Esfahlani, Farnaz Zamani; Sayama, Hiroki; Visser, Katherine Frost; Strauss, Gregory P
2017-12-01
Objective: The Positive and Negative Syndrome Scale is a primary outcome measure in clinical trials examining the efficacy of antipsychotic medications. Although the Positive and Negative Syndrome Scale has demonstrated sensitivity as a measure of treatment change in studies using traditional univariate statistical approaches, its sensitivity to detecting network-level changes in dynamic relationships among symptoms has yet to be demonstrated using more sophisticated multivariate analyses. In the current study, we examined the sensitivity of the Positive and Negative Syndrome Scale to detecting antipsychotic treatment effects as revealed through network analysis. Design: Participants included 1,049 individuals diagnosed with psychotic disorders from the Phase I portion of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. Of these participants, 733 were clinically determined to be treatment-responsive and 316 were found to be treatment-resistant. Item level data from the Positive and Negative Syndrome Scale were submitted to network analysis, and macroscopic, mesoscopic, and microscopic network properties were evaluated for the treatment-responsive and treatment-resistant groups at baseline and post-phase I antipsychotic treatment. Results: Network analysis indicated that treatment-responsive patients had more densely connected symptom networks after antipsychotic treatment than did treatment-responsive patients at baseline, and that symptom centralities increased following treatment. In contrast, symptom networks of treatment-resistant patients behaved more randomly before and after treatment. Conclusions: These results suggest that the Positive and Negative Syndrome Scale is sensitive to detecting treatment effects as revealed through network analysis. Its findings also provide compelling new evidence that strongly interconnected symptom networks confer an overall greater probability of treatment responsiveness in patients with psychosis, suggesting that antipsychotics achieve their effect by enhancing a number of central symptoms, which then facilitate reduction of other highly coupled symptoms in a network-like fashion.
Measuring Road Network Vulnerability with Sensitivity Analysis
Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin
2017-01-01
This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706
Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks
Arampatzis, Georgios; Katsoulakis, Markos A.; Pantazis, Yannis
2015-01-01
Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in “sloppy” systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the number of the sensitive parameters. PMID:26161544
NASA Astrophysics Data System (ADS)
Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.
2016-12-01
Sensitivity analysis has been an important tool in groundwater modeling to identify the influential parameters. Among various sensitivity analysis methods, the variance-based global sensitivity analysis has gained popularity for its model independence characteristic and capability of providing accurate sensitivity measurements. However, the conventional variance-based method only considers uncertainty contribution of single model parameters. In this research, we extended the variance-based method to consider more uncertainty sources and developed a new framework to allow flexible combinations of different uncertainty components. We decompose the uncertainty sources into a hierarchical three-layer structure: scenario, model and parametric. Furthermore, each layer of uncertainty source is capable of containing multiple components. An uncertainty and sensitivity analysis framework was then constructed following this three-layer structure using Bayesian network. Different uncertainty components are represented as uncertain nodes in this network. Through the framework, variance-based sensitivity analysis can be implemented with great flexibility of using different grouping strategies for uncertainty components. The variance-based sensitivity analysis thus is improved to be able to investigate the importance of an extended range of uncertainty sources: scenario, model, and other different combinations of uncertainty components which can represent certain key model system processes (e.g., groundwater recharge process, flow reactive transport process). For test and demonstration purposes, the developed methodology was implemented into a test case of real-world groundwater reactive transport modeling with various uncertainty sources. The results demonstrate that the new sensitivity analysis method is able to estimate accurate importance measurements for any uncertainty sources which were formed by different combinations of uncertainty components. The new methodology can provide useful information for environmental management and decision-makers to formulate policies and strategies.
Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich
2005-10-01
We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.
Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming
2016-01-01
Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.
On the topological structure of multinationals network
NASA Astrophysics Data System (ADS)
Joyez, Charlie
2017-05-01
This paper uses a weighted network analysis to examine the structure of multinationals' implantation countries network. Based on French firm-level dataset of multinational enterprises (MNEs) the network analysis provides information on each country position in the network and in internationalization strategies of French MNEs through connectivity preferences among the nodes. The paper also details network-wide features and their recent evolution toward a more decentralized structure. While much has been said on international trade network, this paper shows that multinational firms' studies would also benefit from network analysis, notably by investigating the sensitivity of the network construction to firm heterogeneity.
Liu, Jianhua; Jiang, Hongbo; Zhang, Hao; Guo, Chun; Wang, Lei; Yang, Jing; Nie, Shaofa
2017-06-27
In the summer of 2014, an influenza A(H3N2) outbreak occurred in Yichang city, Hubei province, China. A retrospective study was conducted to collect and interpret hospital and epidemiological data on it using social network analysis and global sensitivity and uncertainty analyses. Results for degree (χ2=17.6619, P<0.0001) and betweenness(χ2=21.4186, P<0.0001) centrality suggested that the selection of sampling objects were different between traditional epidemiological methods and newer statistical approaches. Clique and network diagrams demonstrated that the outbreak actually consisted of two independent transmission networks. Sensitivity analysis showed that the contact coefficient (k) was the most important factor in the dynamic model. Using uncertainty analysis, we were able to better understand the properties and variations over space and time on the outbreak. We concluded that use of newer approaches were significantly more efficient for managing and controlling infectious diseases outbreaks, as well as saving time and public health resources, and could be widely applied on similar local outbreaks.
NASA Astrophysics Data System (ADS)
Núñez, M.; Robie, T.; Vlachos, D. G.
2017-10-01
Kinetic Monte Carlo (KMC) simulation provides insights into catalytic reactions unobtainable with either experiments or mean-field microkinetic models. Sensitivity analysis of KMC models assesses the robustness of the predictions to parametric perturbations and identifies rate determining steps in a chemical reaction network. Stiffness in the chemical reaction network, a ubiquitous feature, demands lengthy run times for KMC models and renders efficient sensitivity analysis based on the likelihood ratio method unusable. We address the challenge of efficiently conducting KMC simulations and performing accurate sensitivity analysis in systems with unknown time scales by employing two acceleration techniques: rate constant rescaling and parallel processing. We develop statistical criteria that ensure sufficient sampling of non-equilibrium steady state conditions. Our approach provides the twofold benefit of accelerating the simulation itself and enabling likelihood ratio sensitivity analysis, which provides further speedup relative to finite difference sensitivity analysis. As a result, the likelihood ratio method can be applied to real chemistry. We apply our methodology to the water-gas shift reaction on Pt(111).
NASA Astrophysics Data System (ADS)
Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye
2016-03-01
Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.
[Study on the automatic parameters identification of water pipe network model].
Jia, Hai-Feng; Zhao, Qi-Feng
2010-01-01
Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.
Connectome sensitivity or specificity: which is more important?
Zalesky, Andrew; Fornito, Alex; Cocchi, Luca; Gollo, Leonardo L; van den Heuvel, Martijn P; Breakspear, Michael
2016-11-15
Connectomes with high sensitivity and high specificity are unattainable with current axonal fiber reconstruction methods, particularly at the macro-scale afforded by magnetic resonance imaging. Tensor-guided deterministic tractography yields sparse connectomes that are incomplete and contain false negatives (FNs), whereas probabilistic methods steered by crossing-fiber models yield dense connectomes, often with low specificity due to false positives (FPs). Densely reconstructed probabilistic connectomes are typically thresholded to improve specificity at the cost of a reduction in sensitivity. What is the optimal tradeoff between connectome sensitivity and specificity? We show empirically and theoretically that specificity is paramount. Our evaluations of the impact of FPs and FNs on empirical connectomes indicate that specificity is at least twice as important as sensitivity when estimating key properties of brain networks, including topological measures of network clustering, network efficiency and network modularity. Our asymptotic analysis of small-world networks with idealized modular structure reveals that as the number of nodes grows, specificity becomes exactly twice as important as sensitivity to the estimation of the clustering coefficient. For the estimation of network efficiency, the relative importance of specificity grows linearly with the number of nodes. The greater importance of specificity is due to FPs occurring more prevalently between network modules rather than within them. These spurious inter-modular connections have a dramatic impact on network topology. We argue that efforts to maximize the sensitivity of connectome reconstruction should be realigned with the need to map brain networks with high specificity. Copyright © 2016 Elsevier Inc. All rights reserved.
An A Priori Multiobjective Optimization Model of a Search and Rescue Network
1992-03-01
sequences. Classical sensitivity analysis and tolerance analysis were used to analyze the frequency assignments generated by the different weight...function for excess coverage of a frequency. Sensitivity analysis is used to investigate the robustness of the frequency assignments produced by the...interest. The linear program solution is used to produce classical sensitivity analysis for the weight ranges. 17 III. Model Formulation This chapter
A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network
NASA Astrophysics Data System (ADS)
Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.
2018-02-01
Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.
Amiryousefi, Mohammad Reza; Mohebbi, Mohebbat; Khodaiyan, Faramarz
2014-01-01
The objectives of this study were to use image analysis and artificial neural network (ANN) to predict mass transfer kinetics as well as color changes and shrinkage of deep-fat fried ostrich meat cubes. Two generalized feedforward networks were separately developed by using the operation conditions as inputs. Results based on the highest numerical quantities of the correlation coefficients between the experimental versus predicted values, showed proper fitting. Sensitivity analysis results of selected ANNs showed that among the input variables, frying temperature was the most sensitive to moisture content (MC) and fat content (FC) compared to other variables. Sensitivity analysis results of selected ANNs showed that MC and FC were the most sensitive to frying temperature compared to other input variables. Similarly, for the second ANN architecture, microwave power density was the most impressive variable having the maximum influence on both shrinkage percentage and color changes. Copyright © 2013 Elsevier Ltd. All rights reserved.
The U.S. Environmental Protection Agency (EPA) established the Clean Air Status and Trends Network (CASTNET) and its predecessor, the National Dry Deposition Network (NDDN), as national air quality and meteorological monitoring networks. The purpose of CASTNET is to track the pr...
Zhao, Fengjun; Liang, Jimin; Chen, Xueli; Liu, Junting; Chen, Dongmei; Yang, Xiang; Tian, Jie
2016-03-01
Previous studies showed that all the vascular parameters from both the morphological and topological parameters were affected with the altering of imaging resolutions. However, neither the sensitivity analysis of the vascular parameters at multiple resolutions nor the distinguishability estimation of vascular parameters from different data groups has been discussed. In this paper, we proposed a quantitative analysis method of vascular parameters for vascular networks of multi-resolution, by analyzing the sensitivity of vascular parameters at multiple resolutions and estimating the distinguishability of vascular parameters from different data groups. Combining the sensitivity and distinguishability, we designed a hybrid formulation to estimate the integrated performance of vascular parameters in a multi-resolution framework. Among the vascular parameters, degree of anisotropy and junction degree were two insensitive parameters that were nearly irrelevant with resolution degradation; vascular area, connectivity density, vascular length, vascular junction and segment number were five parameters that could better distinguish the vascular networks from different groups and abide by the ground truth. Vascular area, connectivity density, vascular length and segment number not only were insensitive to multi-resolution but could also better distinguish vascular networks from different groups, which provided guidance for the quantification of the vascular networks in multi-resolution frameworks.
Sensitivity of surface meteorological analyses to observation networks
NASA Astrophysics Data System (ADS)
Tyndall, Daniel Paul
A computationally efficient variational analysis system for two-dimensional meteorological fields is developed and described. This analysis approach is most efficient when the number of analysis grid points is much larger than the number of available observations, such as for large domain mesoscale analyses. The analysis system is developed using MATLAB software and can take advantage of multiple processors or processor cores. A version of the analysis system has been exported as a platform independent application (i.e., can be run on Windows, Linux, or Macintosh OS X desktop computers without a MATLAB license) with input/output operations handled by commonly available internet software combined with data archives at the University of Utah. The impact of observation networks on the meteorological analyses is assessed by utilizing a percentile ranking of individual observation sensitivity and impact, which is computed by using the adjoint of the variational surface assimilation system. This methodology is demonstrated using a case study of the analysis from 1400 UTC 27 October 2010 over the entire contiguous United States domain. The sensitivity of this approach to the dependence of the background error covariance on observation density is examined. Observation sensitivity and impact provide insight on the influence of observations from heterogeneous observing networks as well as serve as objective metrics for quality control procedures that may help to identify stations with significant siting, reporting, or representativeness issues.
Sensitivity Analysis for Probabilistic Neural Network Structure Reduction.
Kowalski, Piotr A; Kusy, Maciej
2018-05-01
In this paper, we propose the use of local sensitivity analysis (LSA) for the structure simplification of the probabilistic neural network (PNN). Three algorithms are introduced. The first algorithm applies LSA to the PNN input layer reduction by selecting significant features of input patterns. The second algorithm utilizes LSA to remove redundant pattern neurons of the network. The third algorithm combines the proposed two and constitutes the solution of how they can work together. PNN with a product kernel estimator is used, where each multiplicand computes a one-dimensional Cauchy function. Therefore, the smoothing parameter is separately calculated for each dimension by means of the plug-in method. The classification qualities of the reduced and full structure PNN are compared. Furthermore, we evaluate the performance of PNN, for which global sensitivity analysis (GSA) and the common reduction methods are applied, both in the input layer and the pattern layer. The models are tested on the classification problems of eight repository data sets. A 10-fold cross validation procedure is used to determine the prediction ability of the networks. Based on the obtained results, it is shown that the LSA can be used as an alternative PNN reduction approach.
Gamma Spectroscopy by Artificial Neural Network Coupled with MCNP
NASA Astrophysics Data System (ADS)
Sahiner, Huseyin
While neutron activation analysis is widely used in many areas, sensitivity of the analysis depends on how the analysis is conducted. Even though the sensitivity of the techniques carries error, compared to chemical analysis, its range is in parts per million or sometimes billion. Due to this sensitivity, the use of neutron activation analysis becomes important when analyzing bio-samples. Artificial neural network is an attractive technique for complex systems. Although there are neural network applications on spectral analysis, training by simulated data to analyze experimental data has not been made. This study offers an improvement on spectral analysis and optimization on neural network for the purpose. The work considers five elements that are considered as trace elements for bio-samples. However, the system is not limited to five elements. The only limitation of the study comes from data library availability on MCNP. A perceptron network was employed to identify five elements from gamma spectra. In quantitative analysis, better results were obtained when the neural fitting tool in MATLAB was used. As a training function, Levenberg-Marquardt algorithm was used with 23 neurons in the hidden layer with 259 gamma spectra in the input. Because the interest of the study deals with five elements, five neurons representing peak counts of five isotopes in the input layer were used. Five output neurons revealed mass information of these elements from irradiated kidney stones. Results showing max error of 17.9% in APA, 24.9% in UA, 28.2% in COM, 27.9% in STRU type showed the success of neural network approach in analyzing gamma spectra. This high error was attributed to Zn that has a very long decay half-life compared to the other elements. The simulation and experiments were made under certain experimental setup (3 hours irradiation, 96 hours decay time, 8 hours counting time). Nevertheless, the approach is subject to be generalized for different setups.
NASA Astrophysics Data System (ADS)
Wang, Ting; Plecháč, Petr
2017-12-01
Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.
Biffi, E; Menegon, A; Regalia, G; Maida, S; Ferrigno, G; Pedrocchi, A
2011-08-15
Modern drug discovery for Central Nervous System pathologies has recently focused its attention to in vitro neuronal networks as models for the study of neuronal activities. Micro Electrode Arrays (MEAs), a widely recognized tool for pharmacological investigations, enable the simultaneous study of the spiking activity of discrete regions of a neuronal culture, providing an insight into the dynamics of networks. Taking advantage of MEAs features and making the most of the cross-correlation analysis to assess internal parameters of a neuronal system, we provide an efficient method for the evaluation of comprehensive neuronal network activity. We developed an intra network burst correlation algorithm, we evaluated its sensitivity and we explored its potential use in pharmacological studies. Our results demonstrate the high sensitivity of this algorithm and the efficacy of this methodology in pharmacological dose-response studies, with the advantage of analyzing the effect of drugs on the comprehensive correlative properties of integrated neuronal networks. Copyright © 2011 Elsevier B.V. All rights reserved.
Cheng, Feixiong; Liu, Chuang; Shen, Bairong; Zhao, Zhongming
2016-08-26
Cancer is increasingly recognized as a cellular system phenomenon that is attributed to the accumulation of genetic or epigenetic alterations leading to the perturbation of the molecular network architecture. Elucidation of network properties that can characterize tumor initiation and progression, or pinpoint the molecular targets related to the drug sensitivity or resistance, is therefore of critical importance for providing systems-level insights into tumorigenesis and clinical outcome in the molecularly targeted cancer therapy. In this study, we developed a network-based framework to quantitatively examine cellular network heterogeneity and modularity in cancer. Specifically, we constructed gene co-expressed protein interaction networks derived from large-scale RNA-Seq data across 8 cancer types generated in The Cancer Genome Atlas (TCGA) project. We performed gene network entropy and balanced versus unbalanced motif analysis to investigate cellular network heterogeneity and modularity in tumor versus normal tissues, different stages of progression, and drug resistant versus sensitive cancer cell lines. We found that tumorigenesis could be characterized by a significant increase of gene network entropy in all of the 8 cancer types. The ratio of the balanced motifs in normal tissues is higher than that of tumors, while the ratio of unbalanced motifs in tumors is higher than that of normal tissues in all of the 8 cancer types. Furthermore, we showed that network entropy could be used to characterize tumor progression and anticancer drug responses. For example, we found that kinase inhibitor resistant cancer cell lines had higher entropy compared to that of sensitive cell lines using the integrative analysis of microarray gene expression and drug pharmacological data collected from the Genomics of Drug Sensitivity in Cancer database. In addition, we provided potential network-level evidence that smoking might increase cancer cellular network heterogeneity and further contribute to tyrosine kinase inhibitor (e.g., gefitinib) resistance. In summary, we demonstrated that network properties such as network entropy and unbalanced motifs associated with tumor initiation, progression, and anticancer drug responses, suggesting new potential network-based prognostic and predictive measure in cancer.
Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
Kaltenbacher, Barbara; Hasenauer, Jan
2017-01-01
Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351
Metrics for evaluating performance and uncertainty of Bayesian network models
Bruce G. Marcot
2012-01-01
This paper presents a selected set of existing and new metrics for gauging Bayesian network model performance and uncertainty. Selected existing and new metrics are discussed for conducting model sensitivity analysis (variance reduction, entropy reduction, case file simulation); evaluating scenarios (influence analysis); depicting model complexity (numbers of model...
2011-01-01
Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043
Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models
2015-03-16
sensitivity value was the maximum uncertainty in that value estimated by the Sobol method. 2.4. Global Sensitivity Analysis of the Reduced Order Coagulation...sensitivity analysis, using the variance-based method of Sobol , to estimate which parameters controlled the performance of the reduced order model [69]. We...Environment. Comput. Sci. Eng. 2007, 9, 90–95. 69. Sobol , I. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
Sensitivity of feedforward neural networks to weight errors
NASA Technical Reports Server (NTRS)
Stevenson, Maryhelen; Widrow, Bernard; Winter, Rodney
1990-01-01
An analysis is made of the sensitivity of feedforward layered networks of Adaline elements (threshold logic units) to weight errors. An approximation is derived which expresses the probability of error for an output neuron of a large network (a network with many neurons per layer) as a function of the percentage change in the weights. As would be expected, the probability of error increases with the number of layers in the network and with the percentage change in the weights. The probability of error is essentially independent of the number of weights per neuron and of the number of neurons per layer, as long as these numbers are large (on the order of 100 or more).
On Learning Cluster Coefficient of Private Networks
Wang, Yue; Wu, Xintao; Zhu, Jun; Xiang, Yang
2013-01-01
Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as clustering coefficient or modularity often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we treat a graph statistics as a function f and develop a divide and conquer approach to enforce differential privacy. The basic procedure of this approach is to first decompose the target computation f into several less complex unit computations f1, …, fm connected by basic mathematical operations (e.g., addition, subtraction, multiplication, division), then perturb the output of each fi with Laplace noise derived from its own sensitivity value and the distributed privacy threshold εi, and finally combine those perturbed fi as the perturbed output of computation f. We examine how various operations affect the accuracy of complex computations. When unit computations have large global sensitivity values, we enforce the differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We illustrate our approach by using clustering coefficient, which is a popular statistics used in social network analysis. Empirical evaluations on five real social networks and various synthetic graphs generated from three random graph models show the developed divide and conquer approach outperforms the direct approach. PMID:24429843
Wang, Jin-Hui; Zuo, Xi-Nian; Gohel, Suril; Milham, Michael P.; Biswal, Bharat B.; He, Yong
2011-01-01
Graph-based computational network analysis has proven a powerful tool to quantitatively characterize functional architectures of the brain. However, the test-retest (TRT) reliability of graph metrics of functional networks has not been systematically examined. Here, we investigated TRT reliability of topological metrics of functional brain networks derived from resting-state functional magnetic resonance imaging data. Specifically, we evaluated both short-term (<1 hour apart) and long-term (>5 months apart) TRT reliability for 12 global and 6 local nodal network metrics. We found that reliability of global network metrics was overall low, threshold-sensitive and dependent on several factors of scanning time interval (TI, long-term>short-term), network membership (NM, networks excluding negative correlations>networks including negative correlations) and network type (NT, binarized networks>weighted networks). The dependence was modulated by another factor of node definition (ND) strategy. The local nodal reliability exhibited large variability across nodal metrics and a spatially heterogeneous distribution. Nodal degree was the most reliable metric and varied the least across the factors above. Hub regions in association and limbic/paralimbic cortices showed moderate TRT reliability. Importantly, nodal reliability was robust to above-mentioned four factors. Simulation analysis revealed that global network metrics were extremely sensitive (but varying degrees) to noise in functional connectivity and weighted networks generated numerically more reliable results in compared with binarized networks. For nodal network metrics, they showed high resistance to noise in functional connectivity and no NT related differences were found in the resistance. These findings provide important implications on how to choose reliable analytical schemes and network metrics of interest. PMID:21818285
2016-11-09
the model does not become a full probabilistic attack graph analysis of the network , whose data requirements are currently unrealistic. The second...flow. – Untrustworthy persons may intentionally try to exfiltrate known sensitive data to ex- ternal networks . People may also unintentionally leak...section will provide details on the components, procedures, data requirements, and parameters required to instantiate the network porosity model. These
Stability and sensitivity of ABR flow control protocols
NASA Astrophysics Data System (ADS)
Tsai, Wie K.; Kim, Yuseok; Chiussi, Fabio; Toh, Chai-Keong
1998-10-01
This tutorial paper surveys the important issues in stability and sensitivity analysis of ABR flow control of ATM networks. THe stability and sensitivity issues are formulated in a systematic framework. Four main cause of instability in ABR flow control are identified: unstable control laws, temporal variations of available bandwidth with delayed feedback control, misbehaving components, and interactions between higher layer protocols and ABR flow control. Popular rate-based ABR flow control protocols are evaluated. Stability and sensitivity is shown to be the fundamental issues when the network has dynamically-varying bandwidth. Simulation result confirming the theoretical studies are provided. Open research problems are discussed.
Analysis of world terror networks from the reduced Google matrix of Wikipedia
NASA Astrophysics Data System (ADS)
El Zant, Samer; Frahm, Klaus M.; Jaffrès-Runser, Katia; Shepelyansky, Dima L.
2018-01-01
We apply the reduced Google matrix method to analyze interactions between 95 terrorist groups and determine their relationships and influence on 64 world countries. This is done on the basis of the Google matrix of the English Wikipedia (2017) composed of 5 416 537 articles which accumulate a great part of global human knowledge. The reduced Google matrix takes into account the direct and hidden links between a selection of 159 nodes (articles) appearing due to all paths of a random surfer moving over the whole network. As a result we obtain the network structure of terrorist groups and their relations with selected countries including hidden indirect links. Using the sensitivity of PageRank to a weight variation of specific links we determine the geopolitical sensitivity and influence of specific terrorist groups on world countries. The world maps of the sensitivity of various countries to influence of specific terrorist groups are obtained. We argue that this approach can find useful application for more extensive and detailed data bases analysis.
Application of neural networks and sensitivity analysis to improved prediction of trauma survival.
Hunter, A; Kennedy, L; Henry, J; Ferguson, I
2000-05-01
The performance of trauma departments is widely audited by applying predictive models that assess probability of survival, and examining the rate of unexpected survivals and deaths. Although the TRISS methodology, a logistic regression modelling technique, is still the de facto standard, it is known that neural network models perform better. A key issue when applying neural network models is the selection of input variables. This paper proposes a novel form of sensitivity analysis, which is simpler to apply than existing techniques, and can be used for both numeric and nominal input variables. The technique is applied to the audit survival problem, and used to analyse the TRISS variables. The conclusions discuss the implications for the design of further improved scoring schemes and predictive models.
Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Costumero, Víctor; Ventura-Campos, Noelia; Bustamante, Juan Carlos; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso
2016-01-01
A "disinhibited" cognitive profile has been proposed for individuals with high reward sensitivity, characterized by increased engagement in goal-directed responses and reduced processing of negative or unexpected cues, which impairs adequate behavioral regulation after feedback in these individuals. This pattern is manifested through deficits in inhibitory control and/or increases in RT variability. In the present work, we aimed to test whether this profile is associated with the activity of functional networks during a stop-signal task using independent component analysis (ICA). Sixty-one participants underwent fMRI while performing a stop-signal task, during which a manual response had to be inhibited. ICA was used to mainly replicate the functional networks involved in the task (Zhang and Li, 2012): two motor networks involved in the go response, the left and right fronto-parietal networks for stopping, a midline error-processing network, and the default-mode network (DMN), which was further subdivided into its anterior and posterior parts. Reward sensitivity was mainly associated with greater activity of motor networks, reduced activity in the midline network during correct stop trials and, behaviorally, increased RT variability. All these variables explained 36% of variance of the SR scores. This pattern of associations suggests that reward sensitivity involves greater motor engagement in the dominant response, more distractibility and reduced processing of salient or unexpected events, which may lead to disinhibited behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Communications network design and costing model technical manual
NASA Technical Reports Server (NTRS)
Logan, K. P.; Somes, S. S.; Clark, C. A.
1983-01-01
This computer model provides the capability for analyzing long-haul trunking networks comprising a set of user-defined cities, traffic conditions, and tariff rates. Networks may consist of all terrestrial connectivity, all satellite connectivity, or a combination of terrestrial and satellite connectivity. Network solutions provide the least-cost routes between all cities, the least-cost network routing configuration, and terrestrial and satellite service cost totals. The CNDC model allows analyses involving three specific FCC-approved tariffs, which are uniquely structured and representative of most existing service connectivity and pricing philosophies. User-defined tariffs that can be variations of these three tariffs are accepted as input to the model and allow considerable flexibility in network problem specification. The resulting model extends the domain of network analysis from traditional fixed link cost (distance-sensitive) problems to more complex problems involving combinations of distance and traffic-sensitive tariffs.
Fathiazar, Elham; Anemuller, Jorn; Kretzberg, Jutta
2016-08-01
Voltage-Sensitive Dye (VSD) imaging is an optical imaging method that allows measuring the graded voltage changes of multiple neurons simultaneously. In neuroscience, this method is used to reveal networks of neurons involved in certain tasks. However, the recorded relative dye fluorescence changes are usually low and signals are superimposed by noise and artifacts. Therefore, establishing a reliable method to identify which cells are activated by specific stimulus conditions is the first step to identify functional networks. In this paper, we present a statistical method to identify stimulus-activated network nodes as cells, whose activities during sensory network stimulation differ significantly from the un-stimulated control condition. This method is demonstrated based on voltage-sensitive dye recordings from up to 100 neurons in a ganglion of the medicinal leech responding to tactile skin stimulation. Without relying on any prior physiological knowledge, the network nodes identified by our statistical analysis were found to match well with published cell types involved in tactile stimulus processing and to be consistent across stimulus conditions and preparations.
NASA Astrophysics Data System (ADS)
Guo, Wenzhang; Wang, Hao; Wu, Zhengping
2018-03-01
Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.
Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks.
Zhang, Jinfen; Teixeira, Ângelo P; Guedes Soares, C; Yan, Xinping; Liu, Kezhong
2016-06-01
This article develops a Bayesian belief network model for the prediction of accident consequences in the Tianjin port. The study starts with a statistical analysis of historical accident data of six years from 2008 to 2013. Then a Bayesian belief network is constructed to express the dependencies between the indicator variables and accident consequences. The statistics and expert knowledge are synthesized in the Bayesian belief network model to obtain the probability distribution of the consequences. By a sensitivity analysis, several indicator variables that have influence on the consequences are identified, including navigational area, ship type and time of the day. The results indicate that the consequences are most sensitive to the position where the accidents occurred, followed by time of day and ship length. The results also reflect that the navigational risk of the Tianjin port is at the acceptable level, despite that there is more room of improvement. These results can be used by the Maritime Safety Administration to take effective measures to enhance maritime safety in the Tianjin port. © 2016 Society for Risk Analysis.
Adjoint-based sensitivity analysis of low-order thermoacoustic networks using a wave-based approach
NASA Astrophysics Data System (ADS)
Aguilar, José G.; Magri, Luca; Juniper, Matthew P.
2017-07-01
Strict pollutant emission regulations are pushing gas turbine manufacturers to develop devices that operate in lean conditions, with the downside that combustion instabilities are more likely to occur. Methods to predict and control unstable modes inside combustion chambers have been developed in the last decades but, in some cases, they are computationally expensive. Sensitivity analysis aided by adjoint methods provides valuable sensitivity information at a low computational cost. This paper introduces adjoint methods and their application in wave-based low order network models, which are used as industrial tools, to predict and control thermoacoustic oscillations. Two thermoacoustic models of interest are analyzed. First, in the zero Mach number limit, a nonlinear eigenvalue problem is derived, and continuous and discrete adjoint methods are used to obtain the sensitivities of the system to small modifications. Sensitivities to base-state modification and feedback devices are presented. Second, a more general case with non-zero Mach number, a moving flame front and choked outlet, is presented. The influence of the entropy waves on the computed sensitivities is shown.
Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks.
Rathinam, Muruhan; Sheppard, Patrick W; Khammash, Mustafa
2010-01-21
Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10,000 are demonstrated.
Analysis of electrical tomography sensitive field based on multi-terminal network and electric field
NASA Astrophysics Data System (ADS)
He, Yongbo; Su, Xingguo; Xu, Meng; Wang, Huaxiang
2010-08-01
Electrical tomography (ET) aims at the study of the conductivity/permittivity distribution of the interested field non-intrusively via the boundary voltage/current. The sensor is usually regarded as an electric field, and finite element method (FEM) is commonly used to calculate the sensitivity matrix and to optimize the sensor architecture. However, only the lumped circuit parameters can be measured by the data acquisition electronics, it's very meaningful to treat the sensor as a multi terminal network. Two types of multi terminal network with common node and common loop topologies are introduced. Getting more independent measurements and making more uniform current distribution are the two main ways to minimize the inherent ill-posed effect. By exploring the relationships of network matrixes, a general formula is proposed for the first time to calculate the number of the independent measurements. Additionally, the sensitivity distribution is analyzed with FEM. As a result, quasi opposite mode, an optimal single source excitation mode, that has the advantages of more uniform sensitivity distribution and more independent measurements, is proposed.
