borderline types overall. The correlation coefficient between histopathological diagnosis and BI is 0.822 which is a positive correlation to a significant degree. The correlation coefficient between histopathological diagnosis and mast cell count was found to be -0.17, which is a negative correlation but not to a significant degree. FF stain was utilised to visualise both bacilli for estimation of BI and mast cells for mast cell count, a seldom attempted feature in literature.
Extendable mast used in one shot soil penetrometer
NASA Technical Reports Server (NTRS)
Hotz, G. M.; Howard, G. A.
1966-01-01
Penetrometer to test soil characteristics has a piercing head with soil instrumentation equipment attached to an expandable mast actuated by compressed air. The penetrometer gives continuous measurements as the mast pushes the piercing head through the soil.
Multiple co morbid conditions in patient with Mast Cell Activation Syndrome
2017-10-26
conditions in patient \\\\·ith Mast Cell Activation Syndron1e Sb. GRANT NUMBER Sc. PROGRAM.ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Maj Sofia...13. SUPPLEMENTARY NOTES 14. ABSTRACT Multiple co-n1orhid conditions in patient \\Vith Mast Cell Activation Syndrotne Sofia M. Szari.MD. and James...Defense. !NTR()D{JCT!ON: Mast cell activation disorders {MCAD) have been associated \\Vilh Connective Tissue Disorders (CTD) and orthostatic
Lee, In Hong; Kim, Hyun Soo; Seo, Sang Heui
2017-04-01
Mast cells reside in many tissues, including the lungs, and might play a role in enhancing influenza virus infections in animals. In this study, we cultured porcine mast cells from porcine bone marrow cells with IL-3 and stem cell factor to study the infectivity and activation of the 2009 pandemic H1N1 influenza virus of swine origin. Porcine mast cells were infected with H1N1 influenza virus, without the subsequent production of infectious viruses but were activated, as indicated by the release of histamines. Inflammatory cytokine- and chemokine-encoding genes, including IL-1α, IL-6, CXCL9, CXCL10, and CXCL11, were upregulated in the infected porcine mast cells. Our results suggest that mast cells could be involved in enhancing influenza-virus-mediated disease in infected animals.
Update on Mastocytosis (Part 2): Categories, Prognosis, and Treatment.
Azaña, J M; Torrelo, A; Matito, A
2016-01-01
Mastocytosis is a term used to describe a heterogeneous group of disorders characterized by clonal proliferation of mast cells in different organs. The organ most often affected is the skin. The World Health Organization classifies cutaneous mastocytosis into mastocytoma, maculopapular cutaneous mastocytosis, and diffuse mastocytosis. The systemic variants in this classification are as follows: indolent systemic mastocytosis (SM), aggressive SM, SM with an associated clonal hematological non-mast cell lineage disease, mast cell leukemia, mast cell sarcoma, and extracutaneous mastocytoma. The two latest systemic variants are rare. Although the course of disease is unpredictable in children, lesions generally resolve by early adulthood. In adults, however, the disease tends to persist. The goal of treatment should be to control clinical manifestations caused by the release of mast cell mediators and, in more aggressive forms of the disease, to reduce mast cell burden. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.
Detection of mast cell secretion by using surface enhanced Raman scattering
NASA Astrophysics Data System (ADS)
Li, Juan; Li, Ren; Zheng, Liqin; Wang, Yuhua; Xie, Shusen; Lin, Juqiang
2016-10-01
Acupuncture can cause a remarkable increase in degranulation of the mast cells, which has attracted the interest of researchers since the 1980s. Surface-enhanced Raman scattering (SERS) could obtain biochemical information with high sensitivity and specificity. In this study, SERS was used to detect the degree of degranulation of mast cells according to different incubate time. Mast cells was incubated with culture medium for 0 h, 12 h and 24 h, then centrifuge the culture medium, decant the supernatant, and discard the mast cell. SERS was performed to obtain the biochemical fingerprinting signatures of the centrifuged medium. The spectra data are then analyzed by spectral peaks attribution and the principal component analysis (PCA). The measured Raman spectra of the two groups were separated well by PCA. It indicated that mast cells had secreted some substances into cultured medium though degranulation did not happen.
Mast Cells: Pivotal Players in Cardiovascular Diseases
Bot, Ilze; van Berkel, Theo J.C; Biessen, Erik A.L
2008-01-01
The clinical outcome of cardiovascular diseases as myocardial infarction and stroke are generally caused by rupture of an atherosclerotic plaque. However, the actual cause of a plaque to rupture is not yet established. Interestingly, pathology studies have shown an increased presence of the mast cell, an important inflammatory effector cell in allergy and host defense, in (peri)vascular tissue during plaque progression, which may point towards a causal role for mast cells. Very recent data in mouse models show that mast cells and derived mediators indeed can profoundly impact plaque progression, plaque stability and acute cardiovascular syndromes such as vascular aneurysm or myocardial infarction. In this review, we discuss recent evidence on the role of mast cells in the progression of cardiovascular disorders and give insight in the therapeutic potential of modulation of mast cell function in these processes to improve the resilience of a plaque to rupture. PMID:19936193
The impact of mast cells on cardiovascular diseases.
Kritikou, Eva; Kuiper, Johan; Kovanen, Petri T; Bot, Ilze
2016-05-05
Mast cells comprise an innate immune cell population, which accumulates in tissues proximal to the outside environment and, upon activation, augments the progression of immunological reactions through the release and diffusion of either pre-formed or newly generated mediators. The released products of mast cells include histamine, proteases, as well as a variety of cytokines, chemokines and growth factors, which act on the surrounding microenvironment thereby shaping the immune responses triggered in various diseased states. Mast cells have also been detected in the arterial wall and are implicated in the onset and progression of numerous cardiovascular diseases. Notably, modulation of distinct mast cell actions using genetic and pharmacological approaches highlights the crucial role of this cell type in cardiovascular syndromes. The acquired evidence renders mast cells and their mediators as potential prognostic markers and therapeutic targets in a broad spectrum of pathophysiological conditions related to cardiovascular diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
2008-01-01
Mast cells have been recognized for well over 100 years. With time, human mast cells have been documented to originate from CD34+ cells, and have been implicated in host responses in both innate and acquired immunity. In clinical immunology, they are recognized for their central role in IgE-mediated degranulation and allergic inflammation by virtue of their expression of the high-affinity receptor for IgE and release of potent proinflammatory mediators. In hematology, the clinical disease of mastocytosis is characterized by a pathologic increase of mast cells in tissues, often associated with mutations in KIT, the receptor for stem cell factor. More recently, and with increased understanding of how human mast cells are activated through receptors including the high-affinity receptor for IgE and KIT, specific tyrosine kinase inhibitors have been identified with the potential to interrupt signaling pathways and thus limit the proliferation of mast cells as well as their activation through immunoglobulin receptors. PMID:18684881
Basic science for the clinician 53: mast cells.
Sigal, Leonard H
2011-10-01
Mast cells stand at the interface between the innate immune system and the acquired (adaptive) immune response, serving as sentinels detecting invaders and directing a concerted and coordinated response. Mast cells reside immediately under body surfaces and within lymph nodes, near blood vessels and nerves, perfectly situated to for early detection and defense. They secrete a wide array of prostanoids, cytokines, chemokines, and other proteins mediators and modifiers of a variety of immune and inflammatory functions and bear surface markers suggesting broad functions, including as antigen-presenting cells. Although usually not given their due in medical school lectures, there is great likelihood that mast cells will be implicated in the pathogenesis of rheumatoid arthritis, scleroderma, multiple sclerosis, and perhaps cancer. Thus, better insights into mast cell functions and mast cell-derived effector molecules should command our attention as we move forward in better understanding disease immunopathogenesis and directed intelligent therapeutics development.
Influence of mass moment of inertia on normal modes of preloaded solar array mast
NASA Technical Reports Server (NTRS)
Armand, Sasan C.; Lin, Paul
1992-01-01
Earth-orbiting spacecraft often contain solar arrays or antennas supported by a preloaded mast. Because of weight and cost considerations, the structures supporting the spacecraft appendages are extremely light and flexible; therefore, it is vital to investigate the influence of all physical and structural parameters that may influence the dynamic behavior of the overall structure. The study primarily focuses on the mast for the space station solar arrays, but the formulations and the techniques developed in this study apply to any large and flexible mast in zero gravity. Furthermore, to determine the influence on the circular frequencies, the mass moment of inertia of the mast was incorporated into the governing equation of motion for bending. A finite element technique (MSC/NASTRAN) was used to verify the formulation. Results indicate that when the mast is relatively flexible and long, the mass moment inertia influences the circular frequencies.
Aromando, Romina F; Trivillin, Verónica A; Heber, Elisa M; Pozzi, Emiliano; Schwint, Amanda E; Itoiz, María E
2010-05-01
Mast cell (MC) activation in the hamster cheek pouch cancerization model is associated with the increase in tumor cell proliferation, mediated in turn by tryptase, a protease released from mast cell granules after activation. Tryptase induces tumor cell proliferation through the activation of PAR-2 (protease activated receptor-2) on the plasma membrane of carcinoma cells. The therapeutic success of boron neutron capture therapy mediated by boronophenylalanine (BPA-BNCT) in tumor control in the hamster cheek pouch oral cancer model has been previously reported by our laboratory. Early effects of BPA-BNCT on tumors of the hamster cheek pouch include a reduction in DNA-synthesis with the concomitant decrease in the proliferation of malignant cells. The aim of the present study was to investigate the early histological changes in mast cells after BPA-BNCT in tumors and premalignant tissue of the hamster cheek pouch. Tumor-bearing pouches were treated with BPA-BNCT or beam only (neutron irradiation without prior administration of the boron compound) and sacrificed 1day after treatment. The samples were fixed in Carnoy fixative and stained with alcian blue-safranin to identify all the populations of mast cells. Total, active and inactive mast cells (MC) were counted in the connective tissue and the adventitious tissue underlying the pouch wall and at the base of the tumors in pouches treated with BPA-BNCT, in keeping with a previously described technique. BPA-BNCT induced a marked reduction in the total number of mast cells in the pouch (p<0.05). This reduction in the total number of mast cells was due to a reduction in mast cells at the base of the tumor (p<0.005) and it occurred at the expense of the active mast cells (p<0.05). A slight reduction that did not reach statistical significance also occurred in the amount of mast cells in the pouch wall (that corresponds to the premalignant tissue in tumor-bearing pouches), and in the adventitious tissue. In this case the reduction was seen in the inactive population. Both BPA-BNCT and beam only elicited a qualitative change in the secretion modality of the granule content. Although further studies are needed to evaluate the subcellular effect of BNCT on mast cell granule secretion, the reduction in cell proliferation induced by BPA-BNCT would be partially due to the decrease in total mast cells in the hamster check pouch. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis
Naskar, Pieu
2017-01-01
ABSTRACT Upon allergen challenge, mast cells (MCs) respond by releasing pre-stored mediators from their secretory granules by the transient mechanism of porosome-mediated cell secretion. The target SNARE SNAP-23 has been shown to be important for MC exocytosis, and our previous studies revealed the presence of one basal (Thr102) and two induced (Ser95 and Ser120) phosphorylation sites in its linker region. To study the role of SNAP-23 phosphorylation in the regulation of exocytosis, green fluorescence protein-tagged wild-type SNAP-23 (GFP-SNAP-23) and its phosphorylation mutants were transfected into rat basophilic leukemia (RBL-2H3) MCs. Studies on GFP-SNAP-23 transfected MCs revealed some dynamic changes in SNAP-23 membrane association. SNAP-23 was associated with plasma membrane in resting MCs, however, on activation a portion of it translocated to cytosol and internal membranes. These internal locations were secretory granule membranes. This dynamic change in the membrane association of SNAP-23 in MCs may be important for mediating internal granule-granule fusions in compound exocytosis. Further studies with SNAP-23 phosphorylation mutants revealed an important role for the phosphorylation at Thr102 in its initial membrane association, and of induced phosphorylation at Ser95 and Ser120 in its internal membrane association, during MC exocytosis. PMID:28784843
Effects of menadione, a reactive oxygen generator, on leukotriene secretion from RBL-2H3 cells.
Kawamura, Fumio; Nakanishi, Mamoru; Hirashima, Naohide
2010-01-01
Reactive oxygen species (ROS) are produced in various cells and affect many biological processes. We previously reported that 2-methyl-1,4-naphtoquinone (menadione) inhibited Ca(2+) influx from the extracellular medium and exocytosis evoked by antigen stimulation in the mast cell line, RBL-2H3. Mast cells release various inflammatory mediators such as leukotrienes (LTs) and cytokines in addition to the exocytotic secretion of histamine. In this study, we investigated the effects of menadione on LT release in RBL-2H3. Treatment of RBL cells with menadione inhibited LTC(4) secretion induced by antigen stimulation. To elucidate the mechanism of this inhibition, we examined the effects of menadione on the activation process of 5-lipoxygenase that is responsible for the synthesis of LTs from arachidonic acid. Menadione did not affect the phosophorylation of mitogen activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) and p38, which regulates phosphorylation of 5-lipoxygenase. However, menadione inhibited the translocation of 5-lipoxygenase from the cytoplasm to the nuclear membrane. Together with the result that LT secretion was severely impaired in the absence of extracellular Ca2(2+), it is suggested that ROS produced by menadione inhibited LT secretion through impaired Ca2(2+) influx and 5-lipoxygenase translocation to the nuclear membrane.
Mast cell: an emerging partner in immune interaction.
Gri, Giorgia; Frossi, Barbara; D'Inca, Federica; Danelli, Luca; Betto, Elena; Mion, Francesca; Sibilano, Riccardo; Pucillo, Carlo
2012-01-01
Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell-cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell-cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners.
Mast Cell: An Emerging Partner in Immune Interaction
Gri, Giorgia; Frossi, Barbara; D’Inca, Federica; Danelli, Luca; Betto, Elena; Mion, Francesca; Sibilano, Riccardo; Pucillo, Carlo
2012-01-01
Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell–cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell–cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners. PMID:22654879
Application of smart optical fiber sensors for structural load monitoring
NASA Astrophysics Data System (ADS)
Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.
2001-06-01
This paper describes a smart monitoring system, incorporating optical fiber sensing techniques, capable of providing important structural information to designers and users alike. This technology has wide industrial and commercial application in areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions. The resulting strain information can be used by engineers to improve the structural design process. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electro-magnetic interference. The capability of this system has been demonstrated within the maritime and industrial environment, but can be adapted for any application.
Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1
2017-01-01
Mast syndrome (SPG21) is an autosomal-recessive complicated form of hereditary spastic paraplegia characterized by dementia, thin corpus callosum, white matter abnormalities, and cerebellar and extrapyramidal signs in addition to spastic paraparesis. A nucleotide insertion resulting in premature truncation of the SPG21 gene product acidic cluster protein 33 (ACP33)/maspardin underlies this disorder, likely causing loss of protein function. However, little is known about the function of maspardin. Here, we report that maspardin localizes prominently to cytoplasm as well as to membranes, possibly at trans-Golgi network/late endosomal compartments. Immunoprecipitation of maspardin with identification of coprecipitating proteins by mass spectrometry revealed the aldehyde dehydrogenase ALDH16A1 as an interacting protein. This interaction was confirmed using overexpressed proteins as well as by fusion protein pull down experiments, and these proteins colocalized in cells. Further studies of the function of ALDH16A1 and the role of the maspardin–ALDH16A1 interaction in neuronal cells may clarify the cellular pathogenesis of Mast syndrome. PMID:19184135
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jozaki, K.; Kuriu, A.; Hirota, S.
1991-03-01
When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3)more » and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.« less
The Mastocytosis Society survey on mast cell disorders: patient experiences and perceptions.
