Study of network resource allocation based on market and game theoretic mechanism
NASA Astrophysics Data System (ADS)
Liu, Yingmei; Wang, Hongwei; Wang, Gang
2004-04-01
We work on the network resource allocation issue concerning network management system function based on market-oriented mechanism. The scheme is to model the telecommunication network resources as trading goods in which the various network components could be owned by different competitive, real-world entities. This is a multidisciplinary framework concentrating on the similarity between resource allocation in network environment and the market mechanism in economic theory. By taking an economic (market-based and game theoretic) approach in routing of communication network, we study the dynamic behavior under game-theoretic framework in allocating network resources. Based on the prior work of Gibney and Jennings, we apply concepts of utility and fitness to the market mechanism with an intention to close the gap between experiment environment and real world situation.
Probabilistic resource allocation system with self-adaptive capability
NASA Technical Reports Server (NTRS)
Yufik, Yan M. (Inventor)
1996-01-01
A probabilistic resource allocation system is disclosed containing a low capacity computational module (Short Term Memory or STM) and a self-organizing associative network (Long Term Memory or LTM) where nodes represent elementary resources, terminal end nodes represent goals, and directed links represent the order of resource association in different allocation episodes. Goals and their priorities are indicated by the user, and allocation decisions are made in the STM, while candidate associations of resources are supplied by the LTM based on the association strength (reliability). Reliability values are automatically assigned to the network links based on the frequency and relative success of exercising those links in the previous allocation decisions. Accumulation of allocation history in the form of an associative network in the LTM reduces computational demands on subsequent allocations. For this purpose, the network automatically partitions itself into strongly associated high reliability packets, allowing fast approximate computation and display of allocation solutions satisfying the overall reliability and other user-imposed constraints. System performance improves in time due to modification of network parameters and partitioning criteria based on the performance feedback.
Probabilistic resource allocation system with self-adaptive capability
NASA Technical Reports Server (NTRS)
Yufik, Yan M. (Inventor)
1998-01-01
A probabilistic resource allocation system is disclosed containing a low capacity computational module (Short Term Memory or STM) and a self-organizing associative network (Long Term Memory or LTM) where nodes represent elementary resources, terminal end nodes represent goals, and weighted links represent the order of resource association in different allocation episodes. Goals and their priorities are indicated by the user, and allocation decisions are made in the STM, while candidate associations of resources are supplied by the LTM based on the association strength (reliability). Weights are automatically assigned to the network links based on the frequency and relative success of exercising those links in the previous allocation decisions. Accumulation of allocation history in the form of an associative network in the LTM reduces computational demands on subsequent allocations. For this purpose, the network automatically partitions itself into strongly associated high reliability packets, allowing fast approximate computation and display of allocation solutions satisfying the overall reliability and other user-imposed constraints. System performance improves in time due to modification of network parameters and partitioning criteria based on the performance feedback.
Extended resource allocation index for link prediction of complex network
NASA Astrophysics Data System (ADS)
Liu, Shuxin; Ji, Xinsheng; Liu, Caixia; Bai, Yi
2017-08-01
Recently, a number of similarity-based methods have been proposed to predict the missing links in complex network. Among these indices, the resource allocation index performs very well with lower time complexity. However, it ignores potential resources transferred by local paths between two endpoints. Motivated by the resource exchange taking places between endpoints, an extended resource allocation index is proposed. Empirical study on twelve real networks and three synthetic dynamic networks has shown that the index we proposed can achieve a good performance, compared with eight mainstream baselines.
NASA Astrophysics Data System (ADS)
Lv, Gangming; Zhu, Shihua; Hui, Hui
Multi-cell resource allocation under minimum rate request for each user in OFDMA networks is addressed in this paper. Based on Lagrange dual decomposition theory, the joint multi-cell resource allocation problem is decomposed and modeled as a limited-cooperative game, and a distributed multi-cell resource allocation algorithm is thus proposed. Analysis and simulation results show that, compared with non-cooperative iterative water-filling algorithm, the proposed algorithm can remarkably reduce the ICI level and improve overall system performances.
Space Network Control Conference on Resource Allocation Concepts and Approaches
NASA Technical Reports Server (NTRS)
Moe, Karen L. (Editor)
1991-01-01
The results are presented of the Space Network Control (SNC) Conference. In the late 1990s, when the Advanced Tracking and Data Relay Satellite System is operational, Space Network communication services will be supported and controlled by the SNC. The goals of the conference were to survey existing resource allocation concepts and approaches, to identify solutions applicable to the Space Network, and to identify avenues of study in support of the SNC development. The conference was divided into three sessions: (1) Concepts for Space Network Allocation; (2) SNC and User Payload Operations Control Center (POCC) Human-Computer Interface Concepts; and (3) Resource Allocation Tools, Technology, and Algorithms. Key recommendations addressed approaches to achieving higher levels of automation in the scheduling process.
Motion-related resource allocation in dynamic wireless visual sensor network environments.
Katsenou, Angeliki V; Kondi, Lisimachos P; Parsopoulos, Konstantinos E
2014-01-01
This paper investigates quality-driven cross-layer optimization for resource allocation in direct sequence code division multiple access wireless visual sensor networks. We consider a single-hop network topology, where each sensor transmits directly to a centralized control unit (CCU) that manages the available network resources. Our aim is to enable the CCU to jointly allocate the transmission power and source-channel coding rates for each node, under four different quality-driven criteria that take into consideration the varying motion characteristics of each recorded video. For this purpose, we studied two approaches with a different tradeoff of quality and complexity. The first one allocates the resources individually for each sensor, whereas the second clusters them according to the recorded level of motion. In order to address the dynamic nature of the recorded scenery and re-allocate the resources whenever it is dictated by the changes in the amount of motion in the scenery, we propose a mechanism based on the particle swarm optimization algorithm, combined with two restarting schemes that either exploit the previously determined resource allocation or conduct a rough estimation of it. Experimental simulations demonstrate the efficiency of the proposed approaches.
Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation
NASA Astrophysics Data System (ADS)
Bedi, Amrit Singh; Rajawat, Ketan
2018-05-01
Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.
Improved personalized recommendation based on a similarity network
NASA Astrophysics Data System (ADS)
Wang, Ximeng; Liu, Yun; Xiong, Fei
2016-08-01
A recommender system helps individual users find the preferred items rapidly and has attracted extensive attention in recent years. Many successful recommendation algorithms are designed on bipartite networks, such as network-based inference or heat conduction. However, most of these algorithms define the resource-allocation methods for an average allocation. That is not reasonable because average allocation cannot indicate the user choice preference and the influence between users which leads to a series of non-personalized recommendation results. We propose a personalized recommendation approach that combines the similarity function and bipartite network to generate a similarity network that improves the resource-allocation process. Our model introduces user influence into the recommender system and states that the user influence can make the resource-allocation process more reasonable. We use four different metrics to evaluate our algorithms for three benchmark data sets. Experimental results show that the improved recommendation on a similarity network can obtain better accuracy and diversity than some competing approaches.
A heuristic method for consumable resource allocation in multi-class dynamic PERT networks
NASA Astrophysics Data System (ADS)
Yaghoubi, Saeed; Noori, Siamak; Mazdeh, Mohammad Mahdavi
2013-06-01
This investigation presents a heuristic method for consumable resource allocation problem in multi-class dynamic Project Evaluation and Review Technique (PERT) networks, where new projects from different classes (types) arrive to system according to independent Poisson processes with different arrival rates. Each activity of any project is operated at a devoted service station located in a node of the network with exponential distribution according to its class. Indeed, each project arrives to the first service station and continues its routing according to precedence network of its class. Such system can be represented as a queuing network, while the discipline of queues is first come, first served. On the basis of presented method, a multi-class system is decomposed into several single-class dynamic PERT networks, whereas each class is considered separately as a minisystem. In modeling of single-class dynamic PERT network, we use Markov process and a multi-objective model investigated by Azaron and Tavakkoli-Moghaddam in 2007. Then, after obtaining the resources allocated to service stations in every minisystem, the final resources allocated to activities are calculated by the proposed method.
A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hameed, Abdul; Khoshkbarforoushha, Alireza; Ranjan, Rajiv
In a cloud computing paradigm, energy efficient allocation of different virtualized ICT resources (servers, storage disks, and networks, and the like) is a complex problem due to the presence of heterogeneous application (e.g., content delivery networks, MapReduce, web applications, and the like) workloads having contentious allocation requirements in terms of ICT resource capacities (e.g., network bandwidth, processing speed, response time, etc.). Several recent papers have tried to address the issue of improving energy efficiency in allocating cloud resources to applications with varying degree of success. However, to the best of our knowledge there is no published literature on this subjectmore » that clearly articulates the research problem and provides research taxonomy for succinct classification of existing techniques. Hence, the main aim of this paper is to identify open challenges associated with energy efficient resource allocation. In this regard, the study, first, outlines the problem and existing hardware and software-based techniques available for this purpose. Furthermore, available techniques already presented in the literature are summarized based on the energy-efficient research dimension taxonomy. The advantages and disadvantages of the existing techniques are comprehensively analyzed against the proposed research dimension taxonomy namely: resource adaption policy, objective function, allocation method, allocation operation, and interoperability.« less
NASA Astrophysics Data System (ADS)
Abdulghafoor, O. B.; Shaat, M. M. R.; Ismail, M.; Nordin, R.; Yuwono, T.; Alwahedy, O. N. A.
2017-05-01
In this paper, the problem of resource allocation in OFDM-based downlink cognitive radio (CR) networks has been proposed. The purpose of this research is to decrease the computational complexity of the resource allocation algorithm for downlink CR network while concerning the interference constraint of primary network. The objective has been secured by adopting pricing scheme to develop power allocation algorithm with the following concerns: (i) reducing the complexity of the proposed algorithm and (ii) providing firm power control to the interference introduced to primary users (PUs). The performance of the proposed algorithm is tested for OFDM- CRNs. The simulation results show that the performance of the proposed algorithm approached the performance of the optimal algorithm at a lower computational complexity, i.e., O(NlogN), which makes the proposed algorithm suitable for more practical applications.
Kroshl, William M; Sarkani, Shahram; Mazzuchi, Thomas A
2015-09-01
This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent-based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg "leader follower" game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent-based simulation. The evolutionary agent-based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent-based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent-based approach results in a greater percentage of defender victories than does the PRA-based approach. © 2015 Society for Risk Analysis.
Holding-time-aware asymmetric spectrum allocation in virtual optical networks
NASA Astrophysics Data System (ADS)
Lyu, Chunjian; Li, Hui; Liu, Yuze; Ji, Yuefeng
2017-10-01
Virtual optical networks (VONs) have been considered as a promising solution to support current high-capacity dynamic traffic and achieve rapid applications deployment. Since most of the network services (e.g., high-definition video service, cloud computing, distributed storage) in VONs are provisioned by dedicated data centers, needing different amount of bandwidth resources in both directions, the network traffic is mostly asymmetric. The common strategy, symmetric provisioning of traffic in optical networks, leads to a waste of spectrum resources in such traffic patterns. In this paper, we design a holding-time-aware asymmetric spectrum allocation module based on SDON architecture and an asymmetric spectrum allocation algorithm based on the module is proposed. For the purpose of reducing spectrum resources' waste, the algorithm attempts to reallocate the idle unidirectional spectrum slots in VONs, which are generated due to the asymmetry of services' bidirectional bandwidth. This part of resources can be exploited by other requests, such as short-time non-VON requests. We also introduce a two-dimensional asymmetric resource model for maintaining idle spectrum resources information of VON in spectrum and time domains. Moreover, a simulation is designed to evaluate the performance of the proposed algorithm, and results show that our proposed asymmetric spectrum allocation algorithm can improve the resource waste and reduce blocking probability.
Analog Processor To Solve Optimization Problems
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.
1993-01-01
Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hameed, Abdul; Khoshkbarforoushha, Alireza; Ranjan, Rajiv
In a cloud computing paradigm, energy efficient allocation of different virtualized ICT resources (servers, storage disks, and networks, and the like) is a complex problem due to the presence of heterogeneous application (e.g., content delivery networks, MapReduce, web applications, and the like) workloads having contentious allocation requirements in terms of ICT resource capacities (e.g., network bandwidth, processing speed, response time, etc.). Several recent papers have tried to address the issue of improving energy efficiency in allocating cloud resources to applications with varying degree of success. However, to the best of our knowledge there is no published literature on this subjectmore » that clearly articulates the research problem and provides research taxonomy for succinct classification of existing techniques. Hence, the main aim of this paper is to identify open challenges associated with energy efficient resource allocation. In this regard, the study, first, outlines the problem and existing hardware and software-based techniques available for this purpose. Furthermore, available techniques already presented in the literature are summarized based on the energy-efficient research dimension taxonomy. The advantages and disadvantages of the existing techniques are comprehensively analyzed against the proposed research dimension taxonomy namely: resource adaption policy, objective function, allocation method, allocation operation, and interoperability.« less
1993-02-01
the (re)planning framework, incorporating the demonstrators CALIGULA and ALLOCATOR for resource allocation and scheduling respectively. In the Command...demonstrator CALIGULA for the problem of allocating frequencies to a radio link network. The problems in the domain of scheduling are dealt with. which has...demonstrating the (re)planning framework, incorporating the demonstrators CALIGULA and ALLOCATOR for resource allocation and scheduling respectively
Optimized planning methodologies of ASON implementation
NASA Astrophysics Data System (ADS)
Zhou, Michael M.; Tamil, Lakshman S.
2005-02-01
Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.
Resource allocation using ANN in LTE
NASA Astrophysics Data System (ADS)
Yigit, Tuncay; Ersoy, Mevlut
2017-07-01
LTE is the 4th generation wireless network technology, which provides flexible bandwidth, higher data speeds and lower delay. Difficulties may be experienced upon an increase in the number of users in LTE. The objective of this study is to ensure a faster solution to any such resource allocation problems which might arise upon an increase in the number of users. A fast and effective solution has been obtained by making use of Artificial Neural Network. As a result, fast working artificial intelligence methods may be used in resource allocation problems during operation.
Huang, Jie; Zeng, Xiaoping; Jian, Xin; Tan, Xiaoheng; Zhang, Qi
2017-01-01
The spectrum allocation for cognitive radio sensor networks (CRSNs) has received considerable research attention under the assumption that the spectrum environment is static. However, in practice, the spectrum environment varies over time due to primary user/secondary user (PU/SU) activity and mobility, resulting in time-varied spectrum resources. This paper studies resource allocation for chunk-based multi-carrier CRSNs with time-varied spectrum resources. We present a novel opportunistic capacity model through a continuous time semi-Markov chain (CTSMC) to describe the time-varied spectrum resources of chunks and, based on this, a joint power and chunk allocation model by considering the opportunistically available capacity of chunks is proposed. To reduce the computational complexity, we split this model into two sub-problems and solve them via the Lagrangian dual method. Simulation results illustrate that the proposed opportunistic capacity-based resource allocation algorithm can achieve better performance compared with traditional algorithms when the spectrum environment is time-varied. PMID:28106803
Fair sharing of resources in a supply network with constraints.
Carvalho, Rui; Buzna, Lubos; Just, Wolfram; Helbing, Dirk; Arrowsmith, David K
2012-04-01
This paper investigates the effect of network topology on the fair allocation of network resources among a set of agents, an all-important issue for the efficiency of transportation networks all around us. We analyze a generic mechanism that distributes network capacity fairly among existing flow demands. The problem can be solved by semianalytical methods on a nearest-neighbor graph with one source and sink pair, when transport occurs over shortest paths. For this setup, we uncover a broad range of patterns of intersecting shortest paths as a function of the distance between the source and the sink. When the number of intersections is the maximum and the distance between the source and the sink is large, we find that a fair allocation implies a decrease of at least 50% from the maximum throughput. We also find that the histogram of the flow allocations assigned to the agents decays as a power law with exponent -1. Our semianalytical framework suggests possible explanations for the well-known reduction of the throughput in fair allocations. It also suggests that the combination of network topology and routing rules can lead to highly uneven (but fair) distributions of resources, a remark of caution to network designers.
Fair sharing of resources in a supply network with constraints
NASA Astrophysics Data System (ADS)
Carvalho, Rui; Buzna, Lubos; Just, Wolfram; Helbing, Dirk; Arrowsmith, David K.
2012-04-01
This paper investigates the effect of network topology on the fair allocation of network resources among a set of agents, an all-important issue for the efficiency of transportation networks all around us. We analyze a generic mechanism that distributes network capacity fairly among existing flow demands. The problem can be solved by semianalytical methods on a nearest-neighbor graph with one source and sink pair, when transport occurs over shortest paths. For this setup, we uncover a broad range of patterns of intersecting shortest paths as a function of the distance between the source and the sink. When the number of intersections is the maximum and the distance between the source and the sink is large, we find that a fair allocation implies a decrease of at least 50% from the maximum throughput. We also find that the histogram of the flow allocations assigned to the agents decays as a power law with exponent -1. Our semianalytical framework suggests possible explanations for the well-known reduction of the throughput in fair allocations. It also suggests that the combination of network topology and routing rules can lead to highly uneven (but fair) distributions of resources, a remark of caution to network designers.
Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation
NASA Astrophysics Data System (ADS)
Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.
2017-06-01
Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.
Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo
2016-07-25
Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.
Performance Evaluation Model for Application Layer Firewalls.
Xuan, Shichang; Yang, Wu; Dong, Hui; Zhang, Jiangchuan
2016-01-01
Application layer firewalls protect the trusted area network against information security risks. However, firewall performance may affect user experience. Therefore, performance analysis plays a significant role in the evaluation of application layer firewalls. This paper presents an analytic model of the application layer firewall, based on a system analysis to evaluate the capability of the firewall. In order to enable users to improve the performance of the application layer firewall with limited resources, resource allocation was evaluated to obtain the optimal resource allocation scheme in terms of throughput, delay, and packet loss rate. The proposed model employs the Erlangian queuing model to analyze the performance parameters of the system with regard to the three layers (network, transport, and application layers). Then, the analysis results of all the layers are combined to obtain the overall system performance indicators. A discrete event simulation method was used to evaluate the proposed model. Finally, limited service desk resources were allocated to obtain the values of the performance indicators under different resource allocation scenarios in order to determine the optimal allocation scheme. Under limited resource allocation, this scheme enables users to maximize the performance of the application layer firewall.
Market Model for Resource Allocation in Emerging Sensor Networks with Reinforcement Learning
Zhang, Yue; Song, Bin; Zhang, Ying; Du, Xiaojiang; Guizani, Mohsen
2016-01-01
Emerging sensor networks (ESNs) are an inevitable trend with the development of the Internet of Things (IoT), and intend to connect almost every intelligent device. Therefore, it is critical to study resource allocation in such an environment, due to the concern of efficiency, especially when resources are limited. By viewing ESNs as multi-agent environments, we model them with an agent-based modelling (ABM) method and deal with resource allocation problems with market models, after describing users’ patterns. Reinforcement learning methods are introduced to estimate users’ patterns and verify the outcomes in our market models. Experimental results show the efficiency of our methods, which are also capable of guiding topology management. PMID:27916841
NASA Astrophysics Data System (ADS)
Wang, Honghuan; Xing, Fangyuan; Yin, Hongxi; Zhao, Nan; Lian, Bizhan
2016-02-01
With the explosive growth of network services, the reasonable traffic scheduling and efficient configuration of network resources have an important significance to increase the efficiency of the network. In this paper, an adaptive traffic scheduling policy based on the priority and time window is proposed and the performance of this algorithm is evaluated in terms of scheduling ratio. The routing and spectrum allocation are achieved by using the Floyd shortest path algorithm and establishing a node spectrum resource allocation model based on greedy algorithm, which is proposed by us. The fairness index is introduced to improve the capability of spectrum configuration. The results show that the designed traffic scheduling strategy can be applied to networks with multicast and broadcast functionalities, and makes them get real-time and efficient response. The scheme of node spectrum configuration improves the frequency resource utilization and gives play to the efficiency of the network.
Optimal allocation of resources for suppressing epidemic spreading on networks
NASA Astrophysics Data System (ADS)
Chen, Hanshuang; Li, Guofeng; Zhang, Haifeng; Hou, Zhonghuai
2017-07-01
Efficient allocation of limited medical resources is crucial for controlling epidemic spreading on networks. Based on the susceptible-infected-susceptible model, we solve the optimization problem of how best to allocate the limited resources so as to minimize prevalence, providing that the curing rate of each node is positively correlated to its medical resource. By quenched mean-field theory and heterogeneous mean-field (HMF) theory, we prove that an epidemic outbreak will be suppressed to the greatest extent if the curing rate of each node is directly proportional to its degree, under which the effective infection rate λ has a maximal threshold λcopt=1 /
Zhang, Chongfu; Zhang, Qiongli; Chen, Chen; Jiang, Ning; Liu, Deming; Qiu, Kun; Liu, Shuang; Wu, Baojian
2013-01-28
We propose and demonstrate a novel optical orthogonal frequency-division multiple access (OFDMA)-based metro-access integrated network with dynamic resource allocation. It consists of a single fiber OFDMA ring and many single fiber OFDMA trees, which transparently integrates metropolitan area networks with optical access networks. The single fiber OFDMA ring connects the core network and the central nodes (CNs), the CNs are on demand reconfigurable and use multiple orthogonal sub-carriers to realize parallel data transmission and dynamic resource allocation, meanwhile, they can also implement flexible power distribution. The remote nodes (RNs) distributed in the user side are connected by the single fiber OFDMA trees with the corresponding CN. The obtained results indicate that our proposed metro-access integrated network is feasible and the power distribution is agile.
Some dynamic resource allocation problems in wireless networks
NASA Astrophysics Data System (ADS)
Berry, Randall
2001-07-01
We consider dynamic resource allocation problems that arise in wireless networking. Specifically transmission scheduling problems are studied in cases where a user can dynamically allocate communication resources such as transmission rate and power based on current channel knowledge as well as traffic variations. We assume that arriving data is stored in a transmission buffer, and investigate the trade-off between average transmission power and average buffer delay. A general characterization of this trade-off is given and the behavior of this trade-off in the regime of asymptotically large buffer delays is explored. An extension to a more general utility based quality of service definition is also discussed.
Resource Management for Distributed Parallel Systems
NASA Technical Reports Server (NTRS)
Neuman, B. Clifford; Rao, Santosh
1993-01-01
Multiprocessor systems should exist in the the larger context of distributed systems, allowing multiprocessor resources to be shared by those that need them. Unfortunately, typical multiprocessor resource management techniques do not scale to large networks. The Prospero Resource Manager (PRM) is a scalable resource allocation system that supports the allocation of processing resources in large networks and multiprocessor systems. To manage resources in such distributed parallel systems, PRM employs three types of managers: system managers, job managers, and node managers. There exist multiple independent instances of each type of manager, reducing bottlenecks. The complexity of each manager is further reduced because each is designed to utilize information at an appropriate level of abstraction.
Optimal resource allocation strategy for two-layer complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Wang, Lixin; Li, Sufeng; Duan, Congwen; Liu, Yu
2018-02-01
We study the traffic dynamics on two-layer complex networks, and focus on its delivery capacity allocation strategy to enhance traffic capacity measured by the critical value Rc. With the limited packet-delivering capacity, we propose a delivery capacity allocation strategy which can balance the capacities of non-hub nodes and hub nodes to optimize the data flow. With the optimal value of parameter αc, the maximal network capacity is reached because most of the nodes have shared the appropriate delivery capacity by the proposed delivery capacity allocation strategy. Our work will be beneficial to network service providers to design optimal networked traffic dynamics.
Ground data systems resource allocation process
NASA Technical Reports Server (NTRS)
Berner, Carol A.; Durham, Ralph; Reilly, Norman B.
1989-01-01
The Ground Data Systems Resource Allocation Process at the Jet Propulsion Laboratory provides medium- and long-range planning for the use of Deep Space Network and Mission Control and Computing Center resources in support of NASA's deep space missions and Earth-based science. Resources consist of radio antenna complexes and associated data processing and control computer networks. A semi-automated system was developed that allows operations personnel to interactively generate, edit, and revise allocation plans spanning periods of up to ten years (as opposed to only two or three weeks under the manual system) based on the relative merit of mission events. It also enhances scientific data return. A software system known as the Resource Allocation and Planning Helper (RALPH) merges the conventional methods of operations research, rule-based knowledge engineering, and advanced data base structures. RALPH employs a generic, highly modular architecture capable of solving a wide variety of scheduling and resource sequencing problems. The rule-based RALPH system has saved significant labor in resource allocation. Its successful use affirms the importance of establishing and applying event priorities based on scientific merit, and the benefit of continuity in planning provided by knowledge-based engineering. The RALPH system exhibits a strong potential for minimizing development cycles of resource and payload planning systems throughout NASA and the private sector.
Power Allocation and Outage Probability Analysis for SDN-based Radio Access Networks
NASA Astrophysics Data System (ADS)
Zhao, Yongxu; Chen, Yueyun; Mai, Zhiyuan
2018-01-01
In this paper, performance of Access network Architecture based SDN (Software Defined Network) is analyzed with respect to the power allocation issue. A power allocation scheme PSO-PA (Particle Swarm Optimization-power allocation) algorithm is proposed, the proposed scheme is subjected to constant total power with the objective of minimizing system outage probability. The entire access network resource configuration is controlled by the SDN controller, then it sends the optimized power distribution factor to the base station source node (SN) and the relay node (RN). Simulation results show that the proposed scheme reduces the system outage probability at a low complexity.
Cross-layer shared protection strategy towards data plane in software defined optical networks
NASA Astrophysics Data System (ADS)
Xiong, Yu; Li, Zhiqiang; Zhou, Bin; Dong, Xiancun
2018-04-01
In order to ensure reliable data transmission on the data plane and minimize resource consumption, a novel protection strategy towards data plane is proposed in software defined optical networks (SDON). Firstly, we establish a SDON architecture with hierarchical structure of data plane, which divides the data plane into four layers for getting fine-grained bandwidth resource. Then, we design the cross-layer routing and resource allocation based on this network architecture. Through jointly considering the bandwidth resource on all the layers, the SDN controller could allocate bandwidth resource to working path and backup path in an economical manner. Next, we construct auxiliary graphs and transform the shared protection problem into the graph vertex coloring problem. Therefore, the resource consumption on backup paths can be reduced further. The simulation results demonstrate that the proposed protection strategy can achieve lower protection overhead and higher resource utilization ratio.
Two-dimensional priority-based dynamic resource allocation algorithm for QoS in WDM/TDM PON networks
NASA Astrophysics Data System (ADS)
Sun, Yixin; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Rao, Lan
2018-01-01
Wavelength division multiplexing/time division multiplexing (WDM/TDM) passive optical networks (PON) is being viewed as a promising solution for delivering multiple services and applications. The hybrid WDM / TDM PON uses the wavelength and bandwidth allocation strategy to control the distribution of the wavelength channels in the uplink direction, so that it can ensure the high bandwidth requirements of multiple Optical Network Units (ONUs) while improving the wavelength resource utilization. Through the investigation of the presented dynamic bandwidth allocation algorithms, these algorithms can't satisfy the requirements of different levels of service very well while adapting to the structural characteristics of mixed WDM / TDM PON system. This paper introduces a novel wavelength and bandwidth allocation algorithm to efficiently utilize the bandwidth and support QoS (Quality of Service) guarantees in WDM/TDM PON. Two priority based polling subcycles are introduced in order to increase system efficiency and improve system performance. The fixed priority polling subcycle and dynamic priority polling subcycle follow different principles to implement wavelength and bandwidth allocation according to the priority of different levels of service. A simulation was conducted to study the performance of the priority based polling in dynamic resource allocation algorithm in WDM/TDM PON. The results show that the performance of delay-sensitive services is greatly improved without degrading QoS guarantees for other services. Compared with the traditional dynamic bandwidth allocation algorithms, this algorithm can meet bandwidth needs of different priority traffic class, achieve low loss rate performance, and ensure real-time of high priority traffic class in terms of overall traffic on the network.
Computer software tool REALM for sustainable water allocation and management.
Perera, B J C; James, B; Kularathna, M D U
2005-12-01
REALM (REsource ALlocation Model) is a generalised computer simulation package that models harvesting and bulk distribution of water resources within a water supply system. It is a modeling tool, which can be applied to develop specific water allocation models. Like other water resource simulation software tools, REALM uses mass-balance accounting at nodes, while the movement of water within carriers is subject to capacity constraints. It uses a fast network linear programming algorithm to optimise the water allocation within the network during each simulation time step, in accordance with user-defined operating rules. This paper describes the main features of REALM and provides potential users with an appreciation of its capabilities. In particular, it describes two case studies covering major urban and rural water supply systems. These case studies illustrate REALM's capabilities in the use of stochastically generated data in water supply planning and management, modelling of environmental flows, and assessing security of supply issues.
Radar coordination and resource management in a distributed sensor network using emergent control
NASA Astrophysics Data System (ADS)
Weir, B. S.; Sokol, T. M.
2009-05-01
As the list of anti-air warfare and ballistic missile defense missions grows, there is an increasing need to coordinate and optimize usage of radar resources across the netted force. Early attempts at this optimization involved top-down control mechanisms whereby sensors accept resource tasking orders from networked tracking elements. These approaches rely heavily on uncertain knowledge of sensor constraints and capabilities. Furthermore, advanced sensor systems may support self-defense missions of the host platform and are therefore unable to relinquish control to an external function. To surmount these issues, the use of bottom-up emergent control techniques is proposed. The information necessary to make quality, network-wide resource allocations is readily available to sensor nodes with access to a netted track picture. By assessing resource priorities relative to the network (versus local) track picture, sensors can understand the contribution of their resources to the netted force. This allows the sensors to apply resources where most needed and remove waste. Furthermore, simple local rules for resource usage, when properly constructed, allow sensors to obtain a globally optimal resource allocation without direct coordination (emergence). These results are robust to partial implementation (i.e., not all nodes upgraded at once) and failures on individual nodes (whether from casualty or reallocation to other sensor missions), and they leave resource control decisions in the hands of the sensor systems instead of an external function. This paper presents independent research and development work on emergent control of sensor resources and the impact to resource allocation and tracking performance.
Fuzzy-logic based Q-Learning interference management algorithms in two-tier networks
NASA Astrophysics Data System (ADS)
Xu, Qiang; Xu, Zezhong; Li, Li; Zheng, Yan
2017-10-01
Unloading from macrocell network and enhancing coverage can be realized by deploying femtocells in the indoor scenario. However, the system performance of the two-tier network could be impaired by the co-tier and cross-tier interference. In this paper, a distributed resource allocation scheme is studied when each femtocell base station is self-governed and the resource cannot be assigned centrally through the gateway. A novel Q-Learning interference management scheme is proposed, that is divided into cooperative and independent part. In the cooperative algorithm, the interference information is exchanged between the cell-edge users which are classified by the fuzzy logic in the same cell. Meanwhile, we allocate the orthogonal subchannels to the high-rate cell-edge users to disperse the interference power when the data rate requirement is satisfied. The resource is assigned directly according to the minimum power principle in the independent algorithm. Simulation results are provided to demonstrate the significant performance improvements in terms of the average data rate, interference power and energy efficiency over the cutting-edge resource allocation algorithms.
A Protocol for Generating and Exchanging (Genome-Scale) Metabolic Resource Allocation Models.
Reimers, Alexandra-M; Lindhorst, Henning; Waldherr, Steffen
2017-09-06
In this article, we present a protocol for generating a complete (genome-scale) metabolic resource allocation model, as well as a proposal for how to represent such models in the systems biology markup language (SBML). Such models are used to investigate enzyme levels and achievable growth rates in large-scale metabolic networks. Although the idea of metabolic resource allocation studies has been present in the field of systems biology for some years, no guidelines for generating such a model have been published up to now. This paper presents step-by-step instructions for building a (dynamic) resource allocation model, starting with prerequisites such as a genome-scale metabolic reconstruction, through building protein and noncatalytic biomass synthesis reactions and assigning turnover rates for each reaction. In addition, we explain how one can use SBML level 3 in combination with the flux balance constraints and our resource allocation modeling annotation to represent such models.
Community-aware task allocation for social networked multiagent systems.
Wang, Wanyuan; Jiang, Yichuan
2014-09-01
In this paper, we propose a novel community-aware task allocation model for social networked multiagent systems (SN-MASs), where the agent' cooperation domain is constrained in community and each agent can negotiate only with its intracommunity member agents. Under such community-aware scenarios, we prove that it remains NP-hard to maximize system overall profit. To solve this problem effectively, we present a heuristic algorithm that is composed of three phases: 1) task selection: select the desirable task to be allocated preferentially; 2) allocation to community: allocate the selected task to communities based on a significant task-first heuristics; and 3) allocation to agent: negotiate resources for the selected task based on a nonoverlap agent-first and breadth-first resource negotiation mechanism. Through the theoretical analyses and experiments, the advantages of our presented heuristic algorithm and community-aware task allocation model are validated. 1) Our presented heuristic algorithm performs very closely to the benchmark exponential brute-force optimal algorithm and the network flow-based greedy algorithm in terms of system overall profit in small-scale applications. Moreover, in the large-scale applications, the presented heuristic algorithm achieves approximately the same overall system profit, but significantly reduces the computational load compared with the greedy algorithm. 2) Our presented community-aware task allocation model reduces the system communication cost compared with the previous global-aware task allocation model and improves the system overall profit greatly compared with the previous local neighbor-aware task allocation model.
Proposal of Constraints Analysis Method Based on Network Model for Task Planning
NASA Astrophysics Data System (ADS)
Tomiyama, Tomoe; Sato, Tatsuhiro; Morita, Toyohisa; Sasaki, Toshiro
Deregulation has been accelerating several activities toward reengineering business processes, such as railway through service and modal shift in logistics. Making those activities successful, business entities have to regulate new business rules or know-how (we call them ‘constraints’). According to the new constraints, they need to manage business resources such as instruments, materials, workers and so on. In this paper, we propose a constraint analysis method to define constraints for task planning of the new business processes. To visualize each constraint's influence on planning, we propose a network model which represents allocation relations between tasks and resources. The network can also represent task ordering relations and resource grouping relations. The proposed method formalizes the way of defining constraints manually as repeatedly checking the network structure and finding conflicts between constraints. Being applied to crew scheduling problems shows that the method can adequately represent and define constraints of some task planning problems with the following fundamental features, (1) specifying work pattern to some resources, (2) restricting the number of resources for some works, (3) requiring multiple resources for some works, (4) prior allocation of some resources to some works and (5) considering the workload balance between resources.
Rate Adaptive Based Resource Allocation with Proportional Fairness Constraints in OFDMA Systems
Yin, Zhendong; Zhuang, Shufeng; Wu, Zhilu; Ma, Bo
2015-01-01
Orthogonal frequency division multiple access (OFDMA), which is widely used in the wireless sensor networks, allows different users to obtain different subcarriers according to their subchannel gains. Therefore, how to assign subcarriers and power to different users to achieve a high system sum rate is an important research area in OFDMA systems. In this paper, the focus of study is on the rate adaptive (RA) based resource allocation with proportional fairness constraints. Since the resource allocation is a NP-hard and non-convex optimization problem, a new efficient resource allocation algorithm ACO-SPA is proposed, which combines ant colony optimization (ACO) and suboptimal power allocation (SPA). To reduce the computational complexity, the optimization problem of resource allocation in OFDMA systems is separated into two steps. For the first one, the ant colony optimization algorithm is performed to solve the subcarrier allocation. Then, the suboptimal power allocation algorithm is developed with strict proportional fairness, and the algorithm is based on the principle that the sums of power and the reciprocal of channel-to-noise ratio for each user in different subchannels are equal. To support it, plenty of simulation results are presented. In contrast with root-finding and linear methods, the proposed method provides better performance in solving the proportional resource allocation problem in OFDMA systems. PMID:26426016
COOPERATIVE ROUTING FOR DYNAMIC AERIAL LAYER NETWORKS
2018-03-01
Advisor, Computing & Communications Division Information Directorate This report is published in the interest of scientific and technical...information accumulation at the physical layer, and study the cooperative routing and resource allocation problems associated with such SU networks...interference power constraint is studied . In [Shi2012Joint], an optimal power and sub-carrier allocation strategy to maximize SUs’ throughput subject to
A market-based optimization approach to sensor and resource management
NASA Astrophysics Data System (ADS)
Schrage, Dan; Farnham, Christopher; Gonsalves, Paul G.
2006-05-01
Dynamic resource allocation for sensor management is a problem that demands solutions beyond traditional approaches to optimization. Market-based optimization applies solutions from economic theory, particularly game theory, to the resource allocation problem by creating an artificial market for sensor information and computational resources. Intelligent agents are the buyers and sellers in this market, and they represent all the elements of the sensor network, from sensors to sensor platforms to computational resources. These agents interact based on a negotiation mechanism that determines their bidding strategies. This negotiation mechanism and the agents' bidding strategies are based on game theory, and they are designed so that the aggregate result of the multi-agent negotiation process is a market in competitive equilibrium, which guarantees an optimal allocation of resources throughout the sensor network. This paper makes two contributions to the field of market-based optimization: First, we develop a market protocol to handle heterogeneous goods in a dynamic setting. Second, we develop arbitrage agents to improve the efficiency in the market in light of its dynamic nature.
Decomposition method for zonal resource allocation problems in telecommunication networks
NASA Astrophysics Data System (ADS)
Konnov, I. V.; Kashuba, A. Yu
2016-11-01
We consider problems of optimal resource allocation in telecommunication networks. We first give an optimization formulation for the case where the network manager aims to distribute some homogeneous resource (bandwidth) among users of one region with quadratic charge and fee functions and present simple and efficient solution methods. Next, we consider a more general problem for a provider of a wireless communication network divided into zones (clusters) with common capacity constraints. We obtain a convex quadratic optimization problem involving capacity and balance constraints. By using the dual Lagrangian method with respect to the capacity constraint, we suggest to reduce the initial problem to a single-dimensional optimization problem, but calculation of the cost function value leads to independent solution of zonal problems, which coincide with the above single region problem. Some results of computational experiments confirm the applicability of the new methods.
A cognitive gateway-based spectrum sharing method in downlink round robin scheduling of LTE system
NASA Astrophysics Data System (ADS)
Deng, Hongyu; Wu, Cheng; Wang, Yiming
2017-07-01
A key technique of LTE is how to allocate efficiently the resource of radio spectrum. Traditional Round Robin (RR) scheduling scheme may lead to too many resource residues when allocating resources. When the number of users in the current transmission time interval (TTI) is not the greatest common divisor of resource block groups (RBGs), and such a phenomenon lasts for a long time, the spectrum utilization would be greatly decreased. In this paper, a novel spectrum allocation scheme of cognitive gateway (CG) was proposed, in which the LTE spectrum utilization and CG’s throughput were greatly increased by allocating idle resource blocks in the shared TTI in LTE system to CG. Our simulation results show that the spectrum resource sharing method can improve LTE spectral utilization and increase the CG’s throughput as well as network use time.
Road maintenance and rehabilitation : funding and allocation strategies
DOT National Transportation Integrated Search
1994-01-24
With ageing road infrastructure and sustained traffic growth, the maintenance and rehabilitation of road and motorway networks require increased funding. Adequate allocation and distribution of available resources are therefore a key policy issue. Th...
Optimal Resource Allocation under Fair QoS in Multi-tier Server Systems
NASA Astrophysics Data System (ADS)
Akai, Hirokazu; Ushio, Toshimitsu; Hayashi, Naoki
Recent development of network technology realizes multi-tier server systems, where several tiers perform functionally different processing requested by clients. It is an important issue to allocate resources of the systems to clients dynamically based on their current requests. On the other hand, Q-RAM has been proposed for resource allocation in real-time systems. In the server systems, it is important that execution results of all applications requested by clients are the same QoS(quality of service) level. In this paper, we extend Q-RAM to multi-tier server systems and propose a method for optimal resource allocation with fairness of the QoS levels of clients’ requests. We also consider an assignment problem of physical machines to be sleep in each tier sothat the energy consumption is minimized.
NASA Astrophysics Data System (ADS)
Wang, Yunyun; Li, Hui; Liu, Yuze; Ji, Yuefeng; Li, Hongfa
2017-10-01
With the development of large video services and cloud computing, the network is increasingly in the form of services. In SDON, the SDN controller holds the underlying physical resource information, thus allocating the appropriate resources and bandwidth to the VON service. However, for some services that require extremely strict QoT (quality of transmission), the shortest distance path algorithm is often unable to meet the requirements because it does not take the link spectrum resources into account. And in accordance with the choice of the most unoccupied links, there may be more spectrum fragments. So here we propose a new RMLSA (the routing, modulation Level, and spectrum allocation) algorithm to reduce the blocking probability. The results show about 40% less blocking probability than the shortest-distance algorithm and the minimum usage of the spectrum priority algorithm. This algorithm is used to satisfy strict request of QoT for demands.
Electronic neural network for dynamic resource allocation
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Eberhardt, S. P.; Daud, T.
1991-01-01
A VLSI implementable neural network architecture for dynamic assignment is presented. The resource allocation problems involve assigning members of one set (e.g. resources) to those of another (e.g. consumers) such that the global 'cost' of the associations is minimized. The network consists of a matrix of sigmoidal processing elements (neurons), where the rows of the matrix represent resources and columns represent consumers. Unlike previous neural implementations, however, association costs are applied directly to the neurons, reducing connectivity of the network to VLSI-compatible 0 (number of neurons). Each row (and column) has an additional neuron associated with it to independently oversee activations of all the neurons in each row (and each column), providing a programmable 'k-winner-take-all' function. This function simultaneously enforces blocking (excitatory/inhibitory) constraints during convergence to control the number of active elements in each row and column within desired boundary conditions. Simulations show that the network, when implemented in fully parallel VLSI hardware, offers optimal (or near-optimal) solutions within only a fraction of a millisecond, for problems up to 128 resources and 128 consumers, orders of magnitude faster than conventional computing or heuristic search methods.
Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan
2017-01-01
This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint. PMID:28869546
QoS-Oriented High Dynamic Resource Allocation in Vehicular Communication Networks
2014-01-01
Vehicular ad hoc networks (VANETs) are emerging as new research area and attracting an increasing attention from both industry and research communities. In this context, a dynamic resource allocation policy that maximizes the use of available resources and meets the quality of service (QoS) requirement of constraining applications is proposed. It is a combination of a fair packet scheduling policy and a new adaptive QoS oriented call admission control (CAC) scheme based on the vehicle density variation. This scheme decides whether the connection request is to be admitted into the system, while providing fair access and guaranteeing the desired throughput. The proposed algorithm showed good performance in testing in real world environment. PMID:24616639
The maintenance of cooperation in multiplex networks with limited and partible resources of agents
NASA Astrophysics Data System (ADS)
Li, Zhaofeng; Shen, Bi; Jiang, Yichuan
2017-02-01
In this paper, we try to explain the maintenance of cooperation in multiplex networks with limited and partible resources of agents: defection brings larger short-term benefit and cooperative agents may become defective because of the unaffordable costs of cooperative behaviors that are performed in multiple layers simultaneously. Recent studies have identified the positive effects of multiple layers on evolutionary cooperation but generally overlook the maximum costs of agents in these synchronous games. By utilizing network effects and designing evolutionary mechanisms, cooperative behaviors become prevailing in public goods games, and agents can allocate personal resources across multiple layers. First, we generalize degree diversity into multiplex networks to improve the prospect for cooperation. Second, to prevent agents allocating all the resources into one layer, a greedy-first mechanism is proposed, in which agents prefer to add additional investments in the higher-payoff layer. It is found that greedy-first agents can perform cooperative behaviors in multiplex networks when one layer is scale-free network and degree differences between conjoint nodes increase. Our work may help to explain the emergence of cooperation in the absence of individual reputation and punishment mechanisms.
A Study on Market-based Strategic Procurement Planning in Convergent Supply Networks
NASA Astrophysics Data System (ADS)
Opadiji, Jayeola Femi; Kaihara, Toshiya
We present a market-based decentralized approach which uses a market-oriented programming algorithm to obtain Pareto-optimal allocation of resources traded among agents which represent enterprise units in a supply network. The proposed method divides the network into a series of Walrsian markets in order to obtain procurement budgets for enterprises in the network. An interaction protocol based on market value propagation is constructed to coordinate the flow of resources across the network layers. The method mitigates the effect of product complementarity in convergent network by allowing for enterprises to hold private valuations of resources in the markets.
Bandwidth-sharing in LHCONE, an analysis of the problem
NASA Astrophysics Data System (ADS)
Wildish, T.
2015-12-01
The LHC experiments have traditionally regarded the network as an unreliable resource, one which was expected to be a major source of errors and inefficiency at the time their original computing models were derived. Now, however, the network is seen as much more capable and reliable. Data are routinely transferred with high efficiency and low latency to wherever computing or storage resources are available to use or manage them. Although there was sufficient network bandwidth for the experiments’ needs during Run-1, they cannot rely on ever-increasing bandwidth as a solution to their data-transfer needs in the future. Sooner or later they need to consider the network as a finite resource that they interact with to manage their traffic, in much the same way as they manage their use of disk and CPU resources. There are several possible ways for the experiments to integrate management of the network in their software stacks, such as the use of virtual circuits with hard bandwidth guarantees or soft real-time flow-control, with somewhat less firm guarantees. Abstractly, these can all be considered as the users (the experiments, or groups of users within the experiment) expressing a request for a given bandwidth between two points for a given duration of time. The network fabric then grants some allocation to each user, dependent on the sum of all requests and the sum of available resources, and attempts to ensure the requirements are met (either deterministically or statistically). An unresolved question at this time is how to convert the users’ requests into an allocation. Simply put, how do we decide what fraction of a network's bandwidth to allocate to each user when the sum of requests exceeds the available bandwidth? The usual problems of any resourcescheduling system arise here, namely how to ensure the resource is used efficiently and fairly, while still satisfying the needs of the users. Simply fixing quotas on network paths for each user is likely to lead to inefficient use of the network. If one user cannot use their quota for some reason, that bandwidth is lost. Likewise, there is no incentive for the user to be efficient within their quota, they have nothing to gain by using less than their allocation. As with CPU farms, some sort of dynamic allocation is more likely to be useful. A promising approach for sharing bandwidth at LHCONE is the ’Progressive Second-Price auction’, where users are given a budget and are required to bid from that budget for the specific resources they want to reserve. The auction allows users to effectively determine among themselves the degree of sharing they are willing to accept based on the priorities of their traffic and their global share, as represented by their total budget. The network then implements those allocations using whatever mix of technologies is appropriate or available. This paper describes how the Progressive Second-Price auction works and how it can be applied to LHCONE. Practical questions are addressed, such as how are budgets set, what strategy should users use to manage their budget, how and how often should the auction be run, and how do we ensure that the goals of fairness and efficiency are met.
Resource Allocation Algorithms for the Next Generation Cellular Networks
NASA Astrophysics Data System (ADS)
Amzallag, David; Raz, Danny
This chapter describes recent results addressing resource allocation problems in the context of current and future cellular technologies. We present models that capture several fundamental aspects of planning and operating these networks, and develop new approximation algorithms providing provable good solutions for the corresponding optimization problems. We mainly focus on two families of problems: cell planning and cell selection. Cell planning deals with choosing a network of base stations that can provide the required coverage of the service area with respect to the traffic requirements, available capacities, interference, and the desired QoS. Cell selection is the process of determining the cell(s) that provide service to each mobile station. Optimizing these processes is an important step towards maximizing the utilization of current and future cellular networks.
NASA Astrophysics Data System (ADS)
Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli
2017-11-01
Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.
Radio Resource Allocation on Complex 4G Wireless Cellular Networks
NASA Astrophysics Data System (ADS)
Psannis, Kostas E.
2015-09-01
In this article we consider the heuristic algorithm which improves step by step wireless data delivery over LTE cellular networks by using the total transmit power with the constraint on users’ data rates, and the total throughput with the constraints on the total transmit power as well as users’ data rates, which are jointly integrated into a hybrid-layer design framework to perform radio resource allocation for multiple users, and to effectively decide the optimal system parameter such as modulation and coding scheme (MCS) in order to adapt to the varying channel quality. We propose new heuristic algorithm which balances the accessible data rate, the initial data rates of each user allocated by LTE scheduler, the priority indicator which signals delay- throughput- packet loss awareness of the user, and the buffer fullness by achieving maximization of radio resource allocation for multiple users. It is noted that the overall performance is improved with the increase in the number of users, due to multiuser diversity. Experimental results illustrate and validate the accuracy of the proposed methodology.
Pricing Resources in LTE Networks through Multiobjective Optimization
Lai, Yung-Liang; Jiang, Jehn-Ruey
2014-01-01
The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid “user churn,” which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution. PMID:24526889
Pricing resources in LTE networks through multiobjective optimization.
Lai, Yung-Liang; Jiang, Jehn-Ruey
2014-01-01
The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid "user churn," which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution.
Crowd-Funding: A New Resource Cooperation Mode for Mobile Cloud Computing.
Zhang, Nan; Yang, Xiaolong; Zhang, Min; Sun, Yan
2016-01-01
Mobile cloud computing, which integrates the cloud computing techniques into the mobile environment, is regarded as one of the enabler technologies for 5G mobile wireless networks. There are many sporadic spare resources distributed within various devices in the networks, which can be used to support mobile cloud applications. However, these devices, with only a few spare resources, cannot support some resource-intensive mobile applications alone. If some of them cooperate with each other and share their resources, then they can support many applications. In this paper, we propose a resource cooperative provision mode referred to as "Crowd-funding", which is designed to aggregate the distributed devices together as the resource provider of mobile applications. Moreover, to facilitate high-efficiency resource management via dynamic resource allocation, different resource providers should be selected to form a stable resource coalition for different requirements. Thus, considering different requirements, we propose two different resource aggregation models for coalition formation. Finally, we may allocate the revenues based on their attributions according to the concept of the "Shapley value" to enable a more impartial revenue share among the cooperators. It is shown that a dynamic and flexible resource-management method can be developed based on the proposed Crowd-funding model, relying on the spare resources in the network.
Crowd-Funding: A New Resource Cooperation Mode for Mobile Cloud Computing
Zhang, Min; Sun, Yan
2016-01-01
Mobile cloud computing, which integrates the cloud computing techniques into the mobile environment, is regarded as one of the enabler technologies for 5G mobile wireless networks. There are many sporadic spare resources distributed within various devices in the networks, which can be used to support mobile cloud applications. However, these devices, with only a few spare resources, cannot support some resource-intensive mobile applications alone. If some of them cooperate with each other and share their resources, then they can support many applications. In this paper, we propose a resource cooperative provision mode referred to as "Crowd-funding", which is designed to aggregate the distributed devices together as the resource provider of mobile applications. Moreover, to facilitate high-efficiency resource management via dynamic resource allocation, different resource providers should be selected to form a stable resource coalition for different requirements. Thus, considering different requirements, we propose two different resource aggregation models for coalition formation. Finally, we may allocate the revenues based on their attributions according to the concept of the "Shapley value" to enable a more impartial revenue share among the cooperators. It is shown that a dynamic and flexible resource-management method can be developed based on the proposed Crowd-funding model, relying on the spare resources in the network. PMID:28030553
Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng
2017-01-01
In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search. PMID:29113109
NASA Astrophysics Data System (ADS)
Cogoni, Marco; Busonera, Giovanni; Anedda, Paolo; Zanetti, Gianluigi
2015-01-01
We generalize previous studies on critical phenomena in communication networks [1,2] by adding computational capabilities to the nodes. In our model, a set of tasks with random origin, destination and computational structure is distributed on a computational network, modeled as a graph. By varying the temperature of a Metropolis Montecarlo, we explore the global latency for an optimal to suboptimal resource assignment at a given time instant. By computing the two-point correlation function for the local overload, we study the behavior of the correlation distance (both for links and nodes) while approaching the congested phase: a transition from peaked to spread g(r) is seen above a critical (Montecarlo) temperature Tc. The average latency trend of the system is predicted by averaging over several network traffic realizations while maintaining a spatially detailed information for each node: a sharp decrease of performance is found over Tc independently of the workload. The globally optimized computational resource allocation and network routing defines a baseline for a future comparison of the transition behavior with respect to existing routing strategies [3,4] for different network topologies.
A Hierarchical Auction-Based Mechanism for Real-Time Resource Allocation in Cloud Robotic Systems.
Wang, Lujia; Liu, Ming; Meng, Max Q-H
2017-02-01
Cloud computing enables users to share computing resources on-demand. The cloud computing framework cannot be directly mapped to cloud robotic systems with ad hoc networks since cloud robotic systems have additional constraints such as limited bandwidth and dynamic structure. However, most multirobotic applications with cooperative control adopt this decentralized approach to avoid a single point of failure. Robots need to continuously update intensive data to execute tasks in a coordinated manner, which implies real-time requirements. Thus, a resource allocation strategy is required, especially in such resource-constrained environments. This paper proposes a hierarchical auction-based mechanism, namely link quality matrix (LQM) auction, which is suitable for ad hoc networks by introducing a link quality indicator. The proposed algorithm produces a fast and robust method that is accurate and scalable. It reduces both global communication and unnecessary repeated computation. The proposed method is designed for firm real-time resource retrieval for physical multirobot systems. A joint surveillance scenario empirically validates the proposed mechanism by assessing several practical metrics. The results show that the proposed LQM auction outperforms state-of-the-art algorithms for resource allocation.
Resource allocation for multichannel broadcasting visible light communication
NASA Astrophysics Data System (ADS)
Le, Nam-Tuan; Jang, Yeong Min
2015-11-01
Visible light communication (VLC), which offers the possibility of using light sources for both illumination and data communications simultaneously, will be a promising incorporation technique with lighting applications. However, it still remains some challenges especially coverage because of field-of-view limitation. In this paper, we focus on this issue by suggesting a resource allocation scheme for VLC broadcasting system. By using frame synchronization and a network calculus QoS approximation, as well as diversity technology, the proposed VLC architecture and QoS resource allocation for the multichannel-broadcasting MAC (medium access control) protocol can solve the coverage limitation problem and the link switching problem of exhibition service.
Physical and Cross-Layer Security Enhancement and Resource Allocation for Wireless Networks
ERIC Educational Resources Information Center
Bashar, Muhammad Shafi Al
2011-01-01
In this dissertation, we present novel physical (PHY) and cross-layer design guidelines and resource adaptation algorithms to improve the security and user experience in the future wireless networks. Physical and cross-layer wireless security measures can provide stronger overall security with high efficiency and can also provide better…
Dynamic fair node spectrum allocation for ad hoc networks using random matrices
NASA Astrophysics Data System (ADS)
Rahmes, Mark; Lemieux, George; Chester, Dave; Sonnenberg, Jerry
2015-05-01
Dynamic Spectrum Access (DSA) is widely seen as a solution to the problem of limited spectrum, because of its ability to adapt the operating frequency of a radio. Mobile Ad Hoc Networks (MANETs) can extend high-capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact, cognitive radio employs spectrum sensing to facilitate the identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, while secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate fair path use of the DSA-discovered links. Utilization of high-resolution geospatial data layers in RF propagation analysis is directly applicable. Random matrix theory (RMT) is useful in simulating network layer usage in nodes by a Wishart adjacency matrix. We use the Dijkstra algorithm for discovering ad hoc network node connection patterns. We present a method for analysts to dynamically allocate node-node path and link resources using fair division. User allocation of limited resources as a function of time must be dynamic and based on system fairness policies. The context of fair means that first available request for an asset is not envied as long as it is not yet allocated or tasked in order to prevent cycling of the system. This solution may also save money by offering a Pareto efficient repeatable process. We use a water fill queue algorithm to include Shapley value marginal contributions for allocation.