Ariza, Pedro; Solesio-Jofre, Elena; Martínez, Johann H.; Pineda-Pardo, José A.; Niso, Guiomar; Maestú, Fernando; Buldú, Javier M.
2015-01-01
In this study we used graph theory analysis to investigate age-related reorganization of functional networks during the active maintenance of information that is interrupted by external interference. Additionally, we sought to investigate network differences before and after averaging network parameters between both maintenance and interference windows. We compared young and older adults by measuring their magnetoencephalographic recordings during an interference-based working memory task restricted to successful recognitions. Data analysis focused on the topology/temporal evolution of functional networks during both the maintenance and interference windows. We observed that: (a) Older adults require higher synchronization between cortical brain sites in order to achieve a successful recognition, (b) The main differences between age groups arise during the interference window, (c) Older adults show reduced ability to reorganize network topology when interference is introduced, and (d) Averaging network parameters leads to a loss of sensitivity to detect age differences. PMID:26029079
NASA Astrophysics Data System (ADS)
Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Porter, Edward K.
2003-11-01
Network data analysis methods are the only way to properly separate real gravitational wave (GW) transient events from detector noise. They can be divided into two generic classes: the coincidence method and the coherent analysis. The former uses lists of selected events provided by each interferometer belonging to the network and tries to correlate them in time to identify a physical signal. Instead of this binary treatment of detector outputs (signal present or absent), the latter method involves first the merging of the interferometer data and looks for a common pattern, consistent with an assumed GW waveform and a given source location in the sky. The thresholds are only applied later, to validate or not the hypothesis made. As coherent algorithms use more complete information than coincidence methods, they are expected to provide better detection performances, but at a higher computational cost. An efficient filter must yield a good compromise between a low false alarm rate (hence triggering on data at a manageable rate) and a high detection efficiency. Therefore, the comparison of the two approaches is achieved using so-called receiving operating characteristics (ROC), giving the relationship between the false alarm rate and the detection efficiency for a given method. This paper investigates this question via Monte Carlo simulations, using the network model developed in a previous article. Its main conclusions are the following. First, a three-interferometer network such as Virgo-LIGO is found to be too small to reach good detection efficiencies at low false alarm rates: larger configurations are suitable to reach a confidence level high enough to validate as true GW a detected event. In addition, an efficient network must contain interferometers with comparable sensitivities: studying the three-interferometer LIGO network shows that the 2-km interferometer with half sensitivity leads to a strong reduction of performances as compared to a network of three interferometers with full sensitivity. Finally, it is shown that coherent analyses are feasible for burst searches and are clearly more efficient than coincidence strategies. Therefore, developing such methods should be an important goal of a worldwide collaborative data analysis.
Network analysis of mesoscale optical recordings to assess regional, functional connectivity.
Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H
2015-10-01
With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.
Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R
2012-01-01
In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.
Segmentation and feature extraction of retinal vascular morphology
NASA Astrophysics Data System (ADS)
Leopold, Henry A.; Orchard, Jeff; Zelek, John; Lakshminarayanan, Vasudevan
2017-02-01
Analysis of retinal fundus images is essential for physicians, optometrists and ophthalmologists in the diagnosis, care and treatment of patients. The first step of almost all forms of automated fundus analysis begins with the segmentation and subtraction of the retinal vasculature, while analysis of that same structure can aid in the diagnosis of certain retinal and cardiovascular conditions, such as diabetes or stroke. This paper investigates the use of a Convolutional Neural Network as a multi-channel classifier of retinal vessels using DRIVE, a database of fundus images. The result of the network with the application of a confidence threshold was slightly below the 2nd observer and gold standard, with an accuracy of 0.9419 and ROC of 0.9707. The output of the network with on post-processing boasted the highest sensitivity found in the literature with a score of 0.9568 and a good ROC score of 0.9689. The high sensitivity of the system makes it suitable for longitudinal morphology assessments, disease detection and other similar tasks.
Sensitivity analysis of dynamic biological systems with time-delays.
Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang
2010-10-15
Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.
NASA Astrophysics Data System (ADS)
Melchiorre, C.; Castellanos Abella, E. A.; van Westen, C. J.; Matteucci, M.
2011-04-01
This paper describes a procedure for landslide susceptibility assessment based on artificial neural networks, and focuses on the estimation of the prediction capability, robustness, and sensitivity of susceptibility models. The study is carried out in the Guantanamo Province of Cuba, where 186 landslides were mapped using photo-interpretation. Twelve conditioning factors were mapped including geomorphology, geology, soils, landuse, slope angle, slope direction, internal relief, drainage density, distance from roads and faults, rainfall intensity, and ground peak acceleration. A methodology was used that subdivided the database in 3 subsets. A training set was used for updating the weights. A validation set was used to stop the training procedure when the network started losing generalization capability, and a test set was used to calculate the performance of the network. A 10-fold cross-validation was performed in order to show that the results are repeatable. The prediction capability, the robustness analysis, and the sensitivity analysis were tested on 10 mutually exclusive datasets. The results show that by means of artificial neural networks it is possible to obtain models with high prediction capability and high robustness, and that an exploration of the effect of the individual variables is possible, even if they are considered as a black-box model.
Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.
Kiparissides, A; Hatzimanikatis, V
2017-01-01
The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)
2001-01-01
A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.
Prevalence of potent skin sensitizers in oxidative hair dye products in Korea.
Kim, Hyunji; Kim, Kisok
2016-09-01
The objective of the present study was to elucidate the prevalence of potent skin sensitizers in oxidative hair dye products manufactured by Korean domestic companies. A database on hair dye products made by domestic companies and selling in the Korean market in 2013 was used to obtain information on company name, brand name, quantity of production, and ingredients. The prevalence of substances categorized as potent skin sensitizers was calculated using the hair dye ingredient database, and the pattern of concomitant presence of hair dye ingredients was analyzed using network analysis software. A total of 19 potent skin sensitizers were identified from a database that included 99 hair dye products manufactured by Korean domestic companies. Among 19 potent skin sensitizers, the four most frequent were resorcinol, m-aminophenol, p-phenylenediamine (PPD), and p-aminophenol; these four skin-sensitizing ingredients were found in more than 50% of the products studied. Network analysis showed that resorcinol, m-aminophenol, and PPD existed together in many hair dye products. In 99 products examined, the average product contained 4.4 potent sensitizers, and 82% of the products contained four or more skin sensitizers. The present results demonstrate that oxidative hair dye products made by Korean domestic manufacturers contain various numbers and types of potent skin sensitizers. Furthermore, these results suggest that some hair dye products should be used with caution to prevent adverse effects on the skin, including allergic contact dermatitis.
Efficient Analysis of Complex Structures
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.
2000-01-01
Last various accomplishments achieved during this project are : (1) A Survey of Neural Network (NN) applications using MATLAB NN Toolbox on structural engineering especially on equivalent continuum models (Appendix A). (2) Application of NN and GAs to simulate and synthesize substructures: 1-D and 2-D beam problems (Appendix B). (3) Development of an equivalent plate-model analysis method (EPA) for static and vibration analysis of general trapezoidal built-up wing structures composed of skins, spars and ribs. Calculation of all sorts of test cases and comparison with measurements or FEA results. (Appendix C). (4) Basic work on using second order sensitivities on simulating wing modal response, discussion of sensitivity evaluation approaches, and some results (Appendix D). (5) Establishing a general methodology of simulating the modal responses by direct application of NN and by sensitivity techniques, in a design space composed of a number of design points. Comparison is made through examples using these two methods (Appendix E). (6) Establishing a general methodology of efficient analysis of complex wing structures by indirect application of NN: the NN-aided Equivalent Plate Analysis. Training of the Neural Networks for this purpose in several cases of design spaces, which can be applicable for actual design of complex wings (Appendix F).
Nathan, Dominic E; Oakes, Terrence R; Yeh, Ping Hong; French, Louis M; Harper, Jamie F; Liu, Wei; Wolfowitz, Rachel D; Wang, Bin Quan; Graner, John L; Riedy, Gerard
2015-03-01
A definitive diagnosis of mild traumatic brain injury (mTBI) is difficult due to the absence of biomarkers in standard clinical imaging. The brain is a complex network of interconnected neurons and subtle changes can modulate key networks of cognitive function. The resting state default mode network (DMN) has been shown to be sensitive to changes induced by pathology. This study seeks to determine whether quantitative measures of the DMN are sensitive in distinguishing mTBI subjects. Resting state functional magnetic resonance imaging data were obtained for healthy (n=12) and mTBI subjects (n=15). DMN maps were computed using dual-regression Independent Component Analysis (ICA). A goodness-of-fit (GOF) index was calculated to assess the degree of spatial specificity and sensitivity between healthy controls and mTBI subjects. DMN regions and neuropsychological assessments were examined to identify potential relationships. The resting state DMN maps indicate an increase in spatial coactivity in mTBI subjects within key regions of the DMN. Significant coactivity within the cerebellum and supplementary motor areas of mTBI subjects were also observed. This has not been previously reported in seed-based resting state network analysis. The GOF suggested the presence of high variability within the mTBI subject group, with poor sensitivity and specificity. The neuropsychological data showed correlations between areas of coactivity within the resting state network in the brain with a number of measures of emotion and cognitive functioning. The poor performance of the GOF highlights the key challenge associated with mTBI injury: the high variability in injury mechanisms and subsequent recovery. However, the quantification of the DMN using dual-regression ICA has potential to distinguish mTBI from healthy subjects, and provide information on the relationship of aspects of cognitive and emotional functioning with their potential neural correlates.
Fyn-Dependent Gene Networks in Acute Ethanol Sensitivity
Farris, Sean P.; Miles, Michael F.
2013-01-01
Studies in humans and animal models document that acute behavioral responses to ethanol are predisposing factor for the risk of long-term drinking behavior. Prior microarray data from our laboratory document strain- and brain region-specific variation in gene expression profile responses to acute ethanol that may be underlying regulators of ethanol behavioral phenotypes. The non-receptor tyrosine kinase Fyn has previously been mechanistically implicated in the sedative-hypnotic response to acute ethanol. To further understand how Fyn may modulate ethanol behaviors, we used whole-genome expression profiling. We characterized basal and acute ethanol-evoked (3 g/kg) gene expression patterns in nucleus accumbens (NAC), prefrontal cortex (PFC), and ventral midbrain (VMB) of control and Fyn knockout mice. Bioinformatics analysis identified a set of Fyn-related gene networks differently regulated by acute ethanol across the three brain regions. In particular, our analysis suggested a coordinate basal decrease in myelin-associated gene expression within NAC and PFC as an underlying factor in sensitivity of Fyn null animals to ethanol sedation. An in silico analysis across the BXD recombinant inbred (RI) strains of mice identified a significant correlation between Fyn expression and a previously published ethanol loss-of-righting-reflex (LORR) phenotype. By combining PFC gene expression correlates to Fyn and LORR across multiple genomic datasets, we identified robust Fyn-centric gene networks related to LORR. Our results thus suggest that multiple system-wide changes exist within specific brain regions of Fyn knockout mice, and that distinct Fyn-dependent expression networks within PFC may be important determinates of the LORR due to acute ethanol. These results add to the interpretation of acute ethanol behavioral sensitivity in Fyn kinase null animals, and identify Fyn-centric gene networks influencing variance in ethanol LORR. Such networks may also inform future design of pharmacotherapies for the treatment and prevention of alcohol use disorders. PMID:24312422
Parametric Sensitivity Analysis of Oscillatory Delay Systems with an Application to Gene Regulation.
Ingalls, Brian; Mincheva, Maya; Roussel, Marc R
2017-07-01
A parametric sensitivity analysis for periodic solutions of delay-differential equations is developed. Because phase shifts cause the sensitivity coefficients of a periodic orbit to diverge, we focus on sensitivities of the extrema, from which amplitude sensitivities are computed, and of the period. Delay-differential equations are often used to model gene expression networks. In these models, the parametric sensitivities of a particular genotype define the local geometry of the evolutionary landscape. Thus, sensitivities can be used to investigate directions of gradual evolutionary change. An oscillatory protein synthesis model whose properties are modulated by RNA interference is used as an example. This model consists of a set of coupled delay-differential equations involving three delays. Sensitivity analyses are carried out at several operating points. Comments on the evolutionary implications of the results are offered.
Interactive Controls Analysis (INCA)
NASA Technical Reports Server (NTRS)
Bauer, Frank H.
1989-01-01
Version 3.12 of INCA provides user-friendly environment for design and analysis of linear control systems. System configuration and parameters easily adjusted, enabling INCA user to create compensation networks and perform sensitivity analysis in convenient manner. Full complement of graphical routines makes output easy to understand. Written in Pascal and FORTRAN.
Biederman, J; Hammerness, P; Sadeh, B; Peremen, Z; Amit, A; Or-Ly, H; Stern, Y; Reches, A; Geva, A; Faraone, S V
2017-05-01
A previous small study suggested that Brain Network Activation (BNA), a novel ERP-based brain network analysis, may have diagnostic utility in attention deficit hyperactivity disorder (ADHD). In this study we examined the diagnostic capability of a new advanced version of the BNA methodology on a larger population of adults with and without ADHD. Subjects were unmedicated right-handed 18- to 55-year-old adults of both sexes with and without a DSM-IV diagnosis of ADHD. We collected EEG while the subjects were performing a response inhibition task (Go/NoGo) and then applied a spatio-temporal Brain Network Activation (BNA) analysis of the EEG data. This analysis produced a display of qualitative measures of brain states (BNA scores) providing information on cortical connectivity. This complex set of scores was then fed into a machine learning algorithm. The BNA analysis of the EEG data recorded during the Go/NoGo task demonstrated a high discriminative capacity between ADHD patients and controls (AUC = 0.92, specificity = 0.95, sensitivity = 0.86 for the Go condition; AUC = 0.84, specificity = 0.91, sensitivity = 0.76 for the NoGo condition). BNA methodology can help differentiate between ADHD and healthy controls based on functional brain connectivity. The data support the utility of the tool to augment clinical examinations by objective evaluation of electrophysiological changes associated with ADHD. Results also support a network-based approach to the study of ADHD.
Margin and sensitivity methods for security analysis of electric power systems
NASA Astrophysics Data System (ADS)
Greene, Scott L.
Reliable operation of large scale electric power networks requires that system voltages and currents stay within design limits. Operation beyond those limits can lead to equipment failures and blackouts. Security margins measure the amount by which system loads or power transfers can change before a security violation, such as an overloaded transmission line, is encountered. This thesis shows how to efficiently compute security margins defined by limiting events and instabilities, and the sensitivity of those margins with respect to assumptions, system parameters, operating policy, and transactions. Security margins to voltage collapse blackouts, oscillatory instability, generator limits, voltage constraints and line overloads are considered. The usefulness of computing the sensitivities of these margins with respect to interarea transfers, loading parameters, generator dispatch, transmission line parameters, and VAR support is established for networks as large as 1500 buses. The sensitivity formulas presented apply to a range of power system models. Conventional sensitivity formulas such as line distribution factors, outage distribution factors, participation factors and penalty factors are shown to be special cases of the general sensitivity formulas derived in this thesis. The sensitivity formulas readily accommodate sparse matrix techniques. Margin sensitivity methods are shown to work effectively for avoiding voltage collapse blackouts caused by either saddle node bifurcation of equilibria or immediate instability due to generator reactive power limits. Extremely fast contingency analysis for voltage collapse can be implemented with margin sensitivity based rankings. Interarea transfer can be limited by voltage limits, line limits, or voltage stability. The sensitivity formulas presented in this thesis apply to security margins defined by any limit criteria. A method to compute transfer margins by directly locating intermediate events reduces the total number of loadflow iterations required by each margin computation and provides sensitivity information at minimal additional cost. Estimates of the effect of simultaneous transfers on the transfer margins agree well with the exact computations for a network model derived from a portion of the U.S grid. The accuracy of the estimates over a useful range of conditions and the ease of obtaining the estimates suggest that the sensitivity computations will be of practical value.
NASA Astrophysics Data System (ADS)
Liu, Haixing; Savić, Dragan; Kapelan, Zoran; Zhao, Ming; Yuan, Yixing; Zhao, Hongbin
2014-07-01
Flow entropy is a measure of uniformity of pipe flows in water distribution systems. By maximizing flow entropy one can identify reliable layouts or connectivity in networks. In order to overcome the disadvantage of the common definition of flow entropy that does not consider the impact of pipe diameter on reliability, an extended definition of flow entropy, termed as diameter-sensitive flow entropy, is proposed. This new methodology is then assessed by using other reliability methods, including Monte Carlo Simulation, a pipe failure probability model, and a surrogate measure (resilience index) integrated with water demand and pipe failure uncertainty. The reliability assessment is based on a sample of WDS designs derived from an optimization process for each of the two benchmark networks. Correlation analysis is used to evaluate quantitatively the relationship between entropy and reliability. To ensure reliability, a comparative analysis between the flow entropy and the new method is conducted. The results demonstrate that the diameter-sensitive flow entropy shows consistently much stronger correlation with the three reliability measures than simple flow entropy. Therefore, the new flow entropy method can be taken as a better surrogate measure for reliability and could be potentially integrated into the optimal design problem of WDSs. Sensitivity analysis results show that the velocity parameters used in the new flow entropy has no significant impact on the relationship between diameter-sensitive flow entropy and reliability.
NASA Astrophysics Data System (ADS)
Frolov, Nikita S.; Goremyko, Mikhail V.; Makarov, Vladimir V.; Maksimenko, Vladimir A.; Hramov, Alexander E.
2017-03-01
In this paper we study the conditions of chimera states excitation in ensemble of non-locally coupled Kuramoto-Sakaguchi (KS) oscillators. In the framework of current research we analyze the dynamics of the homogeneous network containing identical oscillators. We show the chimera state formation process is sensitive to the parameters of coupling kernel and to the KS network initial state. To perform the analysis we have used the Ott-Antonsen (OA) ansatz to consider the behavior of infinitely large KS network.
Information transmission and signal permutation in active flow networks
NASA Astrophysics Data System (ADS)
Woodhouse, Francis G.; Fawcett, Joanna B.; Dunkel, Jörn
2018-03-01
Recent experiments show that both natural and artificial microswimmers in narrow channel-like geometries will self-organise to form steady, directed flows. This suggests that networks of flowing active matter could function as novel autonomous microfluidic devices. However, little is known about how information propagates through these far-from-equilibrium systems. Through a mathematical analogy with spin-ice vertex models, we investigate here the input–output characteristics of generic incompressible active flow networks (AFNs). Our analysis shows that information transport through an AFN is inherently different from conventional pressure or voltage driven networks. Active flows on hexagonal arrays preserve input information over longer distances than their passive counterparts and are highly sensitive to bulk topological defects, whose presence can be inferred from marginal input–output distributions alone. This sensitivity further allows controlled permutations on parallel inputs, revealing an unexpected link between active matter and group theory that can guide new microfluidic mixing strategies facilitated by active matter and aid the design of generic autonomous information transport networks.
NASA Technical Reports Server (NTRS)
Park, Nohpill; Reagan, Shawn; Franks, Greg; Jones, William G.
1999-01-01
This paper discusses analytical approaches to evaluating performance of Spacecraft On-Board Computing systems, thereby ultimately achieving a reliable spacecraft data communications systems. The sensitivity analysis approach of memory system on the ProSEDS (Propulsive Small Expendable Deployer System) as a part of its data communication system will be investigated. Also, general issues and possible approaches to reliable Spacecraft On-Board Interconnection Network and Processor Array will be shown. The performance issues of a spacecraft on-board computing systems such as sensitivity, throughput, delay and reliability will be introduced and discussed.
Hybrid network defense model based on fuzzy evaluation.
Cho, Ying-Chiang; Pan, Jen-Yi
2014-01-01
With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.
Statistical Analysis of Bus Networks in India
2016-01-01
In this paper, we model the bus networks of six major Indian cities as graphs in L-space, and evaluate their various statistical properties. While airline and railway networks have been extensively studied, a comprehensive study on the structure and growth of bus networks is lacking. In India, where bus transport plays an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer basic questions on its evolution, growth, robustness and resiliency. Although the common feature of small-world property is observed, our analysis reveals a wide spectrum of network topologies arising due to significant variation in the degree-distribution patterns in the networks. We also observe that these networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, such as Internet, WWW and airline, that are virtual, bus networks are physically constrained. Our findings therefore, throw light on the evolution of such geographically and constrained networks that will help us in designing more efficient bus networks in the future. PMID:27992590
Impervious surfaces and sewer pipe effects on stormwater runoff temperature
NASA Astrophysics Data System (ADS)
Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.
2013-10-01
The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.
Foley, Elaine; Rippon, Gina; Thai, Ngoc Jade; Longe, Olivia; Senior, Carl
2012-02-01
Very little is known about the neural structures involved in the perception of realistic dynamic facial expressions. In the present study, a unique set of naturalistic dynamic facial emotional expressions was created. Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend Haxby et al.'s [Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. The distributed human neural system for face perception. Trends in Cognitive Science, 4, 223-233, 2000] distributed neural system for face perception. This network includes early visual regions, such as the inferior occipital gyrus, which is identified as insensitive to motion or affect but sensitive to the visual stimulus, the STS, identified as specifically sensitive to motion, and the amygdala, recruited to process affect. Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as the inferior occipital gyrus and the STS, along with coupling between the STS and the amygdala, as well as the inferior frontal gyrus. These findings support the presence of a distributed network of cortical regions that mediate the perception of different dynamic facial expressions.
Identification of functional modules using network topology and high-throughput data.
Ulitsky, Igor; Shamir, Ron
2007-01-26
With the advent of systems biology, biological knowledge is often represented today by networks. These include regulatory and metabolic networks, protein-protein interaction networks, and many others. At the same time, high-throughput genomics and proteomics techniques generate very large data sets, which require sophisticated computational analysis. Usually, separate and different analysis methodologies are applied to each of the two data types. An integrated investigation of network and high-throughput information together can improve the quality of the analysis by accounting simultaneously for topological network properties alongside intrinsic features of the high-throughput data. We describe a novel algorithmic framework for this challenge. We first transform the high-throughput data into similarity values, (e.g., by computing pairwise similarity of gene expression patterns from microarray data). Then, given a network of genes or proteins and similarity values between some of them, we seek connected sub-networks (or modules) that manifest high similarity. We develop algorithms for this problem and evaluate their performance on the osmotic shock response network in S. cerevisiae and on the human cell cycle network. We demonstrate that focused, biologically meaningful and relevant functional modules are obtained. In comparison with extant algorithms, our approach has higher sensitivity and higher specificity. We have demonstrated that our method can accurately identify functional modules. Hence, it carries the promise to be highly useful in analysis of high throughput data.
Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi
2015-01-01
It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328
Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Lavelle, Thomas M.; Patnaik, Surya
2003-01-01
The neural network and regression methods of NASA Glenn Research Center s COMETBOARDS design optimization testbed were used to generate approximate analysis and design models for a subsonic aircraft operating at Mach 0.85 cruise speed. The analytical model is defined by nine design variables: wing aspect ratio, engine thrust, wing area, sweep angle, chord-thickness ratio, turbine temperature, pressure ratio, bypass ratio, fan pressure; and eight response parameters: weight, landing velocity, takeoff and landing field lengths, approach thrust, overall efficiency, and compressor pressure and temperature. The variables were adjusted to optimally balance the engines to the airframe. The solution strategy included a sensitivity model and the soft analysis model. Researchers generated the sensitivity model by training the approximators to predict an optimum design. The trained neural network predicted all response variables, within 5-percent error. This was reduced to 1 percent by the regression method. The soft analysis model was developed to replace aircraft analysis as the reanalyzer in design optimization. Soft models have been generated for a neural network method, a regression method, and a hybrid method obtained by combining the approximators. The performance of the models is graphed for aircraft weight versus thrust as well as for wing area and turbine temperature. The regression method followed the analytical solution with little error. The neural network exhibited 5-percent maximum error over all parameters. Performance of the hybrid method was intermediate in comparison to the individual approximators. Error in the response variable is smaller than that shown in the figure because of a distortion scale factor. The overall performance of the approximators was considered to be satisfactory because aircraft analysis with NASA Langley Research Center s FLOPS (Flight Optimization System) code is a synthesis of diverse disciplines: weight estimation, aerodynamic analysis, engine cycle analysis, propulsion data interpolation, mission performance, airfield length for landing and takeoff, noise footprint, and others.
Raz, Gal; Shpigelman, Lavi; Jacob, Yael; Gonen, Tal; Benjamini, Yoav; Hendler, Talma
2016-12-01
We introduce a novel method for delineating context-dependent functional brain networks whose connectivity dynamics are synchronized with the occurrence of a specific psychophysiological process of interest. In this method of context-related network dynamics analysis (CRNDA), a continuous psychophysiological index serves as a reference for clustering the whole-brain into functional networks. We applied CRNDA to fMRI data recorded during the viewing of a sadness-inducing film clip. The method reliably demarcated networks in which temporal patterns of connectivity related to the time series of reported emotional intensity. Our work successfully replicated the link between network connectivity and emotion rating in an independent sample group for seven of the networks. The demarcated networks have clear common functional denominators. Three of these networks overlap with distinct empathy-related networks, previously identified in distinct sets of studies. The other networks are related to sensorimotor processing, language, attention, and working memory. The results indicate that CRNDA, a data-driven method for network clustering that is sensitive to transient connectivity patterns, can productively and reliably demarcate networks that follow psychologically meaningful processes. Hum Brain Mapp 37:4654-4672, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Google matrix of the world network of economic activities
NASA Astrophysics Data System (ADS)
Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.
2015-07-01
Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.
Beauchet, O; Noublanche, F; Simon, R; Sekhon, H; Chabot, J; Levinoff, E J; Kabeshova, A; Launay, C P
2018-01-01
Identification of the risk of falls is important among older inpatients. This study aims to examine performance criteria (i.e.; sensitivity, specificity, positive predictive value, negative predictive value and accuracy) for fall prediction resulting from a nurse assessment and an artificial neural networks (ANNs) analysis in older inpatients hospitalized in acute care medical wards. A total of 848 older inpatients (mean age, 83.0±7.2 years; 41.8% female) admitted to acute care medical wards in Angers University hospital (France) were included in this study using an observational prospective cohort design. Within 24 hours after admission of older inpatients, nurses performed a bedside clinical assessment. Participants were separated into non-fallers and fallers (i.e.; ≥1 fall during hospitalization stay). The analysis was conducted using three feed forward ANNs (multilayer perceptron [MLP], averaged neural network, and neuroevolution of augmenting topologies [NEAT]). Seventy-three (8.6%) participants fell at least once during their hospital stay. ANNs showed a high specificity, regardless of which ANN was used, and the highest value reported was with MLP (99.8%). In contrast, sensitivity was lower, with values ranging between 98.4 to 14.8%. MLP had the highest accuracy (99.7). Performance criteria for fall prediction resulting from a bedside nursing assessment and an ANNs analysis was associated with a high specificity but a low sensitivity, suggesting that this combined approach should be used more as a diagnostic test than a screening test when considering older inpatients in acute care medical ward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Justin Matthew
These are the slides for a graduate presentation at Mississippi State University. It covers the following: the BRL Shaped-Charge Geometry in PAGOSA, mesh refinement study, surrogate modeling using a radial basis function network (RBFN), ruling out parameters using sensitivity analysis (equation of state study), uncertainty quantification (UQ) methodology, and sensitivity analysis (SA) methodology. In summary, a mesh convergence study was used to ensure that solutions were numerically stable by comparing PDV data between simulations. A Design of Experiments (DOE) method was used to reduce the simulation space to study the effects of the Jones-Wilkins-Lee (JWL) Parameters for the Composition Bmore » main charge. Uncertainty was quantified by computing the 95% data range about the median of simulation output using a brute force Monte Carlo (MC) random sampling method. Parameter sensitivities were quantified using the Fourier Amplitude Sensitivity Test (FAST) spectral analysis method where it was determined that detonation velocity, initial density, C1, and B1 controlled jet tip velocity.« less
Yashima, Kenta; Sasaki, Akira
2016-01-01
How can we identify the epidemiologically high-risk communities in a metapopulation network? The network centrality measure, which quantifies the relative importance of each location, is commonly utilized for this purpose. As the disease invasion condition is given from the basic reproductive ratio R0, we have introduced a novel centrality measure based on the sensitivity analysis of this R0 and shown its capability of revealing the characteristics that has been overlooked by the conventional centrality measures. The epidemic dynamics over the commute network of the Tokyo metropolitan area is theoretically analyzed by using this centrality measure. We found that, the impact of countermeasures at the largest station is more than 1,000 times stronger compare to that at the second largest station, even though the population sizes are only around 1.5 times larger. Furthermore, the effect of countermeasures at every station is strongly dependent on the existence and the number of commuters to this largest station. It is well known that the hubs are the most influential nodes, however, our analysis shows that only the largest among the network plays an extraordinary role. Lastly, we also found that, the location that is important for the prevention of disease invasion does not necessarily match the location that is important for reducing the number of infected. PMID:27607239
Ma, Chuang; Xin, Mingming; Feldmann, Kenneth A.; Wang, Xiangfeng
2014-01-01
Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning–based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive “noninformative” genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes. The retained “informative” genes were subsequently analyzed by ML-based network comparison to predict candidate stress-related genes showing expression and network differences between control and stress networks, based on 33 network topological characteristics. Comparative evaluation of the network-centric and gene-centric analytic methods showed that mlDNA substantially outperformed traditional statistical testing–based differential expression analysis at identifying stress-related genes, with markedly improved prediction accuracy. To experimentally validate the mlDNA predictions, we selected 89 candidates out of the 1784 predicted salt stress–related genes with available SALK T-DNA mutagenesis lines for phenotypic screening and identified two previously unreported genes, mutants of which showed salt-sensitive phenotypes. PMID:24520154
[Study based on ICA of "dorsal attention network" in patients with temporal lobe epilepsy].
Yang, Zhigen; Wang, Huinan; Zhang, Zhiqiang; Zhong, Yuan; Chen, Zhili; Lu, Guangming
2010-02-01
Many functional magnetic resonance imaging (fMRI) studies have revealed the deactivation phenomenon of default mode network in the patients with epilepsy; however, nearly not any of the reports has focused on the dorsal attention network of epilepsy. In this paper, independent component analysis (ICA) was used to isolate the dorsal attention network of 16 patients with temporal lobe epilepsy (TLE) and of 20 healthy normals; and a goodness-of-fit analysis was applied at the individual subject level to choose the interesting component. Intra-group analysis and inter-group analysis were performed. The results indicated that the dorsal attention network included bilateral intraparietal sulcus, middle frontal gyrus, human frontal eye field, posterior lobe of right cerebellum, etc. The TLE group showed decreased functional connectivity in most of the dorsal attention regions with the predominance in the bilateral intraparietal sulcus, middle frontal gyrus, and posterior lobe of right cerebellum. These data suggested that the intrinsic organization of the brain function might be disrupted in TLE. In addition, the decrease of goodness-of-fit scores suggests that activity in the dorsal attention network may ultimately prove a sensitive biomarker for TLE.
Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.
1997-01-01
The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.
Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.