Jennings, Susan; Russell, Nancy; Jennings, Blair; Slee, Valerie; Sterling, Lisa; Castells, Mariana; Valent, Peter; Akin, Cem
2014-01-01
Mast cell diseases include mastocytosis and mast cell activation syndromes, some of which have been shown to involve clonal defects in mast cells that result in abnormal cellular proliferation or activation. Numerous clinical studies of mastocytosis have been published, but no population-based comprehensive surveys of patients in the United States have been identified. Few mast cell disease specialty centers exist in the United States, and awareness of these mast cell disorders is limited among nonspecialists. Accordingly, information concerning the experiences of the overall estimated population of these patients has been lacking. To identify the experiences and perceptions of patients with mastocytosis, mast cell activation syndromes, and related disorders, The Mastocytosis Society (TMS), a US based patient advocacy, research, and education organization, conducted a survey of its members and other people known or suspected to be part of this patient population. A Web-based survey was publicized through clinics that treat these patients and through TMS's newsletter, Web site, and online blogs. Both online and paper copies of the questionnaire were provided, together with required statements of consent. The first results are presented for 420 patients. These results include demographics, diagnoses, symptoms, allergies, provoking factors of mast cell symptoms, and disease impact. Patients with mastocytosis and mast cell activation syndromes have provided clinical specialists, collaborators, and other patients with information to enable them to explore and deepen their understanding of the experiences and perceptions of people coping with these disorders. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
2011-01-01
Introduction Neuroinflammation is thought to be important in Alzheimer's disease pathogenesis. Mast cells are a key component of the inflammatory network and participate in the regulation of the blood-brain barrier's permeability. Masitinib, a selective oral tyrosine kinase inhibitor, effectively inhibits the survival, migration and activity of mast cells. As the brain is rich in mast cells, the therapeutic potential of masitinib as an adjunct therapy to standard care was investigated. Methods A randomised, placebo-controlled, phase 2 study was performed in patients with mild-to-moderate Alzheimer's disease, receiving masitinib as an adjunct to cholinesterase inhibitor and/or memantine. Patients were randomly assigned to receive masitinib (n = 26) (starting dose of 3 or 6 mg/kg/day) or placebo (n = 8), administered twice daily for 24 weeks. The primary endpoint was change from baseline in the Alzheimer's Disease Assessment Scale - cognitive subscale (ADAS-Cog) to assess cognitive function and the related patient response rate. Results The rate of clinically relevant cognitive decline according to the ADAS-Cog response (increase >4 points) after 12 and 24 weeks was significantly lower with masitinib adjunctive treatment compared with placebo (6% vs. 50% for both time points; P = 0.040 and P = 0.046, respectively). Moreover, whilst the placebo treatment arm showed worsening mean ADAS-Cog, Alzheimer's Disease Cooperative Study Activities of Daily Living Inventory, and Mini-Mental State Examination scores, the masitinib treatment arm reported improvements, with statistical significance between treatment arms at week 12 and/or week 24 (respectively, P = 0.016 and 0.030; P = 0.035 and 0.128; and P = 0.047 and 0.031). The mean treatment effect according to change in ADAS-Cog score relative to baseline at weeks 12 and 24 was 6.8 and 7.6, respectively. Adverse events occurred more frequently with masitinib treatment (65% vs. 38% of patients); however, the majority of events were of mild or moderate intensity and transitory. Severe adverse events occurred at a similar frequency in the masitinib and placebo arms (15% vs. 13% of patients, respectively). Masitinib-associated events included gastrointestinal disorders, oedema, and rash. Conclusions Masitinib administered as add-on therapy to standard care during 24 weeks was associated with slower cognitive decline in Alzheimer's disease, with an acceptable tolerance profile. Masitinib may therefore represent an innovative avenue of treatment in Alzheimer's disease. This trial provides evidence that may support a larger placebo-controlled investigation. Trial registration Clinicaltrials.gov NCT00976118 PMID:21504563
Vaccine adjuvants: Tailor-made mast-cell granules
NASA Astrophysics Data System (ADS)
Gunzer, Matthias
2012-03-01
Mast cells induce protective immune responses through secretion of stimulatory granules. Microparticles modelled after mast-cell granules are now shown to replicate and enhance the functions of their natural counterparts and to direct the character of the resulting immunity.
NASA Technical Reports Server (NTRS)
Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Von Rosenvinge, T. T.
1993-01-01
The Mass Spectrometer Telescope (MAST) on SAMPEX is designed to provide high resolution measurements of the isotopic composition of energetic nuclei from He to Ni (Z = 2 to 28) over the energy range from about 10 to several hundred MeV/nuc. During large solar flares MAST will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona, while during solar quiet times MAST will study the isotopic composition of galactic cosmic rays. In addition, MAST will measure the isotopic composition of both interplanetary and trapped fluxes of anomalous cosmic rays, believed to be a sample of the nearby interstellar medium.
Solar Array Mast Imagery Discussion for ISIW
NASA Technical Reports Server (NTRS)
Kilgo, Gary
2017-01-01
SAW Mast inspection background: In 2012, NASA's Flight Safety Office requested the Micro Meteoroid and Orbital Debris (MMOD) office determine the probability of damage to the Solar Array Wing (SAW) mast based on the exposure over the life time of the ISS program. As part of the risk mitigation of the potential MMOD strikes. ISS Program office along with the Image Science and Analysis Group (ISAG) began developing methods for imaging the structural components of the Mast.
Manaenko, Anatol; Lekic, Tim; Ma, Qingyi; Zhang, John H; Tang, Jiping
2013-05-01
Hydrogen inhalation was neuroprotective in several brain injury models. Its mechanisms are believed to be related to antioxidative stress. We investigated the potential neurovascular protective effect of hydrogen inhalation especially effect on mast cell activation in a mouse model of intracerebral hemorrhage. Controlled in vivo laboratory study. Animal research laboratory. One hundred seventy-one 8-week-old male CD-1 mice were used. Collagenase-induced intracerebral hemorrhage model in 8-week-old male CD-1 mice was used. Hydrogen was administrated via spontaneous inhalation. The blood-brain barrier permeability and neurologic deficits were investigated at 24 and 72 hours after intracerebral hemorrhage. Mast cell activation was evaluated by Western blot and immuno-staining. The effects of hydrogen inhalation on mast cell activation were confirmed in an autologous blood injection model intracerebral hemorrhage. At 24 and 72 hours post intracerebral hemorrhage, animals showed blood-brain barrier disruption, brain edema, and neurologic deficits, accompanied with phosphorylation of Lyn kinase and release of tryptase, indicating mast cell activation. Hydrogen treatment diminished phosphorylation of Lyn kinase and release of tryptase, decreased accumulation and degranulation of mast cells, attenuated blood-brain barrier disruption, and improved neurobehavioral function. Activation of mast cells following intracerebral hemorrhage contributed to increase of blood-brain barrier permeability and brain edema. Hydrogen inhalation preserved blood-brain barrier disruption by prevention of mast cell activation after intracerebral hemorrhage.
Hydrogen inhalation ameliorated mast cell mediated brain injury after ICH in mice
Manaenko, Anatol; Lekic, Tim; Ma, Qingyi; Zhang, John H.; Tang, Jiping
2012-01-01
OBJECTIVE Hydrogen inhalation was neuroprotective in several brain injury models. Its mechanisms are believed to be related to anti-oxidative stress. We investigated the potential neurovascular protective effect of hydrogen inhalation especially effect on mast cell activation in a mouse model of intracerebral hemorrhage (ICH). DESIGN Controlled in vivo laboratory study. SETTING Animal research laboratory SUBJECTS 171, 8 weeks old male CD-1 mice were used. INTERVENTIONS Collagenase-induced ICH model in 8 weeks old, male, CD-1 mice was used. Hydrogen was administrated via spontaneous inhalation. The blood-brain barrier (BBB) permeability and neurological deficits were investigated at 24 and 72 hours after ICH. Mast cell activation was evaluated by Western blot and immuno-staining. The effects of hydrogen inhalation on mast cell activation were confirmed in an autologous blood injection model ICH. MEASURMENT AND MAIN RESULTS At 24 and 72 hours post-ICH, animals showed BBB disruption, brain edema, neurological deficits, accompanied with phosphorylation of Lyn kinase and release of tryptase, indicating mast cell activation. Hydrogen treatment diminished phosphorylation of Lyn kinase and release of tryptase, decreased accumulation and degranulation of mast cells, attenuated BBB disruption and improved neurobehavioral function. CONCLUSION Activation of mast cells following ICH contributed to increase of BBB permeability and brain edema. Hydrogen inhalation preserved BBB disruption by prevention of mast cell activation after ICH. PMID:23388512
Yu, Y; Daly, D M; Adam, I J; Kitsanta, P; Hill, C J; Wild, J; Shorthouse, A; Grundy, D; Jiang, W
2016-10-01
Advanced age is associated with a reduction in clinical visceral pain perception. However, the underlying mechanisms remain largely unknown. Previous studies have suggested that an abnormal interplay between mast cells, enterochromaffin (EC) cells, and afferent nerves contribute to nociception in gastrointestinal disorders. The aim of this study was to investigate how aging affects afferent sensitivity and neuro-immune association in the human bowel. Mechanical and chemical sensitivity of human bowel afferents were examined by ex vivo afferent nerve recordings. Age-related changes in the density of mast cells, EC cells, sensory nerve terminals, and mast cell-nerve micro-anatomical association were investigated by histological and immune staining. Human afferents could be broadly classified into subpopulations displaying mechanical and chemical sensitivity, adaptation, chemo-sensitization, and recruitment. Interestingly human bowel afferent nerve sensitivity was attenuated with age. The density of substance P-immunoreactive (SP-IR) nerve varicosities was also reduced with age. In contrast, the density of ileal and colonic mucosal mast cells was increased with age, as was ileal EC cell number. An increased proportion of mast cells was found in close apposition to SP-IR nerves. Afferent sensitivity in human bowel was reduced with advancing age. Augmentation of mast cells and EC cell numbers and the mast cell-nerve association suggest a compensatory mechanism for sensory neurodegeneration. © 2016 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.
Mackins, Christina J; Kano, Seiichiro; Seyedi, Nahid; Schäfer, Ulrich; Reid, Alicia C; Machida, Takuji; Silver, Randi B; Levi, Roberto
2006-04-01
Having identified renin in cardiac mast cells, we assessed whether its release leads to cardiac dysfunction. In Langendorff-perfused guinea pig hearts, mast cell degranulation with compound 48/80 released Ang I-forming activity. This activity was blocked by the selective renin inhibitor BILA2157, indicating that renin was responsible for Ang I formation. Local generation of cardiac Ang II from mast cell-derived renin also elicited norepinephrine release from isolated sympathetic nerve terminals. This action was mediated by Ang II-type 1 (AT1) receptors. In 2 models of ischemia/reperfusion using Langendorff-perfused guinea pig and mouse hearts, a significant coronary spillover of renin and norepinephrine was observed. In both models, this was accompanied by ventricular fibrillation. Mast cell stabilization with cromolyn or lodoxamide markedly reduced active renin overflow and attenuated both norepinephrine release and arrhythmias. Similar cardioprotection was observed in guinea pig hearts treated with BILA2157 or the AT1 receptor antagonist EXP3174. Renin overflow and arrhythmias in ischemia/reperfusion were much less prominent in hearts of mast cell-deficient mice than in control hearts. Thus, mast cell-derived renin is pivotal for activating a cardiac renin-angiotensin system leading to excessive norepinephrine release in ischemia/reperfusion. Mast cell-derived renin may be a useful therapeutic target for hyperadrenergic dysfunctions, such as arrhythmias, sudden cardiac death, myocardial ischemia, and congestive heart failure.
Mast cells in the human lung at high altitude
NASA Astrophysics Data System (ADS)
Heath, Donald
1992-12-01
Mast cell densities in the lung were measured in five native highlanders of La Paz (3600 m) and in one lowlander dying from high-altitude pulmonary oedema (HAPO) at 3440 m. Two of the highlanders were mestizos with normal pulmonary arteries and the others were Aymara Indians with muscular remodelling of their pulmonary vasculature. The aim of the investigation was to determine if accumulation of mast cells in the lung at high altitude (HA) is related to alveolar hypoxia alone, to a combination of hypoxia and muscularization of the pulmonary arterial tree, or to oedema of the lung. The lungs of four lowlanders were used as normoxic controls. The results showed that the mast cell density of the two Mestizos was in the normal range of lowlanders (0.6-8.8 cells/mm2). In the Aymara Indians the mast cell counts were raised (25.6-26.0 cells/mm2). In the lowlander dying from HAPO the mast cell count was greatly raised to 70.1 cells/mm2 lung tissue. The results show that in native highlanders an accumulation of mast cells in the lung is not related to hypoxia alone but to a combination of hypoxia and muscular remodelling of the pulmonary arteries. However, the most potent cause of increased mast cell density in the lung at high altitude appears to be high-altitude pulmonary oedema.
Wright, Boyd R; Fensham, Roderick J
2018-01-25
Plant species with fire-triggered germination are common in many fire-prone ecosystems. For such plants, fire timing in relation to the timing of reproduction may strongly influence post-fire population regeneration if: (a) flowering occurs infrequently (e.g. plants are mast seeders); and (b) seed survival rates are low and input from the current year's flowering therefore contributes a large proportion of the viable dormant seedbank. The role of fire timing in relation to masting as a driver of post-fire recruitment has rarely been examined directly, so this study tested the hypothesis that fires shortly after masting trigger increased recruitment of the obligate-seeding arid zone spinifex, Triodia pungens R. Br., an iteroparous masting grass with smoke-cued germination. Phenological monitoring of T. pungens was conducted over 5 years, while a longitudinal seedbank study assessed the influence of seeding events on soil-stored seedbank dynamics. Concurrently, a fire experiment with randomized blocking was undertaken to test whether T. pungens hummocks burnt shortly after masting have greater post-fire recruitment than hummocks burnt when there has not been recent input of seeds. Triodia pungens flowered in all years, though most flowerings were characterized by high rates of flower abortion. A mast flowering with high seed set in 2012 triggered approx. 200-fold increases in seedbank densities, and seedbank densities remained elevated for 24 months after this event. The fire experiment showed significantly higher recruitment around hummocks burnt 6 months after the 2012 mast event than around hummocks that were burnt but prevented from masting by having inflorescences clipped. Fires shortly after masting trigger mass recruitment in T. pungens because such fires synchronize an appropriate germination cue (smoke) with periods when seedbank densities are elevated. Interactions between natural fire regimes, seedbank dynamics and fire management prescriptions must be considered carefully when managing fire-sensitive masting plants such as T. pungens. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Arm and Mast of NASA Mars Rover Curiosity
2011-04-06
The arm and the remote sensing mast of the Mars rover Curiosity each carry science instruments and other tools for NASA Mars Science Laboratory mission. This image shows the arm on the left and the mast just right of center.
Quantification and Localization of Mast Cells in Periapical Lesions
Mahita, VN; Manjunatha, BS; Shah, R; Astekar, M; Purohit, S; Kovvuru, S
2015-01-01
Background: Periapical lesions occur in response to chronic irritation in periapical tissue, generally resulting from an infected root canal. Specific etiological agents of induction, participating cell population and growth factors associated with maintenance and resolution of periapical lesions are incompletely understood. Among the cells found in periapical lesions, mast cells have been implicated in the inflammatory mechanism. Aim: Quantifications and the possible role played by mast cells in the periapical granuloma and radicular cyst. Hence, this study is to emphasize the presence (localization) and quantification of mast cells in periapical granuloma and radicular cyst. Materials and Methods: A total of 30 cases and out of which 15 of periapical granuloma and 15 radicular cyst, each along with the case details from the previously diagnosed cases in the department of oral pathology were selected for the study. The gender distribution showed male 8 (53.3%) and females 7 (46.7%) in periapical granuloma cases and male 10 (66.7%) and females 5 (33.3%) in radicular cyst cases. The statistical analysis used was unpaired t-test. Results: Mean mast cell count in periapical granuloma subepithelial and deeper connective tissue, was 12.40 (0.99%) and 7.13 (0.83%), respectively. The mean mast cell counts in subepithelial and deeper connective tissue of radicular cyst were 17.64 (1.59%) and 12.06 (1.33%) respectively, which was statistically significant. No statistical significant difference was noted among males and females. Conclusion: Mast cells were more in number in radicular cyst. Based on the concept that mast cells play a critical role in the induction of inflammation, it is logical to use therapeutic agents to alter mast cell function and secretion, to thwart inflammation at its earliest phases. These findings may suggest the possible role of mast cells in the pathogenesis of periapical lesions. PMID:25861530
Jawhar, Mohamad; Schwaab, Juliana; Meggendorfer, Manja; Naumann, Nicole; Horny, Hans-Peter; Sotlar, Karl; Haferlach, Torsten; Schmitt, Karla; Fabarius, Alice; Valent, Peter; Hofmann, Wolf-Karsten; Cross, Nicholas C.P.; Metzgeroth, Georgia; Reiter, Andreas
2017-01-01
Mast cell leukemia is a rare variant of advanced systemic mastocytosis characterized by at least 20% of mast cells in a bone marrow smear. We evaluated clinical and molecular characteristics of 28 patients with (n=20, 71%) or without an associated hematologic neoplasm. De novo mast cell leukemia was diagnosed in 16 of 28 (57%) patients and secondary mast cell leukemia evolving from other advanced systemic mastocytosis subtypes in 12 of 28 (43%) patients, of which 7 patients progressed while on cytoreductive treatment. Median bone marrow mast cell infiltration was 65% and median serum tryptase was 520 μg/L. C-findings were identified in 26 of 28 (93%) patients. Mutations in KIT (D816V, n=19; D816H/Y, n=5; F522C, n=1) were detected in 25 of 28 (89%) patients and prognostically relevant additional mutations in SRSF2, ASXL1 or RUNX1 (S/A/Rpos) in 13 of 25 (52%) patients. Overall response rate in 18 treatment-naïve patients was 5 of 12 (42%) on midostaurin and 1 of 6 (17%) on cladribine, and after switch 1 of 4 (25%) on midostaurin and 0 of 3 on cladribine, respectively. S/A/Rpos adversely affected response to treatment and progression to secondary mast cell leukemia (n=6) or acute myeloid leukemia (n=3) while on treatment (P<0.05). The median overall survival from mast cell leukemia diagnosis was 17 months as compared to 44 months in a control group of 124 patients with advanced systemic mastocytosis but without mast cell leukemia (P=0.03). In multivariate analyses, S/A/Rpos remained the only independent poor prognostic variable predicting overall survival (P=0.007). In conclusion, the molecular signature should be determined in all patients with mast cell leukemia because of its significant clinical and prognostic relevance. PMID:28255023
Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells.