Auction-based bandwidth allocation in the Internet
NASA Astrophysics Data System (ADS)
Wei, Jiaolong; Zhang, Chi
2002-07-01
It has been widely accepted that auctioning which is the pricing approach with minimal information requirement is a proper tool to manage scare network resources. Previous works focus on Vickrey auction which is incentive compatible in classic auction theory. In the beginning of this paper, the faults of the most representative auction-based mechanisms are discussed. And then a new method called uniform-price auction (UPA), which has the simplest auction rule is proposed and it's incentive compatibility in the network environment is also proved. Finally, the basic mode is extended to support applications which require minimum bandwidth guarantees for a given time period by introducing derivative market, and a market mechanism for network resource allocation which is predictable, riskless, and simple for end-users is completed.
NASA Astrophysics Data System (ADS)
Fragkoulis, Alexandros; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2015-03-01
We propose a method for the fair and efficient allocation of wireless resources over a cognitive radio system network to transmit multiple scalable video streams to multiple users. The method exploits the dynamic architecture of the Scalable Video Coding extension of the H.264 standard, along with the diversity that OFDMA networks provide. We use a game-theoretic Nash Bargaining Solution (NBS) framework to ensure that each user receives the minimum video quality requirements, while maintaining fairness over the cognitive radio system. An optimization problem is formulated, where the objective is the maximization of the Nash product while minimizing the waste of resources. The problem is solved by using a Swarm Intelligence optimizer, namely Particle Swarm Optimization. Due to the high dimensionality of the problem, we also introduce a dimension-reduction technique. Our experimental results demonstrate the fairness imposed by the employed NBS framework.
NASA Astrophysics Data System (ADS)
Shaat, Musbah; Bader, Faouzi
2010-12-01
Cognitive Radio (CR) systems have been proposed to increase the spectrum utilization by opportunistically access the unused spectrum. Multicarrier communication systems are promising candidates for CR systems. Due to its high spectral efficiency, filter bank multicarrier (FBMC) can be considered as an alternative to conventional orthogonal frequency division multiplexing (OFDM) for transmission over the CR networks. This paper addresses the problem of resource allocation in multicarrier-based CR networks. The objective is to maximize the downlink capacity of the network under both total power and interference introduced to the primary users (PUs) constraints. The optimal solution has high computational complexity which makes it unsuitable for practical applications and hence a low complexity suboptimal solution is proposed. The proposed algorithm utilizes the spectrum holes in PUs bands as well as active PU bands. The performance of the proposed algorithm is investigated for OFDM and FBMC based CR systems. Simulation results illustrate that the proposed resource allocation algorithm with low computational complexity achieves near optimal performance and proves the efficiency of using FBMC in CR context.
Distributed Multiple Access Control for the Wireless Mesh Personal Area Networks
NASA Astrophysics Data System (ADS)
Park, Moo Sung; Lee, Byungjoo; Rhee, Seung Hyong
Mesh networking technologies for both high-rate and low-rate wireless personal area networks (WPANs) are under development by several standardization bodies. They are considering to adopt distributed TDMA MAC protocols to provide seamless user mobility as well as a good peer-to-peer QoS in WPAN mesh. It has been, however, pointed out that the absence of a central controller in the wireless TDMA MAC may cause a severe performance degradation: e. g., fair allocation, service differentiation, and admission control may be hard to achieve or can not be provided. In this paper, we suggest a new framework of resource allocation for the distributed MAC protocols in WPANs. Simulation results show that our algorithm achieves both a fair resource allocation and flexible service differentiations in a fully distributed way for mesh WPANs where the devices have high mobility and various requirements. We also provide an analytical modeling to discuss about its unique equilibrium and to compute the lengths of reserved time slots at the stable point.
The JPL Resource Allocation Planning and Scheduling Office (RAPSO) process
NASA Technical Reports Server (NTRS)
Morris, D. G.; Burke, E. S.
2002-01-01
The Jet Propulsion Laboratory's Resource Allocation Planning and Scheduling Office is chartered to divide the limited amount of tracking hours of the Deep Space Network amongst the various missions in as equitable allotment as can be achieved. To best deal with this division of assets and time, an interactive process has evolved that promotes discussion with agreement by consensus between all of the customers that use the Deep Space Network (DSN). Aided by a suite of tools, the task of division of asset time is then performed in three stages of granularity. Using this approach, DSN loads are either forecasted or scheduled throughout a moving 10-year window.
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Schrock, Mitchell; Baldwin, John R.; Borden, Charles S.
2010-01-01
The Ground Resource Allocation and Planning Environment (GRAPE 1.0) is a Web-based, collaborative team environment based on the Microsoft SharePoint platform, which provides Deep Space Network (DSN) resource planners tools and services for sharing information and performing analysis.
Optimization-based Approach to Cross-layer Resource Management in Wireless Networked Control Systems
2013-05-01
interest from both academia and industry [37], finding applications in un- manned robotic vehicles, automated highways and factories, smart homes and...is stable when the scaler varies slowly. The algorithm is further extended to utilize the slack resource in the network, which leads to the...model . . . . . . . . . . . . . . . . 66 Optimal sampling rate allocation formulation . . . . . 67 Price-based algorithm
Multiresource allocation and scheduling for periodic soft real-time applications
NASA Astrophysics Data System (ADS)
Gopalan, Kartik; Chiueh, Tzi-cker
2001-12-01
Real-time applications that utilize multiple system resources, such as CPU, disks, and network links, require coordinated scheduling of these resources in order to meet their end-to-end performance requirements. Most state-of-the-art operating systems support independent resource allocation and deadline-driven scheduling but lack coordination among multiple heterogeneous resources. This paper describes the design and implementation of an Integrated Real-time Resource Scheduler (IRS) that performs coordinated allocation and scheduling of multiple heterogeneous resources on the same machine for periodic soft real-time application. The principal feature of IRS is a heuristic multi-resource allocation algorithm that reserves multiple resources for real-time applications in a manner that can maximize the number of applications admitted into the system in the long run. At run-time, a global scheduler dispatches the tasks of the soft real-time application to individual resource schedulers according to the precedence constraints between tasks. The individual resource schedulers, which could be any deadline based schedulers, can make scheduling decisions locally and yet collectively satisfy a real-time application's performance requirements. The tightness of overall timing guarantees is ultimately determined by the properties of individual resource schedulers. However, IRS maximizes overall system resource utilization efficiency by coordinating deadline assignment across multiple tasks in a soft real-time application.
Hybrid services efficient provisioning over the network coding-enabled elastic optical networks
NASA Astrophysics Data System (ADS)
Wang, Xin; Gu, Rentao; Ji, Yuefeng; Kavehrad, Mohsen
2017-03-01
As a variety of services have emerged, hybrid services have become more common in real optical networks. Although the elastic spectrum resource optimizations over the elastic optical networks (EONs) have been widely investigated, little research has been carried out on the hybrid services of the routing and spectrum allocation (RSA), especially over the network coding-enabled EON. We investigated the RSA for the unicast service and network coding-based multicast service over the network coding-enabled EON with the constraints of time delay and transmission distance. To address this issue, a mathematical model was built to minimize the total spectrum consumption for the hybrid services over the network coding-enabled EON under the constraints of time delay and transmission distance. The model guarantees different routing constraints for different types of services. The immediate nodes over the network coding-enabled EON are assumed to be capable of encoding the flows for different kinds of information. We proposed an efficient heuristic algorithm of the network coding-based adaptive routing and layered graph-based spectrum allocation algorithm (NCAR-LGSA). From the simulation results, NCAR-LGSA shows highly efficient performances in terms of the spectrum resources utilization under different network scenarios compared with the benchmark algorithms.
Spectrum Sharing Based on a Bertrand Game in Cognitive Radio Sensor Networks
Zeng, Biqing; Zhang, Chi; Hu, Pianpian; Wang, Shengyu
2017-01-01
In the study of power control and allocation based on pricing, the utility of secondary users is usually studied from the perspective of the signal to noise ratio. The study of secondary user utility from the perspective of communication demand can not only promote the secondary users to meet the maximum communication needs, but also to maximize the utilization of spectrum resources, however, research in this area is lacking, so from the viewpoint of meeting the demand of network communication, this paper designs a two stage model to solve spectrum leasing and allocation problem in cognitive radio sensor networks (CRSNs). In the first stage, the secondary base station collects the secondary network communication requirements, and rents spectrum resources from several primary base stations using the Bertrand game to model the transaction behavior of the primary base station and secondary base station. The second stage, the subcarriers and power allocation problem of secondary base stations is defined as a nonlinear programming problem to be solved based on Nash bargaining. The simulation results show that the proposed model can satisfy the communication requirements of each user in a fair and efficient way compared to other spectrum sharing schemes. PMID:28067850
Economic model for QoS guarantee on the Internet
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wei, Jiaolong
2001-09-01
This paper describes a QoS guarantee architecture suited for best-effort environments, based on ideas from microeconomics and non-cooperative game theory. First, an analytic model is developed for the study of the resource allocation in the Internet. Then we show that with a simple pricing mechanism (from network implementation and users' points-of-view), we were able to provide QoS guarantee at per flow level without resource allocation or complicated scheduling mechanisms or maintaining per flow state in the core network. Unlike the previous work on this area, we extend the basic model to support inelastic applications which require minimum bandwidth guarantees for a given time period by introducing derivative market.
Gao, Yuan; Zhou, Weigui; Ao, Hong; Chu, Jian; Zhou, Quan; Zhou, Bo; Wang, Kang; Li, Yi; Xue, Peng
2016-01-01
With the increasing demands for better transmission speed and robust quality of service (QoS), the capacity constrained backhaul gradually becomes a bottleneck in cooperative wireless networks, e.g., in the Internet of Things (IoT) scenario in joint processing mode of LTE-Advanced Pro. This paper focuses on resource allocation within capacity constrained backhaul in uplink cooperative wireless networks, where two base stations (BSs) equipped with single antennae serve multiple single-antennae users via multi-carrier transmission mode. In this work, we propose a novel cooperative transmission scheme based on compress-and-forward with user pairing to solve the joint mixed integer programming problem. To maximize the system capacity under the limited backhaul, we formulate the joint optimization problem of user sorting, subcarrier mapping and backhaul resource sharing among different pairs (subcarriers for users). A novel robust and efficient centralized algorithm based on alternating optimization strategy and perfect mapping is proposed. Simulations show that our novel method can improve the system capacity significantly under the constraint of the backhaul resource compared with the blind alternatives. PMID:27077865
Smart LED allocation scheme for efficient multiuser visible light communication networks.
Sewaiwar, Atul; Tiwari, Samrat Vikramaditya; Chung, Yeon Ho
2015-05-18
In a multiuser bidirectional visible light communication (VLC), a large number of LEDs or an LED array needs to be allocated in an efficient manner to ensure sustainable data rate and link quality. Moreover, in order to support an increasing or decreasing number of users in the network, the LED allocation is required to be performed dynamically. In this paper, a novel smart LED allocation scheme for efficient multiuser VLC networks is presented. The proposed scheme allocates RGB LEDs to multiple users in a dynamic and efficient fashion, while satisfying illumination requirements in an indoor environment. The smart LED array comprised of RGB LEDs is divided into sectors according to the location of the users. The allocated sectors then provide optical power concentration toward the users for efficient and reliable data transmission. An algorithm for the dynamic allocation of the LEDs is also presented. To verify its effective resource allocation feature of the proposed scheme, simulations were performed. It is found that the proposed smart LED allocation scheme provides the effect of optical beamforming toward individual users, thereby increasing the collective power concentration of the optical signals on the desirable users and resulting in significantly increased data rate, while ensuring sufficient illumination in a multiuser VLC environment.
Controlling herding in minority game systems
NASA Astrophysics Data System (ADS)
Zhang, Ji-Qiang; Huang, Zi-Gang; Wu, Zhi-Xi; Su, Riqi; Lai, Ying-Cheng
2016-02-01
Resource allocation takes place in various types of real-world complex systems such as urban traffic, social services institutions, economical and ecosystems. Mathematically, the dynamical process of resource allocation can be modeled as minority games. Spontaneous evolution of the resource allocation dynamics, however, often leads to a harmful herding behavior accompanied by strong fluctuations in which a large majority of agents crowd temporarily for a few resources, leaving many others unused. Developing effective control methods to suppress and eliminate herding is an important but open problem. Here we develop a pinning control method, that the fluctuations of the system consist of intrinsic and systematic components allows us to design a control scheme with separated control variables. A striking finding is the universal existence of an optimal pinning fraction to minimize the variance of the system, regardless of the pinning patterns and the network topology. We carry out a generally applicable theory to explain the emergence of optimal pinning and to predict the dependence of the optimal pinning fraction on the network topology. Our work represents a general framework to deal with the broader problem of controlling collective dynamics in complex systems with potential applications in social, economical and political systems.
Neural Network Solves "Traveling-Salesman" Problem
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P.; Moopenn, Alexander W.
1990-01-01
Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.
NASA Astrophysics Data System (ADS)
Andreotti, Riccardo; Del Fiorentino, Paolo; Giannetti, Filippo; Lottici, Vincenzo
2016-12-01
This work proposes a distributed resource allocation (RA) algorithm for packet bit-interleaved coded OFDM transmissions in the uplink of heterogeneous networks (HetNets), characterized by small cells deployed over a macrocell area and sharing the same band. Every user allocates its transmission resources, i.e., bits per active subcarrier, coding rate, and power per subcarrier, to minimize the power consumption while both guaranteeing a target quality of service (QoS) and accounting for the interference inflicted by other users transmitting over the same band. The QoS consists of the number of information bits delivered in error-free packets per unit of time, or goodput (GP), estimated at the transmitter by resorting to an efficient effective SNR mapping technique. First, the RA problem is solved in the point-to-point case, thus deriving an approximate yet accurate closed-form expression for the power allocation (PA). Then, the interference-limited HetNet case is examined, where the RA problem is described as a non-cooperative game, providing a solution in terms of generalized Nash equilibrium. Thanks to the closed-form of the PA, the solution analysis is based on the best response concept. Hence, sufficient conditions for existence and uniqueness of the solution are analytically derived, along with a distributed algorithm capable of reaching the game equilibrium.
Allocation of spectral and spatial modes in multidimensional metro-access optical networks
NASA Astrophysics Data System (ADS)
Gao, Wenbo; Cvijetic, Milorad
2018-04-01
Introduction of spatial division multiplexing (SDM) has added a new dimension in an effort to increase optical fiber channel capacity. At the same time, it can also be explored as an advanced optical networking tool. In this paper, we have investigated the resource allocation to end-users in multidimensional networking structure with plurality of spectral and spatial modes actively deployed in different networking segments. This presents a more comprehensive method as compared to the common practice where the segments of optical network are analyzed independently since the interaction between network hierarchies is included into consideration. We explored the possible transparency from the metro/core network to the optical access network, analyzed the potential bottlenecks from the network architecture perspective, and identified an optimized network structure. In our considerations, the viability of optical grooming through the entire hierarchical all-optical network is investigated by evaluating the effective utilization and spectral efficiency of the network architecture.
Computing the Envelope for Stepwise Constant Resource Allocations
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Clancy, Daniel (Technical Monitor)
2001-01-01
Estimating tight resource level is a fundamental problem in the construction of flexible plans with resource utilization. In this paper we describe an efficient algorithm that builds a resource envelope, the tightest possible such bound. The algorithm is based on transforming the temporal network of resource consuming and producing events into a flow network with noises equal to the events and edges equal to the necessary predecessor links between events. The incremental solution of a staged maximum flow problem on the network is then used to compute the time of occurrence and the height of each step of the resource envelope profile. The staged algorithm has the same computational complexity of solving a maximum flow problem on the entire flow network. This makes this method computationally feasible for use in the inner loop of search-based scheduling algorithms.
Computing the Envelope for Stepwise-Constant Resource Allocations
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Clancy, Daniel (Technical Monitor)
2002-01-01
Computing tight resource-level bounds is a fundamental problem in the construction of flexible plans with resource utilization. In this paper we describe an efficient algorithm that builds a resource envelope, the tightest possible such bound. The algorithm is based on transforming the temporal network of resource consuming and producing events into a flow network with nodes equal to the events and edges equal to the necessary predecessor links between events. A staged maximum flow problem on the network is then used to compute the time of occurrence and the height of each step of the resource envelope profile. Each stage has the same computational complexity of solving a maximum flow problem on the entire flow network. This makes this method computationally feasible and promising for use in the inner loop of flexible-time scheduling algorithms.
Enhancing robustness of interdependent network by adding connectivity and dependence links
NASA Astrophysics Data System (ADS)
Cui, Pengshuai; Zhu, Peidong; Wang, Ke; Xun, Peng; Xia, Zhuoqun
2018-05-01
Enhancing robustness of interdependent networks by adding connectivity links has been researched extensively, however, few of them are focusing on adding both connectivity and dependence links to enhance robustness. In this paper, we aim to study how to allocate the limited costs reasonably to add both connectivity and dependence links. Firstly, we divide the attackers into stubborn attackers and smart attackers according to whether would they change their attack modes with the changing of network structure; Then by simulations, link addition strategies are given separately according to different attackers, with which we can allocate the limited costs to add connectivity links and dependence links reasonably and achieve more robustness than only adding connectivity links or dependence links. The results show that compared to only adding connectivity links or dependence links, allocating the limited resources reasonably and adding both connectivity links and dependence links could bring more robustness to the interdependent networks.
Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki
2014-01-13
Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.
NASA Astrophysics Data System (ADS)
Shahid, Adnan; Aslam, Saleem; Kim, Hyung Seok; Lee, Kyung-Geun
2015-12-01
Femtocell is a novel technology that is used for escalating indoor coverage as well as the capacity of traditional cellular networks. However, interference is the limiting factor for performance improvement due to co-channel deployment between macrocells and femtocells. The traditional network planning is not feasible because of the random deployment of femtocells. Therefore, self-organization approaches are the key to having successful deployment of femtocells. This study presents the joint resource block (RB) and power allocation task for the two-tier femtocell network in a self-organizing manner, with the concern to minimizing the impact of interference and maximizing the energy efficiency. In this study, we analyze the performance of the system in terms of the energy efficiency, which is composed of both the transmission and circuit power. Most of the previous studies investigate the performance regarding the throughput requirement of the two-tier femtocell network while the energy efficiency aspect is largely ignored. Here, the joint allocation task is modeled as a non-cooperative game which is demonstrated to exhibit pure and unique Nash equilibrium. In order to reduce the complexity of the proposed non-cooperative game, the joint RB and power allocation task is divided into two subproblems: an RB allocation and a particle swarm optimization-based power allocation. The analysis of the proposed game is carried out in terms of not only energy efficiency but also throughput. With practical 3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE) parameters, the simulation results illustrate the superior performance of the proposed game as compared to the traditional methods. Also, the comparison is carried out with the joint allocation scheme which only considers the throughput as the objective function. The results illustrate that significant performance improvement is achieved in terms of energy efficiency with slight loss in the throughput. The analysis in regard to energy efficiency and throughput of the two-tier femtocell network is carried out in terms of the performance metrics, which include convergence, impact of varying RBs, impact of femtocell density, and the fairness index.
Cognitive radio based optimal channel sensing and resources allocation
NASA Astrophysics Data System (ADS)
Vijayasarveswari, V.; Khatun, S.; Fakir, M. M.; Nayeem, M. N.; Kamarudin, L. M.; Jakaria, A.
2017-03-01
Cognitive radio (CR) is the latest type of wireless technoloy that is proposed to mitigate spectrum saturation problem. İn cognitve radio, secondary user will use primary user's spectrum during primary user's absence without interupting primary user's transmission. This paper focuses on practical cognitive radio network development process using Android based smart phone for the data transmission. Energy detector based sensing method was proposed and used here because it doesnot require primary user's information. Bluetooth and Wi-fi are the two available types of spectrum that was sensed for CR detection. Simulation showed cognitive radio network can be developed using Android based smart phones. So, a complete application was developed using Java based Android Eclipse program. Finally, the application was uploaded and run on Android based smart phone to form and verify CR network for channel sensing and resource allocation. The observed efficiency of the application was around 81%.
Frequency Assignment for Joint Aerial Layer Network High-Capacity Backbone
2017-08-11
Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an...performance of the proposed approach. Frequency Assignment, JALN, Resource Allocation, Network Optimization, Performance Evaluation 24 Peng Wang 410-278
Compound Event Barrier Coverage in Wireless Sensor Networks under Multi-Constraint Conditions.
Zhuang, Yaoming; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi
2016-12-24
It is important to monitor compound event by barrier coverage issues in wireless sensor networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike traditional ones, the data of compound event barrier coverage comes from different types of sensors. It will be subject to multiple constraints under complex conditions in real-world applications. The main objective of this paper is to design an efficient algorithm for complex conditions that can combine the compound event confidence. Moreover, a multiplier method based on an active-set strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage. The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably in compound event barrier coverage. The proposed algorithm can simplify complex problems to reduce the computational load of the network and improve the network efficiency. The simulation results demonstrate that the proposed algorithm is more effective and efficient than existing methods, especially in the allocation of sensor resources.
Compound Event Barrier Coverage in Wireless Sensor Networks under Multi-Constraint Conditions
Zhuang, Yaoming; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi
2016-01-01
It is important to monitor compound event by barrier coverage issues in wireless sensor networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike traditional ones, the data of compound event barrier coverage comes from different types of sensors. It will be subject to multiple constraints under complex conditions in real-world applications. The main objective of this paper is to design an efficient algorithm for complex conditions that can combine the compound event confidence. Moreover, a multiplier method based on an active-set strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage. The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably in compound event barrier coverage. The proposed algorithm can simplify complex problems to reduce the computational load of the network and improve the network efficiency. The simulation results demonstrate that the proposed algorithm is more effective and efficient than existing methods, especially in the allocation of sensor resources. PMID:28029118
Harris, Claire; Ko, Henry; Waller, Cara; Sloss, Pamela; Williams, Pamela
2017-05-05
This is the fourth in a series of papers reporting a program of Sustainability in Health care by Allocating Resources Effectively (SHARE) in a local healthcare setting. Healthcare decision-makers have sought to improve the effectiveness and efficiency of services through removal or restriction of practices that are unsafe or of little benefit, often referred to as 'disinvestment'. A systematic, integrated, evidence-based program for disinvestment was being established within a large Australian health service network. Consumer engagement was acknowledged as integral to this process. This paper reports the process of developing a model to integrate consumer views and preferences into an organisation-wide approach to resource allocation. A literature search was conducted and interviews and workshops were undertaken with health service consumers and staff. Findings were drafted into a model for consumer engagement in resource allocation which was workshopped and refined. Although consumer engagement is increasingly becoming a requirement of publicly-funded health services and documented in standards and policies, participation in organisational decision-making is not widespread. Several consistent messages for consumer engagement in this context emerged from the literature and consumer responses. Opportunities, settings and activities for consumer engagement through communication, consultation and participation were identified within the resource allocation process. Sources of information regarding consumer values and perspectives in publications and locally-collected data, and methods to use them in health service decision-making, were identified. A model bringing these elements together was developed. The proposed model presents potential opportunities and activities for consumer engagement in the context of resource allocation.
Handover Control Method Using Resource Reservation in Mobile Multimedia Networks
NASA Astrophysics Data System (ADS)
Lee, Dong Chun; Lee, Jong Chan
When handover events occur during the transmission of multimedia traffic, efficient handover control procedures and radio resource allocation are necessary to maintain the same QoS of transmitted multimedia traffic because the QoS may be degraded by additional delay and information loss. In this paper we propose a new handover control method for the next generation mobile multimedia networks, in which the handover setup process is done in advance of a handover request by predicting the handover cell from mobile terminal's current position. The handover procedures for real-time sessions are performed based on the handover cell information and the resource reservation condition. The radio resources in the estimated adjacent cells should be reserved and allocated to guarantee the continuity of the real-time sessions. We conduct a simulation model that is focused on the handover failure rate and packet loss rate. The simulation results show that our proposed method provides better performance than the previous methods.
Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook
2018-05-14
Simultaneous multiple access (MA) within a single wavelength can increase the data rate and split ratio in a passive optical network while optical beat interference (OBI) becomes serious in the uplink. Previous techniques to reduce OBI were limited by their complexity and lack of extendibility; as well, bandwidth allocation among MA signals is needed for single photo diode (PD) detection. We proposed and experimentally demonstrated full-band optical pulse division multiplexing-based MA (OPDMA) in an optical access network, which can effectively reduce OBI with extendibility and fully utilize frequency resources of optical modulator without bandwidth allocation in a single-wavelength MA.
NASA Technical Reports Server (NTRS)
Thakoor, Anil
1990-01-01
Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.
Grid accounting service: state and future development
NASA Astrophysics Data System (ADS)
Levshina, T.; Sehgal, C.; Bockelman, B.; Weitzel, D.; Guru, A.
2014-06-01
During the last decade, large-scale federated distributed infrastructures have been continually developed and expanded. One of the crucial components of a cyber-infrastructure is an accounting service that collects data related to resource utilization and identity of users using resources. The accounting service is important for verifying pledged resource allocation per particular groups and users, providing reports for funding agencies and resource providers, and understanding hardware provisioning requirements. It can also be used for end-to-end troubleshooting as well as billing purposes. In this work we describe Gratia, a federated accounting service jointly developed at Fermilab and Holland Computing Center at University of Nebraska-Lincoln. The Open Science Grid, Fermilab, HCC, and several other institutions have used Gratia in production for several years. The current development activities include expanding Virtual Machines provisioning information, XSEDE allocation usage accounting, and Campus Grids resource utilization. We also identify the direction of future work: improvement and expansion of Cloud accounting, persistent and elastic storage space allocation, and the incorporation of WAN and LAN network metrics.
Chen, Xi; Zhao, Liu; Özdemir, Mujgan Sagir; Liang, Haiming
2018-04-05
The resource allocation of air pollution treatment in China is a complex problem, since many alternatives are available and many criteria influence mutually. A number of stakeholders participate in this issue holding different opinions because of the benefits they value. So a method is needed, based on the analytic network process (ANP) and large-group decision-making (LGDM), to rank the alternatives considering interdependent criteria and stakeholders' opinions. In this method, the criteria related to air pollution treatment are examined by experts. Then, the network structure of the problem is constructed based on the relationships between the criteria. Further, every participant in each group provide comparison matrices by judging the importance between criteria according to dominance, regarding a certain criteria (or goal), and the geometric average comparison matrix of each group is obtained. The decision weight of each group is derived by combining the subjective weight and the objective weight, in which the subjective weight is provided by organizers, while the objective weight is determined by considering the consensus levels of groups. The final comparison matrices are obtained by the geometric average of comparison matrices and the decision weights. Next, the resource allocation is made according to the priorities of the alternatives using the super decision software. Finally, an example is given to illustrate the use of the proposed method.
NASA Astrophysics Data System (ADS)
Doluschitz, Reiner; Feike, Til
2013-04-01
Farmers in the oases along the Aksu-Tarim River suffer from severe seasonal water shortage caused by high fluctuations of river run-off. The uncertainty of water availability makes the planning of crop production and related investments extremely difficult. As a consequence farm management is often sub-optimal, manifesting in low input efficiencies, and the value generated in the agricultural sector being way below its potential. The "Tarim Basin Water Resource Bureau" (TBWRB) was founded in the 1990s. Its major task is to implement a basin wide water resources management plan, which involves fair allocation of water resources among the farmers in the different administrative units along the river. Among others, the lack of reliable and timely information on water quantities and qualities within the major water bodies of the basin hinders the implementation of an effective water management plan. Therefore we introduce the concept of a wireless sensor network (WSN) that provides reliable instantaneous information on the status of all important water resources within the basin. In the first step a GIS including all vital geospatial data, like river courses, channel and reservoir network and capacities, soil and land use map, is built. In the second step a WSN that monitors all important parameters at essential positions throughout the basin needs to be established. Measured parameters comprise meteorological data, river run-off, water levels of reservoirs, groundwater levels, and salinity levels of water resources. All data is centrally collected and processed by the TBWRB. Apart from generating a prompt and complete picture of currently available water resources, the TBWRB can use the system to record actual water allocation, and develop an early warning system for upcoming droughts or floods. Finally an integrated water and land management scheme can be established that allocates resources maximizing the benefits at basin level. Financed by public funding, the data collected by the WSN should be accessible to the public. Considering the environmental, economic and social cost of inefficient, intransparent and unfair allocation of water resources, the investments into a WSN are reasonable. However, it requires strong efforts from highest governmental agencies to enable the TBWRB to compile all the required data (e.g. meteorological, soil, river run-off), which is customarily collected and controlled by the respective administrative unit.
Time-aware service-classified spectrum defragmentation algorithm for flex-grid optical networks
NASA Astrophysics Data System (ADS)
Qiu, Yang; Xu, Jing
2018-01-01
By employing sophisticated routing and spectrum assignment (RSA) algorithms together with a finer spectrum granularity (namely frequency slot) in resource allocation procedures, flex-grid optical networks can accommodate diverse kinds of services with high spectrum-allocation flexibility and resource-utilization efficiency. However, the continuity and the contiguity constraints in spectrum allocation procedures may always induce some isolated, small-sized, and unoccupied spectral blocks (known as spectrum fragments) in flex-grid optical networks. Although these spectrum fragments are left unoccupied, they can hardly be utilized by the subsequent service requests directly because of their spectral characteristics and the constraints in spectrum allocation. In this way, the existence of spectrum fragments may exhaust the available spectrum resources for a coming service request and thus worsens the networking performance. Therefore, many reactive defragmentation algorithms have been proposed to handle the fragmented spectrum resources via re-optimizing the routing paths and the spectrum resources for the existing services. But the routing-path and the spectrum-resource re-optimization in reactive defragmentation algorithms may possibly disrupt the traffic of the existing services and require extra components. By comparison, some proactive defragmentation algorithms (e.g. fragmentation-aware algorithms) were proposed to suppress spectrum fragments from their generation instead of handling the fragmented spectrum resources. Although these proactive defragmentation algorithms induced no traffic disruption and required no extra components, they always left the generated spectrum fragments unhandled, which greatly affected their efficiency in spectrum defragmentation. In this paper, by comprehensively considering the characteristics of both the reactive and the proactive defragmentation algorithms, we proposed a time-aware service-classified (TASC) spectrum defragmentation algorithm, which simultaneously employed proactive and reactive mechanisms in suppressing spectrum fragments with the awareness of services' types and their duration times. By dividing the spectrum resources into several flexible groups according to services' types and limiting both the spectrum allocation and the spectrum re-tuning for a certain service inside one specific spectrum group according to its type, the proposed TASC defragmentation algorithm cannot only suppress spectrum fragments from generation inside each spectrum group, but also handle the fragments generated between two adjacent groups. In this way, the proposed TASC algorithm gains higher efficiency in suppressing spectrum fragments than both the reactive and the proactive defragmentation algorithms. Additionally, as the generation of spectrum fragments is retrained between spectrum groups and the defragmentation procedure is limited inside each spectrum group, the induced traffic disruption for the existing services can be possibly reduced. Besides, the proposed TASC defragmentation algorithm always re-tunes the spectrum resources of the service with the maximum duration time first in spectrum defragmentation procedure, which can further reduce spectrum fragments because of the fact that the services with longer duration times always have higher possibility in inducing spectrum fragments than the services with shorter duration times. The simulation results show that the proposed TASC defragmentation algorithm can significantly reduce the number of the generated spectrum fragments while improving the service blocking performance.
Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel
Sakin, Sayef Azad; Alamri, Atif; Tran, Nguyen H.
2017-01-01
Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies. PMID:29215591
Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel.
Sakin, Sayef Azad; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Alamri, Atif; Tran, Nguyen H; Fortino, Giancarlo
2017-12-07
Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies.
Foglia, Mary Beth; Pearlman, Robert A; Bottrell, Melissa M; Altemose, Jane A; Fox, Ellen
2008-01-01
Setting priorities and the subsequent allocation of resources is a major ethical issue facing healthcare facilities, including the Veterans Health Administration (VHA), the largest integrated healthcare delivery network in the United States. Yet despite the importance of priority setting and its impact on those who receive and those who provide care, we know relatively little about how clinicians and managers view allocation processes within their facilities. The purpose of this secondary analysis of survey data was to characterize staff members' perceptions regarding the fairness of healthcare ethics practices related to resource allocation in Veterans Administration (VA) facilities. The specific aim of the study was to compare the responses of clinicians, clinician managers, and non-clinician managers with respect to these survey items. We utilized a paper and web-based survey and a cross-sectional design of VHA clinicians and managers. Our sample consisted of a purposive stratified sample of 109 managers and a stratified random sample of 269 clinicians employed 20 or more hours per week in one of four VA medical centers. The four medical centers were participating as field sites selected to test the logistics of administering and reporting results of the Integrated Ethics Staff Survey, an assessment tool aimed at characterizing a broad range of ethical practices within a healthcare organization. In general, clinicians were more critical than clinician managers or non-clinician managers of the institutions' allocation processes and of the impact of resource decisions on patient care. Clinicians commonly reported that they did not (a) understand their facility's decision-making processes, (b) receive explanations from management regarding the reasons behind important allocation decisions, or (b) perceive that they were influential in allocation decisions. In addition, clinicians and managers both perceived that education related to the ethics of resource allocation was insufficient and that their facilities could increase their effectiveness in identifying and resolving ethical problems related to resource allocation. How well a healthcare facility ensures fairness in the way it allocates its resources across programs and services depends on multiple factors, including awareness by decision makers that setting priorities and allocating resources is a moral enterprise (moral awareness), the availability of a consistent process that includes important stakeholder groups (procedural justice), and concurrence by stakeholders that decisions represent outcomes that fairly balance competing interests and have a positive net effect on the quality of care (distributive justice). In this study, clinicians and managers alike identified the need for improvement in healthcare ethics practices related to resource allocation.
PS-CARA: Context-Aware Resource Allocation Scheme for Mobile Public Safety Networks.
Kaleem, Zeeshan; Khaliq, Muhammad Zubair; Khan, Ajmal; Ahmad, Ishtiaq; Duong, Trung Q
2018-05-08
The fifth-generation (5G) communications systems are expecting to support users with diverse quality-of-service (QoS) requirements. Beside these requirements, the task with utmost importance is to support the emergency communication services during natural or man-made disasters. Most of the conventional base stations are not properly functional during a disaster situation, so deployment of emergency base stations such as mobile personal cell (mPC) is crucial. An mPC having moving capability can move in the disaster area to provide emergency communication services. However, mPC deployment causes severe co-channel interference to the users in its vicinity. The problem in the existing resource allocation schemes is its support for static environment, that does not fit well for mPC. So, a resource allocation scheme for mPC users is desired that can dynamically allocate resources based on users’ location and its connection establishment priority. In this paper, we propose a public safety users priority-based context-aware resource allocation (PS-CARA) scheme for users sum-rate maximization in disaster environment. Simulations results demonstrate that the proposed PS-CARA scheme can increase the user average and edge rate around 10.3% and 32.8% , respectively because of context information availability and by prioritizing the public safety users. The simulation results ensure that call blocking probability is also reduced considerably under the PS-CARA scheme.
PS-CARA: Context-Aware Resource Allocation Scheme for Mobile Public Safety Networks
Khaliq, Muhammad Zubair; Khan, Ajmal; Ahmad, Ishtiaq
2018-01-01
The fifth-generation (5G) communications systems are expecting to support users with diverse quality-of-service (QoS) requirements. Beside these requirements, the task with utmost importance is to support the emergency communication services during natural or man-made disasters. Most of the conventional base stations are not properly functional during a disaster situation, so deployment of emergency base stations such as mobile personal cell (mPC) is crucial. An mPC having moving capability can move in the disaster area to provide emergency communication services. However, mPC deployment causes severe co-channel interference to the users in its vicinity. The problem in the existing resource allocation schemes is its support for static environment, that does not fit well for mPC. So, a resource allocation scheme for mPC users is desired that can dynamically allocate resources based on users’ location and its connection establishment priority. In this paper, we propose a public safety users priority-based context-aware resource allocation (PS-CARA) scheme for users sum-rate maximization in disaster environment. Simulations results demonstrate that the proposed PS-CARA scheme can increase the user average and edge rate around 10.3% and 32.8% , respectively because of context information availability and by prioritizing the public safety users. The simulation results ensure that call blocking probability is also reduced considerably under the PS-CARA scheme. PMID:29738499
NASA Astrophysics Data System (ADS)
Hortos, William S.
1999-03-01
A hybrid neural network approach is presented to estimate radio propagation characteristics and multiuser interference and to evaluate their combined impact on throughput, latency and information loss in third-generation (3G) wireless networks. The latter three performance parameters influence the quality of service (QoS) for multimedia services under consideration for 3G networks. These networks, based on a hierarchical architecture of overlaying macrocells on top of micro- and picocells, are planned to operate in mobile urban and indoor environments with service demands emanating from circuit-switched, packet-switched and satellite-based traffic sources. Candidate radio interfaces for these networks employ a form of wideband CDMA in 5-MHz and wider-bandwidth channels, with possible asynchronous operation of the mobile subscribers. The proposed neural network (NN) architecture allocates network resources to optimize QoS metrics. Parameters of the radio propagation channel are estimated, followed by control of an adaptive antenna array at the base station to minimize interference, and then joint multiuser detection is performed at the base station receiver. These adaptive processing stages are implemented as a sequence of NN techniques that provide their estimates as inputs to a final- stage Kohonen self-organizing feature map (SOFM). The SOFM optimizes the allocation of available network resources to satisfy QoS requirements for variable-rate voice, data and video services. As the first stage of the sequence, a modified feed-forward multilayer perceptron NN is trained on the pilot signals of the mobile subscribers to estimate the parameters of shadowing, multipath fading and delays on the uplinks. A recurrent NN (RNN) forms the second stage to control base stations' adaptive antenna arrays to minimize intra-cell interference. The third stage is based on a Hopfield NN (HNN), modified to detect multiple users on the uplink radio channels to mitigate multiaccess interference, control carrier-sense multiple-access (CSMA) protocols, and refine call handoff procedures. In the final stage, the Kohonen SOFM, operating in a hybrid continuous and discrete space, adaptively allocates the resources of antenna-based cell sectorization, activity monitoring, variable-rate coding, power control, handoff and caller admission to meet user demands for various multimedia services at minimum QoS levels. The performance of the NN cascade is evaluated through simulation of a candidate 3G wireless network using W-CDMA parameters in a small-cell environment. The simulated network consists of a representative number of cells. Mobile users with typical movement patterns are assumed. QoS requirements for different classes of multimedia services are considered. The proposed method is shown to provide relatively low probability of new call blocking and handoff dropping, while maintaining efficient use of the network's radio resources.
Li, Chaojie; Yu, Xinghuo; Huang, Tingwen; He, Xing; Chaojie Li; Xinghuo Yu; Tingwen Huang; Xing He; Li, Chaojie; Huang, Tingwen; He, Xing; Yu, Xinghuo
2018-06-01
The resource allocation problem is studied and reformulated by a distributed interior point method via a -logarithmic barrier. By the facilitation of the graph Laplacian, a fully distributed continuous-time multiagent system is developed for solving the problem. Specifically, to avoid high singularity of the -logarithmic barrier at boundary, an adaptive parameter switching strategy is introduced into this dynamical multiagent system. The convergence rate of the distributed algorithm is obtained. Moreover, a novel distributed primal-dual dynamical multiagent system is designed in a smart grid scenario to seek the saddle point of dynamical economic dispatch, which coincides with the optimal solution. The dual decomposition technique is applied to transform the optimization problem into easily solvable resource allocation subproblems with local inequality constraints. The good performance of the new dynamical systems is, respectively, verified by a numerical example and the IEEE six-bus test system-based simulations.
Controlling collective dynamics in complex minority-game resource-allocation systems
NASA Astrophysics Data System (ADS)
Zhang, Ji-Qiang; Huang, Zi-Gang; Dong, Jia-Qi; Huang, Liang; Lai, Ying-Cheng
2013-05-01
Resource allocation takes place in various kinds of real-world complex systems, such as traffic systems, social services institutions or organizations, or even ecosystems. The fundamental principle underlying complex resource-allocation dynamics is Boolean interactions associated with minority games, as resources are generally limited and agents tend to choose the least used resource based on available information. A common but harmful dynamical behavior in resource-allocation systems is herding, where there are time intervals during which a large majority of the agents compete for a few resources, leaving many other resources unused. Accompanying the herd behavior is thus strong fluctuations with time in the number of resources being used. In this paper, we articulate and establish that an intuitive control strategy, namely pinning control, is effective at harnessing the herding dynamics. In particular, by fixing the choices of resources for a few agents while leaving the majority of the agents free, herding can be eliminated completely. Our investigation is systematic in that we consider random and targeted pinning and a variety of network topologies, and we carry out a comprehensive analysis in the framework of mean-field theory to understand the working of control. The basic philosophy is then that, when a few agents waive their freedom to choose resources by receiving sufficient incentives, the majority of the agents benefit in that they will make fair, efficient, and effective use of the available resources. Our work represents a basic and general framework to address the fundamental issue of fluctuations in complex dynamical systems with significant applications to social, economical, and political systems.
Neural circuitry governing anxious individuals' mis-allocation of working memory to threat.
Stout, Daniel M; Shackman, Alexander J; Pedersen, Walker S; Miskovich, Tara A; Larson, Christine L
2017-08-18
Dispositional anxiety is a trait-like phenotype that confers increased risk for a range of debilitating neuropsychiatric disorders. Like many patients with anxiety disorders, individuals with elevated levels of dispositional anxiety are prone to intrusive and distressing thoughts in the absence of immediate threat. Recent electrophysiological research suggests that these symptoms are rooted in the mis-allocation of working memory (WM) resources to threat-related information. Here, functional MRI was used to identify the network of brain regions that support WM for faces and to quantify the allocation of neural resources to threat-related distracters in 81 young adults. Results revealed widespread evidence of mis-allocation. This was evident in both face-selective regions of the fusiform cortex and domain-general regions of the prefrontal and parietal cortices. This bias was exaggerated among individuals with a more anxious disposition. Mediation analyses provided compelling evidence that anxious individuals' tendency to mis-allocate WM resources to threat-related distracters is statistically explained by heightened amygdala reactivity. Collectively, these results provide a neurocognitive framework for understanding the pathways linking anxious phenotypes to the development of internalizing psychopathology and set the stage for developing improved intervention strategies.
Grid accounting service: state and future development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levshina, T.; Sehgal, C.; Bockelman, B.
2014-01-01
During the last decade, large-scale federated distributed infrastructures have been continually developed and expanded. One of the crucial components of a cyber-infrastructure is an accounting service that collects data related to resource utilization and identity of users using resources. The accounting service is important for verifying pledged resource allocation per particular groups and users, providing reports for funding agencies and resource providers, and understanding hardware provisioning requirements. It can also be used for end-to-end troubleshooting as well as billing purposes. In this work we describe Gratia, a federated accounting service jointly developed at Fermilab and Holland Computing Center at Universitymore » of Nebraska-Lincoln. The Open Science Grid, Fermilab, HCC, and several other institutions have used Gratia in production for several years. The current development activities include expanding Virtual Machines provisioning information, XSEDE allocation usage accounting, and Campus Grids resource utilization. We also identify the direction of future work: improvement and expansion of Cloud accounting, persistent and elastic storage space allocation, and the incorporation of WAN and LAN network metrics.« less
Scheduling with Automatic Resolution of Conflicts
NASA Technical Reports Server (NTRS)
Clement, Bradley; Schaffer, Steve
2006-01-01
DSN Requirement Scheduler is a computer program that automatically schedules, reschedules, and resolves conflicts for allocations of resources of NASA s Deep Space Network (DSN) on the basis of ever-changing project requirements for DSN services. As used here, resources signifies, primarily, DSN antennas, ancillary equipment, and times during which they are available. Examples of project-required DSN services include arraying, segmentation, very-long-baseline interferometry, and multiple spacecraft per aperture. Requirements can include periodic reservations of specific or optional resources during specific time intervals or within ranges specified in terms of starting times and durations. This program is built on the Automated Scheduling and Planning Environment (ASPEN) software system (aspects of which have been described in previous NASA Tech Briefs articles), with customization to reflect requirements and constraints involved in allocation of DSN resources. Unlike prior DSN-resource- scheduling programs that make single passes through the requirements and require human intervention to resolve conflicts, this program makes repeated passes in a continuing search for all possible allocations, provides a best-effort solution at any time, and presents alternative solutions among which users can choose.
North, Michael S.; Fiske, Susan T.
2016-01-01
Prior work describes specific, prescriptive resource tensions between generations, comprising active Succession, passive Consumption, and symbolic Identity (SCI; North & Fiske, 2013a, 2013b). The current paper focuses on how these domains potentially drive intergenerational exclusion in work-related networking and training spheres. Studies 1a–1c—each focusing on a different SCI domain—manipulated perceived resource availability between generations, then introduced a professional networking opportunity. Across studies, scarcity reduced the likelihood of young participants’ networking engagement with older workers who violated SCI resource expectations. Study 2 impelled participants to allocate scarce training resources among three similarly qualified but different-aged employees (younger, middle-aged, and older). Older workers received the lowest such investment, particularly among younger participants—an effect driven by Succession beliefs, per mediation analyses. Overall, the findings emphasize resource tensions in driving older workers’ subtle exclusion by younger generations; minimizing such tensions will be critical for aging, increasingly intergenerational workplaces. PMID:27499555
Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility
Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus
2013-01-01
This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines. PMID:24135992
Design and Analysis of Self-Adapted Task Scheduling Strategies in Wireless Sensor Networks
Guo, Wenzhong; Xiong, Naixue; Chao, Han-Chieh; Hussain, Sajid; Chen, Guolong
2011-01-01
In a wireless sensor network (WSN), the usage of resources is usually highly related to the execution of tasks which consume a certain amount of computing and communication bandwidth. Parallel processing among sensors is a promising solution to provide the demanded computation capacity in WSNs. Task allocation and scheduling is a typical problem in the area of high performance computing. Although task allocation and scheduling in wired processor networks has been well studied in the past, their counterparts for WSNs remain largely unexplored. Existing traditional high performance computing solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as limited resource availability and the shared communication medium. In this paper, a self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based architecture for WSNs is proposed and a mathematical model of dynamic alliance is constructed for the task allocation problem. Then an effective discrete particle swarm optimization (PSO) algorithm for the dynamic alliance (DPSO-DA) with a well-designed particle position code and fitness function is proposed. A mutation operator which can effectively improve the algorithm’s ability of global search and population diversity is also introduced in this algorithm. Finally, the simulation results show that the proposed solution can achieve significant better performance than other algorithms. PMID:22163971
Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks
Wen, Chih-Yu; Chen, Ying-Chih
2009-01-01
This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks. PMID:22412343
Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.
Wen, Chih-Yu; Chen, Ying-Chih
2009-01-01
This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.
A Context-Aware Paradigm for Information Discovery and Dissemination in Mobile Environments
ERIC Educational Resources Information Center
Lundquist, Doug
2011-01-01
The increasing power and ubiquity of mobile wireless devices is enabling real-time information delivery for many diverse applications. A crucial question is how to allocate finite network resources efficiently and fairly despite the uncertainty common in highly dynamic mobile ad hoc networks. We propose a set of routing protocols, Self-Balancing…
ERIC Educational Resources Information Center
Burnett Heyes, Stephanie; Jih, Yeou-Rong; Block, Per; Hiu, Chii-Fen; Holmes, Emily A.; Lau, Jennifer Y. F.
2015-01-01
Adolescence is characterized as a period of social reorientation toward peer relationships, entailing the emergence of sophisticated social abilities. Two studies (Study 1: N = 42, ages 13-17; Study 2: N = 81, ages 13-16) investigated age group differences in the impact of relationship reciprocation within school-based social networks on an…
ERIC Educational Resources Information Center
Gendreau, Audrey
2014-01-01
Efficient self-organizing virtual clusterheads that supervise data collection based on their wireless connectivity, risk, and overhead costs, are an important element of Wireless Sensor Networks (WSNs). This function is especially critical during deployment when system resources are allocated to a subsequent application. In the presented research,…
Cross-Layer Resource Allocation for Wireless Visual Sensor Networks and Mobile Ad Hoc Networks
2014-10-01
MMD), minimizes the maximum dis- tortion among all nodes of the network, promoting a rather unbiased treatment of the nodes. We employed the Particle...achieve the ideal tradeoff between the transmitted video quality and energy consumption. Each sensor node has a bit rate that can be used for both...Distortion (MMD), minimizes the maximum distortion among all nodes of the network, promoting a rather unbiased treatment of the nodes. For both criteria
Building an Information Infrastructure.
ERIC Educational Resources Information Center
Breivik, Patricia Senn
1992-01-01
College governing boards can promote good campus information management by understanding available services, monitoring changes and their relationship to priorities, supporting policies enhancing access to information, encouraging resource allocation for networking, promoting regional economic development through information use, and supporting…
NASDA knowledge-based network planning system
NASA Technical Reports Server (NTRS)
Yamaya, K.; Fujiwara, M.; Kosugi, S.; Yambe, M.; Ohmori, M.
1993-01-01
One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced.
Burnett Heyes, Stephanie; Jih, Yeou-Rong; Block, Per; Hiu, Chii-Fen; Holmes, Emily A; Lau, Jennifer Y F
2015-01-01
Adolescence is characterized as a period of social reorientation toward peer relationships, entailing the emergence of sophisticated social abilities. Two studies (Study 1: N = 42, ages 13-17; Study 2: N = 81, ages 13-16) investigated age group differences in the impact of relationship reciprocation within school-based social networks on an experimental measure of cooperation behavior. Results suggest development between mid- and late adolescence in the extent to which reciprocation of social ties predicted resource allocation. With increasing age group, investment decisions increasingly reflected the degree to which peers reciprocated feelings of friendship. This result may reflect social-cognitive development, which could facilitate the ability to navigate an increasingly complex social world in adolescence and promote positive and enduring relationships into adulthood. © 2015 The Authors. Child Development published by Wiley Periodicals, Inc. on behalf of Society for Research in Child Development.
Simulation platform of LEO satellite communication system based on OPNET
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhang, Yong; Li, Xiaozhuo; Wang, Chuqiao; Li, Haihao
2018-02-01
For the purpose of verifying communication protocol in the low earth orbit (LEO) satellite communication system, an Optimized Network Engineering Tool (OPNET) based simulation platform is built. Using the three-layer modeling mechanism, the network model, the node model and the process model of the satellite communication system are built respectively from top to bottom, and the protocol will be implemented by finite state machine and Proto-C language. According to satellite orbit parameters, orbit files are generated via Satellite Tool Kit (STK) and imported into OPNET, and the satellite nodes move along their orbits. The simulation platform adopts time-slot-driven mode, divides simulation time into continuous time slots, and allocates slot number for each time slot. A resource allocation strategy is simulated on this platform, and the simulation results such as resource utilization rate, system throughput and packet delay are analyzed, which indicate that this simulation platform has outstanding versatility.
NASA Astrophysics Data System (ADS)
2011-02-01
The research councils discovered in December the allocation of money from the UK government's Comprehensive Spending Review, and have set out their delivery plans outlining how they will spend it. Details and decisions will follow consultation in the coming months. The first image from eMerlin, the UK's national radio astronomy facility, shows the power of the enhanced network of radio telescopes spread over 220 km and now linked by fibre optics. These links and advanced receivers will allow astronomers to see in a single day what would have previously taken them more than a year of observations.
Steps Toward Optimal Competitive Scheduling
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Crawford, James; Khatib, Lina; Brafman, Ronen
2006-01-01
This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, se@sh preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource. This problem arises in many institutional settings where, e.g., different departments, agencies, or personal, compete for a single resource. We are particularly motivated by the problem of scheduling NASA's Deep Space Satellite Network (DSN) among different users within NASA. Access to DSN is needed for transmitting data from various space missions to Earth. Each mission has different needs for DSN time, depending on satellite and planetary orbits. Typically, the DSN is over-subscribed, in that not all missions will be allocated as much time as they want. This leads to various inefficiencies - missions spend much time and resource lobbying for their time, often exaggerating their needs. NASA, on the other hand, would like to make optimal use of this resource, ensuring that the good for NASA is maximized. This raises the thorny problem of how to measure the utility to NASA of each allocation. In the typical case, it is difficult for the central agency, NASA in our case, to assess the value of each interval to each user - this is really only known to the users who understand their needs. Thus, our problem is more precisely formulated as follows: find an allocation schedule for the resource that maximizes the sum of users preferences, when the preference values are private information of the users. We bypass this problem by making the assumptions that one can assign money to customers. This assumption is reasonable; a committee is usually in charge of deciding the priority of each mission competing for access to the DSN within a time period while scheduling. Instead, we can assume that the committee assigns a budget to each mission.This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, se@sh preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource. This problem arises in many institutional settings where, e.g., different departments, agencies, or personal, compete for a single resource. We are particularly motivated by the problem of scheduling NASA's Deep Space Satellite Network (DSN) among different users within NASA. Access to DSN is needed for transmitting data from various space missions to Earth. Each mission has different needs for DSN time, depending on satellite and planetary orbits. Typically, the DSN is over-subscribed, in that not all missions will be allocated as much time as they want. This leads to various inefficiencies - missions spend much time and resource lobbying for their time, often exaggerating their needs. NASA, on the other hand, would like to make optimal use of this resource, ensuring that the good for NASA is maximized. This raises the thorny problem of how to measure the utility to NASA of each allocation. In the typical case, it is difficult for the central agency, NASA in our case, to assess the value of each interval to each user - this is really only known to the users who understand their needs. Thus, our problem is more precisely formulated as follows: find an allocation schedule for the resource that maximizes the sum ofsers preferences, when the preference values are private information of the users. We bypass this problem by making the assumptions that one can assign money to customers. This assumption is reasonable; a committee is usually in charge of deciding the priority of each mission competing for access to the DSN within a time period while scheduling. Instead, we can assume that the committee assigns a budget to each mission.
Dynamic Resource Allocation for IEEE802.16e
NASA Astrophysics Data System (ADS)
Nascimento, Alberto; Rodriguez, Jonathan
Mobile communications has witnessed an exponential increase in the amount of users, services and applications. New high bandwidth consuming applications are targeted for B3G networks raising more stringent requirements for Dynamic Resource Allocation (DRA) architectures and packet schedulers that must be spectrum efficient and deliver QoS for heterogeneous applications and services. In this paper we propose a new cross layer-based architecture framework embedded in a newly designed DRA architecture for the Mobile WiMAX standard. System level simulation results show that the proposed architecture can be considered a viable candidate solution for supporting mixed services in a cost-effective manner in contrast to existing approaches.