1998-01-01
The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks.
Navarro Jimenez, M; Le Maître, O P; Knio, O M
2016-12-28
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks
Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.
2016-12-23
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes thatmore » the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. Here, a sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.« less
Global sensitivity analysis in stochastic simulators of uncertain reaction networks
NASA Astrophysics Data System (ADS)
Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.
2016-12-01
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.
2013-01-01
The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350
Hybrid Network Defense Model Based on Fuzzy Evaluation
2014-01-01
With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture. PMID:24574870
NASA Astrophysics Data System (ADS)
Dasgupta, Sambarta
Transient stability and sensitivity analysis of power systems are problems of enormous academic and practical interest. These classical problems have received renewed interest, because of the advancement in sensor technology in the form of phasor measurement units (PMUs). The advancement in sensor technology has provided unique opportunity for the development of real-time stability monitoring and sensitivity analysis tools. Transient stability problem in power system is inherently a problem of stability analysis of the non-equilibrium dynamics, because for a short time period following a fault or disturbance the system trajectory moves away from the equilibrium point. The real-time stability decision has to be made over this short time period. However, the existing stability definitions and hence analysis tools for transient stability are asymptotic in nature. In this thesis, we discover theoretical foundations for the short-term transient stability analysis of power systems, based on the theory of normally hyperbolic invariant manifolds and finite time Lyapunov exponents, adopted from geometric theory of dynamical systems. The theory of normally hyperbolic surfaces allows us to characterize the rate of expansion and contraction of co-dimension one material surfaces in the phase space. The expansion and contraction rates of these material surfaces can be computed in finite time. We prove that the expansion and contraction rates can be used as finite time transient stability certificates. Furthermore, material surfaces with maximum expansion and contraction rate are identified with the stability boundaries. These stability boundaries are used for computation of stability margin. We have used the theoretical framework for the development of model-based and model-free real-time stability monitoring methods. Both the model-based and model-free approaches rely on the availability of high resolution time series data from the PMUs for stability prediction. The problem of sensitivity analysis of power system, subjected to changes or uncertainty in load parameters and network topology, is also studied using the theory of normally hyperbolic manifolds. The sensitivity analysis is used for the identification and rank ordering of the critical interactions and parameters in the power network. The sensitivity analysis is carried out both in finite time and in asymptotic. One of the distinguishing features of the asymptotic sensitivity analysis is that the asymptotic dynamics of the system is assumed to be a periodic orbit. For asymptotic sensitivity analysis we employ combination of tools from ergodic theory and geometric theory of dynamical systems.
Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things.
Liu, Xiao; Liu, Anfeng; Huang, Changqin
2017-01-12
Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%-53.684% for a delay-sensitive event and reduce the communication costs by 5%-22.308% for interesting events, and reduce the network lifetime by about 28.713%.
Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things
Liu, Xiao; Liu, Anfeng; Huang, Changqin
2017-01-01
Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%–53.684% for a delay-sensitive event and reduce the communication costs by 5%–22.308% for interesting events, and reduce the network lifetime by about 28.713%. PMID:28085097
Top-down network analysis characterizes hidden termite-termite interactions.
Campbell, Colin; Russo, Laura; Marins, Alessandra; DeSouza, Og; Schönrogge, Karsten; Mortensen, David; Tooker, John; Albert, Réka; Shea, Katriona
2016-09-01
The analysis of ecological networks is generally bottom-up, where networks are established by observing interactions between individuals. Emergent network properties have been indicated to reflect the dominant mode of interactions in communities that might be mutualistic (e.g., pollination) or antagonistic (e.g., host-parasitoid communities). Many ecological communities, however, comprise species interactions that are difficult to observe directly. Here, we propose that a comparison of the emergent properties from detail-rich reference communities with known modes of interaction can inform our understanding of detail-sparse focal communities. With this top-down approach, we consider patterns of coexistence between termite species that live as guests in mounds built by other host termite species as a case in point. Termite societies are extremely sensitive to perturbations, which precludes determining the nature of their interactions through direct observations. We perform a literature review to construct two networks representing termite mound cohabitation in a Brazilian savanna and in the tropical forest of Cameroon. We contrast the properties of these cohabitation networks with a total of 197 geographically diverse mutualistic plant-pollinator and antagonistic host-parasitoid networks. We analyze network properties for the networks, perform a principal components analysis (PCA), and compute the Mahalanobis distance of the termite networks to the cloud of mutualistic and antagonistic networks to assess the extent to which the termite networks overlap with the properties of the reference networks. Both termite networks overlap more closely with the mutualistic plant-pollinator communities than the antagonistic host-parasitoid communities, although the Brazilian community overlap with mutualistic communities is stronger. The analysis raises the hypothesis that termite-termite cohabitation networks may be overall mutualistic. More broadly, this work provides support for the argument that cryptic communities may be analyzed via comparison to well-characterized communities.
Network-based model of the growth of termite nests
NASA Astrophysics Data System (ADS)
Eom, Young-Ho; Perna, Andrea; Fortunato, Santo; Darrouzet, Eric; Theraulaz, Guy; Jost, Christian
2015-12-01
We present a model for the growth of the transportation network inside nests of the social insect subfamily Termitinae (Isoptera, termitidae). These nests consist of large chambers (nodes) connected by tunnels (edges). The model based on the empirical analysis of the real nest networks combined with pruning (edge removal, either random or weighted by betweenness centrality) and a memory effect (preferential growth from the latest added chambers) successfully predicts emergent nest properties (degree distribution, size of the largest connected component, average path lengths, backbone link ratios, and local graph redundancy). The two pruning alternatives can be associated with different genuses in the subfamily. A sensitivity analysis on the pruning and memory parameters indicates that Termitinae networks favor fast internal transportation over efficient defense strategies against ant predators. Our results provide an example of how complex network organization and efficient network properties can be generated from simple building rules based on local interactions and contribute to our understanding of the mechanisms that come into play for the formation of termite networks and of biological transportation networks in general.
Pourahmad, Saeedeh; Hafizi-Rastani, Iman; Khalili, Hosseinali; Paydar, Shahram
2016-10-17
Generally, traumatic brain injury (TBI) patients do not have a stable condition, particularly after the first week of TBI. Hence, indicating the attributes in prognosis through a prediction model is of utmost importance since it helps caregivers with treatment-decision options, or prepares the relatives for the most-likely outcome. This study attempted to determine and order the attributes in prognostic prediction in TBI patients, based on early clinical findings. A hybrid method was employed, which combines a decision tree (DT) and an artificial neural network (ANN) in order to improve the modeling process. The DT approach was applied as the initial analysis of the network architecture to increase accuracy in prediction. Afterwards, the ANN structure was mapped from the initial DT based on a part of the data. Subsequently, the designed network was trained and validated by the remaining data. 5-fold cross-validation method was applied to train the network. The area under the receiver operating characteristic (ROC) curve, sensitivity, specificity, and accuracy rate were utilized as performance measures. The important attributes were then determined from the trained network using two methods: change of mean squared error (MSE), and sensitivity analysis (SA). The hybrid method offered better results compared to the DT method. The accuracy rate of 86.3 % vs. 82.2 %, sensitivity value of 55.1 % vs. 47.6 %, specificity value of 93.6 % vs. 91.1 %, and the area under the ROC curve of 0.705 vs. 0.695 were achieved for the hybrid method and DT, respectively. However, the attributes' order by DT method was more consistent with the clinical literature. The combination of different modeling methods can enhance their performance. However, it may create some complexities in computations and interpretations. The outcome of the present study could deliver some useful hints in prognostic prediction on the basis of early clinical findings for TBI patients.
Responses to auxin signals: an operating principle for dynamical sensitivity yet high resilience
Bravi, B.; Martin, O. C.
2018-01-01
Plants depend on the signalling of the phytohormone auxin for their development and for responding to environmental perturbations. The associated biomolecular signalling network involves a negative feedback on Aux/IAA proteins which mediate the influence of auxin (the signal) on the auxin response factor (ARF) transcription factors (the drivers of the response). To probe the role of this feedback, we consider alternative in silico signalling networks implementing different operating principles. By a comparative analysis, we find that the presence of a negative feedback allows the system to have a far larger sensitivity in its dynamical response to auxin and that this sensitivity does not prevent the system from being highly resilient. Given this insight, we build a new biomolecular signalling model for quantitatively describing such Aux/IAA and ARF responses. PMID:29410878
A Baseline for the Multivariate Comparison of Resting-State Networks
Allen, Elena A.; Erhardt, Erik B.; Damaraju, Eswar; Gruner, William; Segall, Judith M.; Silva, Rogers F.; Havlicek, Martin; Rachakonda, Srinivas; Fries, Jill; Kalyanam, Ravi; Michael, Andrew M.; Caprihan, Arvind; Turner, Jessica A.; Eichele, Tom; Adelsheim, Steven; Bryan, Angela D.; Bustillo, Juan; Clark, Vincent P.; Feldstein Ewing, Sarah W.; Filbey, Francesca; Ford, Corey C.; Hutchison, Kent; Jung, Rex E.; Kiehl, Kent A.; Kodituwakku, Piyadasa; Komesu, Yuko M.; Mayer, Andrew R.; Pearlson, Godfrey D.; Phillips, John P.; Sadek, Joseph R.; Stevens, Michael; Teuscher, Ursina; Thoma, Robert J.; Calhoun, Vince D.
2011-01-01
As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12–71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease. PMID:21442040
Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite.
Cui, Xiaoqiang; Li, Chang Ming; Zang, Jianfeng; Yu, Shucong
2007-06-15
A novel chitosan/PVI-Os(polyvinylimidazole-Os)/CNT(carbon nanotube)/LOD (lactate oxidase) network nanocomposite was constructed on gold electrode for detection of lactate. The composite was nanoengineered by selected matched material components and optimized composition ratio to produce a superior lactate sensor. Positively charged chitosan and PVI-Os were used as the matrix and the mediator to immobilize the negatively charged LOD and to enhance the electron transfer, respectively. CNTs were introduced as the essential component in the composite for the network nanostructure. FESEM (field emission scan electron microscopy) and electrochemical characterization demonstrated that CNT behaved as a cross-linker to network PVI and chitosan due to its nanoscaled and negative charged nature. This significantly improved the conductivity, stability and electroactivity for detection of lactate. The standard deviation of the sensor without CNT in the composite was greatly reduced from 19.6 to 4.9% by addition of CNTs. With optimized conditions the sensitivity and detection limit of the lactate sensor was 19.7 microA mM(-1)cm(-2) and 5 microM, respectively. The sensitivity was remarkably improved in comparison to the newly reported values of 0.15-3.85 microA mM(-1)cm(-2). This novel nanoengineering approach for selecting matched components to form a network nanostructure could be extended to other enzyme biosensors, and to have broad potential applications in diagnostics, life science and food analysis.
Engineering a Functional Small RNA Negative Autoregulation Network with Model-Guided Design.
Hu, Chelsea Y; Takahashi, Melissa K; Zhang, Yan; Lucks, Julius B
2018-05-22
RNA regulators are powerful components of the synthetic biology toolbox. Here, we expand the repertoire of synthetic gene networks built from these regulators by constructing a transcriptional negative autoregulation (NAR) network out of small RNAs (sRNAs). NAR network motifs are core motifs of natural genetic networks, and are known for reducing network response time and steady state signal. Here we use cell-free transcription-translation (TX-TL) reactions and a computational model to design and prototype sRNA NAR constructs. Using parameter sensitivity analysis, we design a simple set of experiments that allow us to accurately predict NAR function in TX-TL. We transfer successful network designs into Escherichia coli and show that our sRNA transcriptional network reduces both network response time and steady-state gene expression. This work broadens our ability to construct increasingly sophisticated RNA genetic networks with predictable function.
Sean P. Healey; Elizabeth Lapoint; Gretchen G. Moisen; Scott L. Powell
2011-01-01
The United States Forest Service Forest Inventory and Analysis (FIA) unit maintains a large national network of inventory plots.While the consistency and extent of this network make FIA data attractive for ecological modelling, the FIA is charged by statute not to publicly reveal inventory plot locations. However, use of FIA plot data by the remote sensing community...
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-08
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.
A selection model for accounting for publication bias in a full network meta-analysis.
Mavridis, Dimitris; Welton, Nicky J; Sutton, Alex; Salanti, Georgia
2014-12-30
Copas and Shi suggested a selection model to explore the potential impact of publication bias via sensitivity analysis based on assumptions for the probability of publication of trials conditional on the precision of their results. Chootrakool et al. extended this model to three-arm trials but did not fully account for the implications of the consistency assumption, and their model is difficult to generalize for complex network structures with more than three treatments. Fitting these selection models within a frequentist setting requires maximization of a complex likelihood function, and identification problems are common. We have previously presented a Bayesian implementation of the selection model when multiple treatments are compared with a common reference treatment. We now present a general model suitable for complex, full network meta-analysis that accounts for consistency when adjusting results for publication bias. We developed a design-by-treatment selection model to describe the mechanism by which studies with different designs (sets of treatments compared in a trial) and precision may be selected for publication. We fit the model in a Bayesian setting because it avoids the numerical problems encountered in the frequentist setting, it is generalizable with respect to the number of treatments and study arms, and it provides a flexible framework for sensitivity analysis using external knowledge. Our model accounts for the additional uncertainty arising from publication bias more successfully compared to the standard Copas model or its previous extensions. We illustrate the methodology using a published triangular network for the failure of vascular graft or arterial patency. Copyright © 2014 John Wiley & Sons, Ltd.
Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCullough, Michael; Iu, Herbert Ho-Ching; Small, Michael
2015-05-15
We investigate a generalised version of the recently proposed ordinal partition time series to network transformation algorithm. First, we introduce a fixed time lag for the elements of each partition that is selected using techniques from traditional time delay embedding. The resulting partitions define regions in the embedding phase space that are mapped to nodes in the network space. Edges are allocated between nodes based on temporal succession thus creating a Markov chain representation of the time series. We then apply this new transformation algorithm to time series generated by the Rössler system and find that periodic dynamics translate tomore » ring structures whereas chaotic time series translate to band or tube-like structures—thereby indicating that our algorithm generates networks whose structure is sensitive to system dynamics. Furthermore, we demonstrate that simple network measures including the mean out degree and variance of out degrees can track changes in the dynamical behaviour in a manner comparable to the largest Lyapunov exponent. We also apply the same analysis to experimental time series generated by a diode resonator circuit and show that the network size, mean shortest path length, and network diameter are highly sensitive to the interior crisis captured in this particular data set.« less
Jan, Hengtai; Chao, Yi-Ping; Cho, Kuan-Hung; Kuo, Li-Wei
2013-01-01
Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.
NASA Astrophysics Data System (ADS)
Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid
2016-08-01
This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS in the climatic region of Birjand.
NV: Nessus Vulnerability Visualization for the Web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Lane; Spahn, Riley B; Iannacone, Michael D
2012-01-01
Network vulnerability is a critical component of network se- curity. Yet vulnerability analysis has received relatively lit- tle attention from the security visualization community. In this paper we describe nv, a web-based Nessus vulnerability visualization. Nv utilizes treemaps and linked histograms to allow system administrators to discover, analyze, and man- age vulnerabilities on their networks. In addition to visual- izing single Nessus scans, nv supports the analysis of sequen- tial scans by showing which vulnerabilities have been fixed, remain open, or are newly discovered. Nv was also designed to operate completely in-browser, to avoid sending sensitive data to outside servers.more » We discuss the design of nv, as well as provide case studies demonstrating vulnerability analysis workflows which include a multiple-node testbed and data from the 2011 VAST Challenge.« less
Exploring the spatio-temporal neural basis of face learning
Yang, Ying; Xu, Yang; Jew, Carol A.; Pyles, John A.; Kass, Robert E.; Tarr, Michael J.
2017-01-01
Humans are experts at face individuation. Although previous work has identified a network of face-sensitive regions and some of the temporal signatures of face processing, as yet, we do not have a clear understanding of how such face-sensitive regions support learning at different time points. To study the joint spatio-temporal neural basis of face learning, we trained subjects to categorize two groups of novel faces and recorded their neural responses using magnetoencephalography (MEG) throughout learning. A regression analysis of neural responses in face-sensitive regions against behavioral learning curves revealed significant correlations with learning in the majority of the face-sensitive regions in the face network, mostly between 150–250 ms, but also after 300 ms. However, the effect was smaller in nonventral regions (within the superior temporal areas and prefrontal cortex) than that in the ventral regions (within the inferior occipital gyri (IOG), midfusiform gyri (mFUS) and anterior temporal lobes). A multivariate discriminant analysis also revealed that IOG and mFUS, which showed strong correlation effects with learning, exhibited significant discriminability between the two face categories at different time points both between 150–250 ms and after 300 ms. In contrast, the nonventral face-sensitive regions, where correlation effects with learning were smaller, did exhibit some significant discriminability, but mainly after 300 ms. In sum, our findings indicate that early and recurring temporal components arising from ventral face-sensitive regions are critically involved in learning new faces. PMID:28570739
Exploring the spatio-temporal neural basis of face learning.
Yang, Ying; Xu, Yang; Jew, Carol A; Pyles, John A; Kass, Robert E; Tarr, Michael J
2017-06-01
Humans are experts at face individuation. Although previous work has identified a network of face-sensitive regions and some of the temporal signatures of face processing, as yet, we do not have a clear understanding of how such face-sensitive regions support learning at different time points. To study the joint spatio-temporal neural basis of face learning, we trained subjects to categorize two groups of novel faces and recorded their neural responses using magnetoencephalography (MEG) throughout learning. A regression analysis of neural responses in face-sensitive regions against behavioral learning curves revealed significant correlations with learning in the majority of the face-sensitive regions in the face network, mostly between 150-250 ms, but also after 300 ms. However, the effect was smaller in nonventral regions (within the superior temporal areas and prefrontal cortex) than that in the ventral regions (within the inferior occipital gyri (IOG), midfusiform gyri (mFUS) and anterior temporal lobes). A multivariate discriminant analysis also revealed that IOG and mFUS, which showed strong correlation effects with learning, exhibited significant discriminability between the two face categories at different time points both between 150-250 ms and after 300 ms. In contrast, the nonventral face-sensitive regions, where correlation effects with learning were smaller, did exhibit some significant discriminability, but mainly after 300 ms. In sum, our findings indicate that early and recurring temporal components arising from ventral face-sensitive regions are critically involved in learning new faces.
Contextualization of drug-mediator relations using evidence networks.
Tran, Hai Joey; Speyer, Gil; Kiefer, Jeff; Kim, Seungchan
2017-05-31
Genomic analysis of drug response can provide unique insights into therapies that can be used to match the "right drug to the right patient." However, the process of discovering such therapeutic insights using genomic data is not straightforward and represents an area of active investigation. EDDY (Evaluation of Differential DependencY), a statistical test to detect differential statistical dependencies, is one method that leverages genomic data to identify differential genetic dependencies. EDDY has been used in conjunction with the Cancer Therapeutics Response Portal (CTRP), a dataset with drug-response measurements for more than 400 small molecules, and RNAseq data of cell lines in the Cancer Cell Line Encyclopedia (CCLE) to find potential drug-mediator pairs. Mediators were identified as genes that showed significant change in genetic statistical dependencies within annotated pathways between drug sensitive and drug non-sensitive cell lines, and the results are presented as a public web-portal (EDDY-CTRP). However, the interpretability of drug-mediator pairs currently hinders further exploration of these potentially valuable results. In this study, we address this challenge by constructing evidence networks built with protein and drug interactions from the STITCH and STRING interaction databases. STITCH and STRING are sister databases that catalog known and predicted drug-protein interactions and protein-protein interactions, respectively. Using these two databases, we have developed a method to construct evidence networks to "explain" the relation between a drug and a mediator. RESULTS: We applied this approach to drug-mediator relations discovered in EDDY-CTRP analysis and identified evidence networks for ~70% of drug-mediator pairs where most mediators were not known direct targets for the drug. Constructed evidence networks enable researchers to contextualize the drug-mediator pair with current research and knowledge. Using evidence networks, we were able to improve the interpretability of the EDDY-CTRP results by linking the drugs and mediators with genes associated with both the drug and the mediator. We anticipate that these evidence networks will help inform EDDY-CTRP results and enhance the generation of important insights to drug sensitivity that will lead to improved precision medicine applications.
NASA Astrophysics Data System (ADS)
Abdeh-Kolahchi, A.; Satish, M.; Datta, B.
2004-05-01
A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.
Network modelling methods for FMRI.
Smith, Stephen M; Miller, Karla L; Salimi-Khorshidi, Gholamreza; Webster, Matthew; Beckmann, Christian F; Nichols, Thomas E; Ramsey, Joseph D; Woolrich, Mark W
2011-01-15
There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.
2013-09-01
wave breaking (NWB) and eight wave breaking (WB) storms are shown...studies, and it follows that the wind storm characteristics are likely more three dimensional as well. For the purposes of this study, a severe DSWS is...regularly using the HWAS network at USAFA since its installation in 2004. A careful examination of these events reveals downslope storms that are
Wright, M J; Bishop, D T; Jackson, R C; Abernethy, B
2011-08-18
Badminton players of varying skill levels viewed normal and point-light video clips of opponents striking the shuttle towards the viewer; their task was to predict in which quadrant of the court the shuttle would land. In a whole-brain fMRI analysis we identified bilateral cortical networks sensitive to the anticipation task relative to control stimuli. This network is more extensive and localised than previously reported. Voxel clusters responding more strongly in experts than novices were associated with all task-sensitive areas, whereas voxels responding more strongly in novices were found outside these areas. Task-sensitive areas for normal and point-light video were very similar, whereas early visual areas responded differentially, indicating the primacy of kinematic information for sport-related anticipation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Zavaglia, Melissa; Hilgetag, Claus C
2016-06-01
Spatial attention is a prime example for the distributed network functions of the brain. Lesion studies in animal models have been used to investigate intact attentional mechanisms as well as perspectives for rehabilitation in the injured brain. Here, we systematically analyzed behavioral data from cooling deactivation and permanent lesion experiments in the cat, where unilateral deactivation of the posterior parietal cortex (in the vicinity of the posterior middle suprasylvian cortex, pMS) or the superior colliculus (SC) cause a severe neglect in the contralateral hemifield. Counterintuitively, additional deactivation of structures in the opposite hemisphere reverses the deficit. Using such lesion data, we employed a game-theoretical approach, multi-perturbation Shapley value analysis (MSA), for inferring functional contributions and network interactions of bilateral pMS and SC from behavioral performance in visual attention studies. The approach provides an objective theoretical strategy for lesion inferences and allows a unique quantitative characterization of regional functional contributions and interactions on the basis of multi-perturbations. The quantitative analysis demonstrated that right posterior parietal cortex and superior colliculus made the strongest positive contributions to left-field orienting, while left brain regions had negative contributions, implying that their perturbation may reverse the effects of contralateral lesions or improve normal function. An analysis of functional modulations and interactions among the regions revealed redundant interactions (implying functional overlap) between regions within each hemisphere, and synergistic interactions between bilateral regions. To assess the reliability of the MSA method in the face of variable and incomplete input data, we performed a sensitivity analysis, investigating how much the contribution values of the four regions depended on the performance of specific configurations and on the prediction of unknown performances. The results suggest that the MSA approach is sensitive to categorical, but insensitive to gradual changes in the input data. Finally, we created a basic network model that was based on the known anatomical interactions among cortical-tectal regions and reproduced the experimentally observed behavior in visual orienting. We discuss the structural organization of the network model relative to the causal modulations identified by MSA, to aid a mechanistic understanding of the attention network of the brain.
Ghanegolmohammadi, Farzan; Yoshida, Mitsunori; Ohnuki, Shinsuke; Sukegawa, Yuko; Okada, Hiroki; Obara, Keisuke; Kihara, Akio; Suzuki, Kuninori; Kojima, Tetsuya; Yachie, Nozomu; Hirata, Dai; Ohya, Yoshikazu
2017-01-01
We investigated the global landscape of Ca2+ homeostasis in budding yeast based on high-dimensional chemical-genetic interaction profiles. The morphological responses of 62 Ca2+-sensitive (cls) mutants were quantitatively analyzed with the image processing program CalMorph after exposure to a high concentration of Ca2+. After a generalized linear model was applied, an analysis of covariance model was used to detect significant Ca2+–cls interactions. We found that high-dimensional, morphological Ca2+–cls interactions were mixed with positive (86%) and negative (14%) chemical-genetic interactions, whereas one-dimensional fitness Ca2+–cls interactions were all negative in principle. Clustering analysis with the interaction profiles revealed nine distinct gene groups, six of which were functionally associated. In addition, characterization of Ca2+–cls interactions revealed that morphology-based negative interactions are unique signatures of sensitized cellular processes and pathways. Principal component analysis was used to discriminate between suppression and enhancement of the Ca2+-sensitive phenotypes triggered by inactivation of calcineurin, a Ca2+-dependent phosphatase. Finally, similarity of the interaction profiles was used to reveal a connected network among the Ca2+ homeostasis units acting in different cellular compartments. Our analyses of high-dimensional chemical-genetic interaction profiles provide novel insights into the intracellular network of yeast Ca2+ homeostasis. PMID:28566553
Sensitivity of directed networks to the addition and pruning of edges and vertices
NASA Astrophysics Data System (ADS)
Goltsev, A. V.; Timár, G.; Mendes, J. F. F.
2017-08-01
Directed networks have various topologically different extensive components, in contrast to a single giant component in undirected networks. We study the sensitivity (response) of the sizes of these extensive components in directed complex networks to the addition and pruning of edges and vertices. We introduce the susceptibility, which quantifies this sensitivity. We show that topologically different parts of a directed network have different sensitivity to the addition and pruning of edges and vertices and, therefore, they are characterized by different susceptibilities. These susceptibilities diverge at the critical point of the directed percolation transition, signaling the appearance (or disappearance) of the giant strongly connected component in the infinite size limit. We demonstrate this behavior in randomly damaged real and synthetic directed complex networks, such as the World Wide Web, Twitter, the Caenorhabditis elegans neural network, directed Erdős-Rényi graphs, and others. We reveal a nonmonotonic dependence of the sensitivity to random pruning of edges or vertices in the case of C. elegans and Twitter that manifests specific structural peculiarities of these networks. We propose the measurements of the susceptibilities during the addition or pruning of edges and vertices as a new method for studying structural peculiarities of directed networks.
Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias
2008-12-01
We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.
Yunoki, Tatsuya; Tabuchi, Yoshiaki; Hayashi, Atsushi; Kondo, Takashi
2016-07-01
BCL2-associated athanogene 3 (BAG3), a co-chaperone of the heat shock 70 kDa protein (HSPA) family of proteins, is a cytoprotective protein that acts against various stresses, including heat stress. The aim of the present study was to identify gene networks involved in the enhancement of hyperthermia (HT) sensitivity by the knockdown (KD) of BAG3 in human oral squamous cell carcinoma (OSCC) cells. Although a marked elevation in the protein expression of BAG3 was detected in human the OSCC HSC-3 cells exposed to HT at 44˚C for 90 min, its expression was almost completely suppressed in the cells transfected with small interfering RNA against BAG3 (siBAG) under normal and HT conditions. The silencing of BAG3 also enhanced the cell death that was increased in the HSC-3 cells by exposure to HT. Global gene expression analysis revealed many genes that were differentially expressed by >2-fold in the cells exposed to HT and transfected with siBAG. Moreover, Ingenuity® pathways analysis demonstrated two unique gene networks, designated as Pro-cell death and Anti-cell death, which were obtained from upregulated genes and were mainly associated with the biological functions of induction and the prevention of cell death, respectively. Of note, the expression levels of genes in the Pro-cell death and Anti-cell death gene networks were significantly elevated and reduced in the HT + BAG3-KD group compared to those in the HT control group, respectively. These results provide further insight into the molecular mechanisms involved in the enhancement of HT sensitivity by the silencing of BAG3 in human OSCC cells.
García Arroyo, Jose Luis; García Zapirain, Begoña
2014-01-01
By means of this study, a detection algorithm for the "pigment network" in dermoscopic images is presented, one of the most relevant indicators in the diagnosis of melanoma. The design of the algorithm consists of two blocks. In the first one, a machine learning process is carried out, allowing the generation of a set of rules which, when applied over the image, permit the construction of a mask with the pixels candidates to be part of the pigment network. In the second block, an analysis of the structures over this mask is carried out, searching for those corresponding to the pigment network and making the diagnosis, whether it has pigment network or not, and also generating the mask corresponding to this pattern, if any. The method was tested against a database of 220 images, obtaining 86% sensitivity and 81.67% specificity, which proves the reliability of the algorithm. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Camilo, Ana E. F.; Grégio, André; Santos, Rafael D. C.
2016-05-01
Malware detection may be accomplished through the analysis of their infection behavior. To do so, dynamic analysis systems run malware samples and extract their operating system activities and network traffic. This traffic may represent malware accessing external systems, either to steal sensitive data from victims or to fetch other malicious artifacts (configuration files, additional modules, commands). In this work, we propose the use of visualization as a tool to identify compromised systems based on correlating malware communications in the form of graphs and finding isomorphisms between them. We produced graphs from over 6 thousand distinct network traffic files captured during malware execution and analyzed the existing relationships among malware samples and IP addresses.
Application of a data-mining method based on Bayesian networks to lesion-deficit analysis
NASA Technical Reports Server (NTRS)
Herskovits, Edward H.; Gerring, Joan P.
2003-01-01
Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.
Häggström, Jenny; Cipriano, Mariateresa; Forshell, Linus Plym; Persson, Emma; Hammarsten, Peter; Stella, Nephi; Fowler, Christopher J
2014-08-01
The endocannabinoid system regulates cancer cell proliferation, and in prostate cancer a high cannabinoid CB1 receptor expression is associated with a poor prognosis. Down-stream mediators of CB1 receptor signaling in prostate cancer are known, but information on potential upstream regulators is lacking. Data from a well-characterized tumor tissue microarray were used for a Bayesian network analysis using the max-min hill-climbing method. In non-malignant tissue samples, a directionality of pEGFR (the phosphorylated form of the epidermal growth factor receptor) → CB1 receptors were found regardless as to whether the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) was included as a parameter. A similar result was found in the tumor tissue, but only when FAAH was included in the analysis. A second regulatory pathway, from the growth factor receptor ErbB2 → FAAH was also identified in the tumor samples. Transfection of AT1 prostate cancer cells with CB1 receptors induced a sensitivity to the growth-inhibiting effects of the CB receptor agonist CP55,940. The sensitivity was not dependent upon the level of receptor expression. Thus a high CB1 receptor expression alone does not drive the cells towards a survival phenotype in the presence of a CB receptor agonist. The data identify two potential regulators of the endocannabinoid system in prostate cancer and allow the construction of a model of a dysregulated endocannabinoid signaling network in this tumor. Further studies should be designed to test the veracity of the predictions of the network analysis in prostate cancer and other solid tumors. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Singh, Upendra K.; Tiwari, R. K.; Singh, S. B.