Jiang, Ai-Ping; Jiang, Jin-Feng; Wei, Ji-Fu; Guo, Ming-Gao; Qin, Yan; Guo, Qian-Qian; Ma, Li; Liu, Bao-Chi; Wang, Xiaolei; Veazey, Ronald S; Ding, Yong-Bing; Wang, Jian-Hua
2015-12-30
The gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4(+) T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viral trans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection. In this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1 trans-infection of CD4(+) T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Portal to the GALEX Data Archive
NASA Astrophysics Data System (ADS)
Smith, M. A.; Conti, A.; Shiao, B.; Volpicelli, C. A.
2004-05-01
In early February MAST began its hosting of the GALEX public "Early Release Observations" images (40,000 objects) and spectra (1000 objects). MAST will host a much larger "first release," the GALEX DR1, in October, 2004. In this poster we describe features of our on-line website at http://galex.stsci.edu for researchers interested in downloading and browsing GALEX UV image and spectral data. The site, is based on MS .NET technology and user queries are entered for classes of objects or sky regions on a "MAST-like" query forms or with detailed queries written in SQL. In the latter case examples are provided to tailor a query to a user's specifications. The site provides novel features, such as tooltips that return keyword definitions, "active images" that return object classification and coordinate information in a 2.5 arcmin radius around the selected object, self-documentation of terms and tables, and of course a tutorial for new navigators. The GALEX database employs a Hierarchial Triangular Mesh system for rapid data discovery, neighbor searches, and cross correlations with other catalogs. Our "GMAX" tool allows a coplotting of object positions for objects observed by GALEX and other US-NVO compliant mission websites such as Sloan, 2MASS, FIRST.... As a member of the new Skynode network, GALEX has reported its web services to the US-NVO registry. This permits users to generate queries from other sites to cross-correlate, compare, and plot GALEX data using US-NVO protocols. Future plans for limited on-line data analysis and footprint services are described.
Escribano, Luis; Alvarez-Twose, Iván; Sánchez-Muñoz, Laura; Garcia-Montero, Andres; Núñez, Rosa; Almeida, Julia; Jara-Acevedo, Maria; Teodósio, Cristina; García-Cosío, Mónica; Bellas, Carmen; Orfao, Alberto
2009-09-01
Indolent systemic mastocytosis is a group of rare diseases for which reliable predictors of progression and outcome are still lacking. Here we investigate the prognostic impact of the clinical, biological, phenotypic, histopathological, and molecular disease characteristics in adults with indolent systemic mastocytosis, who were followed using conservative therapy. A total of 145 consecutive patients were prospectively followed between January 1983 and July 2008; in addition, from 1967 to 1983, 20 patients were retrospectively studied. Multivariate analysis showed that serum beta2-microglobulin (P = .003) together with the presence of mast/stem cell growth factor receptor gene (KIT) mutation in mast cells plus myeloid and lymphoid hematopoietic lineages (P = .02) was the best combination of independent parameters for predicting disease progression (cumulative probability of disease progression of 1.7% +/- 1.2% at 5-10 years and of 8.4% +/- 5.0% at 20-25 years). Regarding overall survival, the best predictive model included age >60 years (P = .005) and development of an associated clonal hematological non-mast cell disorder (P = .03) with a cumulative probability of death of 2.2% +/- 1.3% at 5 years and of 11% +/- 5.9% at 25 years. Indolent systemic mastocytosis in adults has a low disease progression rate, and the great majority of patients have a normal life expectancy, with the presence of KIT mutation in all hematopoietic lineages and increased serum beta2-microglobulin the most powerful independent parameters for predicting transformation into a more aggressive form of the disease.
Mast cells in rheumatoid arthritis: friends or foes?
Rivellese, Felice; Nerviani, Alessandra; Rossi, Francesca Wanda; Marone, Gianni; Matucci-Cerinic, Marco; de Paulis, Amato; Pitzalis, Costantino
2017-06-01
Mast cells are tissue-resident cells of the innate immunity, implicated in the pathogenesis of many autoimmune diseases, including rheumatoid arthritis (RA). They are present in synovia and their activation has been linked to the potentiation of inflammation in the course of RA. However, recent investigations questioned the role of mast cells in arthritis. In particular, animal models generated conflicting results, so that many of their pro-inflammatory, i.e. pro-arthritogenic functions, even though supported by robust experimental evidence, have been labelled as redundant. At the same time, a growing body of evidence suggests that mast cells can act as tunable immunomodulatory cells. These characteristics, not yet fully understood in the context of RA, could partially explain the inconsistent results obtained with experimental models, which do not account for the pro- and anti-inflammatory functions exerted in more chronic heterogeneous conditions such as RA. Here we present an overview of the current knowledge on mast cell involvement in RA, including the intriguing hypothesis of mast cells acting as subtle immunomodulatory cells and the emerging concept of synovial mast cells as potential biomarkers for patient stratification. Copyright © 2017 Elsevier B.V. All rights reserved.
Tucker, Tracy; Riccardi, Vincent M.; Sutcliffe, Margaret; Vielkind, Juergen; Wechsler, Janine; Wolkenstein, Pierre; Friedman, Jan M.
2011-01-01
Multiple neurofibromas are cardinal features of neurofibromatosis 1 (NF1). Several different types of NF1-associated neurofibromas occur, each distinct in terms of pathological details, clinical presentation, and natural history. Mast cells are present in most neurofibromas and have been shown to be critical to the origin and progression of neurofibromas in both human NF1 and relevant mouse models. In this investigation, the authors determined whether mast cell involvement is the same for all types of NF1-associated neurofibromas. They examined the density and distribution of mast cells within 49 NF1-associated neurofibromas classified histopathologically as diffuse or encapsulated on the basis of the presence or absence of the perineurium or its constituent cells. They made two observations: (1) Diffuse neurofibromas had significantly higher densities of mast cells than did encapsulated neurofibromas, and (2) mast cells were evenly distributed throughout diffuse neurofibromas but were primarily restricted to the periphery of encapsulated neurofibromas. The differences in mast cell density and distribution differentiate the two basic types of NF1-associated neurofibromas, suggesting that the pathogenesis of diffuse and encapsulated neurofibromas may be significantly different. PMID:21525187
[Sex differences in neuromodulation of mucosal mast cells in the rat jejunum].
Gottwald, T; Becker, H D; Stead, R H
1997-01-01
The effect of electrical stimulation of both cervical vagal nerves on mucosal mast cells in the jejunum was investigated in an in vivo animal model with rats of both sexes. Males showed a significant increase of mast cell densities after electrical stimulation (1.0 mA, 5 Hz, 5 ms, 12 min) in the lamina propria. Simultaneously, we observed a significant increase of tissue histamine levels (ANOVA: P < 0.05), whereas serum levels remained unchanged. However, even though females had significantly higher levels throughout compared to males (ANOVA: P < 0.05), they did not show any significant reaction to electrical stimulation. These in vivo data support morphological and in vitro data from other investigators, who hypothesized a functional interaction between mucosal mast cells and nerves. However, degranulation seems to be a poor in situ indicator for mast-cell stimulation, as mast-cell densities increased in males, while the percentage of degranulated cells remained the same in all groups (about 40%). Instead, electrical stimulation of the vagal nerve seems to trigger histamine synthesis, or simply stabilization of mast cells. Interestingly, this phenomenon seems to be sex-dependent, suggesting a regulatory role for sex hormones in this scenario.
Terreic acid, a quinone epoxide inhibitor of Bruton’s tyrosine kinase
Kawakami, Yuko; Hartman, Stephen E.; Kinoshita, Eiji; Suzuki, Hidefumi; Kitaura, Jiro; Yao, Libo; Inagaki, Naoki; Franco, Alessandra; Hata, Daisuke; Maeda-Yamamoto, Mari; Fukamachi, Hiromi; Nagai, Hiroichi; Kawakami, Toshiaki
1999-01-01
Bruton’s tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors. PMID:10051623
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuzumi, T.; Waki, N.; Kanakura, Y.
Although precursors of mast cells are derived from the bone marrow, phenotypes of mast cells are influenced by the tissues in which final differentiation occurs. Connective tissue-type mast cells (CTMC) and mucosal mast cells (MMC) are different in morphological, biochemical, immunological, and functional criteria. The purpose of the present study was to obtain information about the differentiation process of MMC. First, we compared changes in irradiation susceptibility in mice during the differentiation process of CTMC and MMC. The decrease in irradiation susceptibility was remarkable in the CTMC differentiation process, but it was moderate in that of MMC. Some morphologically identifiablemore » CTMC in the peritoneal cavity had proliferative potential and were highly radioresistant, whereas such a radioresistant population of MMC was not detectable in the gastric mucosa. Second, we estimated the turnover of CTMC and MMC by determining the proportion of mast cells that were labeled with continuously administered bromodeoxyuridine. The turnover of MMC was significantly faster than that of CTMC. The absence of the radioresistant mast cell population in the gastric mucosa appeared to be related to the short life span of MMC.« less
Martins, Patrícia Rocha; Nascimento, Rodolfo Duarte; Lopes, Júlia Guimarães; Santos, Mônica Morais; de Oliveira, Cleida Aparecida; de Oliveira, Enio Chaves; Martinelli, Patrícia Massara; d'Ávila Reis, Débora
2015-05-01
Megacolon is frequently observed in patients who develop the digestive form of Chagas disease. It is characterized by dilation of the rectum-sigmoid portion and thickening of the colon wall. Microscopically, the affected organ presents denervation, which has been considered as consequence of an inflammatory process that begins at the acute phase and persists in the chronic phase of infection. Inflammatory infiltrates are composed of lymphocytes, macrophages, natural killer cells, mast cells, and eosinophils. In this study, we hypothesized that mast cells producing tryptase could influence the migration and the activation of eosinophils at the site, thereby contributing to the immunopathology of the chronic phase. We seek evidence of interactions between mast cells and eosinophils through (1) evaluation of eosinophils, regarding the expression of PAR2, a tryptase receptor; (2) correlation analysis between densities of mast cells and eosinophils; and (3) ultrastructural studies. The electron microscopy studies revealed signs of activation of mast cells and eosinophils, as well as physical interaction between these cells. Immunohistochemistry and correlation analyses point to the participation of tryptase immunoreactive mast cells in the migration and/or survival of eosinophils at the affected organ.
Quantification of mast cells in different stages of periodontal disease.
Marjanović, Dragan; Andjelković, Zlatibor; Brkić, Zlata; Videnović, Goran; Šehalić, Meliha; Matvjenko, Vladimir; Leštarević, Snežana; Djordjević, Nadica
2016-05-01
Mast cells are mononuclear cells originating from bone marrow. They produce various biologically active substances, which allow them to actively participate in immune and inflammatory processes associated with periodontal disease. The study focused on distribution and density of mast cells in healthy gingiva as well as in different stages of periodontal disease. The material used for this purpose was gingival biopsies taken from 96 patients classified into 4 groups: healthy gingiva, gingivitis, initial and severe periodontal disease. Toluidine blue staining according to Spicer was utilized for identifying mast cells. Basing on our study, the density of mast cells in the gingival tissue increases with the progression of the infection, which means they are more numerous in gingivitis compared to healthy gingiva, as well as in periodontal disease compared to gingivitis. Increase in the number of mast cells in the infected gingiva can be correlated with an increased influx of inflammatory cells from blood circulation into the gingival stroma, as well as with the collagen lysis, since these cells produce substances with collagenolytic potential. Based on the distribution of mast cells, it could be concluded that in the evolution of periodontal disease there are significant dynamic alterations in migration and localization of these cells.
Shiota, N; Kovanen, PT; Eklund, KK; Shibata, N; Shimoura, K; Niibayashi, T; Shimbori, C; Okunishi, H
2010-01-01
Background and purpose: Recent findings suggest the importance of mast cells in the pathogenesis of rheumatoid arthritis and their potential as a therapeutic target. Tranilast is an anti-allergic compound with a potent membrane-stabilizing effect on mast cells and a wide range of anti-inflammatory effects, thus may be advantageous in the treatment of arthritis. Here, we have evaluated the effects of tranilast on the progression of collagen-induced arthritis in mice. Experimental approach: Tranilast (400 mg·kg−1·day−1) was orally administered for 8 weeks to mice with established collagen-induced arthritis. Arthritis was assessed by clinical signs and X-ray scores. In paw tissue, the numbers of mast cells and osteoclasts were measured by histological analysis, and several inflammatory factors were assessed by RT-PCR and Western blot analysis.* Key results: TNF-α-positive mast cells were present extensively throughout the inflamed synovium of vehicle-treated arthritic mice, with some mast cells in close proximity to osteoclasts in areas of marked bone and cartilage destruction. Tranilast significantly reduced clinical and X-ray scores of arthritis and decreased numbers of TNF-α-positive mast cells and mRNA levels of TNF-α, chymase (mouse mast cell protease 4), tryptase (mouse mast cell protease 6), stem cell factor, interleukin-6, cathepsin-K, receptor activator of nuclear factor-κB, and of receptor activator of nuclear factor-κB-ligand, but increased interleukin-10 mRNA level in paws of arthritic mice. Osteoclast numbers were decreased by treatment with tranilast. Conclusions and implications: Tranilast possesses significant anti-rheumatic efficacy and, probably, this therapeutic effect is partly mediated by inhibition of mast cell activation and osteoclastogenesis. PMID:20067475
Critical role of tissue mast cells in controlling long-term glucose sensor function in vivo.
Klueh, Ulrike; Kaur, Manjot; Qiao, Yi; Kreutzer, Donald L
2010-06-01
Little is known about the specific cells, mediators and mechanisms involved in the loss of glucose sensor function (GSF) in vivo. Since mast cells (MC) are known to be key effector cells in inflammation and wound healing, we hypothesized that MC and their products are major contributors to the skin inflammation and wound healing that controls GSF at sites of sensor implantation. To test this hypothesis we utilized a murine model of continuous glucose monitoring (CGM) in vivo in both normal C57BL/6 mice (mast cell sufficient), as well as mast cell deficient B6.Cg-Kit(W-sh)/HNihrJaeBsmJ (Sash) mice over a 28 day CGM period. As expected, both strains of mice displayed excellent CGM for the first 7 days post sensor implantation (PSI). CGM in the mast cell sufficient C57BL/6 mice was erratic over the remaining 21 days PSI. CGM in the mast cell deficient Sash mice displayed excellent sensor function for the entire 28 day of CGM. Histopathologic evaluation of implantation sites demonstrated that tissue reactions in Sash mice were dramatically less compared to the reactions in normal C57BL/6 mice. Additionally, mast cells were also seen to be consistently associated with the margins of sensor tissue reactions in normal C57BL/6 mice. Finally, direct injection of bone marrow derived mast cells at sites of sensor implantation induced an acute and dramatic loss of sensor function in both C57BL/6 and Sash mice. These results demonstrate the key role of mast cells in controlling glucose sensor function in vivo. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Quax, Paul H. A.; de Borst, Gert Jan; de Vries, Jean-Paul P. M.; Moll, Frans L.; Kuiper, Johan; Toes, René E. M.; de Jager, Saskia C. A.; de Kleijn, Dominique P. V.; Hoefer, Imo E.; Pasterkamp, Gerard; Bot, Ilze
2014-01-01
Background Recently, we have shown that intraplaque mast cell numbers are associated with atherosclerotic plaque vulnerability and with future cardiovascular events, which renders inhibition of mast cell activation of interest for future therapeutic interventions. However, the endogenous triggers that activate mast cells during the progression and destabilization of atherosclerotic lesions remain unidentified. Mast cells can be activated by immunoglobulins and in the present study, we aimed to establish whether specific immunoglobulins in plasma of patients scheduled for carotid endarterectomy were related to (activated) intraplaque mast cell numbers and plasma tryptase levels. In addition, the levels were related to other vulnerable plaque characteristics and baseline clinical data. Methods and Results OxLDL-IgG, total IgG and total IgE levels were measured in 135 patients who underwent carotid endarterectomy. No associations were observed between the tested plasma immunoglobulin levels and total mast cell numbers in atherosclerotic plaques. Furthermore, no associations were found between IgG levels and the following plaque characteristics: lipid core size, degree of calcification, number of macrophages or smooth muscle cells, amount of collagen and number of microvessels. Interestingly, statin use was negatively associated with plasma IgE and oxLDL-IgG levels. Conclusions In patients suffering from carotid artery disease, total IgE, total IgG and oxLDL-IgG levels do not associate with plaque mast cell numbers or other vulnerable plaque histopathological characteristics. This study thus does not provide evidence that the immunoglobulins tested in our cohort play a role in intraplaque mast cell activation or grade of atherosclerosis. PMID:24586471
Anaphylaxis as a clinical manifestation of clonal mast cell disorders.