Resource Allocation and Cross Layer Control in Wireless Networks
2006-08-25
arrival rates lies within the capacity region of the network. The notion of controlling the system to maximize its stability region and the following...optimization problem (4.5) that must be solved at the beginning of 48 Dynamic Control for Network Stability each time slot requires in general knowledge...Dynamic Control for Network Stability ~ (c) ab (t) those of any other feasible algorithm, then for any time t 0; X ic U (c) i (t) "X b ~ (c) ab (t) X
Dynamic Policy-Driven Quality of Service in Service-Oriented Information Management Systems
2011-01-01
both DiffServ and IntServ net- work QoS mechanisms. Wang et al [48] provide middleware APIs to shield applications from directly interacting with...complex network QoS mechanism APIs . Middleware frameworks transparently converted the specified application QoS requirements into low- er-level network...QoS mechanism APIs and provided network QoS assurances. Deployment-time resource allocation. Other prior work has focused on deploying ap- plications
Multi-layer service function chaining scheduling based on auxiliary graph in IP over optical network
NASA Astrophysics Data System (ADS)
Li, Yixuan; Li, Hui; Liu, Yuze; Ji, Yuefeng
2017-10-01
Software Defined Optical Network (SDON) can be considered as extension of Software Defined Network (SDN) in optical networks. SDON offers a unified control plane and makes optical network an intelligent transport network with dynamic flexibility and service adaptability. For this reason, a comprehensive optical transmission service, able to achieve service differentiation all the way down to the optical transport layer, can be provided to service function chaining (SFC). IP over optical network, as a promising networking architecture to interconnect data centers, is the most widely used scenarios of SFC. In this paper, we offer a flexible and dynamic resource allocation method for diverse SFC service requests in the IP over optical network. To do so, we firstly propose the concept of optical service function (OSF) and a multi-layer SFC model. OSF represents the comprehensive optical transmission service (e.g., multicast, low latency, quality of service, etc.), which can be achieved in multi-layer SFC model. OSF can also be considered as a special SF. Secondly, we design a resource allocation algorithm, which we call OSF-oriented optical service scheduling algorithm. It is able to address multi-layer SFC optical service scheduling and provide comprehensive optical transmission service, while meeting multiple optical transmission requirements (e.g., bandwidth, latency, availability). Moreover, the algorithm exploits the concept of Auxiliary Graph. Finally, we compare our algorithm with the Baseline algorithm in simulation. And simulation results show that our algorithm achieves superior performance than Baseline algorithm in low traffic load condition.
Dynamic Bandwidth Allocation with Effective Utilization of Polling Interval over WDM/TDM PON
NASA Astrophysics Data System (ADS)
Ni, Cuiping; Gan, Chaoqin; Gao, Ziyue
2014-12-01
WDM/TDM (wavelength-division multiplexing/time-division multiplexing) PON (passive optical network) appears to be an attractive solution for the next generation optical access networks. Dynamic bandwidth allocation (DBA) plays a crucial role in efficiently and fairly allocating the bandwidth among all users in WDM/TDM PON. In this paper, two dynamic bandwidth allocation schemes (DBA1 and DBA2) are proposed to eliminate the idle time of polling cycles (i.e. polling interval), improve bandwidth utilization and make full use of bandwidth resources. The two DBA schemes adjust the time slot of sending request information and make fair scheduling among users to achieve the effective utilization of polling interval in WDM/TDM PON. The simulation and theoretical analyses verify that the proposed schemes outperform the conventional DBA scheme. We also make comparisons between the two schemes in terms of bandwidth utilization and average packet delay to further demonstrate the effectiveness of the scheme of DBA2.
Zhang, J T; Ma, S-S; Yan, C-G; Zhang, S; Liu, L; Wang, L-J; Liu, B; Yao, Y-W; Yang, Y-H; Fang, X-Y
2017-09-01
Recently, a triple-network model suggested the abnormal interactions between the executive-control network (ECN), default-mode network (DMN) and salience network (SN) are important characteristics of addiction, in which the SN plays a critical role in allocating attentional resources toward the ECN and DMN. Although increasing studies have reported dysfunctions in these brain networks in Internet gaming disorder (IGD), interactions between these networks, particularly in the context of the triple-network model, have not been investigated in IGD. Thus, we aimed to assess alterations in the inter-network interactions of these large-scale networks in IGD, and to associate the alterations with IGD-related behaviors. DMN, ECN and SN were identified using group-level independent component analysis (gICA) in 39 individuals with IGD and 34 age and gender matched healthy controls (HCs). Then alterations in the SN-ECN and SN-DMN connectivity, as well as in the modulation of ECN versus DMN by SN, using a resource allocation index (RAI) developed and validated previously in nicotine addiction, were assessed. Further, associations between these altered network coupling and clinical assessments were also examined. Compared with HCs, IGD had significantly increased SN-DMN connectivity and decreased RAI in right hemisphere (rRAI), and the rRAI in IGD was negatively associated with their scores of craving. These findings suggest that the deficient modulation of ECN versus DMN by SN might provide a mechanistic framework to better understand the neural basis of IGD and might provide novel evidence for the triple-network model in IGD. Copyright © 2017. Published by Elsevier Masson SAS.
Distributed Channel Allocation and Time Slot Optimization for Green Internet of Things.
Ding, Kaiqi; Zhao, Haitao; Hu, Xiping; Wei, Jibo
2017-10-28
In sustainable smart cities, power saving is a severe challenge in the energy-constrained Internet of Things (IoT). Efficient utilization of limited multiple non-overlap channels and time resources is a promising solution to reduce the network interference and save energy consumption. In this paper, we propose a joint channel allocation and time slot optimization solution for IoT. First, we propose a channel ranking algorithm which enables each node to rank its available channels based on the channel properties. Then, we propose a distributed channel allocation algorithm so that each node can choose a proper channel based on the channel ranking and its own residual energy. Finally, the sleeping duration and spectrum sensing duration are jointly optimized to maximize the normalized throughput and satisfy energy consumption constraints simultaneously. Different from the former approaches, our proposed solution requires no central coordination or any global information that each node can operate based on its own local information in a total distributed manner. Also, theoretical analysis and extensive simulations have validated that when applying our solution in the network of IoT: (i) each node can be allocated to a proper channel based on the residual energy to balance the lifetime; (ii) the network can rapidly converge to a collision-free transmission through each node's learning ability in the process of the distributed channel allocation; and (iii) the network throughput is further improved via the dynamic time slot optimization.
Randomly biased investments and the evolution of public goods on interdependent networks
NASA Astrophysics Data System (ADS)
Chen, Wei; Wu, Te; Li, Zhiwu; Wang, Long
2017-08-01
Deciding how to allocate resources between interdependent systems is significant to optimize efficiency. We study the effects of heterogeneous contribution, induced by such interdependency, on the evolution of cooperation, through implementing the public goods games on two-layer networks. The corresponding players on different layers try to share a fixed amount of resources as the initial investment properly. The symmetry breaking of investments between players located on different layers is able to either prevent investments from, or extract them out of the deadlock. Results show that a moderate investment heterogeneity is best favorable for the evolution of cooperation, and random allocation of investment bias suppresses the cooperators at a wide range of the investment bias and the enhancement effect. Further studies on time evolution with different initial strategy configurations show that the non-interdependent cooperators along the interface of interdependent cooperators also are an indispensable factor in facilitating cooperative behavior. Our main results are qualitatively unchanged even diversifying investment bias that is subject to uniform distribution. Our study may shed light on the understanding of the origin of cooperative behavior on interdependent networks.
SDN-Enabled Dynamic Feedback Control and Sensing in Agile Optical Networks
NASA Astrophysics Data System (ADS)
Lin, Likun
Fiber optic networks are no longer just pipelines for transporting data in the long haul backbone. Exponential growth in traffic in metro-regional areas has pushed higher capacity fiber toward the edge of the network, and highly dynamic patterns of heterogeneous traffic have emerged that are often bursty, severely stressing the historical "fat and dumb pipe" static optical network, which would need to be massively over-provisioned to deal with these loads. What is required is a more intelligent network with a span of control over the optical as well as electrical transport mechanisms which enables handling of service requests in a fast and efficient way that guarantees quality of service (QoS) while optimizing capacity efficiency. An "agile" optical network is a reconfigurable optical network comprised of high speed intelligent control system fed by real-time in situ network sensing. It provides fast response in the control and switching of optical signals in response to changing traffic demands and network conditions. This agile control of optical signals is enabled by pushing switching decisions downward in the network stack to the physical layer. Implementing such agility is challenging due to the response dynamics and interactions of signals in the physical layer. Control schemes must deal with issues such as dynamic power equalization, EDFA transients and cascaded noise effects, impairments due to self-phase modulation and dispersion, and channel-to-channel cross talk. If these issues are not properly predicted and mitigated, attempts at dynamic control can drive the optical network into an unstable state. In order to enable high speed actuation of signal modulators and switches, the network controller must be able to make decisions based on predictive models. In this thesis, we consider how to take advantage of Software Defined Networking (SDN) capabilities for network reconfiguration, combined with embedded models that access updates from deployed network monitoring sensors. In order to maintain signal quality while optimizing network resources, we find that it is essential to model and update estimates of the physical link impairments in real-time. In this thesis, we consider the key elements required to enable an agile optical network, with contributions as follows: • Control Framework: extended the SDN concept to include the optical transport network through extensions to the OpenFlow (OF) protocol. A unified SDN control plane is built to facilitate control and management capability across the electrical/packet-switched and optical/circuit-switched portions of the network seamlessly. The SDN control plane serves as a platform to abstract the resources of multilayer/multivendor networks. Through this platform, applications can dynamically request the network resources to meet their service requirements. • Use of In-situ Monitors: enabled real-time physical impairment sensing in the control plane using in-situ Optical Performance Monitoring (OPM) and bit error rate (BER) analyzers. OPM and BER values are used as quantitative indicators of the link status and are fed to the control plane through a high-speed data collection interface to form a closed-loop feedback system to enable adaptive resource allocation. • Predictive Network Model: used a network model embedded in the control layer to study the link status. The estimated results of network status is fed into the control decisions to precompute the network resources. The performance of the network model can be enhanced by the sensing results. • Real-Time Control Algorithms: investigated various dynamic resource allocation mechanisms supporting an agile optical network. Intelligent routing and wavelength switching for recovering from traffic impairments is achieved experimentally in the agile optical network within one second. A distance-adaptive spectrum allocation scheme to address transmission impairments caused by cascaded Wavelength Selective Switches (WSS) is proposed and evaluated for improving network spectral efficiency.
Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862
Local public health resource allocation: limited choices and strategic decisions.
Bekemeier, Betty; Chen, Anthony L-T; Kawakyu, Nami; Yang, Youngran
2013-12-01
Local health department leaders are expected to improve the health of their populations as they "use and contribute to" the evidence base for practice, but effectively providing and utilizing data and evidence for local public health decision making has proven difficult. This study was conducted in 2011 and initiated by Washington State's public health practice-based research network to identify factors influencing local resource allocation and programmatic decisions among public health leaders facing severe funding losses. Quantitative data informed sampling for the collection of interview data. Qualitative methods were used to capture diverse insights of Washington State's local public health leaders in making decisions regarding resource allocation. Local decision-making authority was perceived as greatly restricted by what public health activities were legally mandated and the categoric nature of funding sources, even as some leaders exercised deliberate strategic approaches. One's workforce and board of health were also influential in making decisions regarding resource allocations. Challenges were expressed regarding making use of data and research evidence for decision making. Data were analyzed in 2011-2012. Programmatic mandates, funding restrictions, local stakeholders, and workforce capacity appear to trump factors such as research evidence and perceived community need in public health resource allocation. Study findings highlight tensions between the literature descriptions of what "should" influence decision making in local public health and the realities of practice. Advancements in practice-based research and evidence-based decision making, however, provide opportunities for strengthening the development of evidence and research translation for local decision making to maximize resources and promote effective service provision. © 2013 American Journal of Preventive Medicine Published by American Journal of Preventive Medicine All rights reserved.
Fast packet switching algorithms for dynamic resource control over ATM networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, R.P.; Keattihananant, P.; Chang, T.
1996-12-01
Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types ofmore » schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, S.J.Ben; Lauer, Gregory S.
Extreme-science drives the need for distributed exascale processing and communications that are carefully, yet flexibly, managed. Exponential growth of data for scientific simulations, experimental data, collaborative data analyses, remote visualization and GRID computing requirements of scientists in fields as diverse as high energy physics, climate change, genomics, fusion, synchrotron radiation, material science, medicine, and other scientific disciplines cannot be accommodated by simply applying existing transport protocols to faster pipes. Further, scientific challenges today demand diverse research teams, heightening the need for and increasing the complexity of collaboration. To address these issues within the network layer and physical layer, we havemore » performed a number of research activities surrounding effective allocation and management of elastic optical network (EON) resources, particularly focusing on FlexGrid transponders. FlexGrid transponders support the opportunity to build Layer-1 connections at a wide range of bandwidths and to reconfigure them rapidly. The new flexibility supports complex new ways of using the physical layer that must be carefully managed and hidden from the scientist end-users. FlexGrid networks utilize flexible (or elastic) spectral bandwidths for each data link without using fixed wavelength grids. The flexibility in spectrum allocation brings many appealing features to network operations. Current networks are designed for the worst case impairments in transmission performance and the assigned spectrum is over-provisioned. In contrast, the FlexGrid networks can operate with the highest spectral efficiency and minimum bandwidth for the given traffic demand while meeting the minimum quality of transmission (QoT) requirement. Two primary focuses of our research are: (1) resource and spectrum allocation (RSA) for IP traffic over EONs, and (2) RSA for cross-domain optical networks. Previous work concentrates primarily on large file transfers within a single domain. Adding support for IP traffic changes the nature of the RSA problem: instead of choosing to accept or deny each request for network support, IP traffic is inherently elastic and thus lends itself to a bandwidth maximization formulation. We developed a number of algorithms that could be easily deployed within existing and new FlexGrid networks, leading to networks that better support scientific collaboration. Cross-domain RSA research is essential to support large-scale FlexGrid networks, since configuration information is generally not shared or coordinated across domains. The results presented here are in their early stages. They are technically feasible and practical, but still require coordination among organizations and equipment owners and a higher-layer framework for managing network requests.« less
Cooperative network clustering and task allocation for heterogeneous small satellite network
NASA Astrophysics Data System (ADS)
Qin, Jing
The research of small satellite has emerged as a hot topic in recent years because of its economical prospects and convenience in launching and design. Due to the size and energy constraints of small satellites, forming a small satellite network(SSN) in which all the satellites cooperate with each other to finish tasks is an efficient and effective way to utilize them. In this dissertation, I designed and evaluated a weight based dominating set clustering algorithm, which efficiently organizes the satellites into stable clusters. The traditional clustering algorithms of large monolithic satellite networks, such as formation flying and satellite swarm, are often limited on automatic formation of clusters. Therefore, a novel Distributed Weight based Dominating Set(DWDS) clustering algorithm is designed to address the clustering problems in the stochastically deployed SSNs. Considering the unique features of small satellites, this algorithm is able to form the clusters efficiently and stably. In this algorithm, satellites are separated into different groups according to their spatial characteristics. A minimum dominating set is chosen as the candidate cluster head set based on their weights, which is a weighted combination of residual energy and connection degree. Then the cluster heads admit new neighbors that accept their invitations into the cluster, until the maximum cluster size is reached. Evaluated by the simulation results, in a SSN with 200 to 800 nodes, the algorithm is able to efficiently cluster more than 90% of nodes in 3 seconds. The Deadline Based Resource Balancing (DBRB) task allocation algorithm is designed for efficient task allocations in heterogeneous LEO small satellite networks. In the task allocation process, the dispatcher needs to consider the deadlines of the tasks as well as the residue energy of different resources for best energy utilization. We assume the tasks adopt a Map-Reduce framework, in which a task can consist of multiple subtasks. The DBRB algorithm is deployed on the head node of a cluster. It gathers the status from each cluster member and calculates their Node Importance Factors (NIFs) from the carried resources, residue power and compute capacity. The algorithm calculates the number of concurrent subtasks based on the deadlines, and allocates the subtasks to the nodes according to their NIF values. The simulation results show that when cluster members carry multiple resources, resource are more balanced and rare resources serve longer in DBRB than in the Earliest Deadline First algorithm. We also show that the algorithm performs well in service isolation by serving multiple tasks with different deadlines. Moreover, the average task response time with various cluster size settings is well controlled within deadlines as well. Except non-realtime tasks, small satellites may execute realtime tasks as well. The location-dependent tasks, such as image capturing, data transmission and remote sensing tasks are realtime tasks that are required to be started / finished on specific time. The resource energy balancing algorithm for realtime and non-realtime mixed workload is developed to efficiently schedule the tasks for best system performance. It calculates the residue energy for each resource type and tries to preserve resources and node availability when distributing tasks. Non-realtime tasks can be preempted by realtime tasks to provide better QoS to realtime tasks. I compared the performance of proposed algorithm with a random-priority scheduling algorithm, with only realtime tasks, non-realtime tasks and mixed tasks. It shows the resource energy reservation algorithm outperforms the latter one with both balanced and imbalanced workloads. Although the resource energy balancing task allocation algorithm for mixed workload provides preemption mechanism for realtime tasks, realtime tasks can still fail due to resource exhaustion. For LEO small satellite flies around the earth on stable orbits, the location-dependent realtime tasks can be considered as periodical tasks. Therefore, it is possible to reserve energy for these realtime tasks. The resource energy reservation algorithm preserves energy for the realtime tasks when the execution routine of periodical realtime tasks is known. In order to reserve energy for tasks starting very early in each period that the node does not have enough energy charged, an energy wrapping mechanism is also designed to calculate the residue energy from the previous period. The simulation results show that without energy reservation, realtime task failure rate can reach more than 60% when the workload is highly imbalanced. In contrast, the resource energy reservation produces zero RT task failures and leads to equal or better aggregate system throughput than the non-reservation algorithm. The proposed algorithm also preserves more energy because it avoids task preemption. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Zhao, Fang-Ming; Jiang, Ling-Ge; He, Chen
In this paper, a channel allocation scheme is studied for overlay wireless networks to optimize connection-level QoS. The contributions of our work are threefold. First, a channel allocation strategy using both horizontal channel borrowing and vertical traffic overflowing (HCBVTO) is presented and analyzed. When all the channels in a given macrocell are used, high-mobility real-time handoff requests can borrow channels from adjacent homogeneous cells. In case that the borrowing requests fail, handoff requests may also be overflowed to heterogeneous cells, if possible. Second, high-mobility real-time service is prioritized by allowing it to preempt channels currently used by other services. And third, to meet the high QoS requirements of some services and increase the utilization of radio resources, certain services can be transformed between real-time services and non-real-time services as necessary. Simulation results demonstrate that the proposed schemes can improve system performance.
Yousefi, Milad; Yousefi, Moslem; Ferreira, Ricardo Poley Martins; Kim, Joong Hoon; Fogliatto, Flavio S
2018-01-01
Long length of stay and overcrowding in emergency departments (EDs) are two common problems in the healthcare industry. To decrease the average length of stay (ALOS) and tackle overcrowding, numerous resources, including the number of doctors, nurses and receptionists need to be adjusted, while a number of constraints are to be considered at the same time. In this study, an efficient method based on agent-based simulation, machine learning and the genetic algorithm (GA) is presented to determine optimum resource allocation in emergency departments. GA can effectively explore the entire domain of all 19 variables and identify the optimum resource allocation through evolution and mimicking the survival of the fittest concept. A chaotic mutation operator is used in this study to boost GA performance. A model of the system needs to be run several thousand times through the GA evolution process to evaluate each solution, hence the process is computationally expensive. To overcome this drawback, a robust metamodel is initially constructed based on an agent-based system simulation. The simulation exhibits ED performance with various resource allocations and trains the metamodel. The metamodel is created with an ensemble of the adaptive neuro-fuzzy inference system (ANFIS), feedforward neural network (FFNN) and recurrent neural network (RNN) using the adaptive boosting (AdaBoost) ensemble algorithm. The proposed GA-based optimization approach is tested in a public ED, and it is shown to decrease the ALOS in this ED case study by 14%. Additionally, the proposed metamodel shows a 26.6% improvement compared to the average results of ANFIS, FFNN and RNN in terms of mean absolute percentage error (MAPE). Copyright © 2017 Elsevier B.V. All rights reserved.
A centre-free approach for resource allocation with lower bounds
NASA Astrophysics Data System (ADS)
Obando, Germán; Quijano, Nicanor; Rakoto-Ravalontsalama, Naly
2017-09-01
Since complexity and scale of systems are continuously increasing, there is a growing interest in developing distributed algorithms that are capable to address information constraints, specially for solving optimisation and decision-making problems. In this paper, we propose a novel method to solve distributed resource allocation problems that include lower bound constraints. The optimisation process is carried out by a set of agents that use a communication network to coordinate their decisions. Convergence and optimality of the method are guaranteed under some mild assumptions related to the convexity of the problem and the connectivity of the underlying graph. Finally, we compare our approach with other techniques reported in the literature, and we present some engineering applications.
NASA Astrophysics Data System (ADS)
Kuri, Josu�; Gagnaire, Maurice; Puech, Nicolas
2005-10-01
Virtual concatenation (VCAT) is a Synchronous Digital Hierarchy (SDH)/Synchronous Optical Network (SONET) network functionality recently standardized by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). VCAT provides the flexibility required to efficiently allocate network resources to Ethernet, Fiber Channel (FC), Enterprise System Connection (ESCON), and other important data traffic signals. In this article, we assess the resources' gain provided by VCAT with respect to contiguous concatenation (CCAT) in SDH/SONET mesh transport networks bearing protected scheduled connection demands (SCDs).
Next generation communications satellites: multiple access and network studies
NASA Technical Reports Server (NTRS)
Meadows, H. E.; Schwartz, M.; Stern, T. E.; Ganguly, S.; Kraimeche, B.; Matsuo, K.; Gopal, I.
1982-01-01
Efficient resource allocation and network design for satellite systems serving heterogeneous user populations with large numbers of small direct-to-user Earth stations are discussed. Focus is on TDMA systems involving a high degree of frequency reuse by means of satellite-switched multiple beams (SSMB) with varying degrees of onboard processing. Algorithms for the efficient utilization of the satellite resources were developed. The effect of skewed traffic, overlapping beams and batched arrivals in packet-switched SSMB systems, integration of stream and bursty traffic, and optimal circuit scheduling in SSMB systems: performance bounds and computational complexity are discussed.
McDaid, David; Knapp, Martin; Curran, Claire
2006-01-01
There is growing demand for economic analysis to support strategic decision-making for mental health but the availability of economic evidence, in particular on system performance remains limited. The Mental Health Economics European Network (MHEEN) was set up in 2002 with the broad objective of developing a base for mental health economics information and subsequent work in 17 countries. Data on financing, expenditure and costs, provision of services, workforce, employment and capacity for economic evaluation were collected through bespoke questionnaires developed iteratively by the Network. This was augmented by a literature review and analysis of international databases. Findings on financing alone suggest that in many European countries mental health appears to be neglected while mechanisms for resource allocation are rarely linked to objective measure of population mental health needs. Numerous economic barriers and potential solutions were identified. Economic incentives may be one way of promoting change, although there is no 'one size fits all solution. There are significant benefits and synergies to be gained from the continuing development of networks such as MHEEN. In particular the analysis can be used to inform developments in Central and Eastern Europe. For instance there is much that can be learnt on both how the balance of care between institutional and non-institutional care has changed and on the role played by economic incentives in ensuring that resources were used to develop alternative community-based systems.
New paradigms for organ allocation and distribution in liver transplantation.
Kalra, Avash; Biggins, Scott W
2018-05-01
The 'Final Rule,' issued by the Health Resources and Service Administration in 2000, mandated that liver allocation policy should be based on disease severity and probability of death, and - among other factors - should be independent of a candidate's residence or listing. As a result, the Organ Procurement Transplantation Network/United Network for Organ Sharing (UNOS) has explored policy changes addressing geographic disparities without compromising outcomes. Major paradigm shifts are underway in U.S. liver allocation policy. New hepatocellular carcinoma exception policy incorporates tumor characteristics associated with posttransplantation outcomes, whereas a National Liver Review Board will promote a standardized process for awarding exception points. Meanwhile, following extensive debate, new allocation policy aims to reduce geographic disparity by broadening sharing to the UNOS region and 150-mile circle around the donor hospital for liver transplant candidates with a calculated model for end-stage liver disease score at least 32. Unnecessary organ travel will be reduced by granting 3 'proximity points' to candidates within the same donation service area (DSA) as a liver donor or within 150 nautical miles of the donor hospital, regardless of DSA or UNOS region. This review provides an evaluation of major policy changes in liver allocation from 2016 to 2018.
Formica, R N; Aeder, M; Boyle, G; Kucheryavaya, A; Stewart, D; Hirose, R; Mulligan, D
2016-03-01
The introduction of the Mayo End-Stage Liver Disease score into the Organ Procurement and Transplantation Network (OPTN) deceased donor liver allocation policy in 2002 has led to a significant increase in the number of simultaneous liver-kidney transplants in the United States. Despite multiple attempts, clinical science has not been able to reliably predict which liver candidates with renal insufficiency will recover renal function or need a concurrent kidney transplant. The problem facing the transplant community is that currently there are almost no medical criteria for candidacy for simultaneous liver-kidney allocation in the United States, and this lack of standardized rules and medical eligibility criteria for kidney allocation with a liver is counter to OPTN's Final Rule. Moreover, almost 50% of simultaneous liver-kidney organs come from a donor with a kidney donor profile index of ≤0.35. The kidneys from these donors could otherwise be allocated to pediatric recipients, young adults or prior organ donors. This paper presents the new OPTN and United Network of Organ Sharing simultaneous liver-kidney allocation policy, provides the supporting evidence and explains the rationale on which the policy was based. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON
NASA Astrophysics Data System (ADS)
Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling
2017-12-01
WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.
A Self-organized MIMO-OFDM-based Cellular Network
NASA Astrophysics Data System (ADS)
Grünheid, Rainer; Fellenberg, Christian
2012-05-01
This paper presents a system proposal for a self-organized cellular network, which is based on the MIMO-OFDM transmission technique. Multicarrier transmission, combined with appropriate beamforming concepts, yields high bandwidth-efficiency and shows a robust behavior in multipath radio channels. Moreover, it provides a fine and tuneable granularity of space-time-frequency resources. Using a TDD approach and interference measurements in each cell, the Base Stations (BSs) decide autonomously which of the space-time-frequency resource blocks are allocated to the Mobile Terminals (MTs) in the cell, in order to fulfil certain Quality of Service (QoS) parameters. Since a synchronized Single Frequency Network (SFN), i.e., a re-use factor of one is applied, the resource blocks can be shared adaptively and flexibly among the cells, which is very advantageous in the case of a non-uniform MT distribution.
Transmission Scheduling and Routing Algorithms for Delay Tolerant Networks
NASA Technical Reports Server (NTRS)
Dudukovich, Rachel; Raible, Daniel E.
2016-01-01
The challenges of data processing, transmission scheduling and routing within a space network present a multi-criteria optimization problem. Long delays, intermittent connectivity, asymmetric data rates and potentially high error rates make traditional networking approaches unsuitable. The delay tolerant networking architecture and protocols attempt to mitigate many of these issues, yet transmission scheduling is largely manually configured and routes are determined by a static contact routing graph. A high level of variability exists among the requirements and environmental characteristics of different missions, some of which may allow for the use of more opportunistic routing methods. In all cases, resource allocation and constraints must be balanced with the optimization of data throughput and quality of service. Much work has been done researching routing techniques for terrestrial-based challenged networks in an attempt to optimize contact opportunities and resource usage. This paper examines several popular methods to determine their potential applicability to space networks.
Nanoscale molecular communication networks: a game-theoretic perspective
NASA Astrophysics Data System (ADS)
Jiang, Chunxiao; Chen, Yan; Ray Liu, K. J.
2015-12-01
Currently, communication between nanomachines is an important topic for the development of novel devices. To implement a nanocommunication system, diffusion-based molecular communication is considered as a promising bio-inspired approach. Various technical issues about molecular communications, including channel capacity, noise and interference, and modulation and coding, have been studied in the literature, while the resource allocation problem among multiple nanomachines has not been well investigated, which is a very important issue since all the nanomachines share the same propagation medium. Considering the limited computation capability of nanomachines and the expensive information exchange cost among them, in this paper, we propose a game-theoretic framework for distributed resource allocation in nanoscale molecular communication systems. We first analyze the inter-symbol and inter-user interference, as well as bit error rate performance, in the molecular communication system. Based on the interference analysis, we formulate the resource allocation problem as a non-cooperative molecule emission control game, where the Nash equilibrium is found and proved to be unique. In order to improve the system efficiency while guaranteeing fairness, we further model the resource allocation problem using a cooperative game based on the Nash bargaining solution, which is proved to be proportionally fair. Simulation results show that the Nash bargaining solution can effectively ensure fairness among multiple nanomachines while achieving comparable social welfare performance with the centralized scheme.
SDN architecture for optical packet and circuit integrated networks
NASA Astrophysics Data System (ADS)
Furukawa, Hideaki; Miyazawa, Takaya
2016-02-01
We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.
Adaptive Management of Computing and Network Resources for Spacecraft Systems
NASA Technical Reports Server (NTRS)
Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)
2000-01-01
It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.
Performance Analysis on the Coexistence of Multiple Cognitive Radio Networks
2015-05-28
the scarce spectrum resources. Cognitive radio is a key in minimizing the spectral congestion through its adaptability, where the radio parameters...static allocation of spectrum results in congestion in some parts of the spectrum and non use in some others, therefore, spectra utilization is...well as the secondary user (SU) activities in multiple CR networks. It is shown that the scheduler provided much needed gain during congestions . However
Space-Time Processing for Tactical Mobile Ad Hoc Networks
2007-08-01
rates in mobile ad hoc networks. In addition, he has considered the design of a cross-layer multi-user resource allocation framework using a... framework for many-to-one communication. In this context, multiple nodes cooperate to transmit their packets simultaneously to a single node using multi...spatially multiplexed signals transmitted from multiple nodes. Our goal is to form a framework that activates different sets of communication links
MASM: a market architecture for sensor management in distributed sensor networks
NASA Astrophysics Data System (ADS)
Viswanath, Avasarala; Mullen, Tracy; Hall, David; Garga, Amulya
2005-03-01
Rapid developments in sensor technology and its applications have energized research efforts towards devising a firm theoretical foundation for sensor management. Ubiquitous sensing, wide bandwidth communications and distributed processing provide both opportunities and challenges for sensor and process control and optimization. Traditional optimization techniques do not have the ability to simultaneously consider the wildly non-commensurate measures involved in sensor management in a single optimization routine. Market-oriented programming provides a valuable and principled paradigm to designing systems to solve this dynamic and distributed resource allocation problem. We have modeled the sensor management scenario as a competitive market, wherein the sensor manager holds a combinatorial auction to sell the various items produced by the sensors and the communication channels. However, standard auction mechanisms have been found not to be directly applicable to the sensor management domain. For this purpose, we have developed a specialized market architecture MASM (Market architecture for Sensor Management). In MASM, the mission manager is responsible for deciding task allocations to the consumers and their corresponding budgets and the sensor manager is responsible for resource allocation to the various consumers. In addition to having a modified combinatorial winner determination algorithm, MASM has specialized sensor network modules that address commensurability issues between consumers and producers in the sensor network domain. A preliminary multi-sensor, multi-target simulation environment has been implemented to test the performance of the proposed system. MASM outperformed the information theoretic sensor manager in meeting the mission objectives in the simulation experiments.
Overhead-Performance Tradeoffs in Distributed Wireless Networks
2015-06-26
grew this fraction. See the tutorial for details and acronym definitions. Key Publication & Abstract • Gwanmo Ku and John MacLaren Walsh, Resource...tradeoffs. Key Publication & Abstract • Gwanmo Ku , Jie Ren, and John MacLaren Walsh, Computing the Rate Distortion Region for the CEO Problem with...IID. • Jie Ren, Bradford Boyle, Gwanmo Ku , Steven Weber, John MacLaren Walsh, Overhead Performance Tradeoffs A Resource Allocation Perspective, IEEE
ERIC Educational Resources Information Center
Groff, Warren H.
An ultimate purpose of education is human resource development to provide society with a critical mass of intellectual capital and competent workforces. To accomplish this end, leaders implement planning processes to guide policy-making, develop institutions, and allocate resources. Although new information technologies are becoming commonplace in…
Transnational cocaine and heroin flow networks in western Europe: A comparison.
Chandra, Siddharth; Joba, Johnathan
2015-08-01
A comparison of the properties of drug flow networks for cocaine and heroin in a group of 17 western European countries is provided with the aim of understanding the implications of their similarities and differences for drug policy. Drug flow data for the cocaine and heroin networks were analyzed using the UCINET software package. Country-level characteristics including hub and authority scores, core and periphery membership, and centrality, and network-level characteristics including network density, the results of a triad census, and the final fitness of the core-periphery structure of the network, were computed and compared between the two networks. The cocaine network contains fewer path redundancies and a smaller, more tightly knit core than the heroin network. Authorities, hubs and countries central to the cocaine network tend to have higher hub, authority, and centrality scores than those in the heroin network. The core-periphery and hub-authority structures of the cocaine and heroin networks reflect the west-to-east and east-to-west patterns of flow of cocaine and heroin respectively across Europe. The key nodes in the cocaine and heroin networks are generally distinct from one another. The analysis of drug flow networks can reveal important structural features of trafficking networks that can be useful for the allocation of scarce drug control resources. The identification of authorities, hubs, network cores, and network-central nodes can suggest foci for the allocation of these resources. In the case of Europe, while some countries are important to both cocaine and heroin networks, different sets of countries occupy positions of prominence in the two networks. The distinct nature of the cocaine and heroin networks also suggests that a one-size-fits-all supply- and interdiction-focused policy may not work as well as an approach that takes into account the particular characteristics of each network. Copyright © 2015 Elsevier B.V. All rights reserved.
Software for Allocating Resources in the Deep Space Network
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Borden, Chester; Zendejas, Silvino; Baldwin, John
2003-01-01
TIGRAS 2.0 is a computer program designed to satisfy a need for improved means for analyzing the tracking demands of interplanetary space-flight missions upon the set of ground antenna resources of the Deep Space Network (DSN) and for allocating those resources. Written in Microsoft Visual C++, TIGRAS 2.0 provides a single rich graphical analysis environment for use by diverse DSN personnel, by connecting to various data sources (relational databases or files) based on the stages of the analyses being performed. Notable among the algorithms implemented by TIGRAS 2.0 are a DSN antenna-load-forecasting algorithm and a conflict-aware DSN schedule-generating algorithm. Computers running TIGRAS 2.0 can also be connected using SOAP/XML to a Web services server that provides analysis services via the World Wide Web. TIGRAS 2.0 supports multiple windows and multiple panes in each window for users to view and use information, all in the same environment, to eliminate repeated switching among various application programs and Web pages. TIGRAS 2.0 enables the use of multiple windows for various requirements, trajectory-based time intervals during which spacecraft are viewable, ground resources, forecasts, and schedules. Each window includes a time navigation pane, a selection pane, a graphical display pane, a list pane, and a statistics pane.
Optical datacenter network employing slotted (TDMA) operation for dynamic resource allocation
NASA Astrophysics Data System (ADS)
Bakopoulos, P.; Tokas, K.; Spatharakis, C.; Patronas, I.; Landi, G.; Christodoulopoulos, K.; Capitani, M.; Kyriakos, A.; Aziz, M.; Reisis, D.; Varvarigos, E.; Zahavi, E.; Avramopoulos, H.
2018-02-01
The soaring traffic demands in datacenter networks (DCNs) are outpacing progresses in CMOS technology, challenging the bandwidth and energy scalability of currently established technologies. Optical switching is gaining traction as a promising path for sustaining the explosive growth of DCNs; however, its practical deployment necessitates extensive modifications to the network architecture and operation, tailored to the technological particularities of optical switches (i.e. no buffering, limitations in radix size and speed). European project NEPHELE is developing an optical network infrastructure that leverages optical switching within a software-defined networking (SDN) framework to overcome the bandwidth and energy scaling challenges of datacenter networks. An experimental validation of the NEPHELE data plane is reported based on commercial off-the-shelf optical components controlled by FPGA boards. To facilitate dynamic allocation of the network resources and perform collision-free routing in a lossless network environment, slotted operation is employed (i.e. using time-division multiple-access - TDMA). Error-free operation of the NEPHELE data plane is verified for 200 μs slots in various scenarios that involve communication between Ethernet hosts connected to custom-designed top-of-rack (ToR) switches, located in the same or in different datacenter pods. Control of the slotted data plane is obtained through an SDN framework comprising an OpenDaylight controller with appropriate add-ons. Communication between servers in the optical-ToR is demonstrated with various routing scenarios, concerning communication between hosts located in the same rack or in different racks, within the same or different datacenter pods. Error-free operation is confirmed for all evaluated scenarios, underpinning the feasibility of the NEPHELE architecture.
Schuurman, Nadine; Leight, Margo; Berube, Myriam
2008-01-01
Background The creation of successful health policy and location of resources increasingly relies on evidence-based decision-making. The development of intuitive, accessible tools to analyse, display and disseminate spatial data potentially provides the basis for sound policy and resource allocation decisions. As health services are rationalized, the development of tools such graphical user interfaces (GUIs) is especially valuable at they assist decision makers in allocating resources such that the maximum number of people are served. GIS can used to develop GUIs that enable spatial decision making. Results We have created a Web-based GUI (wGUI) to assist health policy makers and administrators in the Canadian province of British Columbia make well-informed decisions about the location and allocation of time-sensitive service capacities in rural regions of the province. This tool integrates datasets for existing hospitals and services, regional populations and road networks to allow users to ascertain the percentage of population in any given service catchment who are served by a specific health service, or baskets of linked services. The wGUI allows policy makers to map trauma and obstetric services against rural populations within pre-specified travel distances, illustrating service capacity by region. Conclusion The wGUI can be used by health policy makers and administrators with little or no formal GIS training to visualize multiple health resource allocation scenarios. The GUI is poised to become a critical decision-making tool especially as evidence is increasingly required for distribution of health services. PMID:18793428
NASA Astrophysics Data System (ADS)
Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2012-01-01
Surveillance applications usually require high levels of video quality, resulting in high power consumption. The existence of a well-behaved scheme to balance video quality and power consumption is crucial for the system's performance. In the present work, we adopt the game-theoretic approach of Kalai-Smorodinsky Bargaining Solution (KSBS) to deal with the problem of optimal resource allocation in a multi-node wireless visual sensor network (VSN). In our setting, the Direct Sequence Code Division Multiple Access (DS-CDMA) method is used for channel access, while a cross-layer optimization design, which employs a central processing server, accounts for the overall system efficacy through all network layers. The task assigned to the central server is the communication with the nodes and the joint determination of their transmission parameters. The KSBS is applied to non-convex utility spaces, efficiently distributing the source coding rate, channel coding rate and transmission powers among the nodes. In the underlying model, the transmission powers assume continuous values, whereas the source and channel coding rates can take only discrete values. Experimental results are reported and discussed to demonstrate the merits of KSBS over competing policies.
Least loaded and route fragmentation aware RSA strategies for elastic optical networks
NASA Astrophysics Data System (ADS)
Batham, Deepak; Yadav, Dharmendra Singh; Prakash, Shashi
2017-12-01
Elastic optical networks (EONs) provide flexibility to assign wide range of spectral resources to the connection requests. In this manuscript, we address two issues related to spectrum assignment in EONs: the non uniform spectrum assignment along different links of the route and the spectrum fragmentation in the network. To address these issues, two routing and spectrum assignment (RSA) strategies have been proposed: Least Loaded RSA (LLRSA) and Route Fragmentation Aware RSA (RFARSA). The LLRSA allocates spectrum homogeneously along different links in the network, where as RFARSA accords priority to the routes which are less fragmented. To highlight the salient features of the two strategies, two new metrics, route fragmentation index (RFI) and standard deviation (SD) are introduced. RFI is defined as the ratio of non-contiguous FSs to the total available free FSs on the route, and SD relates to the measure of non-uniformity in the allocation of resources on the links in the network. A simulation program has been developed to evaluate the performance of the proposed (LLRSA and RFARSA) strategies, and the existing strategies of shortest path RSA (SPRSA) and spectrum compactness based defragmentation (SCD) strategies, on the metric of RFI, bandwidth blocking probability (BBP), network capacity utilized, and SD. The variation in the metrics on the basis of number of requests and the bandwidth (number of FSs) requested has been studied. It has been conclusively established that the proposed strategies (LLRSA and RFARSA) outperform the existing strategies in terms of all the metrics.
Harris, Claire; Green, Sally; Ramsey, Wayne; Allen, Kelly; King, Richard
2017-05-04
This is the first in a series of papers reporting Sustainability in Health care by Allocating Resources Effectively (SHARE). The SHARE Program is an investigation of concepts, opportunities, methods and implications for evidence-based investment and disinvestment in health technologies and clinical practices in a local healthcare setting. The papers in this series are targeted at clinicians, managers, policy makers, health service researchers and implementation scientists working in this context. This paper presents an overview of the organisation-wide, systematic, integrated, evidence-based approach taken by one Australian healthcare network and provides an introduction and guide to the suite of papers reporting the experiences and outcomes.
Machine learning based Intelligent cognitive network using fog computing
NASA Astrophysics Data System (ADS)
Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik
2017-05-01
In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.
Configuration of Wireless Cooperative/Sensor Networks
2008-05-25
WSN), the advantages of cooperation can be further exploited by optimally allocating the energy and bandwidth resources among users based on the... consumption and extend system lifetime [Sin98]. The implementation of a minimum energy routing protocol is discussed in [Dos02a, Dos02b]. An online...power consumption in the network given the required SER at the destination. For example, with source power Ps=20dB, the EP algorithm requires one relay
Scheduling for Emergency Tasks in Industrial Wireless Sensor Networks
Xia, Changqing; Kong, Linghe; Zeng, Peng
2017-01-01
Wireless sensor networks (WSNs) are widely applied in industrial manufacturing systems. By means of centralized control, the real-time requirement and reliability can be provided by WSNs in industrial production. Furthermore, many approaches reserve resources for situations in which the controller cannot perform centralized resource allocation. The controller assigns these resources as it becomes aware of when and where accidents have occurred. However, the reserved resources are limited, and such incidents are low-probability events. In addition, resource reservation may not be effective since the controller does not know when and where accidents will actually occur. To address this issue, we improve the reliability of scheduling for emergency tasks by proposing a method based on a stealing mechanism. In our method, an emergency task is transmitted by stealing resources allocated to regular flows. The challenges addressed in our work are as follows: (1) emergencies occur only occasionally, but the industrial system must deliver the corresponding flows within their deadlines when they occur; (2) we wish to minimize the impact of emergency flows by reducing the number of stolen flows. The contributions of this work are two-fold: (1) we first define intersections and blocking as new characteristics of flows; and (2) we propose a series of distributed routing algorithms to improve the schedulability and to reduce the impact of emergency flows. We demonstrate that our scheduling algorithm and analysis approach are better than the existing ones by extensive simulations. PMID:28726738
Use of artificial neural networks in applying methodology for allocating health resources.
Rosas, Marina Araújo; Bezerra, Adriana Falangola Benjamin; Duarte-Neto, Paulo José
2013-02-01
To describe the construction of a factor of allocation of financial resources, based on the population's health needs. Quantitative study with data collected from public databases referring to the state of Pernambuco, Northeastern Brazil, between 2000 and 2010. Variables which reflected epidemiological, demographic, socio-economic and educational processes were selected in order to create a factor of allocation which highlighted the health needs of the population. The data sources were: SUS (Brazilian Unified Health System) Department of Computer Science, Atlas of Human Development in Brazil, IBGE (Brazilian Institute of Geography and Statistics), Information System on Public Health Budgets, National Treasury and data from the Pernambuco Health Secretariat between 2000 and 2010. Pearson's coefficient was used to assess linear correlation and the factor of allocation was calculated using analysis by artificial neural networks. The quartiles of the municipalities were defined according to their health needs. The distribution shown here highlights that all the coastal region, a good part of the Mata Norte and Mata Sul regions and the Agreste Setentrional and Agreste Central regions are in Quartile 1, that which has the largest number of municipalities. The Agreste Meridional region had municipalities in all of the quartiles. In the Pajeú/Moxotó region, many of the municipalities were in Quartile 1. Similar distribution was verified in the Sertão Central region. In the Araripe region, the majority of the municipalities were in Quartiles 3 or 4 and the São Francisco region was divided between Quartiles 1, 2 and 3. The factor of allocation grouped together municipalities of Pernambuco according to variables related to public health needs and separated those with extreme needs, requiring greater financial support, from those with lesser needs.
The Development of Attention Skills in Action Video Game Players
ERIC Educational Resources Information Center
Dye, M. W. G.; Green, C. S.; Bavelier, D.
2009-01-01
Previous research suggests that action video game play improves attentional resources, allowing gamers to better allocate their attention across both space and time. In order to further characterize the plastic changes resulting from playing these video games, we administered the Attentional Network Test (ANT) to action game players and…
System architecture for an advanced Canadian communications satellite demonstration mission
NASA Astrophysics Data System (ADS)
Takats, P.; Irani, S.
1992-03-01
An advanced communications satellite system that provides single hop interconnectivity and interworking for both a personal communications network and an advanced private business network in the Ka and Ku bands respectively, is presented. An overall network perspective is discussed that studies the interface of such an advanced satellite communication system to the terrestrial network in the context of the Open Systems Interconnection model. It is shown that this proposed satellite system can dynamically establish links and efficiently allocate the satellite resource amongst the user terminal population for a mix of data and voice traffic.
Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong
2015-01-01
In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896
Chiang, Yen-Sheng
2015-01-01
The fact that the more resourceful people are sharing with the poor to mitigate inequality—egalitarian sharing—is well documented in the behavioral science research. How inequality evolves as a result of egalitarian sharing is determined by the structure of “who gives whom”. While most prior experimental research investigates allocation of resources in dyads and groups, the paper extends the research of egalitarian sharing to networks for a more generalized structure of social interaction. An agent-based model is proposed to predict how actors, linked in networks, share their incomes with neighbors. A laboratory experiment with human subjects further shows that income distributions evolve to different states in different network topologies. Inequality is significantly reduced in networks where the very rich and the very poor are connected so that income discrepancy is salient enough to motivate the rich to share their incomes with the poor. The study suggests that social networks make a difference in how egalitarian sharing influences the evolution of inequality. PMID:26061642
Neural bases of selective attention in action video game players.
Bavelier, D; Achtman, R L; Mani, M; Föcker, J
2012-05-15
Over the past few years, the very act of playing action video games has been shown to enhance several different aspects of visual selective attention, yet little is known about the neural mechanisms that mediate such attentional benefits. A review of the aspects of attention enhanced in action game players suggests there are changes in the mechanisms that control attention allocation and its efficiency (Hubert-Wallander, Green, & Bavelier, 2010). The present study used brain imaging to test this hypothesis by comparing attentional network recruitment and distractor processing in action gamers versus non-gamers as attentional demands increased. Moving distractors were found to elicit lesser activation of the visual motion-sensitive area (MT/MST) in gamers as compared to non-gamers, suggestive of a better early filtering of irrelevant information in gamers. As expected, a fronto-parietal network of areas showed greater recruitment as attentional demands increased in non-gamers. In contrast, gamers barely engaged this network as attentional demands increased. This reduced activity in the fronto-parietal network that is hypothesized to control the flexible allocation of top-down attention is compatible with the proposal that action game players may allocate attentional resources more automatically, possibly allowing more efficient early filtering of irrelevant information. Copyright © 2011 Elsevier Ltd. All rights reserved.
Energy-efficient routing, modulation and spectrum allocation in elastic optical networks
NASA Astrophysics Data System (ADS)
Tan, Yanxia; Gu, Rentao; Ji, Yuefeng
2017-07-01
With tremendous growth in bandwidth demand, energy consumption problem in elastic optical networks (EONs) becomes a hot topic with wide concern. The sliceable bandwidth-variable transponder in EON, which can transmit/receive multiple optical flows, was recently proposed to improve a transponder's flexibility and save energy. In this paper, energy-efficient routing, modulation and spectrum allocation (EE-RMSA) in EONs with sliceable bandwidth-variable transponder is studied. To decrease the energy consumption, we develop a Mixed Integer Linear Programming (MILP) model with corresponding EE-RMSA algorithm for EONs. The MILP model jointly considers the modulation format and optical grooming in the process of routing and spectrum allocation with the objective of minimizing the energy consumption. With the help of genetic operators, the EE-RMSA algorithm iteratively optimizes the feasible routing path, modulation format and spectrum resources solutions by explore the whole search space. In order to save energy, the optical-layer grooming strategy is designed to transmit the lightpath requests. Finally, simulation results verify that the proposed scheme is able to reduce the energy consumption of the network while maintaining the blocking probability (BP) performance compare with the existing First-Fit-KSP algorithm, Iterative Flipping algorithm and EAMGSP algorithm especially in large network topology. Our results also demonstrate that the proposed EE-RMSA algorithm achieves almost the same performance as MILP on an 8-node network.
Dynamic resource allocation in a hierarchical multiprocessor system: A preliminary study
NASA Technical Reports Server (NTRS)
Ngai, Tin-Fook
1986-01-01
An integrated system approach to dynamic resource allocation is proposed. Some of the problems in dynamic resource allocation and the relationship of these problems to system structures are examined. A general dynamic resource allocation scheme is presented. A hierarchial system architecture which dynamically maps between processor structure and programs at multiple levels of instantiations is described. Simulation experiments were conducted to study dynamic resource allocation on the proposed system. Preliminary evaluation based on simple dynamic resource allocation algorithms indicates that with the proposed system approach, the complexity of dynamic resource management could be significantly reduced while achieving reasonable effective dynamic resource allocation.
Rizvi, Sanam Shahla; Chung, Tae-Sun
2010-01-01
Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.
An approximate dynamic programming approach to resource management in multi-cloud scenarios
NASA Astrophysics Data System (ADS)
Pietrabissa, Antonio; Priscoli, Francesco Delli; Di Giorgio, Alessandro; Giuseppi, Alessandro; Panfili, Martina; Suraci, Vincenzo
2017-03-01
The programmability and the virtualisation of network resources are crucial to deploy scalable Information and Communications Technology (ICT) services. The increasing demand of cloud services, mainly devoted to the storage and computing, requires a new functional element, the Cloud Management Broker (CMB), aimed at managing multiple cloud resources to meet the customers' requirements and, simultaneously, to optimise their usage. This paper proposes a multi-cloud resource allocation algorithm that manages the resource requests with the aim of maximising the CMB revenue over time. The algorithm is based on Markov decision process modelling and relies on reinforcement learning techniques to find online an approximate solution.
Real-time distributed scheduling algorithm for supporting QoS over WDM networks
NASA Astrophysics Data System (ADS)
Kam, Anthony C.; Siu, Kai-Yeung
1998-10-01
Most existing or proposed WDM networks employ circuit switching, typically with one session having exclusive use of one entire wavelength. Consequently they are not suitable for data applications involving bursty traffic patterns. The MIT AON Consortium has developed an all-optical LAN/MAN testbed which provides time-slotted WDM service and employs fast-tunable transceivers in each optical terminal. In this paper, we explore extensions of this service to achieve fine-grained statistical multiplexing with different virtual circuits time-sharing the wavelengths in a fair manner. In particular, we develop a real-time distributed protocol for best-effort traffic over this time-slotted WDM service with near-optical fairness and throughput characteristics. As an additional design feature, our protocol supports the allocation of guaranteed bandwidths to selected connections. This feature acts as a first step towards supporting integrated services and quality-of-service guarantees over WDM networks. To achieve high throughput, our approach is based on scheduling transmissions, as opposed to collision- based schemes. Our distributed protocol involves one MAN scheduler and several LAN schedulers (one per LAN) in a master-slave arrangement. Because of propagation delays and limits on control channel capacities, all schedulers are designed to work with partial, delayed traffic information. Our distributed protocol is of the `greedy' type to ensure fast execution in real-time in response to dynamic traffic changes. It employs a hybrid form of rate and credit control for resource allocation. We have performed extensive simulations, which show that our protocol allocates resources (transmitters, receivers, wavelengths) fairly with high throughput, and supports bandwidth guarantees.
Simulation Of Research And Development Projects
NASA Technical Reports Server (NTRS)
Miles, Ralph F.
1987-01-01
Measures of preference for alternative project plans calculated. Simulation of Research and Development Projects (SIMRAND) program aids in optimal allocation of research and development resources needed to achieve project goals. Models system subsets or project tasks as various network paths to final goal. Each path described in terms of such task variables as cost per hour, cost per unit, and availability of resources. Uncertainty incorporated by treating task variables as probabilistic random variables. Written in Microsoft FORTRAN 77.
McBain, Ryan K; Jerome, Gregory; Warsh, Jonathan; Browning, Micaela; Mistry, Bipin; Faure, Peterson Abnis I; Pierre, Claire; Fang, Anna P; Mugunga, Jean Claude; Rhatigan, Joseph; Leandre, Fernet; Kaplan, Robert
2016-01-01
Low-income and middle-income countries account for over 80% of the world's infectious disease burden, but <20% of global expenditures on health. In this context, judicious resource allocation can mean the difference between life and death, not just for individual patients, but entire patient populations. Understanding the cost of healthcare delivery is a prerequisite for allocating health resources, such as staff and medicines, in a way that is effective, efficient, just and fair. Nevertheless, health costs are often poorly understood, undermining effectiveness and efficiency of service delivery. We outline shortcomings, and consequences, of common approaches to estimating the cost of healthcare in low-resource settings, as well as advantages of a newly introduced approach in healthcare known as time-driven activity-based costing (TDABC). TDABC is a patient-centred approach to cost analysis, meaning that it begins by studying the flow of individual patients through the health system, and measuring the human, equipment and facility resources used to treat the patients. The benefits of this approach are numerous: fewer assumptions need to be made, heterogeneity in expenditures can be studied, service delivery can be modelled and streamlined and stronger linkages can be established between resource allocation and health outcomes. TDABC has demonstrated significant benefits for improving health service delivery in high-income countries but has yet to be adopted in resource-limited settings. We provide an illustrative case study of its application throughout a network of hospitals in Haiti, as well as a simplified framework for policymakers to apply this approach in low-resource settings around the world. PMID:28588971
McBain, Ryan K; Jerome, Gregory; Warsh, Jonathan; Browning, Micaela; Mistry, Bipin; Faure, Peterson Abnis I; Pierre, Claire; Fang, Anna P; Mugunga, Jean Claude; Rhatigan, Joseph; Leandre, Fernet; Kaplan, Robert
2016-01-01
Low-income and middle-income countries account for over 80% of the world's infectious disease burden, but <20% of global expenditures on health. In this context, judicious resource allocation can mean the difference between life and death, not just for individual patients, but entire patient populations. Understanding the cost of healthcare delivery is a prerequisite for allocating health resources, such as staff and medicines, in a way that is effective, efficient, just and fair. Nevertheless, health costs are often poorly understood, undermining effectiveness and efficiency of service delivery. We outline shortcomings, and consequences, of common approaches to estimating the cost of healthcare in low-resource settings, as well as advantages of a newly introduced approach in healthcare known as time-driven activity-based costing (TDABC). TDABC is a patient-centred approach to cost analysis, meaning that it begins by studying the flow of individual patients through the health system, and measuring the human, equipment and facility resources used to treat the patients. The benefits of this approach are numerous: fewer assumptions need to be made, heterogeneity in expenditures can be studied, service delivery can be modelled and streamlined and stronger linkages can be established between resource allocation and health outcomes. TDABC has demonstrated significant benefits for improving health service delivery in high-income countries but has yet to be adopted in resource-limited settings. We provide an illustrative case study of its application throughout a network of hospitals in Haiti, as well as a simplified framework for policymakers to apply this approach in low-resource settings around the world.