2013-03-01
This paper presents the effects of several parameters on the artificial neural networks (ANN) inversion of vertical electrical sounding (VES) data. Sensitivity of ANN parameters was examined on the performance of adaptive backpropagation (ABP) and Levenberg-Marquardt algorithms (LMA) to test the robustness to noisy synthetic as well as field geophysical data and resolving capability of these methods for predicting the subsurface resistivity layers. We trained, tested and validated ANN using the synthetic VES data as input to the networks and layer parameters of the models as network output. ANN learning parameters are varied and corresponding observations are recorded. The sensitivity analysis of synthetic data and real model demonstrate that ANN algorithms applied in VES data inversion should be considered well not only in terms of accuracy but also in terms of high computational efforts. Also the analysis suggests that ANN model with its various controlling parameters are largely data dependent and hence no unique architecture can be designed for VES data analysis. ANN based methods are also applied to the actual VES field data obtained from the tectonically vital geothermal areas of Jammu and Kashmir, India. Analysis suggests that both the ABP and LMA are suitable methods for 1-D VES modeling. But the LMA method provides greater degree of robustness than the ABP in case of 2-D VES modeling. Comparison of the inversion results with known lithology correlates well and also reveals the additional significant feature of reconsolidated breccia of about 7.0 m thickness beneath the overburden in some cases like at sounding point RDC-5. We may therefore conclude that ANN based methods are significantly faster and efficient for detection of complex layered resistivity structures with a relatively greater degree of precision and resolution.
Trame, MN; Lesko, LJ
2015-01-01
A systems pharmacology model typically integrates pharmacokinetic, biochemical network, and systems biology concepts into a unifying approach. It typically consists of a large number of parameters and reaction species that are interlinked based upon the underlying (patho)physiology and the mechanism of drug action. The more complex these models are, the greater the challenge of reliably identifying and estimating respective model parameters. Global sensitivity analysis provides an innovative tool that can meet this challenge. CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 69–79; doi:10.1002/psp4.6; published online 25 February 2015 PMID:27548289
Neural network representation and learning of mappings and their derivatives
NASA Technical Reports Server (NTRS)
White, Halbert; Hornik, Kurt; Stinchcombe, Maxwell; Gallant, A. Ronald
1991-01-01
Discussed here are recent theorems proving that artificial neural networks are capable of approximating an arbitrary mapping and its derivatives as accurately as desired. This fact forms the basis for further results establishing the learnability of the desired approximations, using results from non-parametric statistics. These results have potential applications in robotics, chaotic dynamics, control, and sensitivity analysis. An example involving learning the transfer function and its derivatives for a chaotic map is discussed.
Sensitivity analysis of reference evapotranspiration to sensor accuracy
USDA-ARS?s Scientific Manuscript database
Meteorological sensor networks are often used across agricultural regions to calculate the ASCE Standardized Reference ET Equation, and inaccuracies in individual sensors can lead to inaccuracies in ET estimates. Multiyear datasets from the semi-arid Colorado Agricultural Meteorological (CoAgMet) an...
An alternative respiratory sounds classification system utilizing artificial neural networks.
Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen
2015-01-01
Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.
Learning to Live Together: A Review of UNESCO's Associated Schools Project Network
NASA Astrophysics Data System (ADS)
Schweisfurth, Michele
2005-05-01
Some 7400 schools belong to the global network of UNESCO's Associated School Project Network. They are committed to promoting ideals such as human rights, intercultural understanding, peace and environmental protection. This study is based on an extensive review undertaken in 2003. It discusses the origins and analyzes the achievements of the Associated School Project Network in bringing change to schools, communities and national policy. The analysis employs a variety of models of educational innovation and reform in order to assess the horizontal and vertical impact of the Associated School Project Network. It draws general conclusions on the usefulness of such networks for intercultural learning and educational and social change. Key issues include the commitment of stakeholders; the treatment of culturally sensitive issues; cultural interpretations of certain subjects; the value of horizontal networks; and the difficulty of achieving vertical impact on national policy-making.
Malki, Karim; Mineur, Yann S; Tosto, Maria Grazia; Campbell, James; Karia, Priya; Jumabhoy, Irfan; Sluyter, Frans; Crusio, Wim E; Schalkwyk, Leonard C
2015-04-03
BALB/cJ is a strain susceptible to stress and extremely susceptible to a defective hedonic impact in response to chronic stressors. The strain offers much promise as an animal model for the study of stress related disorders. We present a comparative hippocampal gene expression study on the effects of unpredictable chronic mild stress on BALB/cJ and C57BL/6J mice. Affymetrix MOE 430 was used to measure hippocampal gene expression from 16 animals of two different strains (BALB/cJ and C57BL/6J) of both sexes and subjected to either unpredictable chronic mild stress (UCMS) or no stress. Differences were statistically evaluated through supervised and unsupervised linear modelling and using Weighted Gene Coexpression Network Analysis (WGCNA). In order to gain further understanding into mechanisms related to stress response, we cross-validated our results with a parallel study from the GENDEP project using WGCNA in a meta-analysis design. The effects of UCMS are visible through Principal Component Analysis which highlights the stress sensitivity of the BALB/cJ strain. A number of genes and gene networks related to stress response were uncovered including the Creb1 gene. WGCNA and pathway analysis revealed a gene network centered on Nfkb1. Results from the meta-analysis revealed a highly significant gene pathway centred on the Ubiquitin C (Ubc) gene. All pathways uncovered are associated with inflammation and immune response. The study investigated the molecular mechanisms underlying the response to adverse environment in an animal model using a GxE design. Stress-related differences were visible at the genomic level through PCA analysis highlighting the high sensitivity of BALB/cJ animals to environmental stressors. Several candidate genes and gene networks reported are associated with inflammation and neurogenesis and could serve to inform candidate gene selection in human studies and provide additional insight into the pathology of Major Depressive Disorder.
NASA Astrophysics Data System (ADS)
Kumar Sharma, A.; Murty, V. V. S. N.
2014-12-01
The distribution system is the final link between bulk power system and consumer end. A distinctive load flow solution method is used for analysis of the load flow of radial and weakly meshed network based on Kirchhoff's Current Law (KCL) and KVL. This method has excellent convergence characteristics for both radial as well as weakly meshed structure and is based on bus injection to branch current and branch-current to bus-voltage matrix. The main contribution of the paper is: (i) an analysis has been carried out for a weekly mesh network considering number of loops addition and its impact on the losses, kW and kVAr requirements from a system, and voltage profile, (ii) different load models, realistic ZIP load model and load growth impact on losses, voltage profile, kVA and kVAr requirements, (iii) impact of addition of loops on losses, voltage profile, kVA and kVAr requirements from substation, and (iv) comparison of system performance with radial distribution system. Voltage stability is a major concern in planning and operation of power systems. This paper also includes identifying the closeness critical bus which is the most sensitive to the voltage collapse in radial distribution networks. Node having minimum value of voltage stability index is the most sensitive node. Voltage stability index values are computed for meshed network with number of loops added in the system. The results have been obtained for IEEE 33 and 69 bus test system. The results have also been obtained for radial distribution system for comparison.
Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements of Biomaterials
Valentine, M. T.; Perlman, Z. E.; Gardel, M. L.; Shin, J. H.; Matsudaira, P.; Mitchison, T. J.; Weitz, D. A.
2004-01-01
Characterization of the properties of complex biomaterials using microrheological techniques has the promise of providing fundamental insights into their biomechanical functions; however, precise interpretations of such measurements are hindered by inadequate characterization of the interactions between tracers and the networks they probe. We here show that colloid surface chemistry can profoundly affect multiple particle tracking measurements of networks of fibrin, entangled F-actin solutions, and networks of cross-linked F-actin. We present a simple protocol to render the surface of colloidal probe particles protein-resistant by grafting short amine-terminated methoxy-poly(ethylene glycol) to the surface of carboxylated microspheres. We demonstrate that these poly(ethylene glycol)-coated tracers adsorb significantly less protein than particles coated with bovine serum albumin or unmodified probe particles. We establish that varying particle surface chemistry selectively tunes the sensitivity of the particles to different physical properties of their microenvironments. Specifically, particles that are weakly bound to a heterogeneous network are sensitive to changes in network stiffness, whereas protein-resistant tracers measure changes in the viscosity of the fluid and in the network microstructure. We demonstrate experimentally that two-particle microrheology analysis significantly reduces differences arising from tracer surface chemistry, indicating that modifications of network properties near the particle do not introduce large-scale heterogeneities. Our results establish that controlling colloid-protein interactions is crucial to the successful application of multiple particle tracking techniques to reconstituted protein networks, cytoplasm, and cells. PMID:15189896
Ziada, A M; Lisle, T C; Snow, P B; Levine, R F; Miller, G; Crawford, E D
2001-04-15
The advent of advanced computing techniques has provided the opportunity to analyze clinical data using artificial intelligence techniques. This study was designed to determine whether a neural network could be developed using preoperative prognostic indicators to predict the pathologic stage and time of biochemical failure for patients who undergo radical prostatectomy. The preoperative information included TNM stage, prostate size, prostate specific antigen (PSA) level, biopsy results (Gleason score and percentage of positive biopsy), as well as patient age. All 309 patients underwent radical prostatectomy at the University of Colorado Health Sciences Center. The data from all patients were used to train a multilayer perceptron artificial neural network. The failure rate was defined as a rise in the PSA level > 0.2 ng/mL. The biochemical failure rate in the data base used was 14.2%. Univariate and multivariate analyses were performed to validate the results. The neural network statistics for the validation set showed a sensitivity and specificity of 79% and 81%, respectively, for the prediction of pathologic stage with an overall accuracy of 80% compared with an overall accuracy of 67% using the multivariate regression analysis. The sensitivity and specificity for the prediction of failure were 67% and 85%, respectively, demonstrating a high confidence in predicting failure. The overall accuracy rates for the artificial neural network and the multivariate analysis were similar. Neural networks can offer a convenient vehicle for clinicians to assess the preoperative risk of disease progression for patients who are about to undergo radical prostatectomy. Continued investigation of this approach with larger data sets seems warranted. Copyright 2001 American Cancer Society.
Assuring SS7 dependability: A robustness characterization of signaling network elements
NASA Astrophysics Data System (ADS)
Karmarkar, Vikram V.
1994-04-01
Current and evolving telecommunication services will rely on signaling network performance and reliability properties to build competitive call and connection control mechanisms under increasing demands on flexibility without compromising on quality. The dimensions of signaling dependability most often evaluated are the Rate of Call Loss and End-to-End Route Unavailability. A third dimension of dependability that captures the concern about large or catastrophic failures can be termed Network Robustness. This paper is concerned with the dependability aspects of the evolving Signaling System No. 7 (SS7) networks and attempts to strike a balance between the probabilistic and deterministic measures that must be evaluated to accomplish a risk-trend assessment to drive architecture decisions. Starting with high-level network dependability objectives and field experience with SS7 in the U.S., potential areas of growing stringency in network element (NE) dependability are identified to improve against current measures of SS7 network quality, as per-call signaling interactions increase. A sensitivity analysis is presented to highlight the impact due to imperfect coverage of duplex network component or element failures (i.e., correlated failures), to assist in the setting of requirements on NE robustness. A benefit analysis, covering several dimensions of dependability, is used to generate the domain of solutions available to the network architect in terms of network and network element fault tolerance that may be specified to meet the desired signaling quality goals.
The Deep Space Network: Noise temperature concepts, measurements, and performance
NASA Technical Reports Server (NTRS)
Stelzried, C. T.
1982-01-01
The use of higher operational frequencies is being investigated for improved performance of the Deep Space Network. Noise temperature and noise figure concepts are used to describe the noise performance of these receiving systems. The ultimate sensitivity of a linear receiving system is limited by the thermal noise of the source and the quantum noise of the receiver amplifier. The atmosphere, antenna and receiver amplifier of an Earth station receiving system are analyzed separately and as a system. Performance evaluation and error analysis techniques are investigated. System noise temperature and antenna gain parameters are combined to give an overall system figure of merit G/T. Radiometers are used to perform radio ""star'' antenna and system sensitivity calibrations. These are analyzed and the performance of several types compared to an idealized total power radiometer. The theory of radiative transfer is applicable to the analysis of transmission medium loss. A power series solution in terms of the transmission medium loss is given for the solution of the noise temperature contribution.
An adjoint-based sensitivity analysis of thermoacoustic network models
NASA Astrophysics Data System (ADS)
Sogaro, Francesca; Morgans, Aimee; Schmid, Peter
2017-11-01
Thermoacoustic instability is a phenomenon that occurs in numerous combustion systems, from rockets to land-based gas turbines. The acoustic oscillations of these systems are of significant importance as they can result in severe vibrations, thrust oscillations, thermal stresses and mechanical loads that lead to fatigue or even failure. In this work we use a low-order network model representation of a combustor system where linear acoustics are solved together with the appropriate boundary conditions, area change jump conditions, acoustic dampers and an appropriate flame transfer function. Special emphasis is directed towards the interaction between acoustically driven instabilities and flame-intrinsic modes. Adjoint methods are used to perform a sensitivity analysis of the spectral properties of the system to changes in the parameters involved. An exchange of modal identity between acoustic and intrinsic modes will be demonstrated and analyzed. The results provide insight into the interplay between various mode types and build a quantitative foundation for the design of combustors.
Alexander, Shirin; Dunnill, Charles W; Barron, Andrew R
2016-03-15
The assembly of temperature/pH sensitive complex microparticle structures through chemisorption and physisorption provides a responsive system that offers application as routes to immobilization of proppants in-situ. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) along with energy dispersive X-ray analysis (EDX) have been used to characterize a series of bi-functionalized monolayers and/or multilayers grown on alumina microparticles and investigate the reactive nature of both temperature sensitive cross-linker (epoxy resin) with the layers and pH-responsive bridging layer (polyetheramine). The bifunctional acids, behaving as molecular anchors, allow for a controlled reaction with a cross-linker (resin or polymer) with the formation of networks, which is either irreversible or reversible based on the nature of the cross-linker. The networks results in formation of porous hierarchical particles that offer a potential route to the creation of immobile proppant pack. Copyright © 2015 Elsevier Inc. All rights reserved.
Sironi, Emanuele; Taroni, Franco; Baldinotti, Claudio; Nardi, Cosimo; Norelli, Gian-Aristide; Gallidabino, Matteo; Pinchi, Vilma
2017-11-14
The present study aimed to investigate the performance of a Bayesian method in the evaluation of dental age-related evidence collected by means of a geometrical approximation procedure of the pulp chamber volume. Measurement of this volume was based on three-dimensional cone beam computed tomography images. The Bayesian method was applied by means of a probabilistic graphical model, namely a Bayesian network. Performance of that method was investigated in terms of accuracy and bias of the decisional outcomes. Influence of an informed elicitation of the prior belief of chronological age was also studied by means of a sensitivity analysis. Outcomes in terms of accuracy were adequate with standard requirements for forensic adult age estimation. Findings also indicated that the Bayesian method does not show a particular tendency towards under- or overestimation of the age variable. Outcomes of the sensitivity analysis showed that results on estimation are improved with a ration elicitation of the prior probabilities of age.
Space station data system analysis/architecture study. Task 3: Trade studies, DR-5, volume 1
NASA Technical Reports Server (NTRS)
1985-01-01
The primary objective of Task 3 is to provide additional analysis and insight necessary to support key design/programmatic decision for options quantification and selection for system definition. This includes: (1) the identification of key trade study topics; (2) the definition of a trade study procedure for each topic (issues to be resolved, key inputs, criteria/weighting, methodology); (3) conduct tradeoff and sensitivity analysis; and (4) the review/verification of results within the context of evolving system design and definition. The trade study topics addressed in this volume include space autonomy and function automation, software transportability, system network topology, communications standardization, onboard local area networking, distributed operating system, software configuration management, and the software development environment facility.
Martens, Marijn B; Houweling, Arthur R; E Tiesinga, Paul H
2017-02-01
Neuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide stability against internal fluctuations in the firing rate, while simultaneously making the circuits sensitive to small external perturbations. Here we studied whether stability and sensitivity are affected by the connectivity structure in recurrently connected spiking networks. We found that anti-correlation between the number of afferent (in-degree) and efferent (out-degree) synaptic connections of neurons increases stability against pathological bursting, relative to networks where the degrees were either positively correlated or uncorrelated. In the stable network state, stimulation of a few cells could lead to a detectable change in the firing rate. To quantify the ability of networks to detect the stimulation, we used a receiver operating characteristic (ROC) analysis. For a given level of background noise, networks with anti-correlated degrees displayed the lowest false positive rates, and consequently had the highest stimulus detection performance. We propose that anti-correlation in the degree distribution may be a computational strategy employed by sensory cortices to increase the detectability of external stimuli. We show that networks with anti-correlated degrees can in principle be formed by applying learning rules comprised of a combination of spike-timing dependent plasticity, homeostatic plasticity and pruning to networks with uncorrelated degrees. To test our prediction we suggest a novel experimental method to estimate correlations in the degree distribution.
PhotoMEA: an opto-electronic biosensor for monitoring in vitro neuronal network activity.
Ghezzi, Diego; Pedrocchi, Alessandra; Menegon, Andrea; Mantero, Sara; Valtorta, Flavia; Ferrigno, Giancarlo
2007-02-01
PhotoMEA is a biosensor useful for the analysis of an in vitro neuronal network, fully based on optical methods. Its function is based on the stimulation of neurons with caged glutamate and the recording of neuronal activity by Voltage-Sensitive fluorescent Dyes (VSD). The main advantage is that it will be possible to stimulate even at sub-single neuron level and to record with high resolution the activity of the entire network in the culture. A large-scale view of neuronal intercommunications offers a unique opportunity for testing the ability of drugs to affect neuronal properties as well as alterations in the behaviour of the entire network. The concept and a prototype for validation is described here in detail.
Schryer, David W.; Peterson, Pearu; Illaste, Ardo; Vendelin, Marko
2012-01-01
To characterize intracellular energy transfer in the heart, two organ-level methods have frequently been employed: inversion and saturation transfer, and dynamic labeling. Creatine kinase (CK) fluxes obtained by following oxygen labeling have been considerably smaller than the fluxes determined by saturation transfer. It has been proposed that dynamic labeling determines net flux through CK shuttle, whereas saturation transfer measures total unidirectional flux. However, to our knowledge, no sensitivity analysis of flux determination by oxygen labeling has been performed, limiting our ability to compare flux distributions predicted by different methods. Here we analyze oxygen labeling in a physiological heart phosphotransfer network with active CK and adenylate kinase (AdK) shuttles and establish which fluxes determine the labeling state. A mathematical model consisting of a system of ordinary differential equations was composed describing enrichment in each phosphoryl group and inorganic phosphate. By varying flux distributions in the model and calculating the labeling, we analyzed labeling sensitivity to different fluxes in the heart. We observed that the labeling state is predominantly sensitive to total unidirectional CK and AdK fluxes and not to net fluxes. We conclude that measuring dynamic incorporation of into the high-energy phosphotransfer network in heart does not permit unambiguous determination of energetic fluxes with a higher magnitude than the ATP synthase rate when the bidirectionality of fluxes is taken into account. Our analysis suggests that the flux distributions obtained using dynamic labeling, after removing the net flux assumption, are comparable with those from inversion and saturation transfer. PMID:23236266
MUFFINN: cancer gene discovery via network analysis of somatic mutation data.
Cho, Ara; Shim, Jung Eun; Kim, Eiru; Supek, Fran; Lehner, Ben; Lee, Insuk
2016-06-23
A major challenge for distinguishing cancer-causing driver mutations from inconsequential passenger mutations is the long-tail of infrequently mutated genes in cancer genomes. Here, we present and evaluate a method for prioritizing cancer genes accounting not only for mutations in individual genes but also in their neighbors in functional networks, MUFFINN (MUtations For Functional Impact on Network Neighbors). This pathway-centric method shows high sensitivity compared with gene-centric analyses of mutation data. Notably, only a marginal decrease in performance is observed when using 10 % of TCGA patient samples, suggesting the method may potentiate cancer genome projects with small patient populations.
Self-match based on polling scheme for passive optical network monitoring
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Guo, Hao; Jia, Xinhong; Liao, Qinghua
2018-06-01
We propose a self-match based on polling scheme for passive optical network monitoring. Each end-user is equipped with an optical matcher that exploits only the specific length patchcord and two different fiber Bragg gratings with 100% reflectivity. The simple and low-cost scheme can greatly simplify the final recognition processing of the network link status and reduce the sensitivity of the photodetector. We analyze the time-domain relation between reflected pulses and establish the calculation model to evaluate the false alarm rate. The feasibility of the proposed scheme and the validity of the time-domain relation analysis are experimentally demonstrated.
The Deep Space Network information system in the year 2000
NASA Technical Reports Server (NTRS)
Markley, R. W.; Beswick, C. A.
1992-01-01
The Deep Space Network (DSN), the largest, most sensitive scientific communications and radio navigation network in the world, is considered. Focus is made on the telemetry processing, monitor and control, and ground data transport architectures of the DSN ground information system envisioned for the year 2000. The telemetry architecture will be unified from the front-end area to the end user. It will provide highly automated monitor and control of the DSN, automated configuration of support activities, and a vastly improved human interface. Automated decision support systems will be in place for DSN resource management, performance analysis, fault diagnosis, and contingency management.
Differential reward responses during competition against in- and out-of-network others.
Fareri, Dominic S; Delgado, Mauricio R
2014-04-01
Social interactions occur within a variety of different contexts--cooperative/competitive--and often involve members of our social network. Here, we investigated whether social network modulated the value placed on positive outcomes during a competitive context. Eighteen human participants played a simple card-guessing game with three different competitors: a close friend (in-network), a confederate (out-of-network) and a random number generator (non-social condition) while undergoing functional magnetic resonance imaging. Neuroimaging results at the time of outcome receipt demonstrated a significant main effect of competitor across multiple regions of medial prefrontal cortex, with Blood Oxygen Level Dependent (BOLD) responses strongest when competing against one's friend compared with all other conditions. Striatal BOLD responses demonstrated a more general sensitivity to positive compared with negative monetary outcomes, which an exploratory analysis revealed to be stronger when interacting with social, compared with non-social, competitors. Interestingly, a Granger causality analysis indicated directed influences sent from an medial prefrontal cortex (mPFC) region, which shows social network differentiation of outcomes, and the ventral striatum bilaterally. Our results suggest that when competing against others of varying degrees of social network, mPFC differentially values these outcomes, perhaps treating in-network outcomes as more informative, leaving the striatum to more general value computations.
Differential reward responses during competition against in- and out-of-network others
Fareri, Dominic S.
2014-01-01
Social interactions occur within a variety of different contexts––cooperative/competitive––and often involve members of our social network. Here, we investigated whether social network modulated the value placed on positive outcomes during a competitive context. Eighteen human participants played a simple card-guessing game with three different competitors: a close friend (in-network), a confederate (out-of-network) and a random number generator (non-social condition) while undergoing functional magnetic resonance imaging. Neuroimaging results at the time of outcome receipt demonstrated a significant main effect of competitor across multiple regions of medial prefrontal cortex, with Blood Oxygen Level Dependent (BOLD) responses strongest when competing against one’s friend compared with all other conditions. Striatal BOLD responses demonstrated a more general sensitivity to positive compared with negative monetary outcomes, which an exploratory analysis revealed to be stronger when interacting with social, compared with non-social, competitors. Interestingly, a Granger causality analysis indicated directed influences sent from an medial prefrontal cortex (mPFC) region, which shows social network differentiation of outcomes, and the ventral striatum bilaterally. Our results suggest that when competing against others of varying degrees of social network, mPFC differentially values these outcomes, perhaps treating in-network outcomes as more informative, leaving the striatum to more general value computations. PMID:23314007
Molloy Elreda, Lauren; Coatsworth, J Douglas; Gest, Scott D; Ram, Nilam; Bamberger, Katharine
2016-11-01
Although the majority of evidence-based programs are designed for group delivery, group process and its role in participant outcomes have received little empirical attention. Data were collected from 20 groups of participants (94 early adolescents, 120 parents) enrolled in an efficacy trial of a mindfulness-based adaptation of the Strengthening Families Program (MSFP). Following each weekly session, participants reported on their relations to group members. Social network analysis and methods sensitive to intraindividual variability were integrated to examine weekly covariation between group process and participant progress, and to predict post-intervention outcomes from levels and changes in group process. Results demonstrate hypothesized links between network indices of group process and intervention outcomes and highlight the value of this unique analytic approach to studying intervention group process.
Jones, Andrew S; Taktak, Azzam G F; Helliwell, Timothy R; Fenton, John E; Birchall, Martin A; Husband, David J; Fisher, Anthony C
2006-06-01
The accepted method of modelling and predicting failure/survival, Cox's proportional hazards model, is theoretically inferior to neural network derived models for analysing highly complex systems with large datasets. A blinded comparison of the neural network versus the Cox's model in predicting survival utilising data from 873 treated patients with laryngeal cancer. These were divided randomly and equally into a training set and a study set and Cox's and neural network models applied in turn. Data were then divided into seven sets of binary covariates and the analysis repeated. Overall survival was not significantly different on Kaplan-Meier plot, or with either test model. Although the network produced qualitatively similar results to Cox's model it was significantly more sensitive to differences in survival curves for age and N stage. We propose that neural networks are capable of prediction in systems involving complex interactions between variables and non-linearity.
Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger
2016-01-01
Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus. DOI: http://dx.doi.org/10.7554/eLife.07727.001 PMID:26845523
Reconciling uncertain costs and benefits in bayes nets for invasive species management
Burgman, M.A.; Wintle, B.A.; Thompson, C.A.; Moilanen, A.; Runge, M.C.; Ben-Haim, Y.
2010-01-01
Bayes nets are used increasingly to characterize environmental systems and formalize probabilistic reasoning to support decision making. These networks treat probabilities as exact quantities. Sensitivity analysis can be used to evaluate the importance of assumptions and parameter estimates. Here, we outline an application of info-gap theory to Bayes nets that evaluates the sensitivity of decisions to possibly large errors in the underlying probability estimates and utilities. We apply it to an example of management and eradication of Red Imported Fire Ants in Southern Queensland, Australia and show how changes in management decisions can be justified when uncertainty is considered. ?? 2009 Society for Risk Analysis.
He, Zongling; Cui, Qian; Zheng, Junjie; Duan, Xujun; Pang, Yajing; Gao, Qing; Han, Shaoqiang; Long, Zhiliang; Wang, Yifeng; Li, Jiao; Wang, Xiao; Zhao, Jingping; Chen, Huafu
2016-11-01
Major depressive disorder (MDD) may involve alterations in brain functional connectivity in multiple neural circuits and present large-scale network dysfunction. Patients with treatment-resistant depression (TRD) and treatment-sensitive depression (TSD) show different responses to antidepressants and aberrant brain functions. This study aims to investigate functional connectivity patterns of TRD and TSD at the whole brain resting state. Seventeen patients with TRD, 17 patients with TSD, and 17 healthy controls matched with age, gender, and years of education were recruited in this study. The brain was divided using an automated anatomical labeling atlas into 90 regions of interest, which were used to construct the entire brain functional networks. An analysis method called network-based statistic was used to explore the dysconnected subnetworks of TRD and TSD at different frequency bands. At resting state, TSD and TRD present characteristic patterns of network dysfunction at special frequency bands. The dysconnected subnetwork of TSD mainly lies in the fronto-parietal top-down control network. Moreover, the abnormal neural circuits of TRD are extensive and complex. These circuits not only depend on the abnormal affective network but also involve other networks, including salience network, auditory network, visual network, and language processing cortex. Our findings reflect that the pathological mechanism of TSD may refer to impairment in cognitive control, whereas TRD mainly triggers the dysfunction of emotion processing and affective cognition. This study reveals that differences in brain functional connectivity at resting state reflect distinct pathophysiological mechanisms in TSD and TRD. These findings may be helpful in differentiating two types of MDD and predicting treatment responses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Global and regional kinematics with VLBI
NASA Technical Reports Server (NTRS)
Ma, Chopo
1994-01-01
Since a VLBI station cannot operate in isolation and since simultaneous operation of the entire VLBI network is impractical, it is necessary to design observing programs with periodic observing sessions using networks of 3-7 stations that, when treated together, will have the necessary interstation data and network overlaps to determine the desired rates of change. Thus, there has been a mix of global, intercontinental, transcontinental, and regional networks to make measurements ranging from plate motions to deformation over a few hundred km. Over time, even networks focusing on regional deformation using mobile VLBI included large stations removed by several thousand km to increase sensitivity, determine EOP more accurately, and provide better ties to the terrestrial reference frame (TRF). Analysis products have also evolved, beginning with baseline components, and then to full three-dimensional site velocities in a global TRF.
Genomic Methods for Clinical and Translational Pain Research
Wang, Dan; Kim, Hyungsuk; Wang, Xiao-Min; Dionne, Raymond
2012-01-01
Pain is a complex sensory experience for which the molecular mechanisms are yet to be fully elucidated. Individual differences in pain sensitivity are mediated by a complex network of multiple gene polymorphisms, physiological and psychological processes, and environmental factors. Here, we present the methods for applying unbiased molecular-genetic approaches, genome-wide association study (GWAS), and global gene expression analysis, to help better understand the molecular basis of pain sensitivity in humans and variable responses to analgesic drugs. PMID:22351080
Minimizing species extinctions through strategic planning for conservation fencing.
Ringma, Jeremy L; Wintle, Brendan; Fuller, Richard A; Fisher, Diana; Bode, Michael
2017-10-01
Conservation fences are an increasingly common management action, particularly for species threatened by invasive predators. However, unlike many conservation actions, fence networks are expanding in an unsystematic manner, generally as a reaction to local funding opportunities or threats. We conducted a gap analysis of Australia's large predator-exclusion fence network by examining translocation of Australian mammals relative to their extinction risk. To address gaps identified in species representation, we devised a systematic prioritization method for expanding the conservation fence network that explicitly incorporated population viability analysis and minimized expected species' extinctions. The approach was applied to New South Wales, Australia, where the state government intends to expand the existing conservation fence network. Existing protection of species in fenced areas was highly uneven; 67% of predator-sensitive species were unrepresented in the fence network. Our systematic prioritization yielded substantial efficiencies in that it reduced expected number of species extinctions up to 17 times more effectively than ad hoc approaches. The outcome illustrates the importance of governance in coordinating management action when multiple projects have similar objectives and rely on systematic methods rather than expanding networks opportunistically. © 2017 Society for Conservation Biology.
Taylor, Dane; Skardal, Per Sebastian; Sun, Jie
2016-01-01
Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications—for which proper functionality depends sensitively on the extent of synchronization—there remains a lack of understanding for how systems can best evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system’s ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments. PMID:27872501
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... established sales and marketing network in the United States that will allow it to be immediately competitive... making sure that your comment does not include any sensitive personal information, like anyone's Social... information such as costs, sales statistics, inventories, formulas, patterns, devices, manufacturing processes...