Matito, A; Alvarez-Twose, I; Morgado, J M; Sánchez-Muñoz, L; Orfao, A; Escribano, L
2014-08-01
Clonal mast cell disorders comprise a heterogeneous group of disorders characterized by the presence of gain of function KIT mutations and a constitutively altered activation-associated mast cell immunophenotype frequently associated with clinical manifestations related to the release of mast cells mediators. These disorders do not always fulfil the World Health Organization (WHO)-proposed criteria for mastocytosis, particularly when low-sensitive diagnostic approaches are performed. Anaphylaxis is a frequent presentation of clonal mast cell disorders, particularly in mastocytosis patients without typical skin lesions. The presence of cardiovascular symptoms, e.g., hypotension, occurring after a hymenoptera sting or spontaneously in the absence of cutaneous manifestations such as urticaria is characteristic and differs from the presentation of anaphylaxis in the general population without mastocytosis.
Dengue Virus Infection of Mast Cells Triggers Endothelial Cell Activation ▿
Brown, Michael G.; Hermann, Laura L.; Issekutz, Andrew C.; Marshall, Jean S.; Rowter, Derek; Al-Afif, Ayham; Anderson, Robert
2011-01-01
Vascular perturbation is a hallmark of severe forms of dengue disease. We show here that antibody-enhanced dengue virus infection of primary human cord blood-derived mast cells (CBMCs) and the human mast cell-like line HMC-1 results in the release of factor(s) which activate human endothelial cells, as evidenced by increased expression of the adhesion molecules ICAM-1 and VCAM-1. Endothelial cell activation was prevented by pretreatment of mast cell-derived supernatants with a tumor necrosis factor (TNF)-specific blocking antibody, thus identifying TNF as the endothelial cell-activating factor. Our findings suggest that mast cells may represent an important source of TNF, promoting vascular endothelial perturbation following antibody-enhanced dengue virus infection. PMID:21068256
The dynamics and control of large flexible space structures - 13
NASA Technical Reports Server (NTRS)
Bainum, Peter M.; Li, Feiyue; Xu, Jianke
1990-01-01
The optimal control of three-dimensional large angle maneuvers and vibrations of a Shuttle-mast-reflector system is considered. The nonlinear equations of motion are formulated by using Lagrange's formula, with the mast modeled as a continuous beam subject to three-dimensional deformations. Pontryagin's Maximum Principle is applied to the slewing problem, to derive the necessary conditions for the optimal controls, which are bounded by given saturation levels. The resulting two point boundary value problem is then solved by using the quasilinearization algorithm and the method of particular solutions. The study of the large angle maneuvering of the Shuttle-beam-reflector spacecraft in the plane of a circular earth orbit is extended to consider the effects of the structural offset connection, the axial shortening, and the gravitational torque on the slewing motion. Finally the effect of additional design parameters (such as related to additional payload requirement) on the linear quadratic regulator based design of an orbiting control/structural system is examined.
Low-grade chronic inflammation mediated by mast cells in fibromyalgia: role of IL-37.
Mastrangelo, F; Frydas, I; Ronconi, G; Kritas, S K; Tettamanti, L; Caraffa, Al; D Ovidio, C; Younes, A; Gallenga, C E; Conti, P
2018-01-01
It has been observed that acute stress causes the activation of TH1 cells, while TH2 cells regulate and act on chronic inflammation. Fibromyalgia (FM) is a chronic, idiopathic disorder which affects about twelve million people in the United States. FM is characterized by chronic widespread pain, fatigue, aching, joint stiffness, depression, cognitive dysfunction and non-restorative sleep. The mechanism of induction of muscle pain and inflammation is not yet clear. In FM there is an increase in reactivity of central neurons with increased sensitivity localized mainly in the CNS. Mast cells are involved in FM by releasing proinflammatory cytokines, chemokines, chemical mediators, and PGD2. TNF is a cytokine generated by MCs and its level is higher in FM. The inhibition of pro-inflammatory IL-1 family members and TNF by IL-37 in FM could have a therapeutic effect. Here, we report for the first time the relationship between MCs, inflammatory cytokines and the new anti-inflammatory cytokine IL-37 in FM.
125. HYDRAULIC CONTROLS FOR MAST TRENCH DOORS ON LEFT SIDE ...
125. HYDRAULIC CONTROLS FOR MAST TRENCH DOORS ON LEFT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Role of thrombopoietin in mast cell differentiation.
Migliaccio, Anna Rita; Rana, Rosa Alba; Vannucchi, Alessandro M; Manzoli, Francesco A
2007-06-01
Mast cells are important elements of the body response to foreign antigens, being those represented either by small molecules (allergic response) or harbored by foreign microorganisms (response to parasite infection). These cells derive from hematopoietic stem/progenitor cells present in the marrow. However, in contrast with most of the other hematopoietic lineages, mast cells do not differentiate in the marrow but in highly vascularized extramedullary sites, such as the skin or the gut. Mast cell differentiation in the marrow is activated as part of the body response to parasites. We will review here the mast cell differentiation pathway and what is known of its major intrinsic and extrinsic control mechanisms. It will also be described that thrombopoietin, the ligand for the Mpl receptor, in addition to its pivotal rule in the control of thrombocytopoiesis and of hematopoietic stem/progenitor cell proliferation, exerts a regulatory function in mast cell differentiation. Some of the possible implications of this newly described biological activity of thrombopoietin will be discussed.
Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis.
Piliponsky, Adrian M; Chen, Ching-Cheng; Nishimura, Toshihiko; Metz, Martin; Rios, Eon J; Dobner, Paul R; Wada, Etsuko; Wada, Keiji; Zacharias, Sherma; Mohanasundaram, Uma M; Faix, James D; Abrink, Magnus; Pejler, Gunnar; Pearl, Ronald G; Tsai, Mindy; Galli, Stephen J
2008-04-01
Sepsis is a complex, incompletely understood and often fatal disorder, typically accompanied by hypotension, that is considered to represent a dysregulated host response to infection. Neurotensin (NT) is a 13-amino-acid peptide that, among its multiple effects, induces hypotension. We find that intraperitoneal and plasma concentrations of NT are increased in mice after severe cecal ligation and puncture (CLP), a model of sepsis, and that mice treated with a pharmacological antagonist of NT, or NT-deficient mice, show reduced mortality during severe CLP. In mice, mast cells can degrade NT and reduce NT-induced hypotension and CLP-associated mortality, and optimal expression of these effects requires mast cell expression of neurotensin receptor 1 and neurolysin. These findings show that NT contributes to sepsis-related mortality in mice during severe CLP and that mast cells can lower NT concentrations, and suggest that mast cell-dependent reduction in NT levels contributes to the ability of mast cells to enhance survival after CLP.
Spatiotemporally and Mechanically Controlled Triggering of Mast Cells using Atomic Force Microscopy
Hu, Kenneth K.; Bruce, Marc A.; Butte, Manish J.
2014-01-01
Mast cells are thought to be sensitive to mechanical forces, for example, coughing in asthma or pressure in “physical urticarias”. Conversion of mechanical forces to biochemical signals could potentially augment antigenic signaling. Studying the combined effects of mechanical and antigenic cues on mast cells and other hematopoietic cells has been elusive. Here, we present an approach using a modified atomic force microscope cantilever to deliver antigenic signals to mast cells while simultaneously applying mechanical forces. We developed a strategy to concurrently record degranulation events by fluorescence microscopy during antigenic triggering. Finally, we also measured the mechanical forces generated by mast cells while antigen receptors are ligated. We showed that mast cells respond to antigen delivered by the AFM cantilever with prompt degranulation and the generation of strong pushing and pulling forces. We did not discern any relationship between applied mechanical forces and the kinetics of degranulation. These experiments present a new method for dissecting the interactions of mechanical and biochemical cues in signaling responses of immune cells. PMID:24777418
[Ala12]MCD peptide: a lead peptide to inhibitors of immunoglobulin E binding to mast cell receptors.
Buku, A; Condie, B A; Price, J A; Mezei, M
2005-09-01
An effort was made to discover mast cell degranulating (MCD) peptide analogs that bind with high affinity to mast cell receptors without triggering secretion of histamine or other mediators of the allergic reaction initiated by immunoglobulin E (IgE) after mast cell activation. Such compounds could serve as inhibitors of IgE binding to mast cell receptors. An alanine scan of MCD peptide reported previously showed that the analog [Ala12]MCD was 120-fold less potent in histamine-releasing activity and fivefold more potent in binding affinity to mast cell receptors than the parent MCD peptide. Because this analog showed marginal intrinsic activity and good binding affinity it was subsequently tested in the present study as an IgE inhibitor. In contrast to MCD peptide, [Ala12]MCD showed a 50% inhibition of IgE binding to the Fc epsilon RI alpha mast cell receptor by using rat basophilic leukemia (RBL-2H3) mast cells and fluorescence polarization. Furthermore, in a beta-hexosaminidase secretory assay, the peptide also showed a 50% inhibition of the secretion of this enzyme caused by IgE. An attempt was made to relate structural changes and biologic differences between the [Ala12]MCD analog and the parent MCD peptide. The present results show that [Ala12]MCD may provide a base for designing agents to prevent IgE/Fc epsilon RI alpha interactions and, consequently, allergic conditions.
Meyer, Joseph; Gorbach, Alexander M.; Liu, Wei-Min; Medic, Nevenka; Young, Michael; Nelson, Celeste; Arceo, Sarah; Desai, Avanti; Metcalfe, Dean D.; Komarow, Hirsh D.
2013-01-01
Background While a number of the consequences of mast cell degranulation within tissues have been documented including tissue-specific changes such as bronchospasm and the subsequent cellular infiltrate, there is little known about the immediate effects of mast cell degranulation on the associated vasculature, critical to understanding the evolution of mast cell dependent inflammation. Objective To characterize the microcirculatory events that follow mast cell degranulation. Methodology/Principal Findings Perturbations in dermal blood flow, temperature and skin color were analyzed using laser-speckle contrast imaging, infrared and polarized-light colorimetry following cold-hand immersion (CHI) challenge in patients with cold-induced urticaria compared to the response in healthy controls. Evidence for mast cell degranulation was established by documentation of serum histamine levels and the localized release of tryptase in post-challenge urticarial biopsies. Laser-speckle contrast imaging quantified the attenuated response to cold challenge in patients on cetirizine. We found that the histamine-associated vascular response accompanying mast cell degranulation is rapid and extensive. At the tissue level, it is characterized by a uniform pattern of increased blood flow, thermal warming, vasodilation, and recruitment of collateral circulation. These vascular responses are modified by the administration of an antihistamine. Conclusions/Significance Monitoring the hemodynamic responses within tissues that are associated with mast cell degranulation provides additional insight into the evolution of the acute inflammatory response and offers a unique approach to assess the effectiveness of treatment intervention. PMID:23451084
Comparison of Mast Cells Count in Odontogenic Cysts Using Histochemical Staining.
Rajabi-Moghaddam, Mahdieh; Abbaszadeh-Bidokhty, Hamid; Bijani, Ali
2015-01-01
Odontogenic cysts are among the most frequent destructive lesions of jaws which their pathogenesis and growth mechanism are not cleared. With respect to different roles of mast cells, they may play a role in the pathogenesis and growth of odontogenic cysts. The aim of present study was to evaluate mast cells in the most common odontogenic cyst. Thirty paraffin-embedded tissue blocks including 10 radicular cysts, 10 dentigerous cysts and 10 odontogenic keratocysts were used and 5 micron sections stained with toluidine blue and observed by light microscope under ×400 magnification to evaluate mast cells within these cysts. For each case, 5 high-power field areas, selected from hot-spot areas, were considered and each area divided into 3 zones: intra-epithelial zone, sub-epithelial zone and deep zone. Most of the studied cyst showed presence of mast cells. There was not any significant difference in mast cell count between studied cysts ( P -values > 0.05).With respect to intra-epithelial, sub-epithelial and deep zones, there was not any significant difference between three studied cysts. There was not any significant difference between sub-epithelial zone and deep zone within each of these cysts. There was only significant difference between intra-epithelial zone and sub-epithelial zone within dentigerous cysts and odontogenic keratocysts ( P -value < 0.05). Prevalence of mast cells in fibrous wall of odontogenic cysts suggests their activity in these cysts. Mast cells may not be directly involved in the pathogenesis of odontogenic keratocysts.
Mast cells are dispensable in a genetic mouse model of chronic dermatitis.
Sulcova, Jitka; Meyer, Michael; Guiducci, Eva; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Werner, Sabine
2015-06-01
Chronic inflammatory skin diseases, such as atopic dermatitis, affect a large percentage of the population, but the role of different immune cells in the pathogenesis of these disorders is largely unknown. Recently, we found that mice lacking fibroblast growth factor receptor 1 (Fgfr1) and Fgfr2 (K5-R1/R2 mice) in the epidermis have a severe impairment in the epidermal barrier, which leads to the development of a chronic inflammatory skin disease that shares many features with human atopic dermatitis. Using Fgfr1-/Fgfr2-deficient mice, we analyzed the consequences of the loss of mast cells. Mast cells accumulated and degranulated in the skin of young Fgfr1-/Fgfr2-deficient mice, most likely as a consequence of increased expression of the mast cell chemokine Ccl2. The increase in mast cells occurred before the development of histological abnormalities, indicating a functional role of these cells in the inflammatory skin phenotype. To test this hypothesis, we mated the Fgfr1-/Fgfr2-deficient mice with mast cell-deficient CreMaster mice. Surprisingly, loss of mast cells did not or only mildly affect keratinocyte proliferation, epidermal thickness, epidermal barrier function, accumulation and activation of different immune cells, or expression of different proinflammatory cytokines in the skin. These results reveal that mast cells are dispensable for the development of chronic inflammation in response to a defect in the epidermal barrier. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
2011-08-01
Traffic signal and high-mast poles are used by transportation agencies to control and illuminate intersections; their structural design is governed by national specifications. High-mast poles are luminaire supports located near highway interchanges t...
126. REDUNDANCY SYSTEM CONTROLS FOR UMBILICAL MAST RETRACTION AT LOWER ...
126. REDUNDANCY SYSTEM CONTROLS FOR UMBILICAL MAST RETRACTION AT LOWER LEFT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
109. REDUNDANCY SYSTEM CONTROLS FOR UMBILICAL MAST RETRACTION AT LOWER ...
109. REDUNDANCY SYSTEM CONTROLS FOR UMBILICAL MAST RETRACTION AT LOWER LEFT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (109), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; ...
41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; SOUTH FACE OF MST IN BACKGROUND. RAIL SYSTEM FROM BASE OF MST PARALLEL TO MAST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Perinatal stress, brain inflammation and risk of autism-Review and proposal
2012-01-01
Background Autism Spectrum Disorders (ASD) are neurodevelopmental disorders characterized by varying deficits in social interactions, communication, and learning, as well as stereotypic behaviors. Despite the significant increase in ASD, there are few if any clues for its pathogenesis, hampering early detection or treatment. Premature babies are also more vulnerable to infections and inflammation leading to neurodevelopmental problems and higher risk of developing ASD. Many autism “susceptibility” genes have been identified, but “environmental” factors appear to play a significant role. Increasing evidence suggests that there are different ASD endophenotypes. Discussion We review relevant literature suggesting in utero inflammation can lead to preterm labor, while insufficient development of the gut-blood–brain barriers could permit exposure to potential neurotoxins. This risk apparently may increase in parents with “allergic” or autoimmune problems during gestation, or if they had been exposed to stressors. The presence of circulating auto-antibodies against fetal brain proteins in mothers is associated with higher risk of autism and suggests disruption of the blood–brain-barrier (BBB). A number of papers have reported increased brain expression or cerebrospinal fluid (CSF) levels of pro-inflammatory cytokines, especially TNF, which is preformed in mast cells. Recent evidence also indicates increased serum levels of the pro-inflammatory mast cell trigger neurotensin (NT), and of extracellular mitochondrial DNA (mtDNA), which is immunogenic. Gene mutations of phosphatase and tensin homolog (PTEN), the negative regulator of the mammalian target of rapamycin (mTOR), have been linked to higher risk of autism, but also to increased proliferation and function of mast cells. Summary Premature birth and susceptibility genes may make infants more vulnerable to allergic, environmental, infectious, or stress-related triggers that could stimulate mast cell release of pro-inflammatory and neurotoxic molecules, thus contributing to brain inflammation and ASD pathogenesis, at least in an endophenotype of ASD patients. PMID:22747567
Regulation of vesicular trafficking and leukocyte function by Rab27 GTPases and their effectors
Catz, Sergio Daniel
2013-01-01
The Rab27 family of GTPases regulates the efficiency and specificity of exocytosis in hematopoietic cells, including neutrophils, CTLs, NK cells, and mast cells. However, the mechanisms regulated by Rab27 GTPases are cell-specific, as they depend on the differential expression and function of particular effector molecules that are recruited by the GTPases. In addition, Rab27 GTPases participate in multiple steps of the regulation of the secretory process, including priming, tethering, docking, and fusion through sequential interaction with multiple effector molecules. Finally, recent reports suggest that Rab27 GTPases and their effectors regulate vesicular trafficking mechanisms other than exocytosis, including endocytosis and phagocytosis. This review focuses on the latest discoveries on the function of Rab27 GTPases and their effectors Munc13-4 and Slp1 in neutrophil function comparatively to their functions in other leukocytes. PMID:23378593
127. HYDRAULIC CONTROLS AND GAUGES FOR THE UMBILICAL MAST ON ...
127. HYDRAULIC CONTROLS AND GAUGES FOR THE UMBILICAL MAST ON UPPER RIGHT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ...