Market-oriented Programming Using Small-world Networks for Controlling Building Environments
NASA Astrophysics Data System (ADS)
Shigei, Noritaka; Miyajima, Hiromi; Osako, Tsukasa
The market model, which is one of the economic activity models, is modeled as an agent system, and applying the model to the resource allocation problem has been studied. For air conditioning control of building, which is one of the resource allocation problems, an effective method based on the agent system using auction has been proposed for traditional PID controller. On the other hand, it has been considered that this method is performed by decentralized control. However, its decentralization is not perfect, and its performace is not enough. In this paper, firstly, we propose a perfectly decentralized agent model and show its performance. Secondly, in order to improve the model, we propose the agent model based on small-world model. The effectiveness of the proposed model is shown by simulation.
Resource allocation in road infrastructure using ANP priorities with ZOGP formulation-A case study
NASA Astrophysics Data System (ADS)
Alias, Suriana; Adna, Norfarziah; Soid, Siti Khuzaimah; Kardri, Mahani
2013-09-01
Road Infrastructure (RI) project evaluation and selection is concern with the allocation of scarce organizational resources. In this paper, it is suggest an improved RI project selection methodology which reflects interdependencies among evaluation criteria and candidate projects. Fuzzy Delphi Method (FDM) is use to evoking expert group opinion and also to determine a degree of interdependences relationship between the alternative projects. In order to provide a systematic approach to set priorities among multi-criteria and trade-off among objectives, Analytic Network Process (ANP) is suggested to be applied prior to Zero-One Goal Programming (ZOGP) formulation. Specifically, this paper demonstrated how to combined FDM and ANP with ZOGP through a real-world RI empirical example on an ongoing decision-making project in Johor, Malaysia.
Predicting costs of alien species surveillance across varying transportation networks
Laura Blackburn; Rebecca Epanchin-Niell; Alexandra Thompson; Andrew Liebhold; Jacqueline Beggs
2017-01-01
Efforts to detect and eradicate invading populations before they establish are a critical component of national biosecurity programmes. An essential element for maximizing the efficiency of these efforts is the balancing of expenditures on surveillance (e.g. trapping) versus treatment (e.g. eradication). Identifying the optimal allocation of resources towards...
Ma, Yongtao; Zhou, Liuji; Liu, Kaihua
2013-01-01
The paper presents a joint subcarrier-pair based resource allocation algorithm in order to improve the efficiency and fairness of cooperative multiuser orthogonal frequency division multiplexing (MU-OFDM) cognitive radio (CR) systems. A communication model where one source node communicates with one destination node assisted by one half-duplex decode-and-forward (DF) relay is considered in the paper. An interference-limited environment is considered, with the constraint of transmitted sum-power over all channels and aggregate average interference towards multiple primary users (PUs). The proposed resource allocation algorithm is capable of maximizing both the system transmission efficiency and fairness among secondary users (SUs). Besides, the proposed algorithm can also keep the interference introduced to the PU bands below a threshold. A proportional fairness constraint is used to assure that each SU can achieve a required data rate, with quality of service guarantees. Moreover, we extend the analysis to the scenario where each cooperative SU has no channel state information (CSI) about non-adjacent links. We analyzed the throughput and fairness tradeoff in CR system. A detailed analysis of the performance of the proposed algorithm is presented with the simulation results. PMID:23939586
Alinejad, Ali; Istepanian, R S H; Philip, N
2012-01-01
The concept of 4G health will be one of the key focus areas of future m-health research and enterprise activities in the coming years. WiMAX technology is one of the constituent 4G wireless technologies that provides broadband wireless access (BWA). Despite the fact that WiMAX is able to provide a high data rate in a relatively large coverage; this technology has specific limitations such as: coverage, signal attenuation problems due to shadowing or path loss, and limited available spectrum. The IEEE 802.16j mobile multihop relay (MMR) technology is a pragmatic solution designed to overcome these limitations. The aim of IEEE 802.16j MMR is to expand the IEEE 802.16e's capabilities with multihop features. In particular, the uplink (UL) and downlink (DL) subframe allocation in WiMAX network is usually fixed. However, dynamic frame allocation is a useful mechanism to optimize uplink and downlink subframe size dynamically based on the traffic conditions through real-time traffic monitoring. This particular mechanism is important for future WiMAX based m-health applications as it allows the tradeoff in both UL and DL channels. In this paper, we address the dynamic frame allocation issue in IEEE 802.16j MMR network for m-health applications. A comparative performance analysis of the proposed approach is validated using the OPNET Modeler(®). The simulation results have shown an improved performance of resource allocation and end-to-end delay performance for typical medical video streaming application.
Wang, Wei; Wang, Chunqiu; Zhao, Min
2014-03-01
To ease the burdens on the hospitalization capacity, an emerging swallowable-capsule technology has evolved to serve as a remote gastrointestinal (GI) disease examination technique with the aid of the wireless body sensor network (WBSN). Secure multimedia transmission in such a swallowable-capsule-based WBSN faces critical challenges including energy efficiency and content quality guarantee. In this paper, we propose a joint resource allocation and stream authentication scheme to maintain the best possible video quality while ensuring security and energy efficiency in GI-WBSNs. The contribution of this research is twofold. First, we establish a unique signature-hash (S-H) diversity approach in the authentication domain to optimize video authentication robustness and the authentication bit rate overhead over a wireless channel. Based on the full exploration of S-H authentication diversity, we propose a new two-tier signature-hash (TTSH) stream authentication scheme to improve the video quality by reducing authentication dependence overhead while protecting its integrity. Second, we propose to combine this authentication scheme with a unique S-H oriented unequal resource allocation (URA) scheme to improve the energy-distortion-authentication performance of wireless video delivery in GI-WBSN. Our analysis and simulation results demonstrate that the proposed TTSH with URA scheme achieves considerable gain in both authenticated video quality and energy efficiency.
Factors influencing resource allocation decisions and equity in the health system of Ghana.
Asante, A D; Zwi, A B
2009-05-01
Allocation of financial resources in the health sector is often seen as a formula-driven activity. However, the decision to allocate a certain amount of resources to a particular health jurisdiction or facility may be based on a broader range of factors, sometimes not reflected in the existing resource allocation formula. This study explores the 'other' factors that influence the equity of resource allocation in the health system of Ghana. The extent to which these factors are, or can be, accounted for in the resource allocation process is analysed. An exploratory design focusing on different levels of the health system and diverse stakeholders. Data were gathered through semi-structured qualitative interviews with health authorities at national, regional and district levels, and with donor representatives and local government officials in 2003 and 2004. The availability of human resources for health, local capacity to utilize funds, donor involvement in the health sector, and commitment to promote equity have considerable influence on resource allocation decisions and affect the equity of funding allocations. However, these factors are not accounted for adequately in the resource allocation process. This study highlights the need for a more transparent resource allocation system in Ghana based on needs, and takes into account key issues such as capacity constraints, the inequitable human resource distribution and donor-earmarked funding.
NASA Astrophysics Data System (ADS)
Pleros, N.; Kalfas, G.; Mitsolidou, C.; Vagionas, C.; Tsiokos, D.; Miliou, A.
2017-01-01
Future broadband access networks in the 5G framework will need to be bilateral, exploiting both optical and wireless technologies. This paper deals with new approaches and synergies on radio-over-fiber (RoF) technologies and how those can be leveraged to seamlessly converge wireless technology for agility and mobility with passive optical networks (PON)-based backhauling. The proposed convergence paradigm is based upon a holistic network architecture mixing mm-wave wireless access with photonic integration, dynamic capacity allocation and network coding schemes to enable high bandwidth and low-latency fixed and 60GHz wireless personal area communications for gigabit rate per user, proposing and deploying on top a Medium-Transparent MAC (MT-MAC) protocol as a low-latency bandwidth allocation mechanism. We have evaluated alternative network topologies between the central office (CO) and the access point module (APM) for data rates up to 2.5 Gb/s and SC frequencies up to 60 GHz. Optical network coding is demonstrated for SCM-based signaling to enhance bandwidth utilization and facilitate optical-wireless convergence in 5G applications, reporting medium-transparent network coding directly at the physical layer between end-users communicating over a RoF infrastructure. Towards equipping the physical layer with the appropriate agility to support MT-MAC protocols, a monolithic InP-based Remote Antenna Unit optoelectronic PIC interface is shown that ensures control over the optical resource allocation assisting at the same time broadband wireless service. Finally, the MT-MAC protocol is analysed and simulation and analytical theoretical results are presented that are found to be in good agreement confirming latency values lower than 1msec for small- to mid-load conditions.
Analysis and Research on the Optimal Allocation of Regional Water Resources
NASA Astrophysics Data System (ADS)
rui-chao, Xi; yu-jie, Gu
2018-06-01
Starting from the basic concept of optimal allocation of water resources, taking the allocation of water resources in Tianjin as an example, the present situation of water resources in Tianjin is analyzed, and the multi-objective optimal allocation model of water resources is used to optimize the allocation of water resources. We use LINGO to solve the model, get the optimal allocation plan that meets the economic and social benefits, and put forward relevant policies and regulations, so as to provide theoretical which is basis for alleviating and solving the problem of water shortage.
Impact assessments of water allocation on water environment of river network: Method and application
NASA Astrophysics Data System (ADS)
Wang, Qinggai; Wang, Yaping; Lu, Xuchuan; Jia, Peng; Zhang, Beibei; Li, Chen; Li, Sa; Li, Shibei
2018-02-01
Two types of water allocation scenarios were proposed for reasonably utilizing water resources and improving water quality in a two-river network in Tongzhou District. Water circulation and quality were selected as two important indexes to evaluate the two scenario. Meanwhile, one-dimensional water amount and quality model was set up on the basis of the MIKE11 model to compare the two scenarios in terms of improving water environment. The results showed that both scenarios changed the hydrodynamic conditions, and consequently the river flow reached 0.05 m/s or higher in the central part of river stream. In addition, we also found that the two plans have similar effects on water quality, with first scenario producing larger area of water class III and IV than the second scenario.
Wireless Visual Sensor Network Resource Allocation using Cross-Layer Optimization
2009-01-01
Rate Compatible Punctured Convolutional (RCPC) codes for channel...vol. 44, pp. 2943–2959, November 1998. [22] J. Hagenauer, “ Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE... coding rate for H.264/AVC video compression is determined. At the data link layer, the Rate - Compatible Puctured Convolutional (RCPC) channel coding
An integrated decision support system for TRAC: A proposal
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
Optimal allocation and usage of resources is a key to effective management. Resources of concern to TRAC are: Manpower (PSY), Money (Travel, contracts), Computing, Data, Models, etc. Management activities of TRAC include: Planning, Programming, Tasking, Monitoring, Updating, and Coordinating. Existing systems are insufficient, not completely automated, manpower intensive, and has the potential for data inconsistency exists. A system is proposed which suggests a means to integrate all project management activities of TRAC through the development of a sophisticated software and by utilizing the existing computing systems and network resources. The systems integration proposal is examined in detail.
Rizzo, Michael T.; Elenbaas, Laura; Cooley, Shelby; Killen, Melanie
2016-01-01
The present study investigated age-related changes regarding children’s (N = 136) conceptions of fairness and others’ welfare in a merit-based resource allocation paradigm. To test whether children at 3- to 5-years-old and 6- to 8-years-old took others’ welfare into account when dividing resources, in addition to merit and equality concerns, children were asked to allocate, judge, and reason about allocations of necessary (needed to avoid harm) and luxury (enjoyable to have) resources to a hardworking and a lazy character. While 3- to 5-year-olds did not differentiate between distributing luxury and necessary resources, 6- to 8-year-olds allocated luxury resources more meritoriously than necessary resources. Further, children based their allocations of necessary resources on concerns for others’ welfare, rather than merit, even when one character was described as working harder. The findings revealed that, with age, children incorporated the concerns for others’ welfare and merit into their conceptions of fairness in a resource allocation context, and prioritized these concerns differently depending on whether they were allocating luxury or necessary resources. Further, with age, children weighed multiple moral concerns including equality, merit, and others’ welfare, when determining the fair allocation of resources. PMID:27455189
The ontogeny of postmaturation resource allocation in turtles.
Bowden, R M; Paitz, Ryan T; Janzen, Fredric J
2011-01-01
Resource-allocation decisions vary with life-history strategy, and growing evidence suggests that long-lived endothermic vertebrates direct resources toward growth and self-maintenance when young, increasing allocation toward reproductive effort over time. Few studies have tracked the ontogeny of resource allocation (energy, steroid hormones, etc.) in long-lived ectothermic vertebrates, limiting our understanding of the generality of life-history strategies among vertebrates. We investigated how reproductively mature female painted turtles (Chrysemys picta) from two distinct age classes allocated resources over a 4-yr period and whether resource-allocation patterns varied with nesting experience. We examined age-related variation in body size, egg mass, reproductive frequency, and yolk steroids and report that younger females were smaller and allocated fewer resources to reproduction than did older females. Testosterone levels were higher in eggs from younger females, whereas eggs from second (seasonal) clutches contained higher concentrations of progesterone and estradiol. These allocation patterns resulted in older, larger females laying larger eggs and producing second clutches more frequently than their younger counterparts. We conclude that resource-allocation patterns do vary with age in a long-lived ectotherm.
Column generation algorithms for virtual network embedding in flexi-grid optical networks.
Lin, Rongping; Luo, Shan; Zhou, Jingwei; Wang, Sheng; Chen, Bin; Zhang, Xiaoning; Cai, Anliang; Zhong, Wen-De; Zukerman, Moshe
2018-04-16
Network virtualization provides means for efficient management of network resources by embedding multiple virtual networks (VNs) to share efficiently the same substrate network. Such virtual network embedding (VNE) gives rise to a challenging problem of how to optimize resource allocation to VNs and to guarantee their performance requirements. In this paper, we provide VNE algorithms for efficient management of flexi-grid optical networks. We provide an exact algorithm aiming to minimize the total embedding cost in terms of spectrum cost and computation cost for a single VN request. Then, to achieve scalability, we also develop a heuristic algorithm for the same problem. We apply these two algorithms for a dynamic traffic scenario where many VN requests arrive one-by-one. We first demonstrate by simulations for the case of a six-node network that the heuristic algorithm obtains very close blocking probabilities to exact algorithm (about 0.2% higher). Then, for a network of realistic size (namely, USnet) we demonstrate that the blocking probability of our new heuristic algorithm is about one magnitude lower than a simpler heuristic algorithm, which was a component of an earlier published algorithm.
Economic constraints and quality assurance in mental health services: sensitive indicators.
el-Guebaly, N; Papineau, D
1984-03-01
Clinicians in the field of mental health are met with the dual challenge of increased accountability and shrinking resources. Funds are often allocated through the use of crude administrative monitors. This is of little solace to the clinician faced with unmet patients' wants and needs. A set of clinical monitors is outlined requiring the practitioner's cooperation. The presentation of an accurate composite picture is a must in the process of resource allocation. Such clinical monitors include the analysis of characteristics of patients such as the repeaters at emergency, "the revolving door" pool of patients and those falling in between networks. Reviews of waiting lists and lengths of stay, an evaluation of nursing care variables, the auditing of the choice of therapeutic modalities and the use of restraints are other suggested contributors to the assessment of service needs.
Optimized maritime emergency resource allocation under dynamic demand.
Zhang, Wenfen; Yan, Xinping; Yang, Jiaqi
2017-01-01
Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand.
Optimized maritime emergency resource allocation under dynamic demand
Yan, Xinping; Yang, Jiaqi
2017-01-01
Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand. PMID:29240792
[Equity of Health Resources Allocation in Minority Regions of Sichuan Province].
Chen, Nan; Tang, Wen; Liang, Zhi; Zou, Bo; Li, Xiao-song
2016-03-01
To determine equity of health resources allocation in minority regions of Sichuan province from 2009 to 2013. Health resources distribution equity among populations and across geographic catchments were measured using coefficients of Inter-Individual differences and Individual-Mean differences. Health resources, especially human resources, in minority regions increased slowly over the years. Poorer allocation equity was found in nursing resources compared with doctors and hospital beds. Better distribution equity was found among populations than across geographic catchments. High levels of equity in resource distributions among populations and across geographic catchments were found in Aba. In Liangshan, more equitable distributions were found in doctors and hospital beds compared with nurses. The rest of minority regions had poor absolute allocation equity in doctors and hospital beds among populations. Appropriate allocation of health resources can promote health development. Health resources allocation in minority regions of Sichuan province is unreasonable. The government and relevant departments should take actions to optimize health resources allocations.
Autonomous distributed self-organization for mobile wireless sensor networks.
Wen, Chih-Yu; Tang, Hung-Kai
2009-01-01
This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.
NASA Astrophysics Data System (ADS)
Chaerani, D.; Lesmana, E.; Tressiana, N.
2018-03-01
In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.
Design and performance evaluation of a distributed OFDMA-based MAC protocol for MANETs.
Park, Jaesung; Chung, Jiyoung; Lee, Hyungyu; Lee, Jung-Ryun
2014-01-01
In this paper, we propose a distributed MAC protocol for OFDMA-based wireless mobile ad hoc multihop networks, in which the resource reservation and data transmission procedures are operated in a distributed manner. A frame format is designed considering the characteristics of OFDMA that each node can transmit or receive data to or from multiple nodes simultaneously. Under this frame structure, we propose a distributed resource management method including network state estimation and resource reservation processes. We categorize five types of logical errors according to their root causes and show that two of the logical errors are inevitable while three of them are avoided under the proposed distributed MAC protocol. In addition, we provide a systematic method to determine the advertisement period of each node by presenting a clear relation between the accuracy of estimated network states and the signaling overhead. We evaluate the performance of the proposed protocol in respect of the reservation success rate and the success rate of data transmission. Since our method focuses on avoiding logical errors, it could be easily placed on top of the other resource allocation methods focusing on the physical layer issues of the resource management problem and interworked with them.
IDMA-Based MAC Protocol for Satellite Networks with Consideration on Channel Quality
2014-01-01
In order to overcome the shortcomings of existing medium access control (MAC) protocols based on TDMA or CDMA in satellite networks, interleave division multiple access (IDMA) technique is introduced into satellite communication networks. Therefore, a novel wide-band IDMA MAC protocol based on channel quality is proposed in this paper, consisting of a dynamic power allocation algorithm, a rate adaptation algorithm, and a call admission control (CAC) scheme. Firstly, the power allocation algorithm combining the technique of IDMA SINR-evolution and channel quality prediction is developed to guarantee high power efficiency even in terrible channel conditions. Secondly, the effective rate adaptation algorithm, based on accurate channel information per timeslot and by the means of rate degradation, can be realized. What is more, based on channel quality prediction, the CAC scheme, combining the new power allocation algorithm, rate scheduling, and buffering strategies together, is proposed for the emerging IDMA systems, which can support a variety of traffic types, and offering quality of service (QoS) requirements corresponding to different priority levels. Simulation results show that the new wide-band IDMA MAC protocol can make accurate estimation of available resource considering the effect of multiuser detection (MUD) and QoS requirements of multimedia traffic, leading to low outage probability as well as high overall system throughput. PMID:25126592
Fort Benning Land-Use Planning and Management Study
1990-04-01
process is three-tiered: (a) an initial phase that results in preliminary allocations for natural resources, (b) a second phase that focuses on...allocations of military training requirements, and (c) a final phase that resolves conflicts between the military and natural resource requirements and...assigns final allocations. 34. Initial phase : Natural resource allocations. The first step in this phase was to make allocations among natural resource
The past, present and future of HIV, AIDS and resource allocation
2009-01-01
Background How should HIV and AIDS resources be allocated to achieve the greatest possible impact? This paper begins with a theoretical discussion of this issue, describing the key elements of an "evidence-based allocation strategy". While it is noted that the quality of epidemiological and economic data remains inadequate to define such an optimal strategy, there do exist tools and research which can lead countries in a way that they can make allocation decisions. Furthermore, there are clear indications that most countries are not allocating their HIV and AIDS resources in a way which is likely to achieve the greatest possible impact. For example, it is noted that neighboring countries, even when they have a similar prevalence of HIV, nonetheless often allocate their resources in radically different ways. These differing allocation patterns appear to be attributable to a number of different issues, including a lack of data, contradictory results in existing data, a need for overemphasizing a multisectoral response, a lack of political will, a general inefficiency in the use of resources when they do get allocated, poor planning and a lack of control over the way resources get allocated. Methods There are a number of tools currently available which can improve the resource-allocation process. Tools such as the Resource Needs Model (RNM) can provide policymakers with a clearer idea of resource requirements, whereas other tools such as Goals and the Allocation by Cost-Effectiveness (ABCE) models can provide countries with a clearer vision of how they might reallocate funds. Results Examples from nine different countries provide information about how policymakers are trying to make their resource-allocation strategies more "evidence based". By identifying the challenges and successes of these nine countries in making more informed allocation decisions, it is hoped that future resource-allocation decisions for all countries can be improved. Conclusion We discuss the future of resource allocation, noting the types of additional data which will be required and the improvements in existing tools which could be made. PMID:19922688
System Resource Allocations | High-Performance Computing | NREL
Allocations System Resource Allocations To use NREL's high-performance computing (HPC) resources : Compute hours on NREL HPC Systems including Peregrine and Eagle Storage space (in Terabytes) on Peregrine , Eagle and Gyrfalcon. Allocations are principally done in response to an annual call for allocation
NASA Astrophysics Data System (ADS)
Zhong, Yaoquan; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng
2010-12-01
A cost-effective and service-differentiated provisioning strategy is very desirable to service providers so that they can offer users satisfactory services, while optimizing network resource allocation. Providing differentiated protection services to connections for surviving link failure has been extensively studied in recent years. However, the differentiated protection services for workflow-based applications, which consist of many interdependent tasks, have scarcely been studied. This paper investigates the problem of providing differentiated services for workflow-based applications in optical grid. In this paper, we develop three differentiated protection services provisioning strategies which can provide security level guarantee and network-resource optimization for workflow-based applications. The simulation demonstrates that these heuristic algorithms provide protection cost-effectively while satisfying the applications' failure probability requirements.
The Atlas of Chinese World Wide Web Ecosystem Shaped by the Collective Attention Flows.
Lou, Xiaodan; Li, Yong; Gu, Weiwei; Zhang, Jiang
2016-01-01
The web can be regarded as an ecosystem of digital resources connected and shaped by collective successive behaviors of users. Knowing how people allocate limited attention on different resources is of great importance. To answer this, we embed the most popular Chinese web sites into a high dimensional Euclidean space based on the open flow network model of a large number of Chinese users' collective attention flows, which both considers the connection topology of hyperlinks between the sites and the collective behaviors of the users. With these tools, we rank the web sites and compare their centralities based on flow distances with other metrics. We also study the patterns of attention flow allocation, and find that a large number of web sites concentrate on the central area of the embedding space, and only a small fraction of web sites disperse in the periphery. The entire embedding space can be separated into 3 regions(core, interim, and periphery). The sites in the core (1%) occupy a majority of the attention flows (40%), and the sites (34%) in the interim attract 40%, whereas other sites (65%) only take 20% flows. What's more, we clustered the web sites into 4 groups according to their positions in the space, and found that similar web sites in contents and topics are grouped together. In short, by incorporating the open flow network model, we can clearly see how collective attention allocates and flows on different web sites, and how web sites connected each other.
A fault-tolerant small world topology control model in ad hoc networks for search and rescue
NASA Astrophysics Data System (ADS)
Tan, Mian; Fang, Ling; Wu, Yue; Zhang, Bo; Chang, Bowen; Holme, Petter; Zhao, Jing
2018-02-01
Due to their self-organized, multi-hop and distributed characteristics, ad hoc networks are useful in search and rescue. Topology control models need to be designed for energy-efficient, robust and fast communication in ad hoc networks. This paper proposes a topology control model which specializes for search and rescue-Compensation Small World-Repeated Game (CSWRG)-which integrates mobility models, constructing small world networks and a game-theoretic approach to the allocation of resources. Simulation results show that our mobility models can enhance the communication performance of the constructed small-world networks. Our strategy, based on repeated game, can suppress selfish behavior and compensate agents that encounter selfish or faulty neighbors. This model could be useful for the design of ad hoc communication networks.
Proposal for massively parallel data storage system
NASA Technical Reports Server (NTRS)
Mansuripur, M.
1992-01-01
An architecture for integrating large numbers of data storage units (drives) to form a distributed mass storage system is proposed. The network of interconnected units consists of nodes and links. At each node there resides a controller board, a data storage unit and, possibly, a local/remote user-terminal. The links (twisted-pair wires, coax cables, or fiber-optic channels) provide the communications backbone of the network. There is no central controller for the system as a whole; all decisions regarding allocation of resources, routing of messages and data-blocks, creation and distribution of redundant data-blocks throughout the system (for protection against possible failures), frequency of backup operations, etc., are made locally at individual nodes. The system can handle as many user-terminals as there are nodes in the network. Various users compete for resources by sending their requests to the local controller-board and receiving allocations of time and storage space. In principle, each user can have access to the entire system, and all drives can be running in parallel to service the requests for one or more users. The system is expandable up to a maximum number of nodes, determined by the number of routing-buffers built into the controller boards. Additional drives, controller-boards, user-terminals, and links can be simply plugged into an existing system in order to expand its capacity.
Zere, Eyob; Mandlhate, Custodia; Mbeeli, Thomas; Shangula, Kalumbi; Mutirua, Kauto; Kapenambili, William
2007-01-01
Background The pace of redressing inequities in the distribution of scarce health care resources in Namibia has been slow. This is due primarily to adherence to the historical incrementalist type of budgeting that has been used to allocate resources. Those regions with high levels of deprivation and relatively greater need for health care resources have been getting less than their fair share. To rectify this situation, which was inherited from the apartheid system, there is a need to develop a needs-based resource allocation mechanism. Methods Principal components analysis was employed to compute asset indices from asset based and health-related variables, using data from the Namibia demographic and health survey of 2000. The asset indices then formed the basis of proposals for regional weights for establishing a needs-based resource allocation formula. Results Comparing the current allocations of public sector health car resources with estimates using a needs based formula showed that regions with higher levels of need currently receive fewer resources than do regions with lower need. Conclusion To address the prevailing inequities in resource allocation, the Ministry of Health and Social Services should abandon the historical incrementalist method of budgeting/resource allocation and adopt a more appropriate allocation mechanism that incorporates measures of need for health care. PMID:17391533
Zere, Eyob; Mandlhate, Custodia; Mbeeli, Thomas; Shangula, Kalumbi; Mutirua, Kauto; Kapenambili, William
2007-03-29
The pace of redressing inequities in the distribution of scarce health care resources in Namibia has been slow. This is due primarily to adherence to the historical incrementalist type of budgeting that has been used to allocate resources. Those regions with high levels of deprivation and relatively greater need for health care resources have been getting less than their fair share. To rectify this situation, which was inherited from the apartheid system, there is a need to develop a needs-based resource allocation mechanism. Principal components analysis was employed to compute asset indices from asset based and health-related variables, using data from the Namibia demographic and health survey of 2000. The asset indices then formed the basis of proposals for regional weights for establishing a needs-based resource allocation formula. Comparing the current allocations of public sector health car resources with estimates using a needs based formula showed that regions with higher levels of need currently receive fewer resources than do regions with lower need. To address the prevailing inequities in resource allocation, the Ministry of Health and Social Services should abandon the historical incrementalist method of budgeting/resource allocation and adopt a more appropriate allocation mechanism that incorporates measures of need for health care.
The development of attention skills in action video game players
Dye, M.W.G.; Green, C.S.; Bavelier, D.
2009-01-01
Previous research suggests that action video game play improves attentional resources, allowing gamers to better allocate their attention across both space and time. In order to further characterize the plastic changes resulting from playing these video games, we administered the Attentional Network Test (ANT) to action game players and non-playing controls aged between 7 and 22 years. By employing a mixture of cues and flankers, the ANT provides measures of how well attention is allocated to targets as a function of alerting and orienting cues, and to what extent observers are able to filter out the influence of task irrelevant information flanking those targets. The data suggest that action video game players of all ages have enhanced attentional skills that allow them to make faster correct responses to targets, and leaves additional processing resources that spill over to process distractors flanking the targets. PMID:19428410
Implementation of a Space Communications Cognitive Engine
NASA Technical Reports Server (NTRS)
Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.
2017-01-01
Although communications-based cognitive engines have been proposed, very few have been implemented in a full system, especially in a space communications system. In this paper, we detail the implementation of a multi-objective reinforcement-learning algorithm and deep artificial neural networks for the use as a radio-resource-allocation controller. The modular software architecture presented encourages re-use and easy modification for trying different algorithms. Various trade studies involved with the system implementation and integration are discussed. These include the choice of software libraries that provide platform flexibility and promote reusability, choices regarding the deployment of this cognitive engine within a system architecture using the DVB-S2 standard and commercial hardware, and constraints placed on the cognitive engine caused by real-world radio constraints. The implemented radio-resource allocation-management controller was then integrated with the larger spaceground system developed by NASA Glenn Research Center (GRC).
Feng, Yen-Yi; Wu, I-Chin; Chen, Tzu-Li
2017-03-01
The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.
New MPLS network management techniques based on adaptive learning.
Anjali, Tricha; Scoglio, Caterina; de Oliveira, Jaudelice Cavalcante
2005-09-01
The combined use of the differentiated services (DiffServ) and multiprotocol label switching (MPLS) technologies is envisioned to provide guaranteed quality of service (QoS) for multimedia traffic in IP networks, while effectively using network resources. These networks need to be managed adaptively to cope with the changing network conditions and provide satisfactory QoS. An efficient strategy is to map the traffic from different DiffServ classes of service on separate label switched paths (LSPs), which leads to distinct layers of MPLS networks corresponding to each DiffServ class. In this paper, three aspects of the management of such a layered MPLS network are discussed. In particular, an optimal technique for the setup of LSPs, capacity allocation of the LSPs and LSP routing are presented. The presented techniques are based on measurement of the network state to adapt the network configuration to changing traffic conditions.
SDN based millimetre wave radio over fiber (RoF) network
NASA Astrophysics Data System (ADS)
Amate, Ahmed; Milosavljevic, Milos; Kourtessis, Pandelis; Robinson, Matthew; Senior, John M.
2015-01-01
This paper introduces software-defined, millimeter Wave (mm-Wave) networks with Radio over Fiber (RoF) for the delivery of gigabit connectivity required to develop fifth generation (5G) mobile. This network will enable an effective open access system allowing providers to manage and lease the infrastructure to service providers through unbundling new business models. Exploiting the inherited benefits of RoF, complete base station functionalities are centralized at the edges of the metro and aggregation network, leaving remote radio heads (RRHs) with only tunable filtering and amplification. A Software Defined Network (SDN) Central Controller (SCC) is responsible for managing the resource across several mm-Wave Radio Access Networks (RANs) providing a global view of the several network segments. This ensures flexible resource allocation for reduced overall latency and increased throughput. The SDN based mm-Wave RAN also allows for inter edge node communication. Therefore, certain packets can be routed between different RANs supported by the same edge node, reducing latency. System level simulations of the complete network have shown significant improvement of the overall throughput and SINR for wireless users by providing effective resource allocation and coordination among interfering cells. A new Coordinated Multipoint (CoMP) algorithm exploiting the benefits of the SCC global network view for reduced delay in control message exchange is presented, accounting for a minimum packet delay and limited Channel State Information (CSI) in a Long Term Evolution-Advanced (LTE-A), Cloud RAN (CRAN) configuration. The algorithm does not require detailed CSI feedback from UEs but it rather considers UE location (determined by the eNB) as the required parameter. UE throughput in the target sector is represented using a Cumulative Distributive Function (CDF). The drawn characteristics suggest that there is a significant 60% improvement in UE cell edge throughput following the application, in the coordinating cells, of the new CoMP algorithm. Results also show a further improvement of 36% in cell edge UE throughput when eNBs are centralized in a CRAN backhaul architecture. The SINR distribution of UEs in the cooperating cells has also been evaluated using a box plot. As expected, UEs with CoMP perform better demonstrating an increase of over 2 dB at the median between the transmission scenarios.
A review of alternative approaches to healthcare resource allocation.
Petrou, S; Wolstenholme, J
2000-07-01
The resources available for healthcare are limited compared with demand, if not need, and all healthcare systems, regardless of their financing and organisation, employ mechanisms to ration or prioritise finite healthcare resources. This paper reviews alternative approaches that can be used to allocate healthcare resources. It discusses the problems encountered when allocating healthcare resources according to free market principles. It then proceeds to discuss the advantages and disadvantages of alternative resource allocation approaches that can be applied to public health systems. These include: (i) approaches based on the concept of meeting the needs of the population to maximising its capacity to benefit from interventions; (ii) economic approaches that identify the most efficient allocation of resources with the view of maximising health benefits or other measures of social welfare; (iii) approaches that seek to ration healthcare by age; and (iv) approaches that resolve resource allocation disputes through debate and bargaining. At present, there appears to be no consensus about the relative importance of the potentially conflicting principles that can be used to guide resource allocation decisions. It is concluded that whatever shape tomorrow's health service takes, the requirement to make equitable and efficient use of finite healthcare resources will remain.
National equity of health resource allocation in China: data from 2009 to 2013.
Liu, Wen; Liu, Ying; Twum, Peter; Li, Shixue
2016-04-19
The inequitable allocation of health resources is a worldwide problem, and it is also one of the obstacles facing for health services utilization in China. A new round of health care reform which contains the important aspect of improving the equity in health resource allocation was released by Chinese government in 2009. The aim of this study is to understand the changes of equity in health resource allocation from 2009 to 2013, and make a further inquiry of the main factors which influence the equity conditions in China. Data resources are the China Health Statistics Yearbook (2014) and the China Statistical Yearbook (2014). Four indicators were chosen to measure the trends in equity of health resource allocation. Data were disaggregated by three geographical regions: west, central, and east. Theil index was used to calculate the degree of unfairness. The total amount of health care resources in China had been increasing in recent years. However, the per 10, 000 km(2) number of health resources showed a huge gap in different regions, and per 10, 000 capita health resources ownership showed a relatively small disparities at the same time. The index of health resources showed an overall downward trend, in which health financial investment the most unfair from 2009 to 2012 and the number of health institutions the most unfair in 2013. The equity of health resources allocation in eastern regions was the worst except for the aspect of health technical personnel allocation. The regional contribution rates were lower than that of the inter-regional contribution rates which were all beyond 60 %. The equity of health resource allocation improved gradually from 2009 to 2013. However, the internal differences within the eastern region still have a huge impact on the overall equity in health resource allocation. The tough issues of inequitable in health resource allocation should be resolved by comprehensive measures from a multidisciplinary perspective.
Resource Allocation Based on Evaluation of Research.
ERIC Educational Resources Information Center
Fransson, Rune
1985-01-01
At Sweden's Karolinska Institute, a resource allocation model for medical research in use since 1970 allows the research activity of the different departments to affect resource allocation direclty. (MSE)
Schweigkofler, U; Reimertz, C; Auhuber, T C; Jung, H G; Gottschalk, R; Hoffmann, R
2011-10-01
The outcome of injured patients depends on intrastractural circumstances as well as on the time until clinical treatment begins. A rapid patient allocation can only be achieved occur if informations about the care capacity status of the medical centers are available. Considering this an improvement at the interface prehospital/clinical care seems possible. In 2010 in Frankfurt am Main the announcement of free capacity (positive proof) was converted to a web-based negative proof of interdisciplinary care capacities. So-called closings are indicated in a web portal, recorded centrally and registered at the local health authority and the management of participating hospitals. Analyses of the allocations to hospitals of all professional disciplines from the years 2009 and 2010 showed an optimized use of the resources. A decline of the allocations by the order from 261 to 0 could be reached by the introduction of the clear care capacity proof system. The health authorities as the regulating body rarely had to intervene (decline from 400 to 7 cases). Surgical care in Frankfurt was guaranteed at any time by one of the large medical centers. The web-based care capacity proof system introduced in 2010 does justice to the demand for optimum resource use on-line. Integration of this allocation system into the developing trauma networks can optimize the process for a quick and high quality care of severely injured patients. It opens new approaches to improve allocation of high numbers of casualties in disaster medicine.
Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh
2014-03-01
As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.
Complexity Analysis and Algorithms for Optimal Resource Allocation in Wireless Networks
2012-09-01
independent orthogonal signaling such as OFDM . The general formulation will exploit the concept of ‘interference alignment’ which is known to provide...substantial rate gain over OFDM signalling for general interference channels. We have successfully analyzed the complexity to characterize the optimal...categories: PaperReceived Gennady Lyubeznik, Zhi-Quan Luo, Meisam Razaviyayn. On the degrees of freedom achievable through interference alignment in a MIMO
USMC Logistics Resource Allocation Optimization Tool
2015-12-01
Virtual Warehouse Concept ..........................................12 3. New Models in Logistics Network Design and Implications for Third Party...is the smallest DD activity in terms of manpower , but due to its proximity to USMC units, stocks a much greater quantity of USMC-demanded materiel...salient conclusion to reference with respect to this thesis. 12 2. Inventory Management of Repairables in the U.S. Marine Corps— A Virtual Warehouse
Software defined multi-OLT passive optical network for flexible traffic allocation
NASA Astrophysics Data System (ADS)
Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Zhang, Jiawei; Li, Hui
2016-10-01
With the rapid growth of 4G mobile network and vehicular network services mobile terminal users have increasing demand on data sharing among different radio remote units (RRUs) and roadside units (RSUs). Meanwhile, commercial video-streaming, video/voice conference applications delivered through peer-to-peer (P2P) technology are still keep on stimulating the sharp increment of bandwidth demand in both business and residential subscribers. However, a significant issue is that, although wavelength division multiplexing (WDM) and orthogonal frequency division multiplexing (OFDM) technology have been proposed to fulfil the ever-increasing bandwidth demand in access network, the bandwidth of optical fiber is not unlimited due to the restriction of optical component properties and modulation/demodulation technology, and blindly increase the wavelength cannot meet the cost-sensitive characteristic of the access network. In this paper, we propose a software defined multi-OLT PON architecture to support efficient scheduling of access network traffic. By introducing software defined networking technology and wavelength selective switch into TWDM PON system in central office, multiple OLTs can be considered as a bandwidth resource pool and support flexible traffic allocation for optical network units (ONUs). Moreover, under the configuration of the control plane, ONUs have the capability of changing affiliation between different OLTs under different traffic situations, thus the inter-OLT traffic can be localized and the data exchange pressure of the core network can be released. Considering this architecture is designed to be maximum following the TWDM PON specification, the existing optical distribution network (ODN) investment can be saved and conventional EPON/GPON equipment can be compatible with the proposed architecture. What's more, based on this architecture, we propose a dynamic wavelength scheduling algorithm, which can be deployed as an application on control plane and achieve effective scheduling OLT wavelength resources between different OLTs based on various traffic situation. Simulation results show that, by using the scheduling algorithm, network traffic between different OLTs can be optimized effectively, and the wavelength utilization of the multi-OLT system can be improved due to the flexible wavelength scheduling.
ERIC Educational Resources Information Center
Pan, Diane; Rudo, Zena H.; Schneider, Cynthia L.; Smith-Hansen, Lotte
This document reports on a study on the relationship between resources and student performance. The study examined district-level patterns of resource allocation, district and school resource practices implemented to improve student performance, and barriers and challenges to efficient resource allocation faced by districts and schools. The study…
A data-driven allocation tool for in-kind resources distributed by a state health department.
Peterson, Cora; Kegler, Scott R; Parker, Wende R; Sullivan, David
2016-10-02
The objective of this study was to leverage a state health department's operational data to allocate in-kind resources (children's car seats) to counties, with the proposition that need-based allocation could ultimately improve public health outcomes. This study used a retrospective analysis of administrative data on car seats distributed to counties statewide by the Georgia Department of Public Health and development of a need-based allocation tool (presented as interactive supplemental digital content, adaptable to other types of in-kind public health resources) that relies on current county-level injury and sociodemographic data. Car seat allocation using public health data and a need-based formula resulted in substantially different recommended allocations to individual counties compared to historic distribution. Results indicate that making an in-kind public health resource like car seats universally available results in a less equitable distribution of that resource compared to deliberate allocation according to public health need. Public health agencies can use local data to allocate in-kind resources consistent with health objectives; that is, in a manner offering the greatest potential health impact. Future analysis can determine whether the change to a more equitable allocation of resources is also more efficient, resulting in measurably improved public health outcomes.
Power Allocation Based on Data Classification in Wireless Sensor Networks
Wang, Houlian; Zhou, Gongbo
2017-01-01
Limited node energy in wireless sensor networks is a crucial factor which affects the monitoring of equipment operation and working conditions in coal mines. In addition, due to heterogeneous nodes and different data acquisition rates, the number of arriving packets in a queue network can differ, which may lead to some queue lengths reaching the maximum value earlier compared with others. In order to tackle these two problems, an optimal power allocation strategy based on classified data is proposed in this paper. Arriving data is classified into dissimilar classes depending on the number of arriving packets. The problem is formulated as a Lyapunov drift optimization with the objective of minimizing the weight sum of average power consumption and average data class. As a result, a suboptimal distributed algorithm without any knowledge of system statistics is presented. The simulations, conducted in the perfect channel state information (CSI) case and the imperfect CSI case, reveal that the utility can be pushed arbitrarily close to optimal by increasing the parameter V, but with a corresponding growth in the average delay, and that other tunable parameters W and the classification method in the interior of utility function can trade power optimality for increased average data class. The above results show that data in a high class has priorities to be processed than data in a low class, and energy consumption can be minimized in this resource allocation strategy. PMID:28498346
Cloudbus Toolkit for Market-Oriented Cloud Computing
NASA Astrophysics Data System (ADS)
Buyya, Rajkumar; Pandey, Suraj; Vecchiola, Christian
This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, Manuel; Lopez-Nicolas, Antonio; Harou, Julien J.; Andreu, Joaquin
2013-04-01
Hydrologic-economic models allow integrated analysis of water supply, demand and infrastructure management at the river basin scale. These models simultaneously analyze engineering, hydrology and economic aspects of water resources management. Two new tools have been designed to develop models within this approach: a simulation tool (SIM_GAMS), for models in which water is allocated each month based on supply priorities to competing uses and system operating rules, and an optimization tool (OPT_GAMS), in which water resources are allocated optimally following economic criteria. The characterization of the water resource network system requires a connectivity matrix representing the topology of the elements, generated using HydroPlatform. HydroPlatform, an open-source software platform for network (node-link) models, allows to store, display and export all information needed to characterize the system. Two generic non-linear models have been programmed in GAMS to use the inputs from HydroPlatform in simulation and optimization models. The simulation model allocates water resources on a monthly basis, according to different targets (demands, storage, environmental flows, hydropower production, etc.), priorities and other system operating rules (such as reservoir operating rules). The optimization model's objective function is designed so that the system meets operational targets (ranked according to priorities) each month while following system operating rules. This function is analogous to the one used in the simulation module of the DSS AQUATOOL. Each element of the system has its own contribution to the objective function through unit cost coefficients that preserve the relative priority rank and the system operating rules. The model incorporates groundwater and stream-aquifer interaction (allowing conjunctive use simulation) with a wide range of modeling options, from lumped and analytical approaches to parameter-distributed models (eigenvalue approach). Such functionality is not typically included in other water DSS. Based on the resulting water resources allocation, the model calculates operating and water scarcity costs caused by supply deficits based on economic demand functions for each demand node. The optimization model allocates the available resource over time based on economic criteria (net benefits from demand curves and cost functions), minimizing the total water scarcity and operating cost of water use. This approach provides solutions that optimize the economic efficiency (as total net benefit) in water resources management over the optimization period. Both models must be used together in water resource planning and management. The optimization model provides an initial insight on economically efficient solutions, from which different operating rules can be further developed and tested using the simulation model. The hydro-economic simulation model allows assessing economic impacts of alternative policies or operating criteria, avoiding the perfect foresight issues associated with the optimization. The tools have been applied to the Jucar river basin (Spain) in order to assess the economic results corresponding to the current modus operandi of the system and compare them with the solution from the optimization that maximizes economic efficiency. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536) and the Plan Nacional I+D+I 2008-2011 of the Spanish Ministry of Science and Innovation (CGL2009-13238-C02-01 and CGL2009-13238-C02-02).
Optimal Time-Resource Allocation for Energy-Efficient Physical Activity Detection
Thatte, Gautam; Li, Ming; Lee, Sangwon; Emken, B. Adar; Annavaram, Murali; Narayanan, Shrikanth; Spruijt-Metz, Donna; Mitra, Urbashi
2011-01-01
The optimal allocation of samples for physical activity detection in a wireless body area network for health-monitoring is considered. The number of biometric samples collected at the mobile device fusion center, from both device-internal and external Bluetooth heterogeneous sensors, is optimized to minimize the transmission power for a fixed number of samples, and to meet a performance requirement defined using the probability of misclassification between multiple hypotheses. A filter-based feature selection method determines an optimal feature set for classification, and a correlated Gaussian model is considered. Using experimental data from overweight adolescent subjects, it is found that allocating a greater proportion of samples to sensors which better discriminate between certain activity levels can result in either a lower probability of error or energy-savings ranging from 18% to 22%, in comparison to equal allocation of samples. The current activity of the subjects and the performance requirements do not significantly affect the optimal allocation, but employing personalized models results in improved energy-efficiency. As the number of samples is an integer, an exhaustive search to determine the optimal allocation is typical, but computationally expensive. To this end, an alternate, continuous-valued vector optimization is derived which yields approximately optimal allocations and can be implemented on the mobile fusion center due to its significantly lower complexity. PMID:21796237
Intelligent self-organization methods for wireless ad hoc sensor networks based on limited resources
NASA Astrophysics Data System (ADS)
Hortos, William S.
2006-05-01
A wireless ad hoc sensor network (WSN) is a configuration for area surveillance that affords rapid, flexible deployment in arbitrary threat environments. There is no infrastructure support and sensor nodes communicate with each other only when they are in transmission range. To a greater degree than the terminals found in mobile ad hoc networks (MANETs) for communications, sensor nodes are resource-constrained, with limited computational processing, bandwidth, memory, and power, and are typically unattended once in operation. Consequently, the level of information exchange among nodes, to support any complex adaptive algorithms to establish network connectivity and optimize throughput, not only deplete those limited resources and creates high overhead in narrowband communications, but also increase network vulnerability to eavesdropping by malicious nodes. Cooperation among nodes, critical to the mission of sensor networks, can thus be disrupted by the inappropriate choice of the method for self-organization. Recent published contributions to the self-configuration of ad hoc sensor networks, e.g., self-organizing mapping and swarm intelligence techniques, have been based on the adaptive control of the cross-layer interactions found in MANET protocols to achieve one or more performance objectives: connectivity, intrusion resistance, power control, throughput, and delay. However, few studies have examined the performance of these algorithms when implemented with the limited resources of WSNs. In this paper, self-organization algorithms for the initiation, operation and maintenance of a network topology from a collection of wireless sensor nodes are proposed that improve the performance metrics significant to WSNs. The intelligent algorithm approach emphasizes low computational complexity, energy efficiency and robust adaptation to change, allowing distributed implementation with the actual limited resources of the cooperative nodes of the network. Extensions of the algorithms from flat topologies to two-tier hierarchies of sensor nodes are presented. Results from a few simulations of the proposed algorithms are compared to the published results of other approaches to sensor network self-organization in common scenarios. The estimated network lifetime and extent under static resource allocations are computed.
Theory of Mind is Related to Children’s Resource Allocations in Gender Stereotypic Contexts
Rizzo, Michael T.; Killen, Melanie
2017-01-01
The present study investigated the relations between 4- to 6-year-old children’s (N = 67) gender stereotypes, resource allocations, and mental state knowledge in gender stereotypic contexts. Participants were told vignettes about female and male characters completing gender-stereotyped activities (making dolls or trucks). Children held stereotypic expectations regarding doll- and truck-making abilities, and these expectations predicted the degree of bias in their allocations of resources to the characters. Critically, children’s performance on a ToM scale (Diverse Desires, Contents False-Belief, Belief-Emotion) was significantly related to their allocations of resources to individuals whose effort did not fit existing gender stereotypes (e.g., a boy who was good at making dolls). With increasing ToM competence, children allocated resources based on merit (even when the character’s effort did not fit existing gender stereotypes) rather than based on stereotypes. The present results provide novel information regarding the emergence of gender stereotypes about abilities, the influence of stereotypes on children’s resource allocations, and the role of ToM in children’s ability to challenge gender stereotypes when allocating resources. PMID:29083217
Zhou, Wen; Koptyug, Nikita; Ye, Shutao; Jia, Yifan; Lu, Xiaolong
2016-01-01
As computer science and complex network theory develop, non-cooperative games and their formation and application on complex networks have been important research topics. In the inter-firm innovation network, it is a typical game behavior for firms to invest in their alliance partners. Accounting for the possibility that firms can be resource constrained, this paper analyzes a coordination game using the Nash bargaining solution as allocation rules between firms in an inter-firm innovation network. We build an extended inter-firm n-player game based on nonidealized conditions, describe four investment strategies and simulate the strategies on an inter-firm innovation network in order to compare their performance. By analyzing the results of our experiments, we find that our proposed greedy strategy is the best-performing in most situations. We hope this study provides a theoretical insight into how firms make investment decisions. PMID:26745375
Zhou, Wen; Koptyug, Nikita; Ye, Shutao; Jia, Yifan; Lu, Xiaolong
2016-01-01
As computer science and complex network theory develop, non-cooperative games and their formation and application on complex networks have been important research topics. In the inter-firm innovation network, it is a typical game behavior for firms to invest in their alliance partners. Accounting for the possibility that firms can be resource constrained, this paper analyzes a coordination game using the Nash bargaining solution as allocation rules between firms in an inter-firm innovation network. We build an extended inter-firm n-player game based on nonidealized conditions, describe four investment strategies and simulate the strategies on an inter-firm innovation network in order to compare their performance. By analyzing the results of our experiments, we find that our proposed greedy strategy is the best-performing in most situations. We hope this study provides a theoretical insight into how firms make investment decisions.
NASA Technical Reports Server (NTRS)
Kemeny, Sabrina E.
1994-01-01
Electronic and optoelectronic hardware implementations of highly parallel computing architectures address several ill-defined and/or computation-intensive problems not easily solved by conventional computing techniques. The concurrent processing architectures developed are derived from a variety of advanced computing paradigms including neural network models, fuzzy logic, and cellular automata. Hardware implementation technologies range from state-of-the-art digital/analog custom-VLSI to advanced optoelectronic devices such as computer-generated holograms and e-beam fabricated Dammann gratings. JPL's concurrent processing devices group has developed a broad technology base in hardware implementable parallel algorithms, low-power and high-speed VLSI designs and building block VLSI chips, leading to application-specific high-performance embeddable processors. Application areas include high throughput map-data classification using feedforward neural networks, terrain based tactical movement planner using cellular automata, resource optimization (weapon-target assignment) using a multidimensional feedback network with lateral inhibition, and classification of rocks using an inner-product scheme on thematic mapper data. In addition to addressing specific functional needs of DOD and NASA, the JPL-developed concurrent processing device technology is also being customized for a variety of commercial applications (in collaboration with industrial partners), and is being transferred to U.S. industries. This viewgraph p resentation focuses on two application-specific processors which solve the computation intensive tasks of resource allocation (weapon-target assignment) and terrain based tactical movement planning using two extremely different topologies. Resource allocation is implemented as an asynchronous analog competitive assignment architecture inspired by the Hopfield network. Hardware realization leads to a two to four order of magnitude speed-up over conventional techniques and enables multiple assignments, (many to many), not achievable with standard statistical approaches. Tactical movement planning (finding the best path from A to B) is accomplished with a digital two-dimensional concurrent processor array. By exploiting the natural parallel decomposition of the problem in silicon, a four order of magnitude speed-up over optimized software approaches has been demonstrated.
Topology for Dominance for Network of Multi-Agent System
NASA Astrophysics Data System (ADS)
Szeto, K. Y.
2007-05-01
The resource allocation problem in evolving two-dimensional point patterns is investigated for the existence of good strategies for the construction of initial configuration that leads to fast dominance of the pattern by one single species, which can be interpreted as market dominance by a company in the context of multi-agent systems in econophysics. For hexagonal lattice, certain special topological arrangements of the resource in two-dimensions, such as rings, lines and clusters have higher probability of dominance, compared to random pattern. For more complex networks, a systematic way to search for a stable and dominant strategy of resource allocation in the changing environment is found by means of genetic algorithm. Five typical features can be summarized by means of the distribution function for the local neighborhood of friends and enemies as well as the local clustering coefficients: (1) The winner has more triangles than the loser has. (2) The winner likes to form clusters as the winner tends to connect with other winner rather than with losers; while the loser tends to connect with winners rather than losers. (3) The distribution function of friends as well as enemies for the winner is broader than the corresponding distribution function for the loser. (4) The connectivity at which the peak of the distribution of friends for the winner occurs is larger than that of the loser; while the peak values for friends for winners is lower. (5) The connectivity at which the peak of the distribution of enemies for the winner occurs is smaller than that of the loser; while the peak values for enemies for winners is lower. These five features appear to be general, at least in the context of two-dimensional hexagonal lattices of various sizes, hierarchical lattice, Voronoi diagrams, as well as high-dimensional random networks. These general local topological properties of networks are relevant to strategists aiming at dominance in evolving patterns when the interaction between the agents is local.
Implementation and impact of indigenous health curricula: a systematic review.