Lee, S W; Jeong, B S; Choi, J; Kim, J-W
2015-01-01
Men tend to have greater positive responses than women to explicit visual erotic stimuli (EVES). However, it remains unclear, which brain network makes men more sensitive to EVES and which factors contribute to the brain network activity. In this study, we aimed to assess the effect of sex difference on brain connectivity patterns by EVES. We also investigated the association of testosterone with brain connection that showed the effects of sex difference. During functional magnetic resonance imaging scans, 14 males and 14 females were asked to see alternating blocks of pictures that were either erotic or non-erotic. Psychophysiological interaction analysis was performed to investigate the functional connectivity of the nucleus accumbens (NA) as it related to EVES. Men showed significantly greater EVES-specific functional connection between the right NA and the right lateral occipital cortex (LOC). In addition, the right NA and the right LOC network activity was positively correlated with the plasma testosterone level in men. Our results suggest that the reason men are sensitive to EVES is the increased interaction in the visual reward networks, which is modulated by their plasma testosterone level.
Simulation of Attacks for Security in Wireless Sensor Network.
Diaz, Alvaro; Sanchez, Pablo
2016-11-18
The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node's software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work.
Local and global responses in complex gene regulation networks
NASA Astrophysics Data System (ADS)
Tsuchiya, Masa; Selvarajoo, Kumar; Piras, Vincent; Tomita, Masaru; Giuliani, Alessandro
2009-04-01
An exacerbated sensitivity to apparently minor stimuli and a general resilience of the entire system stay together side-by-side in biological systems. This apparent paradox can be explained by the consideration of biological systems as very strongly interconnected network systems. Some nodes of these networks, thanks to their peculiar location in the network architecture, are responsible for the sensitivity aspects, while the large degree of interconnection is at the basis of the resilience properties of the system. One relevant feature of the high degree of connectivity of gene regulation networks is the emergence of collective ordered phenomena influencing the entire genome and not only a specific portion of transcripts. The great majority of existing gene regulation models give the impression of purely local ‘hard-wired’ mechanisms disregarding the emergence of global ordered behavior encompassing thousands of genes while the general, genome wide, aspects are less known. Here we address, on a data analysis perspective, the discrimination between local and global scale regulations, this goal was achieved by means of the examination of two biological systems: innate immune response in macrophages and oscillating growth dynamics in yeast. Our aim was to reconcile the ‘hard-wired’ local view of gene regulation with a global continuous and scalable one borrowed from statistical physics. This reconciliation is based on the network paradigm in which the local ‘hard-wired’ activities correspond to the activation of specific crucial nodes in the regulation network, while the scalable continuous responses can be equated to the collective oscillations of the network after a perturbation.
A Bayesian network meta-analysis for binary outcome: how to do it.
Greco, Teresa; Landoni, Giovanni; Biondi-Zoccai, Giuseppe; D'Ascenzo, Fabrizio; Zangrillo, Alberto
2016-10-01
This study presents an overview of conceptual and practical issues of a network meta-analysis (NMA), particularly focusing on its application to randomised controlled trials with a binary outcome of interest. We start from general considerations on NMA to specifically appraise how to collect study data, structure the analytical network and specify the requirements for different models and parameter interpretations, with the ultimate goal of providing physicians and clinician-investigators a practical tool to understand pros and cons of NMA. Specifically, we outline the key steps, from the literature search to sensitivity analysis, necessary to perform a valid NMA of binomial data, exploiting Markov Chain Monte Carlo approaches. We also apply this analytical approach to a case study on the beneficial effects of volatile agents compared to total intravenous anaesthetics for surgery to further clarify the statistical details of the models, diagnostics and computations. Finally, datasets and models for the freeware WinBUGS package are presented for the anaesthetic agent example. © The Author(s) 2013.
Comparing multilayer brain networks between groups: Introducing graph metrics and recommendations.
Mandke, Kanad; Meier, Jil; Brookes, Matthew J; O'Dea, Reuben D; Van Mieghem, Piet; Stam, Cornelis J; Hillebrand, Arjan; Tewarie, Prejaas
2018-02-01
There is an increasing awareness of the advantages of multi-modal neuroimaging. Networks obtained from different modalities are usually treated in isolation, which is however contradictory to accumulating evidence that these networks show non-trivial interdependencies. Even networks obtained from a single modality, such as frequency-band specific functional networks measured from magnetoencephalography (MEG) are often treated independently. Here, we discuss how a multilayer network framework allows for integration of multiple networks into a single network description and how graph metrics can be applied to quantify multilayer network organisation for group comparison. We analyse how well-known biases for single layer networks, such as effects of group differences in link density and/or average connectivity, influence multilayer networks, and we compare four schemes that aim to correct for such biases: the minimum spanning tree (MST), effective graph resistance cost minimisation, efficiency cost optimisation (ECO) and a normalisation scheme based on singular value decomposition (SVD). These schemes can be applied to the layers independently or to the multilayer network as a whole. For correction applied to whole multilayer networks, only the SVD showed sufficient bias correction. For correction applied to individual layers, three schemes (ECO, MST, SVD) could correct for biases. By using generative models as well as empirical MEG and functional magnetic resonance imaging (fMRI) data, we further demonstrated that all schemes were sensitive to identify network topology when the original networks were perturbed. In conclusion, uncorrected multilayer network analysis leads to biases. These biases may differ between centres and studies and could consequently lead to unreproducible results in a similar manner as for single layer networks. We therefore recommend using correction schemes prior to multilayer network analysis for group comparisons. Copyright © 2017 Elsevier Inc. All rights reserved.
Grenet, Guillaume; Lajoinie, Audrey; Ribault, Shams; Nguyen, Gia Bao; Linet, Thomas; Metge, Augustin; Cornu, Catherine; Cucherat, Michel; Moulin, Philippe; Gueyffier, François
2017-06-01
The aim of this study was to propose a ranking of the currently available antidiabetic drugs, regarding vascular clinical outcomes, in patients with type 2 diabetes, through a network meta-analysis approach. Randomized clinical trials, regardless of the blinding design, testing contemporary antidiabetic drugs, and considering clinically relevant outcomes in patients with type 2 diabetes mellitus will be included. The primary outcomes of this analysis will be overall mortality, cardiovascular mortality, and major cardiovascular events. Diabetic microangiopathy will be a secondary outcome. Adverse events, hypoglycemia, weight evolution, bariatric surgery, and discontinuation of the treatment will also be recorded. Each drug will be analyzed according to its therapeutic class: biguanide, alpha-glucosidase inhibitors, sulfonylureas, glitazones, glinides, insulin, DPP-4 inhibitors, GLP-1 analogs, and gliflozins. The treatment effect of each drug class will be compared using pairwise meta-analysis and a Bayesian random model network meta-analysis. Sensitivity analyses will be conducted according to the quality of the studies and the glycemic control. The report will follow the PRISMA checklist for network meta-analysis. Results of the search strategy and of the study selection will be presented in a PRISMA compliant flowchart. The treatment effects will be summarized with odds ratio (OR) estimates and their 95% credible intervals. A ranking of the drugs will be proposed. Our network meta-analysis should allow a clinically relevant ranking of the contemporary antidiabetic drugs. © 2016 Société Française de Pharmacologie et de Thérapeutique.
NASA Astrophysics Data System (ADS)
Chanda, Sandip; De, Abhinandan
2016-12-01
A social welfare optimization technique has been proposed in this paper with a developed state space based model and bifurcation analysis to offer substantial stability margin even in most inadvertent states of power system networks. The restoration of the power market dynamic price equilibrium has been negotiated in this paper, by forming Jacobian of the sensitivity matrix to regulate the state variables for the standardization of the quality of solution in worst possible contingencies of the network and even with co-option of intermittent renewable energy sources. The model has been tested in IEEE 30 bus system and illustrious particle swarm optimization has assisted the fusion of the proposed model and methodology.
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Masters, Timothy D.; Lo, Joseph Y.; McKee, Dan
2001-07-01
A new neural network technology was developed for improving the benign/malignant diagnosis of breast cancer using mammogram findings. A new paradigm, Adaptive Boosting (AB), uses a markedly different theory in solutioning Computational Intelligence (CI) problems. AB, a new machine learning paradigm, focuses on finding weak learning algorithm(s) that initially need to provide slightly better than random performance (i.e., approximately 55%) when processing a mammogram training set. Then, by successive development of additional architectures (using the mammogram training set), the adaptive boosting process improves the performance of the basic Evolutionary Programming derived neural network architectures. The results of these several EP-derived hybrid architectures are then intelligently combined and tested using a similar validation mammogram data set. Optimization focused on improving specificity and positive predictive value at very high sensitivities, where an analysis of the performance of the hybrid would be most meaningful. Using the DUKE mammogram database of 500 biopsy proven samples, on average this hybrid was able to achieve (under statistical 5-fold cross-validation) a specificity of 48.3% and a positive predictive value (PPV) of 51.8% while maintaining 100% sensitivity. At 97% sensitivity, a specificity of 56.6% and a PPV of 55.8% were obtained.
A mixed-modem solution for sensitive data segregation on a broadband network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutcher, R.I.; Ewing, P.D.
1988-01-01
Data isolation is required in broadband networks to prevent unauthorized access to the sensitive data of other users. Isolation can be obtained by using equipment from different manufacturers to introduce incompatibility between nonassociated users. This paper develops the basis for isolation and postulates that four layers of ioslation will exist when the proper equipment is chosen. An experimental broadband local area network (LAN) was constructed to verify isolation. This independent test system allowed variations to network operating conditions without causing interference to normal broadband operations. The measured results indicate that a broadband LAN can transmit data of varying sensitivity levelsmore » without compromising data security. When combined with the proper administrative restrictions, the mixed-modem technique provides a cost-effective method of sharing a broadband network while maintaining isolation of data having different sensitivities. 6 refs., 3 figs.« less
NASA Astrophysics Data System (ADS)
Luo, Jiannan; Lu, Wenxi
2014-06-01
Sobol‧ sensitivity analyses based on different surrogates were performed on a trichloroethylene (TCE)-contaminated aquifer to assess the sensitivity of the design variables of remediation duration, surfactant concentration and injection rates at four wells to remediation efficiency First, the surrogate models of a multi-phase flow simulation model were constructed by applying radial basis function artificial neural network (RBFANN) and Kriging methods, and the two models were then compared. Based on the developed surrogate models, the Sobol‧ method was used to calculate the sensitivity indices of the design variables which affect the remediation efficiency. The coefficient of determination (R2) and the mean square error (MSE) of these two surrogate models demonstrated that both models had acceptable approximation accuracy, furthermore, the approximation accuracy of the Kriging model was slightly better than that of the RBFANN model. Sobol‧ sensitivity analysis results demonstrated that the remediation duration was the most important variable influencing remediation efficiency, followed by rates of injection at wells 1 and 3, while rates of injection at wells 2 and 4 and the surfactant concentration had negligible influence on remediation efficiency. In addition, high-order sensitivity indices were all smaller than 0.01, which indicates that interaction effects of these six factors were practically insignificant. The proposed Sobol‧ sensitivity analysis based on surrogate is an effective tool for calculating sensitivity indices, because it shows the relative contribution of the design variables (individuals and interactions) to the output performance variability with a limited number of runs of a computationally expensive simulation model. The sensitivity analysis results lay a foundation for the optimal groundwater remediation process optimization.
Xu, Zhijing; Zu, Zhenghu; Zheng, Tao; Zhang, Wendou; Xu, Qing; Liu, Jinjie
2014-01-01
The high incidence of emerging infectious diseases has highlighted the importance of effective immunization strategies, especially the stochastic algorithms based on local available network information. Present stochastic strategies are mainly evaluated based on classical network models, such as scale-free networks and small-world networks, and thus are insufficient. Three frequently referred stochastic immunization strategies-acquaintance immunization, community-bridge immunization, and ring vaccination-were analyzed in this work. The optimal immunization ratios for acquaintance immunization and community-bridge immunization strategies were investigated, and the effectiveness of these three strategies in controlling the spreading of epidemics were analyzed based on realistic social contact networks. The results show all the strategies have decreased the coverage of the epidemics compared to baseline scenario (no control measures). However the effectiveness of acquaintance immunization and community-bridge immunization are very limited, with acquaintance immunization slightly outperforming community-bridge immunization. Ring vaccination significantly outperforms acquaintance immunization and community-bridge immunization, and the sensitivity analysis shows it could be applied to controlling the epidemics with a wide infectivity spectrum. The effectiveness of several classical stochastic immunization strategies was evaluated based on realistic contact networks for the first time in this study. These results could have important significance for epidemic control research and practice.
NASA Astrophysics Data System (ADS)
Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard
2015-11-01
Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.
Experiments in clustered neuronal networks: A paradigm for complex modular dynamics
NASA Astrophysics Data System (ADS)
Teller, Sara; Soriano, Jordi
2016-06-01
Uncovering the interplay activity-connectivity is one of the major challenges in neuroscience. To deepen in the understanding of how a neuronal circuit shapes network dynamics, neuronal cultures have emerged as remarkable systems given their accessibility and easy manipulation. An attractive configuration of these in vitro systems consists in an ensemble of interconnected clusters of neurons. Using calcium fluorescence imaging to monitor spontaneous activity in these clustered neuronal networks, we were able to draw functional maps and reveal their topological features. We also observed that these networks exhibit a hierarchical modular dynamics, in which clusters fire in small groups that shape characteristic communities in the network. The structure and stability of these communities is sensitive to chemical or physical action, and therefore their analysis may serve as a proxy for network health. Indeed, the combination of all these approaches is helping to develop models to quantify damage upon network degradation, with promising applications for the study of neurological disorders in vitro.
MANGALATHU-ARUMANA, J.; BEARDSLEY, S. A.; LIEBENTHAL, E.
2012-01-01
The integration of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) can contribute to characterizing neural networks with high temporal and spatial resolution. This research aimed to determine the sensitivity and limitations of applying joint independent component analysis (jICA) within-subjects, for ERP and fMRI data collected simultaneously in a parametric auditory frequency oddball paradigm. In a group of 20 subjects, an increase in ERP peak amplitude ranging 1–8 μV in the time window of the P300 (350–700ms), and a correlated increase in fMRI signal in a network of regions including the right superior temporal and supramarginal gyri, was observed with the increase in deviant frequency difference. JICA of the same ERP and fMRI group data revealed activity in a similar network, albeit with stronger amplitude and larger extent. In addition, activity in the left pre- and post- central gyri, likely associated with right hand somato-motor response, was observed only with the jICA approach. Within-subject, the jICA approach revealed significantly stronger and more extensive activity in the brain regions associated with the auditory P300 than the P300 linear regression analysis. The results suggest that with the incorporation of spatial and temporal information from both imaging modalities, jICA may be a more sensitive method for extracting common sources of activity between ERP and fMRI. PMID:22377443
Risk analysis of emergent water pollution accidents based on a Bayesian Network.
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie
2016-01-01
To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Qian, Ya; Zhang, Wei; Tang, Chenghao
2017-12-01
High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.
Bae, Youngoh; Yoo, Byeong Wook; Lee, Jung Chan; Kim, Hee Chan
2017-05-01
Detection and diagnosis based on extracting features and classification using electroencephalography (EEG) signals are being studied vigorously. A network analysis of time series EEG signal data is one of many techniques that could help study brain functions. In this study, we analyze EEG to diagnose alcoholism. We propose a novel methodology to estimate the differences in the status of the brain based on EEG data of normal subjects and data from alcoholics by computing many parameters stemming from effective network using Granger causality. Among many parameters, only ten parameters were chosen as final candidates. By the combination of ten graph-based parameters, our results demonstrate predictable differences between alcoholics and normal subjects. A support vector machine classifier with best performance had 90% accuracy with sensitivity of 95.3%, and specificity of 82.4% for differentiating between the two groups.
Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars
Skelley, Alison M.; Scherer, James R.; Aubrey, Andrew D.; Grover, William H.; Ivester, Robin H. C.; Ehrenfreund, Pascale; Grunthaner, Frank J.; Bada, Jeffrey L.; Mathies, Richard A.
2005-01-01
The Mars Organic Analyzer (MOA), a microfabricated capillary electrophoresis (CE) instrument for sensitive amino acid biomarker analysis, has been developed and evaluated. The microdevice consists of a four-wafer sandwich combining glass CE separation channels, microfabricated pneumatic membrane valves and pumps, and a nanoliter fluidic network. The portable MOA instrument integrates high voltage CE power supplies, pneumatic controls, and fluorescence detection optics necessary for field operation. The amino acid concentration sensitivities range from micromolar to 0.1 nM, corresponding to part-per-trillion sensitivity. The MOA was first used in the lab to analyze soil extracts from the Atacama Desert, Chile, detecting amino acids ranging from 10–600 parts per billion. Field tests of the MOA in the Panoche Valley, CA, successfully detected amino acids at 70 parts per trillion to 100 parts per billion in jarosite, a sulfate-rich mineral associated with liquid water that was recently detected on Mars. These results demonstrate the feasibility of using the MOA to perform sensitive in situ amino acid biomarker analysis on soil samples representative of a Mars-like environment. PMID:15657130
Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars.
Skelley, Alison M; Scherer, James R; Aubrey, Andrew D; Grover, William H; Ivester, Robin H C; Ehrenfreund, Pascale; Grunthaner, Frank J; Bada, Jeffrey L; Mathies, Richard A
2005-01-25
The Mars Organic Analyzer (MOA), a microfabricated capillary electrophoresis (CE) instrument for sensitive amino acid biomarker analysis, has been developed and evaluated. The microdevice consists of a four-wafer sandwich combining glass CE separation channels, microfabricated pneumatic membrane valves and pumps, and a nanoliter fluidic network. The portable MOA instrument integrates high voltage CE power supplies, pneumatic controls, and fluorescence detection optics necessary for field operation. The amino acid concentration sensitivities range from micromolar to 0.1 nM, corresponding to part-per-trillion sensitivity. The MOA was first used in the lab to analyze soil extracts from the Atacama Desert, Chile, detecting amino acids ranging from 10-600 parts per billion. Field tests of the MOA in the Panoche Valley, CA, successfully detected amino acids at 70 parts per trillion to 100 parts per billion in jarosite, a sulfate-rich mineral associated with liquid water that was recently detected on Mars. These results demonstrate the feasibility of using the MOA to perform sensitive in situ amino acid biomarker analysis on soil samples representative of a Mars-like environment.
Generalised Transfer Functions of Neural Networks
NASA Astrophysics Data System (ADS)
Fung, C. F.; Billings, S. A.; Zhang, H.
1997-11-01
When artificial neural networks are used to model non-linear dynamical systems, the system structure which can be extremely useful for analysis and design, is buried within the network architecture. In this paper, explicit expressions for the frequency response or generalised transfer functions of both feedforward and recurrent neural networks are derived in terms of the network weights. The derivation of the algorithm is established on the basis of the Taylor series expansion of the activation functions used in a particular neural network. This leads to a representation which is equivalent to the non-linear recursive polynomial model and enables the derivation of the transfer functions to be based on the harmonic expansion method. By mapping the neural network into the frequency domain information about the structure of the underlying non-linear system can be recovered. Numerical examples are included to demonstrate the application of the new algorithm. These examples show that the frequency response functions appear to be highly sensitive to the network topology and training, and that the time domain properties fail to reveal deficiencies in the trained network structure.
Lee, Hyungwoo; Kang, Kyung Eun; Chung, Hyewon; Kim, Hyung Chan
2018-04-12
To evaluate an automated segmentation algorithm with a convolutional neural network (CNN) to quantify and detect intraretinal fluid (IRF), subretinal fluid (SRF), pigment epithelial detachment (PED), and subretinal hyperreflective material (SHRM) through analyses of spectral domain optical coherence tomography (SD-OCT) images from patients with neovascular age-related macular degeneration (nAMD). Reliability and validity analysis of a diagnostic tool. We constructed a dataset including 930 B-scans from 93 eyes of 93 patients with nAMD. A CNN-based deep neural network was trained using 11550 augmented images derived from 550 B-scans. The performance of the trained network was evaluated using a validation set including 140 B-scans and a test set of 240 B-scans. The Dice coefficient, positive predictive value (PPV), sensitivity, relative area difference (RAD), and intraclass correlation coefficient (ICC) were used to evaluate segmentation and detection performance. Good agreement was observed for both segmentation and detection of lesions between the trained network and clinicians. The Dice coefficients for segmentation of IRF, SRF, SHRM, and PED were 0.78, 0.82, 0.75, and 0.80, respectively; the PPVs were 0.79, 0.80, 0.75, and 0.80, respectively; and the sensitivities were 0.77, 0.84, 0.73, and 0.81, respectively. The RADs were -4.32%, -10.29%, 4.13%, and 0.34%, respectively, and the ICCs were 0.98, 0.98, 0.97, and 0.98, respectively. All lesions were detected with high PPVs (range 0.94-0.99) and sensitivities (range 0.97-0.99). A CNN-based network provides clinicians with quantitative data regarding nAMD through automatic segmentation and detection of pathological lesions, including IRF, SRF, PED, and SHRM. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Hsiao-Chuan; Chou, Yi-Hong; Tiu, Chui-Mei; Hsieh, Chi-Wen; Liu, Brent; Shung, K. Kirk
2017-03-01
Many modalities have been developed as screening tools for breast cancer. A new screening method called acoustic radiation force impulse (ARFI) imaging was created for distinguishing breast lesions based on localized tissue displacement. This displacement was quantitated by virtual touch tissue imaging (VTI). However, VTIs sometimes express reverse results to intensity information in clinical observation. In the study, a fuzzy-based neural network with principle component analysis (PCA) was proposed to differentiate texture patterns of malignant breast from benign tumors. Eighty VTIs were randomly retrospected. Thirty four patients were determined as BI-RADS category 2 or 3, and the rest of them were determined as BI-RADS category 4 or 5 by two leading radiologists. Morphological method and Boolean algebra were performed as the image preprocessing to acquire region of interests (ROIs) on VTIs. Twenty four quantitative parameters deriving from first-order statistics (FOS), fractal dimension and gray level co-occurrence matrix (GLCM) were utilized to analyze the texture pattern of breast tumors on VTIs. PCA was employed to reduce the dimension of features. Fuzzy-based neural network as a classifier to differentiate malignant from benign breast tumors. Independent samples test was used to examine the significance of the difference between benign and malignant breast tumors. The area Az under the receiver operator characteristic (ROC) curve, sensitivity, specificity and accuracy were calculated to evaluate the performance of the system. Most all of texture parameters present significant difference between malignant and benign tumors with p-value of less than 0.05 except the average of fractal dimension. For all features classified by fuzzy-based neural network, the sensitivity, specificity, accuracy and Az were 95.7%, 97.1%, 95% and 0.964, respectively. However, the sensitivity, specificity, accuracy and Az can be increased to 100%, 97.1%, 98.8% and 0.985, respectively if PCA was performed to reduce the dimension of features. Patterns of breast tumors on VTIs can effectively be recognized by quantitative texture parameters, and differentiated malignant from benign lesions by fuzzy-based neural network with PCA.
Vigil, Jacob M; Rowell, Lauren N; Chouteau, Simone; Chavez, Alexandre; Jaramillo, Elisa; Neal, Michael; Waid, David
2013-01-01
This is the first study to examine how both structural and functional components of individuals' social networks may moderate the association between biological sex and experimental pain sensitivity. One hundred and fifty-two healthy adults (mean age = 22yrs., 53% males) were measured for cold pressor task (CPT) pain sensitivity (i.e., intensity ratings) and core aspects of social networks (e.g., proportion of friends vs. family, affection, affirmation, and aid). Results showed consistent sex differences in how social network structures and intimate relationship functioning modulated pain sensitivity. Females showed higher pain sensitivity when their social networks consisted of a higher proportion of intimate types of relationship partners (e.g., kin vs. non kin), when they had known their network partners for a longer period of time, and when they reported higher levels of logistical support from their significant other (e.g., romantic partner). Conversely, males showed distinct patterns in the opposite direction, including an association between higher levels of logistical support from one's significant other and lower CPT pain intensity. These findings show for the first time that the direction of sex differences in exogenous pain sensitivity is likely dependent on fundamental components of the individual's social environment. The utility of a social-signaling perspective of pain behaviors for examining, comparing, and interpreting individual and group differences in experimental and clinical pain reports is discussed.
Vigil, Jacob M.; Rowell, Lauren N.; Chouteau, Simone; Chavez, Alexandre; Jaramillo, Elisa; Neal, Michael; Waid, David
2013-01-01
This is the first study to examine how both structural and functional components of individuals’ social networks may moderate the association between biological sex and experimental pain sensitivity. One hundred and fifty-two healthy adults (mean age = 22yrs., 53% males) were measured for cold pressor task (CPT) pain sensitivity (i.e., intensity ratings) and core aspects of social networks (e.g., proportion of friends vs. family, affection, affirmation, and aid). Results showed consistent sex differences in how social network structures and intimate relationship functioning modulated pain sensitivity. Females showed higher pain sensitivity when their social networks consisted of a higher proportion of intimate types of relationship partners (e.g., kin vs. non kin), when they had known their network partners for a longer period of time, and when they reported higher levels of logistical support from their significant other (e.g., romantic partner). Conversely, males showed distinct patterns in the opposite direction, including an association between higher levels of logistical support from one’s significant other and lower CPT pain intensity. These findings show for the first time that the direction of sex differences in exogenous pain sensitivity is likely dependent on fundamental components of the individual’s social environment. The utility of a social-signaling perspective of pain behaviors for examining, comparing, and interpreting individual and group differences in experimental and clinical pain reports is discussed. PMID:24223836
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A
2015-06-01
A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.
Vasquez, Juan C.; Houweling, Arthur R.; Tiesinga, Paul
2013-01-01
Neuronal networks in rodent barrel cortex are characterized by stable low baseline firing rates. However, they are sensitive to the action potentials of single neurons as suggested by recent single-cell stimulation experiments that reported quantifiable behavioral responses in response to short spike trains elicited in single neurons. Hence, these networks are stable against internally generated fluctuations in firing rate but at the same time remain sensitive to similarly-sized externally induced perturbations. We investigated stability and sensitivity in a simple recurrent network of stochastic binary neurons and determined numerically the effects of correlation between the number of afferent (“in-degree”) and efferent (“out-degree”) connections in neurons. The key advance reported in this work is that anti-correlation between in-/out-degree distributions increased the stability of the network in comparison to networks with no correlation or positive correlations, while being able to achieve the same level of sensitivity. The experimental characterization of degree distributions is difficult because all pre-synaptic and post-synaptic neurons have to be identified and counted. We explored whether the statistics of network motifs, which requires the characterization of connections between small subsets of neurons, could be used to detect evidence for degree anti-correlations. We find that the sample frequency of the 3-neuron “ring” motif (1→2→3→1), can be used to detect degree anti-correlation for sub-networks of size 30 using about 50 samples, which is of significance because the necessary measurements are achievable experimentally in the near future. Taken together, we hypothesize that barrel cortex networks exhibit degree anti-correlations and specific network motif statistics. PMID:24223550
Integrated Evaluation of Reliability and Power Consumption of Wireless Sensor Networks.
Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo
2017-11-05
Power consumption is a primary interest in Wireless Sensor Networks (WSNs), and a large number of strategies have been proposed to evaluate it. However, those approaches usually neither consider reliability issues nor the power consumption of applications executing in the network. A central concern is the lack of consolidated solutions that enable us to evaluate the power consumption of applications and the network stack also considering their reliabilities. To solve this problem, we introduce a fully automatic solution to design power consumption aware WSN applications and communication protocols. The solution presented in this paper comprises a methodology to evaluate the power consumption based on the integration of formal models, a set of power consumption and reliability models, a sensitivity analysis strategy to select WSN configurations and a toolbox named EDEN to fully support the proposed methodology. This solution allows accurately estimating the power consumption of WSN applications and the network stack in an automated way.
Drakesmith, M; Caeyenberghs, K; Dutt, A; Lewis, G; David, A S; Jones, D K
2015-09-01
Graph theory (GT) is a powerful framework for quantifying topological features of neuroimaging-derived functional and structural networks. However, false positive (FP) connections arise frequently and influence the inferred topology of networks. Thresholding is often used to overcome this problem, but an appropriate threshold often relies on a priori assumptions, which will alter inferred network topologies. Four common network metrics (global efficiency, mean clustering coefficient, mean betweenness and smallworldness) were tested using a model tractography dataset. It was found that all four network metrics were significantly affected even by just one FP. Results also show that thresholding effectively dampens the impact of FPs, but at the expense of adding significant bias to network metrics. In a larger number (n=248) of tractography datasets, statistics were computed across random group permutations for a range of thresholds, revealing that statistics for network metrics varied significantly more than for non-network metrics (i.e., number of streamlines and number of edges). Varying degrees of network atrophy were introduced artificially to half the datasets, to test sensitivity to genuine group differences. For some network metrics, this atrophy was detected as significant (p<0.05, determined using permutation testing) only across a limited range of thresholds. We propose a multi-threshold permutation correction (MTPC) method, based on the cluster-enhanced permutation correction approach, to identify sustained significant effects across clusters of thresholds. This approach minimises requirements to determine a single threshold a priori. We demonstrate improved sensitivity of MTPC-corrected metrics to genuine group effects compared to an existing approach and demonstrate the use of MTPC on a previously published network analysis of tractography data derived from a clinical population. In conclusion, we show that there are large biases and instability induced by thresholding, making statistical comparisons of network metrics difficult. However, by testing for effects across multiple thresholds using MTPC, true group differences can be robustly identified. Copyright © 2015. Published by Elsevier Inc.
Identification of MicroRNA as Sepsis Biomarker Based on miRNAs Regulatory Network Analysis
Huang, Jie; Sun, Zhandong; Yan, Wenying; Zhu, Yujie; Lin, Yuxin; Chen, Jiajai; Shen, Bairong
2014-01-01
Sepsis is regarded as arising from an unusual systemic response to infection but the physiopathology of sepsis remains elusive. At present, sepsis is still a fatal condition with delayed diagnosis and a poor outcome. Many biomarkers have been reported in clinical application for patients with sepsis, and claimed to improve the diagnosis and treatment. Because of the difficulty in the interpreting of clinical features of sepsis, some biomarkers do not show high sensitivity and specificity. MicroRNAs (miRNAs) are small noncoding RNAs which pair the sites in mRNAs to regulate gene expression in eukaryotes. They play a key role in inflammatory response, and have been validated to be potential sepsis biomarker recently. In the present work, we apply a miRNA regulatory network based method to identify novel microRNA biomarkers associated with the early diagnosis of sepsis. By analyzing the miRNA expression profiles and the miRNA regulatory network, we obtained novel miRNAs associated with sepsis. Pathways analysis, disease ontology analysis, and protein-protein interaction network (PIN) analysis, as well as ROC curve, were exploited to testify the reliability of the predicted miRNAs. We finally identified 8 novel miRNAs which have the potential to be sepsis biomarkers. PMID:24809055
Mapping and analysis of phosphorylation sites: a quick guide for cell biologists
Dephoure, Noah; Gould, Kathleen L.; Gygi, Steven P.; Kellogg, Douglas R.