123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON LEFT; HYDRAULIC CONTROL PANEL FOR UMBILICAL MAST AND TRENCH DOORS IN CENTER OF ROOM, FACING WEST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Diel, F; Neidhart, B; Oprée, W
1981-01-01
The direct action of sensitizing occupational chemicals (formaldehyde, phenol, phenylhydrazine, p-aminophenol) on rat mast cells was investigated by determination of histamine using HPLC separation and fluorimetric detection. It turned out that dispensed mast cells from immunized and non-immunized Wistar-rats are more sensitive than small-cut lung tissue slices. Passive cutaneous anaphylaxis was negative after a fortnight sensitizing experiment with the here described occupational chemicals. Short-time tests with rat mast cells reflect anaphylactoid response and are suitable for the screening of sensitizing chemicals.
Time domain modal identification/estimation of the mini-mast testbed
NASA Technical Reports Server (NTRS)
Roemer, Michael J.; Mook, D. Joseph
1991-01-01
The Mini-Mast is a 20 meter long 3-dimensional, deployable/retractable truss structure designed to imitate future trusses in space. Presented here are results from a robust (with respect to measurement noise sensitivity), time domain, modal identification technique for identifying the modal properties of the Mini-Mast structure even in the face of noisy environments. Three testing/analysis procedures are considered: sinusoidal excitation near resonant frequencies of the Mini-Mast, frequency response function averaging of several modal tests, and random input excitation with a free response period.
Mycobacterium tuberculosis Catalase Inhibits the Formation of Mast Cell Extracellular Traps
Campillo-Navarro, Marcia; Leyva-Paredes, Kahiry; Donis-Maturano, Luis; Rodríguez-López, Gloria M.; Soria-Castro, Rodolfo; García-Pérez, Blanca Estela; Puebla-Osorio, Nahum; Ullrich, Stephen E.; Luna-Herrera, Julieta; Flores-Romo, Leopoldo; Sumano-López, Héctor; Pérez-Tapia, Sonia M.; Estrada-Parra, Sergio; Estrada-García, Iris; Chacón-Salinas, Rommel
2018-01-01
Tuberculosis is one of the leading causes of human morbidity and mortality. Mycobacterium tuberculosis (Mtb) employs different strategies to evade and counterattack immune responses persisting for years. Mast cells are crucial during innate immune responses and help clear infections via inflammation or by direct antibacterial activity through extracellular traps (MCETs). Whether Mtb induce MCETs production is unknown. In this study, we report that viable Mtb did not induce DNA release by mast cells, but heat-killed Mtb (HK-Mtb) did. DNA released by mast cells after stimulation with HK-Mtb was complexed with histone and tryptase. MCETs induced with PMA and HK-Mtb were unable to kill live Mtb bacilli. Mast cells stimulated with HK-Mtb induced hydrogen peroxide production, whereas cells stimulated with viable Mtb did not. Moreover, MCETs induction by HK-Mtb was dependent of NADPH oxidase activity, because its blockade resulted in a diminished DNA release by mast cells. Interestingly, catalase-deficient Mtb induced a significant production of hydrogen peroxide and DNA release by mast cells, indicating that catalase produced by Mtb prevents MCETs release by degrading hydrogen peroxide. Our findings show a new strategy employed by Mtb to overcome the immune response through inhibiting MCETs formation, which could be relevant during early stages of infection. PMID:29892297
Mycobacterium tuberculosis Catalase Inhibits the Formation of Mast Cell Extracellular Traps.
Campillo-Navarro, Marcia; Leyva-Paredes, Kahiry; Donis-Maturano, Luis; Rodríguez-López, Gloria M; Soria-Castro, Rodolfo; García-Pérez, Blanca Estela; Puebla-Osorio, Nahum; Ullrich, Stephen E; Luna-Herrera, Julieta; Flores-Romo, Leopoldo; Sumano-López, Héctor; Pérez-Tapia, Sonia M; Estrada-Parra, Sergio; Estrada-García, Iris; Chacón-Salinas, Rommel
2018-01-01
Tuberculosis is one of the leading causes of human morbidity and mortality. Mycobacterium tuberculosis (Mtb) employs different strategies to evade and counterattack immune responses persisting for years. Mast cells are crucial during innate immune responses and help clear infections via inflammation or by direct antibacterial activity through extracellular traps (MCETs). Whether Mtb induce MCETs production is unknown. In this study, we report that viable Mtb did not induce DNA release by mast cells, but heat-killed Mtb (HK-Mtb) did. DNA released by mast cells after stimulation with HK-Mtb was complexed with histone and tryptase. MCETs induced with PMA and HK-Mtb were unable to kill live Mtb bacilli. Mast cells stimulated with HK-Mtb induced hydrogen peroxide production, whereas cells stimulated with viable Mtb did not. Moreover, MCETs induction by HK-Mtb was dependent of NADPH oxidase activity, because its blockade resulted in a diminished DNA release by mast cells. Interestingly, catalase-deficient Mtb induced a significant production of hydrogen peroxide and DNA release by mast cells, indicating that catalase produced by Mtb prevents MCETs release by degrading hydrogen peroxide. Our findings show a new strategy employed by Mtb to overcome the immune response through inhibiting MCETs formation, which could be relevant during early stages of infection.
Fang, Y; Zhang, T; Lidell, L; Xu, X; Lycke, N; Xiang, Z
2013-11-01
We have previously reported that CTA1-DD/IgG immune complexes augment antibody responses in a mast cell-dependent manner following intranasal (IN) immunizations. However, from a safety perspective, mast cell activation could preclude clinical use. Therefore, we have extended these studies and demonstrate that CTA1-DD/IgG immune complexes administered IN did not trigger an anaphylactic reaction. Importantly, CTA1-DD/IgE immune complexes did not activate mast cells. Interestingly, only connective tissue, but not mucosal, mast cells could be activated by CTA1-DD/IgG immune complexes. This effect was mediated by FcγRIIIA, only expressed on connective tissue mast cells, and found in the nasal submucosa. FcγRIIIA-deficient mice had compromised responses to immunization adjuvanted by CTA1-DD/IgG. Proof-of-concept studies revealed that IN immunized mice with human papillomavirus (HPV) type 16 L1 virus-like particles (VLP) and CTA1-DD/IgG immune complexes demonstrated strong and sustained specific antibody titers in serum and vaginal secretions. From a mast cell perspective, CTA1-DD/IgG immune complexes appear to be safe and effective mucosal adjuvants.
Nizamutdinova, Irina Tsoy; Dusio, Giuseppina F.; Gasheva, Olga Yu.; Skoog, Hunter; Tobin, Richard; Peddaboina, Chander; Meininger, Cynthia J.; Zawieja, David C.; Newell-Rogers, M. Karen; Gashev, Anatoliy A.
2016-01-01
This study aimed to establish mechanistic links between the aging-associated changes in the functional status of mast cells and the altered responses of mesenteric tissue and mesenteric lymphatic vessels (MLVs) to acute inflammation. We used an in vivo model of acute peritoneal inflammation induced by lipopolysaccharide treatment of adult (9-month) and aged (24-month) F-344 rats. We analyzed contractility of isolated MLVs, mast cell activation, activation of nuclear factor-κB (NF-κB) without and with stabilization of mast cells by cromolyn or blockade of all types of histamine receptors and production of 27 major pro-inflammatory cytokines in adult and aged perilymphatic mesenteric tissues and blood. We found that the reactivity of aged contracting lymphatic vessels to LPS-induced acute inflammation was abolished and that activated mast cells trigger NF-κB signaling in the mesentery through release of histamine. The aging-associated basal activation of mesenteric mast cells limits acute inflammatory NF-κB activation in aged mesentery. We conclude that proper functioning of the mast cell/histamine/NF-κB axis is necessary for reactions of the lymphatic vessels to acute inflammatory stimuli as well as for interaction and trafficking of immune cells near and within the collecting lymphatics. PMID:27875806
He, Shao-Heng; Xie, Hua; He, Yong-Song
2002-12-25
Proteinase-activated receptor-2 (PAR-2) expression has been observed on numerous cell types. However, little is known about the functional expression of PAR-2 in human mast cells. In the current study, the actions of a PAR-2 agonist trans-cinnamoyl-Leu-Ile-Gly-Arg-Leu-Orn-amide (tc-LIGRLO) on tryptase release from dispersed human colonic mast cells were examined. The results showed that tc-LIGRLO was able to induce a fold increase in tryptase release over the basal level following a 15 min incubation of colonic mast cells, whereas tc-OLRGIL did not have any effect on tryptase release. The potency of tc-LIGRLO appeared greater than that of anti-IgE and calcium ionophore A23187 (CI) in induction of tryptase release. Extending the incubation time to 30 min had no significant effect on the actions of tc-LIGRLO or anti-IgE. In the time course study, it was observed that the tryptase release from mast cells induced by tc-LIGRLO started at 1 min and peaked at 3 min following incubation. The above-mentioned results indicate that tc-LIGRLO is a potent stimulus of tryptase release from human mast cells, which strongly suggests that PAR-2s are expressed in human mast cells.
Saxena, S; Singh, A; Singh, P; Sundaragiri, K S; Sankhla, B; Bhargava, A
2018-04-01
Mast cells and eosinophils are increased in oral squamous cell carcinoma. The significance of such an association has been variably thought to be either a potential diagnostic tool for stromal invasion or as a prognostic indicator. The aim of the study was to study the mast cells and eosinophils between normal oral mucosa, leukoplakia and oral squamous cell carcinoma and to study the significance of mast cells in the progression of the lesion. A retrospective study was done on archival tissue received from January 2015 to December 2015, in the Department of Oral Pathology, RUHS College of Dental Sciences, Jaipur, Rajasthan, India. Seventy (70) cases were studied (30 cases each of leukoplakia and carcinoma and 10 cases of control group), sections were stained with toluidine blue solution to reveal mast cells. Eosinophils were studied in Haematoxylin & Eosin stained sections. Mast cell density significantly increased from: normal mucosa to oral leukoplakia to carcinoma, suggesting a role of the mast cells in the development of these lesions. The higher eosinophil counts in carcinoma group compared to dysplasia group proved that they might have a role in stromal invasion. The assessment of these could become, in the future, useful for therapeutic approaches in this subset of the patient.
Lee, Sungsil; Lim, Hwan Sub; Park, Jungyong; Kim, Hyon Suk
2009-04-01
In the diagnosis of atopic diseases, allergen detection is a crucial step. Multiple allergen simultaneous test-chemiluminescent assay (MAST-CLA) is a simple and noninvasive method for in vitro screening of allergen-specific IgE antibodies. The Korean Inhalant Panel test on 20 patients and Food Panel test on 19 patients were performed using the conventional manual MAST-CLA kit and the new automated MAST-CLA method (automated AP720S system for the Optigen Assay; Hitachi Chemical Diagnostics, Inc., USA) simultaneously. The results were evaluated for positive reactivity and concordance. The results of inhalant panel gave a relatively higher class level result than the food panel. The 8 patients out of 20 (40%) of the inhalation panel, and 9 patients out of 18 (47.4%) of the food panel showed 100% concordance between the 2 systems. Eighteen patients (90%) of the Inhalation Panel and sixteen patients (84.2%) of the Food Panel showed more than 91% concordance. These results suggest that the MAST-CLA assay using the new, automated AP720S analyzer performs well, showing a high concordance rate with conventional MAST-CLA. Compared to manual MAST-CLA, the automated AP720S system has a shorter assay time and uses a smaller serum volume (500 microl) along with other conveniences.
Two centuries of masting data for European beech and Norway spruce across the European continent.
Ascoli, Davide; Maringer, Janet; Hacket-Pain, Andy; Conedera, Marco; Drobyshev, Igor; Motta, Renzo; Cirolli, Mara; Kantorowicz, Władysław; Zang, Christian; Schueler, Silvio; Croisé, Luc; Piussi, Pietro; Berretti, Roberta; Palaghianu, Ciprian; Westergren, Marjana; Lageard, Jonathan G A; Burkart, Anton; Gehrig Bichsel, Regula; Thomas, Peter A; Beudert, Burkhard; Övergaard, Rolf; Vacchiano, Giorgio
2017-05-01
Tree masting is one of the most intensively studied ecological processes. It affects nutrient fluxes of trees, regeneration dynamics in forests, animal population densities, and ultimately influences ecosystem services. Despite a large volume of research focused on masting, its evolutionary ecology, spatial and temporal variability, and environmental drivers are still matter of debate. Understanding the proximate and ultimate causes of masting at broad spatial and temporal scales will enable us to predict tree reproductive strategies and their response to changing environment. Here we provide broad spatial (distribution range-wide) and temporal (century) masting data for the two main masting tree species in Europe, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.). We collected masting data from a total of 359 sources through an extensive literature review and from unpublished surveys. The data set has a total of 1,747 series and 18,348 yearly observations from 28 countries and covering a time span of years 1677-2016 and 1791-2016 for beech and spruce, respectively. For each record, the following information is available: identification code; species; year of observation; proxy of masting (flower, pollen, fruit, seed, dendrochronological reconstructions); statistical data type (ordinal, continuous); data value; unit of measurement (only in case of continuous data); geographical location (country, Nomenclature of Units for Territorial Statistics NUTS-1 level, municipality, coordinates); first and last record year and related length; type of data source (field survey, peer reviewed scientific literature, gray literature, personal observation); source identification code; date when data were added to the database; comments. To provide a ready-to-use masting index we harmonized ordinal data into five classes. Furthermore, we computed an additional field where continuous series with length >4 yr where converted into a five classes ordinal index. To our knowledge, this is the most comprehensive published database on species-specific masting behavior. It is useful to study spatial and temporal patterns of masting and its proximate and ultimate causes, to refine studies based on tree-ring chronologies, to understand dynamics of animal species and pests vectored by these animals affecting human health, and it may serve as calibration-validation data for dynamic forest models. © 2017 by the Ecological Society of America.
Reddy, D Santhosh; Sivapathasundharam, B; Saraswathi, T R; SriRam, G
2012-01-01
Mast cells are granule containing secretory cells present in oral mucosal and connective tissue environment. Oral lichen planus and oral lichenoid lesions are commonly occurring oral diseases and have some similarity clinically and histologically. Both are characterized by an extensive sub epithelial infiltrate of T cells, together with mast cells, eosinophils and blood capillaries. In this study mast cell and eosinophil densities along with number of blood capillaries were studied to find out if they could aid in histopathological distinction between oral lichen planus and lichenoid mucositis. To enumerate mast cells and compare the status of Mast Cells (Intact or Degranulated) in Lichen planus, Lichenoid mucositis and normal buccal mucosa in tissue sections stained with Toluidine Blue, and also to enumerate Eosinophils and blood capillaries in tissue sections stained with H and E. The study group included 30 cases each of oral lichen planus and oral lichenoid mucositis. 10 cases of clinically normal oral buccal mucosa formed the control group. All the sections were stained with Toluidine blue and H and E separately. Histopathological analysis was done using binocular light microscope equipped with square ocular grid to standardize the field of evaluation. The result of the study showed. · Significant increase in number of mast cells in oral lichen planus and oral lichenoid mucositis compared to normal buccal mucosa. · Significant increase of intact mast cells suepithelially within the inflammatory cell infiltrate in oral lichen planus compared to oral lichenoid mucositis. · Significant increase of degranulated mast cells in oral lichenoid mucositis to oral lichen planus, and increase in number of eosinophil densities in oral lichenoid mucositis compared to oral lichen planus. · Significant increase in number of capillaries in oral lichenoid mucositis compared to oral lichen planus. The findings of increased number of intact mast cells sub epithelially in oral lichen planus to oral lichenoid mucositis and increase in number of degranulated mast cells as well as capillaries subepithelially in oral lichenoid mucositis to oral lichen planus can be used as reliable criteria for histologic distinction between these two lesions. The increase of eosinophils in oral lichenoid mucositis to oral lichen planus could be used as adjunct histologic criterion in the diagnosis of oral lichenoid mucositis.