Pitama, Suzanne G; Palmer, Suetonia C; Huria, Tania; Lacey, Cameron; Wilkinson, Tim
2018-06-22
The effectiveness of cultural competency education in improving health practitioner proficiency and addressing health inequities for minoritised patient groups is uncertain. Identification of institutional factors that shape or constrain development of indigenous health curricula may provide insights into the impact of these factors on the broader cultural competency curricula. We undertook a systematic review using actor-network theory to inform our interpretive synthesis of studies that reported indigenous health curricula evaluated within medical, nursing and allied health education. We searched the MEDLINE, OVID Nursing, Educational Resources Information Center (ERIC), PsycINFO, EMBASE, Web of Science and PubMed databases to December 2017 using exploded MeSH terms 'indigenous' and 'medical education' and 'educational professional' and 'health professional education'. We included studies involving undergraduate or postgraduate medical, nursing or allied health students or practitioners. Studies were eligible if they documented indigenous health learning outcomes, pedagogical practices and student evaluations. Twenty-three studies were eligible for the review. In an interpretive synthesis informed by actor-network theory, three themes emerged from the data: indigenous health as an emerging curriculum (drivers of institutional change, increasing indigenous capacity and leadership, and addressing deficit discourse); institutional resource allocation to indigenous health curricula (placement within the core curriculum, time allocation, and resources constraining pedagogy), and impact of the curriculum on learners (acceptability of the curriculum, learner knowledge, and learner behaviour). Systemic barriers acting on and within educational networks have limited the developmental capacity of indigenous health curricula, supported and sustained hidden curricula, and led to insufficient institutional investment to support a comprehensive curriculum. Future research in health professional education should explore these political and network intermediaries acting on cultural competence curricula and how they can be overcome to achieve cultural competency learning outcomes. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
The Atlas of Chinese World Wide Web Ecosystem Shaped by the Collective Attention Flows
Lou, Xiaodan; Li, Yong; Gu, Weiwei; Zhang, Jiang
2016-01-01
The web can be regarded as an ecosystem of digital resources connected and shaped by collective successive behaviors of users. Knowing how people allocate limited attention on different resources is of great importance. To answer this, we embed the most popular Chinese web sites into a high dimensional Euclidean space based on the open flow network model of a large number of Chinese users’ collective attention flows, which both considers the connection topology of hyperlinks between the sites and the collective behaviors of the users. With these tools, we rank the web sites and compare their centralities based on flow distances with other metrics. We also study the patterns of attention flow allocation, and find that a large number of web sites concentrate on the central area of the embedding space, and only a small fraction of web sites disperse in the periphery. The entire embedding space can be separated into 3 regions(core, interim, and periphery). The sites in the core (1%) occupy a majority of the attention flows (40%), and the sites (34%) in the interim attract 40%, whereas other sites (65%) only take 20% flows. What’s more, we clustered the web sites into 4 groups according to their positions in the space, and found that similar web sites in contents and topics are grouped together. In short, by incorporating the open flow network model, we can clearly see how collective attention allocates and flows on different web sites, and how web sites connected each other. PMID:27812133
Remington, David L.; Leinonen, Päivi H.; Leppälä, Johanna; Savolainen, Outi
2013-01-01
Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs. PMID:23979581
S4HARA: System for HIV/AIDS resource allocation.
Lasry, Arielle; Carter, Michael W; Zaric, Gregory S
2008-03-26
HIV/AIDS resource allocation decisions are influenced by political, social, ethical and other factors that are difficult to quantify. Consequently, quantitative models of HIV/AIDS resource allocation have had limited impact on actual spending decisions. We propose a decision-support System for HIV/AIDS Resource Allocation (S4HARA) that takes into consideration both principles of efficient resource allocation and the role of non-quantifiable influences on the decision-making process for resource allocation. S4HARA is a four-step spreadsheet-based model. The first step serves to identify the factors currently influencing HIV/AIDS allocation decisions. The second step consists of prioritizing HIV/AIDS interventions. The third step involves allocating the budget to the HIV/AIDS interventions using a rational approach. Decision-makers can select from several rational models of resource allocation depending on availability of data and level of complexity. The last step combines the results of the first and third steps to highlight the influencing factors that act as barriers or facilitators to the results suggested by the rational resource allocation approach. Actionable recommendations are then made to improve the allocation. We illustrate S4HARA in the context of a primary healthcare clinic in South Africa. The clinic offers six types of HIV/AIDS interventions and spends US$750,000 annually on these programs. Current allocation decisions are influenced by donors, NGOs and the government as well as by ethical and religious factors. Without additional funding, an optimal allocation of the total budget suggests that the portion allotted to condom distribution be increased from 1% to 15% and the portion allotted to prevention and treatment of opportunistic infections be increased from 43% to 71%, while allocation to other interventions should decrease. Condom uptake at the clinic should be increased by changing the condom distribution policy from a pull system to a push system. NGOs and donors promoting antiretroviral programs at the clinic should be sensitized to the results of the model and urged to invest in wellness programs aimed at the prevention and treatment of opportunistic infections. S4HARA differentiates itself from other decision support tools by providing rational HIV/AIDS resource allocation capabilities as well as consideration of the realities facing authorities in their decision-making process.
NASA Astrophysics Data System (ADS)
Alvarez, Gabriel O.
2018-05-01
Hydrocarbon exploration in Argentina started long before the IGM created a single, high-precision geodetic reference network for the whole country. Several geodetic surveys were conducted in every producing basin, which have ever since then supported well placement. Currently, every basin has a huge amount of information referenced to the so-called "local" geodetic systems, such as Chos Malal - Quiñi Huao in the Neuquén Basin, and Pampa del Castillo in the San Jorge Basin, which differ to a greater or lesser extent from the national Campo Inchauspe datum established by the IGM in 1969 as the official geodetic network. However, technology development over the last few years and the expansion of satellite positioning systems such as GPS resulted in a new world geodetic order. Argentina rapidly joined this new geodetic order through the implementation of a new national geodetic system by the IGM: POSGAR network, which replaced the old national Campo Inchauspe system. However, this only helped to worsen the data georeferencing issue for oil companies, as a third reference system was added to each basin. Now every basin has a local system, the national system until 1997 (Campo Inchauspe), and finally the newly created POSGAR network national satellite system, which is geocentric unlike the former two planimetric datums. The purpose of this paper is to identify and allocate geodetic systems of coordinates to historical wells, whose geodetic system is missing or has been erroneously allocated, by using currently available technological resources such as geographic information systems and high-resolution satellite imagery.
An intelligent allocation algorithm for parallel processing
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Ananthram, Kishan G.
1988-01-01
The problem of allocating nodes of a program graph to processors in a parallel processing architecture is considered. The algorithm is based on critical path analysis, some allocation heuristics, and the execution granularity of nodes in a program graph. These factors, and the structure of interprocessor communication network, influence the allocation. To achieve realistic estimations of the executive durations of allocations, the algorithm considers the fact that nodes in a program graph have to communicate through varying numbers of tokens. Coarse and fine granularities have been implemented, with interprocessor token-communication duration, varying from zero up to values comparable to the execution durations of individual nodes. The effect on allocation of communication network structures is demonstrated by performing allocations for crossbar (non-blocking) and star (blocking) networks. The algorithm assumes the availability of as many processors as it needs for the optimal allocation of any program graph. Hence, the focus of allocation has been on varying token-communication durations rather than varying the number of processors. The algorithm always utilizes as many processors as necessary for the optimal allocation of any program graph, depending upon granularity and characteristics of the interprocessor communication network.
An Optimization Framework for Dynamic, Distributed Real-Time Systems
NASA Technical Reports Server (NTRS)
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
A Novel Approach to Adaptive Flow Separation Control
2016-09-03
particular, it considers control of flow separation over a NACA-0025 airfoil using microjet actuators and develops Adaptive Sampling Based Model...Predictive Control ( Adaptive SBMPC), a novel approach to Nonlinear Model Predictive Control that applies the Minimal Resource Allocation Network...Distribution Unlimited UU UU UU UU 03-09-2016 1-May-2013 30-Apr-2016 Final Report: A Novel Approach to Adaptive Flow Separation Control The views, opinions
A novel LTE scheduling algorithm for green technology in smart grid.
Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin; Chayon, Muhammad Hasibur Rashid
2015-01-01
Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application's priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively.
A Novel LTE Scheduling Algorithm for Green Technology in Smart Grid
Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin; Chayon, Muhammad Hasibur Rashid
2015-01-01
Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application’s priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively. PMID:25830703
Resource Allocation in Public Research Universities
ERIC Educational Resources Information Center
Santos, Jose L.
2007-01-01
The purpose of this study was to conduct an econometric analysis of internal resource allocation. Two theories are used for this study of resource allocation in public research universities, and these are: (1) Theory of the Firm; and (2) Resource Dependence Theory. This study used the American Association of Universities Data Exchange (AAUDE)…
Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming
2016-01-01
Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071
Children's Evaluations of Resource Allocation in the Context of Group Norms
ERIC Educational Resources Information Center
Cooley, Shelby; Killen, Melanie
2015-01-01
This study investigated children's evaluations of peer group members who deviated from group norms about equal and unequal allocation of resources. Children, ages 3.5 to 4 years and 5 to 6 years (N = 73), were asked to evaluate a peer group member who deviated from 1 of 2 group allocation norms: (a) equal allocation of resources, or (b) unequal…
Multicast backup reprovisioning problem for Hamiltonian cycle-based protection on WDM networks
NASA Astrophysics Data System (ADS)
Din, Der-Rong; Huang, Jen-Shen
2014-03-01
As networks grow in size and complexity, the chance and the impact of failures increase dramatically. The pre-allocated backup resources cannot provide 100% protection guarantee when continuous failures occur in a network. In this paper, the multicast backup re-provisioning problem (MBRP) for Hamiltonian cycle (HC)-based protection on WDM networks for the link-failure case is studied. We focus on how to recover the protecting capabilities of Hamiltonian cycle against the subsequent link-failures on WDM networks for multicast transmissions, after recovering the multicast trees affected by the previous link-failure. Since this problem is a hard problem, an algorithm, which consists of several heuristics and a genetic algorithm (GA), is proposed to solve it. The simulation results of the proposed method are also given. Experimental results indicate that the proposed algorithm can solve this problem efficiently.
[The experience of the Mexican maternal health care program Arranque Parejo en la Vida].
Orozco-Núñez, Emanuel; González-Block, Miguel Angel; Kageyama-Escobar, Luz María; Hernández-Prado, Bernardo
2009-01-01
To evaluate the implementation of its participative strategies and the creation of support networks for poor pregnant women. A qualitative and comparative evaluation was carried on in four states. Coordination and community participation were relevant in relation with major resources allocation and availability, particularly housing and transportation. Governmental actors involvement and leadership favoured linking and coordination. Pregnant women used to valuate as the major support source the one provided by their kinship networks. To strengthen and to stimulate participative strategies is fundamental in zones with high maternal mortality rates. The wide appreciation of kinship networks, midwives and voluntaries' support to pregnant women in housing and transportation, suggests that these actors are a functional component of the support network; it is insufficient focusing the support network on health services and municipal authorities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Hameed; Malik, Saif Ur Rehman; Hameed, Abdul
An efficient resource allocation is a fundamental requirement in high performance computing (HPC) systems. Many projects are dedicated to large-scale distributed computing systems that have designed and developed resource allocation mechanisms with a variety of architectures and services. In our study, through analysis, a comprehensive survey for describing resource allocation in various HPCs is reported. The aim of the work is to aggregate under a joint framework, the existing solutions for HPC to provide a thorough analysis and characteristics of the resource management and allocation strategies. Resource allocation mechanisms and strategies play a vital role towards the performance improvement ofmore » all the HPCs classifications. Therefore, a comprehensive discussion of widely used resource allocation strategies deployed in HPC environment is required, which is one of the motivations of this survey. Moreover, we have classified the HPC systems into three broad categories, namely: (a) cluster, (b) grid, and (c) cloud systems and define the characteristics of each class by extracting sets of common attributes. All of the aforementioned systems are cataloged into pure software and hybrid/hardware solutions. The system classification is used to identify approaches followed by the implementation of existing resource allocation strategies that are widely presented in the literature.« less
Concurrent airline fleet allocation and aircraft design with profit modeling for multiple airlines
NASA Astrophysics Data System (ADS)
Govindaraju, Parithi
A "System of Systems" (SoS) approach is particularly beneficial in analyzing complex large scale systems comprised of numerous independent systems -- each capable of independent operations in their own right -- that when brought in conjunction offer capabilities and performance beyond the constituents of the individual systems. The variable resource allocation problem is a type of SoS problem, which includes the allocation of "yet-to-be-designed" systems in addition to existing resources and systems. The methodology presented here expands upon earlier work that demonstrated a decomposition approach that sought to simultaneously design a new aircraft and allocate this new aircraft along with existing aircraft in an effort to meet passenger demand at minimum fleet level operating cost for a single airline. The result of this describes important characteristics of the new aircraft. The ticket price model developed and implemented here enables analysis of the system using profit maximization studies instead of cost minimization. A multiobjective problem formulation has been implemented to determine characteristics of a new aircraft that maximizes the profit of multiple airlines to recognize the fact that aircraft manufacturers sell their aircraft to multiple customers and seldom design aircraft customized to a single airline's operations. The route network characteristics of two simple airlines serve as the example problem for the initial studies. The resulting problem formulation is a mixed-integer nonlinear programming problem, which is typically difficult to solve. A sequential decomposition strategy is applied as a solution methodology by segregating the allocation (integer programming) and aircraft design (non-linear programming) subspaces. After solving a simple problem considering two airlines, the decomposition approach is then applied to two larger airline route networks representing actual airline operations in the year 2005. The decomposition strategy serves as a promising technique for future detailed analyses. Results from the profit maximization studies favor a smaller aircraft in terms of passenger capacity due to its higher yield generation capability on shorter routes while results from the cost minimization studies favor a larger aircraft due to its lower direct operating cost per seat mile.
Potential of dynamic spectrum allocation in LTE macro networks
NASA Astrophysics Data System (ADS)
Hoffmann, H.; Ramachandra, P.; Kovács, I. Z.; Jorguseski, L.; Gunnarsson, F.; Kürner, T.
2015-11-01
In recent years Mobile Network Operators (MNOs) worldwide are extensively deploying LTE networks in different spectrum bands and utilising different bandwidth configurations. Initially, the deployment is coverage oriented with macro cells using the lower LTE spectrum bands. As the offered traffic (i.e. the requested traffic from the users) increases the LTE deployment evolves with macro cells expanded with additional capacity boosting LTE carriers in higher frequency bands complemented with micro or small cells in traffic hotspot areas. For MNOs it is crucial to use the LTE spectrum assets, as well as the installed network infrastructure, in the most cost efficient way. The dynamic spectrum allocation (DSA) aims at (de)activating the available LTE frequency carriers according to the temporal and spatial traffic variations in order to increase the overall LTE system performance in terms of total network capacity by reducing the interference. This paper evaluates the DSA potential of achieving the envisaged performance improvement and identifying in which system and traffic conditions the DSA should be deployed. A self-optimised network (SON) DSA algorithm is also proposed and evaluated. The evaluations have been carried out in a hexagonal and a realistic site-specific urban macro layout assuming a central traffic hotspot area surrounded with an area of lower traffic with a total size of approximately 8 × 8 km2. The results show that up to 47 % and up to 40 % possible DSA gains are achievable with regards to the carried system load (i.e. used resources) for homogenous traffic distribution with hexagonal layout and for realistic site-specific urban macro layout, respectively. The SON DSA algorithm evaluation in a realistic site-specific urban macro cell deployment scenario including realistic non-uniform spatial traffic distribution shows insignificant cell throughput (i.e. served traffic) performance gains. Nevertheless, in the SON DSA investigations, a gain of up to 25 % has been observed when analysing the resource utilisation in the non-hotspot cells.
Inter-generational Contact From a Network Perspective
Marcum, Christopher Steven; Koehly, Laura M.
2015-01-01
Pathways for resource—or other—exchanges within families have long been known to be dependent on the structure of relations between generations (Silverstein, 2011; Fuller-Thomson et al., 1997; Agree et al., 2005; Treas and Marcum, 2011). Much life course research has theorized models of inter-generational exchange— including, the ‘sandwich generation’ (Miller, 1981) and the ‘skipped generation’ pathways (Chalfie, 1994)—but there is little work relating these theories to relevant network mechanisms such as liaison brokerage (Gould and Fernandez, 1989) and other triadic configurations (Davis and Leinhardt, 1972; Wasserman and Faust, 1994). To address this, a survey of models of resource allocation between members of inter-generational households from a network perspective is introduced in this paper. Exemplary data come from health discussion networks among Mexican-origin multi-generational households. PMID:26047986
Understanding how social networking influences perceived satisfaction with conference experiences
van Riper, Carena J.; van Riper, Charles; Kyle, Gerard T.; Lee, Martha E.
2013-01-01
Social networking is a key benefit derived from participation in conferences that bind the ties of a professional community. Building social networks can lead to satisfactory experiences while furthering participants' long- and short-term career goals. Although investigations of social networking can lend insight into how to effectively engage individuals and groups within a professional cohort, this area has been largely overlooked in past research. The present study investigates the relationship between social networking and satisfaction with the 10th Biennial Conference of Research on the Colorado Plateau using structural equation modelling. Results partially support the hypothesis that three dimensions of social networking – interpersonal connections, social cohesion, and secondary associations – positively contribute to the performance of various conference attributes identified in two focus group sessions. The theoretical and applied contributions of this paper shed light on the social systems formed within professional communities and resource allocation among service providers.
Cognitive LF-Ant: a novel protocol for healthcare wireless sensor networks.
Sousa, Marcelo; Lopes, Waslon; Madeiro, Francisco; Alencar, Marcelo
2012-01-01
In this paper, the authors present the Cognitive LF-Ant protocol for emergency reporting in healthcare wireless sensor networks. The protocol is inspired by the natural behaviour of ants and a cognitive component provides the capabilities to dynamically allocate resources, in accordance with the emergency degree of each patient. The intra-cluster emergency reporting is inspired by the different capabilities of leg-manipulated ants. The inter-cluster reporting is aided by the cooperative modulation diversity with spectrum sensing, which can detect new emergency reporting requests and forward them. Simulations results show the decrease of average delay time as the probability of opportunistic access increases, which privileges the emergency reporting related to the patients with higher priority of resources' usage. Furthermore, the packet loss rate is decreased by the use of cooperative modulation diversity with spectrum sensing.
Cognitive LF-Ant: A Novel Protocol for Healthcare Wireless Sensor Networks
Sousa, Marcelo; Lopes, Waslon; Madeiro, Francisco; Alencar, Marcelo
2012-01-01
In this paper, the authors present the Cognitive LF-Ant protocol for emergency reporting in healthcare wireless sensor networks. The protocol is inspired by the natural behaviour of ants and a cognitive component provides the capabilities to dynamically allocate resources, in accordance with the emergency degree of each patient. The intra-cluster emergency reporting is inspired by the different capabilities of leg-manipulated ants. The inter-cluster reporting is aided by the cooperative modulation diversity with spectrum sensing, which can detect new emergency reporting requests and forward them. Simulations results show the decrease of average delay time as the probability of opportunistic access increases, which privileges the emergency reporting related to the patients with higher priority of resources' usage. Furthermore, the packet loss rate is decreased by the use of cooperative modulation diversity with spectrum sensing. PMID:23112610
Scheduling the future NASA Space Network: Experiences with a flexible scheduling prototype
NASA Technical Reports Server (NTRS)
Happell, Nadine; Moe, Karen L.; Minnix, Jay
1993-01-01
NASA's Space Network (SN) provides telecommunications and tracking services to low earth orbiting spacecraft. One proposal for improving resource allocation and automating conflict resolution for the SN is the concept of flexible scheduling. In this concept, each Payload Operations Control Center (POCC) will possess a Space Network User POCC Interface (SNUPI) to support the development and management of flexible requests. Flexible requests express the flexibility, constraints, and repetitious nature of the user's communications requirements. Flexible scheduling is expected to improve SN resource utilization and user satisfaction, as well as reduce the effort to produce and maintain a schedule. A prototype testbed has been developed to better understand flexible scheduling as it applies to the SN. This testbed consists of a SNUPI workstation, an SN scheduler, and a flexible request language that conveys information between the two systems. All three are being evaluated by operations personnel. Benchmark testing is being conducted on the scheduler to quantify the productivity improvements achieved with flexible requests.
Dodson, Zan M.; Agadjanian, Victor; Driessen, Julia
2016-01-01
Proper allocation of limited healthcare resources is a challenging task for policymakers in developing countries. Allocation of and access to these resources typically varies based on how need is defined, thus determining how individuals access and acquire healthcare. Using the introduction of antiretroviral therapy in southern Mozambique as an example, we examine alternative definitions of need for rural populations and how they might impact the allocation of this vital health service. Our results show that how need is defined matters when allocating limited healthcare resources and the use of need-based metrics can help ensure more optimal distribution of services. PMID:28596630
Resource Allocation and Public Policy in Alberta's Postsecondary System.
ERIC Educational Resources Information Center
Barneston, Bob; Boberg, Alice
2000-01-01
Resource allocation in Alberta's postsecondary system has changed substantially since 1994, designed to reapportion financial responsibility for higher education, increase vocational outcomes of postsecondary education, and increase transfer of knowledge and technology to the private sector. This paper outlines how resource allocation has been…
Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies
Blonder, Benjamin; Dornhaus, Anna
2011-01-01
Background An important function of many complex networks is to inhibit or promote the transmission of disease, resources, or information between individuals. However, little is known about how the temporal dynamics of individual-level interactions affect these networks and constrain their function. Ant colonies are a model comparative system for understanding general principles linking individual-level interactions to network-level functions because interactions among individuals enable integration of multiple sources of information to collectively make decisions, and allocate tasks and resources. Methodology/Findings Here we show how the temporal and spatial dynamics of such individual interactions provide upper bounds to rates of colony-level information flow in the ant Temnothorax rugatulus. We develop a general framework for analyzing dynamic networks and a mathematical model that predicts how information flow scales with individual mobility and group size. Conclusions/Significance Using thousands of time-stamped interactions between uniquely marked ants in four colonies of a range of sizes, we demonstrate that observed maximum rates of information flow are always slower than predicted, and are constrained by regulation of individual mobility and contact rate. By accounting for the ordering and timing of interactions, we can resolve important difficulties with network sampling frequency and duration, enabling a broader understanding of interaction network functioning across systems and scales. PMID:21625450
Limited static and dynamic delivering capacity allocations in scale-free networks
NASA Astrophysics Data System (ADS)
Haddou, N. Ben; Ez-Zahraouy, H.; Rachadi, A.
In traffic networks, it is quite important to assign proper packet delivering capacities to the routers with minimum cost. In this respect, many allocation models based on static and dynamic properties have been proposed. In this paper, we are interested in the impact of limiting the packet delivering capacities already allocated to the routers; each node is assigned a packet delivering capacity limited by the maximal capacity Cmax of the routers. To study the limitation effect, we use two basic delivering capacity allocation models; static delivering capacity allocation (SDCA) and dynamic delivering capacity allocation (DDCA). In the SDCA, the capacity allocated is proportional to the node degree, and for DDCA, it is proportional to its queue length. We have studied and compared the limitation of both allocation models under the shortest path (SP) routing strategy as well as the efficient path (EP) routing protocol. In the SP case, we noted a similarity in the results; the network capacity increases with increasing Cmax. For the EP scheme, the network capacity stops increasing for relatively small packet delivering capability limit Cmax for both allocation strategies. However, it reaches high values under the limited DDCA before the saturation. We also find that in the DDCA case, the network capacity remains constant when the traffic information available to each router was updated after long period times τ.
Nirmal Raja, K; Maraline Beno, M
2017-07-01
In the wireless sensor network(WSN) security is a major issue. There are several network security schemes proposed in research. In the network, malicious nodes obstruct the performance of the network. The network can be vulnerable by Sybil attack. When a node illicitly assertions multiple identities or claims fake IDs, the WSN grieves from an attack named Sybil attack. This attack threatens wireless sensor network in data aggregation, synchronizing system, routing, fair resource allocation and misbehavior detection. Henceforth, the research is carried out to prevent the Sybil attack and increase the performance of the network. This paper presents the novel security mechanism and Fujisaki Okamoto algorithm and also application of the work. The Fujisaki-Okamoto (FO) algorithm is ID based cryptographic scheme and gives strong authentication against Sybil attack. By using Network simulator2 (NS2) the scheme is simulated. In this proposed scheme broadcasting key, time taken for different key sizes, energy consumption, Packet delivery ratio, Throughput were analyzed.
Network support for turn-taking in multimedia collaboration
NASA Astrophysics Data System (ADS)
Dommel, Hans-Peter; Garcia-Luna-Aceves, Jose J.
1997-01-01
The effectiveness of collaborative multimedia systems depends on the regulation of access to their shared resources, such as continuous media or instruments used concurrently by multiple parties. Existing applications use only simple protocols to mediate such resource contention. Their cooperative rules follow a strict agenda and are largely application-specific. The inherent problem of floor control lacks a systematic methodology. This paper presents a general model on floor control for correct, scalable, fine-grained and fair resource sharing that integrates user interaction with network conditions, and adaptation to various media types. The motion of turn-taking known from psycholinguistics in studies on discourse structure is adapted for this framework. Viewed as a computational analogy to speech communication, online collaboration revolves around dynamically allocated access permissions called floors. The control semantics of floors derives from concurrently control methodology. An explicit specification and verification of a novel distributed Floor Control Protocol are presented. Hosts assume sharing roles that allow for efficient dissemination of control information, agreeing on a floor holder which is granted mutually exclusive access to a resource. Performance analytic aspects of floor control protocols are also briefly discussed.
Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.
Teixido, A L; Guzmán, B; Staggemeier, V G; Valladares, F
2017-11-01
In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Züst, Tobias; Agrawal, Anurag A
2017-04-28
Costs of defense are central to our understanding of interactions between organisms and their environment, and defensive phenotypes of plants have long been considered to be constrained by trade-offs that reflect the allocation of limiting resources. Recent advances in uncovering signal transduction networks have revealed that defense trade-offs are often the result of regulatory "decisions" by the plant, enabling it to fine-tune its phenotype in response to diverse environmental challenges. We place these results in the context of classic studies in ecology and evolutionary biology, and propose a unifying framework for growth-defense trade-offs as a means to study the plant's allocation of limiting resources. Pervasive physiological costs constrain the upper limit to growth and defense traits, but the diversity of selective pressures on plants often favors negative correlations at intermediate trait levels. Despite the ubiquity of underlying costs of defense, the current challenge is using physiological and molecular approaches to predict the conditions where they manifest as detectable trade-offs.
Protocol for buffer space negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nessett, D.
There are at least two ways to manage the buffer memory of a communications node. On etechnique veiws the buffer as a single resource that is to be reserved and released as a unit for a particular communication transaction. A more common approach treats the node's buffer space as a collection of resources (e.g., bytes, words, packet slots) capable of being allocated among multiple concurrent conversations. To achieve buffer space multiplexing, some sort of negotiation for buffer space must take place between source and sink nodes before a transaction can commence. Results are presented which indicate that, for an applicationmore » involving a CSMA broadcast network, buffer space multiplexing offers better performance than buffer reservation. To achieve this improvement, a simple protocol is presented that features flow-control information traveling both from source to sink as well as from sink to source. It is argued that this bidirectionality allows the sink to allocate buffer space among its active communication paths more effectively. 13 figures.« less
Examining the potential exploitation of UNOS policies.
Zink, Sheldon; Wertlieb, Stacey; Catalano, John; Marwin, Victor
2005-01-01
The United Network for Organ Sharing (UNOS) waiting list was designed as a just and equitable system through which the limited number of organs is allocated to the millions of Americans in need of a transplant. People have trusted the system because of the belief that everyone on the list has an equal opportunity to receive an organ and also that allocation is blind to matters of financial standing, celebrity or political power. Recent events have revealed that certain practices and policies have the potential to be exploited. The policies addressed in this paper enable those on the list with the proper resources to gain an advantage over other less fortunate members, creating a system that benefits not the individual most in medical need, but the one with the best resources. These policies are not only unethical but threaten the balance and success of the entire UNOS system. This paper proposes one possible solution, which seeks to balance the concepts of justice and utility.
On System Engineering a Barter-Based Re-allocation of Space System Key Development Resources
NASA Astrophysics Data System (ADS)
Kosmann, William J.
NASA has had a decades-long problem with cost growth during the development of space science missions. Numerous agency-sponsored studies have produced average mission level development cost growths ranging from 23 to 77%. A new study of 26 historical NASA science instrument set developments using expert judgment to re-allocate key development resources has an average cost growth of 73.77%. Twice in history, during the Cassini and EOS-Terra science instrument developments, a barter-based mechanism has been used to re-allocate key development resources. The mean instrument set development cost growth was -1.55%. Performing a bivariate inference on the means of these two distributions, there is statistical evidence to support the claim that using a barter-based mechanism to re-allocate key instrument development resources will result in a lower expected cost growth than using the expert judgment approach. Agent-based discrete event simulation is the natural way to model a trade environment. A NetLogo agent-based barter-based simulation of science instrument development was created. The agent-based model was validated against the Cassini historical example, as the starting and ending instrument development conditions are available. The resulting validated agent-based barter-based science instrument resource re-allocation simulation was used to perform 300 instrument development simulations, using barter to re-allocate development resources. The mean cost growth was -3.365%. A bivariate inference on the means was performed to determine that additional significant statistical evidence exists to support a claim that using barter-based resource re-allocation will result in lower expected cost growth, with respect to the historical expert judgment approach. Barter-based key development resource re-allocation should work on science spacecraft development as well as it has worked on science instrument development. A new study of 28 historical NASA science spacecraft developments has an average cost growth of 46.04%. As barter-based key development resource re-allocation has never been tried in a spacecraft development, no historical results exist, and an inference on the means test is not possible. A simulation of using barter-based resource re-allocation should be developed. The NetLogo instrument development simulation should be modified to account for spacecraft development market participant differences. The resulting agent-based barter-based spacecraft resource re-allocation simulation would then be used to determine if significant statistical evidence exists to prove a claim that using barter-based resource re-allocation will result in lower expected cost growth.
Asante, Augustine Danso; Zwi, Anthony Barry; Ho, Maria Theresa
2006-10-01
Debate over the equitable allocation of financial resources in the health sector has focused overwhelmingly on allocation from national to regional levels. More equitable allocation of such resources within regions has been virtually ignored, creating a vacuum in knowledge regarding how resources are allocated intra-regionally and their potential influence on promoting health equity. In this paper, we report an empirical study examining progress towards equity in intra-regional resource allocation in the Ashanti and Northern regions of Ghana. Relative deprivation across the 31 districts of the two regions was measured as a proxy of health needs. The result was used to develop an equity-adjusted share index (EAS) applied as a yardstick against which progress towards equity was assessed. The study found a significant correlation between districts' share of donor pooled funds (DPF) and the EAS in the Northern region for three of the 4 years investigated. In Ashanti region, a worsening trend in relation to equity in DPF allocation was discovered. The proportion of variance in the share of DPF that could be explained by the EAS reduced incrementally from 56% in 1999 to less than 1% in 2002. The study highlights the need for more emphasis on intra-regional equity in resource allocation in Ghana.
Liao, Kuo-Jen; Hou, Xiangting; Strickland, Matthew J.
2016-01-01
ABSTRACT An important issue of regional air quality management is to allocate air quality management funds to maximize environmental and human health benefits. In this study, we use an innovative approach to tackle this air quality management issue. We develop an innovative resource allocation model that allows identification of air pollutant emission control strategies that maximize mortality avoidances subject to a resource constraint. We first present the development of the resource allocation model and then a case study to show how the model can be used to identify resource allocation strategies that maximize mortality avoidances for top five Metropolitan Statistical Areas (MSAs) (i.e., New York, Los Angeles, Chicago, Dallas-Fort Worth, and Philadelphia) in the continental United States collectively. Given budget constraints in the U.S. Environmental Protection Agency’s (EPA) Clean Air Act assessment, the results of the case study suggest that controls of sulfur dioxide (SO2) and primary carbon (PC) emissions from EPA Regions 2, 3, 5, 6, and 9 would have significant health benefits for the five selected cities collectively. Around 30,800 air pollution–related mortalities could be avoided during the selected 2-week summertime episode for the five cities collectively if the budget could be allocated based on the results of the resource allocation model. Although only five U.S. cities during a 2-week episode are considered in the case study, the resource allocation model can be used by decision-makers to plan air pollution mitigation strategies to achieve the most significant health benefits for other seasons and more cities over a region or the continental U.S.Implications: Effective allocations of air quality management resources are challenging and complicated, and it is desired to have a tool that can help decision-makers better allocate the funds to maximize health benefits of air pollution mitigation. An innovative resource allocation model developed in this study can help decision-makers identify the best resource allocation strategies for multiple cities collectively. The results of a case study suggest that controls of primary carbon and sulfur dioxides emissions would achieve the most significant health benefits for five selected cities collectively. PMID:27441782
Children's understanding of equity in the context of inequality.
Rizzo, Michael T; Killen, Melanie
2016-11-01
In the context of a pre-existing resource inequality, the concerns for strict equality (allocating the same number of resources to all recipients) conflict with the concerns for equity (allocating resources to rectify the inequality). This study demonstrated age-related changes in children's (3-8 years old, N = 133) ability to simultaneously weigh the concerns for equality and equity through the analysis of children's judgements, allocations, and reasoning in the context of a pre-existing inequality. Three- to 4-year-olds took equity into account in their judgements of allocations, but allocated resources equally in a behavioural task. In contrast, 5- to 6-year-olds rectified the inequality in their allocations, but judged both equitable and equal allocations to be fair. It was not until 7-8 years old that children focused on rectifying the inequality in their allocations and judgements, as well as judged equal allocations less positively than equitable allocations, thereby demonstrating a more complete understanding of the necessity of rectifying inequalities. The novel findings revealed age-related changes from 3 to 8 years old regarding how the concerns for equity and equality develop, and how children's judgements, allocations, and reasoning are coordinated when making allocation decisions. © 2016 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Marcus, Kelvin
2014-06-01
The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.
Resource Allocation over a GRID Military Network
2006-12-01
The behaviour is called PHB (Per Hop Behaviour) and it is defined locally; i.e., it is not an end- to-end specification (as for RSVP) but it is...UNLIMITED UNCLASSIFIED/UNLIMITED The class selector PHB offers three forwarding priorities: Expedited Forwarding (EF) characterized by a minimum...14] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, “Assured Forwarding PHB Group,” IETF RFC 2597, June 1999. [15] E. Crawley, R. Nair, B
Intelligence Level and the Allocation of Resources for Creative Tasks: A Pupillometry Study
ERIC Educational Resources Information Center
Ojha, Amitash; Indurkhya, Bipin; Lee, Minho
2017-01-01
This pupillometry study examined the relationship between intelligence and creative cognition from the resource allocation perspective. It was hypothesized that, during a creative metaphor task, individuals with higher intelligence scores would have different resource allocation patterns than individuals with lower intelligence scores. The study…
Allocating Resources for Learning Support: A Case Study.
ERIC Educational Resources Information Center
Sharp, Stephen
2000-01-01
Examines how learning-support resources are allocated to Scottish secondary schools, drawing on data from an Edinburgh education authority. Although a rationale for allocating resources based on socioeconomic indices can be constructed, basing decisions on a combination of standardized attainment tests and special-needs audits is preferable.…
Resource Allocation in British Universities. SRHE Monograph 56.
ERIC Educational Resources Information Center
Shattock, Michael, Ed.; Rigby, Gwynneth, Ed.
The ways that British universities allocate their resources are discussed, with attention to different styles, techniques, and decison-making structures. Since the purpose is to describe institutional models of resource allocation, specific universities are not identified by name. After identifying the sources of income and the breakdown of…
Resource Allocation in a Repetitive Project Scheduling Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Samuel, Biju; Mathew, Jeeno
2018-03-01
Resource Allocation is procedure of doling out or allocating the accessible assets in a monetary way and productive way. Resource allocation is the scheduling of the accessible assets and accessible exercises or activities required while thinking about both the asset accessibility and the total project completion time. Asset provisioning and allocation takes care of that issue by permitting the specialist co-ops to deal with the assets for every individual demand of asset. A probabilistic selection procedure has been developed in order to ensure various selections of chromosomes
Stigmatizing attitudes about mental illness and allocation of resources to mental health services.
Corrigan, Patrick W; Watson, Amy C; Warpinski, Amy C; Gracia, Gabriela
2004-08-01
This study tests a social psychological model (Skitka & Tetlock, 1992). Journal of Experimental Social Psychology, 28, 491-522; [1993]. Journal of Personality & Social Psychology, 65, 1205-1223 stating that policy maker decisions regarding the allocation of resources to mental health services are influenced by their attitudes towards people with mental illness and treatment efficacy. Fifty four individuals participated in a larger study of education about mental health stigma. Participants completed various measures of resource allocation preferences for mandated treatment and rehabilitation services, attributions about people with mental illness, and factors that influence allocation preferences including perceived treatment efficacy. Results showed significant attitudinal correlates with resource allocation preferences for mandated treatment, but no correlates to rehabilitation services. In particular, people who pity people with mental illness as well as those that endorse coercive and segregated treatments, were more likely to rate resource allocation to mandated care as important. Perceived treatment efficacy was also positively associated with resource allocation preferences for mandated treatment. A separate behavioral measure that involved donating money to NAMI was found to be inversely associated with blaming people for their mental illness and not being willing to help them. Implications of these findings on strategies that seek to increase resources for mental health programs are discussed.
Ng'oma, Enoch; Perinchery, Anna M; King, Elizabeth G
2017-06-28
All organisms use resources to grow, survive and reproduce. The supply of these resources varies widely across landscapes and time, imposing ultimate constraints on the maximal trait values for allocation-related traits. In this review, we address three key questions fundamental to our understanding of the evolution of allocation strategies and their underlying mechanisms. First, we ask: how diverse are flexible resource allocation strategies among different organisms? We find there are many, varied, examples of flexible strategies that depend on nutrition. However, this diversity is often ignored in some of the best-known cases of resource allocation shifts, such as the commonly observed pattern of lifespan extension under nutrient limitation. A greater appreciation of the wide variety of flexible allocation strategies leads directly to our second major question: what conditions select for different plastic allocation strategies? Here, we highlight the need for additional models that explicitly consider the evolution of phenotypically plastic allocation strategies and empirical tests of the predictions of those models in natural populations. Finally, we consider the question: what are the underlying mechanisms determining resource allocation strategies? Although evolutionary biologists assume differential allocation of resources is a major factor limiting trait evolution, few proximate mechanisms are known that specifically support the model. We argue that an integrated framework can reconcile evolutionary models with proximate mechanisms that appear at first glance to be in conflict with these models. Overall, we encourage future studies to: (i) mimic ecological conditions in which those patterns evolve, and (ii) take advantage of the 'omic' opportunities to produce multi-level data and analytical models that effectively integrate across physiological and evolutionary theory. © 2017 The Author(s).
2017-01-01
All organisms use resources to grow, survive and reproduce. The supply of these resources varies widely across landscapes and time, imposing ultimate constraints on the maximal trait values for allocation-related traits. In this review, we address three key questions fundamental to our understanding of the evolution of allocation strategies and their underlying mechanisms. First, we ask: how diverse are flexible resource allocation strategies among different organisms? We find there are many, varied, examples of flexible strategies that depend on nutrition. However, this diversity is often ignored in some of the best-known cases of resource allocation shifts, such as the commonly observed pattern of lifespan extension under nutrient limitation. A greater appreciation of the wide variety of flexible allocation strategies leads directly to our second major question: what conditions select for different plastic allocation strategies? Here, we highlight the need for additional models that explicitly consider the evolution of phenotypically plastic allocation strategies and empirical tests of the predictions of those models in natural populations. Finally, we consider the question: what are the underlying mechanisms determining resource allocation strategies? Although evolutionary biologists assume differential allocation of resources is a major factor limiting trait evolution, few proximate mechanisms are known that specifically support the model. We argue that an integrated framework can reconcile evolutionary models with proximate mechanisms that appear at first glance to be in conflict with these models. Overall, we encourage future studies to: (i) mimic ecological conditions in which those patterns evolve, and (ii) take advantage of the ‘omic’ opportunities to produce multi-level data and analytical models that effectively integrate across physiological and evolutionary theory. PMID:28637856
A new way to improve the robustness of complex communication networks by allocating redundancy links
NASA Astrophysics Data System (ADS)
Shi, Chunhui; Peng, Yunfeng; Zhuo, Yue; Tang, Jieying; Long, Keping
2012-03-01
We investigate the robustness of complex communication networks on allocating redundancy links. The protecting key nodes (PKN) strategy is proposed to improve the robustness of complex communication networks against intentional attack. Our numerical simulations show that allocating a few redundant links among key nodes using the PKN strategy will significantly increase the robustness of scale-free complex networks. We have also theoretically proved and demonstrated the effectiveness of the PKN strategy. We expect that our work will help achieve a better understanding of communication networks.
Xu, Xinglong; Zhou, Lulin; Antwi, Henry Asante; Chen, Xi
2018-02-20
While the demand for health services keep escalating at the grass roots or rural areas of China, a substantial portion of healthcare resources remain stagnant in the more developed cities and this has entrenched health inequity in many parts of China. At its conception, China's Deepen Medical Reform started in 2012 was intended to flush out possible disparities and promote a more equitable and efficient distribution of healthcare resources. Nearly half a decade of this reform, there are uncertainties as to whether the attainment of the objectives of the reform is in sight. Using a hybrid of panel data analysis and an augmented data envelopment analysis (DEA), we model human resources, material, finance to determine their technical and scale efficiency to comprehensively evaluate the transverse and longitudinal allocation efficiency of community health resources in Jiangsu Province. We observed that the Deepen Medical Reform in China has led to an increase concern to ensure efficient allocation of community health resources by health policy makers in the province. This has led to greater efficiency in health resource allocation in Jiangsu in general but serious regional or municipal disparities still exist. Using the DEA model, we note that the output from the Community Health Centers does not commensurate with the substantial resources (human resources, materials, and financial) invested in them. We further observe that the case is worst in less-developed Northern parts of Jiangsu Province. The government of Jiangsu Province could improve the efficiency of health resource allocation by improving the community health service system, rationalizing the allocation of health personnel, optimizing the allocation of material resources, and enhancing the level of health of financial resource allocation.
Agent-Based Framework for Personalized Service Provisioning in Converged IP Networks
NASA Astrophysics Data System (ADS)
Podobnik, Vedran; Matijasevic, Maja; Lovrek, Ignac; Skorin-Kapov, Lea; Desic, Sasa
In a global multi-service and multi-provider market, the Internet Service Providers will increasingly need to differentiate in the service quality they offer and base their operation on new, consumer-centric business models. In this paper, we propose an agent-based framework for the Business-to-Consumer (B2C) electronic market, comprising the Consumer Agents, Broker Agents and Content Agents, which enable Internet consumers to select a content provider in an automated manner. We also discuss how to dynamically allocate network resources to provide end-to-end Quality of Service (QoS) for a given consumer and content provider.
System identification of an unmanned quadcopter system using MRAN neural
NASA Astrophysics Data System (ADS)
Pairan, M. F.; Shamsudin, S. S.
2017-12-01
This project presents the performance analysis of the radial basis function neural network (RBF) trained with Minimal Resource Allocating Network (MRAN) algorithm for real-time identification of quadcopter. MRAN’s performance is compared with the RBF with Constant Trace algorithm for 2500 input-output pair data sampling. MRAN utilizes adding and pruning hidden neuron strategy to obtain optimum RBF structure, increase prediction accuracy and reduce training time. The results indicate that MRAN algorithm produces fast training time and more accurate prediction compared with standard RBF. The model proposed in this paper is capable of identifying and modelling a nonlinear representation of the quadcopter flight dynamics.
Resource allocation processes at multilateral organizations working in global health
Chi, Y-Ling; Bump, Jesse B
2018-01-01
Abstract International institutions provide well over US$10 billion in development assistance for health (DAH) annually and between 1990 and 2014, DAH disbursements totaled $458 billion but how do they decide who gets what, and for what purpose? In this article, we explore how allocation decisions were made by the nine convening agencies of the Equitable Access Initiative. We provide clear, plain language descriptions of the complete process from resource mobilization to allocation for the nine multilateral agencies with prominent agendas in global health. Then, through a comparative analysis we illuminate the choices and strategies employed in the nine international institutions. We find that resource allocation in all reviewed institutions follow a similar pattern, which we categorized in a framework of five steps: strategy definition, resource mobilization, eligibility of countries, support type and funds allocation. All the reviewed institutions generate resource allocation decisions through well-structured and fairly complex processes. Variations in those processes seem to reflect differences in institutional principles and goals. However, these processes have serious shortcomings. Technical problems include inadequate flexibility to account for or meet country needs. Although aid effectiveness and value for money are commonly referenced, we find that neither performance nor impact is a major criterion for allocating resources. We found very little formal consideration of the incentives generated by allocation choices. Political issues include non-transparent influence on allocation processes by donors and bureaucrats, and the common practice of earmarking funds to bypass the normal allocation process entirely. Ethical deficiencies include low accountability and transparency at international institutions, and limited participation by affected citizens or their representatives. We find that recipient countries have low influence on allocation processes themselves, although within these processes they have some influence in relatively narrow areas. PMID:29415239
A Survey of Middleware for Sensor and Network Virtualization
Khalid, Zubair; Fisal, Norsheila; Rozaini, Mohd.
2014-01-01
Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of Everything (IoE). WSNs have a wide range of applications but are usually deployed in a particular application. However, the future of WSNs lies in the aggregation and allocation of resources, serving diverse applications. WSN virtualization by the middleware is an emerging concept that enables aggregation of multiple independent heterogeneous devices, networks, radios and software platforms; and enhancing application development. WSN virtualization, middleware can further be categorized into sensor virtualization and network virtualization. Middleware for WSN virtualization poses several challenges like efficient decoupling of networks, devices and software. In this paper efforts have been put forward to bring an overview of the previous and current middleware designs for WSN virtualization, the design goals, software architectures, abstracted services, testbeds and programming techniques. Furthermore, the paper also presents the proposed model, challenges and future opportunities for further research in the middleware designs for WSN virtualization. PMID:25615737
A survey of middleware for sensor and network virtualization.
Khalid, Zubair; Fisal, Norsheila; Rozaini, Mohd
2014-12-12
Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of Everything (IoE). WSNs have a wide range of applications but are usually deployed in a particular application. However, the future of WSNs lies in the aggregation and allocation of resources, serving diverse applications. WSN virtualization by the middleware is an emerging concept that enables aggregation of multiple independent heterogeneous devices, networks, radios and software platforms; and enhancing application development. WSN virtualization, middleware can further be categorized into sensor virtualization and network virtualization. Middleware for WSN virtualization poses several challenges like efficient decoupling of networks, devices and software. In this paper efforts have been put forward to bring an overview of the previous and current middleware designs for WSN virtualization, the design goals, software architectures, abstracted services, testbeds and programming techniques. Furthermore, the paper also presents the proposed model, challenges and future opportunities for further research in the middleware designs for WSN virtualization.
Okorafor, Okore A; Thomas, Stephen
2007-11-01
The introduction of fiscal federalism or decentralization of functions to lower levels of government is a reform not done primarily with health sector concerns. A major concern for the health sector is that devolution of expenditure responsibilities to sub-national levels of government can adversely affect the equitable distribution of financial resources across local jurisdictions. Since the adoption of fiscal federalism in South Africa, progress towards achieving a more equitable distribution of public sector health resources (financial) has slowed down considerably. This study attempts to identify appropriate resource allocation mechanisms under the current South African fiscal federal system that could be employed to promote equity in primary health care (PHC) allocations across provinces and districts. The study uses data from interviews with government officials involved in the budgeting and resource allocation process for PHC, literature on fiscal federalism and literature on international experience to inform analysis and recommendations. The results from the study identify historical incremental budgeting, weak managerial capacity at lower levels of government, poor accounting of PHC expenditure, and lack of protection for PHC funds as constraints to the realization of a more equitable distribution of PHC allocations. Based on interview data, no one resource allocation mechanism received unanimous support from stakeholders. However, the study highlights the particularly high level of autonomy enjoyed by provincial governments with regards to decision making for allocations to health and PHC services as the major constraint to achieving a more equitable distribution of PHC resources. The national government needs to have more involvement in decision making for resource allocation to PHC services if significant progress towards equity is to be achieved.
Toward a Multilevel Perspective on the Allocation of Educational Resources.
ERIC Educational Resources Information Center
Monk, David H.
1981-01-01
The importance of the following is demonstrated: (1) striking a balance between the attention given to resource allocation practices at macro compared to microlevels of decision making; and (2) learning more about how resource allocation decisions made at one level affect practices at other levels of the educational system. (Author/GK)
The Effects of Charter School Competition on School District Resource Allocation
ERIC Educational Resources Information Center
Arsen, David; Ni, Yongmei
2012-01-01
Purpose: This article examines two questions: (a) How does resource allocation change in school districts experiencing sustained charter school competition? (b) Among districts exposed to charter competition, are there differences in the resource allocation adjustments between those that do and do not succeed in stemming further enrollment loss to…
Minority Threat, Crime Control, and Police Resource Allocation in the Southwestern United States
ERIC Educational Resources Information Center
Holmes, Malcolm D.; Smith, Brad W.; Freng, Adrienne B.; Munoz, Ed A.
2008-01-01
Numerous studies have examined political influences on communities' allocations of fiscal and personnel resources to policing. Rational choice theory maintains that these resources are distributed in accordance with the need for crime control, whereas conflict theory argues that they are allocated with the aim of controlling racial and ethnic…
Self-organizing feature maps for dynamic control of radio resources in CDMA microcellular networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
1998-03-01
The application of artificial neural networks to the channel assignment problem for cellular code-division multiple access (CDMA) cellular networks has previously been investigated. CDMA takes advantage of voice activity and spatial isolation because its capacity is only interference limited, unlike time-division multiple access (TDMA) and frequency-division multiple access (FDMA) where capacities are bandwidth-limited. Any reduction in interference in CDMA translates linearly into increased capacity. To satisfy the high demands for new services and improved connectivity for mobile communications, microcellular and picocellular systems are being introduced. For these systems, there is a need to develop robust and efficient management procedures for the allocation of power and spectrum to maximize radio capacity. Topology-conserving mappings play an important role in the biological processing of sensory inputs. The same principles underlying Kohonen's self-organizing feature maps (SOFMs) are applied to the adaptive control of radio resources to minimize interference, hence, maximize capacity in direct-sequence (DS) CDMA networks. The approach based on SOFMs is applied to some published examples of both theoretical and empirical models of DS/CDMA microcellular networks in metropolitan areas. The results of the approach for these examples are informally compared to the performance of algorithms, based on Hopfield- Tank neural networks and on genetic algorithms, for the channel assignment problem.
Resource Allocation Planning Helper (RALPH): Lessons learned
NASA Technical Reports Server (NTRS)
Durham, Ralph; Reilly, Norman B.; Springer, Joe B.
1990-01-01
The current task of Resource Allocation Process includes the planning and apportionment of JPL's Ground Data System composed of the Deep Space Network and Mission Control and Computing Center facilities. The addition of the data driven, rule based planning system, RALPH, has expanded the planning horizon from 8 weeks to 10 years and has resulted in large labor savings. Use of the system has also resulted in important improvements in science return through enhanced resource utilization. In addition, RALPH has been instrumental in supporting rapid turn around for an increased volume of special what if studies. The status of RALPH is briefly reviewed and important lessons learned from the creation of an highly functional design team are focused on through an evolutionary design and implementation period in which an AI shell was selected, prototyped, and ultimately abandoned, and through the fundamental changes to the very process that spawned the tool kit. Principal topics include proper integration of software tools within the planning environment, transition from prototype to delivered to delivered software, changes in the planning methodology as a result of evolving software capabilities and creation of the ability to develop and process generic requirements to allow planning flexibility.
Resource allocation in neural networks for motor control
NASA Astrophysics Data System (ADS)
Milton, J.; Cummins, J.; Gunnoe, J.; Tollefson, M.; Cabrera, J. L.; Ohira, T.
2006-03-01
Multiplicative noise plays an important part of a non-predictive control mechanism for stick balancing at the fingertip. However, intentionally-directed movements are also used in stick balancing, particularly by beginners. The interplay between intentional and non-predictive control mechanisms for stick balancing was assessed using two dual task paradigms: the subject was asked to either move one of their legs rhythmically or to imagine moving their leg while balancing a stick (55.4 cm, 35 g) at their fingertip. Performance was measured by determining the stick survival function, i.e. the fraction of trials (total >=25) for which the stick remained balanced at time t as a function of t. Performance was increased by concurrent rhythmic leg movements (50% survival time shifted from 8-9s to 15s in a typical subject). Imagined movements resulted in a similar improvement (50% survival time of 20s for the above subject) suggesting that this enhancement is not simply related to mechanical vibrations of the fingertip induced by leg movement. These observations emphasize the importance of the development of mathematical models for neural control of skilled motor movements that take into resource allocation of limited resources, such as intention.
Optimal Resource Allocation in Electrical Network Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Y; Edmunds, T; Papageorgiou, D
2004-01-15
Infrastructure networks supplying electricity, natural gas, water, and other commodities are at risk of disruption due to well-engineered and coordinated terrorist attacks. Countermeasures such as hardening targets, acquisition of spare critical components, and surveillance can be undertaken to detect and deter these attacks. Allocation of available countermeasures resources to sites or activities in a manner that maximizes their effectiveness is a challenging problem. This allocation must take into account the adversary's response after the countermeasure assets are in place and consequence mitigation measures the infrastructure operation can undertake after the attack. The adversary may simply switch strategies to avoid countermeasuresmore » when executing the attack. Stockpiling spares of critical energy infrastructure components has been identified as a key element of a grid infrastructure defense strategy in a recent National Academy of Sciences report [1]. Consider a scenario where an attacker attempts to interrupt the service of an electrical network by disabling some of its facilities while a defender wants to prevent or minimize the effectiveness of any attack. The interaction between the attacker and the defender can be described in three stages: (1) The defender deploys countermeasures, (2) The attacker disrupts the network, and (3) The defender responds to the attack by rerouting power to maintain service while trying to repair damage. In the first stage, the defender considers all possible attack scenarios and deploys countermeasures to defend against the worst scenarios. Countermeasures can include hardening targets, acquiring spare critical components, and installing surveillance devices. In the second stage, the attacker, with full knowledge of the deployed countermeasures, attempts to disable some nodes or links in the network to inflict the greatest loss on the defender. In the third stage, the defender re-dispatches power and restores disabled nodes or links to minimize the loss. The loss can be measured in costs, including the costs of using more expensive generators and the economic losses that can be attributed to loss of load. The defender's goal is to minimize the loss while the attacker wants to maximize it. Assuming some level of budget constraint, each side can only defend or attack a limited number of network elements. When an element is attacked, it is assumed that it will be totally disabled. It is assumed that when an element is defended it cannot be disabled, which may mean that it will be restored in a very short time after being attacked. The rest of the paper is organized as follows. Section 2 will briefly review literature related to multilevel programming and network defense. Section 3 presents a mathematical formulation of the electrical network defense problem. Section 4 describes the solution algorithms. Section 5 discusses computational results. Finally, Sec. 6 explores future research directions.« less
How resource allocation decisions are made in the health care market.