2013-01-01
A mechanistic understanding of signaling networks requires identification and analysis of phosphorylation sites. Mass spectrometry offers a rapid and highly sensitive approach to mapping phosphorylation sites. However, mass spectrometry has significant limitations that must be considered when planning to carry out phosphorylation-site mapping. Here we provide an overview of key information that should be taken into consideration before beginning phosphorylation-site analysis, as well as a step-by-step guide for carrying out successful experiments. PMID:23447708
Verkhivker, Gennady M
2016-01-01
The human protein kinome presents one of the largest protein families that orchestrate functional processes in complex cellular networks, and when perturbed, can cause various cancers. The abundance and diversity of genetic, structural, and biochemical data underlies the complexity of mechanisms by which targeted and personalized drugs can combat mutational profiles in protein kinases. Coupled with the evolution of system biology approaches, genomic and proteomic technologies are rapidly identifying and charactering novel resistance mechanisms with the goal to inform rationale design of personalized kinase drugs. Integration of experimental and computational approaches can help to bring these data into a unified conceptual framework and develop robust models for predicting the clinical drug resistance. In the current study, we employ a battery of synergistic computational approaches that integrate genetic, evolutionary, biochemical, and structural data to characterize the effect of cancer mutations in protein kinases. We provide a detailed structural classification and analysis of genetic signatures associated with oncogenic mutations. By integrating genetic and structural data, we employ network modeling to dissect mechanisms of kinase drug sensitivities to oncogenic EGFR mutations. Using biophysical simulations and analysis of protein structure networks, we show that conformational-specific drug binding of Lapatinib may elicit resistant mutations in the EGFR kinase that are linked with the ligand-mediated changes in the residue interaction networks and global network properties of key residues that are responsible for structural stability of specific functional states. A strong network dependency on high centrality residues in the conformation-specific Lapatinib-EGFR complex may explain vulnerability of drug binding to a broad spectrum of mutations and the emergence of drug resistance. Our study offers a systems-based perspective on drug design by unravelling complex relationships between robustness of targeted kinase genes and binding specificity of targeted kinase drugs. We discuss how these approaches can exploit advances in chemical biology and network science to develop novel strategies for rationally tailored and robust personalized drug therapies.
Localization of multilayer networks by optimized single-layer rewiring.
Jalan, Sarika; Pradhan, Priodyuti
2018-04-01
We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.
Localization of multilayer networks by optimized single-layer rewiring
NASA Astrophysics Data System (ADS)
Jalan, Sarika; Pradhan, Priodyuti
2018-04-01
We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.
Stimulus Sensitivity of a Spiking Neural Network Model
NASA Astrophysics Data System (ADS)
Chevallier, Julien
2018-02-01
Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.
A network-base analysis of CMIP5 "historical" experiments
NASA Astrophysics Data System (ADS)
Bracco, A.; Foudalis, I.; Dovrolis, C.
2012-12-01
In computer science, "complex network analysis" refers to a set of metrics, modeling tools and algorithms commonly used in the study of complex nonlinear dynamical systems. Its main premise is that the underlying topology or network structure of a system has a strong impact on its dynamics and evolution. By allowing to investigate local and non-local statistical interaction, network analysis provides a powerful, but only marginally explored, framework to validate climate models and investigate teleconnections, assessing their strength, range, and impacts on the climate system. In this work we propose a new, fast, robust and scalable methodology to examine, quantify, and visualize climate sensitivity, while constraining general circulation models (GCMs) outputs with observations. The goal of our novel approach is to uncover relations in the climate system that are not (or not fully) captured by more traditional methodologies used in climate science and often adopted from nonlinear dynamical systems analysis, and to explain known climate phenomena in terms of the network structure or its metrics. Our methodology is based on a solid theoretical framework and employs mathematical and statistical tools, exploited only tentatively in climate research so far. Suitably adapted to the climate problem, these tools can assist in visualizing the trade-offs in representing global links and teleconnections among different data sets. Here we present the methodology, and compare network properties for different reanalysis data sets and a suite of CMIP5 coupled GCM outputs. With an extensive model intercomparison in terms of the climate network that each model leads to, we quantify how each model reproduces major teleconnections, rank model performances, and identify common or specific errors in comparing model outputs and observations.
Multiple-region directed functional connectivity based on phase delays.
Goelman, Gadi; Dan, Rotem
2017-03-01
Network analysis is increasingly advancing the field of neuroimaging. Neural networks are generally constructed from pairwise interactions with an assumption of linear relations between them. Here, a high-order statistical framework to calculate directed functional connectivity among multiple regions, using wavelet analysis and spectral coherence has been presented. The mathematical expression for 4 regions was derived and used to characterize a quartet of regions as a linear, combined (nonlinear), or disconnected network. Phase delays between regions were used to obtain network's temporal hierarchy and directionality. The validity of the mathematical derivation along with the effects of coupling strength and noise on its outcomes were studied by computer simulations of the Kuramoto model. The simulations demonstrated correct directionality for a large range of coupling strength and low sensitivity to Gaussian noise compared with pairwise coherences. The analysis was applied to resting-state fMRI data of 40 healthy young subjects to characterize the ventral visual system, motor system and default mode network (DMN). It was shown that the ventral visual system was predominantly composed of linear networks while the motor system and the DMN were composed of combined (nonlinear) networks. The ventral visual system exhibits its known temporal hierarchy, the motor system exhibits center ↔ out hierarchy and the DMN has dorsal ↔ ventral and anterior ↔ posterior organizations. The analysis can be applied in different disciplines such as seismology, or economy and in a variety of brain data including stimulus-driven fMRI, electrophysiology, EEG, and MEG, thus open new horizons in brain research. Hum Brain Mapp 38:1374-1386, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Social network modulation of reward-related signals
Fareri, Dominic S.; Niznikiewicz, Michael A.; Lee, Victoria K.; Delgado, Mauricio R.
2012-01-01
Everyday goals and experiences are often shared with others who may hold different places within our social networks. We investigated whether the experience of sharing a reward differs with respect to social network. Twenty human participants played a card guessing game for shared monetary outcomes with three partners: a computer, a confederate (out-of-network), and a friend (in-network). Participants subjectively rated the experience of sharing a reward more positively with their friend than the other partners. Neuroimaging results support participants’ subjective reports, as ventral striatal BOLD responses were more robust when sharing monetary gains with a friend, as compared to with the confederate or computer, suggesting a higher value for sharing with an in-network partner. Interestingly, ratings of social closeness co-varied with this activity, resulting in a significant partner × closeness interaction: exploratory analysis showed that only participants reporting higher levels of closeness demonstrated partner-related differences in striatal BOLD response. These results suggest that reward valuation in social contexts is sensitive to distinctions of social network, such that sharing positive experiences with in-network others may carry higher value. PMID:22745503
Lopez-Coto, Israel; Ghosh, Subhomoy; Prasad, Kuldeep; Whetstone, James
2017-09-01
The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k -means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.
Ellard, Kristen K; Zimmerman, Jared P; Kaur, Navneet; Van Dijk, Koene R A; Roffman, Joshua L; Nierenberg, Andrew A; Dougherty, Darin D; Deckersbach, Thilo; Camprodon, Joan A
2018-05-01
Patients with bipolar depression are characterized by dysregulation across the full spectrum of mood, differentiating them from patients with unipolar depression. The ability to switch neural resources among the default mode network, salience network, and executive control network (ECN) has been proposed as a key mechanism for adaptive mood regulation. The anterior insula is implicated in the modulation of functional network switching. Differential connectivity between anterior insula and functional networks may provide insights into pathophysiological differences between bipolar and unipolar mood disorders, with implications for diagnosis and treatment. Resting-state functional magnetic resonance imaging data were collected from 98 subjects (35 unipolar, 24 bipolar, and 39 healthy control subjects). Pearson correlations were computed between bilateral insula seed regions and a priori defined target regions from the default mode network, salience network, and ECN. After r-to-z transformation, a one-way multivariate analysis of covariance was conducted to identify significant differences in connectivity between groups. Post hoc pairwise comparisons were conducted and Bonferroni corrections were applied. Receiver-operating characteristics were computed to assess diagnostic sensitivity. Patients with bipolar depression evidenced significantly altered right anterior insula functional connectivity with the inferior parietal lobule of the ECN relative to patients with unipolar depression and control subjects. Right anterior insula-inferior parietal lobule connectivity significantly discriminated patients with bipolar depression. Impaired functional connectivity between the anterior insula and the inferior parietal lobule of the ECN distinguishes patients with bipolar depression from those with unipolar depression and healthy control subjects. This finding highlights a pathophysiological mechanism with potential as a therapeutic target and a clinical biomarker for bipolar disorder, exhibiting reasonable sensitivity and specificity. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lopez-Coto, Israel; Ghosh, Subhomoy; Prasad, Kuldeep; Whetstone, James
2017-09-01
The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k-means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.
Simulation of Attacks for Security in Wireless Sensor Network
Diaz, Alvaro; Sanchez, Pablo
2016-01-01
The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node’s software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work. PMID:27869710
Cirnigliaro, Matilde; Barbagallo, Cristina; Gulisano, Mariangela; Domini, Carla N.; Barone, Rita; Barbagallo, Davide; Ragusa, Marco; Di Pietro, Cinzia; Rizzo, Renata; Purrello, Michele
2017-01-01
Given its prevalence and social impact, Autism Spectrum Disorder (ASD) is drawing much interest. Molecular basis of ASD is heterogeneous and only partially known. Many factors, including disorders comorbid with ASD, like TS (Tourette Syndrome), complicate ASD behavior-based diagnosis and make it vulnerable to bias. To further investigate ASD etiology and to identify potential biomarkers to support its precise diagnosis, we used TaqMan Low Density Array technology to profile serum miRNAs from ASD, TS, and TS+ASD patients, and unaffected controls (NCs). Through validation assays in 30 ASD, 24 TS, and 25 TS+ASD patients and 25 NCs, we demonstrated that miR-140-3p is upregulated in ASD vs.: NC, TS, and TS+ASD (Tukey's test, p-values = 0.03, = 0.01, < 0.0001, respectively). ΔCt values for miR-140-3p and YGTSS (Yale Global Tic Severity Scale) scores are positively correlated (Spearman r = 0.33; Benjamini-Hochberg p = 0.008) and show a linear relationship (p = 0.002). Network functional analysis showed that nodes controlled by miR-140-3p, especially CD38 and NRIP1 which are its validated targets, are involved in processes convergingly dysregulated in ASD, such as synaptic plasticity, immune response, and chromatin binding. Biomarker analysis proved that serum miR-140-3p can discriminate among: (1) ASD and NC (Area under the ROC curve, AUC: 0.70; sensitivity: 63.33%; specificity: 68%); (2) ASD and TS (AUC: 0.72; sensitivity: 66.66%; specificity: 70.83%); (3) ASD and TS+ASD (AUC: 0.78; sensitivity: 73.33%; specificity: 76%). Characterization of miR-140-3p network would contribute to further clarify ASD etiology. Serum miR-140-3p could represent a potential non-invasive biomarker for ASD, easy to test through liquid biopsy. PMID:28848387
Dual-echo ASL based assessment of motor networks: a feasibility study
NASA Astrophysics Data System (ADS)
Storti, Silvia Francesca; Boscolo Galazzo, Ilaria; Pizzini, Francesca B.; Menegaz, Gloria
2018-04-01
Objective. Dual-echo arterial spin labeling (DE-ASL) technique has been recently proposed for the simultaneous acquisition of ASL and blood-oxygenation-level-dependent (BOLD)-functional magnetic resonance imaging (fMRI) data. The assessment of this technique in detecting functional connectivity at rest or during motor and motor imagery tasks is still unexplored both per-se and in comparison with conventional methods. The purpose is to quantify the sensitivity of the DE-ASL sequence with respect to the conventional fMRI sequence (cvBOLD) in detecting brain activations, and to assess and compare the relevance of node features in decoding the network structure. Approach. Thirteen volunteers were scanned acquiring a pseudo-continuous DE-ASL sequence from which the concomitant BOLD (ccBOLD) simultaneously to the ASL can be extracted. The approach consists of two steps: (i) model-based analyses for assessing brain activations at individual and group levels, followed by statistical analysis for comparing the activation elicited by the three sequences under two conditions (motor and motor imagery), respectively; (ii) brain connectivity graph-theoretical analysis for assessing and comparing the network models properties. Main results. Our results suggest that cvBOLD and ccBOLD have comparable sensitivity in detecting the regions involved in the active task, whereas ASL offers a higher degree of co-localization with smaller activation volumes. The connectivity results and the comparative analysis of node features across sequences revealed that there are no strong changes between rest and tasks and that the differences between the sequences are limited to few connections. Significance. Considering the comparable sensitivity of the ccBOLD and cvBOLD sequences in detecting activated brain regions, the results demonstrate that DE-ASL can be successfully applied in functional studies allowing to obtain both ASL and BOLD information within a single sequence. Further, DE-ASL is a powerful technique for research and clinical applications allowing to perform quantitative comparisons as well as to characterize functional connectivity.
Kontos, Anthony P.; Reches, Amit; Elbin, R. J.; Dickman, Dalia; Laufer, Ilan; Geva, Amir; Shacham, Galit; DeWolf, Ryan; Collins, Michael W.
2015-01-01
Post-traumatic migraine (PTM) (i.e., headache, nausea, light and/or noise sensitivity) is an emerging risk factor for prolonged recovery following concussion. Concussions and migraine share similar pathophysiology characterized by specific ionic imbalances in the brain. Given these similarities, patients with PTM following concussion may exhibit distinct electrophysiological patterns, although researchers have yet to examine the electrophysiological brain activation in patients with PTM following concussion. A novel approach that may help differentiate brain activation in patients with and without PTM is brain network activation (BNA) analysis. BNA involves an algorithmic analysis applied to multichannel EEG-ERP data that provides a network map of cortical activity and quantitative data during specific tasks. A prospective, repeated measures design was used to evaluate BNA (during Go/NoGo task), EEG-ERP, cognitive performance, and concussion related symptoms at 1, 2, 3, and 4-week post-injury intervals among athletes with a medically diagnosed concussion with PTM (n = 15) and without (NO-PTM) (n = 22); and age, sex, and concussion history matched controls without concussion (CONTROL) (n = 20). Participants with PTM had significantly reduced BNA compared to NO-PTM and CONTROLS for Go and NoGo components at 3 weeks and for NoGo component at 4 weeks post-injury. The PTM group also demonstrated a more prominent deviation of network activity compared to the other two groups over a longer period of time. The composite BNA algorithm may be a more sensitive measure of electrophysiological change in the brain that can augment established cognitive assessment tools for detecting impairment in individuals with PTM. PMID:26091725
Metabolic networks in epilepsy by MR spectroscopic imaging.
Pan, J W; Spencer, D D; Kuzniecky, R; Duckrow, R B; Hetherington, H; Spencer, S S
2012-12-01
The concept of an epileptic network has long been suggested from both animal and human studies of epilepsy. Based on the common observation that the MR spectroscopic imaging measure of NAA/Cr is sensitive to neuronal function and injury, we use this parameter to assess for the presence of a metabolic network in mesial temporal lobe epilepsy (MTLE) patients. A multivariate factor analysis is performed with controls and MTLE patients, using NAA/Cr measures from 12 loci: the bilateral hippocampi, thalami, basal ganglia, and insula. The factor analysis determines which and to what extent these loci are metabolically covarying. We extract two independent factors that explain the data's variability in control and MTLE patients. In controls, these factors characterize a 'thalamic' and 'dominant subcortical' function. The MTLE patients also exhibit a 'thalamic' factor, in addition to a second factor involving the ipsilateral insula and bilateral basal ganglia. These data suggest that MTLE patients demonstrate a metabolic network that involves the thalami, also seen in controls. The MTLE patients also display a second set of metabolically covarying regions that may be a manifestation of the epileptic network that characterizes limbic seizure propagation. © 2012 John Wiley & Sons A/S.
Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model
Barbosa, Camilo; Beardmore, Robert; Jansen, Gunther
2018-01-01
The spread of antibiotic resistance is always a consequence of evolutionary processes. The consideration of evolution is thus key to the development of sustainable therapy. Two main factors were recently proposed to enhance long-term effectiveness of drug combinations: evolved collateral sensitivities between the drugs in a pair and antagonistic drug interactions. We systematically assessed these factors by performing over 1,600 evolution experiments with the opportunistic nosocomial pathogen Pseudomonas aeruginosa in single- and multidrug environments. Based on the growth dynamics during these experiments, we reconstructed antibiotic combination efficacy (ACE) networks as a new tool for characterizing the ability of the tested drug combinations to constrain bacterial survival as well as drug resistance evolution across time. Subsequent statistical analysis of the influence of the factors on ACE network characteristics revealed that (i) synergistic drug interactions increased the likelihood of bacterial population extinction—irrespective of whether combinations were compared at the same level of inhibition or not—while (ii) the potential for evolved collateral sensitivities between 2 drugs accounted for a reduction in bacterial adaptation rates. In sum, our systematic experimental analysis allowed us to pinpoint 2 complementary determinants of combination efficacy and to identify specific drug pairs with high ACE scores. Our findings can guide attempts to further improve the sustainability of antibiotic therapy by simultaneously reducing pathogen load and resistance evolution. PMID:29708964
Li, Chunhe; Wang, Jin
2013-01-01
Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process, connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path, and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find out how the differentiation and reprogramming occur and which important states they go through. We show the developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction. The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation designs or reprogramming tactics. PMID:23935477
Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network
NASA Astrophysics Data System (ADS)
MolaAbasi, H.; Shooshpasha, I.
2016-04-01
The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.
NASA Astrophysics Data System (ADS)
Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.
2018-05-01
It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.
Economic viability of access broadband multiservice networks
NASA Astrophysics Data System (ADS)
Castelli, Francesco; Dammicco, Giacinto; Mocci, Ugo
1995-02-01
In this paper the economic viability of alternative architectures for optical access networks providing broad band services to different subscriber classes in a metropolitan environment, is investigated by a specific tool, NEVE (Network Economic Viability Evaluator), developed for broad band multiservice network planning, service evolutionary scenarios assessment, evaluation of tariff strategies and other actions taken at stimulating the demand growth. As the viability target can be achieved in different ways, different studies can be carried out by NEVE. In the paper some of them are discussed, particularly the ones addressed: to evaluate the impact on viability of alternative service scenarios; to determine the critical mass of broad band subscribers and the critical joint service adoption cost; to evaluate cross subsidiary policies among different subscriber classes and services; to perform sensitivity analysis with respect to variations of demand parameters and tariffs.
Particle identification with neural networks using a rotational invariant moment representation
NASA Astrophysics Data System (ADS)
Sinkus, Ralph; Voss, Thomas
1997-02-01
A feed-forward neural network is used to identify electromagnetic particles based upon their showering properties within a segmented calorimeter. A preprocessing procedure is applied to the spatial energy distribution of the particle shower in order to account for the varying geometry of the calorimeter. The novel feature is the expansion of the energy distribution in terms of moments of the so-called Zernike functions which are invariant under rotation. The distributions of moments exhibit very different scales, thus the multidimensional input distribution for the neural network is transformed via a principal component analysis and rescaled by its respective variances to ensure input values of the order of one. This increases the sensitivity of the network and thus results in better performance in identifying and separating electromagnetic from hadronic particles, especially at low energies.
Interspecific competition underlying mutualistic networks.
Maeng, Seong Eun; Lee, Jae Woo; Lee, Deok-Sun
2012-03-09
Multiple classes of interactions may exist affecting one another in a given system. For the mutualistic networks of plants and pollinating animals, it has been known that the degree distribution is broad but often deviates from power-law form more significantly for plants than animals. To illuminate the origin of such asymmetry, we study a model network in which links are assigned under generalized preferential-selection rules between two groups of nodes and find the sensitive dependence of the resulting connectivity pattern on the model parameters. The nonlinearity of preferential selection can come from interspecific interactions among animals and among plants. The model-based analysis of real-world mutualistic networks suggests that a new animal determines its partners not only by their abundance but also under the competition with existing animal species, which leads to the stretched-exponential degree distributions of plants.
Bayesian network modelling of upper gastrointestinal bleeding
NASA Astrophysics Data System (ADS)
Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri
2013-09-01
Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.
Interspecific Competition Underlying Mutualistic Networks
NASA Astrophysics Data System (ADS)
Maeng, Seong Eun; Lee, Jae Woo; Lee, Deok-Sun
2012-03-01
Multiple classes of interactions may exist affecting one another in a given system. For the mutualistic networks of plants and pollinating animals, it has been known that the degree distribution is broad but often deviates from power-law form more significantly for plants than animals. To illuminate the origin of such asymmetry, we study a model network in which links are assigned under generalized preferential-selection rules between two groups of nodes and find the sensitive dependence of the resulting connectivity pattern on the model parameters. The nonlinearity of preferential selection can come from interspecific interactions among animals and among plants. The model-based analysis of real-world mutualistic networks suggests that a new animal determines its partners not only by their abundance but also under the competition with existing animal species, which leads to the stretched-exponential degree distributions of plants.
Stochastic and deterministic models for agricultural production networks.
Bai, P; Banks, H T; Dediu, S; Govan, A Y; Last, M; Lloyd, A L; Nguyen, H K; Olufsen, M S; Rempala, G; Slenning, B D
2007-07-01
An approach to modeling the impact of disturbances in an agricultural production network is presented. A stochastic model and its approximate deterministic model for averages over sample paths of the stochastic system are developed. Simulations, sensitivity and generalized sensitivity analyses are given. Finally, it is shown how diseases may be introduced into the network and corresponding simulations are discussed.
Yang, Jiajia; Kitada, Ryo; Kochiyama, Takanori; Yu, Yinghua; Makita, Kai; Araki, Yuta; Wu, Jinglong; Sadato, Norihiro
2017-01-01
Humans are able to judge the speed of an object’s motion by touch. Research has suggested that tactile judgment of speed is influenced by physical properties of the moving object, though the neural mechanisms underlying this process remain poorly understood. In the present study, functional magnetic resonance imaging was used to investigate brain networks that may be involved in tactile speed classification and how such networks may be affected by an object’s texture. Participants were asked to classify the speed of 2-D raised dot patterns passing under their right middle finger. Activity in the parietal operculum, insula, and inferior and superior frontal gyri was positively related to the motion speed of dot patterns. Activity in the postcentral gyrus and superior parietal lobule was sensitive to dot periodicity. Psycho-physiological interaction (PPI) analysis revealed that dot periodicity modulated functional connectivity between the parietal operculum (related to speed) and postcentral gyrus (related to dot periodicity). These results suggest that texture-sensitive activity in the primary somatosensory cortex and superior parietal lobule influences brain networks associated with tactually-extracted motion speed. Such effects may be related to the influence of surface texture on tactile speed judgment. PMID:28145505
On the sensitivity of geospatial low impact development locations to the centralized sewer network.
Zischg, Jonatan; Zeisl, Peter; Winkler, Daniel; Rauch, Wolfgang; Sitzenfrei, Robert
2018-04-01
In the future, infrastructure systems will have to become smarter, more sustainable, and more resilient requiring new methods of urban infrastructure design. In the field of urban drainage, green infrastructure is a promising design concept with proven benefits to runoff reduction, stormwater retention, pollution removal, and/or the creation of attractive living spaces. Such 'near-nature' concepts are usually distributed over the catchment area in small scale units. In many cases, these above-ground structures interact with the existing underground pipe infrastructure, resulting in hybrid solutions. In this work, we investigate the effect of different placement strategies for low impact development (LID) structures on hydraulic network performance of existing drainage networks. Based on a sensitivity analysis, geo-referenced maps are created which identify the most effective LID positions within the city framework (e.g. to improve network resilience). The methodology is applied to a case study to test the effectiveness of the approach and compare different placement strategies. The results show that with a simple targeted LID placement strategy, the flood performance is improved by an additional 34% as compared to a random placement strategy. The developed map is easy to communicate and can be rapidly applied by decision makers when deciding on stormwater policies.
Yi, Qu; Zhan-ming, Li; Er-chao, Li
2012-11-01
A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Calhoun, Vince D.; Maciejewski, Paul K.; Pearlson, Godfrey D.; Kiehl, Kent A.
2009-01-01
Schizophrenia and bipolar disorder are currently diagnosed on the basis of psychiatric symptoms and longitudinal course. The determination of a reliable, biologically-based diagnostic indicator of these diseases (a biomarker) could provide the groundwork for developing more rigorous tools for differential diagnosis and treatment assignment. Recently, methods have been used to identify distinct sets of brain regions or “spatial modes” exhibiting temporally coherent brain activity. Using functional magnetic resonance imaging (fMRI) data and a multivariate analysis method, independent component analysis, we combined the temporal lobe and the default modes to discriminate subjects with bipolar disorder, chronic schizophrenia, and healthy controls. Temporal lobe and default mode networks were reliably identified in all participants. Classification results on an independent set of individuals revealed an average sensitivity and specificity of 90 and 95%, respectively. The use of coherent brain networks such as the temporal lobe and default mode networks may provide a more reliable measure of disease state than task-correlated fMRI activity. A combination of two such hemodynamic brain networks shows promise as a biomarker for schizophrenia and bipolar disorder. PMID:17894392
Calhoun, Vince D; Maciejewski, Paul K; Pearlson, Godfrey D; Kiehl, Kent A
2008-11-01
Schizophrenia and bipolar disorder are currently diagnosed on the basis of psychiatric symptoms and longitudinal course. The determination of a reliable, biologically-based diagnostic indicator of these diseases (a biomarker) could provide the groundwork for developing more rigorous tools for differential diagnosis and treatment assignment. Recently, methods have been used to identify distinct sets of brain regions or "spatial modes" exhibiting temporally coherent brain activity. Using functional magnetic resonance imaging (fMRI) data and a multivariate analysis method, independent component analysis, we combined the temporal lobe and the default modes to discriminate subjects with bipolar disorder, chronic schizophrenia, and healthy controls. Temporal lobe and default mode networks were reliably identified in all participants. Classification results on an independent set of individuals revealed an average sensitivity and specificity of 90 and 95%, respectively. The use of coherent brain networks such as the temporal lobe and default mode networks may provide a more reliable measure of disease state than task-correlated fMRI activity. A combination of two such hemodynamic brain networks shows promise as a biomarker for schizophrenia and bipolar disorder.
Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis
NASA Astrophysics Data System (ADS)
Park, Sunyoung; Ishii, Miaki
2018-06-01
A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.
Computer-assisted cervical cancer screening using neural networks.
Mango, L J
1994-03-15
A practical and effective system for the computer-assisted screening of conventionally prepared cervical smears is presented and described. Recent developments in neural network technology have made computerized analysis of the complex cellular scenes found on Pap smears possible. The PAPNET Cytological Screening System uses neural networks to automatically analyze conventional smears by locating and recognizing potentially abnormal cells. It then displays images of these objects for review and final diagnosis by qualified cytologists. The results of the studies presented indicate that the PAPNET system could be a useful tool for both the screening and rescreening of cervical smears. In addition, the system has been shown to be sensitive to some types of abnormalities which have gone undetected during manual screening.
Design Sensitivity for a Subsonic Aircraft Predicted by Neural Network and Regression Models
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Patnaik, Surya N.
2005-01-01
A preliminary methodology was obtained for the design optimization of a subsonic aircraft by coupling NASA Langley Research Center s Flight Optimization System (FLOPS) with NASA Glenn Research Center s design optimization testbed (COMETBOARDS with regression and neural network analysis approximators). The aircraft modeled can carry 200 passengers at a cruise speed of Mach 0.85 over a range of 2500 n mi and can operate on standard 6000-ft takeoff and landing runways. The design simulation was extended to evaluate the optimal airframe and engine parameters for the subsonic aircraft to operate on nonstandard runways. Regression and neural network approximators were used to examine aircraft operation on runways ranging in length from 4500 to 7500 ft.
Mounts, W M; Liebman, M N
1997-07-01
We have developed a method for representing biological pathways and simulating their behavior based on the use of stochastic activity networks (SANs). SANs, an extension of the original Petri net, have been used traditionally to model flow systems including data-communications networks and manufacturing processes. We apply the methodology to the blood coagulation cascade, a biological flow system, and present the representation method as well as results of simulation studies based on published experimental data. In addition to describing the dynamic model, we also present the results of its utilization to perform simulations of clinical states including hemophilia's A and B as well as sensitivity analysis of individual factors and their impact on thrombin production.
New methodologies for multi-scale time-variant reliability analysis of complex lifeline networks
NASA Astrophysics Data System (ADS)
Kurtz, Nolan Scot
The cost of maintaining existing civil infrastructure is enormous. Since the livelihood of the public depends on such infrastructure, its state must be managed appropriately using quantitative approaches. Practitioners must consider not only which components are most fragile to hazard, e.g. seismicity, storm surge, hurricane winds, etc., but also how they participate on a network level using network analysis. Focusing on particularly damaged components does not necessarily increase network functionality, which is most important to the people that depend on such infrastructure. Several network analyses, e.g. S-RDA, LP-bounds, and crude-MCS, and performance metrics, e.g. disconnection bounds and component importance, are available for such purposes. Since these networks are existing, the time state is also important. If networks are close to chloride sources, deterioration may be a major issue. Information from field inspections may also have large impacts on quantitative models. To address such issues, hazard risk analysis methodologies for deteriorating networks subjected to seismicity, i.e. earthquakes, have been created from analytics. A bridge component model has been constructed for these methodologies. The bridge fragilities, which were constructed from data, required a deeper level of analysis as these were relevant for specific structures. Furthermore, chloride-induced deterioration network effects were investigated. Depending on how mathematical models incorporate new information, many approaches are available, such as Bayesian model updating. To make such procedures more flexible, an adaptive importance sampling scheme was created for structural reliability problems. Additionally, such a method handles many kinds of system and component problems with singular or multiple important regions of the limit state function. These and previously developed analysis methodologies were found to be strongly sensitive to the network size. Special network topologies may be more or less computationally difficult, while the resolution of the network also has large affects. To take advantage of some types of topologies, network hierarchical structures with super-link representation have been used in the literature to increase the computational efficiency by analyzing smaller, densely connected networks; however, such structures were based on user input and subjective at times. To address this, algorithms must be automated and reliable. These hierarchical structures may indicate the structure of the network itself. This risk analysis methodology has been expanded to larger networks using such automated hierarchical structures. Component importance is the most important objective from such network analysis; however, this may only provide the information of which bridges to inspect/repair earliest and little else. High correlations influence such component importance measures in a negative manner. Additionally, a regional approach is not appropriately modelled. To investigate a more regional view, group importance measures based on hierarchical structures have been created. Such structures may also be used to create regional inspection/repair approaches. Using these analytical, quantitative risk approaches, the next generation of decision makers may make both component and regional-based optimal decisions using information from both network function and further effects of infrastructure deterioration.
Gordon, Evan M.; Stollstorff, Melanie; Vaidya, Chandan J.