Shao, Yang-Yang; Zhou, Yi-Ming; Hu, Min; Li, Jin-Ze; Chen, Cheng-Juan; Wang, Yong-Jiang; Shi, Xiao-Yun; Wang, Wen-Jie; Zhang, Tian-Tai
2017-03-22
Shenqi is a traditional Chinese polyherbal medicine has been widely used for the treatment of allergic rhinitis (AR). The aim of this study was to investigate the anti-allergic rhinitis activity of Shenqi and explore its underlying molecular mechanism. Ovalbumin (OVA)-induced allergic rhinitis rat model was used to evaluate the anti-allergic rhinitis effect of Shenqi. The effect of Shenqi on IgE-mediated degranulation was measured using rat basophilic leukemia (RBL-2H3) cells. Primary spleen lymphocytes were isolated to investigate the anti-allergic mechanism of Shenqi by detecting the expression of transcription factors via Western blot and the level of cytokines (IL-4 and IFN-γ) via ELISA. In OVA-induced AR rat models, Shenqi relieved the allergic rhinitis symptoms, inhibited the histopathological changes of nasal mucosa, and reduced the levels of IL-4 and IgE. The results from the in vitro study certified that Shenqi inhibited mast cell degranulation. Furthermore, the results of GATA3, T-bet, p-STAT6, and SOCS1 expression and production of IFN-γ and IL-4 demonstrated that Shenqi balanced the ratio of Th1/Th2 (IFN-γ/IL-4) in OVA-stimulated spleen lymphocytes. In conclusion, these results suggest that Shenqi exhibits an obvious anti-allergic effect by suppressing the mast cell-mediated allergic response and by improving the imbalance of Th1/Th2 ratio in allergic rhinitis.
Toll-Like Receptor Function in Acute Wounds
Chen, Lin; DiPietro, Luisa A.
2017-01-01
Significance: Inflammation is an integral part of immune response and supports optimal wound healing in adults. Inflammatory cells such as neutrophils, macrophages, dendritic cells, lymphocytes, and mast cells produce important cytokines, chemokines, and growth factors. These immune cells interact with keratinocytes, fibroblasts, and endothelial cells (ECs), as well as the extracellular matrix within a complicated network that promotes and regulates wound healing. Aberrant and persistent inflammation may result in delayed wound healing, scar formation, or chronic wounds. Targeting the molecules involved in the inflammatory response may have great potential therapeutic value. Recent Advances and Critical Issues: Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen-associated molecular patterns from microbes or danger-associated molecular patterns from damaged cells. The discovery of TLRs sheds new light on the mechanism by which the inflammatory or innate immune response is initiated in wound healing. Convincing evidence now shows that multiple types of cells, including infiltrating or resident inflammatory cells, keratinocytes, fibroblasts, and ECs, express specific types of TLRs. Experimental reduction of certain TLRs or treatment of wounds with TLR ligands has been shown to affect wound healing. A better understanding of the involvement of TLRs in the innate immune response during skin wound healing may suggest novel strategies to improve the quality of tissue repair. Future Directions: Despite the indisputable role of TLRs in regulating the immune response in acute wound healing, the functions of TLRs that are relevant to human wound healing and chronic wounds are poorly understood. PMID:29062591
Berdún, S; Rychter, J; Vergara, P
2016-06-01
Surgical handling of the bowel evokes degranulation of peritoneal mast cells (PMC). Nonetheless, role of PMCs in postoperative ileus (POI) is somewhat controversial. We aimed to investigate if intestinal manipulation elicits changes in afferent mediators related to MC activation and alteration of gastrointestinal (GI) motility. Postoperative ileus was induced by intestinal manipulation in Sprague-Dawley rats. Additionally, compound 48/80 (C48/80) and ketotifen were used to modulate MC activity. Rat mast cell protease 6 (RMCP-6, ELISA) release was determined in peritoneal lavage 20 min after intestinal manipulation. At 24 h, GI transit was determined. Gene expression of calcitonin gene-related peptide (CGRP), protease-activated receptor-2 (PAR-2), nerve growth factor (NGF), and TrkA receptor was determined (PCR) in dorsal root ganglia (DRG). Ileal wall inflammation was assessed by myeloperoxidase (MPO) activity, interleukin-6 expression (IL-6). Intestinal manipulation and exposure to C48/80-induced degranulation of PMCs delayed GI transit and up-regulated IL-6 and MPO activity. Intestinal manipulation, but not C48/80, up-regulated CGRP, PAR-2, and NGF/TrkA in DRGs. Ketotifen only improved gastric emptying and fecal output. Up-regulation of CGRP and TrkA expression in DRG was not prevented by ketotifen. Postoperative ileus is accompanied by activation of CGRP, NGF-TrkA, and PAR-2 in DRGs. Our results suggest that these mediators could be a target in further POI studies in order to find new therapeutic targets for this medical condition. © 2016 John Wiley & Sons Ltd.
Kajimoto, Noriko; Nakai, Norihiro; Ohkouchi, Mizuka; Hashikura, Yuka; Liu-Kimura, Ning-Ning; Isozaki, Koji; Hirota, Seiichi
2015-01-01
Sporadic mast cell neoplasms and gastrointestinal stromal tumors (GISTs) often have various types of somatic gain-of-function mutations of the c-kit gene which encodes a receptor tyrosine kinase, KIT. Several types of germline gain-of-function mutations of the c-kit gene have been detected in families with multiple GISTs. All three types of model mice for the familial GISTs with germline c-kit gene mutations at exon 11, 13 or 17 show development of GIST, while they are different from each other in skin mast cell number. Skin mast cell number in the model mice with exon 17 mutation was unchanged compared to the corresponding wild-type mice. In the present study, we characterized various types of mast cells derived from the model mice with exon 17 mutation (KIT-Asp818Tyr) corresponding to human familial GIST case with human KIT-Asp820Tyr to clarify the role of the c-kit gene mutation in mast cells. Bone marrow-derived cultured mast cells (BMMCs) derived from wild-type mice, heterozygotes and homozygotes were used for the experiments. Immortalized BMMCs, designated as IMC-G4 cells, derived from BMMCs of a homozygote during long-term culture were also used. Ultrastructure, histamine contents, proliferation profiles and phosphorylation of various signaling molecules in those cells were examined. In IMC-G4 cells, presence of additional mutation(s) of the c-kit gene and effect of KIT inhibitors on both KIT autophosphorylation and cell proliferation were also analyzed. We demonstrated that KIT-Asp818Tyr did not affect ultrastructure and proliferation profiles but did histamine contents in BMMCs. IMC-G4 cells had an additional novel c-kit gene mutation of KIT-Tyr421Cys which is considered to induce neoplastic transformation of mouse mast cells and the mutation appeared to be resistant to a KIT inhibitor of imatinib but sensitive to another KIT inhibitor of nilotinib. IMC-G4 cells might be a useful mast cell line to investigate mast cell biology. PMID:26722383
Ohsawa, Isao; Honda, Daisuke; Hisada, Atsuko; Inoshita, Hiroyuki; Onda-Tsueshita, Kisara; Mano, Satoshi; Sato, Nobuyuki; Nakamura, Yuya; Shimizu, Tatsuo; Gotoh, Hiromichi; Goto, Yoshikazu; Suzuki, Yusuke; Tomino, Yasuhiko
2018-02-01
Objective The present study was designed to identify the clinical characteristics that permit the differential diagnosis of hereditary angioedema (HAE) and mast cell-mediated angioedema (Mast-AE) during the first consultation. Methods The medical histories and laboratory data of 46 patients with HAE and 41 patients with Mast-AE were compared. Results The average age of onset in the HAE group (19.8±9.0 years) was significantly lower than that in the Mast-AE group (35.2±12.0 years). The incidence of familial angioedema (AE) in the HAE group (73.9%) was significantly higher than that in the Mast-AE group (9.7%). The frequency of history of AE in the extremities, larynx, or gastrointestinal tract was significantly higher in the HAE group. The frequency of AE episodes of the lips and eyelids was significantly lower in the HAE group. The serum C4 concentration and CH50 titer were lower than the normal limit in 91.3% and 45.6% of the patients in the HAE group, respectively; in Mast-AE group the serum C4 concentration and CH50 titer were significantly lower than the normal limit in 4.8% and 0% of the patients, the difference between the two groups was statistically significant. A C1-inhibitor (C1-INH) activity level of <50% was observed in all of the HAE patients, but none of the Mast-AE patients. The mean serum IgE titer in the HAE group (120.8±130.5 IU/mL) was significantly lower than that in the Mast-AE group (262.2±314.9 IU/mL). Conclusion The parameters within the patients' medical histories, such as the age at the onset of AE, a family history of AE, and the locations of past AE episodes are critical for the successful diagnosis of the disease. Measurements of the C4 and C1-INH activity are very useful for differential diagnosis of HAE from Mast-AE.
Bait stations, hard mast, and black bear population growth in Great Smoky Mountains National Park
Clark, Joseph D.; van Manen, Frank T.; Pelton, Michael R.
2005-01-01
Bait-station surveys are used by wildlife managers as an index to American black bear (Ursus americanus) population abundance, but the relationship is not well established. Hard mast surveys are similarly used to assess annual black bear food availability which may affect mortality and natality rates. We used data collected in Great Smoky Mountains National Park (GSMNP) from 1989 to 2003 to determine whether changes in the bait-station index (ΔBSI) were associated with estimated rates of bear population growth (λ) and whether hard mast production was related to bear visitation to baits. We also evaluated whether hard mast production from previous years was related to λ. Estimates of λ were based on analysis of capture-recapture data with the Pradel temporal symmetry estimator. Using the Akaike's Information Criterion (AIC), our analysis revealed no direct relationship between ΔBSI and λ. A simulation analysis indicated that our data were adequate to detect a relationship had one existed. Model fit was marginally improved when we added total oak mast production of the previous year as an interaction term suggesting that the BSI was confounded with environmental variables. Consequently the utility of the bait-station survey as a population monitoring technique is questionable at the spatial and temporal scales we studied. Mast survey data, however, were valuable covariates of λ. Population growth for a given year was negatively related to oak mast production 4 and 5 years prior. That finding supported our hypothesis that mast failures can trigger reproductive synchrony, which may not be evident from the trapped sample until years later.
Hultsch, T; Müller, K D; Meingassner, J G; Grassberger, M; Schopf, R E; Knop, J
1998-09-01
Mast cells play an important role in the pathological development of many inflammatory and allergic diseases and inhibition of mast cell activation is a potential target for therapeutic intervention. Therefore, the effect of the novel ascomycin macrolactam derivative SDZ ASM 981 on Fc epsilonRI-mediated activation of rat basophilic leukemia (RBL) cells, as a model for mast cell activation, was investigated. First, the ability to inhibit different mast cell immunophilins in vitro was tested. Using recombinant macrophilin-12 (FKBP-12), inhibition of rotamase activity with an IC50 of approximately 6 nM was observed. The rotamase activity of cyclophilin A (18 kDa) was not affected. Secondly, the effect of SDZ ASM 981 on Fc epsilonRI-mediated mast cell activation was investigated in the RBL cell model. SDZ ASM 981 inhibited exocytosis of preformed mediators (e.g. serotonin) with an IC50 of approximately 30 nM. Transcription and release of newly synthesized mediators (e.g. TNF-alpha) was inhibited with an IC50 of approximately 100 nM. The inhibitory effect of SDZ ASM 981 was antagonized by rapamycin. We conclude that SDZ ASM 981 is a potent inhibitor of Fc epsilonRI-mediated activation of mast cells in vitro. The mechanism of action involves formation of (calcineurin) inhibitory complexes with macrophilins. We suggest that this inhibitory action on mast cells might contribute to the antiinflammatory effect of SDZ ASM 981 observed in vivo (e.g. in aptopic dermatitis and psoriasis).
Fukuishi, Nobuyuki; Igawa, Yuusuke; Kunimi, Tomoyo; Hamano, Hirofumi; Toyota, Masao; Takahashi, Hironobu; Kenmoku, Hiromichi; Yagi, Yasuyuki; Matsui, Nobuaki; Akagi, Masaaki
2013-01-01
While gene knockout technology can reveal the roles of proteins in cellular functions, including in mast cells, fetal death due to gene manipulation frequently interrupts experimental analysis. We generated mast cells from mouse fetal liver (FLMC), and compared the fundamental functions of FLMC with those of bone marrow-derived mouse mast cells (BMMC). Under electron microscopy, numerous small and electron-dense granules were observed in FLMC. In FLMC, the expression levels of a subunit of the FcεRI receptor and degranulation by IgE cross-linking were comparable with BMMC. By flow cytometry we observed surface expression of c-Kit prior to that of FcεRI on FLMC, although on BMMC the expression of c-Kit came after FcεRI. The surface expression levels of Sca-1 and c-Kit, a marker of putative mast cell precursors, were slightly different between bone marrow cells and fetal liver cells, suggesting that differentiation stage or cell type are not necessarily equivalent between both lineages. Moreover, this indicates that phenotypically similar mast cells may not have undergone an identical process of differentiation. By comprehensive analysis using the next generation sequencer, the same frequency of gene expression was observed for 98.6% of all transcripts in both cell types. These results indicate that FLMC could represent a new and useful tool for exploring mast cell differentiation, and may help to elucidate the roles of individual proteins in the function of mast cells where gene manipulation can induce embryonic lethality in the mid to late stages of pregnancy. PMID:23573287
Comparison of Mast Cells Count in Odontogenic Cysts Using Histochemical Staining
Rajabi-Moghaddam, Mahdieh; Abbaszadeh-Bidokhty, Hamid; Bijani, Ali
2015-01-01
Background & Objectives: Odontogenic cysts are among the most frequent destructive lesions of jaws which their pathogenesis and growth mechanism are not cleared. With respect to different roles of mast cells, they may play a role in the pathogenesis and growth of odontogenic cysts. The aim of present study was to evaluate mast cells in the most common odontogenic cyst. Methods: Thirty paraffin-embedded tissue blocks including 10 radicular cysts, 10 dentigerous cysts and 10 odontogenic keratocysts were used and 5 micron sections stained with toluidine blue and observed by light microscope under ×400 magnification to evaluate mast cells within these cysts. For each case, 5 high-power field areas, selected from hot-spot areas, were considered and each area divided into 3 zones: intra-epithelial zone, sub-epithelial zone and deep zone. Results: Most of the studied cyst showed presence of mast cells. There was not any significant difference in mast cell count between studied cysts ( P -values > 0.05).With respect to intra-epithelial, sub-epithelial and deep zones, there was not any significant difference between three studied cysts. There was not any significant difference between sub-epithelial zone and deep zone within each of these cysts. There was only significant difference between intra-epithelial zone and sub-epithelial zone within dentigerous cysts and odontogenic keratocysts ( P -value < 0.05). Conclusions: Prevalence of mast cells in fibrous wall of odontogenic cysts suggests their activity in these cysts. Mast cells may not be directly involved in the pathogenesis of odontogenic keratocysts. PMID:26351470
Artuc, M; Hermes, B; Steckelings, U M; Grützkau, A; Henz, B M
1999-02-01
Mast cells are traditionally viewed as effector cells of immediate type hypersensitivity reactions. There is, however, a growing body of evidence that the cells might play an important role in the maintenance of tissue homeostasis and repair. We here present our own data and those from the literature elucidating the possible role of mast cells during wound healing. Studies on the fate of mast cells in scars of varying ages suggest that these cells degranulate during wounding, with a marked decrease of chymase-positive cells, although the total number of cells does not decrease, based on SCF-receptor staining. Mast cells contain a plethora of preformed mediators like heparin, histamine, tryptase, chymase, VEGF and TNF-alpha which, on release during the initial stages of wound healing, affect bleeding and subsequent coagulation and acute inflammation. Various additional vasoactive and chemotactic, rapidly generated mediators (C3a, C5a, LTB4, LTC4, PAF) will contribute to these processes, whereas mast cell-derived proinflammatory and growth promoting peptide mediators (VEGF, FGF-2, PDGF, TGF-beta, NGF, IL-4, IL-8) contribute to neoangiogenesis, fibrinogenesis or re-epithelization during the repair process. The increasing number of tryptase-positive mast cells in older scars suggest that these cells continue to be exposed to specific chemotactic, growth- and differentiation-promoting factors throughout the process of tissue remodelling. All these data indicate that mast cells contribute in a major way to wound healing. their role as potential initiators of or as contributors to this process, compared to other cell types, will however have to be further elucidated.
Christy, Alison L; Walker, Margaret E; Hessner, Martin J; Brown, Melissa A
2013-05-01
The meninges are often considered inert tissues that house the CSF and provide protection for the brain and spinal cord. Yet emerging data demonstrates that they are also active sites of immune responses. Furthermore, the blood-CSF barrier surrounding meningeal blood vessels, together with the blood-brain barrier (BBB), is postulated to serve as a gateway for the pathological infiltration of immune cells into the CNS in multiple sclerosis (MS). Our previous studies using mast cell-deficient (Kit(W/Wv)) mice demonstrated that mast cells resident in the dura mater and pia mater exacerbate experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, by facilitating CNS inflammatory cell influx. Here we examined the underlying mechanisms that mediate these effects. We demonstrate that there are dramatic alterations in immune associated gene expression in the meninges in pre-clinical disease, including those associated with mast cell and neutrophil function. Meningeal mast cells are activated within 24 h of disease induction, but do not directly compromise CNS vascular integrity. Rather, through production of TNF, mast cells elicit an early influx of neutrophils, cells known to alter vascular permeability, into the meninges. These data add to the growing evidence that inflammation in the meninges precedes CNS immune cell infiltration and establish that mast cells are among the earliest participants in these disease-initiating events. We hypothesize that mast cell-dependent neutrophil recruitment and activation in the meninges promotes early breakdown of the local BBB and CSF-blood barrier allowing initial immune cell access to the CNS. Copyright © 2012 Elsevier Ltd. All rights reserved.