Vogel, W B
2000-10-01
This paper describes how economists view resource allocation decisions in health care markets. The basic economic decisions that must be made in any economic system and the resource allocation decisions in a perfectly competitive market are described. An idealized market can achieve an efficient allocation of resources and is contrasted with a more realistic description of the numerous ways in which health care markets depart from the perfectly competitive ideal. The implications of these departures for health care policy are discussed, along with key controversies concerning reliance upon markets for resource allocation in health care. In particular, the failure of competitive markets to achieve what many consider an equitable distribution of health care is emphasized. The paper concludes with some practical observations on how pharmacists can use the increasing emphasis on economic efficiency to the advantage of their profession.
Suggestions to ameliorate the inequity in urban/rural allocation of healthcare resources in China.
Chen, Yiyi; Yin, Zhou; Xie, Qiong
2014-05-01
The imbalance in the allocation in healthcare resources between urban and rural areas has become a main focus of the recent medical reforms adopted in China. However, systematic analysis has identified wide differences in the allocation of healthcare resources between urban and rural areas, including healthcare expenditures and the number of healthcare facilities, available beds, and personnel. Therefore, the aim of this report was to identify ethical considerations in current governmental policies to rectify existing problems in the distribution of healthcare resources. Our findings indicate that the inequality in the distribution of healthcare resources does not adhere to ethical standards and the policies are flawed because they give rise to differences in the availability of medical care to urban and rural communities. To optimize the allocation of medical healthcare resources, countermeasures are proposed to formulate policies to urge the flow of public healthcare resources to rural areas, strengthen the responsibilities of both governmental and public financial investments, increase the construction of public healthcare facilities in rural areas, promote the quality of healthcare resources, adjust resource allocations to rural public healthcare facilities, and improve resource utilization efficiency by establishing two-way referral mechanisms.
Tactical resource allocation and elective patient admission planning in care processes.
Hulshof, Peter J H; Boucherie, Richard J; Hans, Erwin W; Hurink, Johann L
2013-06-01
Tactical planning of resources in hospitals concerns elective patient admission planning and the intermediate term allocation of resource capacities. Its main objectives are to achieve equitable access for patients, to meet production targets/to serve the strategically agreed number of patients, and to use resources efficiently. This paper proposes a method to develop a tactical resource allocation and elective patient admission plan. These tactical plans allocate available resources to various care processes and determine the selection of patients to be served that are at a particular stage of their care process. Our method is developed in a Mixed Integer Linear Programming (MILP) framework and copes with multiple resources, multiple time periods and multiple patient groups with various uncertain treatment paths through the hospital, thereby integrating decision making for a chain of hospital resources. Computational results indicate that our method leads to a more equitable distribution of resources and provides control of patient access times, the number of patients served and the fraction of allocated resource capacity. Our approach is generic, as the base MILP and the solution approach allow for including various extensions to both the objective criteria and the constraints. Consequently, the proposed method is applicable in various settings of tactical hospital management.
Szczepanski, Sara M.; Crone, Nathan E.; Kuperman, Rachel A.; Auguste, Kurtis I.; Parvizi, Josef; Knight, Robert T.
2014-01-01
Attention is a core cognitive mechanism that allows the brain to allocate limited resources depending on current task demands. A number of frontal and posterior parietal cortical areas, referred to collectively as the fronto-parietal attentional control network, are engaged during attentional allocation in both humans and non-human primates. Numerous studies have examined this network in the human brain using various neuroimaging and scalp electrophysiological techniques. However, little is known about how these frontal and parietal areas interact dynamically to produce behavior on a fine temporal (sub-second) and spatial (sub-centimeter) scale. We addressed how human fronto-parietal regions control visuospatial attention on a fine spatiotemporal scale by recording electrocorticography (ECoG) signals measured directly from subdural electrode arrays that were implanted in patients undergoing intracranial monitoring for localization of epileptic foci. Subjects (n = 8) performed a spatial-cuing task, in which they allocated visuospatial attention to either the right or left visual field and detected the appearance of a target. We found increases in high gamma (HG) power (70–250 Hz) time-locked to trial onset that remained elevated throughout the attentional allocation period over frontal, parietal, and visual areas. These HG power increases were modulated by the phase of the ongoing delta/theta (2–5 Hz) oscillation during attentional allocation. Critically, we found that the strength of this delta/theta phase-HG amplitude coupling predicted reaction times to detected targets on a trial-by-trial basis. These results highlight the role of delta/theta phase-HG amplitude coupling as a mechanism for sub-second facilitation and coordination within human fronto-parietal cortex that is guided by momentary attentional demands. PMID:25157678
Harris, Claire; Allen, Kelly; Ramsey, Wayne; King, Richard; Green, Sally
2018-05-30
This is the final paper in a thematic series reporting a program of Sustainability in Health care by Allocating Resources Effectively (SHARE) in a local healthcare setting. The SHARE Program was established to explore a systematic, integrated, evidence-based organisation-wide approach to disinvestment in a large Australian health service network. This paper summarises the findings, discusses the contribution of the SHARE Program to the body of knowledge and understanding of disinvestment in the local healthcare setting, and considers implications for policy, practice and research. The SHARE program was conducted in three phases. Phase One was undertaken to understand concepts and practices related to disinvestment and the implications for a local health service and, based on this information, to identify potential settings and methods for decision-making about disinvestment. The aim of Phase Two was to implement and evaluate the proposed methods to determine which were sustainable, effective and appropriate in a local health service. A review of the current literature incorporating the SHARE findings was conducted in Phase Three to contribute to the understanding of systematic approaches to disinvestment in the local healthcare context. SHARE differed from many other published examples of disinvestment in several ways: by seeking to identify and implement disinvestment opportunities within organisational infrastructure rather than as standalone projects; considering disinvestment in the context of all resource allocation decisions rather than in isolation; including allocation of non-monetary resources as well as financial decisions; and focusing on effective use of limited resources to optimise healthcare outcomes. The SHARE findings provide a rich source of new information about local health service decision-making, in a level of detail not previously reported, to inform others in similar situations. Multiple innovations related to disinvestment were found to be acceptable and feasible in the local setting. Factors influencing decision-making, implementation processes and final outcomes were identified; and methods for further exploration, or avoidance, in attempting disinvestment in this context are proposed based on these findings. The settings, frameworks, models, methods and tools arising from the SHARE findings have potential to enhance health care and patient outcomes.
Complexity as a Factor of Quality and Cost in Large Scale Software Development.
1979-12-01
allocating testing resources." [69 69I V. THE ROLE OF COMPLEXITY IN RESOURCE ESTIMATION AND ALLOCATION A. GENERAL It can be argued that blame for the...and allocation of testing resource by - identifying independent substructures and - identifying heavily used logic paths. 2. Setting a Design Threshold... RESOURCE ESTIMATION -------- 70 1. New Dynamic Field ------------------------- 70 2. Quality and Testing ----------------------- 71 3. Programming Units of
Multi-Objective Reinforcement Learning-based Deep Neural Networks for Cognitive Space Communications
NASA Technical Reports Server (NTRS)
Ferreria, Paulo; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy; Bilen, Sven; Reinhart, Richard; Mortensen, Dale
2017-01-01
Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.
Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications
NASA Technical Reports Server (NTRS)
Ferreria, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.
2017-01-01
Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.
Measuring Road Network Vulnerability with Sensitivity Analysis
Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin
2017-01-01
This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706
NASA Astrophysics Data System (ADS)
Fu, Yu-Hsiang; Huang, Chung-Yuan; Sun, Chuen-Tsai
2016-11-01
Using network community structures to identify multiple influential spreaders is an appropriate method for analyzing the dissemination of information, ideas and infectious diseases. For example, data on spreaders selected from groups of customers who make similar purchases may be used to advertise products and to optimize limited resource allocation. Other examples include community detection approaches aimed at identifying structures and groups in social or complex networks. However, determining the number of communities in a network remains a challenge. In this paper we describe our proposal for a two-phase evolutionary framework (TPEF) for determining community numbers and maximizing community modularity. Lancichinetti-Fortunato-Radicchi benchmark networks were used to test our proposed method and to analyze execution time, community structure quality, convergence, and the network spreading effect. Results indicate that our proposed TPEF generates satisfactory levels of community quality and convergence. They also suggest a need for an index, mechanism or sampling technique to determine whether a community detection approach should be used for selecting multiple network spreaders.
NASA Astrophysics Data System (ADS)
Lian, Jie; Liu, Yun; Zhang, Zhen-jiang; Gui, Chang-ni
2013-10-01
Bipartite network based recommendations have attracted extensive attentions in recent years. Differing from traditional object-oriented recommendations, the recommendation in a Microblog network has two crucial differences. One is high authority users or one’s special friends usually play a very active role in tweet-oriented recommendation. The other is that the object in a Microblog network corresponds to a set of tweets on same topic instead of an actual and single entity, e.g. goods or movies in traditional networks. Thus repeat recommendations of the tweets in one’s collected topics are indispensable. Therefore, this paper improves network based inference (NBI) algorithm by original link matrix and link weight on resource allocation processes. This paper finally proposes the Microblog recommendation model based on the factors of improved network based inference and user influence model. Adjusting the weights of these two factors could generate the best recommendation results in algorithm accuracy and recommendation personalization.
Playing Games with Optimal Competitive Scheduling
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Crawford, James; Khatib, Lina; Brafman, Ronen
2005-01-01
This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, selfish preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource.
She, Ji; Wang, Fei; Zhou, Jianjiang
2016-01-01
Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI) performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI) threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance. PMID:28009819
Hybrid Resource Allocation Scheme with Proportional Fairness in OFDMA-Based Cognitive Radio Systems
NASA Astrophysics Data System (ADS)
Li, Li; Xu, Changqing; Fan, Pingzhi; He, Jian
In this paper, the resource allocation problem for proportional fairness in hybrid Cognitive Radio (CR) systems is studied. In OFDMA-based CR systems, traditional resource allocation algorithms can not guarantee proportional rates among CR users (CRU) in each OFDM symbol because the number of available subchannels might be smaller than that of CRUs in some OFDM symbols. To deal with this time-varying nature of available spectrum resource, a hybrid CR scheme in which CRUs are allowed to use subchannels in both spectrum holes and primary users (PU) bands is adopted and a resource allocation algorithm is proposed to guarantee proportional rates among CRUs with no undue interference to PUs.
HIV epidemic control-a model for optimal allocation of prevention and treatment resources.
Alistar, Sabina S; Long, Elisa F; Brandeau, Margaret L; Beck, Eduard J
2014-06-01
With 33 million people living with human immunodeficiency virus (HIV) worldwide and 2.7 million new infections occurring annually, additional HIV prevention and treatment efforts are urgently needed. However, available resources for HIV control are limited and must be used efficiently to minimize the future spread of the epidemic. We develop a model to determine the appropriate resource allocation between expanded HIV prevention and treatment services. We create an epidemic model that incorporates multiple key populations with different transmission modes, as well as production functions that relate investment in prevention and treatment programs to changes in transmission and treatment rates. The goal is to allocate resources to minimize R 0, the reproductive rate of infection. We first develop a single-population model and determine the optimal resource allocation between HIV prevention and treatment. We extend the analysis to multiple independent populations, with resource allocation among interventions and populations. We then include the effects of HIV transmission between key populations. We apply our model to examine HIV epidemic control in two different settings, Uganda and Russia. As part of these applications, we develop a novel approach for estimating empirical HIV program production functions. Our study provides insights into the important question of resource allocation for a country's optimal response to its HIV epidemic and provides a practical approach for decision makers. Better decisions about allocating limited HIV resources can improve response to the epidemic and increase access to HIV prevention and treatment services for millions of people worldwide.
30 CFR 1206.459 - Allocation of washed coal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Allocation of washed coal. 1206.459 Section... RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When...
30 CFR 1206.459 - Allocation of washed coal.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Allocation of washed coal. 1206.459 Section... RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When...
30 CFR 1206.260 - Allocation of washed coal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Allocation of washed coal. 1206.260 Section... INTERIOR Natural Resources Revenue PRODUCT VALUATION Federal Coal § 1206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was...
30 CFR 1206.260 - Allocation of washed coal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Allocation of washed coal. 1206.260 Section... RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When...
30 CFR 1206.459 - Allocation of washed coal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Allocation of washed coal. 1206.459 Section... INTERIOR Natural Resources Revenue PRODUCT VALUATION Indian Coal § 1206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was...
30 CFR 1206.260 - Allocation of washed coal.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Allocation of washed coal. 1206.260 Section... RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When...
30 CFR 1206.459 - Allocation of washed coal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Allocation of washed coal. 1206.459 Section... RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When...
30 CFR 1206.260 - Allocation of washed coal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Allocation of washed coal. 1206.260 Section... RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When...
Space Station Freedom resource allocation accommodation of technology payload requirements
NASA Technical Reports Server (NTRS)
Avery, Don E.; Collier, Lisa D.; Gartrell, Charles F.
1990-01-01
An overview of the Office of Aeronautics, Exploration, and Technology (OAET) Space Station Freedom Technology Payload Development Program is provided, and the OAET Station resource requirements are reviewed. The requirements are contrasted with current proposed resource allocations. A discussion of the issues and conclusions are provided. It is concluded that an overall 20 percent resource allocation is appropriate to support OAET's technology development program, that some resources are inadequate even at the 20 percent level, and that bartering resources among U.S. users and international partners and increasing the level of automation may be viable solutions to the resource constraint problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemaster, Michelle Nicole; Gay, David M.; Ehlen, Mark Andrew
2009-10-01
Staggered bioterrorist attacks with aerosolized pathogens on population centers present a formidable challenge to resource allocation and response planning. The response and planning will commence immediately after the detection of the first attack and with no or little information of the second attack. In this report, we outline a method by which resource allocation may be performed. It involves probabilistic reconstruction of the bioterrorist attack from partial observations of the outbreak, followed by an optimization-under-uncertainty approach to perform resource allocations. We consider both single-site and time-staggered multi-site attacks (i.e., a reload scenario) under conditions when resources (personnel and equipment whichmore » are difficult to gather and transport) are insufficient. Both communicable (plague) and non-communicable diseases (anthrax) are addressed, and we also consider cases when the data, the time-series of people reporting with symptoms, are confounded with a reporting delay. We demonstrate how our approach develops allocations profiles that have the potential to reduce the probability of an extremely adverse outcome in exchange for a more certain, but less adverse outcome. We explore the effect of placing limits on daily allocations. Further, since our method is data-driven, the resource allocation progressively improves as more data becomes available.« less
Where Does the Money Go? Resource Allocation in Elementary and Secondary Education.
ERIC Educational Resources Information Center
Picus, Lawrence O., Ed.; Wattenbarger, James L., Ed.
The 13 Chapters in this book address the important issue of how schools and school districts allocate their resources. The book summarizes the emerging research in educational resource allocations (tax dollars) at the district, school, and classroom levels. Following the preface by Lawrence O. Picus, the chapters include: (1) "Why Do We Need to…
ERIC Educational Resources Information Center
Roza, Marguerite
2008-01-01
The goal of this paper is to explore the effects of micro-budgeting decisions and show how they might support or hamper district reform strategies. The study draws on public and private sector resource allocation literature to identify key elements of resource allocation decisions. These elements are used to highlight different allocation…
A Model of Resource Allocation in Public School Districts: A Theoretical and Empirical Analysis.
ERIC Educational Resources Information Center
Chambers, Jay G.
This paper formulates a comprehensive model of resource allocation in a local public school district. The theoretical framework specified could be applied equally well to any number of local public social service agencies. Section 1 develops the theoretical model describing the process of resource allocation. This involves the determination of the…
Resource Allocation Models and Accountability: A Jamaican Case Study
ERIC Educational Resources Information Center
Nkrumah-Young, Kofi K.; Powell, Philip
2008-01-01
Higher education institutions (HEIs) may be funded privately, by the state or by a mixture of the two. Nevertheless, any state financing of HE necessitates a mechanism to determine the level of support and the channels through which it is to be directed; that is, a resource allocation model. Public funding, through resource allocation models,…
Rail-Highway Crossing Resource Allocation Procedure - User's Guide. Third Edition
DOT National Transportation Integrated Search
1987-08-01
To assist states and railroads in determining effective allocations of Federal funds for rail-highway crossing improvements, the U.S. Department of Transportation has developed the DOT Rail-Highway Crossing Resource Allocation Procedure. The procedur...
NASA Astrophysics Data System (ADS)
Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang
2017-08-01
Distributed radar network systems have been shown to have many unique features. Due to their advantage of signal and spatial diversities, radar networks are attractive for target detection. In practice, the netted radars in radar networks are supposed to maximize their transmit power to achieve better detection performance, which may be in contradiction with low probability of intercept (LPI). Therefore, this paper investigates the problem of adaptive power allocation for radar networks in a cooperative game-theoretic framework such that the LPI performance can be improved. Taking into consideration both the transmit power constraints and the minimum signal to interference plus noise ratio (SINR) requirement of each radar, a cooperative Nash bargaining power allocation game based on LPI is formulated, whose objective is to minimize the total transmit power by optimizing the power allocation in radar networks. First, a novel SINR-based network utility function is defined and utilized as a metric to evaluate power allocation. Then, with the well-designed network utility function, the existence and uniqueness of the Nash bargaining solution are proved analytically. Finally, an iterative Nash bargaining algorithm is developed that converges quickly to a Pareto optimal equilibrium for the cooperative game. Numerical simulations and theoretic analysis are provided to evaluate the effectiveness of the proposed algorithm.
Teitel, Z; Pickup, M; Field, D L; Barrett, S C H
2016-01-01
Sexual dimorphism in resource allocation is expected to change during the life cycle of dioecious plants because of temporal differences between the sexes in reproductive investment. Given the potential for sex-specific differences in reproductive costs, resource availability may contribute to variation in reproductive allocation in females and males. Here, we used Rumex hastatulus, a dioecious, wind-pollinated annual plant, to investigate whether sexual dimorphism varies with life-history stage and nutrient availability, and determine whether allocation patterns differ depending on reproductive commitment. To examine if the costs of reproduction varied between the sexes, reproduction was either allowed or prevented through bud removal, and biomass allocation was measured at maturity. In a second experiment to assess variation in sexual dimorphism across the life cycle, and whether this varied with resource availability, plants were grown in high and low nutrients and allocation to roots, aboveground vegetative growth and reproduction were measured at three developmental stages. Males prevented from reproducing compensated with increased above- and belowground allocation to a much larger degree than females, suggesting that male reproductive costs reduce vegetative growth. The proportional allocation to roots, reproductive structures and aboveground vegetative growth varied between the sexes and among life-cycle stages, but not with nutrient treatment. Females allocated proportionally more resources to roots than males at peak flowering, but this pattern was reversed at reproductive maturity under low-nutrient conditions. Our study illustrates the importance of temporal dynamics in sex-specific resource allocation and provides support for high male reproductive costs in wind-pollinated plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Green, A; Ali, B; Naeem, A; Ross, D
2000-01-01
This paper identifies key political and technical issues involved in the development of an appropriate resource allocation and budgetary system for the public health sector, using experience gained in the Province of Balochistan, Pakistan. The resource allocation and budgetary system is a critical, yet often neglected, component of any decentralization policy. Current systems are often based on historical incrementalism that is neither efficient nor equitable. This article describes technical work carried out in Balochistan to develop a system of resource allocation and budgeting that is needs-based, in line with policies of decentralization, and implementable within existing technical constraints. However, the development of technical systems, while necessary, is not a sufficient condition for the implementation of a resource allocation and decentralized budgeting system. This is illustrated by analysing the constraints that have been encountered in the development of such a system in Balochistan.
Green, A.; Ali, B.; Naeem, A.; Ross, D.
2000-01-01
This paper identifies key political and technical issues involved in the development of an appropriate resource allocation and budgetary system for the public health sector, using experience gained in the Province of Balochistan, Pakistan. The resource allocation and budgetary system is a critical, yet often neglected, component of any decentralization policy. Current systems are often based on historical incrementalism that is neither efficient nor equitable. This article describes technical work carried out in Balochistan to develop a system of resource allocation and budgeting that is needs-based, in line with policies of decentralization, and implementable within existing technical constraints. However, the development of technical systems, while necessary, is not a sufficient condition for the implementation of a resource allocation and decentralized budgeting system. This is illustrated by analysing the constraints that have been encountered in the development of such a system in Balochistan. PMID:10994286
Sun, Jian; Luo, Hongye
2017-07-14
China is faced with a daunting challenge to equality and efficiency in health resources allocation and health services utilization in the context of rapid economic growth. This study sought to evaluate the equality and efficiency of health resources allocation and health services utilization in China. Demographic, economic, and geographic area data was sourced from China Statistical Yearbook 2012-2016. Data related to health resources and health services was obtained from China Health Statistics Yearbook 2012-2016. Furthermore, we evaluated the equality of health resources allocation based on Gini coefficient. Concentration index was used to measure the equality in utilization of health services. Data envelopment analysis (DEA) was employed to assess the efficiency of health resources allocation. From 2011 to 2015, the Gini coefficients for health resources by population ranged between 0.0644 and 0.1879, while the Gini coefficients for the resources by geographic area ranged from 0.6136 to 0.6568. Meanwhile, the concentration index values for health services utilization ranged from -0.0392 to 0.2110. Moreover, in 2015, 10 provinces (32.26%) were relatively efficient in terms of health resources allocation, while 7 provinces (22.58%) and 14 provinces (45.16%) were weakly efficient and inefficient, respectively. There exist distinct regional disparities in the distribution of health resources in China, which are mainly reflected in the geographic distribution of health resources. Furthermore, the people living in the eastern developed areas are more likely to use outpatient care, while the people living in western underdeveloped areas are more likely to use inpatient care. Moreover, the efficiency of health resources allocation in 21 provinces (67.74%) of China was low and needs to be improved. Thus, the government should pay more attention to the equality based on geographic area, guide patients to choose medical treatment rationally, and optimize the resource investments for different provinces.
Resource Allocation in High Schools. Final Report.
ERIC Educational Resources Information Center
Hartman, William T.
This study investigated the resource allocation process--how school administrators obtain the proper resources to operate their schools, distribute the available resources among the various school programs appropriately, and manage resources for effective educational results--in four high schools during the 1984-85 school year. Information was…
Patterns of cooperation: fairness and coordination in networks of interacting agents
NASA Astrophysics Data System (ADS)
Do, Anne-Ly; Rudolf, Lars; Gross, Thilo
2010-06-01
We study the self-assembly of a complex network of collaborations among self-interested agents. The agents can maintain different levels of cooperation with different partners. Further, they continuously, selectively and independently adapt the amount of resources allocated to each of their collaborations in order to maximize the obtained payoff. We show analytically that the system approaches a state in which the agents make identical investments, and links produce identical benefits. Despite this high degree of social coordination, some agents manage to secure privileged topological positions in the network, enabling them to extract high payoffs. Our analytical investigations provide a rationale for the emergence of unidirectional non-reciprocal collaborations and different responses to the withdrawal of a partner from an interaction that have been reported in the psychological literature.
Preventing child pedestrian injury: pedestrian education or traffic calming?
Roberts, I; Ashton, T; Dunn, R; Lee-Joe, T
1994-06-01
The traditional approach to the prevention of child pedestrian injuries in New Zealand is pedestrian education. However, none of the programs currently being implemented in New Zealand have ever been shown to reduce injury rates. The allocation of scarce resources to pedestrian education must therefore be questioned. In this paper we estimate the number of serious child pedestrian injuries which might be prevented if the resources allocated to pedestrian education were allocated instead to environmental approaches, in particular, to traffic calming. It is estimated that approximately 18 hospitalisations of child pedestrians could be prevented each year under this alternative resource allocation, disregarding any other benefits of traffic calming. These results emphasise the need to consider the potential sacrifices involved in the allocation of scarce resources to child pedestrian education.
Summary of Research 1997 Department of Systems Management.
1999-01-01
formulation and execution; impacts of budget allocation , reallocation, and reduction; imple- mentation of Defense Resource Management Systems; and the...flexible structure that can be applied to a wide range of resource allocation problems. PUBLICATIONS: Dolk, D., Murphy, M., and Thomas, G...policies, procedures, and rationale in deter- mining recruiting resource allocation decisions. The methodology relies on a review of the literature
ERIC Educational Resources Information Center
Kranczioch, Cornelia; Dhinakaran, Janani
2013-01-01
The perception of target events presented in a rapid stream of non-targets is impaired for early target positions, but then gradually improves, a phenomenon known as attentional awakening. This phenomenon has been associated with better resource allocation. It is unclear though whether improved resource allocation and attentional awakening are a…
Budgeting and Resource Allocation at Princeton University. Report of a Demonstration Project.
ERIC Educational Resources Information Center
Benacerraf, Paul; And Others
This report summarizes the work done to date on a study of resource allocation in universities. This report specifically is concerned with budgeting and resource allocation at Princeton University. The document consists of 4 sections. The first section deals with the process of budgeting at Princeton as it has evolved over the last 4 years. After…
Strategic costs and preferences revelation in the allocation of resources for health care.
Levaggi, Laura; Levaggi, Rosella
2010-09-01
This article examines the resources allocation process in the internal market for health care in an environment characterised by asymmetry of information. We analyse the strategic behaviour of the provider and show how, by misreporting its cost function and reservation utility, it might shift the allocation of resources away from the purchaser's objectives. Although the fundamental importance of equity, efficiency and risk aversion considerations which have been the traditional focus of the literature on allocation of resources should not be denied, this paper shows that contracts and internal markets are not neutral instruments and more research should be devoted to studying their effects.
Research on Evaluation of resource allocation efficiency of transportation system based on DEA
NASA Astrophysics Data System (ADS)
Zhang, Zhehui; Du, Linan
2017-06-01
In this paper, we select the time series data onto 1985-2015 years, construct the land (shoreline) resources, capital and labor as inputs. The index system of the output is freight volume and passenger volume, we use Quantitative analysis based on DEA method evaluated the resource allocation efficiency of railway, highway, water transport and civil aviation in China. Research shows that the resource allocation efficiency of various modes of transport has obvious difference, and the impact on scale efficiency is more significant. The most important two ways to optimize the allocation of resources to improve the efficiency of the combination of various modes of transport is promoting the co-ordination of various modes of transport and constructing integrated transportation system.
Terzian, Emanuela; Tognoni, Gianni; Bracco, Renata; De Ruggieri, Edoardo; Ficociello, Rita Angela; Mezzina, Roberto; Pillo, Giuseppe
2013-11-01
To evaluate the efficacy and feasibility of actions intended to implement or improve patients' social network within the Italian National Health Service community mental health services. We conducted a randomized clinical trial through a network of 47 community mental health services on patients with a diagnosis in the schizophrenia spectrum (F20 in the International Classification of Diseases, 10th Revision), who were young (aged younger than 45 years), and with a poor social network (less than 5 relationships). In addition to routine treatments, for the experimental group, the staff identified possible areas of interest for individual patients and proposed social activities taking place outside the services' resources and with members of the community. The main outcome was an improvement in the patients' social network; secondary end points were clinical outcome, abilities of daily living, and work. One- and 2-year outcomes of 345 and 327, respectively, of the 357 patients randomized were analyzed by intention-to-treat. A social network improvement was observed at year 1 in 25% of the patients allocated to routine treatment and in 39.9% of those allocated to the experimental arm (OR 2.0, 95% CI 1.3 to 3.1; adjusted OR 2.4, 95% CI 1.4 to 3.9). The difference remained statistically significant at year 2. No significant differences emerged for any of the other end points. However, patients with 1 or more other areas of improvement at year 1 and 2 showed a statistically significant social network improvement. The activation of social networks as an activity integrated with standard psychiatric care is practicable, without added economic and organizational costs, and appears to produce an effect persisting well beyond its implementation.
On-Line Allocation Of Robot Resources To Task Plans
NASA Astrophysics Data System (ADS)
Lyons, Damian M.
1989-02-01
In this paper, I present an approach to representing plans that make on-line decisions about resource allocation. An on-line decision is the evaluation of a conditional expression involving sensory information as the plan is being executed. I use a plan representation called 7ZS10'1 1,12that has been especially designed for the domain of robot programming, and in particular, for the problem of on-line decisions. The resource allocation example is based on the robot assembly cell architecture outlined by Venkataraman and Lyons16. I begin by setting forth a definition of on-line decision making and some arguments as to why this form of decision making is important and useful. To set the context for the resource allocation example, I take some care in categorizing the types of on-line decision making and the approaches adopted by other workers so far. In particular, I justify a plan-based approach to the study of on-line decision making. From that, the focus shifts to one type of decision making: on-line allocation of robot resources to task plans. Robot resources are the physical manipulators (grippers, wrists, arms, feeders, etc) that are available to carry out the task. I formulate the assembly cell architecture of Venkataraman and Lyons16 as an R.S plan schema, and show how the on-line allocation specified in that architecture can be implemented. Finally, I show how considering the on-line allocation of logical resources, that is a physical resource plus some model information, can be used as a non-traditional approach to some problems in robot task planning.
Resource allocation processes at multilateral organizations working in global health.
Chi, Y-Ling; Bump, Jesse B
2018-02-01
International institutions provide well over US$10 billion in development assistance for health (DAH) annually and between 1990 and 2014, DAH disbursements totaled $458 billion but how do they decide who gets what, and for what purpose? In this article, we explore how allocation decisions were made by the nine convening agencies of the Equitable Access Initiative. We provide clear, plain language descriptions of the complete process from resource mobilization to allocation for the nine multilateral agencies with prominent agendas in global health. Then, through a comparative analysis we illuminate the choices and strategies employed in the nine international institutions. We find that resource allocation in all reviewed institutions follow a similar pattern, which we categorized in a framework of five steps: strategy definition, resource mobilization, eligibility of countries, support type and funds allocation. All the reviewed institutions generate resource allocation decisions through well-structured and fairly complex processes. Variations in those processes seem to reflect differences in institutional principles and goals. However, these processes have serious shortcomings. Technical problems include inadequate flexibility to account for or meet country needs. Although aid effectiveness and value for money are commonly referenced, we find that neither performance nor impact is a major criterion for allocating resources. We found very little formal consideration of the incentives generated by allocation choices. Political issues include non-transparent influence on allocation processes by donors and bureaucrats, and the common practice of earmarking funds to bypass the normal allocation process entirely. Ethical deficiencies include low accountability and transparency at international institutions, and limited participation by affected citizens or their representatives. We find that recipient countries have low influence on allocation processes themselves, although within these processes they have some influence in relatively narrow areas. © The Author(s) 2018. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
Hall, William; Smith, Neale; Mitton, Craig; Urquhart, Bonnie; Bryan, Stirling
2018-01-01
Background: In order to meet the challenges presented by increasing demand and scarcity of resources, healthcare organizations are faced with difficult decisions related to resource allocation. Tools to facilitate evaluation and improvement of these processes could enable greater transparency and more optimal distribution of resources. Methods: The Resource Allocation Performance Assessment Tool (RAPAT) was implemented in a healthcare organization in British Columbia, Canada. Recommendations for improvement were delivered, and a follow up evaluation exercise was conducted to assess the trajectory of the organization’s priority setting and resource allocation (PSRA) process 2 years post the original evaluation. Results: Implementation of RAPAT in the pilot organization identified strengths and weaknesses of the organization’s PSRA process at the time of the original evaluation. Strengths included the use of criteria and evidence, an ability to reallocate resources, and the involvement of frontline staff in the process. Weaknesses included training, communication, and lack of program budgeting. Although the follow up revealed a regression from a more formal PSRA process, a legacy of explicit resource allocation was reported to be providing ongoing benefit for the organization. Conclusion: While past studies have taken a cross-sectional approach, this paper introduces the first longitudinal evaluation of PSRA in a healthcare organization. By including the strengths, weaknesses, and evolution of one organization’s journey, the authors’ intend that this paper will assist other healthcare leaders in meeting the challenges of allocating scarce resources. PMID:29626400
Sensor assignment to mission in AI-TECD
NASA Astrophysics Data System (ADS)
Ganger, Robert; de Mel, Geeth; Pham, Tien; Rudnicki, Ronald; Schreiber, Yonatan
2016-05-01
Sensor-mission assignment involves the allocation of sensors and other information-providing resources to missions in order to cover the information needs of the individual tasks within each mission. The importance of efficient and effective means to find appropriate resources for tasks is exacerbated in the coalition context where the operational environment is dynamic and a multitude of critically important tasks need to achieve their collective goals to meet the objectives of the coalition. The Sensor Assignment to Mission (SAM) framework—a research product of the International Technology Alliance in Network and Information Sciences (NIS-ITA) program—provided the first knowledge intensive resource selection approach for the sensor network domain so that contextual information could be used to effectively select resources for tasks in coalition environments. Recently, CUBRC, Inc. was tasked with operationalizing the SAM framework through the use of the I2WD Common Core Ontologies for the Communications-Electronics Research, Development and Engineering Center (CERDEC) sponsored Actionable Intelligence Technology Enabled Capabilities Demonstration (AI-TECD). The demonstration event took place at Fort Dix, New Jersey during July 2015, and this paper discusses the integration and the successful demonstration of the SAM framework within the AI-TECD, lessons learned, and its potential impact in future operations.
The HOME network: an Australian national initiative for home therapies.
Chow, Josephine; Fortnum, Debbie; Moodie, Jo-Anne; Simmonds, Rosemary; Tomlins, Melinda
2013-01-01
Longer, more frequent dialysis at home can improve life expectancy for patients with chronic kidney disease. Increased use of home dialysis therapies also benefits the hospital system, allowing for more efficient allocation of clinic resources. However, the Australian and New Zealand Data Registry statistics highlight the low uptake of home haemodialysis and peritoneal dialysis across Australia. In August 2009, the Australia's HOME Network was established as a national initiative to engage and empower healthcare professionals working in the home dialysis specialty. The aim was to develop solutions to advocate for and ultimately increase the use of home therapies. This paper describes the development, achievement and future plan of the Australian HOME Network. Achievements to date include: a survey of HOME Network members to assess the current state of patient and healthcare professional-targeted education resources; development of two patient case studies and activities addressing how to overcome the financial burden experienced by patients on home dialysis. Future projects aim to improve patient and healthcare professional education, and advocacy for home dialysis therapies. The HOME Network is supporting healthcare professionals working in the home dialysis specialty to develop solutions and tools that will help to facilitate greater utilisation of home dialysis therapies. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.
Four Challenges That Global Health Networks Face
Shiffman, Jeremy
2017-01-01
Global health networks, webs of individuals and organizations with a shared concern for a particular condition, have proliferated over the past quarter century. They differ in their effectiveness, a factor that may help explain why resource allocations vary across health conditions and do not correspond closely with disease burden. Drawing on findings from recently concluded studies of eight global health networks—addressing alcohol harm, early childhood development (ECD), maternal mortality, neonatal mortality, pneumonia, surgically-treatable conditions, tobacco use, and tuberculosis—I identify four challenges that networks face in generating attention and resources for the conditions that concern them. The first is problem definition: generating consensus on what the problem is and how it should be addressed. The second is positioning: portraying the issue in ways that inspire external audiences to act. The third is coalition-building: forging alliances with these external actors, particularly ones outside the health sector. The fourth is governance: establishing institutions to facilitate collective action. Research indicates that global health networks that effectively tackle these challenges are more likely to garner support to address the conditions that concern them. In addition to the effectiveness of networks, I also consider their legitimacy, identifying reasons both to affirm and to question their right to exert power. PMID:28812801
Resource Allocation and Seed Size Selection in Perennial Plants under Pollen Limitation.
Huang, Qiaoqiao; Burd, Martin; Fan, Zhiwei
2017-09-01
Pollen limitation may affect resource allocation patterns in plants, but its role in the selection of seed size is not known. Using an evolutionarily stable strategy model of resource allocation in perennial iteroparous plants, we show that under density-independent population growth, pollen limitation (i.e., a reduction in ovule fertilization rate) should increase the optimal seed size. At any level of pollen limitation (including none), the optimal seed size maximizes the ratio of juvenile survival rate to the resource investment needed to produce one seed (including both ovule production and seed provisioning); that is, the optimum maximizes the fitness effect per unit cost. Seed investment may affect allocation to postbreeding adult survival. In our model, pollen limitation increases individual seed size but decreases overall reproductive allocation, so that pollen limitation should also increase the optimal allocation to postbreeding adult survival. Under density-dependent population growth, the optimal seed size is inversely proportional to ovule fertilization rate. However, pollen limitation does not affect the optimal allocation to postbreeding adult survival and ovule production. These results highlight the importance of allocation trade-offs in the effect pollen limitation has on the ecology and evolution of seed size and postbreeding adult survival in perennial plants.
Leão, Erico; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco
2017-01-01
The use of Wireless Sensor Network (WSN) technologies is an attractive option to support wide-scale monitoring applications, such as the ones that can be found in precision agriculture, environmental monitoring and industrial automation. The IEEE 802.15.4/ZigBee cluster-tree topology is a suitable topology to build wide-scale WSNs. Despite some of its known advantages, including timing synchronisation and duty-cycle operation, cluster-tree networks may suffer from severe network congestion problems due to the convergecast pattern of its communication traffic. Therefore, the careful adjustment of transmission opportunities (superframe durations) allocated to the cluster-heads is an important research issue. This paper proposes a set of proportional Superframe Duration Allocation (SDA) schemes, based on well-defined protocol and timing models, and on the message load imposed by child nodes (Load-SDA scheme), or by number of descendant nodes (Nodes-SDA scheme) of each cluster-head. The underlying reasoning is to adequately allocate transmission opportunities (superframe durations) and parametrize buffer sizes, in order to improve the network throughput and avoid typical problems, such as: network congestion, high end-to-end communication delays and discarded messages due to buffer overflows. Simulation assessments show how proposed allocation schemes may clearly improve the operation of wide-scale cluster-tree networks. PMID:28134822
Resource allocation planning with international components
NASA Technical Reports Server (NTRS)
Burke, Gene; Durham, Ralph; Leppla, Frank; Porter, David
1993-01-01
Dumas, Briggs, Reid and Smith (1989) describe the need for identifying mutually acceptable methodologies for developing standard agreements for the exchange of tracking time or facility use among international components. One possible starting point is the current process used at the Jet Propulsion Laboratory (JPL) in planning the use of tracking resources. While there is a significant promise of better resource utilization by international cooperative agreements, there is a serious challenge to provide convenient user participation given the separate project and network locations. Coordination among users and facility providers will require a more decentralized communication process and a wider variety of automated planning tools to help users find potential exchanges. This paper provides a framework in which international cooperation in the utilization of ground based space communication systems can be facilitated.
Systemic delay propagation in the US airport network
Fleurquin, Pablo; Ramasco, José J.; Eguiluz, Victor M.
2013-01-01
Technologically driven transport systems are characterized by a networked structure connecting operation centers and by a dynamics ruled by pre-established schedules. Schedules impose serious constraints on the timing of the operations, condition the allocation of resources and define a baseline to assess system performance. Here we study the performance of an air transportation system in terms of delays. Technical, operational or meteorological issues affecting some flights give rise to primary delays. When operations continue, such delays can propagate, magnify and eventually involve a significant part of the network. We define metrics able to quantify the level of network congestion and introduce a model that reproduces the delay propagation patterns observed in the U.S. performance data. Our results indicate that there is a non-negligible risk of systemic instability even under normal operating conditions. We also identify passenger and crew connectivity as the most relevant internal factor contributing to delay spreading. PMID:23362459
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamurthy, Byravamurthy
2014-05-05
In this project, developed scheduling frameworks for dynamic bandwidth demands for large-scale science applications. In particular, we developed scheduling algorithms for dynamic bandwidth demands in this project. Apart from theoretical approaches such as Integer Linear Programming, Tabu Search and Genetic Algorithm heuristics, we have utilized practical data from ESnet OSCARS project (from our DOE lab partners) to conduct realistic simulations of our approaches. We have disseminated our work through conference paper presentations and journal papers and a book chapter. In this project we addressed the problem of scheduling of lightpaths over optical wavelength division multiplexed (WDM) networks. We published severalmore » conference papers and journal papers on this topic. We also addressed the problems of joint allocation of computing, storage and networking resources in Grid/Cloud networks and proposed energy-efficient mechanisms for operatin optical WDM networks.« less
ERIC Educational Resources Information Center
Capoor, Madan
The Objective-Based Assessment, Planning, and Resource Allocation System (OAPRAS) that was developed and implemented at Middlesex County College is described. The integrated self-assessment planning and budgeting system was developed in 1981. The central purpose of OAPRAS was to link resource allocation decisions to the prioritized objectives that…
ERIC Educational Resources Information Center
Sais, Melissa Marie
2013-01-01
The purpose of this study was to analyze human resource allocation data for all elementary schools in large urban school district to determine whether resources were allocated in ways in that research suggests can lead to improved student achievement. Data from all 46 elementary schools that participated in the study were compared to the…
Resource-Competing Oscillator Network as a Model of Amoeba-Based Neurocomputer
NASA Astrophysics Data System (ADS)
Aono, Masashi; Hirata, Yoshito; Hara, Masahiko; Aihara, Kazuyuki
An amoeboid organism, Physarum, exhibits rich spatiotemporal oscillatory behavior and various computational capabilities. Previously, the authors created a recurrent neurocomputer incorporating the amoeba as a computing substrate to solve optimization problems. In this paper, considering the amoeba to be a network of oscillators coupled such that they compete for constant amounts of resources, we present a model of the amoeba-based neurocomputer. The model generates a number of oscillation modes and produces not only simple behavior to stabilize a single mode but also complex behavior to spontaneously switch among different modes, which reproduces well the experimentally observed behavior of the amoeba. To explore the significance of the complex behavior, we set a test problem used to compare computational performances of the oscillation modes. The problem is a kind of optimization problem of how to allocate a limited amount of resource to oscillators such that conflicts among them can be minimized. We show that the complex behavior enables to attain a wider variety of solutions to the problem and produces better performances compared with the simple behavior.
Radar Methods in Urban Environments
2016-10-26
to appear in IEEE Journal of Selected Topics in Signal Processing. J8. M. Wang and A. Nehorai, “Coarrays, MUSIC , and the Cramér Rao bound,” to...Journal Papers: 1. P. Chavali and A. Nehorai, "Scheduling and resource allocation in a cognitive radar network for multiple- target tracking,’’ IEEE...Processing. 33. M. Wang and A. Nehorai, "Coarrays, MUSIC , and the Cramér Rao bound," to appear in IEEE Trans. on Signal Processing. 34. J. Li and A. Nehorai
NASA Astrophysics Data System (ADS)
Bai, Wei; Yang, Hui; Yu, Ao; Xiao, Hongyun; He, Linkuan; Feng, Lei; Zhang, Jie
2018-01-01
The leakage of confidential information is one of important issues in the network security area. Elastic Optical Networks (EON) as a promising technology in the optical transport network is under threat from eavesdropping attacks. It is a great demand to support confidential information service (CIS) and design efficient security strategy against the eavesdropping attacks. In this paper, we propose a solution to cope with the eavesdropping attacks in routing and spectrum allocation. Firstly, we introduce probability theory to describe eavesdropping issue and achieve awareness of eavesdropping attacks. Then we propose an eavesdropping-aware routing and spectrum allocation (ES-RSA) algorithm to guarantee information security. For further improving security and network performance, we employ multi-flow virtual concatenation (MFVC) and propose an eavesdropping-aware MFVC-based secure routing and spectrum allocation (MES-RSA) algorithm. The presented simulation results show that the proposed two RSA algorithms can both achieve greater security against the eavesdropping attacks and MES-RSA can also improve the network performance efficiently.
Resource Allocation in Healthcare: Implications of Models of Medicine as a Profession
Kluge, Eike-Henner W.
2007-01-01
For decades, the problem of how to allocate healthcare resources in a just and equitable fashion has been the subject of concerted discussion and analysis, yet the issue has stubbornly resisted resolution. This article suggests that a major reason for this is that the discussion has focused exclusively on the nature and status of the material resources, and that the nature and role of the medical profession have been entirely ignored. Because physicians are gatekeepers to healthcare resources, their role in allocation is central from a process perspective. This article identifies 3 distinct interpretations of the nature of medicine, shows how each mandates a different method of allocation, and argues that unless an appropriate model of medicine is developed that acknowledges the valid points contained in each of the 3 approaches, the allocation problem will remain unsolvable. PMID:17435657
Konur, Dinçer; Golias, Mihalis M; Darks, Brandon
2013-03-01
State Departments of Transportation (S-DOT's) periodically allocate budget for safety upgrades at railroad-highway crossings. Efficient resource allocation is crucial for reducing accidents at railroad-highway crossings and increasing railroad as well as highway transportation safety. While a specific method is not restricted to S-DOT's, sorting type of procedures are recommended by the Federal Railroad Administration (FRA), United States Department of Transportation for the resource allocation problem. In this study, a generic mathematical model is proposed for the resource allocation problem for railroad-highway crossing safety upgrades. The proposed approach is compared to sorting based methods for safety upgrades of public at-grade railroad-highway crossings in Tennessee. The comparison shows that the proposed mathematical modeling approach is more efficient than sorting methods in reducing accidents and severity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Autonomous self-organizing resource manager for multiple networked platforms
NASA Astrophysics Data System (ADS)
Smith, James F., III
2002-08-01
A fuzzy logic based expert system for resource management has been developed that automatically allocates electronic attack (EA) resources in real-time over many dissimilar autonomous naval platforms defending their group against attackers. The platforms can be very general, e.g., ships, planes, robots, land based facilities, etc. Potential foes the platforms deal with can also be general. This paper provides an overview of the resource manager including the four fuzzy decision trees that make up the resource manager; the fuzzy EA model; genetic algorithm based optimization; co-evolutionary data mining through gaming; and mathematical, computational and hardware based validation. Methods of automatically designing new multi-platform EA techniques are considered. The expert system runs on each defending platform rendering it an autonomous system requiring no human intervention. There is no commanding platform. Instead the platforms work cooperatively as a function of battlespace geometry; sensor data such as range, bearing, ID, uncertainty measures for sensor output; intelligence reports; etc. Computational experiments will show the defending networked platform's ability to self- organize. The platforms' ability to self-organize is illustrated through the output of the scenario generator, a software package that automates the underlying data mining problem and creates a computer movie of the platforms' interaction for evaluation.
Kuschner, Ware G; Pollard, John B; Ezeji-Okoye, Stephen C
2007-01-01
Public health emergencies may result in mass casualties and a surge in demand for hospital-based care. Healthcare standards may need to be altered to respond to an imbalance between demands for care and resources. Clinical decisions that involve triage and scarce resource allocation may present unique ethical challenges. To address these challenges, the authors detailed tenets and procedures to guide triage and scarce resource allocation during public health emergencies. The authors propose health care organizations deploy a Triage and Scarce Resource Allocation Team to over-see and guide ethically challenging clinical decision-making during a crisis period. The authors' goal is to help healthcare organizations and clinicians balance public health responsibilities and their duty to individual patients during emergencies in as equitable and humane a manner as possible.
Decentralization and equity of resource allocation: evidence from Colombia and Chile.
Bossert, Thomas J.; Larrañaga, Osvaldo; Giedion, Ursula; Arbelaez, José Jesus; Bowser, Diana M.
2003-01-01
OBJECTIVE: To investigate the relation between decentralization and equity of resource allocation in Colombia and Chile. METHODS: The "decision space" approach and analysis of expenditures and utilization rates were used to provide a comparative analysis of decentralization of the health systems of Colombia and Chile. FINDINGS: Evidence from Colombia and Chile suggests that decentralization, under certain conditions and with some specific policy mechanisms, can improve equity of resource allocation. In these countries, equitable levels of per capita financial allocations at the municipal level were achieved through different forms of decentralization--the use of allocation formulae, adequate local funding choices and horizontal equity funds. Findings on equity of utilization of services were less consistent, but they did show that increased levels of funding were associated with increased utilization. This suggests that improved equity of funding over time might reduce inequities of service utilization. CONCLUSION: Decentralization can contribute to, or at least maintain, equitable allocation of health resources among municipalities of different incomes. PMID:12751417
Self-Regulated Reading in Adulthood
Stine-Morrow, Elizabeth A. L.; Soederberg Miller, Lisa M.; Gagne, Danielle D.; Hertzog, Christopher
2008-01-01
Younger and older adults read a series of passages of three different genres for an immediate assessment of text memory (measured by recall and true-false questions). Word-by-word reading times were measured and decomposed into components reflecting resource allocation to particular linguistic processes using regression. Allocation to word and textbase processes showed some consistency across the three text types and was predictive of memory performance. Older adults allocated more time to word and textbase processes than the young did, but showed enhanced contextual facilitation. Structural equation modeling showed that greater resource allocation to word processes was required among readers with relatively low working memory spans and poorer verbal ability, and that greater resource allocation to textbase processes was engendered by higher verbal ability. Results are discussed in terms of a model of self-regulated language processing suggesting that older readers may compensate for processing deficiencies through greater reliance on discourse context and on increases in resource allocation that are enabled through growth in crystallized ability. PMID:18361662
Toward a Dynamically Reconfigurable Computing and Communication System for Small Spacecraft
NASA Technical Reports Server (NTRS)
Kifle, Muli; Andro, Monty; Tran, Quang K.; Fujikawa, Gene; Chu, Pong P.
2003-01-01
Future science missions will require the use of multiple spacecraft with multiple sensor nodes autonomously responding and adapting to a dynamically changing space environment. The acquisition of random scientific events will require rapidly changing network topologies, distributed processing power, and a dynamic resource management strategy. Optimum utilization and configuration of spacecraft communications and navigation resources will be critical in meeting the demand of these stringent mission requirements. There are two important trends to follow with respect to NASA's (National Aeronautics and Space Administration) future scientific missions: the use of multiple satellite systems and the development of an integrated space communications network. Reconfigurable computing and communication systems may enable versatile adaptation of a spacecraft system's resources by dynamic allocation of the processor hardware to perform new operations or to maintain functionality due to malfunctions or hardware faults. Advancements in FPGA (Field Programmable Gate Array) technology make it possible to incorporate major communication and network functionalities in FPGA chips and provide the basis for a dynamically reconfigurable communication system. Advantages of higher computation speeds and accuracy are envisioned with tremendous hardware flexibility to ensure maximum survivability of future science mission spacecraft. This paper discusses the requirements, enabling technologies, and challenges associated with dynamically reconfigurable space communications systems.
Dynamic resource allocation scheme for distributed heterogeneous computer systems
NASA Technical Reports Server (NTRS)
Liu, Howard T. (Inventor); Silvester, John A. (Inventor)
1991-01-01
This invention relates to a resource allocation in computer systems, and more particularly, to a method and associated apparatus for shortening response time and improving efficiency of a heterogeneous distributed networked computer system by reallocating the jobs queued up for busy nodes to idle, or less-busy nodes. In accordance with the algorithm (SIDA for short), the load-sharing is initiated by the server device in a manner such that extra overhead in not imposed on the system during heavily-loaded conditions. The algorithm employed in the present invention uses a dual-mode, server-initiated approach. Jobs are transferred from heavily burdened nodes (i.e., over a high threshold limit) to low burdened nodes at the initiation of the receiving node when: (1) a job finishes at a node which is burdened below a pre-established threshold level, or (2) a node is idle for a period of time as established by a wakeup timer at the node. The invention uses a combination of the local queue length and the local service rate ratio at each node as the workload indicator.
Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria
Hui, Sheng; Silverman, Josh M; Chen, Stephen S; Erickson, David W; Basan, Markus; Wang, Jilong; Hwa, Terence; Williamson, James R
2015-01-01
A central aim of cell biology was to understand the strategy of gene expression in response to the environment. Here, we study gene expression response to metabolic challenges in exponentially growing Escherichia coli using mass spectrometry. Despite enormous complexity in the details of the underlying regulatory network, we find that the proteome partitions into several coarse-grained sectors, with each sector's total mass abundance exhibiting positive or negative linear relations with the growth rate. The growth rate-dependent components of the proteome fractions comprise about half of the proteome by mass, and their mutual dependencies can be characterized by a simple flux model involving only two effective parameters. The success and apparent generality of this model arises from tight coordination between proteome partition and metabolism, suggesting a principle for resource allocation in proteome economy of the cell. This strategy of global gene regulation should serve as a basis for future studies on gene expression and constructing synthetic biological circuits. Coarse graining may be an effective approach to derive predictive phenomenological models for other ‘omics’ studies. PMID:25678603
Location-allocation models and new solution methodologies in telecommunication networks
NASA Astrophysics Data System (ADS)
Dinu, S.; Ciucur, V.
2016-08-01
When designing a telecommunications network topology, three types of interdependent decisions are combined: location, allocation and routing, which are expressed by the following design considerations: how many interconnection devices - consolidation points/concentrators should be used and where should they be located; how to allocate terminal nodes to concentrators; how should the voice, video or data traffic be routed and what transmission links (capacitated or not) should be built into the network. Including these three components of the decision into a single model generates a problem whose complexity makes it difficult to solve. A first method to address the overall problem is the sequential one, whereby the first step deals with the location-allocation problem and based on this solution the subsequent sub-problem (routing the network traffic) shall be solved. The issue of location and allocation in a telecommunications network, called "The capacitated concentrator location- allocation - CCLA problem" is based on one of the general location models on a network in which clients/demand nodes are the terminals and facilities are the concentrators. Like in a location model, each client node has a demand traffic, which must be served, and the facilities can serve these demands within their capacity limit. In this study, the CCLA problem is modeled as a single-source capacitated location-allocation model whose optimization objective is to determine the minimum network cost consisting of fixed costs for establishing the locations of concentrators, costs for operating concentrators and costs for allocating terminals to concentrators. The problem is known as a difficult combinatorial optimization problem for which powerful algorithms are required. Our approach proposes a Fuzzy Genetic Algorithm combined with a local search procedure to calculate the optimal values of the location and allocation variables. To confirm the efficiency of the proposed algorithm with respect to the quality of solutions, significant size test problems were considered: up to 100 terminal nodes and 50 concentrators on a 100 × 100 square grid. The performance of this hybrid intelligent algorithm was evaluated by measuring the quality of its solutions with respect to the following statistics: the standard deviation and the ratio of the best solution obtained.