2012-01-01
Many researchers have noted that the functional architecture of the human brain is relatively invariant during task performance and the resting state. Indeed, intrinsic connectivity networks (ICNs) revealed by resting-state functional connectivity analyses are spatially similar to regions activated during cognitive tasks. This suggests that patterns of task-related activation in individual subjects may result from the engagement of one or more of these ICNs; however, this has not been tested. We used a novel analysis, spatial multiple regression, to test whether the patterns of activation during an N-back working memory task could be well described by a linear combination of ICNs delineated using Independent Components Analysis at rest. We found that across subjects, the cingulo-opercular Set Maintenance ICN, as well as right and left Frontoparietal Control ICNs, were reliably activated during working memory, while Default Mode and Visual ICNs were reliably deactivated. Further, involvement of Set Maintenance, Frontoparietal Control, and Dorsal Attention ICNs was sensitive to varying working memory load. Finally, the degree of left Frontoparietal Control network activation predicted response speed, while activation in both left Frontoparietal Control and Dorsal Attention networks predicted task accuracy. These results suggest that a close relationship between resting-state networks and task-evoked activation is functionally relevant for behavior, and that spatial multiple regression analysis is a suitable method for revealing that relationship. PMID:21761505
Moran-Santa Maria, Megan M; Vanderweyen, Davy C; Camp, Christopher C; Zhu, Xun; McKee, Sherry A; Cosgrove, Kelly P; Hartwell, Karen J; Brady, Kathleen T; Joseph, Jane E
2018-06-07
The goal of this study was to conduct a preliminary network analysis (using graph-theory measures) of intrinsic functional connectivity in adult smokers, with an exploration of sex differences in smokers. Twenty-seven adult smokers (13 males; mean age = 35) and 17 sex and age-matched controls (11 males; mean age = 35) completed a blood oxygen level-dependent resting state functional magnetic resonance imaging experiment. Data analysis involved preprocessing, creation of connectivity matrices using partial correlation, and computation of graph-theory measures using the Brain Connectivity Toolbox. Connector hubs and additional graph-theory measures were examined for differences between smokers and controls and correlations with nicotine dependence. Sex differences were examined in a priori regions of interest based on prior literature. Compared to nonsmokers, connector hubs in smokers emerged primarily in limbic (parahippocampus) and salience network (cingulate cortex) regions. In addition, global influence of the right insula and left nucleus accumbens was associated with higher nicotine dependence. These trends were present in male but not female smokers. Network communication was altered in smokers, primarily in limbic and salience network regions. Network topology was associated with nicotine dependence in male but not female smokers in regions associated with reinforcement (nucleus accumbens) and craving (insula), consistent with the idea that male smokers are more sensitive to the reinforcing aspects of nicotine than female smokers. Identifying alterations in brain network communication in male and female smokers can help tailor future behavioral and pharmacological smoking interventions. Male smokers showed alterations in brain networks associated with the reinforcing effects of nicotine more so than females, suggesting that pharmacotherapies targeting reinforcement and craving may be more efficacious in male smokers.
NASA Astrophysics Data System (ADS)
Yu, Yali; Wang, Mengxia; Lima, Dimas
2018-04-01
In order to develop a novel alcoholism detection method, we proposed a magnetic resonance imaging (MRI)-based computer vision approach. We first use contrast equalization to increase the contrast of brain slices. Then, we perform Haar wavelet transform and principal component analysis. Finally, we use back propagation neural network (BPNN) as the classification tool. Our method yields a sensitivity of 81.71±4.51%, a specificity of 81.43±4.52%, and an accuracy of 81.57±2.18%. The Haar wavelet gives better performance than db4 wavelet and sym3 wavelet.
Silva Pereira, Silvana; Hindriks, Rikkert; Mühlberg, Stefanie; Maris, Eric; van Ede, Freek; Griffa, Alessandra; Hagmann, Patric; Deco, Gustavo
2017-11-01
A popular way to analyze resting-state electroencephalography (EEG) and magneto encephalography (MEG) data is to treat them as a functional network in which sensors are identified with nodes and the interaction between channel time series and the network connections. Although conceptually appealing, the network-theoretical approach to sensor-level EEG and MEG data is challenged by the fact that EEG and MEG time series are mixtures of source activity. It is, therefore, of interest to assess the relationship between functional networks of source activity and the ensuing sensor-level networks. Since these topological features are of high interest in experimental studies, we address the question of to what extent the network topology can be reconstructed from sensor-level functional connectivity (FC) measures in case of MEG data. Simple simulations that consider only a small number of regions do not allow to assess network properties; therefore, we use a diffusion magnetic resonance imaging-constrained whole-brain computational model of resting-state activity. Our motivation lies behind the fact that still many contributions found in the literature perform network analysis at sensor level, and we aim at showing the discrepancies between source- and sensor-level network topologies by using realistic simulations of resting-state cortical activity. Our main findings are that the effect of field spread on network topology depends on the type of interaction (instantaneous or lagged) and leads to an underestimation of lagged FC at sensor level due to instantaneous mixing of cortical signals, instantaneous interaction is more sensitive to field spread than lagged interaction, and discrepancies are reduced when using planar gradiometers rather than axial gradiometers. We, therefore, recommend using lagged interaction measures on planar gradiometer data when investigating network properties of resting-state sensor-level MEG data.
Burholt, Vanessa; Dobbs, Christine
2014-08-01
This paper considers the support networks of older people in populations with a preponderance of multigenerational households and examines the most vulnerable network types in terms of loneliness and isolation. Current common typologies of support networks may not be sensitive to differences within and between different cultures. This paper uses cross-sectional data drawn from 590 elders (Gujaratis, Punjabis and Sylhetis) living in the United Kingdom and South Asia. Six variables were used in K-means cluster analysis to establish a new network typology. Two logistic regression models using loneliness and isolation as dependent variables assessed the contribution of the new network type to wellbeing. Four support networks were identified: 'Multigenerational Households: Older Integrated Networks', 'Multigenerational Households: Younger Family Networks', 'Family and Friends Integrated Networks' and 'Non-kin Restricted Networks'. Older South Asians with 'Non-kin Restricted Networks' were more likely to be lonely and isolated compared to others. Using network typologies developed with individualistically oriented cultures, distributions are skewed towards more robust network types and could underestimate the support needs of older people from familistic cultures, who may be isolated and lonely and with limited informal sources of help. The new typology identifies different network types within multigenerational households, identifies a greater proportion of older people with vulnerable networks and could positively contribute to service planning.
Analyzing Feedback Control Systems
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Downing, John P.
1987-01-01
Interactive controls analysis (INCA) program developed to provide user-friendly environment for design and analysis of linear control systems, primarily feedback control. Designed for use with both small- and large-order systems. Using interactive-graphics capability, INCA user quickly plots root locus, frequency response, or time response of either continuous-time system or sampled-data system. Configuration and parameters easily changed, allowing user to design compensation networks and perform sensitivity analyses in very convenient manner. Written in Pascal and FORTRAN.
Measuring geographic access to health care: raster and network-based methods
2012-01-01
Background Inequalities in geographic access to health care result from the configuration of facilities, population distribution, and the transportation infrastructure. In recent accessibility studies, the traditional distance measure (Euclidean) has been replaced with more plausible measures such as travel distance or time. Both network and raster-based methods are often utilized for estimating travel time in a Geographic Information System. Therefore, exploring the differences in the underlying data models and associated methods and their impact on geographic accessibility estimates is warranted. Methods We examine the assumptions present in population-based travel time models. Conceptual and practical differences between raster and network data models are reviewed, along with methodological implications for service area estimates. Our case study investigates Limited Access Areas defined by Michigan’s Certificate of Need (CON) Program. Geographic accessibility is calculated by identifying the number of people residing more than 30 minutes from an acute care hospital. Both network and raster-based methods are implemented and their results are compared. We also examine sensitivity to changes in travel speed settings and population assignment. Results In both methods, the areas identified as having limited accessibility were similar in their location, configuration, and shape. However, the number of people identified as having limited accessibility varied substantially between methods. Over all permutations, the raster-based method identified more area and people with limited accessibility. The raster-based method was more sensitive to travel speed settings, while the network-based method was more sensitive to the specific population assignment method employed in Michigan. Conclusions Differences between the underlying data models help to explain the variation in results between raster and network-based methods. Considering that the choice of data model/method may substantially alter the outcomes of a geographic accessibility analysis, we advise researchers to use caution in model selection. For policy, we recommend that Michigan adopt the network-based method or reevaluate the travel speed assignment rule in the raster-based method. Additionally, we recommend that the state revisit the population assignment method. PMID:22587023
Enhanced subject-specific resting-state network detection and extraction with fast fMRI.
Akin, Burak; Lee, Hsu-Lei; Hennig, Jürgen; LeVan, Pierre
2017-02-01
Resting-state networks have become an important tool for the study of brain function. An ultra-fast imaging technique that allows to measure brain function, called Magnetic Resonance Encephalography (MREG), achieves an order of magnitude higher temporal resolution than standard echo-planar imaging (EPI). This new sequence helps to correct physiological artifacts and improves the sensitivity of the fMRI analysis. In this study, EPI is compared with MREG in terms of capability to extract resting-state networks. Healthy controls underwent two consecutive resting-state scans, one with EPI and the other with MREG. Subject-level independent component analyses (ICA) were performed separately for each of the two datasets. Using Stanford FIND atlas parcels as network templates, the presence of ICA maps corresponding to each network was quantified in each subject. The number of detected individual networks was significantly higher in the MREG data set than for EPI. Moreover, using short time segments of MREG data, such as 50 seconds, one can still detect and track consistent networks. Fast fMRI thus results in an increased capability to extract distinct functional regions at the individual subject level for the same scan times, and also allow the extraction of consistent networks within shorter time intervals than when using EPI, which is notably relevant for the analysis of dynamic functional connectivity fluctuations. Hum Brain Mapp 38:817-830, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Toma, Tania; Athanasiou, Thanos; Harling, Leanne; Darzi, Ara; Ashrafian, Hutan
2014-11-01
Social networking services (SNS) can facilitate real-time communication and feedback of blood glucose and other physiological data between patients and healthcare professionals. This systematic review and meta-analysis aims to summarise the current evidence surrounding the role of online social networking services in diabetes care. We performed a systematic literature review of the Medline, EMBASE and PsychINFO databases of all studies reporting HbA1c (glycated haemoglobin) as a measure of glycaemic control for social networking services in diabetes care. HbA1c, clinical outcomes and the type of technology used were extracted. Study quality and publication bias were assessed. SNS interventions beneficially reduced HbA1c when compared to controls, which was confirmed by sensitivity analysis. SNS interventions also significantly improved systolic and diastolic blood pressure, triglycerides and total cholesterol. Subgroup analysis according to diabetes type demonstrated that Type 2 diabetes patients had a significantly greater reduction in HbA1c than those with Type 1 diabetes. Online SNS provide a novel, feasible approach to improving glycaemic control, particularly in patients with Type 2 diabetes. Further mechanistic and cost-effectiveness studies are required to improve our understanding of SNS and its efficacy in diabetes care. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Zwicker, J D; Rajani, V; Hahn, L B; Funk, G D
2011-01-01
Abstract ATP signalling in the CNS is mediated by a three-part system comprising the actions of ATP (and ADP) at P2 receptors (P2Rs), adenosine (ADO) at P1 receptors (P1Rs), and ectonucleotidases that degrade ATP into ADO. ATP excites preBötzinger complex (preBötC) inspiratory rhythm-generating networks where its release attenuates the hypoxic depression of breathing. Its metabolite, ADO, inhibits breathing through unknown mechanisms that may involve the preBötC. Our objective is to understand the dynamics of this signalling system and its influence on preBötC networks. We show that the preBötC of mouse and rat is sensitive to P2Y1 purinoceptor (P2Y1R) activation, responding with a >2-fold increase in frequency. Remarkably, the mouse preBötC is insensitive to ATP. Only after block of A1 ADORs is the ATP-evoked, P2Y1R-mediated frequency increase observed. This demonstrates that ATP is rapidly degraded to ADO, which activates inhibitory A1Rs, counteracting the P2Y1R-mediated excitation. ADO sensitivity of mouse preBötC was confirmed by a frequency decrease that was absent in rat. Differential ectonucleotidase activities are likely to contribute to the negligible ATP sensitivity of mouse preBötC. Real-time PCR analysis of ectonucleotidase isoforms in preBötC punches revealed TNAP (degrades ATP to ADO) or ENTPDase2 (favours production of excitatory ADP) as the primary constituent in mouse and rat, respectively. These data further establish the sensitivity of this vital network to P2Y1R-mediated excitation, emphasizing that individual components of the three-part signalling system dramatically alter network responses to ATP. Data also suggest therapeutic potential may derive from methods that alter the ATP–ADO balance to favour the excitatory actions of ATP. PMID:21788352
The Sensitivity of Genetic Connectivity Measures to Unsampled and Under-Sampled Sites
Koen, Erin L.; Bowman, Jeff; Garroway, Colin J.; Wilson, Paul J.
2013-01-01
Landscape genetic analyses assess the influence of landscape structure on genetic differentiation. It is rarely possible to collect genetic samples from all individuals on the landscape and thus it is important to assess the sensitivity of landscape genetic analyses to the effects of unsampled and under-sampled sites. Network-based measures of genetic distance, such as conditional genetic distance (cGD), might be particularly sensitive to sampling intensity because pairwise estimates are relative to the entire network. We addressed this question by subsampling microsatellite data from two empirical datasets. We found that pairwise estimates of cGD were sensitive to both unsampled and under-sampled sites, and FST, Dest, and deucl were more sensitive to under-sampled than unsampled sites. We found that the rank order of cGD was also sensitive to unsampled and under-sampled sites, but not enough to affect the outcome of Mantel tests for isolation by distance. We simulated isolation by resistance and found that although cGD estimates were sensitive to unsampled sites, by increasing the number of sites sampled the accuracy of conclusions drawn from landscape genetic analyses increased, a feature that is not possible with pairwise estimates of genetic differentiation such as FST, Dest, and deucl. We suggest that users of cGD assess the sensitivity of this measure by subsampling within their own network and use caution when making extrapolations beyond their sampled network. PMID:23409155
A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.
2004-01-01
The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.
A neural network device for on-line particle identification in cosmic ray experiments
NASA Astrophysics Data System (ADS)
Scrimaglio, R.; Finetti, N.; D'Altorio, L.; Rantucci, E.; Raso, M.; Segreto, E.; Tassoni, A.; Cardarilli, G. C.
2004-05-01
On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification.
Chan, Chien A; Gygax, André F; Wong, Elaine; Leckie, Christopher A; Nirmalathas, Ampalavanapillai; Kilper, Daniel C
2013-01-02
Internet traffic has grown rapidly in recent years and is expected to continue to expand significantly over the next decade. Consequently, the resulting greenhouse gas (GHG) emissions of telecommunications service-supporting infrastructures have become an important issue. In this study, we develop a set of models for assessing the use-phase power consumption and carbon dioxide emissions of telecom network services to help telecom providers gain a better understanding of the GHG emissions associated with the energy required for their networks and services. Due to the fact that measuring the power consumption and traffic in a telecom network is a challenging task, these models utilize different granularities of available network information. As the granularity of the network measurement information decreases, the corresponding models have the potential to produce larger estimation errors. Therefore, we examine the accuracy of these models under various network scenarios using two approaches: (i) a sensitivity analysis through simulations and (ii) a case study of a deployed network. Both approaches show that the accuracy of the models depends on the network size, the total amount of network service traffic (i.e., for the service under assessment), and the number of network nodes used to process the service.
Munger, Steven C.; Aylor, David L.; Syed, Haider Ali; Magwene, Paul M.; Threadgill, David W.; Capel, Blanche
2009-01-01
Despite the identification of some key genes that regulate sex determination, most cases of disorders of sexual development remain unexplained. Evidence suggests that the sexual fate decision in the developing gonad depends on a complex network of interacting factors that converge on a critical threshold. To elucidate the transcriptional network underlying sex determination, we took the first expression quantitative trait loci (eQTL) approach in a developing organ. We identified reproducible differences in the transcriptome of the embryonic day 11.5 (E11.5) XY gonad between C57BL/6J (B6) and 129S1/SvImJ (129S1), indicating that the reported sensitivity of B6 to sex reversal is consistent with a higher expression of a female-like transcriptome in B6. Gene expression is highly variable in F2 XY gonads from B6 and 129S1 intercrosses, yet strong correlations emerged. We estimated the F2 coexpression network and predicted roles for genes of unknown function based on their connectivity and position within the network. A genetic analysis of the F2 population detected autosomal regions that control the expression of many sex-related genes, including Sry (sex-determining region of the Y chromosome) and Sox9 (Sry-box containing gene 9), the key regulators of male sex determination. Our results reveal the complex transcription architecture underlying sex determination, and provide a mechanism by which individuals may be sensitized for sex reversal. PMID:19884258
Identifying aMCI with Functional Connectivity Network Characteristics based on Subtle AAL Atlas.
Zhuo, Zhizheng; Mo, Xiao; Ma, Xiangyu; Han, Ying; Li, Haiyun
2018-05-02
To investigate the subtle functional connectivity alterations of aMCI based on AAL atlas with 1024 regions (AAL_1024 atlas). Functional MRI images of 32 aMCI patients (Male/Female:15/17, Ages:66.8±8.36y) and 35 normal controls (Male/Female:13/22, Ages: 62.4±8.14y) were obtained in this study. Firstly, functional connectivity networks were constructed by Pearson's Correlation based on the subtle AAL_1024 atlas. Then, local and global network parameters were calculated from the thresholding functional connectivity matrices. Finally, multiple-comparison analysis was performed on these parameters to find the functional network alterations of aMCI. And furtherly, a couple of classifiers were adopted to identify the aMCI by using the network parameters. More subtle local brain functional alterations were detected by using AAL_1024 atlas. And the predominate nodes including hippocampus, inferior temporal gyrus, inferior parietal gyrus were identified which was not detected by AAL_90 atlas. The identification of aMCI from normal controls were significantly improved with the highest accuracy (98.51%), sensitivity (100%) and specificity (97.14%) compared to those (88.06%, 84.38% and 91.43% for the highest accuracy, sensitivity and specificity respectively) obtained by using AAL_90 atlas. More subtle functional connectivity alterations of aMCI could be found based on AAL_1024 atlas than those based on AAL_90 atlas. Besides, the identification of aMCI could also be improved. Copyright © 2018. Published by Elsevier B.V.
Applying cybernetic technology to diagnose human pulmonary sounds.
Chen, Mei-Yung; Chou, Cheng-Han
2014-06-01
Chest auscultation is a crucial and efficient method for diagnosing lung disease; however, it is a subjective process that relies on physician experience and the ability to differentiate between various sound patterns. Because the physiological signals composed of heart sounds and pulmonary sounds (PSs) are greater than 120 Hz and the human ear is not sensitive to low frequencies, successfully making diagnostic classifications is difficult. To solve this problem, we constructed various PS recognition systems for classifying six PS classes: vesicular breath sounds, bronchial breath sounds, tracheal breath sounds, crackles, wheezes, and stridor sounds. First, we used a piezoelectric microphone and data acquisition card to acquire PS signals and perform signal preprocessing. A wavelet transform was used for feature extraction, and the PS signals were decomposed into frequency subbands. Using a statistical method, we extracted 17 features that were used as the input vectors of a neural network. We proposed a 2-stage classifier combined with a back-propagation (BP) neural network and learning vector quantization (LVQ) neural network, which improves classification accuracy by using a haploid neural network. The receiver operating characteristic (ROC) curve verifies the high performance level of the neural network. To expand traditional auscultation methods, we constructed various PS diagnostic systems that can correctly classify the six common PSs. The proposed device overcomes the lack of human sensitivity to low-frequency sounds and various PS waves, characteristic values, and a spectral analysis charts are provided to elucidate the design of the human-machine interface.
Early grey matter changes in structural covariance networks in Huntington's disease.
Coppen, Emma M; van der Grond, Jeroen; Hafkemeijer, Anne; Rombouts, Serge A R B; Roos, Raymund A C
2016-01-01
Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. We aimed to detect network integrity changes in grey matter structural covariance networks and examined relationships with clinical assessments. Structural magnetic resonance imaging data of premanifest HD ( n = 30), HD patients (n = 30) and controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using the co-variation of grey matter with independent component analysis in FSL. Group differences were studied controlling for age and gender. To explore whether our approach is effective in examining grey matter changes, regional voxel-based analysis was additionally performed. Premanifest HD and HD patients showed decreased network integrity in two networks compared to controls. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p < 0.001, in pre-HD p = 0.003). One other network contained the hippocampus, premotor, sensorimotor, and insular cortices (in HD p < 0.001, in pre-HD p = 0.023). Additionally, in HD patients only, decreased network integrity was observed in a network including the lingual gyrus, intracalcarine, cuneal, and lateral occipital cortices ( p = 0.032). Changes in network integrity were significantly associated with scores of motor and neuropsychological assessments. In premanifest HD, voxel-based analyses showed pronounced volume loss in the basal ganglia, but less prominent in cortical regions. Our results suggest that structural covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD.
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek
2015-01-01
Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org. PMID:26063822
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks.
Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek
2015-07-06
Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org.
The neural correlates of reciprocity are sensitive to prior experience of reciprocity.
Cáceda, Ricardo; Prendes-Alvarez, Stefania; Hsu, Jung-Jiin; Tripathi, Shanti P; Kilts, Clint D; James, G Andrew
2017-08-14
Reciprocity is central to human relationships and is strongly influenced by multiple factors including the nature of social exchanges and their attendant emotional reactions. Despite recent advances in the field, the neural processes involved in this modulation of reciprocal behavior by ongoing social interaction are poorly understood. We hypothesized that activity within a discrete set of neural networks including a putative moral cognitive neural network is associated with reciprocity behavior. Nineteen healthy adults underwent functional magnetic resonance imaging scanning while playing the trustee role in the Trust Game. Personality traits and moral development were assessed. Independent component analysis was used to identify task-related functional brain networks and assess their relationship to behavior. The saliency network (insula and anterior cingulate) was positively correlated with reciprocity behavior. A consistent array of brain regions supports the engagement of emotional, self-referential and planning processes during social reciprocity behavior. Published by Elsevier B.V.
A neural network ActiveX based integrated image processing environment.
Ciuca, I; Jitaru, E; Alaicescu, M; Moisil, I
2000-01-01
The paper outlines an integrated image processing environment that uses neural networks ActiveX technology for object recognition and classification. The image processing environment which is Windows based, encapsulates a Multiple-Document Interface (MDI) and is menu driven. Object (shape) parameter extraction is focused on features that are invariant in terms of translation, rotation and scale transformations. The neural network models that can be incorporated as ActiveX components into the environment allow both clustering and classification of objects from the analysed image. Mapping neural networks perform an input sensitivity analysis on the extracted feature measurements and thus facilitate the removal of irrelevant features and improvements in the degree of generalisation. The program has been used to evaluate the dimensions of the hydrocephalus in a study for calculating the Evans index and the angle of the frontal horns of the ventricular system modifications.
Deep Space Network and Lunar Network Communication Coverage of the Moon
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2006-01-01
In this article, we describe the communication coverage analysis for the lunar network and the Earth ground stations. The first part of this article focuses on the direct communication coverage of the Moon from the Earth's ground stations. In particular, we assess the coverage performance of the Moon based on the existing Deep Space Network (DSN) antennas and the complimentary coverage of other potential stations at Hartebeesthoek, South Africa and at Santiago, Chile. We also address the coverage sensitivity based on different DSN antenna scenarios and their capability to provide single and redundant coverage of the Moon. The second part of this article focuses on the framework of the constrained optimization scheme to seek a stable constellation six relay satellites in two planes that not only can provide continuous communication coverage to any users on the Moon surface, but can also deliver data throughput in a highly efficient manner.
NASA Astrophysics Data System (ADS)
Wollheim, W. M.; Mulukutla, G. K.; Cook, C.; Carey, R. O.
2017-11-01
Nonpoint pollution sources are strongly influenced by hydrology and are therefore sensitive to climate variability. Some pollutants entering aquatic ecosystems, e.g., nitrate, can be mitigated by in-stream processes during transport through river networks. Whole river network nitrate retention is difficult to quantify with observations. High frequency, in situ nitrate sensors, deployed in nested locations within a single watershed, can improve estimates of both nonpoint inputs and aquatic retention at river network scales. We deployed a nested sensor network and associated sampling in the urbanizing Oyster River watershed in coastal New Hampshire, USA, to quantify storm event-scale loading and retention at network scales. An end member analysis used the relative behavior of reactive nitrate and conservative chloride to infer river network fate of nitrate. In the headwater catchments, nitrate and chloride concentrations are both increasingly diluted with increasing storm size. At the mouth of the watershed, chloride is also diluted, but nitrate tended to increase. The end member analysis suggests that this pattern is the result of high retention during small storms (51-78%) that declines to zero during large storms. Although high frequency nitrate sensors did not alter estimates of fluxes over seasonal time periods compared to less frequent grab sampling, they provide the ability to estimate nitrate flux versus storm size at event scales that is critical for such analyses. Nested sensor networks can improve understanding of the controls of both loading and network scale retention, and therefore also improve management of nonpoint source pollution.
The co-evolution of networks and prisoner's dilemma game by considering sensitivity and visibility.
Li, Dandan; Ma, Jing; Han, Dun; Sun, Mei; Tian, Lixin; Stanley, H Eugene
2017-03-24
Strategies adopted by individuals in a social network significantly impact the network, and they strongly affect relationships between individuals in the network. Links between individuals also heavily influence their levels of cooperation. Taking into account the evolution of each individual's connection, we explore how sensitivity and visibility affect the prisoner's dilemma game. The so-called 'sensitivity' and 'visibility' respectively present one's self-protection consciousness and the ability of gaining information. We find that at moderate levels of player sensitivity cooperative behavior increases, but that at high levels it is inhibited. We also find that the heterogeneity of the weight of individuals at the end of the game is higher when sensitivity and visibility are increased, but that the successful-defection-payoff has less impact on the weight of individuals and on the relationship between the heterogeneity of the weight of individuals and the density of cooperators. This framework can be used to clarify the interaction mechanism between the micro-level of individual behavior and the macro-level of individual co-evolutionary processes.
NASA Astrophysics Data System (ADS)
Han, Fei; Cheng, Lin
2017-04-01
The tradable credit scheme (TCS) outperforms congestion pricing in terms of social equity and revenue neutrality, apart from the same perfect performance on congestion mitigation. This article investigates the effectiveness and efficiency of TCS on enhancing transportation network capacity in a stochastic user equilibrium (SUE) modelling framework. First, the SUE and credit market equilibrium conditions are presented; then an equivalent general SUE model with TCS is established by virtue of two constructed functions, which can be further simplified under a specific probability distribution. To enhance the network capacity by utilizing TCS, a bi-level mathematical programming model is established for the optimal TCS design problem, with the upper level optimization objective maximizing network reserve capacity and lower level being the proposed SUE model. The heuristic sensitivity analysis-based algorithm is developed to solve the bi-level model. Three numerical examples are provided to illustrate the improvement effect of TCS on the network in different scenarios.
Friendship network position and salivary cortisol levels.
Kornienko, Olga; Clemans, Katherine H; Out, Dorothée; Granger, Douglas A
2013-01-01
We employed a social network analysis approach to examine the associations between friendship network position and cortisol levels. The sample consisted of 74 first-year students (93% female, ages 22-38 years, M = 27) from a highly competitive, accelerated Nursing program. Participants completed questionnaires online, and the entire group met at one time to complete a series of sociometric nominations and donated a saliva sample. Saliva was later assayed for cortisol. Metrics derived from directed friendship nominations indexed each student's friendship network status regarding popularity, gregariousness, and degree of interconnectedness. Results revealed that (1) individuals with lower gregariousness status (i.e., lowest number of outgoing ties) had higher cortisol levels, and (2) individuals with higher popularity status (i.e., higher numbers of incoming ties) had higher cortisol levels. Popularity and gregariousness-based network status is significantly associated with hypothalamic-pituitary-adrenal axis activity. Implications for prevailing theories of the social determinants of individual differences in biological sensitivity and susceptibility to context are discussed.
Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs
Sharifpoor, Sara; van Dyk, Dewald; Costanzo, Michael; Baryshnikova, Anastasia; Friesen, Helena; Douglas, Alison C.; Youn, Ji-Young; VanderSluis, Benjamin; Myers, Chad L.; Papp, Balázs; Boone, Charles; Andrews, Brenda J.
2012-01-01
A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase–substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks. PMID:22282571
Integrated Evaluation of Reliability and Power Consumption of Wireless Sensor Networks
Dâmaso, Antônio; Maciel, Paulo
2017-01-01
Power consumption is a primary interest in Wireless Sensor Networks (WSNs), and a large number of strategies have been proposed to evaluate it. However, those approaches usually neither consider reliability issues nor the power consumption of applications executing in the network. A central concern is the lack of consolidated solutions that enable us to evaluate the power consumption of applications and the network stack also considering their reliabilities. To solve this problem, we introduce a fully automatic solution to design power consumption aware WSN applications and communication protocols. The solution presented in this paper comprises a methodology to evaluate the power consumption based on the integration of formal models, a set of power consumption and reliability models, a sensitivity analysis strategy to select WSN configurations and a toolbox named EDEN to fully support the proposed methodology. This solution allows accurately estimating the power consumption of WSN applications and the network stack in an automated way. PMID:29113078
Co-acting gene networks predict TRAIL responsiveness of tumour cells with high accuracy.
O'Reilly, Paul; Ortutay, Csaba; Gernon, Grainne; O'Connell, Enda; Seoighe, Cathal; Boyce, Susan; Serrano, Luis; Szegezdi, Eva
2014-12-19
Identification of differentially expressed genes from transcriptomic studies is one of the most common mechanisms to identify tumor biomarkers. This approach however is not well suited to identify interaction between genes whose protein products potentially influence each other, which limits its power to identify molecular wiring of tumour cells dictating response to a drug. Due to the fact that signal transduction pathways are not linear and highly interlinked, the biological response they drive may be better described by the relative amount of their components and their functional relationships than by their individual, absolute expression. Gene expression microarray data for 109 tumor cell lines with known sensitivity to the death ligand cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was used to identify genes with potential functional relationships determining responsiveness to TRAIL-induced apoptosis. The machine learning technique Random Forest in the statistical environment "R" with backward elimination was used to identify the key predictors of TRAIL sensitivity and differentially expressed genes were identified using the software GeneSpring. Gene co-regulation and statistical interaction was assessed with q-order partial correlation analysis and non-rejection rate. Biological (functional) interactions amongst the co-acting genes were studied with Ingenuity network analysis. Prediction accuracy was assessed by calculating the area under the receiver operator curve using an independent dataset. We show that the gene panel identified could predict TRAIL-sensitivity with a very high degree of sensitivity and specificity (AUC=0·84). The genes in the panel are co-regulated and at least 40% of them functionally interact in signal transduction pathways that regulate cell death and cell survival, cellular differentiation and morphogenesis. Importantly, only 12% of the TRAIL-predictor genes were differentially expressed highlighting the importance of functional interactions in predicting the biological response. The advantage of co-acting gene clusters is that this analysis does not depend on differential expression and is able to incorporate direct- and indirect gene interactions as well as tissue- and cell-specific characteristics. This approach (1) identified a descriptor of TRAIL sensitivity which performs significantly better as a predictor of TRAIL sensitivity than any previously reported gene signatures, (2) identified potential novel regulators of TRAIL-responsiveness and (3) provided a systematic view highlighting fundamental differences between the molecular wiring of sensitive and resistant cell types.
A mixed-modem approach to data isolation on a broadband local area network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutcher, R.I.; Ewing, P.D.