Recombinant ArtinM activates mast cells.
Barbosa-Lorenzi, Valéria Cintra; Cecilio, Nerry Tatiana; de Almeida Buranello, Patricia Andressa; Pranchevicius, Maria Cristina; Goldman, Maria Helena S; Pereira-da-Silva, Gabriela; Roque-Barreira, Maria Cristina; Jamur, Maria Célia; Oliver, Constance
2016-07-04
Mast cells are hematopoietically derived cells that play a role in inflammatory processes such as allergy, as well as in the immune response against pathogens by the selective and rapid release of preformed and lipid mediators, and the delayed release of cytokines. The native homotetrameric lectin ArtinM, a D-mannose binding lectin purified from Artocarpus heterophyllus seeds, is one of several lectins that are able to activate mast cells. Besides activating mast cells, ArtinM has been shown to affect several biological responses, including immunomodulation and acceleration of wound healing. Because of the potential pharmacological application of ArtinM, a recombinant ArtinM (rArtinM) was produced in Escherichia coli. The current study evaluated the ability of rArtinM to induce mast cell degranulation and activation. The glycan binding specificity of rArtinM was similar to that of jArtinM. rArtinM, via its CRD, was able to degranulate, releasing β-hexosaminidase and TNF-α, and to promote morphological changes on the mast cell surface. Moreover, rArtinM induced the release of the newly-synthesized mediator, IL-4. rArtinM does not have a co-stimulatory effect on the FcεRI degranulation via. The IgE-dependent mast cell activation triggered by rArtinM seems to be dependent on NFkB activation. The lectin rArtinM has the ability to activate and degranulate mast cells via their CRDs. The present study indicates that rArtinM is a suitable substitute for the native form, jArtinM, and that rArtinM may serve as an important and reliable pharmacological agent.
Joseph, Laurie B; Composto, Gabriella M; Perez, Roberto M; Kim, Hong-Duck; Casillas, Robert P; Heindel, Ned D; Young, Sherri C; Lacey, Carl J; Saxena, Jaya; Guillon, Christophe D; Croutch, Claire R; Laskin, Jeffrey D; Heck, Diane E
2018-09-01
Sulfur mustard (SM, bis(2-chloroethyl sulfide) is a potent vesicating agent known to cause skin inflammation, necrosis and blistering. Evidence suggests that inflammatory cells and mediators that they generate are important in the pathogenic responses to SM. In the present studies we investigated the role of mast cells in SM-induced skin injury using a murine vapor cup exposure model. Mast cells, identified by toluidine blue staining, were localized in the dermis, adjacent to dermal appendages and at the dermal/epidermal junction. In control mice, 48-61% of mast cells were degranulated. SM exposure (1.4g/m 3 in air for 6min) resulted in increased numbers of degranulated mast cells 1-14days post-exposure. Treatment of mice topically with an indomethacin choline bioisostere containing prodrug linked by an aromatic ester-carbonate that targets cyclooxygenases (COX) enzymes and acetylcholinesterase (1% in an ointment) 1-14days after SM reduced skin inflammation and injury and enhanced tissue repair. This was associated with a decrease in mast cell degranulation from 90% to 49% 1-3days post SM, and from 84% to 44% 7-14days post SM. These data suggest that reduced inflammation and injury in response to the bifunctional indomethacin prodrug may be due, at least in part, to abrogating mast cell degranulation. The use of inhibitors of mast cell degranulation may be an effective strategy for mitigating skin injury induced by SM. Copyright © 2017 Elsevier B.V. All rights reserved.
BARAM, D; RASHKOVSKY, M; HERSHKOVIZ, R; DRUCKER, I; RESHEF, T; BEN-SHITRIT, S; MEKORI, Y A
1997-01-01
There has been substantial evidence that suggests that heparin may modulate various aspects of immune function and inflammation in addition to its well known anticoagulant activity. In this regard heparin was found to suppress cell-mediated immune responses or asthmatic reactions to allergen challenge. In the present study we analyse the effects of low molecular weight heparin (LMWH) on mast cell degranulation and cytokine production in vitro and on the elicitation of IgE-mediated mast cell-dependent late cutaneous allergic inflammation in vivo. We have established that LMWH preferentially inhibited tumour necrosis factor-alpha (TNF-α) and IL-4 production without having any significant effect on mast cell degranulation. These effects have been observed in mast cells derived from three different origins that were activated by either immunological or non-immunological stimuli. We have shown that there is inhibition of TNF-α production (and not neutralization of activity), as elimination of the drug after a short preincubation and addition of LMWH to rTNF-α had no effect on TNF-α-mediated cytotoxic activity. These results were also confirmed by ELISA. In vivo, s.c. injection of the LMWH inhibited the leucocyte infiltration associated with the late cutaneous response which followed passive cutaneous anaphylaxis (PCA) reaction, without affecting mast cell numbers or degranulation. These data suggest that LMWH may have an inhibitory role in mast cell-mediated allergic inflammation, and thus might be considered as a possible therapeutic modality. PMID:9409655
The Relationship Between Basal Area and Hard Mast Production in the Ouachita Mountains
Roger W. Perry; Ronald E. Thill; Philip A. Tappe; David G. Peitz
2004-01-01
Abstract - Because the relationship between stand density and hard mast production is not clear, we investigated the effects of varying total overstory basal area (BA) on acorn and hickory nut production in the Ouachita Mountains. We used Whitehead visual surveys to estimate mast production in oaks (Quercus spp.) and hickories (...
Guide Related Sites submenu NASA Datacenters ADS HEASARC IRSA LAMBDA NED NSSDC MAST Services submenu Archive for Space Telescopes (MAST) is a NASA funded project to support and provide to the astronomical : STScI may provide links to Web pages that are not part of the STScI, AURA, NASA, or ESA domain. These
Malignant mast cell tumor in an African hedgehog (Atelerix albiventris).
Raymond, J T; White, M R; Janovitz, E B
1997-01-01
In November 1995, a malignant mast cell tumor (mastocytoma) was diagnosed in an adult African hedgehog (Atelerix albiventris) from a zoological park (West Lafayette, Indiana, USA). The primary mast cell tumor presented as a firm subcutaneous mass along the ventrum of the neck. Metastasis to the right submandibular lymph node occurred.
Melo, Fabio Rabelo; Waern, Ida; Rönnberg, Elin; Åbrink, Magnus; Lee, David M.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Turk, Boris; Wernersson, Sara; Pejler, Gunnar
2011-01-01
Mast cell secretory granules (secretory lysosomes) contain large amounts of fully active proteases bound to serglycin proteoglycan. Damage to the granule membrane will thus lead to the release of serglycin and serglycin-bound proteases into the cytosol, which potentially could lead to proteolytic activation of cytosolic pro-apoptotic compounds. We therefore hypothesized that mast cells are susceptible to apoptosis induced by permeabilization of the granule membrane and that this process is serglycin-dependent. Indeed, we show that wild-type mast cells are highly sensitive to apoptosis induced by granule permeabilization, whereas serglycin-deficient cells are largely resistant. The reduced sensitivity of serglycin−/− cells to apoptosis was accompanied by reduced granule damage, reduced release of proteases into the cytosol, and defective caspase-3 activation. Mechanistically, the apoptosis-promoting effect of serglycin involved serglycin-dependent proteases, as indicated by reduced sensitivity to apoptosis and reduced caspase-3 activation in cells lacking individual mast cell-specific proteases. Together, these findings implicate serglycin proteoglycan as a novel player in mast cell apoptosis. PMID:21123167
Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis
Piliponsky, Adrian M.; Chen, Ching-Cheng; Nishimura, Toshihiko; Metz, Martin; Rios, Eon J.; Dobner, Paul R.; Wada, Etsuko; Wada, Keiji; Zacharias, Sherma; Mohanasundaram, Uma; Faix, James D.; Abrink, Magnus; Pejler, Gunnar; Pearl, Ronald; Tsai, Mindy; Galli, Stephen J.
2010-01-01
Sepsis is a complex, incompletely understood and often fatal disorder,1 typically accompanied by hypotension,2 that is considered to represent a dysregulated host response to infection.3,4,5 Neurotensin (NT) is a 13-amino-acid peptide that, among its multiple effects, induces hypotension.6 We find that intraperitoneal and plasma concentrations of NT are increased in mice after severe caecal ligation and puncture (CLP), a model of sepsis, and that mice treated with a pharmacological antagonist of NT, or NT-deficient mice, exhibit reduced mortality during severe CLP. In mice, mast cells can degrade NT and reduce NT-induced hypotension and CLP-associated mortality, and optimal expression of these effects requires mast cell expression of neurotensin receptor 1 and neurolysin. These findings show that NT contributes to sepsis-related mortality in mice during severe CLP and that mast cells can lower NT concentrations, and suggest that mast cell-dependent reduction in NT levels contributes to the ability of mast cells to enhance survival after CLP. PMID:18376408
Effect of methylmercury on the rat mast cell degranulation
NASA Astrophysics Data System (ADS)
Graevskaya, E. E.; Yasutake, A.; Aramai, R.; Rubin, A. B.
2003-05-01
Methylmercury is the well-known neurotoxicant as weil as a modulator of the immune system. We investigated the effects of MeHg on the rat mast cell degranulation induced by nonimmunological stimuli (the selective liberator of histamine, compound 48/80, and calcium ionophore A23187) both in vivo and in vitro. In 8, 12 and 15 days afterthe final administration of MeHg we observed the suppression of calcium ionophore A23187-and 48/80-induced histamine release, which enhanced with time. In experiments in vitro incubation of peritoneal mast cells with MeHg alone in the dose range 10^{-8} to 10^{-6} did not induce mast cell degranulation, however modified the activation of mast cells by compound 48/80, and calcium ionophore A23187. We observed activation of stimulated secretion by preliminary incubation with low dose of MeHg 10^{-8} M and inhibition by dose of MeHg 10^{-6} M. These results show that MeHg treatment can modify mast cell function in vivo and in vitro and provide insight into the understanding what role this cell has in the pathogenesis of Minamata disease-comlected disorders.
(E,Z)-3-(3',5'-Dimethoxy-4'-hydroxy-benzylidene)-2-indolinone blocks mast cell degranulation.
Kiefer, S; Mertz, A C; Koryakina, A; Hamburger, M; Küenzi, P
2010-05-12
(E,Z)-3-(3',5'-Dimethoxy-4'-hydroxy-benzylidene)-2-indolinone (indolinone) is an alkaloid that has been identified as a pharmacologically active compound in extracts of the traditional anti-inflammatory herb Isatis tinctoria. Indolinone has been shown to inhibit compound 48/80-induced mast cell degranulation in vitro. Application of indolinone to bone marrow derived mast cells showed that it was uniformly distributed in the cytoplasm and that cellular uptake was terminated within minutes. Pre-treatment of IgE-sensitized mast cells with 100nM indolinone rendered them insensitive against FcvarepsilonRI-receptor dependent degranulation. However, upstream signalling induced by antigen such as activation of PI3-K and MAPK remained unaffected. We conclude that indolinone blocks mast cell degranulation at the level of granule exocitosis with an IC(50) of 54nm.
Rysavy, Noel M; Shimoda, Lori M N; Dixon, Alyssa M; Speck, Mark; Stokes, Alexander J; Turner, Helen; Umemoto, Eric Y
2014-01-01
Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation.
Project ADIOS: Aircraft Deployable Ice Observation System
NASA Astrophysics Data System (ADS)
Gudmundsson, G. H.
2013-12-01
Regions of the Antarctic that are of scientific interest are often too heavily crevassed to enable a plane to land, or permit safe access from a field camp. We have developed an alternative strategy for instrumenting these regions: a sensor that can be dropped from an overflying aircraft. Existing aircraft deployable sensors are not suitable for long term operations in areas where snow accumulates, as they are quickly buried. We have overcome this problem by shaping the sensor like an aerodynamic mast with fins and a small parachute. After being released from the aircraft, the sensor accelerates to 42m/s and stabilizes during a 10s descent. On impact with the snow surface the sensor package buries itself to a depth of 1m then uses the large surface area of the fins to stop it burying further. This leaves a 1.5m mast protruding high above the snow surface to ensure a long operating life. The high impact kinetic energy and robust fin braking mechanism ensure that the design works in both soft and hard snow. Over the past two years we have developed and tested our design with a series of aircraft and wind tunnel tests. Last season we used this deployment strategy to successfully install a network of 31 single band GPS sensors in regions where crevassing has previously prevented science operations: Pine Island Glacier, West Antarctica, and Scar Inlet, Antarctic Peninsula. This season we intend to expand on this network by deploying a further 25 single and dual band GPS sensors on Thwaites Glacier, West Antarctica.
Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.
Ramirez-GarciaLuna, Jose Luis; Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H; Li, Ailian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Henderson, Janet E; Martineau, Paul A
2017-01-01
In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.
Defective bone repair in mast cell-deficient Cpa3Cre/+ mice
Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H.; Li, Ailian; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Henderson, Janet E.; Martineau, Paul A.
2017-01-01
In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair. PMID:28350850
In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis
2018-01-01
player in the activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is...for RA (IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell ...Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA
Dewald, Oliver; Ren, Guofeng; Duerr, Georg D.; Zoerlein, Martin; Klemm, Christina; Gersch, Christine; Tincey, Sophia; Michael, Lloyd H.; Entman, Mark L.; Frangogiannis, Nikolaos G.
2004-01-01
Large animal models have provided much of the descriptive data regarding the cellular and molecular events in myocardial infarction and repair. The availability of genetically altered mice may provide a valuable tool for specific cellular and molecular dissection of these processes. In this report we compare closed chest models of canine and mouse infarction/reperfusion qualitatively and quantitatively for temporal, cellular, and spatial differences. Much like the canine model, reperfused mouse hearts are associated with marked induction of endothelial adhesion molecules, cytokines, and chemokines. Reperfused mouse infarcts show accelerated replacement of cardiomyocytes by granulation tissue leading to a thin mature scar at 14 days, when the canine infarction is still cellular and evolving. Infarcted mouse hearts demonstrate a robust but transient postreperfusion inflammatory reaction, associated with a rapid up-regulation of interleukin-10 and transforming growth factor-β. Unlike canine infarcts, infarcted mouse hearts show only transient macrophage infiltration and no significant mast cell accumulation. In correlation, the growth factor for macrophages, M-CSF, shows modest and transient up-regulation in the early days of reperfusion; and the obligate growth factor for mast cells, stem cell factor, SCF, is not induced. In summary, the postinfarction inflammatory response and resultant repair in the mouse heart shares many common characteristics with large mammalian species, but has distinct temporal and qualitative features. These important species-specific differences should be considered when interpreting findings derived from studies using genetically altered mice. PMID:14742270
Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis.
Naskar, Pieu; Puri, Niti
2017-09-15
Upon allergen challenge, mast cells (MCs) respond by releasing pre-stored mediators from their secretory granules by the transient mechanism of porosome-mediated cell secretion. The target SNARE SNAP-23 has been shown to be important for MC exocytosis, and our previous studies revealed the presence of one basal (Thr 102 ) and two induced (Ser 95 and Ser 120 ) phosphorylation sites in its linker region. To study the role of SNAP-23 phosphorylation in the regulation of exocytosis, green fluorescence protein-tagged wild-type SNAP-23 (GFP-SNAP-23) and its phosphorylation mutants were transfected into rat basophilic leukemia (RBL-2H3) MCs. Studies on GFP-SNAP-23 transfected MCs revealed some dynamic changes in SNAP-23 membrane association. SNAP-23 was associated with plasma membrane in resting MCs, however, on activation a portion of it translocated to cytosol and internal membranes. These internal locations were secretory granule membranes. This dynamic change in the membrane association of SNAP-23 in MCs may be important for mediating internal granule-granule fusions in compound exocytosis. Further studies with SNAP-23 phosphorylation mutants revealed an important role for the phosphorylation at Thr 102 in its initial membrane association, and of induced phosphorylation at Ser 95 and Ser 120 in its internal membrane association, during MC exocytosis. © 2017. Published by The Company of Biologists Ltd.
Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.
Waern, Ida; Karlsson, Iulia; Thorpe, Michael; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Åbrink, Magnus; Hellman, Lars; Pejler, Gunnar; Wernersson, Sara
2012-12-01
Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin,a proteoglycan with heparin side chains. Hence, serglycinprotease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation,whereas serglycin −/− MCs completely lacked this ability.Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist,which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex.Moreover, IL-13 degradation was abrogated in MC-CPA −/−MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein.Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.