Rectifying Social Inequalities in a Resource Allocation Task
Elenbaas, Laura; Rizzo, Michael T.; Cooley, Shelby; Killen, Melanie
2016-01-01
To investigate whether children rectify social inequalities in a resource allocation task, participants (N = 185 African-American and European-American 5–6 year-olds and 10–11 year-olds) witnessed an inequality of school supplies between peers of different racial backgrounds. Assessments were conducted on how children judged the wrongfulness of the inequality, allocated new resources to racial ingroup and outgroup recipients, evaluated alternative allocation strategies, and reasoned about their decisions. Younger children showed ingroup favorability; their responses differed depending on whether they had witnessed their ingroup or an outgroup at a disadvantage. With age, children increasingly reasoned about the importance of equal access to school supplies and correcting past disparities. Older children judged the resource inequality negatively, allocated more resources to the disadvantaged group, and positively evaluated the actions of others who did the same, regardless of whether they had seen their racial ingroup or an outgroup at a disadvantage. Thus, balancing moral and social group concerns enabled individuals to rectify inequalities and ensure fair access to important resources regardless of racial group membership. PMID:27423813
KITTEN Lightweight Kernel 0.1 Beta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedretti, Kevin; Levenhagen, Michael; Kelly, Suzanne
2007-12-12
The Kitten Lightweight Kernel is a simplified OS (operating system) kernel that is intended to manage a compute node's hardware resources. It provides a set of mechanisms to user-level applications for utilizing hardware resources (e.g., allocating memory, creating processes, accessing the network). Kitten is much simpler than general-purpose OS kernels, such as Linux or Windows, but includes all of the esssential functionality needed to support HPC (high-performance computing) MPI, PGAS and OpenMP applications. Kitten provides unique capabilities such as physically contiguous application memory, transparent large page support, and noise-free tick-less operation, which enable HPC applications to obtain greater efficiency andmore » scalability than with general purpose OS kernels.« less
Mobile infostation network technology
NASA Astrophysics Data System (ADS)
Rajappan, Gowri; Acharya, Joydeep; Liu, Hongbo; Mandayam, Narayan; Seskar, Ivan; Yates, Roy
2006-05-01
Inefficient use of network resources on the battlefield is a serious liability: if an asset communicates with the network command for data-a terrain map, for instance-it ties up the end-to-end network resources. When many such assets contend for data simultaneously, traffic is limited by the slowest link along the path from the network command to the asset. A better approach is for a local server, known as an infostation, to download data on an anticipated-need basis when the network load is low. The infostation can then dump data when needed to the assets over a high-speed wireless connection. The infostation serves the local assets over an OFDM-based wireless data link that has MIMO enhancements for high data rate and robustness. We aim for data rate in excess of 100 Mbps, spectral efficiency in excess of 5 bits/sec/Hz, and robustness to poor channel conditions and jammers. We propose an adaptive physical layer that determines power levels, modulation schemes, and the MIMO enhancements to use based on the channel state and the level of interference in the system. We also incorporate the idea of superuser: a user who is allowed preferential use of the high data rate link. We propose a MAC that allows for this priority-based bandwidth allocation scheme. The proposed infostation MAC is integrated tightly with the physical layer through a cross-layer design. We call the proposed infostation PHY, MAC, and network technology, collectively, as the Mobile Infostation Network Technology (MINT).
NASA Astrophysics Data System (ADS)
Menshikh, V.; Samorokovskiy, A.; Avsentev, O.
2018-03-01
The mathematical model of optimizing the allocation of resources to reduce the time for management decisions and algorithms to solve the general problem of resource allocation. The optimization problem of choice of resources in organizational systems in order to reduce the total execution time of a job is solved. This problem is a complex three-level combinatorial problem, for the solving of which it is necessary to implement the solution to several specific problems: to estimate the duration of performing each action, depending on the number of performers within the group that performs this action; to estimate the total execution time of all actions depending on the quantitative composition of groups of performers; to find such a distribution of the existing resource of performers in groups to minimize the total execution time of all actions. In addition, algorithms to solve the general problem of resource allocation are proposed.
Contrarian behavior in a complex adaptive system
NASA Astrophysics Data System (ADS)
Liang, Y.; An, K. N.; Yang, G.; Huang, J. P.
2013-01-01
Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging from management and social science to ecology and evolution.
A new evaluation of the USGS streamgaging network
,
1998-01-01
Since 1889, the U.S. Geological Survey (USGS) has operated a streamgaging network to collect information about the Nation's water resources. It is a multipurpose network funded by the USGS and many other Federal, State and local agencies. Individual streamgaging stations are supported for specific purposes such as water allocation, reservoir operations, or regulating permit requirements, but the data are used by others for many purposes. Collectively, the USGS streamgaging network produces valuable data that are used for current forecasting and operational decisions as well as long-term resource planning, infrastructure design, and flood hazard mitigation. The guiding principles of the network are: Streamgaging stations are funded by the USGS and many agencies to achieve the Federal mission goals of the USGS and the individual goals of the funding agencies. Data are freely available to the public and all partners. USGS operates the network on behalf of all partners, which achieves economies because it eliminates the need for multiple infrastructures for testing equipment, providing training to staff, developing and maintaining the communications and database systems, and conducting quality assurance. USGS brings the capability of its national staff to bear on challenging problems such as responding to catastrophic floods or finding solutions to unique streamgaging conditions. This report has been prepared in response to a request from the U.S. House of Representatives Subcommittee on Interior Appropriations in its report to accompany H.R. 4193.
Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng
2007-01-01
The recent availability of low cost and miniaturized hardware has allowed wireless sensor networks (WSNs) to retrieve audio and video data in real world applications, which has fostered the development of wireless multimedia sensor networks (WMSNs). Resource constraints and challenging multimedia data volume make development of efficient algorithms to perform in-network processing of multimedia contents imperative. This paper proposes solving problems in the domain of WMSNs from the perspective of multi-agent systems. The multi-agent framework enables flexible network configuration and efficient collaborative in-network processing. The focus is placed on target classification in WMSNs where audio information is retrieved by microphones. To deal with the uncertainties related to audio information retrieval, the statistical approaches of power spectral density estimates, principal component analysis and Gaussian process classification are employed. A multi-agent negotiation mechanism is specially developed to efficiently utilize limited resources and simultaneously enhance classification accuracy and reliability. The negotiation is composed of two phases, where an auction based approach is first exploited to allocate the classification task among the agents and then individual agent decisions are combined by the committee decision mechanism. Simulation experiments with real world data are conducted and the results show that the proposed statistical approaches and negotiation mechanism not only reduce memory and computation requirements in WMSNs but also significantly enhance classification accuracy and reliability. PMID:28903223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hao; Garzoglio, Gabriele; Ren, Shangping
FermiCloud is a private cloud developed in Fermi National Accelerator Laboratory to provide elastic and on-demand resources for different scientific research experiments. The design goal of the FermiCloud is to automatically allocate resources for different scientific applications so that the QoS required by these applications is met and the operational cost of the FermiCloud is minimized. Our earlier research shows that VM launching overhead has large variations. If such variations are not taken into consideration when making resource allocation decisions, it may lead to poor performance and resource waste. In this paper, we show how we may use an VMmore » launching overhead reference model to minimize VM launching overhead. In particular, we first present a training algorithm that automatically tunes a given refer- ence model to accurately reflect FermiCloud environment. Based on the tuned reference model for virtual machine launching overhead, we develop an overhead-aware-best-fit resource allocation algorithm that decides where and when to allocate resources so that the average virtual machine launching overhead is minimized. The experimental results indicate that the developed overhead-aware-best-fit resource allocation algorithm can significantly improved the VM launching time when large number of VMs are simultaneously launched.« less
The Advantage of Standardisation as a Management Instrument in Companies
2003-09-01
possible synergistic effects between different but related business units and allocate all kinds of resources in the best possible way. The management... allocating the necessary resources. This pragmatic approach corresponds to the "structure follows strategy thesis". Under the term strategy this thesis...implementation of the necessary arrangements in the functional areas as well as the allocation of existing resources. In this connection the demand for
ERIC Educational Resources Information Center
Haggart, S. A.; Furry, W. S.
This Working Note documents the first year's events and outcomes in developing the budgeting system and resource allocation rules to support the Education Voucher Demonstration. The district now has systems for per pupil resource allocation and school/minischool cost center accounting. The basic voucher of $1,041 for grades 7-8, and $788 for…
Joint Rhythmic Movement Increases 4-Year-Old Children's Prosocial Sharing and Fairness Toward Peers.
Rabinowitch, Tal-Chen; Meltzoff, Andrew N
2017-01-01
The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children's prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds' sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.
Joint Rhythmic Movement Increases 4-Year-Old Children’s Prosocial Sharing and Fairness Toward Peers
Rabinowitch, Tal-Chen; Meltzoff, Andrew N.
2017-01-01
The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children’s prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds’ sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers. PMID:28694786
Stochastic Optimization For Water Resources Allocation
NASA Astrophysics Data System (ADS)
Yamout, G.; Hatfield, K.
2003-12-01
For more than 40 years, water resources allocation problems have been addressed using deterministic mathematical optimization. When data uncertainties exist, these methods could lead to solutions that are sub-optimal or even infeasible. While optimization models have been proposed for water resources decision-making under uncertainty, no attempts have been made to address the uncertainties in water allocation problems in an integrated approach. This paper presents an Integrated Dynamic, Multi-stage, Feedback-controlled, Linear, Stochastic, and Distributed parameter optimization approach to solve a problem of water resources allocation. It attempts to capture (1) the conflict caused by competing objectives, (2) environmental degradation produced by resource consumption, and finally (3) the uncertainty and risk generated by the inherently random nature of state and decision parameters involved in such a problem. A theoretical system is defined throughout its different elements. These elements consisting mainly of water resource components and end-users are described in terms of quantity, quality, and present and future associated risks and uncertainties. Models are identified, modified, and interfaced together to constitute an integrated water allocation optimization framework. This effort is a novel approach to confront the water allocation optimization problem while accounting for uncertainties associated with all its elements; thus resulting in a solution that correctly reflects the physical problem in hand.
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Baldwin, John
2007-01-01
TIGRAS is client-side software, which provides tracking-station equipment planning, allocation, and scheduling services to the DSMS (Deep Space Mission System). TIGRAS provides functions for schedulers to coordinate the DSN (Deep Space Network) antenna usage time and to resolve the resource usage conflicts among tracking passes, antenna calibrations, maintenance, and system testing activities. TIGRAS provides a fully integrated multi-pane graphical user interface for all scheduling operations. This is a great improvement over the legacy VAX VMS command line user interface. TIGRAS has the capability to handle all DSN resource scheduling aspects from long-range to real time. TIGRAS assists NASA mission operations for DSN tracking of station equipment resource request processes from long-range load forecasts (ten years or longer), to midrange, short-range, and real-time (less than one week) emergency tracking plan changes. TIGRAS can be operated by NASA mission operations worldwide to make schedule requests for the DSN station equipment.
Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation
NASA Technical Reports Server (NTRS)
Stocker, John C.; Golomb, Andrew M.
2011-01-01
Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.
Atypical resource allocation may contribute to many aspects of autism
Goldknopf, Emily J.
2013-01-01
Based on a review of the literature and on reports by people with autism, this paper suggests that atypical resource allocation is a factor that contributes to many aspects of autism spectrum conditions, including difficulties with language and social cognition, atypical sensory and attentional experiences, executive and motor challenges, and perceptual and conceptual strengths and weaknesses. Drawing upon resource theoretical approaches that suggest that perception, cognition, and action draw upon multiple pools of resources, the approach hypothesizes that compared with resources in typical cognition, resources in autism are narrowed or reduced, especially in people with strong sensory symptoms. In narrowed attention, resources are restricted to smaller areas and to fewer modalities, stages of processing, and cognitive processes than in typical cognition; narrowed resources may be more intense than in typical cognition. In reduced attentional capacity, overall resources are reduced; resources may be restricted to fewer modalities, stages of processing, and cognitive processes than in typical cognition, or the amount of resources allocated to each area or process may be reduced. Possible neural bases of the hypothesized atypical resource allocation, relations to other approaches, limitations, and tests of the hypotheses are discussed. PMID:24421760
Allocation and management issues in multiple-transaction open access transmission networks
NASA Astrophysics Data System (ADS)
Tao, Shu
This thesis focuses on some key issues related to allocation and management by the independent grid operator (IGO) of unbundled services in multiple-transaction open access transmission networks. The three unbundled services addressed in the thesis are transmission real power losses, reactive power support requirements from generation sources, and transmission congestion management. We develop the general framework that explicitly represents multiple transactions undertaken simultaneously in the transmission grid. This framework serves as the basis for formulating various problems treated in the thesis. We use this comprehensive framework to develop a physical-flow-based mechanism to allocate the total transmission losses to each transaction using the system. An important property of the allocation scheme is its capability to effectively deal with counter flows that result in the presence of specific transactions. Using the loss allocation results as the basis, we construct the equivalent loss compensation concept and apply it to develop flexible and effective procedures for compensating losses in multiple-transaction networks. We present a new physical-flow-based mechanism for allocating the reactive power support requirements provided by generators in multiple-transaction networks. The allocatable reactive support requirements are formulated as the sum of two specific components---the voltage magnitude variation component and the voltage angle variation component. The formulation utilizes the multiple-transaction framework and makes use of certain simplifying approximations. The formulation leads to a natural allocation as a function of the amount of each transaction. The physical interpretation of each allocation as a sensitivity of the reactive output of a generator is discussed. We propose a congestion management allocation scheme for multiple-transaction networks. The proposed scheme determines the allocation of congestion among the transactions on a physical-flow basis. It also proposes a congestion relief scheme that removes the congestion attributed to each transaction on the network in a least-cost manner to the IGO and determines the appropriate transmission charges to each transaction for its transmission usage. The thesis provides a compendium of problems that are natural extensions of the research results reported here and appear to be good candidates for future work.
Strategically Allocating Resources to Support Teaching and Learning
ERIC Educational Resources Information Center
Lynch, Matthew
2012-01-01
As the enduring economic recession forces state and local governments to cut education budgets, astute allocation of resources is becoming more important. The author analyses three basic categories of educational resources: money, human capital, and time before moving to a discussion of resources as a component of school reform. The author…
Discrete Resource Allocation in Visual Working Memory
ERIC Educational Resources Information Center
Barton, Brian; Ester, Edward F.; Awh, Edward
2009-01-01
Are resources in visual working memory allocated in a continuous or a discrete fashion? On one hand, flexible resource models suggest that capacity is determined by a central resource pool that can be flexibly divided such that items of greater complexity receive a larger share of resources. On the other hand, if capacity in working memory is…
NASA Astrophysics Data System (ADS)
Agar, S. M.; Kunreuther, H.
2005-12-01
Policy formulation for the mitigation and management of risks posed by natural hazards requires that governments confront difficult decisions for resource allocation and be able to justify their spending. Governments also need to recognize when spending offers little improvement and the circumstances in which relatively small amounts of spending can make substantial differences. Because natural hazards can have detrimental impacts on local and regional economies, patterns of economic development can also be affected by spending decisions for disaster mitigation. This paper argues that by mapping interdependencies among physical, social and economic factors, governments can improve resource allocation to mitigate the risks of natural hazards while improving economic development on local and regional scales. Case studies of natural hazards in Turkey have been used to explore specific "filters" that act to modify short- and long-term outcomes. Pre-event filters can prevent an event from becoming a natural disaster or change a routine event into a disaster. Post-event filters affect both short and long-term recovery and development. Some filters cannot be easily modified by spending (e.g., rural-urban migration) but others (e.g., land-use practices) provide realistic spending targets. Net social benefits derived from spending, however, will also depend on the ways by which filters are linked, or so-called "interdependencies". A single weak link in an interdependent system, such as a power grid, can trigger a cascade of failures. Similarly, weak links in social and commercial networks can send waves of disruption through communities. Conversely, by understanding the positive impacts of interdependencies, spending can be targeted to maximize net social benefits while mitigating risks and improving economic development. Detailed information on public spending was not available for this study but case studies illustrate how networks of interdependent filters can modify social benefits and costs. For example, spending after the 1992 Erzincan earthquake targeted local businesses but limited alternative employment, labor losses and diminished local markets all contributed to economic stagnation. Spending after the 1995 Dinar earthquake provided rent subsidies, supporting a major exodus from the town. Consequently many local people were excluded from reconstruction decisions and benefits offered by reconstruction funds. After the 1999 Marmara earthquakes, a 3-year economic decline in Yalova illustrates the vulnerability of local economic stability to weak regulation enforcement by a few agents. A resource allocation framework indicates that government-community relations, lack of economic diversification, beliefs, and compensation are weak links for effective spending. Stronger positive benefits could be achieved through spending to target land-use regulation enforcement, labor losses, time-critical needs of small businesses, and infrastructure. While the impacts of the Marmara earthquakes were devastating, strong commercial networks and international interests helped to re-establish the regional economy. Interdependencies may have helped to drive a recovery. Smaller events in eastern Turkey, however, can wipe out entire communities and can have long-lasting impacts on economic development. These differences may accelerate rural to urban migration and perpetuate regional economic divergence in the country. 1: Research performed in the Wharton MBA Program, Univ. of Pennsylvania.
Harris, Claire; Allen, Kelly; Waller, Cara; Brooke, Vanessa
2017-05-09
This is the third in a series of papers reporting a program of Sustainability in Health care by Allocating Resources Effectively (SHARE) in a local healthcare setting. Leaders in a large Australian health service planned to establish an organisation-wide, systematic, integrated, evidence-based approach to disinvestment. In order to introduce new systems and processes for disinvestment into existing decision-making infrastructure, we aimed to understand where, how and by whom resource allocation decisions were made, implemented and evaluated. We also sought the knowledge and experience of staff regarding previous disinvestment activities. Structured interviews, workshops and document analysis were used to collect information from multiple sources in an environmental scan of decision-making systems and processes. Findings were synthesised using a theoretical framework. Sixty-eight respondents participated in interviews and workshops. Eight components in the process of resource allocation were identified: Governance, Administration, Stakeholder engagement, Resources, Decision-making, Implementation, Evaluation and, where appropriate, Reinvestment of savings. Elements of structure and practice for each component are described and a new framework was developed to capture the relationships between them. A range of decision-makers, decision-making settings, type and scope of decisions, criteria used, and strengths, weaknesses, barriers and enablers are outlined. The term 'disinvestment' was not used in health service decision-making. Previous projects that involved removal, reduction or restriction of current practices were driven by quality and safety issues, evidence-based practice or a need to find resource savings and not by initiatives where the primary aim was to disinvest. Measuring resource savings is difficult, in some situations impossible. Savings are often only theoretical as resources released may be utilised immediately by patients waiting for beds, clinic appointments or surgery. Decision-making systems and processes for resource allocation are more complex than assumed in previous studies. There is a wide range of decision-makers, settings, scope and type of decisions, and criteria used for allocating resources within a single institution. To our knowledge, this is the first paper to report this level of detail and to introduce eight components of the resource allocation process identified within a local health service.
NASA Technical Reports Server (NTRS)
Olmstead, D.
1985-01-01
The 1985 Space WARC will examine and potentially modify the current geostationary orbit spectrum resource allocation methodology. Discussions in this international political environment could likely associate the geostationary orbital debris issue with the politicized issue of orbit spectrum allocation.
On the Allocation of Resources for Secondary Schools
ERIC Educational Resources Information Center
Haelermans, Carla; De Witte, Kristof; Blank, Jos L. T.
2012-01-01
This paper studies the optimal allocation of resources--in terms of school management, teachers, supporting employees and materials--in secondary schools. We use a flexible budget constrained output distance function model to estimate both technical and allocative efficiency scores for 448 Dutch secondary schools between 2002 and 2007. The results…
The use of an integrated variable fuzzy sets in water resources management
NASA Astrophysics Data System (ADS)
Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang
2018-06-01
Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.
Hybrid scheduling mechanisms for Next-generation Passive Optical Networks based on network coding
NASA Astrophysics Data System (ADS)
Zhao, Jijun; Bai, Wei; Liu, Xin; Feng, Nan; Maier, Martin
2014-10-01
Network coding (NC) integrated into Passive Optical Networks (PONs) is regarded as a promising solution to achieve higher throughput and energy efficiency. To efficiently support multimedia traffic under this new transmission mode, novel NC-based hybrid scheduling mechanisms for Next-generation PONs (NG-PONs) including energy management, time slot management, resource allocation, and Quality-of-Service (QoS) scheduling are proposed in this paper. First, we design an energy-saving scheme that is based on Bidirectional Centric Scheduling (BCS) to reduce the energy consumption of both the Optical Line Terminal (OLT) and Optical Network Units (ONUs). Next, we propose an intra-ONU scheduling and an inter-ONU scheduling scheme, which takes NC into account to support service differentiation and QoS assurance. The presented simulation results show that BCS achieves higher energy efficiency under low traffic loads, clearly outperforming the alternative NC-based Upstream Centric Scheduling (UCS) scheme. Furthermore, BCS is shown to provide better QoS assurance.
Generalized networking engineering: optimal pricing and routing in multiservice networks
NASA Astrophysics Data System (ADS)
Mitra, Debasis; Wang, Qiong
2002-07-01
One of the functions of network engineering is to allocate resources optimally to forecasted demand. We generalize the mechanism by incorporating price-demand relationships into the problem formulation, and optimizing pricing and routing jointly to maximize total revenue. We consider a network, with fixed topology and link bandwidths, that offers multiple services, such as voice and data, each having characteristic price elasticity of demand, and quality of service and policy requirements on routing. Prices, which depend on service type and origin-destination, determine demands, that are routed, subject to their constraints, so as to maximize revenue. We study the basic properties of the optimal solution and prove that link shadow costs provide the basis for both optimal prices and optimal routing policies. We investigate the impact of input parameters, such as link capacities and price elasticities, on prices, demand growth, and routing policies. Asymptotic analyses, in which network bandwidth is scaled to grow, give results that are noteworthy for their qualitative insights. Several numerical examples illustrate the analyses.
Strategies on the Implementation of China's Logistics Information Network
NASA Astrophysics Data System (ADS)
Dong, Yahui; Li, Wei; Guo, Xuwen
The economic globalization and trend of e-commerce network have determined that the logistics industry will be rapidly developed in the 21st century. In order to achieve the optimal allocation of resources, a worldwide rapid and sound customer service system should be established. The establishment of a corresponding modern logistics system is the inevitable choice of this requirement. It is also the inevitable choice for the development of modern logistics industry in China. The perfect combination of modern logistics and information network can better promote the development of the logistics industry. Through the analysis of Status of Logistics Industry in China, this paper summed up the domestic logistics enterprise logistics information system in the building of some common problems. According to logistics information systems planning methods and principles set out logistics information system to optimize the management model.
Rawn, Andrea; Wilson, Katrina
2011-01-01
Unifying, implementing and sustaining a large order set project requires strategic placement of key organizational professionals to provide ongoing user education, communication and support. This article will outline the successful strategies implemented by the Grey Bruce Health Network, Evidence-Based Care Program to reduce length of stay, increase patient satisfaction and increase the use of best practices resulting in quality outcomes, safer practice and better allocation of resources by using standardized Order Sets within a network of 11 hospital sites. Audits conducted in 2007 and again in 2008 revealed a reduced length of stay of 0.96 in-patient days when order sets were used on admission and readmission for the same or a related diagnosis within one month decreased from 5.5% without order sets to 3.5% with order sets.
NASA Astrophysics Data System (ADS)
Liu, Shuxin; Ji, Xinsheng; Liu, Caixia; Bai, Yi
2017-01-01
Many link prediction methods have been proposed for predicting the likelihood that a link exists between two nodes in complex networks. Among these methods, similarity indices are receiving close attention. Most similarity-based methods assume that the contribution of links with different topological structures is the same in the similarity calculations. This paper proposes a local weighted method, which weights the strength of connection between each pair of nodes. Based on the local weighted method, six local weighted similarity indices extended from unweighted similarity indices (including Common Neighbor (CN), Adamic-Adar (AA), Resource Allocation (RA), Salton, Jaccard and Local Path (LP) index) are proposed. Empirical study has shown that the local weighted method can significantly improve the prediction accuracy of these unweighted similarity indices and that in sparse and weakly clustered networks, the indices perform even better.
Advanced teleprocessing systems
NASA Astrophysics Data System (ADS)
Kleinrock, L.; Gerla, M.
1982-09-01
This Annual Technical Report covers research covering the period from October 1, 1981 to September 30, 1982. This contract has three primary designated research areas: packet radio systems, resource sharing and allocation, and distributed processing and control. This report contains abstracts of publications which summarize research results in these areas followed by the main body of the report which is devoted to a study of channel access protocols that are executed by the nodes of a network to schedule their transmissions on multi-access broadcast channel. In particular the main body consists of a Ph.D. dissertation, Channel Access Protocols for Multi-Hop Broadcast Packet Radio Networks. This work discusses some new channel access protocols useful for mobile radio networks. Included is an analysis of slotted ALOHA and some tight bounds on the performance of all possible protocols in a mobile environment.
Cell transmission model of dynamic assignment for urban rail transit networks.
Xu, Guangming; Zhao, Shuo; Shi, Feng; Zhang, Feilian
2017-01-01
For urban rail transit network, the space-time flow distribution can play an important role in evaluating and optimizing the space-time resource allocation. For obtaining the space-time flow distribution without the restriction of schedules, a dynamic assignment problem is proposed based on the concept of continuous transmission. To solve the dynamic assignment problem, the cell transmission model is built for urban rail transit networks. The priority principle, queuing process, capacity constraints and congestion effects are considered in the cell transmission mechanism. Then an efficient method is designed to solve the shortest path for an urban rail network, which decreases the computing cost for solving the cell transmission model. The instantaneous dynamic user optimal state can be reached with the method of successive average. Many evaluation indexes of passenger flow can be generated, to provide effective support for the optimization of train schedules and the capacity evaluation for urban rail transit network. Finally, the model and its potential application are demonstrated via two numerical experiments using a small-scale network and the Beijing Metro network.
Metro Optical Networks for Homeland Security
NASA Astrophysics Data System (ADS)
Bechtel, James H.
Metro optical networks provide an enticing opportunity for strengthening homeland security. Many existing and emerging fiber-optic networks can be adapted for enhanced security applications. Applications include airports, theme parks, sports venues, and border surveillance systems. Here real-time high-quality video and captured images can be collected, transported, processed, and stored for security applications. Video and data collection are important also at correctional facilities, courts, infrastructure (e.g., dams, bridges, railroads, reservoirs, power stations), and at military and other government locations. The scaling of DWDM-based networks allows vast amounts of data to be collected and transported including biometric features of individuals at security check points. Here applications will be discussed along with potential solutions and challenges. Examples of solutions to these problems are given. This includes a discussion of metropolitan aggregation platforms for voice, video, and data that are SONET compliant for use in SONET networks and the use of DWDM technology for scaling and transporting a variety of protocols. Element management software allows not only network status monitoring, but also provides optimized allocation of network resources through the use of optical switches or electrical cross connects.
Bluschke, A; Roessner, V; Beste, C
2016-04-01
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatric disorders in childhood. Besides inattention and hyperactivity, impulsivity is the third core symptom leading to diverse and serious problems. However, the neuronal mechanisms underlying impulsivity in ADHD are still not fully understood. This is all the more the case when patients with the ADHD combined subtype (ADHD-C) are considered who are characterized by both symptoms of inattention and hyperactivity/impulsivity. Combining high-density electroencephalography (EEG) recordings with source localization analyses, we examined what information processing stages are dysfunctional in ADHD-C (n = 20) compared with controls (n = 18). Patients with ADHD-C made more impulsive errors in a Go/No-go task than healthy controls. Neurophysiologically, different subprocesses from perceptual gating to attentional selection, resource allocation and response selection processes are altered in this patient group. Perceptual gating, stimulus-driven attention selection and resource allocation processes were more pronounced in ADHD-C, are related to activation differences in parieto-occipital networks and suggest attentional filtering deficits. However, only response selection processes, associated with medial prefrontal networks, predicted impulsive errors in ADHD-C. Although the clinical picture of ADHD-C is complex and a multitude of processing steps are altered, only a subset of processes seems to directly modulate impulsive behaviour. The present findings improve the understanding of mechanisms underlying impulsivity in patients with ADHD-C and might help to refine treatment algorithms focusing on impulsivity.
Collaborative Resource Allocation
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Wax, Allan; Lam, Raymond; Baldwin, John; Borden, Chester
2007-01-01
Collaborative Resource Allocation Networking Environment (CRANE) Version 0.5 is a prototype created to prove the newest concept of using a distributed environment to schedule Deep Space Network (DSN) antenna times in a collaborative fashion. This program is for all space-flight and terrestrial science project users and DSN schedulers to perform scheduling activities and conflict resolution, both synchronously and asynchronously. Project schedulers can, for the first time, participate directly in scheduling their tracking times into the official DSN schedule, and negotiate directly with other projects in an integrated scheduling system. A master schedule covers long-range, mid-range, near-real-time, and real-time scheduling time frames all in one, rather than the current method of separate functions that are supported by different processes and tools. CRANE also provides private workspaces (both dynamic and static), data sharing, scenario management, user control, rapid messaging (based on Java Message Service), data/time synchronization, workflow management, notification (including emails), conflict checking, and a linkage to a schedule generation engine. The data structure with corresponding database design combines object trees with multiple associated mortal instances and relational database to provide unprecedented traceability and simplify the existing DSN XML schedule representation. These technologies are used to provide traceability, schedule negotiation, conflict resolution, and load forecasting from real-time operations to long-range loading analysis up to 20 years in the future. CRANE includes a database, a stored procedure layer, an agent-based middle tier, a Web service wrapper, a Windows Integrated Analysis Environment (IAE), a Java application, and a Web page interface.
NASA Astrophysics Data System (ADS)
Yadav, Dharmendra Singh; Babu, Sarath; Manoj, B. S.
2018-03-01
Spectrum conflict during primary and backup routes assignment in elastic optical networks results in increased resource consumption as well as high Bandwidth Blocking Probability. In order to avoid such conflicts, we propose a new scheme, Quasi Path Restoration (QPR), where we divide the available spectrum into two: (1) primary spectrum (for primary routes allocation) and (2) backup spectrum (for rerouting the data on link failures). QPR exhibits three advantages over existing survivable strategies such as Shared Path Protection (SPP), Primary First Fit Backup Last Fit (PFFBLF), Jointly Releasing and re-establishment Defragmentation SPP (JRDSSPP), and Path Restoration (PR): (1) the conflict between primary and backup spectrum during route assignment is completely eliminated, (2) upon a link failure, connection recovery requires less backup resources compared to SPP, PFFBLF, and PR, and (3) availability of the same backup spectrum on each link improves the recovery guarantee. The performance of our scheme is analyzed with different primary backup spectrum partitions on varying connection-request demands and number of frequency slots. Our results show that QPR provides better connection recovery guarantee and Backup Resources Utilization (BRU) compared to bandwidth recovery of PR strategy. In addition, we compare QPR with Shared Path Protection and Primary First-Fit Backup Last Fit strategies in terms of Bandwidth Blocking Probability (BBP) and average frequency slots per connection request. Simulation results show that BBP of SPP, PFFBLF, and JRDSPP varies between 18.59% and 14.42%, while in QPR, BBP ranges from 2.55% to 17.76% for Cost239, NSFNET, and ARPANET topologies. Also, QPR provides bandwidth recovery between 93.61% and 100%, while in PR, the recovery ranges from 86.81% to 98.99%. It is evident from our analysis that QPR provides a reasonable trade-off between bandwidth blocking probability and connection recoverability.
A Two-Phase Model of Resource Allocation in Visual Working Memory
ERIC Educational Resources Information Center
Ye, Chaoxiong; Hu, Zhonghua; Li, Hong; Ristaniemi, Tapani; Liu, Qiang; Liu, Taosheng
2017-01-01
Two broad theories of visual working memory (VWM) storage have emerged from current research, a discrete slot-based theory and a continuous resource theory. However, neither the discrete slot-based theory or continuous resource theory clearly stipulates how the mental commodity for VWM (discrete slot or continuous resource) is allocated.…
Resource Allocation Procedure at Queensland University: A Dynamic Modelling Project.
ERIC Educational Resources Information Center
Galbraith, Peter L.; Carss, Brian W.
A structural reorganization of the University of Queensland, Australia, was undertaken to promote efficient resource management, and a resource allocation model was developed to aid in policy evaluation and planning. The operation of the restructured system was based on creating five resource groups to manage the distribution of academic resources…
2010-01-01
Background The district resource allocation formula in Malawi was recently reviewed to include stunting as a proxy measure of socioeconomic status. In many countries where the concept of need has been incorporated in resource allocation, composite indicators of socioeconomic status have been used. In the Malawi case, it is important to ascertain whether there are differences between using single variable or composite indicators of socioeconomic status in allocations made to districts, holding all other factors in the resource allocation formula constant. Methods Principal components analysis was used to calculate asset indices for all districts from variables that capture living standards using data from the Malawi Multiple Indicator Cluster Survey 2006. These were normalized and used to weight district populations. District proportions of national population weighted by both the simple and composite indicators were then calculated for all districts and compared. District allocations were also calculated using the two approaches and compared. Results The two types of indicators are highly correlated, with a spearman rank correlation coefficient of 0.97 at the 1% level of significance. For 21 out of the 26 districts included in the study, proportions of national population weighted by the simple indicator are higher by an average of 0.6 percentage points. For the remaining 5 districts, district proportions of national population weighted by the composite indicator are higher by an average of 2 percentage points. Though the average percentage point differences are low and the actual allocations using both approaches highly correlated (ρ of 0.96), differences in actual allocations exceed 10% for 8 districts and have an average of 4.2% for the remaining 17. For 21 districts allocations based on the single variable indicator are higher. Conclusions Variations in district allocations made using either the simple or composite indicators of socioeconomic status are not statistically different to recommend one over the other. However, the single variable indicator is favourable for its ease of computation. PMID:20053274
Healthcare resource allocation decisions affecting uninsured services
Harrison, Krista Lyn; Taylor, Holly A.
2017-01-01
Purpose Using the example of community access programs (CAPs), the purpose of this paper is to describe resource allocation and policy decisions related to providing health services for the uninsured in the USA and the organizational values affecting these decisions. Design/methodology/approach The study used comparative case study methodology at two geographically diverse sites. Researchers collected data from program documents, meeting observations, and interviews with program stakeholders. Findings Five resource allocation or policy decisions relevant to providing healthcare services were described at each site across three categories: designing the health plan, reacting to funding changes, and revising policies. Organizational values of access to care and stewardship most frequently affected resource allocation and policy decisions, while economic and political pressures affect the relative prioritization of values. Research limitations/implications Small sample size, the potential for social desirability or recall bias, and the exclusion of provider, member or community perspectives beyond those represented among participating board members. Practical implications Program directors or researchers can use this study to assess the extent to which resource allocation and policy decisions align with organizational values and mission statements. Social implications The description of how healthcare decisions are actually made can be matched with literature that describes how healthcare resource decisions ought to be made, in order to provide a normative grounding for future decisions. Originality/value This study addresses a gap in literature regarding how CAPs actually make resource allocation decisions that affect access to healthcare services. PMID:27934550
Harris, Claire; Green, Sally; Elshaug, Adam G
2017-09-08
This is the tenth in a series of papers reporting a program of Sustainability in Health care by Allocating Resources Effectively (SHARE) in a local healthcare setting. After more than a decade of research, there is little published evidence of active and successful disinvestment. The paucity of frameworks, methods and tools is reported to be a factor in the lack of success. However there are clear and consistent messages in the literature that can be used to inform development of a framework for operationalising disinvestment. This paper, along with the conceptual review of disinvestment in Paper 9 of this series, aims to integrate the findings of the SHARE Program with the existing disinvestment literature to address the lack of information regarding systematic organisation-wide approaches to disinvestment at the local health service level. A framework for disinvestment in a local healthcare setting is proposed. Definitions for essential terms and key concepts underpinning the framework have been made explicit to address the lack of consistent terminology. Given the negative connotations of the word 'disinvestment' and the problems inherent in considering disinvestment in isolation, the basis for the proposed framework is 'resource allocation' to address the spectrum of decision-making from investment to disinvestment. The focus is positive: optimising healthcare, improving health outcomes, using resources effectively. The framework is based on three components: a program for decision-making, projects to implement decisions and evaluate outcomes, and research to understand and improve the program and project activities. The program consists of principles for decision-making and settings that provide opportunities to introduce systematic prompts and triggers to initiate disinvestment. The projects follow the steps in the disinvestment process. Potential methods and tools are presented, however the framework does not stipulate project design or conduct; allowing application of any theories, methods or tools at each step. Barriers are discussed and examples illustrating constituent elements are provided. The framework can be employed at network, institutional, departmental, ward or committee level. It is proposed as an organisation-wide application, embedded within existing systems and processes, which can be responsive to needs and priorities at the level of implementation. It can be used in policy, management or clinical contexts.
Scarcity, Conflict, and Equity in Allocating Public Recreation Resources.
ERIC Educational Resources Information Center
Shelby, Bo; Danley, Mark
The conflict between the interests of commercial outfitters and private boaters in the use of whitewater rivers is examined. A discussion is presented on the literature on scarcity, allocation, and conflict among groups. These concepts are applied to the allocation of public resources on whitewater rivers. The conflicting interest groups are…
77 FR 42749 - Proposed Change in State Title V Maternal and Child Health Block Grant Allocations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
... Change in State Title V Maternal and Child Health Block Grant Allocations AGENCY: Health Resources and... the State Title V Maternal and Child Health (MCH) Block Grant allocations. Through the Health Resources and Services Administration's Maternal and Child Health Bureau (MCHB), Title V MCH Block Grant...
Anselmi, Laura; Lagarde, Mylene; Hanson, Kara
2015-05-01
This review aims to identify, assess and analyse the evidence on equity in the distribution of public health sector expenditure in low- and middle-income countries. Four bibliographic databases and five websites were searched to identify quantitative studies examining equity in the distribution of public health funding in individual countries or groups of countries. Two different types of studies were identified: benefit incidence analysis (BIA) and resource allocation comparison (RAC) studies. Quality appraisal and data synthesis were tailored to each study type to reflect differences in the methods used and in the information provided. We identified 39 studies focusing on African, Asian and Latin American countries. Of these, 31 were BIA studies that described the distribution, typically across socio-economic status, of individual monetary benefit derived from service utilization. The remaining eight were RAC studies that compared the actual expenditure across geographic areas to an ideal need-based distribution. Overall, the quality of the evidence from both types of study was relatively weak. Looking across studies, the evidence confirms that resource allocation formulae can enhance equity in resource allocation across geographic areas and that the poor benefits proportionally more from primary health care than from hospital expenditure. The lack of information on the distribution of benefit from utilization in RAC studies and on the countries' approaches to resource allocation in BIA studies prevents further policy analysis. Additional research that relates the type of resource allocation mechanism to service provision and to the benefit distribution is required for a better understanding of equity-enhancing resource allocation policies. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2014; all rights reserved.
BESIII physical offline data analysis on virtualization platform
NASA Astrophysics Data System (ADS)
Huang, Q.; Li, H.; Kan, B.; Shi, J.; Lei, X.
2015-12-01
In this contribution, we present an ongoing work, which aims at benefiting BESIII computing system for higher resource utilization and more efficient job operations brought by cloud and virtualization technology with Openstack and KVM. We begin with the architecture of BESIII offline software to understand how it works. We mainly report the KVM performance evaluation and optimization from various factors in hardware and kernel. Experimental results show the CPU performance penalty of KVM can be approximately decreased to 3%. In addition, the performance comparison between KVM and physical machines in aspect of CPU, disk IO and network IO is also presented. Finally, we present our development work, an adaptive cloud scheduler, which allocates and reclaims VMs dynamically according to the status of TORQUE queue and the size of resource pool to improve resource utilization and job processing efficiency.
Fraser, Kimberly D; Estabrooks, Carole; Allen, Marion; Strang, Vicki
2009-03-01
Case managers make decisions that directly affect the amount and type of services home care clients receive and subsequently affect the overall available health care resources of home care programs. A recent systematic review of the literature identified significant knowledge gaps with respect to resource allocation decision-making in home care. Using Spradley's methodology, we designed an ethnographic study of a children's home care program in Western Canada. The sample included 11 case managers and program leaders. Data sources included interviews, card sorts, and participant observation over a 5-month period. Data analyses included open coding, domain, taxonomic, and componential analysis. One of the key findings was a taxonomy of factors that influence case manager resource allocation decisions. The factors were grouped into one of four main categories: system-related, home care program-related, family related, or client-related. Family related factors have not been previously reported as influencing case manager resource allocation decision-making and nor has the team's role been reported as an influencing factor. The findings of this study are examined in light of Daniels and Sabin's Accountability for Reasonableness framework, which may be useful for future knowledge development about micro-level resource allocation theory.
Mathematical programming for the efficient allocation of health care resources.
Stinnett, A A; Paltiel, A D
1996-10-01
Previous discussions of methods for the efficient allocation of health care resources subject to a budget constraint have relied on unnecessarily restrictive assumptions. This paper makes use of established optimization techniques to demonstrate that a general mathematical programming framework can accommodate much more complex information regarding returns to scale, partial and complete indivisibility and program interdependence. Methods are also presented for incorporating ethical constraints into the resource allocation process, including explicit identification of the cost of equity.
Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.
Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W
2017-10-01
The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Hall, William; Smith, Neale; Mitton, Craig; Urquhart, Bonnie; Bryan, Stirling
2017-08-22
In order to meet the challenges presented by increasing demand and scarcity of resources, healthcare organizations are faced with difficult decisions related to resource allocation. Tools to facilitate evaluation and improvement of these processes could enable greater transparency and more optimal distribution of resources. The Resource Allocation Performance Assessment Tool (RAPAT) was implemented in a healthcare organization in British Columbia, Canada. Recommendations for improvement were delivered, and a follow up evaluation exercise was conducted to assess the trajectory of the organization's priority setting and resource allocation (PSRA) process 2 years post the original evaluation. Implementation of RAPAT in the pilot organization identified strengths and weaknesses of the organization's PSRA process at the time of the original evaluation. Strengths included the use of criteria and evidence, an ability to reallocate resources, and the involvement of frontline staff in the process. Weaknesses included training, communication, and lack of program budgeting. Although the follow up revealed a regression from a more formal PSRA process, a legacy of explicit resource allocation was reported to be providing ongoing benefit for the organization. While past studies have taken a cross-sectional approach, this paper introduces the first longitudinal evaluation of PSRA in a healthcare organization. By including the strengths, weaknesses, and evolution of one organization's journey, the authors' intend that this paper will assist other healthcare leaders in meeting the challenges of allocating scarce resources. © 2018 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Ethical considerations in resource allocation in a cochlear implant program.
Westerberg, Brian D; Pijl, Sipke; McDonald, Michael
2008-04-01
To review processes of resource allocation and the ethical considerations relevant to the fair allocation of a limited number of cochlear implants to increasing numbers of potential recipients. Review of relevant considerations. Tertiary referral hospital. Editorial discussion of the ethical issues of resource allocation. Heterogeneity of audiometric thresholds, self-reported disability of hearing loss, age of the potential cochlear implant recipient, cost-effectiveness, access to resources, compliance with follow-up, social support available to the recipient, social consequences of hearing impairment, and other recipient-related factors. In a publicly funded health care system, there will always be a need for decision-making processes for allocation of finite fiscal resources. All candidates for cochlear implantation deserve fair consideration. However, they are a heterogeneous group in terms of needs and expected outcomes consisting of traditional and marginal candidates, with a wide range of benefit from acoustic amplification. We argue that implant programs should thoughtfully prioritize treatment on the basis of need and potential benefit. We reject queuing on the basis of "first-come, first-served" or on the basis of perceived social worth.
Gamlund, Espen
2016-04-01
Ruth Tallman has recently offered a defense of the modified youngest first principle of scarce resource allocation [1]. According to Tallman, this principle calls for prioritizing adolescents and young adults between 15-40 years of age. In this article, I argue that Tallman's defense of the modified youngest first principle is vulnerable to important objections, and that it is thus unsuitable as a basis for allocating resources. Moreover, Tallman makes claims about the badness of death for individuals at different ages, but she lacks an account of the loss involved in dying to support her claims. To fill this gap in Tallman's account, I propose a view on the badness of death that I call 'Deprivationism'. I argue that this view explains why death is bad for those who die, and that it has some advantages over Tallman's complete lives view in the context of scarce resource allocation. Finally, I consider some objections to the relevance of Deprivationism to resource allocation, and offer my responses.
Resource allocation and compensation during development in holometabolous insects.
Nestel, David; Papadopoulos, Nikos T; Pascacio-Villafán, Carlos; Righini, Nicoletta; Altuzar-Molina, Alma R; Aluja, Martín
2016-12-01
We provide an extensive review on current knowledge and future research paths on the topic of resource allocation and compensation during development in holometabolous insects, emphasizing the role of resource management during development, and how compensatory mechanisms may be acting to remediate nutritional deficiencies carried over from earlier stages of development. We first review resource allocation in "open" and "closed" developmental stages and then move on to the topic of modelling resource allocation and its trade-offs. In doing so, we review novel methodological developments such as response-surface methods and mixture experiments as well as nutritional geometry. We also dwell on the fascinating topic of compensatory physiology and behavior. We finish by discussing future research paths, among them the emerging field of nutrigenomics and gut microbiome, which will shed light into the yet poorly understood role of the symbiotic microbiota in nutrient compensation or assimilation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dix, Annika; van der Meer, Elke
2015-04-01
This study investigates cognitive resource allocation dependent on fluid and numerical intelligence in arithmetic/algebraic tasks varying in difficulty. Sixty-six 11th grade students participated in a mathematical verification paradigm, while pupil dilation as a measure of resource allocation was collected. Students with high fluid intelligence solved the tasks faster and more accurately than those with average fluid intelligence, as did students with high compared to average numerical intelligence. However, fluid intelligence sped up response times only in students with average but not high numerical intelligence. Further, high fluid but not numerical intelligence led to greater task-related pupil dilation. We assume that fluid intelligence serves as a domain-general resource that helps to tackle problems for which domain-specific knowledge (numerical intelligence) is missing. The allocation of this resource can be measured by pupil dilation. Copyright © 2014 Society for Psychophysiological Research.
Owili, Patrick Opiyo; Hsu, Yi-Hsin Elsa; Chern, Jin-Yuan; Chiu, Chiung-Hsuan Megan; Wang, Bill; Huang, Kuo-Cherh; Muga, Miriam Adoyo
2015-01-01
Background Health care resource allocation is key towards attaining equity in the health system. However, health professionals’ perceived impact and attitude towards health care resource allocation in Sub-Saharan Africa is unknown; furthermore, they occupy a position which makes them notice the impact of different policies in their health system. This study explored perceptions and attitudes of health professionals in Kenya on health care resource allocation mechanism. Method We conducted a survey of a representative sample of 341 health professionals in Moi Teaching and Referral Hospital from February to April 2012, consisting of over 3000 employees. We assessed health professionals’ perceived impact and attitudes on health care resource allocation mechanism in Kenya. We used structural equation modeling and applied a Confirmatory Factor Analysis using Robust Maximum Likelihood estimation procedure to test the hypothesized model. Results We found that the allocation mechanism was negatively associated with their perceived positive impact (-1.04, p < .001), health professionals’ satisfaction (-0.24, p < .01), and professionals’ attitudes (-1.55, p < .001) while it was positively associated with perceived negative impact (1.14, p < .001). Perceived positive impact of the allocation mechanism was negatively associated with their overall satisfaction (-0.08) and attitude (-0.98) at p < .001, respectively. Furthermore, overall satisfaction was negatively associated with attitude (-1.10, p <.001). On the other hand, perceived negative impact of the allocation was positively associated with overall satisfaction (0.29, p <.001) but was not associated with attitude. Conclusion The result suggests that health care resource allocation mechanism has a negative effect towards perceptions, attitudes and overall satisfaction of health professionals who are at the frontline in health care. These findings can serve as a crucial reference for policymakers as the Kenyan health system move towards devolving the system of governance. PMID:26039053
Benefit of adaptive FEC in shared backup path protected elastic optical network.
Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang
2015-07-27
We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.
Criteria-Based Resource Allocation: A Tool to Improve Public Health Impact.
Graham, J Ross; Mackie, Christopher
2016-01-01
Resource allocation in local public health (LPH) has been reported as a significant challenge for practitioners and a Public Health Services and Systems Research priority. Ensuring available resources have maximum impact on community health and maintaining public confidence in the resource allocation process are key challenges. A popular strategy in health care settings to address these challenges is Program Budgeting and Marginal Analysis (PBMA). This case study used PBMA in an LPH setting to examine its appropriateness and utility. The criteria-based resource allocation process PBMA was implemented to guide the development of annual organizational budget in an attempt to maximize the impact of agency resources. Senior leaders and managers were surveyed postimplementation regarding process facilitators, challenges, and successes. Canada's largest autonomous LPH agency. PBMA was used to shift 3.4% of the agency budget from lower-impact areas (through 34 specific disinvestments) to higher-impact areas (26 specific reinvestments). Senior leaders and managers validated the process as a useful approach for improving the public health impact of agency resources. However, they also reported the process may have decreased frontline staff confidence in senior leadership. In this case study, PBMA was used successfully to reallocate a sizable portion of an LPH agency's budget toward higher-impact activities. PBMA warrants further study as a tool to support optimal resource allocation in LPH settings.
Allocation of health resources according to the type and size of Iranian governmental hospitals.
Hassani, Sa; Abolhallaje, M; Inanlo, S; Hosseini, H; Pourmohammadi, K; Bastani, P; Ramezanian, M; Marnani, A Barati
2013-01-01
Due to consuming about 50%-80% of health resources, hospitals are the greatest and costly operational units in Iranian Health system. so allocation of resources specially human and space resources as the most expensive ones is really important for further controlling of costs, analysis of costs and making suitable policies for increasing the profitability and allocation of resources and improvement of quality. This paper intends to describe and analyze any allocation of resources in 530 university hospitals in Iran. The final goal of this research is to provide a data bank according which there is a basis for more scientific budget allocation of state's hospitals from the size and type of application points of view. The relevant index of person to bed was 2.04 for human resources. All hospitals more than 300 beds are located in benefiting areas from which 17 cases are educational and 2 cases are therapeutic. This is necessary to mention that the rate of management group forces to total personnel at deprived areas is about 2.5% more than benefiting areas. Because 60-80% of hospital costs are applied for human forces, all managers of hospitals are obliged to revise their policies in attraction and employment of human force in order to benefit from such a valuable resource and prevent from expensive costs. So any employment of personnel should be based upon real needs of hospital.
Children Rectify Inequalities for Disadvantaged Groups
Elenbaas, Laura; Killen, Melanie
2016-01-01
Children’s decisions regarding the allocation of societal resources in the context of preexisting inequalities were investigated. African-American and European-American children ages 5–6 years (n = 91) and 10–11 years (n = 94) judged the acceptability of a medical resource inequality on the basis of race, allocated medical supplies, evaluated different resource allocation strategies, and completed a measure of status awareness based on race. With age, children were increasingly aware of wealth status disparities between African-Americans and European-Americans, and judged a medical resource inequality between groups more negatively. Further, with age, children rectified the resource inequality over perpetuating it, but only when African-American children were disadvantaged. With age, children also referenced rights when reasoning about their judgments concerning the disadvantaged African-American group. When European-American children were disadvantaged, children did not systematically allocate more resources to one group over another. The results are discussed in terms of social inequalities, disadvantaged status, moral judgments, and intergroup attitudes. PMID:27455190
Aggregate supply and demand modeling using GIS methods for the front range urban corridor, Colorado
NASA Astrophysics Data System (ADS)
Karakas, Ahmet; Turner, Keith
2004-07-01
The combined use of allocation modeling and geographical information system (GIS) technologies for providing quantitative assessments of aggregate supply and demand is evaluated using representative data for the Front Range Urban Corridor (FRUC) in Colorado. The FRUC extends from the Colorado-Wyoming border to south of Colorado Springs, and includes Denver and the major urban growth regions of Colorado. In this area, aggregate demand is high and is increasing in response to population growth. Neighborhood opposition to the establishment of new pits and quarries and the depletion of many deposits are limiting aggregate supplies. Many sources are already covered by urban development or eliminated from production by zoning. Transport of aggregate by rail from distant resources may be required in the future. Two allocation-modeling procedures are tested in this study. Network analysis procedures provided within the ARC/INFO software, are unsatisfactory. Further aggregate allocation modeling used a model specifically designed for this task; a modified version of an existing Colorado School of Mines allocation model allows for more realistic market analyses. This study evaluated four scenarios. The entire region was evaluated with a scenario reflecting the current market and by a second scenario in which some existing suppliers were closed down and new potential suppliers were activated. The conditions within the Denver metropolitan area were studied before and after the introduction of three possible rail-to-truck aggregate distribution centers. GIS techniques are helpful in developing the required database to describe the Front Range Urban Corridor aggregate market conditions. GIS methods allow the digital representation of the regional road network, and the development of a distance matrix relating all suppliers and purchasers.
Mamut, Jannathan; Xiong, Ying-Ze; Tan, Dun-Yan; Huang, Shuang-Quan
2017-03-01
It has been hypothesized that two flower types permit flexible allocation of resources to female and male functions, yet empirical evidence for the sex-allocation hypothesis remains scarce in gynomonoecious species. To characterize resource allocation to pistillate and perfect flowers and allocation of perfect flowers between gynomonoecious and hermaphroditic individuals, we examined the flexibility and whether female-biased allocation increases with plant size in the hermaphroditic-gynomonoecious herb Eremurus anisopterus . Frequency of gynomonoecious individuals, flower production, and plant size were investigated in different populations. Floral allocation was compared among the three flower types of E. anisopterus . Frequency of gynomonoecious plants varied from 2-17% in nine populations. Only larger plants produced female flowers at the bottom of racemes. Both female and perfect flower production tended to increase proportionately with plant size in gynomonoecious individuals. Female flowers did not produce less biomass than perfect flowers from hermaphroditic or gynomonoecious plants. However, both female and perfect flowers from gynomonoecious individuals had lighter stamen mass, but larger pistil mass, than perfect flowers from hermaphrodites. Although the prediction of an increase in female flower number with plant size was not observed in E. anisopterus , the flexibility of sex allocation in gynomonoecious species was confirmed in that gynomonoecious individuals had a female-biased floral allocation compared to hermaphroditic individuals. Such comparisons of gynomonoecious to hermaphroditic individuals permit us to unveil a sexual adjustment strategy: flexibility of sexual investments within plants. © 2017 Botanical Society of America.
The Health Resources Allocation Model (HRAM) for the 21st century.
Maire, Nicolas; Hegnauer, Michael; Nguyen, Dana; Godelmann, Lucas; Hoffmann, Axel; de Savigny, Don; Tanner, Marcel
2012-05-01
The Health Resources Allocation Model (HRAM) is an eLearning tool for health cadres and scientists introducing basic concepts of sub-national, rational district-based health planning and systems thinking under resources constraint. HRAM allows the evaluation of resource allocation strategies in relation to key outcome measures such as coverage, equity of services achieved and number of deaths and disability-adjusted life years (DALYs) prevented. In addition, the model takes into account geographical and demographic characteristics and populations' health seeking behaviour. It can be adapted to different socio-ecological and health system settings.
From Districts to Schools: The Distribution of Resources across Schools in Big City School Districts
ERIC Educational Resources Information Center
Rubenstein, Ross; Schwartz, Amy Ellen; Stiefel, Leanna; Amor, Hella Bel Hadj
2007-01-01
While the distribution of resources across school districts is well studied, relatively little attention has been paid to how resources are allocated to individual schools inside those districts. This paper explores the determinants of resource allocation across schools in large districts based on factors that reflect differential school costs or…
Tailoring Software for Multiple Processor Systems
1982-10-01
resource management decisions . Despite the lack of programming support, the use of multiple processor systems has grown sub- -stantially. Software has...making resource management decisions . Specifically, program- 1 mers need not allocate specific hardware resources to individual program components...Instead, such allocation decisions are automatically made based on high-level resource directives stated by ap- plication programmers, where each directive
Accurate Energy Transaction Allocation using Path Integration and Interpolation
NASA Astrophysics Data System (ADS)
Bhide, Mandar Mohan
This thesis investigates many of the popular cost allocation methods which are based on actual usage of the transmission network. The Energy Transaction Allocation (ETA) method originally proposed by A.Fradi, S.Brigonne and B.Wollenberg which gives unique advantage of accurately allocating the transmission network usage is discussed subsequently. Modified calculation of ETA based on simple interpolation technique is then proposed. The proposed methodology not only increase the accuracy of calculation but also decreases number of calculations to less than half of the number of calculations required in original ETAs.
On the Role of Hyper-arid Regions within the Virtual Water Trade Network
NASA Astrophysics Data System (ADS)
Aggrey, James; Alshamsi, Aamena; Molini, Annalisa
2016-04-01
Climate change, economic development, and population growth are bound to increasingly impact global water resources, posing a significant threat to the sustainable development of arid regions, where water consumption highly exceeds the natural carrying capacity, population growth rate is high, and climate variability is going to impact both water consumption and availability. Virtual Water Trade (VWT) - i.e. the international trade network of water-intensive products - has been proposed as a possible solution to optimize the allocation of water resources on the global scale. By increasing food availability and lowering food prices it may in fact help the rapid development of water-scarce regions. The structure of the VWT network has been analyzed by a number of authors both in connection with trade policies, socioeconomic constrains and agricultural efficiency. However a systematic analysis of the structure and the dynamics of the VWT network conditional to aridity, climatic forcing and energy availability, is still missing. Our goal is hence to analyze the role of arid and hyper-arid regions within the VWN under diverse climatic, demographic, and energy constraints with an aim to contribute to the ongoing Energy-Water-Food nexus discussion. In particular, we focus on the hyper-arid lands of the Arabian Peninsula, the role they play in the global network and the assessment of their specific criticalities, as reflected in the VWN resilience.
A new mutually reinforcing network node and link ranking algorithm
Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.
2015-01-01
This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity. PMID:26492958
Zhu, Min; Chen, Ruxue; Zhong, Shaobo; Qian, Yangming; Huang, Quanyi
2017-02-01
This research aims to associate the allocation of medical resources with the function of the modular organization and the possible needs for humanitarian assistance missions. The overseas humanitarian medical assistance mission, which was sent after a disaster on the hospital ship Peace Ark, part of China's People's Liberation Army (PLA) Navy, was considered as study model. The cases used for clustering and matching sample formation were randomly selected from the existing information related to Peace Ark's mission. Categories of the reusable resources clustered by this research met the requirement of the actual consumption almost completely (more than 95%) and the categories of non-reusable resources met the requirement by more than 80%. In the mission's original resource preparing plan, more than 30% of the non-reusable resource categories remained unused during the mission. In the original resource preparing plan, some key non-reusable resources inventories were completely exhausted at the end of the mission, while 5% to 30% of non-reusable resources remained in the resource allocation plan generated by this research at the end of the mission. The medical resource allocation plan generated here can enhance the supporting level for the humanitarian assistance mission. This research could lay the foundation for an assistant decision-making system for humanitarian assistance mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, Todd L; Hamada, Michael S
2008-01-01
Good estimates of the reliability of a system make use of test data and expert knowledge at all available levels. Furthermore, by integrating all these information sources, one can determine how best to allocate scarce testing resources to reduce uncertainty. Both of these goals are facilitated by modern Bayesian computational methods. We apply these tools to examples that were previously solvable only through the use of ingenious approximations, and use genetic algorithms to guide resource allocation.
Improving the Success of Strategic Management Using Big Data.
Desai, Sapan S; Wilkerson, James; Roberts, Todd
2016-01-01
Strategic management involves determining organizational goals, implementing a strategic plan, and properly allocating resources. Poor access to pertinent and timely data misidentifies clinical goals, prevents effective resource allocation, and generates waste from inaccurate forecasting. Loss of operational efficiency diminishes the value stream, adversely impacts the quality of patient care, and hampers effective strategic management. We have pioneered an approach using big data to create competitive advantage by identifying trends in clinical practice, accurately anticipating future needs, and strategically allocating resources for maximum impact.
ERIC Educational Resources Information Center
Wei, Bao
2012-01-01
This article attempts to analyze the changing circumstances of the regional disparities in the allocation of China's higher educational resources before and after the increase in college enrollments, as well as the mechanisms that have affected these circumstances. The conclusions are that regional disparities in the allocation of China's funding…
Resources for health promotion: rhetoric, research and reality.
Minke, Sharlene Wolbeck; Raine, Kim D; Plotnikoff, Ronald C; Anderson, Donna; Khalema, Ernest; Smith, Cynthia
2007-01-01
Canadian political discourse supports the importance of health promotion and advocates the allocation of health resources to health promotion. Furthermore, the current literature frequently identifies financial and human resources as important elements of organizational capacity for health promotion. In the Alberta Heart Health Project (AHHP), we sought to learn if the allocation of health resources in a regionalized health system was congruent with the espoused support for health promotion in Alberta, Canada. The AHHP used a mixed method approach in a time series design. Participants were drawn from multiple organizational levels (i.e., service providers, managers, board members) across all Regional Health Authorities (RHAs). Data were triangulated through multiple collection methods, primarily an organizational capacity survey, analysis of organizational documents, focus groups, and personal interviews. Analysis techniques were drawn from quantitative (i.e., frequency distributions, ANOVAs) and qualitative (i.e., content and thematic analysis) approaches. In most cases, small amounts (<5%) of financial resources were allocated to health promotion in RHAs' core budgets. Respondents reported seeking multiple sources of public health financing to support their health promotion initiatives. Human resources for health promotion were characterized by fragmented responsibilities and short-term work. Furthermore, valuable human resources were consumed in ongoing searches for funding that typically covered short time periods. Resource allocations to health promotion in Alberta RHAs are inconsistent with the current emphasis on health promotion as an organizational priority. Inadequate and unstable funding erodes the RHAs' capacity for health promotion. Sustainable health promotion calls for the assured allocation of adequate, sustainable financial resources.
Koshino, Hideya; Minamoto, Takehiro; Ikeda, Takashi; Osaka, Mariko; Otsuka, Yuki; Osaka, Naoyuki
2011-01-01
The anterior prefrontal cortex (PFC) exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN), which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC) is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition) or to ignore them (No face memory condition), then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.
Koshino, Hideya; Minamoto, Takehiro; Ikeda, Takashi; Osaka, Mariko; Otsuka, Yuki; Osaka, Naoyuki
2011-01-01
Background The anterior prefrontal cortex (PFC) exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN), which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC) is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. Methodology/Principal Findings Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition) or to ignore them (No face memory condition), then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. Conclusions/Significance The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing. PMID:21829668
The Federated Satellite Systems paradigm: Concept and business case evaluation
NASA Astrophysics Data System (ADS)
Golkar, Alessandro; Lluch i Cruz, Ignasi
2015-06-01
This paper defines the paradigm of Federated Satellite Systems (FSS) as a novel distributed space systems architecture. FSS are networks of spacecraft trading previously inefficiently allocated and unused resources such as downlink bandwidth, storage, processing power, and instrument time. FSS holds the promise to enhance cost-effectiveness, performance and reliability of existing and future space missions, by networking different missions and effectively creating a pool of resources to exchange between participants in the federation. This paper introduces and describes the FSS paradigm, and develops an approach integrating mission analysis and economic assessments to evaluate the feasibility of the business case of FSS. The approach is demonstrated on a case study on opportunities enabled by FSS to enhance space exploration programs, with particular reference to the International Space Station. The application of the proposed methodology shows that the FSS concept is potentially able to create large commercial markets of in-space resources, by providing the technical platform to offer the opportunity for spacecraft to share or make use of unused resources within their orbital neighborhood. It is shown how the concept is beneficial to satellite operators, space agencies, and other stakeholders of the space industry to more flexibly interoperate space systems as a portfolio of assets, allowing unprecedented collaboration among heterogeneous types of missions.
The SIMRAND methodology - Simulation of Research and Development Projects
NASA Technical Reports Server (NTRS)
Miles, R. F., Jr.
1984-01-01
In research and development projects, a commonly occurring management decision is concerned with the optimum allocation of resources to achieve the project goals. Because of resource constraints, management has to make a decision regarding the set of proposed systems or tasks which should be undertaken. SIMRAND (Simulation of Research and Development Projects) is a methodology which was developed for aiding management in this decision. Attention is given to a problem description, aspects of model formulation, the reduction phase of the model solution, the simulation phase, and the evaluation phase. The implementation of the considered approach is illustrated with the aid of an example which involves a simplified network of the type used to determine the price of silicon solar cells.
RACOON: a multiuser QoS design for mobile wireless body area networks.
Cheng, Shihheng; Huang, Chingyao; Tu, Chun Chen
2011-10-01
In this study, Random Contention-based Resource Allocation (RACOON) medium access control (MAC) protocol is proposed to support the quality of service (QoS) for multi-user mobile wireless body area networks (WBANs). Different from existing QoS designs that focus on a single WBAN, a multiuser WBAN QoS should further consider both inter-WBAN interference and inter-WBAN priorities. Similar problems have been studied in both overlapped wireless local area networks (WLANs) and Bluetooth piconets that need QoS supports. However, these solutions are designed for non-medical transmissions that do not consider any priority scheme for medical applications. Most importantly, these studies focus on only static or low mobility networks. Network mobility of WBANs will introduce unnecessary inter-network collisions and energy waste, which are not considered by these solutions. The proposed multiuser-QoS protocol, RACOON, simultaneously satisfies the inter WBAN QoS requirements and overcomes the performance degradation caused by WBAN mobility. Simulation results verify that RACOON provides better latency and energy control, as compared with WBAN QoS protocols without considering the inter-WBAN requirements.
A Greedy Double Auction Mechanism for Grid Resource Allocation
NASA Astrophysics Data System (ADS)
Ding, Ding; Luo, Siwei; Gao, Zhan
To improve the resource utilization and satisfy more users, a Greedy Double Auction Mechanism(GDAM) is proposed to allocate resources in grid environments. GDAM trades resources at discriminatory price instead of uniform price, reflecting the variance in requirements for profits and quantities. Moreover, GDAM applies different auction rules to different cases, over-demand, over-supply and equilibrium of demand and supply. As a new mechanism for grid resource allocation, GDAM is proved to be strategy-proof, economically efficient, weakly budget-balanced and individual rational. Simulation results also confirm that GDAM outperforms the traditional one on both the total trade amount and the user satisfaction percentage, specially as more users are involved in the auction market.
Optimal resource allocation for novelty detection in a human auditory memory.
Sinkkonen, J; Kaski, S; Huotilainen, M; Ilmoniemi, R J; Näätänen, R; Kaila, K
1996-11-04
A theory of resource allocation for neuronal low-level filtering is presented, based on an analysis of optimal resource allocation in simple environments. A quantitative prediction of the theory was verified in measurements of the magnetic mismatch response (MMR), an auditory event-related magnetic response of the human brain. The amplitude of the MMR was found to be directly proportional to the information conveyed by the stimulus. To the extent that the amplitude of the MMR can be used to measure resource usage by the auditory cortex, this finding supports our theory that, at least for early auditory processing, energy resources are used in proportion to the information content of incoming stimulus flow.
Benedikt, Clemens; Kelly, Sherrie L; Wilson, David; Wilson, David P
2016-12-01
Estimated global new HIV infections among people who inject drugs (PWID) remained stable over the 2010-2015 period and the target of a 50% reduction over this period was missed. To achieve the 2020 UNAIDS target of reducing adult HIV infections by 75% compared to 2010, accelerated action in scaling up HIV programs for PWID is required. In a context of diminishing external support to HIV programs in countries where most HIV-affected PWID live, it is essential that available resources are allocated and used as efficiently as possible. Allocative and implementation efficiency analysis methods were applied. Optima, a dynamic, population-based HIV model with an integrated program and economic analysis framework was applied in eight countries in Eastern Europe and Central Asia (EECA). Mathematical analyses established optimized allocations of resources. An implementation efficiency analysis focused on examining technical efficiency, unit costs, and heterogeneity of service delivery models and practices. Findings from the latest reported data revealed that countries allocated between 4% (Bulgaria) and 40% (Georgia) of total HIV resources to programs targeting PWID - with a median of 13% for the eight countries. When distributing the same amount of HIV funding optimally, between 9% and 25% of available HIV resources would be allocated to PWID programs with a median allocation of 16% and, in addition, antiretroviral therapy would be scaled up including for PWID. As a result of optimized allocations, new HIV infections are projected to decline by 3-28% and AIDS-related deaths by 7-53% in the eight countries. Implementation efficiencies identified involve potential reductions in drug procurement costs, service delivery models, and practices and scale of service delivery influencing cost and outcome. A high level of implementation efficiency was associated with high volumes of PWID clients accessing a drug harm reduction facility. A combination of optimized allocation of resources, improved implementation efficiency and increased investment of non-HIV resources is required to enhance coverage and improve outcomes of programs for PWID. Increasing efficiency of HIV programs for PWID is a key step towards avoiding implicit rationing and ensuring transparent allocation of resources where and how they would have the largest impact on the health of PWID, and thereby ensuring that funding spent on PWID becomes a global best buy in public health. Copyright © 2016. Published by Elsevier B.V.
Setting Research Priorities for Kidney Cancer.
Jones, Jennifer M; Bhatt, Jaimin; Avery, Jonathan; Laupacis, Andreas; Cowan, Katherine; Basappa, Naveen S; Basiuk, Joan; Canil, Christina; Al-Asaaed, Sohaib; Heng, Daniel Y C; Wood, Lori; Stacey, Dawn; Kollmannsberger, Christian; Jewett, Michael A S
2017-12-01
Defining disease-specific research priorities in cancer can facilitate better allocation of limited resources. Involving patients and caregivers as well as expert clinicians in this process is of value. We undertook this approach for kidney cancer as an example. The Kidney Cancer Research Network of Canada sponsored a collaborative consensus-based priority-setting partnership that identified ten research priorities in the management of kidney cancer. These are discussed in the context of current initiatives and gaps in knowledge. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Money, Time and Learning. Final Report.
ERIC Educational Resources Information Center
Thomas, J. Alan; Kemmerer, Frances
Chapter 1 of this study discusses sources of educational inequality in terms of criteria for resource allocation, definitions of educational equity, and equity and efficiency in the classroom. Following the second chapter's review of literature on how resources affect learning, chapter 3 offers a theory of resource allocation education. The fourth…
Children's Allocation of Resources in Social Dominance Situations
ERIC Educational Resources Information Center
Charafeddine, Rawan; Mercier, Hugo; Clément, Fabrice; Kaufmann, Laurence; Reboul, Anne; Van der Henst, Jean-Baptiste
2016-01-01
Two experiments with preschoolers (36 to 78 months) and 8-year-old children (Experiment 1, N = 173; Experiment 2, N = 132) investigated the development of children's resource distribution in dominance contexts. On the basis of the distributive justice literature, 2 opposite predictions were tested. Children could match resource allocation with the…
Multi-Agent Coordination Techniques for Naval Tactical Combat Resources Management
2008-07-01
resource coordination and cooperation problems. The combat resource allocation planning problem is treated in the companion report [2]. 2.3 Resource...report focuses on the resource coordination problem, while allocation algorithms are discussed in the companion report [2]. First, coordination in...classification of each should be indicated as with the title.) Canada’s Leader in Defence and National Security Science and Technology Chef de file au Canada en
Chang, Yu-Kai; Pesce, Caterina; Chiang, Yi-Te; Kuo, Cheng-Yuh; Fong, Dong-Yang
2015-01-01
The purpose of this study was to investigate the after-effects of an acute bout of moderate intensity aerobic cycling exercise on neuroelectric and behavioral indices of efficiency of three attentional networks: alerting, orienting, and executive (conflict) control. Thirty young, highly fit amateur basketball players performed a multifunctional attentional reaction time task, the attention network test (ANT), with a two-group randomized experimental design after an acute bout of moderate intensity spinning wheel exercise or without antecedent exercise. The ANT combined warning signals prior to targets, spatial cueing of potential target locations and target stimuli surrounded by congruent or incongruent flankers, which were provided to assess three attentional networks. Event-related brain potentials and task performance were measured during the ANT. Exercise resulted in a larger P3 amplitude in the alerting and executive control subtasks across frontal, central and parietal midline sites that was paralleled by an enhanced reaction speed only on trials with incongruent flankers of the executive control network. The P3 latency and response accuracy were not affected by exercise. These findings suggest that after spinning, more resources are allocated to task-relevant stimuli in tasks that rely on the alerting and executive control networks. However, the improvement in performance was observed in only the executively challenging conflict condition, suggesting that whether the brain resources that are rendered available immediately after acute exercise translate into better attention performance depends on the cognitive task complexity. PMID:25914634
Technologies for network-centric C4ISR
NASA Astrophysics Data System (ADS)
Dunkelberger, Kirk A.
2003-07-01
Three technologies form the heart of any network-centric command, control, communication, intelligence, surveillance, and reconnaissance (C4ISR) system: distributed processing, reconfigurable networking, and distributed resource management. Distributed processing, enabled by automated federation, mobile code, intelligent process allocation, dynamic multiprocessing groups, check pointing, and other capabilities creates a virtual peer-to-peer computing network across the force. Reconfigurable networking, consisting of content-based information exchange, dynamic ad-hoc routing, information operations (perception management) and other component technologies forms the interconnect fabric for fault tolerant inter processor and node communication. Distributed resource management, which provides the means for distributed cooperative sensor management, foe sensor utilization, opportunistic collection, symbiotic inductive/deductive reasoning and other applications provides the canonical algorithms for network-centric enterprises and warfare. This paper introduces these three core technologies and briefly discusses a sampling of their component technologies and their individual contributions to network-centric enterprises and warfare. Based on the implied requirements, two new algorithms are defined and characterized which provide critical building blocks for network centricity: distributed asynchronous auctioning and predictive dynamic source routing. The first provides a reliable, efficient, effective approach for near-optimal assignment problems; the algorithm has been demonstrated to be a viable implementation for ad-hoc command and control, object/sensor pairing, and weapon/target assignment. The second is founded on traditional dynamic source routing (from mobile ad-hoc networking), but leverages the results of ad-hoc command and control (from the contributed auctioning algorithm) into significant increases in connection reliability through forward prediction. Emphasis is placed on the advantages gained from the closed-loop interaction of the multiple technologies in the network-centric application environment.
A Neural Network Model to Learn Multiple Tasks under Dynamic Environments
NASA Astrophysics Data System (ADS)
Tsumori, Kenji; Ozawa, Seiichi
When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.
van Dijk, Eric; De Cremer, David
2006-10-01
Previous research on the allocation of scarce resources suggests that people who are assigned to higher positions (e.g., leaders) are more likely to make self-benefiting allocations than people who are assigned to lower positions (e.g., followers). In this article, the authors investigated the proposition that these findings would be moderated by people's social value orientations. In two experimental studies, the authors assigned participants either to the role of leader or follower and assessed the participants' social value orientations. In agreement with predictions, the findings show that position effects are moderated by social value orientation. Social value orientations only affected the allocation behavior of the leaders: Proself leaders allocated more resources to themselves than did prosocial leaders. Additional analyses indicate that these effects are mediated by feelings of entitlement.
[Mechanisms for allocating financial resources after decentralization in the state of Jalisco].
Pérez-Núñez, Ricardo; Arredondo-López, Armando; Pelcastre, Blanca
2006-01-01
To analyze, from the decision maker's perspective, the financial resource allocation process of the health services of the state of Jalisco (SSJ, per its abbreviation in spanish), within the context of decentralization. Through a qualitative approximation using semi-structured individual interviews of key personnel in managerial positions as the method for compiling information, the experience of the SSJ in financial resource allocation was documented. From September to November 2003, the perception of managers and administrators regarding their level of autonomy in decision-making was explored as well as the process they follow for the allocation of financial resources, in order to identify the criteria they use and their justifications. From the point of view of decision-makers, autonomy of the SSJ has increased considerably since decentralization was implemented, although the degree of decision-making freedom remains limited due mainly to high adminstrative costs associated with salaries. In this sense, the implications attributable to labor situations that are still centralized are evident. Some innovative systems for financial resource allocation have been established in the SSJ for the sanitary regions and hospitals based upon administrative-managerial and productivity incentives. Adjustments were also made for degree of marginalization and population lag, under the equity criterion. General work conditions and decision-making autonomy of the sanitary regions constitute outstanding aspects pending decentralization. Although decentralization has granted more autonomy to the SSJ, the level of decision-making freedom for allocating financial resources has been held within the highest hierarchical levels.
Micheletti, Pierre; Chierici, Piero; Durang, Xavier; Salvador, Nathalie; Lopez, Nathalie
2011-01-01
Because of its sector-based organization and extra-hospital care, public psychiatry has a unique position in healthcare. This paper describes the tools and procedures used to analyze and allocate the resources of the "Centre Hospitalier Alpes-Isère", a hospital serving a catchment population of 530,000 adults. A consensus-based approach was used to validate the selected indicators and included the participation of a geographer. Five levels of resource allocation were identified and classified using a decision tree. At each level, the relevant authorities and criteria were identified as key components of the decision-making process. This paper describes the first three levels of care provision. Focusing on adult care, a comparative assessment of the resources allocated to general psychiatric care and specialist care was conducted, in addition to a comparative assessment of the resources allocated to each of the hospital's four local centers. Geographical accessibility to extramural facilities was also assessed. A study of the characteristics of each general psychiatry clinic revealed significant disparities. The paper highlights several issues: the poor knowledge of psychiatric epidemiological data relating to the population within the catchment area, the difficulty of assessing non-consolidated data or indicators from multiple sources, and the limited and partial nature of geographical data for characterizing and evaluating health care in the hospital's peripheral clinics. Several studies are currently underway to assess the operational effectiveness of the tools and procedures used to analyze and allocate resources.
Cost of equity in homeland security resource allocation in the face of a strategic attacker.
Shan, Xiaojun; Zhuang, Jun
2013-06-01
Hundreds of billions of dollars have been spent in homeland security since September 11, 2001. Many mathematical models have been developed to study strategic interactions between governments (defenders) and terrorists (attackers). However, few studies have considered the tradeoff between equity and efficiency in homeland security resource allocation. In this article, we fill this gap by developing a novel model in which a government allocates defensive resources among multiple potential targets, while reserving a portion of defensive resources (represented by the equity coefficient) for equal distribution (according to geographical areas, population, density, etc.). Such a way to model equity is one of many alternatives, but was directly inspired by homeland security resource allocation practice. The government is faced with a strategic terrorist (adaptive adversary) whose attack probabilities are endogenously determined in the model. We study the effect of the equity coefficient on the optimal defensive resource allocations and the corresponding expected loss. We find that the cost of equity (in terms of increased expected loss) increases convexly in the equity coefficient. Furthermore, such cost is lower when: (a) government uses per-valuation equity; (b) the cost-effectiveness coefficient of defense increases; and (c) the total defense budget increases. Our model, results, and insights could be used to assist policy making. © 2012 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Lu, Shasha; Guan, Xingliang; Zhou, Min; Wang, Yang
2014-05-01
A large number of mathematical models have been developed to support land resource allocation decisions and land management needs; however, few of them can address various uncertainties that exist in relation to many factors presented in such decisions (e.g., land resource availabilities, land demands, land-use patterns, and social demands, as well as ecological requirements). In this study, a multi-objective interval-stochastic land resource allocation model (MOISLAM) was developed for tackling uncertainty that presents as discrete intervals and/or probability distributions. The developed model improves upon the existing multi-objective programming and inexact optimization approaches. The MOISLAM not only considers economic factors, but also involves food security and eco-environmental constraints; it can, therefore, effectively reflect various interrelations among different aspects in a land resource management system. Moreover, the model can also help examine the reliability of satisfying (or the risk of violating) system constraints under uncertainty. In this study, the MOISLAM was applied to a real case of long-term urban land resource allocation planning in Suzhou, in the Yangtze River Delta of China. Interval solutions associated with different risk levels of constraint violation were obtained. The results are considered useful for generating a range of decision alternatives under various system conditions, and thus helping decision makers to identify a desirable land resource allocation strategy under uncertainty.
Socially Aware Heterogeneous Wireless Networks
Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos
2015-01-01
The development of smart cities has been the epicentre of many researchers’ efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users’ locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402
Adjacency Matrix-Based Transmit Power Allocation Strategies in Wireless Sensor Networks
Consolini, Luca; Medagliani, Paolo; Ferrari, Gianluigi
2009-01-01
In this paper, we present an innovative transmit power control scheme, based on optimization theory, for wireless sensor networks (WSNs) which use carrier sense multiple access (CSMA) with collision avoidance (CA) as medium access control (MAC) protocol. In particular, we focus on schemes where several remote nodes send data directly to a common access point (AP). Under the assumption of finite overall network transmit power and low traffic load, we derive the optimal transmit power allocation strategy that minimizes the packet error rate (PER) at the AP. This approach is based on modeling the CSMA/CA MAC protocol through a finite state machine and takes into account the network adjacency matrix, depending on the transmit power distribution and determining the network connectivity. It will be then shown that the transmit power allocation problem reduces to a convex constrained minimization problem. Our results show that, under the assumption of low traffic load, the power allocation strategy, which guarantees minimal delay, requires the maximization of network connectivity, which can be equivalently interpreted as the maximization of the number of non-zero entries of the adjacency matrix. The obtained theoretical results are confirmed by simulations for unslotted Zigbee WSNs. PMID:22346705
Lahaye, Stefanie E P; Eens, Marcel; Iserbyt, Arne; Groothuis, Ton G G; de Vries, Bonnie; Müller, Wendt; Pinxten, Rianne
2015-05-01
It is well established that in many avian species, prenatal maternal resource allocation varies both between and within clutches and may affect offspring fitness. Differential allocation of maternal resources, in terms of egg weight and yolk composition, may therefore allow the female to adjust brood reduction and to fine-tune reproductive investment in accordance with the expected fitness returns. The adaptive value of such maternal resource allocation is thought to be context-dependent as well as species-specific. We investigated the effects of female preference for her mate on the allocation of prenatal maternal resources in the budgerigar, Melopsittacus undulatus, a monogamous species of parrot that shows an extreme hatching asynchrony. We assessed mate preferences in a two-way preference test and allowed females two breeding rounds: one with the preferred and one with the non-preferred partner. We found no effect of preference on either latency to lay or clutch size, but females mated with the preferred partner laid eggs that contained significantly more yolk. Their eggs also contained significantly more androstenedione but not testosterone. Our results suggest that in this species, female preference may influence maternal resource allocation, and that the functional roles of each androgen in the yolk should be considered separately. In addition, we found a significant effect of laying order on egg and yolk weight as well as on yolk testosterone and androstenedione levels. These measures, however, did not change linearly with the laying order and render it unlikely that female budgerigars compensate for the extreme hatching asynchrony by adjusting within-clutch allocation of prenatal maternal resources. Copyright © 2015 Elsevier Inc. All rights reserved.
A Novel Deployment Scheme Based on Three-Dimensional Coverage Model for Wireless Sensor Networks
Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan
2014-01-01
Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747
Waste management: how reducing partiality can promote efficient resource allocation.
Choshen-Hillel, Shoham; Shaw, Alex; Caruso, Eugene M
2015-08-01
Two central principles that guide resource-allocation decisions are equity (providing equal pay for equal work) and efficiency (not wasting resources). When these two principles conflict with one another, people will often waste resources to avoid inequity. We suggest that people wish to avoid inequity not because they find it inherently unfair, but because they want to avoid the appearance of partiality associated with it. We explore one way to reduce waste by reducing the perceived partiality of inequitable allocations. Specifically, we hypothesize that people will be more likely to favor an efficient (albeit inequitable) allocation if it puts them in a disadvantaged position than if it puts others in a disadvantaged position. To test this hypothesis, we asked participants to choose between giving some extra resource to one person (thereby creating inequity between this person and equally deserving others) and not giving the resource to anyone (thereby wasting the resource). Six studies, using realistic scenarios and behavioral paradigms, provide robust evidence for a self-disadvantaging effect: Allocators were consistently more likely to create inequity to avoid wasting resources when the resulting inequity would put them at a relative disadvantage than when it would put others at a relative disadvantage. We further find that this self-disadvantaging effect is a direct result of people's concern about appearing partial. Our findings suggest the importance of impartiality even in distributive justice, thereby bridging a gap between the distributive and procedural justice literatures. (c) 2015 APA, all rights reserved.
Allocation of Health Resources According To the Type and Size of Iranian Governmental Hospitals
Hassani, SA; Abolhallaje, M; Inanlo, S; Hosseini, H; Pourmohammadi, K; Bastani, P; Ramezanian, M; Marnani, A Barati
2013-01-01
Background: Due to consuming about 50%–80% of health resources, hospitals are the greatest and costly operational units in Iranian Health system. so allocation of resources specially human and space resources as the most expensive ones is really important for further controlling of costs, analysis of costs and making suitable policies for increasing the profitability and allocation of resources and improvement of quality. Method: This paper intends to describe and analyze any allocation of resources in 530 university hospitals in Iran. The final goal of this research is to provide a data bank according which there is a basis for more scientific budget allocation of state’s hospitals from the size and type of application points of view. Results: The relevant index of person to bed was 2.04 for human resources. All hospitals more than 300 beds are located in benefiting areas from which 17 cases are educational and 2 cases are therapeutic. This is necessary to mention that the rate of management group forces to total personnel at deprived areas is about 2.5% more than benefiting areas. Conclusion: Because 60–80% of hospital costs are applied for human forces, all managers of hospitals are obliged to revise their policies in attraction and employment of human force in order to benefit from such a valuable resource and prevent from expensive costs. So any employment of personnel should be based upon real needs of hospital. PMID:23865036
Rocke, Daniel J; Beumer, Halton W; Thomas, Steven; Lee, Walter T
2014-05-01
To assess how physician perspective (perspective of patient vs perspective of physician) affects Medicare resource allocation for patients with advanced cancer and compare physician allocations with actual cancer patient and caregiver allocations. Cross-sectional assessment. National assessment. Otolaryngologists. Physicians used a validated tool to create a Medicare plan for patients with advanced cancer. Participants took the perspective of an advanced cancer patient and made resource allocations between 15 benefit categories (assessment 2, November/December 2012). Results were compared with data from a prior assessment made from a physician's perspective (assessment 1, February/March 2012) and with data from a separate study with patients with cancer and caregivers. In total, 767 physicians completed assessment 1 and 237 completed assessment 2. Results were compared with 146 cancer patient and 114 caregiver assessments. Assessment 1 physician responses differed significantly from patients/caregivers in 14 categories (P < .05), while assessment 2 differed in 11. When comparing physician data, assessment 2 allocations differed significantly from assessment 1 in 7 categories. When these 7 categories were compared with patient/caregiver data, assessment 2 allocations in emotional care, drug coverage, and nursing facility categories were not significantly different. Assessment 1 allocations in cosmetic care, dental, home care, and primary care categories were more similar to patient/caregiver preferences, although all but home care were still significantly different. Otolaryngology-head and neck surgery physician perspectives on end-of-life care differ significantly from cancer patient/caregiver perspectives, even when physicians take a patient's perspective when allocating resources. This demonstrates the challenges inherent in end-of-life discussions.
A system dynamics model of a large R&D program
NASA Astrophysics Data System (ADS)
Ahn, Namsung
Organizations with large R&D activities must deal with a hierarchy of decision regarding resource allocation. At the highest level of allocation, the decision is related to the total allocation to R&D as some portion of revenue. The middle level of allocation deals with the allocation among phases of the R&D process. The lowest level of decisions relates to the resource allocation to specific projects within a specific phase. This study focuses on developing an R&D model to deal with the middle level of allocation, i.e., the allocation among phases of research such as basic research, development, and demonstration. The methodology used to develop the R&D model is System Dynamics. Our modeling concept is innovative in representing each phase of R&D as consisting of two parts: projects under way, and an inventory of successful but not-yet- exploited projects. In a simple world, this concept can yield an exact analytical solution for allocation of resources among phases. But in a real world, the concept should be improved by adding more complex structures with nonlinear behaviors. Two particular nonlinear feedbacks are incorporated into the R&D model. The probability of success for any specific project is assumed partly dependent upon resources allocated to the project. Further, the time required to reach a conclusion regarding the success or failure of a project is also assumed dependent upon the level of resources allocated. In addition, the number of successful projects partly depends on the inventory of potential ideas in the previous stage that can be exploited. This model can provide R&D management with insights into the effect of changing allocations to phases whether those changes are internally or externally driven. With this model, it is possible to study the effectiveness of management decisions in a continuous fashion. Managers can predict payoffs for a host of different policies. In addition, as new research results accumulate, a re- assessment of program goals can be implemented easily and allocations adjusted to enhance continuously the likelihood of success, and to optimize payoffs. Finally, this model can give managers a quantitative rationale for program evaluation and permit the quantitative assessment of various externally imposed changes. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Smith, Neale; Mitton, Craig; Bryan, Stirling; Davidson, Alan; Urquhart, Bonnie; Gibson, Jennifer L; Peacock, Stuart; Donaldson, Cam
2013-07-02
Resource allocation is a key challenge for healthcare decision makers. While several case studies of organizational practice exist, there have been few large-scale cross-organization comparisons. Between January and April 2011, we conducted an on-line survey of senior decision makers within regional health authorities (and closely equivalent organizations) across all Canadian provinces and territories. We received returns from 92 individual managers, from 60 out of 89 organizations in total. The survey inquired about structures, process features, and behaviours related to organization-wide resource allocation decisions. We focus here on three main aspects: type of process, perceived fairness, and overall rating. About one-half of respondents indicated that their organization used a formal process for resource allocation, while the others reported that political or historical factors were predominant. Seventy percent (70%) of respondents self-reported that their resource allocation process was fair and just over one-half assessed their process as 'good' or 'very good'. This paper explores these findings in greater detail and assesses them in context of the larger literature. Data from this large-scale cross-jurisdictional survey helps to illustrate common challenges and areas of positive performance among Canada's health system leadership teams.
The social relations of health care and household resource allocation in neoliberal Nicaragua.
Tesler, Laura E
2010-05-22
With the transition to neoliberalism, Nicaragua's once-critically acclaimed health care services have substantially diminished. Local level social formations have been under pressure to try to bridge gaps as the state's role in the provision of health care and other vital social services has decreased. This paper presents a case study of how global and national health policies reverberated in the social relations of an extended network of female kin in a rural community during late 2002 - 2003. The qualitative methods used in this ethnographic study included semi-structured interviews completed during bi-weekly visits to 51 households, background interviews with 20 lay and professional health practitioners working in the public and private sectors, and participant-observation conducted in the region's government health centers. Interviews and observational field notes were manually coded and iteratively reviewed to identify and conceptually organize emergent themes. Three households of extended kin were selected from the larger sample to examine as a case study. The ongoing erosion of vital services formerly provided by the public sector generated considerable frustration and tension among households, networks of extended kin, and neighbors. As resource allocations for health care seeking and other needs were negotiated within and across households, longstanding ideals of reciprocal exchange persisted, but in conditions of poverty, expectations were often unfulfilled, exposing the tension between the need for social support, versus the increasingly oppositional positioning of social network members as sources of competition for limited resources. In compliance with neoliberal structural adjustment policies mandated by multilateral and bilateral agencies, government-provided health care services have been severely restricted in Nicaragua. As the national safety net for health care has been eroded, the viability of local level social formations and their ability to respond to struggles collectively has been put at risk as well. Bi-lateral and multilateral agencies need to take into account local needs and demands, and implement policies in a manner that respects national laws, and protects both the physical and social well-being of individuals.
The social relations of health care and household resource allocation in neoliberal Nicaragua
2010-01-01
Background With the transition to neoliberalism, Nicaragua's once-critically acclaimed health care services have substantially diminished. Local level social formations have been under pressure to try to bridge gaps as the state's role in the provision of health care and other vital social services has decreased. This paper presents a case study of how global and national health policies reverberated in the social relations of an extended network of female kin in a rural community during late 2002 - 2003. Methods The qualitative methods used in this ethnographic study included semi-structured interviews completed during bi-weekly visits to 51 households, background interviews with 20 lay and professional health practitioners working in the public and private sectors, and participant-observation conducted in the region's government health centers. Interviews and observational field notes were manually coded and iteratively reviewed to identify and conceptually organize emergent themes. Three households of extended kin were selected from the larger sample to examine as a case study. Results The ongoing erosion of vital services formerly provided by the public sector generated considerable frustration and tension among households, networks of extended kin, and neighbors. As resource allocations for health care seeking and other needs were negotiated within and across households, longstanding ideals of reciprocal exchange persisted, but in conditions of poverty, expectations were often unfulfilled, exposing the tension between the need for social support, versus the increasingly oppositional positioning of social network members as sources of competition for limited resources. Conclusions In compliance with neoliberal structural adjustment policies mandated by multilateral and bilateral agencies, government-provided health care services have been severely restricted in Nicaragua. As the national safety net for health care has been eroded, the viability of local level social formations and their ability to respond to struggles collectively has been put at risk as well. Bi-lateral and multilateral agencies need to take into account local needs and demands, and implement policies in a manner that respects national laws, and protects both the physical and social well-being of individuals. PMID:20492716
Averill, Colin
2014-10-01
Allocation trade-offs shape ecological and biogeochemical phenomena at local to global scale. Plant allocation strategies drive major changes in ecosystem carbon cycling. Microbial allocation to enzymes that decompose carbon vs. organic nutrients may similarly affect ecosystem carbon cycling. Current solutions to this allocation problem prioritise stoichiometric tradeoffs implemented in plant ecology. These solutions may not maximise microbial growth and fitness under all conditions, because organic nutrients are also a significant carbon resource for microbes. I created multiple allocation frameworks and simulated microbial growth using a microbial explicit biogeochemical model. I demonstrate that prioritising stoichiometric trade-offs does not optimise microbial allocation, while exploiting organic nutrients as carbon resources does. Analysis of continental-scale enzyme data supports the allocation patterns predicted by this framework, and modelling suggests large deviations in soil C loss based on which strategy is implemented. Therefore, understanding microbial allocation strategies will likely improve our understanding of carbon cycling and climate. © 2014 John Wiley & Sons Ltd/CNRS.
Optimal Resource Allocation in Library Systems
ERIC Educational Resources Information Center
Rouse, William B.
1975-01-01
Queueing theory is used to model processes as either waiting or balking processes. The optimal allocation of resources to these processes is defined as that which maximizes the expected value of the decision-maker's utility function. (Author)
NASA Astrophysics Data System (ADS)
Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki
2016-12-01
In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.
Sidze, Estelle M; Beekink, Erik; Maina, Beatrice W
2015-05-05
Universal access to reproductive health services entails strengthening health systems, but requires significant resource commitments as well as efficient and effective use of those resources. A number of international organizations and governments in developing countries are putting efforts into tracking the flow of health resources in order to inform resource mobilization and allocation, strategic planning, priority setting, advocacy and general policy making. The UNFPA/NIDI-led Resource Flows Project ("The UNFPA/NIDI RF Project") has conducted annual surveys since 1997 to monitor progress achieved by developing countries in implementing reproductive health financial targets. This commentary summarizes the Project experiences and challenges in gathering data on allocation of resources for reproductive health at the domestic level in sub-Saharan African countries. One key lesson learnt from the Project experience is the need for strengthening tracking mechanisms in sub-Saharan African countries and making information on reproductive health resources and expenditures available, in particular the private sector resources.
Collister, Barbara; Stein, Glenda; Katz, Deborah; DeBruyn, Joan; Andrusiw, Linda; Cloutier, Sheila
2012-01-01
Increasing costs and budget reductions combined with increasing demand from our growing, aging population support the need to ensure that the scarce resources allocated to home care clients match client needs. This article details how Integrated Home Care for the Calgary Zone of Alberta Health Services considered ethical and economic principles and used data from the Resident Assessment Instrument for Home Care (RAI-HC) and case mix indices from the Resource Utilization Groups Version III for Home Care (RUG-III/HC) to formulate service guidelines. These explicit service guidelines formalize and support individual resource allocation decisions made by case managers and provide a consistent and transparent method of allocating limited resources.
Knebel, Ann R.; Sharpe, Virginia A.; Danis, Marion; Toomey, Lauren M.; Knickerbocker, Deborah K.
2017-01-01
During catastrophic disasters, government leaders must decide how to efficiently and effectively allocate scarce public health and medical resources. The literature about triage decision making at the individual patient level is substantial, and the National Response Framework provides guidance about the distribution of responsibilities between federal and state governments. However, little has been written about the decision-making process of federal leaders in disaster situations when resources are not sufficient to meet the needs of several states simultaneously. We offer an ethical framework and logic model for decision making in such circumstances. We adapted medical triage and the federalism principle to the decision-making process for allocating scarce federal public health and medical resources. We believe that the logic model provides a values-based framework that can inform the gestalt during the iterative decision process used by federal leaders as they allocate scarce resources to states during catastrophic disasters. PMID:24612854
Ising game: Nonequilibrium steady states of resource-allocation systems
NASA Astrophysics Data System (ADS)
Xin, C.; Yang, G.; Huang, J. P.
2017-04-01
Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.
The Cost Structure of Higher Education: Implications for Governmental Policy in Steady State.
ERIC Educational Resources Information Center
Lyell, Edward H.
The historical pattern of resource allocation in American higher education as exemplified by public colleges in Colorado was examined. The reliance upon average cost information in making resource allocation decisions was critiqued for the special problems that arise from student enrollment decline or steady state. A model of resource allocation…
The Role of Research and Analysis in Resource Allocation Decisions
ERIC Educational Resources Information Center
Lea, Dennis; Polster, Patty Poppe
2011-01-01
In a time of diminishing resources and increased accountability, it is important for school leaders to make the most of every dollar they spend. One approach to ensuring responsible resource allocation is to closely examine the organizational culture surrounding decision making and provide a structure and process to incorporate research and data…
Resource Allocation Strategies in Doctoral/Research University (Extensive) Libraries
ERIC Educational Resources Information Center
Blake Gonzalez, Barbara
2011-01-01
The purpose of this study was to identify and understand the management of resources by library directors at 151 Public and Private Carnegie classified extensive university libraries in an environment of limited funding for higher education. This study examined the following research questions: 1. What resource allocation strategies are used by…
ERIC Educational Resources Information Center
Rudo, Zena H.
As expectations rise for students to perform at higher levels, the question of how best to support student performance through resources becomes paramount. In determining new ways to better allocate resources, administrators must consider teacher input on what has/has not been effective in supporting increased student performance. Teachers…
Cross-cultural differences in distributive justice: a comparison of Turkey and the U.S.
Murphy-Berman, Virginia A; Berman, John J; Cukur, Cem Safak
2012-01-01
When allocators make decisions about distributing resources, they face a dilemma if the expectations for consequences that will flow from particular choices are incongruent with each other. For example, a certain allocation choice might be expected to make an allocator appear warm and likable but unfair. Previous research has found that culture can shape these perceptions and, thus, their congruence or incongruence. The present study further investigated these ideas. Differences between Turkish and U.S. students' perceptions of allocators who distributed resources on the basis of merit vs. need were investigated. Results revealed an allocation dilemma among the U.S. but not among the Turkish students. Specifically, the U.S. students perceived greater incongruence among allocation consequences for both merit and need choices than did the students from Turkey for whom perceptions of allocator's fairness were more aligned with perceptions of allocator's warmth.
Buffer Management Simulation in ATM Networks
NASA Technical Reports Server (NTRS)
Yaprak, E.; Xiao, Y.; Chronopoulos, A.; Chow, E.; Anneberg, L.
1998-01-01
This paper presents a simulation of a new dynamic buffer allocation management scheme in ATM networks. To achieve this objective, an algorithm that detects congestion and updates the dynamic buffer allocation scheme was developed for the OPNET simulation package via the creation of a new ATM module.
Power allocation strategies to minimize energy consumption in wireless body area networks.
Kailas, Aravind
2011-01-01
The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.
Interdependent Network Recovery Games.
Smith, Andrew M; González, Andrés D; Dueñas-Osorio, Leonardo; D'Souza, Raissa M
2017-10-30
Recovery of interdependent infrastructure networks in the presence of catastrophic failure is crucial to the economy and welfare of society. Recently, centralized methods have been developed to address optimal resource allocation in postdisaster recovery scenarios of interdependent infrastructure systems that minimize total cost. In real-world systems, however, multiple independent, possibly noncooperative, utility network controllers are responsible for making recovery decisions, resulting in suboptimal decentralized processes. With the goal of minimizing recovery cost, a best-case decentralized model allows controllers to develop a full recovery plan and negotiate until all parties are satisfied (an equilibrium is reached). Such a model is computationally intensive for planning and negotiating, and time is a crucial resource in postdisaster recovery scenarios. Furthermore, in this work, we prove this best-case decentralized negotiation process could continue indefinitely under certain conditions. Accounting for network controllers' urgency in repairing their system, we propose an ad hoc sequential game-theoretic model of interdependent infrastructure network recovery represented as a discrete time noncooperative game between network controllers that is guaranteed to converge to an equilibrium. We further reduce the computation time needed to find a solution by applying a best-response heuristic and prove bounds on ε-Nash equilibrium, where ε depends on problem inputs. We compare best-case and ad hoc models on an empirical interdependent infrastructure network in the presence of simulated earthquakes to demonstrate the extent of the tradeoff between optimality and computational efficiency. Our method provides a foundation for modeling sociotechnical systems in a way that mirrors restoration processes in practice. © 2017 Society for Risk Analysis.
Health Resources Priority and Allocations System (HRPAS). Interim final rule.
2015-07-17
This interim final rule establishes standards and procedures by which the U.S. Department of Health and Human Services (HHS) may require that certain contracts or orders that promote the national defense be given priority over other contracts or orders. This rule also sets new standards and procedures by which HHS may allocate materials, services, and facilities to promote the national defense. This rule will implement HHS's administration of priorities and allocations actions, and establish the Health Resources Priorities and Allocation System (HRPAS). The HRPAS will cover health resources pursuant to the authority under Section 101(c) of the Defense Production Act as delegated to HHS by Executive Order 13603. Priorities authorities (and other authorities delegated to the Secretary in E.O. 13603, but not covered by this regulation) may be re-delegated by the Secretary. The Secretary retains the authority for allocations.
Are Indirect Benefits Relevant to Health Care Allocation Decisions?
Du Toit, Jessica; Millum, Joseph
2016-01-01
Abstract When allocating scarce healthcare resources, the expected benefits of alternative allocations matter. But, there are different kinds of benefits. Some are direct benefits to the recipient of the resource such as the health improvements of receiving treatment. Others are indirect benefits to third parties such as the economic gains from having a healthier workforce. This article considers whether only the direct benefits of alternative healthcare resource allocations are relevant to allocation decisions, or whether indirect benefits are relevant too. First, we distinguish different conceptions of direct and indirect benefits and argue that only a recipient conception could be morally relevant. We analyze four arguments for thinking that indirect benefits should not count and argue that none is successful in showing that the indirectness of a benefit is a good reason not to count it. We conclude that direct and indirect benefits should be evaluated in the same way. PMID:27465773
Rethinking Traffic Management: Design of Optimizable Networks
2008-06-01
Though this paper used optimization theory to design and analyze DaVinci , op- timization theory is one of many possible tools to enable a grounded...dynamically allocate bandwidth shares. The distributed protocols can be implemented using DaVinci : Dynamically Adaptive VIrtual Networks for a Customized...Internet. In DaVinci , each virtual network runs traffic-management protocols optimized for a traffic class, and link bandwidth is dynamically allocated
SLA-based optimisation of virtualised resource for multi-tier web applications in cloud data centres
NASA Astrophysics Data System (ADS)
Bi, Jing; Yuan, Haitao; Tie, Ming; Tan, Wei
2015-10-01
Dynamic virtualised resource allocation is the key to quality of service assurance for multi-tier web application services in cloud data centre. In this paper, we develop a self-management architecture of cloud data centres with virtualisation mechanism for multi-tier web application services. Based on this architecture, we establish a flexible hybrid queueing model to determine the amount of virtual machines for each tier of virtualised application service environments. Besides, we propose a non-linear constrained optimisation problem with restrictions defined in service level agreement. Furthermore, we develop a heuristic mixed optimisation algorithm to maximise the profit of cloud infrastructure providers, and to meet performance requirements from different clients as well. Finally, we compare the effectiveness of our dynamic allocation strategy with two other allocation strategies. The simulation results show that the proposed resource allocation method is efficient in improving the overall performance and reducing the resource energy cost.
Allocation of Resources to Communication of Research Result Summaries.
Richards, Julie E; Bane, Emmi; Fullerton, Stephanie M; Ludman, Evette J; Jarvik, Gail
2016-10-01
Researchers and policymakers recommend communicating summary research results to biobank participants when feasible. To date, however, there have been few explorations of participant preferences for dedicating resources to this activity. Fifteen semi-structured interviews were conducted with participants of a genetic medicine biobank. Participants were interviewed by phone about their motivation for participation, and opinions about the allocation of resources to communicating summary results. De-identified transcripts were used for a directed content analysis. Most biobank participation was altruistic. All participants were not only interested in receiving summary results but also expressed a clear preference for allocating limited funds to conducting additional genetic research. The results suggest that participants have a nuanced view about the allocation of biobank resources to returning summary results, and asking their opinion is a valuable exercise. Researchers may benefit from transparency about research goals and involving biobank participants in decisions about return of summary results.
Curvilinear relationships between resource allocation and life domain-specific interference.
Waldrop, Jessica S; Erb, Kaitlyn R; Grawitch, Matthew J
2017-10-01
This study investigated the inherent complexities of the work-life interface (WLI) by examining the relationship between resource allocation (i.e., time and energy dedicated to a particular domain) and perceived interference of individual life domains. Much of the research on the WLI is based on the assumption that a linear pattern best describes the relationship between resource allocation and the interference caused by various life domains; however, this study examined the possibility that curvilinear relationships may be a more appropriate representation. Results indicated that resource allocation is a meaningful predictor of interference, and for many life domains a curvilinear relationship accounts for more variance than a linear one; a breakdown of the sample also revealed this relationship varies by gender. Overall, findings suggest that the nature of the WLI is more individualized and complex than is currently conceptualized in the field. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Çakır, Süleyman
2017-10-01
In this study, a two-phase methodology for resource allocation problems under a fuzzy environment is proposed. In the first phase, the imprecise Shannon's entropy method and the acceptability index are suggested, for the first time in the literature, to select input and output variables to be used in the data envelopment analysis (DEA) application. In the second step, an interval inverse DEA model is executed for resource allocation in a short run. In an effort to exemplify the practicality of the proposed fuzzy model, a real case application has been conducted involving 16 cement firms listed in Borsa Istanbul. The results of the case application indicated that the proposed hybrid model is a viable procedure to handle input-output selection and resource allocation problems under fuzzy conditions. The presented methodology can also lend itself to different applications such as multi-criteria decision-making problems.
van der Schalk, Job; Kuppens, Toon; Bruder, Martin; Manstead, Antony S R
2015-02-01
We investigated how another person's emotions about resource allocation decisions influence observers' resource allocations by influencing the emotions that observers anticipate feeling if they were to act in the same way. Participants were exposed to an exemplar who made a fair or unfair division in an economic game and expressed pride or regret about this decision. Participants then made their own resource allocation decisions. Exemplar regret about acting fairly decreased the incidence of fair behavior (Studies 1A and 1B). Likewise, exemplar regret about acting unfairly increased the incidence of fair behavior (Study 2). The effect of others' emotions on observers' behavior was mediated by the observers' anticipated emotions. We discuss our findings in light of the view that social appraisal and anticipated emotions are important tools for social learning and may contribute to the formation and maintenance of social norms about greed and fairness.
Request-Driven Schedule Automation for the Deep Space Network
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Tran, Daniel; Arroyo, Belinda; Call, Jared; Mercado, Marisol
2010-01-01
The DSN Scheduling Engine (DSE) has been developed to increase the level of automated scheduling support available to users of NASA s Deep Space Network (DSN). We have adopted a request-driven approach to DSN scheduling, in contrast to the activity-oriented approach used up to now. Scheduling requests allow users to declaratively specify patterns and conditions on their DSN service allocations, including timing, resource requirements, gaps, overlaps, time linkages among services, repetition, priorities, and a wide range of additional factors and preferences. The DSE incorporates a model of the key constraints and preferences of the DSN scheduling domain, along with algorithms to expand scheduling requests into valid resource allocations, to resolve schedule conflicts, and to repair unsatisfied requests. We use time-bounded systematic search with constraint relaxation to return nearby solutions if exact ones cannot be found, where the relaxation options and order are under user control. To explore the usability aspects of our approach we have developed a graphical user interface incorporating some crucial features to make it easier to work with complex scheduling requests. Among these are: progressive revelation of relevant detail, immediate propagation and visual feedback from a user s decisions, and a meeting calendar metaphor for repeated patterns of requests. Even as a prototype, the DSE has been deployed and adopted as the initial step in building the operational DSN schedule, thus representing an important initial validation of our overall approach. The DSE is a core element of the DSN Service Scheduling Software (S(sup 3)), a web-based collaborative scheduling system now under development for deployment to all DSN users.
Resource allocation and funding challenges for regional local health departments in Nebraska.
Chen, Li-Wu; Jacobson, Janelle; Roberts, Sara; Palm, David
2012-01-01
This study examined the mechanism of resource allocation among member counties and the funding challenges of regional health departments (RHDs) in Nebraska. DESIGN AND STUDY SETTING: In 2009, we conducted a qualitative case study of 2 Nebraska RHDs to gain insight into their experiences of making resource allocation decisions and confronting funding challenges. The 2 RHD sites were selected for this case study on the basis of their heterogeneity in terms of population distribution in member counties. Sixteen semistructured in-person interviews were conducted with RHD directors, staff, and board of health members. Interview data were coded and analyzed using NVivo qualitative analysis software (QSR International [Americas] Inc., Cambridge, MA). Our findings suggested that the directors of RHDs play an integral role in making resource allocation decisions on the basis of community needs, not on a formula or on individual county population size. Interviewees also reported that the size of the vulnerable population served by the RHD had a significant impact on the level of resources for RHD's programs. The RHD's decisions about resource allocation were also dependent on the amount and type of resources received from the state. Interviewees identified inadequacy and instability of funding as the 2 main funding challenges for their RHD. These challenges negatively impacted workforce capacity and the long-term sustainability of some programs. Regional health departments may not benefit from better leveraging resources and building a stronger structural capacity unless the issues of funding inadequacy and instability are addressed. Strategies that can be used by RHDs to address these funding challenges include seeking grants to support programs, leveraging existing resources, and building community partnerships to share resources. Future research is needed to identify RHDs' optimal workforce capacity, required funding level, and potential funding mechanisms.