NASA Technical Reports Server (NTRS)
Gorizontova, M. P.
1980-01-01
It was shown that a reduction in the amount of mast cells in the mesentery and an increase in their degranulation was accompanied by an increase in vascular permeability of rat mesentery. It is supposed that immobilization and electrostimulation causing degranulation of mast cells prompted histamine and serotonin release from them, thus increasing the permeability of the venular portion of the microvascular bed. Prophylactic use of esculamin preparation with P-vitaminic activity decreased mast cell degranulation, which apparently prolonged the release of histamine and serotonin from them and normalized vascular permeability.
Identification of mast cells in buffy coat preparations from dogs with inflammatory skin diseases.
Cayatte, S M; McManus, P M; Miller, W H; Scott, D W
1995-02-01
In 100 dogs with 4 inflammatory dermatologic diseases, buffy coat preparations from EDTA-treated blood samples were examined cytologically. Fifty-four dogs had atopy, 26 had flea-bite hypersensitivity, 17 had sarcoptic mange, and 3 had food allergy. Twenty-eight dogs had 2 or more concurrent skin diseases; most of these had secondary pyoderma. Dogs did not have mast cell tumors. Thirteen samples contained 1 or more mast cells/4 slides reviewed. This study revealed that dogs with inflammatory skin diseases can have a few to many mast cells evident on cytologic examination of buffy coat preparations.
Deployable and retractable telescoping tubular structure development
NASA Astrophysics Data System (ADS)
Thomson, M. W.
1993-02-01
The paper describes the design and the structural performance of a new type of deployable and retractable telescoping mast, which can be used for flight systems that require a deployable beam with superaccurate positioning characteristics or for short to medium highly loaded structural applications. The mast employs a Bi-STEM (a two-piece Storable Tubular Extendible Member) boom as an actuator and stabilizer, which alleviates the need for the deployed telescoping mast segments to overlap. Due to this feature and because the segments can be fully overlapped when stowed, the mast enables an unusually lightweight and compact launch configuration.
Idiopathic Mast Cell Activation Syndrome With Associated Salicylate Intolerance.
Rechenauer, Tobias; Raithel, Martin; Götze, Thomas; Siebenlist, Gregor; Rückel, Aline; Baenkler, Hanns-Wolf; Hartmann, Arndt; Haller, Florian; Hoerning, André
2018-01-01
Idiopathic mast cell activation syndrome can be a rare cause for chronic abdominal pain in children. It remains a diagnosis by exclusion that can be particularly challenging due to the vast variety of possible clinical manifestations. We present a 13-year-old boy who suffered from a multitude of unspecific complaints over a long period of time. In this case, an assessment of mast cell-derived metabolites and immunohistochemical analysis of bioptic specimen was worthwhile. After ruling out, primary (oncologic) and secondary causes for mast cell activation, pharmacologic treatment adapted to the patient's salicylate intolerance resulted in a major relief of symptoms.
The Mast Cell, Contact, and Coagulation System Connection in Anaphylaxis
Guilarte, Mar; Sala-Cunill, Anna; Luengo, Olga; Labrador-Horrillo, Moisés; Cardona, Victoria
2017-01-01
Anaphylaxis is the most severe form of allergic reaction, resulting from the effect of mediators and chemotactic substances released by activated cells. Mast cells and basophils are considered key players in IgE-mediated human anaphylaxis. Beyond IgE-mediated activation of mast cells/basophils, further mechanisms are involved in the occurrence of anaphylaxis. New insights into the potential relevance of pathways other than mast cell and basophil degranulation have been unraveled, such as the activation of the contact and the coagulation systems. Mast cell heparin released upon activation provides negatively charged surfaces for factor XII (FXII) binding and auto-activation. Activated FXII, the initiating serine protease in both the contact and the intrinsic coagulation system, activates factor XI and prekallikrein, respectively. FXII-mediated bradykinin (BK) formation has been proven in the human plasma of anaphylactic patients as well as in experimental models of anaphylaxis. Moreover, the severity of anaphylaxis is correlated with the increase in plasma heparin, BK formation and the intensity of contact system activation. FXII also activates plasminogen in the fibrinolysis system. Mast cell tryptase has been shown to participate in fibrinolysis through plasmin activation and by facilitating the degradation of fibrinogen. Some usual clinical manifestations in anaphylaxis, such as angioedema or hypotension, or other less common, such as metrorrhagia, may be explained by the direct effect of the activation of the coagulation and contact system driven by mast cell mediators. PMID:28798744
Role of Mast Cells in Oral Lichen Planus and Oral Lichenoid Reactions.
Ramalingam, Suganya; Malathi, Narasimhan; Thamizhchelvan, Harikrishnan; Sangeetha, Narasimhan; Rajan, Sharada T
2018-01-01
Oral lichen planus (OLP) is a chronic T cell mediated disease of oral mucosa, skin, and its appendages with a prevalence of 0.5 to 2.6% worldwide. Oral lichenoid reactions (OLR) are a group of lesions with diverse aetiologies but have clinical and histological features similar to OLP, thereby posing a great challenge in differentiating both lesions. Mast cells are multifunctional immune cells that play a major role in the pathogenesis of lichen planus by release of certain chemical mediators. Increased mast cell densities with significant percentage of degranulation have been observed as a consistent finding in pathogenesis of oral lichen planus. The current study was aimed at quantifying the mast cells in histopathological sections of OLP and OLR thereby aiding a means of distinguishing these lesions. The study group involved 21 cases of oral lichen planus, 21 cases of oral lichenoid reactions, and 10 control specimens of normal buccal mucosa. All the cases were stained with Toluidine Blue and routine haematoxylin and eosin and the mast cells were quantified. The results were analyzed using the Kruskal-Wallis test and an intergroup analysis was performed using Mann-Whitney U test. The number of mast cells showed an increased value in oral lichen planus when compared to oral lichenoid reaction and thus an estimation of mast cells count could aid in distinguishing OLP from OLR histopathologically.
Mechanism of low-level laser therapy (LLLT) effects on rat mast cells
NASA Astrophysics Data System (ADS)
Popov, Gennady K.; Solovyova, Ludmila I.; Kosel, Arnold I.
2000-11-01
The low power laser radiation is widely applied for treatment of various diseases. In our research we investigated the influence of low power laser radiation on the mast cells degranulation process. The object of the research were the mesentery mast cells of the rat thin intestine. A loop of thin intestine was irradiated by the therapeutic diode laser device Uley - 2K (lambda - 890 nm, pulse). The process of mast cells degranulation served as a criterion for their functional activity estimation. The estimation was fulfilled with the help of light microscope (toluidine blue staining, pH02,0; degranulating mast cells counting on 100 cells; immersion technique; X 980). To study the dependence of degranulation process of mast cells irradiated with lasre from intracellular calcium (Ca2+) concentration we applied 0,000015 M solution of verapamil, which was applied to the mesentery for 2 minutes. Laser radiation (890 nm) stimulates mesentery mast cells degranulation. This effect is dose-dependent. Maximal degranulation was registered after laser irradiation wiht power 25 mW, exposure time 15-30 s (energy density 7.5 x 103 J/m2 to 6 x 104 j/m2). Further increasing of exposure time caused the effect decreasing. The results of our experiments with verpamil let us suppose light interaction with the voltage-dependent subunit of calcium channel, changing intracellular Ca2+ and leading to stimulatory effects.
NASA Astrophysics Data System (ADS)
Becher Rosa, Cristiane; Oliveira Sampaio, Susana C. P.; Monteiro, Juliana S. C.; Ferreira, Maria F. L.; Zanini, Fátima A. A.; Santos, Jean N.; Cangussú, Maria Cristina T.; Pinheiro, Antonio L. B.
2011-03-01
This work aimed to study histologically the effect of Laser or LED phototherapy on mast cells on cutaneous wounds of rats with iron deficiency. 18 rats were used and fed with special peleted iron-free diet. An excisional wound was created on the dorsum of each animal which were divided into: Group I - Control with anemia + no treatment; Group II - Anemia + Laser; Group III - Anemia + LED; Group IV - Healthy + no treatment; Group V - Healthy + Laser; Group VI - Healthy + LED. Irradiation was performed using a diode Laser (λ660nm, 40mW, CW, total dose of 10J/cm2, 4X2.5J/cm2) or a RED-LED ( λ700nm, 15mW, CW, total dose of 10J/cm2). Histological specimens were routinely processed, cut and stained with toluidine blue and mast cell counts performed. No significant statistic difference was found between groups as to the number of degranulated, non-degradulated or total mast cells. Greater mean values were found for degranulated mast cells in the Anemia + LED. LED irradiation on healthy specimens resulted in a smaller number of degranulated mast cells. Our results leads to conclude that there are no significant differences in the number of mast cells seven days after irradiation following Laser or LED phototherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimaki, Hidekazu; Ozawa, Masashi; Bissonnette, E.
1993-05-01
To evaluate the relationship between atmospheric nitrogen dioxide exposure and the development of allergic diseases, the effects of nitrite as a chemical product of inhaled nitrogen dioxide on mast cell functions were investigated. We have studied nitride-induced histamine release from two functionally distinct mast cell populations, namely peritoneal mast cells (PMC) and intestinal mucosal mast cells (IMMC) of Nippostrongylus brasiliensis-infected rats. High concentrations of nitrite alone (10, 20, and 50 mM) induced histamine release from IMMC, but not from PMC. Moreover, histamine release from PMC and IMMC stimulated with sensitizing antigen was significantly enhanced by pretreatment with 50 mM nitritemore » or nitrate. No differences in histamine release from nitrite-treated and control PMC were seen below 1 mM. To investigate the effect of nitrite on tumor cell cytotoxic activity, PMC were incubated with various concentrations of nitrite. Pretreatment with 5 and 50 mM nitrite markedly depressed tumor necrosis factor (TNF)-[alpha]-dependent natural cytotoxicity of PMC for the tumor target WEHI-164. Thus, high concentrations of nitrite enhanced mast cell histamine release, but depressed TNF-[alpha]-dependent cytotoxicity. However, low concentrations of nitrite (<1 mM) that would normally be produced by short-term atmospheric exposure to nitrogen dioxide may have no significant effects on mast cell functions. 27 refs., 3 figs., 1 tab.« less
Valent, P.; Sotlar, K.; Sperr, W. R.; Escribano, L.; Yavuz, S.; Reiter, A.; George, T. I.; Kluin-Nelemans, H. C.; Hermine, O.; Butterfield, J. H.; Hägglund, H.; Ustun, C.; Hornick, J. L.; Triggiani, M.; Radia, D.; Akin, C.; Hartmann, K.; Gotlib, J.; Schwartz, L. B.; Verstovsek, S.; Orfao, A.; Metcalfe, D. D.; Arock, M.; Horny, H.-P.
2014-01-01
Mast cell leukemia (MCL), the leukemic manifestation of systemic mastocytosis (SM), is characterized by leukemic expansion of immature mast cells (MCs) in the bone marrow (BM) and other internal organs; and a poor prognosis. In a subset of patients, circulating MCs are detectable. A major differential diagnosis to MCL is myelomastocytic leukemia (MML). Although criteria for both MCL and MML have been published, several questions remain concerning terminologies and subvariants. To discuss open issues, the EU/US-consensus group and the European Competence Network on Mastocytosis (ECNM) launched a series of meetings and workshops in 2011–2013. Resulting discussions and outcomes are provided in this article. The group recommends that MML be recognized as a distinct condition defined by mastocytic differentiation in advanced myeloid neoplasms without evidence of SM. The group also proposes that MCL be divided into acute MCL and chronic MCL, based on the presence or absence of C-Findings. In addition, a primary (de novo) form of MCL should be separated from secondary MCL that typically develops in the presence of a known antecedent MC neoplasm, usually aggressive SM (ASM) or MC sarcoma. For MCL, an imminent prephase is also proposed. This prephase represents ASM with rapid progression and 5%–19% MCs in BM smears, which is generally accepted to be of prognostic significance. We recommend that this condition be termed ASM in transformation to MCL (ASM-t). The refined classification of MCL fits within and extends the current WHO classification; and should improve prognostication and patient selection in practice as well as in clinical trials. PMID:24675021
W. D. Koenig; D. Kelly; V. L. Sork; R. P. Duncan; J. S. Elkinton; M.S. Peltonen; R. D. Westfall
2003-01-01
Mast-fruiting or masting behavior is the cumulative result of the reproductive patterns of individuals within a population and thus involves components of individual variability, between-individual synchrony, and endogenous cycles of temporal autocorrelation. Extending prior work by Herrera, we explore the interrelationships of these components using data on individual...
Gypsy moth effects on mast production
Kurt W. Gottschalk
1990-01-01
Gypsy moth outbreaks can have drastic effects on many forest resources and uses. Because the gypsy moth prefers oak foliage, oak stands are the most susceptible to defoliation and resultant damage. The value of oak mast for many wildlife species is high. The high carbohydrate content of acorns provides the energy necessary for winter survival. Loss of mast crops due to...
Within-population spatial synchrony in mast seeding of North American oaks.
A.V. Liebhold; M. Sork; O.N. Peltonen; Westfall R. Bjørnstad; J. Elkinton; M. H. J. Knops
2004-01-01
Mast seeding, the synchronous production of large crops of seeds, has been frequently documented in oak species. In this study we used several North American oak data-sets to quantify within-stand (10 km) synchrony in mast dynamics. Results indicated that intraspecific synchrony in seed production always exceeded interspecific synchrony and was essentially constant...
30 CFR 77.807-2 - Booms and masts; minimum distance from high-voltage lines.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-voltage lines. 77.807-2 Section 77.807-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-2 Booms and masts; minimum distance from high-voltage lines. The booms and masts of equipment operated on the surface of any...
Effects of different silvicultural systems on initial soft mast production
Roger W. Perry; Ronald E. Thill; David G. Peitz; Philip A. Tappe
1999-01-01
Recent policy changes by federal land management agencies such as the United States [Department of Agriculture] Forest Service have led to increased use of silvicultural systems other than clearcutting. Because soft mast is an integral part of wildlife habitat and the effects of these alternative silviculture systems on soft mast production are unknown, we evaluated...
Variable Acorn Crops: Responses of White-Tailed Deer and Other Mast Consumers
William J. McShea; Georg Schwede
1993-01-01
We examined movements and behavior of female white-tailed deer (Odocoileus virginianus) relative to the acorn mast-fall from 1986 through 1989 in a mature deciduous forest in Front Royal, Virginia. Ten white-tailed deer with radiotransmitters increased their home range to incorporate acorn-producing areas during mast-fall. Consumption of acorns by...
Kim, Jung-Hyun; Kim, Sang-Su; Han, Ik-Hwan; Sim, Seobo; Ahn, Myoung-Hee; Ryu, Jae-Sook
2016-11-01
Chronic inflammation has a role in the pathogenesis of benign prostatic hyperplasia (BPH) and prostate cancer. Mast cells have been detected in chronic inflammatory infiltrate of the prostate, and it is possible that the interaction between prostate epithelial cells and Trichomonas vaginalis influences the activity of mast cells in the prostate stroma. Activated mast cells might influence the biological functions of nearby tissues and cells. In this study, we investigated whether mast cells reacted with the culture supernatant of BPH epithelial cells infected with T. vaginalis may induce the proliferation of prostate stromal cells. To measure the proliferation of prostate stromal cells in response to chronic inflammation caused by the infection of BPH-1 cells with T. vaginalis, the CCK-8 assay and wound healing assay were used. ELISAs, quantitative real-time PCR, western blotting and immunofluorescence were used to measure the production and expression of inflammatory cytokine and cytokine receptor. BPH-1 cells incubated with live trichomonads produced increased levels of CCL2, IL-1β, IL-6, and CXCL8, and induced the migration of mast cells and monocytes. When the culture supernatant of BPH-1 cells stimulated with trichomonads (TCM) was added to mast cells, they became activated, as confirmed by release of β-hexosaminidase and CXCL8. Prostate stromal cells incubated with the culture supernatant of mast cells activated with TCM (M-TCM) proliferated and expressed increased levels of CXCL8, CCL2, and the cytokine receptors CXCR1 and CCR2. Blocking the chemokine receptors reduced the proliferation of stromal cells and also decreased the production of CXCL8 and CCL2. Moreover, the expression of FGF2, cyclin D1, and Bcl-2 was increased in the proliferated stromal cells stimulated with M-TCM. Additionally, the M-TCM-treated stromal cells were more invasive than control cells. The inflammatory mediators released by BPH epithelial cells in response to infection by trichomonads induce the migration and activation of mast cells. The activated mast cells induce the proliferation of prostate stromal cells via CXCL8-CXCR1 and CCL2-CCR2 signaling. Our results therefore show that the inflammatory response by BPH epithelial cells stimulated with T. vaginalis induce the proliferation of prostate stromal cells via crosstalk with mast cells. Prostate 76:1431-1444, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.