1988-01-01
Data isolation is required to broadband networks to prevent unauthorized access to the sensitive data of other users. Isolation can be obtained by using equipment from more than one manufacturer to introduce incompatibility between nonassociated users. This paper develops the basis for isolation and postulates that four layers of isolation will exist when the proper equipment is chosen. An experimental broadband local area network (LAN) was constructed to verify isolation. This independent network allowed variations in operating conditions without causing interference in normal broadband operations. The measured results indicate that a broadband LAN can transmit data of varying sensitivity levelsmore » without compromising data security. When combined with certain administrative restrictions, the mixed-modem technique provides a cost-effective method of sharing a broadband network while maintaining isolation of data having different sensitivities. 5 refs., 2 figs.« less
Kontos, Anthony P; Reches, Amit; Elbin, R J; Dickman, Dalia; Laufer, Ilan; Geva, Amir B; Shacham, Galit; DeWolf, Ryan; Collins, Michael W
2016-06-01
Post-traumatic migraine (PTM) (i.e., headache, nausea, light and/or noise sensitivity) is an emerging risk factor for prolonged recovery following concussion. Concussions and migraine share similar pathophysiology characterized by specific ionic imbalances in the brain. Given these similarities, patients with PTM following concussion may exhibit distinct electrophysiological patterns, although researchers have yet to examine the electrophysiological brain activation in patients with PTM following concussion. A novel approach that may help differentiate brain activation in patients with and without PTM is brain network activation (BNA) analysis. BNA involves an algorithmic analysis applied to multichannel EEG-ERP data that provides a network map of cortical activity and quantitative data during specific tasks. A prospective, repeated measures design was used to evaluate BNA (during Go/NoGo task), EEG-ERP, cognitive performance, and concussion related symptoms at 1, 2, 3, and 4 weeks post-injury intervals among athletes with a medically diagnosed concussion with PTM (n = 15) and without (NO-PTM) (n = 22); and age, sex, and concussion history matched controls without concussion (CONTROL) (n = 20). Participants with PTM had significantly reduced BNA compared to NO-PTM and CONTROLS for Go and NoGo components at 3 weeks and for NoGo component at 4 weeks post-injury. The PTM group also demonstrated a more prominent deviation of network activity compared to the other two groups over a longer period of time. The composite BNA algorithm may be a more sensitive measure of electrophysiological change in the brain that can augment established cognitive assessment tools for detecting impairment in individuals with PTM.
Diabetic retinopathy screening using deep neural network.
Ramachandran, Nishanthan; Hong, Sheng Chiong; Sime, Mary J; Wilson, Graham A
2017-09-07
There is a burgeoning interest in the use of deep neural network in diabetic retinal screening. To determine whether a deep neural network could satisfactorily detect diabetic retinopathy that requires referral to an ophthalmologist from a local diabetic retinal screening programme and an international database. Retrospective audit. Diabetic retinal photos from Otago database photographed during October 2016 (485 photos), and 1200 photos from Messidor international database. Receiver operating characteristic curve to illustrate the ability of a deep neural network to identify referable diabetic retinopathy (moderate or worse diabetic retinopathy or exudates within one disc diameter of the fovea). Area under the receiver operating characteristic curve, sensitivity and specificity. For detecting referable diabetic retinopathy, the deep neural network had an area under receiver operating characteristic curve of 0.901 (95% confidence interval 0.807-0.995), with 84.6% sensitivity and 79.7% specificity for Otago and 0.980 (95% confidence interval 0.973-0.986), with 96.0% sensitivity and 90.0% specificity for Messidor. This study has shown that a deep neural network can detect referable diabetic retinopathy with sensitivities and specificities close to or better than 80% from both an international and a domestic (New Zealand) database. We believe that deep neural networks can be integrated into community screening once they can successfully detect both diabetic retinopathy and diabetic macular oedema. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Protein Interaction Networks Reveal Novel Autism Risk Genes within GWAS Statistical Noise
Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M.
2014-01-01
Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the identification of common risk variants, consistent with the notion that variants with small individual effects cannot be detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies, we applied a network-based strategy to the Autism Genome Project (AGP) and the Autism Genetics Resource Exchange GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI) data. Our analysis showed that autism-associated proteins at higher than conventional levels of significance (P<0.1) directly interact more than random expectation and are involved in a limited number of interconnected biological processes, indicating that they are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets. Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes previously hidden within GWAS statistical “noise” that warrant further analysis for causal variants. PMID:25409314
Protein interaction networks reveal novel autism risk genes within GWAS statistical noise.
Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M
2014-01-01
Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the identification of common risk variants, consistent with the notion that variants with small individual effects cannot be detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies, we applied a network-based strategy to the Autism Genome Project (AGP) and the Autism Genetics Resource Exchange GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI) data. Our analysis showed that autism-associated proteins at higher than conventional levels of significance (P<0.1) directly interact more than random expectation and are involved in a limited number of interconnected biological processes, indicating that they are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets. Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes previously hidden within GWAS statistical "noise" that warrant further analysis for causal variants.
Measuring the degree of integration for an integrated service network
Ye, Chenglin; Browne, Gina; Grdisa, Valerie S; Beyene, Joseph; Thabane, Lehana
2012-01-01
Background Integration involves the coordination of services provided by autonomous agencies and improves the organization and delivery of multiple services for target patients. Current measures generally do not distinguish between agencies’ perception and expectation. We propose a method for quantifying the agencies’ service integration. Using the data from the Children’s Treatment Network (CTN), we aimed to measure the degree of integration for the CTN agencies in York and Simcoe. Theory and methods We quantified the integration by the agreement between perceived and expected levels of involvement and calculated four scores from different perspectives for each agency. We used the average score to measure the global network integration and examined the sensitivity of the global score. Results Most agencies’ integration scores were <65%. As measured by the agreement between every other agency’s perception and expectation, the overall integration of CTN in Simcoe and York was 44% (95% CI: 39%–49%) and 52% (95% CI: 48%–56%), respectively. The sensitivity analysis showed that the global scores were robust. Conclusion Our method extends existing measures of integration and possesses a good extent of validity. We can also apply the method in monitoring improvement and linking integration with other outcomes. PMID:23593050
Efficient Cancer Detection Using Multiple Neural Networks.
Shell, John; Gregory, William D
2017-01-01
The inspection of live excised tissue specimens to ascertain malignancy is a challenging task in dermatopathology and generally in histopathology. We introduce a portable desktop prototype device that provides highly accurate neural network classification of malignant and benign tissue. The handheld device collects 47 impedance data samples from 1 Hz to 32 MHz via tetrapolar blackened platinum electrodes. The data analysis was implemented with six different backpropagation neural networks (BNN). A data set consisting of 180 malignant and 180 benign breast tissue data files in an approved IRB study at the Aurora Medical Center, Milwaukee, WI, USA, were utilized as a neural network input. The BNN structure consisted of a multi-tiered consensus approach autonomously selecting four of six neural networks to determine a malignant or benign classification. The BNN analysis was then compared with the histology results with consistent sensitivity of 100% and a specificity of 100%. This implementation successfully relied solely on statistical variation between the benign and malignant impedance data and intricate neural network configuration. This device and BNN implementation provides a novel approach that could be a valuable tool to augment current medical practice assessment of the health of breast, squamous, and basal cell carcinoma and other excised tissue without requisite tissue specimen expertise. It has the potential to provide clinical management personnel with a fast non-invasive accurate assessment of biopsied or sectioned excised tissue in various clinical settings.
Efficient Cancer Detection Using Multiple Neural Networks
Gregory, William D.
2017-01-01
The inspection of live excised tissue specimens to ascertain malignancy is a challenging task in dermatopathology and generally in histopathology. We introduce a portable desktop prototype device that provides highly accurate neural network classification of malignant and benign tissue. The handheld device collects 47 impedance data samples from 1 Hz to 32 MHz via tetrapolar blackened platinum electrodes. The data analysis was implemented with six different backpropagation neural networks (BNN). A data set consisting of 180 malignant and 180 benign breast tissue data files in an approved IRB study at the Aurora Medical Center, Milwaukee, WI, USA, were utilized as a neural network input. The BNN structure consisted of a multi-tiered consensus approach autonomously selecting four of six neural networks to determine a malignant or benign classification. The BNN analysis was then compared with the histology results with consistent sensitivity of 100% and a specificity of 100%. This implementation successfully relied solely on statistical variation between the benign and malignant impedance data and intricate neural network configuration. This device and BNN implementation provides a novel approach that could be a valuable tool to augment current medical practice assessment of the health of breast, squamous, and basal cell carcinoma and other excised tissue without requisite tissue specimen expertise. It has the potential to provide clinical management personnel with a fast non-invasive accurate assessment of biopsied or sectioned excised tissue in various clinical settings. PMID:29282435
Making Supply Chains Resilient to Floods Using a Bayesian Network
NASA Astrophysics Data System (ADS)
Haraguchi, M.
2015-12-01
Natural hazards distress the global economy by disrupting the interconnected supply chain networks. Manufacturing companies have created cost-efficient supply chains by reducing inventories, streamlining logistics and limiting the number of suppliers. As a result, today's supply chains are profoundly susceptible to systemic risks. In Thailand, for example, the GDP growth rate declined by 76 % in 2011 due to prolonged flooding. Thailand incurred economic damage including the loss of USD 46.5 billion, approximately 70% of which was caused by major supply chain disruptions in the manufacturing sector. Similar problems occurred after the Great East Japan Earthquake and Tsunami in 2011, the Mississippi River floods and droughts during 2011 - 2013, and Hurricane Sandy in 2012. This study proposes a methodology for modeling supply chain disruptions using a Bayesian network analysis (BNA) to estimate expected values of countermeasures of floods, such as inventory management, supplier management and hard infrastructure management. We first performed a spatio-temporal correlation analysis between floods and extreme precipitation data for the last 100 years at a global scale. Then we used a BNA to create synthetic networks that include variables associated with the magnitude and duration of floods, major components of supply chains and market demands. We also included decision variables of countermeasures that would mitigate potential losses caused by supply chain disruptions. Finally, we conducted a cost-benefit analysis by estimating the expected values of these potential countermeasures while conducting a sensitivity analysis. The methodology was applied to supply chain disruptions caused by the 2011 Thailand floods. Our study demonstrates desirable typical data requirements for the analysis, such as anonymized supplier network data (i.e. critical dependencies, vulnerability information of suppliers) and sourcing data(i.e. locations of suppliers, and production rates and volume), and data from previous experiences (i.e. companies' risk mitigation strategy decisions).
NASA Astrophysics Data System (ADS)
Guruprasad, R.; Behera, B. K.
2015-10-01
Quantitative prediction of fabric mechanical properties is an essential requirement for design engineering of textile and apparel products. In this work, the possibility of prediction of bending rigidity of cotton woven fabrics has been explored with the application of Artificial Neural Network (ANN) and two hybrid methodologies, namely Neuro-genetic modeling and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling. For this purpose, a set of cotton woven grey fabrics was desized, scoured and relaxed. The fabrics were then conditioned and tested for bending properties. With the database thus created, a neural network model was first developed using back propagation as the learning algorithm. The second model was developed by applying a hybrid learning strategy, in which genetic algorithm was first used as a learning algorithm to optimize the number of neurons and connection weights of the neural network. The Genetic algorithm optimized network structure was further allowed to learn using back propagation algorithm. In the third model, an ANFIS modeling approach was attempted to map the input-output data. The prediction performances of the models were compared and a sensitivity analysis was reported. The results show that the prediction by neuro-genetic and ANFIS models were better in comparison with that of back propagation neural network model.
GSCALite: A Web Server for Gene Set Cancer Analysis.
Liu, Chun-Jie; Hu, Fei-Fei; Xia, Mengxuan; Han, Leng; Zhang, Qiong; Guo, An-Yuan
2018-05-22
The availability of cancer genomic data makes it possible to analyze genes related to cancer. Cancer is usually the result of a set of genes and the signal of a single gene could be covered by background noise. Here, we present a web server named Gene Set Cancer Analysis (GSCALite) to analyze a set of genes in cancers with the following functional modules. (i) Differential expression in tumor vs normal, and the survival analysis; (ii) Genomic variations and their survival analysis; (iii) Gene expression associated cancer pathway activity; (iv) miRNA regulatory network for genes; (v) Drug sensitivity for genes; (vi) Normal tissue expression and eQTL for genes. GSCALite is a user-friendly web server for dynamic analysis and visualization of gene set in cancer and drug sensitivity correlation, which will be of broad utilities to cancer researchers. GSCALite is available on http://bioinfo.life.hust.edu.cn/web/GSCALite/. guoay@hust.edu.cn or zhangqiong@hust.edu.cn. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Nourifar, Raheleh; Mahdavi, Iraj; Mahdavi-Amiri, Nezam; Paydar, Mohammad Mahdi
2017-09-01
Decentralized supply chain management is found to be significantly relevant in today's competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final product is appropriated with stochastic and fuzzy numbers. We provide mathematical formulation of the problem as a bi-level mixed integer linear programming model. Due to problem's convolution, a structure to solve is developed that incorporates a novel heuristic algorithm based on Kth-best algorithm, fuzzy approach and chance constraint approach. Ultimately, a numerical example is constructed and worked through to demonstrate applicability of the optimization model. A sensitivity analysis is also made.
How the shape of an H-bonded network controls proton-coupled water activation in HONO formation.
Relph, Rachael A; Guasco, Timothy L; Elliott, Ben M; Kamrath, Michael Z; McCoy, Anne B; Steele, Ryan P; Schofield, Daniel P; Jordan, Kenneth D; Viggiano, Albert A; Ferguson, Eldon E; Johnson, Mark A
2010-01-15
Many chemical reactions in atmospheric aerosols and bulk aqueous environments are influenced by the surrounding solvation shell, but the precise molecular interactions underlying such effects have rarely been elucidated. We exploited recent advances in isomer-specific cluster vibrational spectroscopy to explore the fundamental relation between the hydrogen (H)-bonding arrangement of a set of ion-solvating water molecules and the chemical activity of this ensemble. We find that the extent to which the nitrosonium ion (NO+)and water form nitrous acid (HONO) and a hydrated proton cluster in the critical trihydrate depends sensitively on the geometrical arrangement of the water molecules in the network. Theoretical analysis of these data details the role of the water network in promoting charge delocalization.
An Observing System Simulation Experiment Approach to Meteorological Network Assessment
NASA Astrophysics Data System (ADS)
Abbasnezhadi, K.; Rasmussen, P. F.; Stadnyk, T.; Boluwade, A.
2016-12-01
A proper knowledge of the spatiotemporal distribution of rainfall is important in order to conduct a mindful investigation of water movement and storage throughout a catchment. Currently, the most accurate precipitation information available for the remote Boreal ecozones of northern Manitoba is coming from the Canadian Precipitation Analysis (CaPA) data assimilation system. Throughout the Churchill River Basin (CRB), CaPA still does not have the proper skill due to the limited number of weather stations. A new approach to experimental network design was investigated based on the concept of Observing System Simulation Experiment (OSSE). The OSSE-based network assessment procedure which simulates the CaPA system provides a scientific and hydrologically significant tool to assess the sensitivity of CaPA precipitation analysis to observation network density throughout the CRB. To simulate CaPA system, synthetic background and station data were simulated, respectively, by adding spatially uncorrelated and correlated Gaussian noises to an assumingly true daily weather field synthesized by a gridded precipitation generator which simulates CaPA data. Given the true reference field on one hand, and a set of pseudo-CaPA analyses associated with different network realizations on the other hand, a WATFLOOD hydrological model was employed to compare the modeled runoff. The simulations showed that as network density increases, the accuracy of CaPA precipitation products improves up to a certain limit beyond which adding more stations to the network does not result in further accuracy.
Batalle, Dafnis; Muñoz-Moreno, Emma; Figueras, Francesc; Bargallo, Nuria; Eixarch, Elisenda; Gratacos, Eduard
2013-12-01
Obtaining individual biomarkers for the prediction of altered neurological outcome is a challenge of modern medicine and neuroscience. Connectomics based on magnetic resonance imaging (MRI) stands as a good candidate to exhaustively extract information from MRI by integrating the information obtained in a few network features that can be used as individual biomarkers of neurological outcome. However, this approach typically requires the use of diffusion and/or functional MRI to extract individual brain networks, which require high acquisition times and present an extreme sensitivity to motion artifacts, critical problems when scanning fetuses and infants. Extraction of individual networks based on morphological similarity from gray matter is a new approach that benefits from the power of graph theory analysis to describe gray matter morphology as a large-scale morphological network from a typical clinical anatomic acquisition such as T1-weighted MRI. In the present paper we propose a methodology to normalize these large-scale morphological networks to a brain network with standardized size based on a parcellation scheme. The proposed methodology was applied to reconstruct individual brain networks of 63 one-year-old infants, 41 infants with intrauterine growth restriction (IUGR) and 22 controls, showing altered network features in the IUGR group, and their association with neurodevelopmental outcome at two years of age by means of ordinal regression analysis of the network features obtained with Bayley Scale for Infant and Toddler Development, third edition. Although it must be more widely assessed, this methodology stands as a good candidate for the development of biomarkers for altered neurodevelopment in the pediatric population. © 2013 Elsevier Inc. All rights reserved.
Zhang, Xiao-Fei; Ou-Yang, Le; Yan, Hong
2017-08-15
Understanding how gene regulatory networks change under different cellular states is important for revealing insights into network dynamics. Gaussian graphical models, which assume that the data follow a joint normal distribution, have been used recently to infer differential networks. However, the distributions of the omics data are non-normal in general. Furthermore, although much biological knowledge (or prior information) has been accumulated, most existing methods ignore the valuable prior information. Therefore, new statistical methods are needed to relax the normality assumption and make full use of prior information. We propose a new differential network analysis method to address the above challenges. Instead of using Gaussian graphical models, we employ a non-paranormal graphical model that can relax the normality assumption. We develop a principled model to take into account the following prior information: (i) a differential edge less likely exists between two genes that do not participate together in the same pathway; (ii) changes in the networks are driven by certain regulator genes that are perturbed across different cellular states and (iii) the differential networks estimated from multi-view gene expression data likely share common structures. Simulation studies demonstrate that our method outperforms other graphical model-based algorithms. We apply our method to identify the differential networks between platinum-sensitive and platinum-resistant ovarian tumors, and the differential networks between the proneural and mesenchymal subtypes of glioblastoma. Hub nodes in the estimated differential networks rediscover known cancer-related regulator genes and contain interesting predictions. The source code is at https://github.com/Zhangxf-ccnu/pDNA. szuouyl@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Ozerov, Ivan V; Lezhnina, Ksenia V; Izumchenko, Evgeny; Artemov, Artem V; Medintsev, Sergey; Vanhaelen, Quentin; Aliper, Alexander; Vijg, Jan; Osipov, Andreyan N; Labat, Ivan; West, Michael D; Buzdin, Anton; Cantor, Charles R; Nikolsky, Yuri; Borisov, Nikolay; Irincheeva, Irina; Khokhlovich, Edward; Sidransky, David; Camargo, Miguel Luiz; Zhavoronkov, Alex
2016-11-16
Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy.
Ozerov, Ivan V.; Lezhnina, Ksenia V.; Izumchenko, Evgeny; Artemov, Artem V.; Medintsev, Sergey; Vanhaelen, Quentin; Aliper, Alexander; Vijg, Jan; Osipov, Andreyan N.; Labat, Ivan; West, Michael D.; Buzdin, Anton; Cantor, Charles R.; Nikolsky, Yuri; Borisov, Nikolay; Irincheeva, Irina; Khokhlovich, Edward; Sidransky, David; Camargo, Miguel Luiz; Zhavoronkov, Alex
2016-01-01
Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy. PMID:27848968
Schmitz, Guy; Kolar-Anić, Ljiljana Z; Anić, Slobodan R; Cupić, Zeljko D
2008-12-25
The stoichiometric network analysis (SNA) introduced by B. L. Clarke is applied to a simplified model of the complex oscillating Bray-Liebhafsky reaction under batch conditions, which was not examined by this method earlier. This powerful method for the analysis of steady-states stability is also used to transform the classical differential equations into dimensionless equations. This transformation is easy and leads to a form of the equations combining the advantages of classical dimensionless equations with the advantages of the SNA. The used dimensionless parameters have orders of magnitude given by the experimental information about concentrations and currents. This simplifies greatly the study of the slow manifold and shows which parameters are essential for controlling its shape and consequently have an important influence on the trajectories. The effectiveness of these equations is illustrated on two examples: the study of the bifurcations points and a simple sensitivity analysis, different from the classical one, more based on the chemistry of the studied system.
Revision of IRIS/IDA Seismic Station Metadata
NASA Astrophysics Data System (ADS)
Xu, W.; Davis, P.; Auerbach, D.; Klimczak, E.
2017-12-01
Trustworthy data quality assurance has always been one of the goals of seismic network operators and data management centers. This task is considerably complex and evolving due to the huge quantities as well as the rapidly changing characteristics and complexities of seismic data. Published metadata usually reflect instrument response characteristics and their accuracies, which includes zero frequency sensitivity for both seismometer and data logger as well as other, frequency-dependent elements. In this work, we are mainly focused studying the variation of the seismometer sensitivity with time of IRIS/IDA seismic recording systems with a goal to improve the metadata accuracy for the history of the network. There are several ways to measure the accuracy of seismometer sensitivity for the seismic stations in service. An effective practice recently developed is to collocate a reference seismometer in proximity to verify the in-situ sensors' calibration. For those stations with a secondary broadband seismometer, IRIS' MUSTANG metric computation system introduced a transfer function metric to reflect two sensors' gain ratios in the microseism frequency band. In addition, a simulation approach based on M2 tidal measurements has been proposed and proven to be effective. In this work, we compare and analyze the results from three different methods, and concluded that the collocated-sensor method is most stable and reliable with the minimum uncertainties all the time. However, for epochs without both the collocated sensor and secondary seismometer, we rely on the analysis results from tide method. For the data since 1992 on IDA stations, we computed over 600 revised seismometer sensitivities for all the IRIS/IDA network calibration epochs. Hopefully further revision procedures will help to guarantee that the data is accurately reflected by the metadata of these stations.
18F-FDG PET brain images as features for Alzheimer classification
NASA Astrophysics Data System (ADS)
Azmi, M. H.; Saripan, M. I.; Nordin, A. J.; Ahmad Saad, F. F.; Abdul Aziz, S. A.; Wan Adnan, W. A.
2017-08-01
2-Deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG) Positron Emission Tomography (PET) imaging offers meaningful information for various types of diseases diagnosis. In Alzheimer's disease (AD), the hypometabolism of glucose which observed on the low intensity voxel in PET image may relate to the onset of the disease. The importance of early detection of AD is inevitable because the resultant brain damage is irreversible. Several statistical analysis and machine learning algorithm have been proposed to investigate the rate and the pattern of the hypometabolism. This study focus on the same aim with further investigation was performed on several hypometabolism pattern. Some pre-processing steps were implemented to standardize the data in order to minimize the effect of resolution and anatomical differences. The features used are the mean voxel intensity within the AD pattern mask, which derived from several z-score and FDR threshold values. The global mean voxel (GMV) and slice-based mean voxel (SbMV) intensity were observed and used as input to the neural network. Several neural network architectures were tested and compared to the nearest neighbour method. The highest accuracy equals to 0.9 and recorded at z-score ≤-1.3 with 1 node neural network architecture (sensitivity=0.81 and specificity=0.95) and at z-score ≤-0.7 with 10 nodes neural network (sensitivity=0.83 and specificity=0.94).
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Salazar, L.; Mittelstaedt, J.; Valdez, O.
2017-11-01
Supernovae in our universe are potential sources of gravitational waves (GW) that could be detected in a network of GW detectors like LIGO and Virgo. Core-collapse supernovae are rare, but the associated gravitational radiation is likely to carry profuse information about the underlying processes driving the supernovae. Calculations based on analytic models predict GW energies within the detection range of the Advanced LIGO detectors, out to tens of Mpc for certain types of signals e.g. coalescing binary neutron stars. For supernovae however, the corresponding distances are much less. Thus, methods that can improve the sensitivity of searches for GW signals from supernovae are desirable, especially in the advanced detector era. Several methods have been proposed based on various likelihood-based regulators that work on data from a network of detectors to detect burst-like signals (as is the case for signals from supernovae) from potential GW sources. To address this problem, we have developed an analysis pipeline based on a method of noise reduction known as the harmonic regeneration noise reduction (HRNR) algorithm. To demonstrate the method, sixteen supernova waveforms from the Murphy et al. 2009 catalog have been used in presence of LIGO science data. A comparative analysis is presented to show detection statistics for a standard network analysis as commonly used in GW pipelines and the same by implementing the new method in conjunction with the network. The result shows significant improvement in detection statistics.
Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit.
Eriksson, O; Brinne, B; Zhou, Y; Björkegren, J; Tegnér, J
2009-03-01
Complex regulatory dynamics is ubiquitous in molecular networks composed of genes and proteins. Recent progress in computational biology and its application to molecular data generate a growing number of complex networks. Yet, it has been difficult to understand the governing principles of these networks beyond graphical analysis or extensive numerical simulations. Here the authors exploit several simplifying biological circumstances which thereby enable to directly detect the underlying dynamical regularities driving periodic oscillations in a dynamical nonlinear computational model of a protein-protein network. System analysis is performed using the cell cycle, a mathematically well-described complex regulatory circuit driven by external signals. By introducing an explicit time delay and using a 'tearing-and-zooming' approach the authors reduce the system to a piecewise linear system with two variables that capture the dynamics of this complex network. A key step in the analysis is the identification of functional subsystems by identifying the relations between state-variables within the model. These functional subsystems are referred to as dynamical modules operating as sensitive switches in the original complex model. By using reduced mathematical representations of the subsystems the authors derive explicit conditions on how the cell cycle dynamics depends on system parameters, and can, for the first time, analyse and prove global conditions for system stability. The approach which includes utilising biological simplifying conditions, identification of dynamical modules and mathematical reduction of the model complexity may be applicable to other well-characterised biological regulatory circuits. [Includes supplementary material].
Preserving Differential Privacy in Degree-Correlation based Graph Generation
Wang, Yue; Wu, Xintao
2014-01-01
Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987
Cáceda, Ricardo; James, G Andrew; Ely, Timothy D; Snarey, John; Kilts, Clinton D
2011-02-25
Moral sensitivity refers to the interpretive awareness of moral conflict and can be justice or care oriented. Justice ethics is associated primarily with human rights and the application of moral rules, whereas care ethics is related to human needs and a situational approach involving social emotions. Among the core brain regions involved in moral issue processing are: medial prefrontal cortex, anterior (ACC) and posterior (PCC) cingulate cortex, posterior superior temporal sulcus (pSTS), insula and amygdala. This study sought to inform the long standing debate of whether care and justice moral ethics represent one or two different forms of cognition. Model-free and model-based connectivity analysis were used to identify functional neural networks underlying care and justice ethics for a moral sensitivity task. In addition to modest differences in patterns of associated neural activity, distinct modes of functional and effective connectivity were observed for moral sensitivity for care and justice issues that were modulated by individual variation in moral ability. These results support a neurobiological differentiation between care and justice ethics and suggest that human moral behavior reflects the outcome of integrating opposing rule-based, self-other perspectives, and emotional responses.
Money, Eric S; Barton, Lauren E; Dawson, Joseph; Reckhow, Kenneth H; Wiesner, Mark R
2014-03-01
The adaptive nature of the Forecasting the Impacts of Nanomaterials in the Environment (FINE) Bayesian network is explored. We create an updated FINE model (FINEAgNP-2) for predicting aquatic exposure concentrations of silver nanoparticles (AgNP) by combining the expert-based parameters from the baseline model established in previous work with literature data related to particle behavior, exposure, and nano-ecotoxicology via parameter learning. We validate the AgNP forecast from the updated model using mesocosm-scale field data and determine the sensitivity of several key variables to changes in environmental conditions, particle characteristics, and particle fate. Results show that the prediction accuracy of the FINEAgNP-2 model increased approximately 70% over the baseline model, with an error rate of only 20%, suggesting that FINE is a reliable tool to predict aquatic concentrations of nano-silver. Sensitivity analysis suggests that fractal dimension, particle diameter, conductivity, time, and particle fate have the most influence on aquatic exposure given the current knowledge; however, numerous knowledge gaps can be identified to suggest further research efforts that will reduce the uncertainty in subsequent exposure and risk forecasts. Copyright © 2013 Elsevier B.V. All rights reserved.
Sauser Zachrison, Kori; Iwashyna, Theodore J; Gebremariam, Achamyeleh; Hutchins, Meghan; Lee, Joyce M
2016-12-28
Connected individuals (or nodes) in a network are more likely to be similar than two randomly selected nodes due to homophily and/or network influence. Distinguishing between these two influences is an important goal in network analysis, and generalized estimating equation (GEE) analyses of longitudinal dyadic network data are an attractive approach. It is not known to what extent such regressions can accurately extract underlying data generating processes. Therefore our primary objective is to determine to what extent, and under what conditions, does the GEE-approach recreate the actual dynamics in an agent-based model. We generated simulated cohorts with pre-specified network characteristics and attachments in both static and dynamic networks, and we varied the presence of homophily and network influence. We then used statistical regression and examined the GEE model performance in each cohort to determine whether the model was able to detect the presence of homophily and network influence. In cohorts with both static and dynamic networks, we find that the GEE models have excellent sensitivity and reasonable specificity for determining the presence or absence of network influence, but little ability to distinguish whether or not homophily is present. The GEE models are a valuable tool to examine for the presence of network influence in longitudinal data, but are quite limited with respect to homophily.
Analysis of biofluids in aqueous environment based on mid-infrared spectroscopy.
Fabian, Heinz; Lasch, Peter; Naumann, Dieter
2005-01-01
In this study we describe a semiautomatic Fourier transform infrared spectroscopic methodology for the analysis of liquid serum samples, which combines simple sample introduction with high sample throughput. The applicability of this new infrared technology to the analysis of liquid serum samples from a cohort of cattle naturally infected with bovine spongiform encephalopathy and from controls was explored in comparison to the conventional approach based on transmission infrared spectroscopy of dried serum films. Artifical neural network analysis of the infrared data was performed to differentiate between bovine spongiform encephalopathy-negative controls and animals in the late stage of the disease. After training of artifical neural network classifiers, infrared spectra of sera from an independent external validation data set were analyzed. In this way, sensitivities between 90 and 96% and specificities between 84 and 92% were achieved, respectively, depending upon the strategy of data collection and data analysis. Based on these results, the advantages and limitations of the liquid sample technique and the dried film approach for routine analysis of biofluids are discussed. 2005 Society of Photo-Optical Instrumentation Engineers.
Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results
NASA Astrophysics Data System (ADS)
Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.
The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.
Choi, Kyung Min; Lee, Seok Jae; Choi, Jung Hoon; Park, Tae Jung; Park, Jong Wan; Shin, Weon Ho; Kang, Jeung Ku
2010-12-07
A facile route to fabricate a protein-immobilized network pattern circuit for rapid and highly sensitive diagnosis was developed via the evaporation directed impromptu patterning method and selective avian influenza virus (AIV) immobilization. The response to the 10 fg mL(-1) anti-AI antibody demonstrates that this easy and simple circuit has about 1000 times higher sensitivity compared to those of conventional approaches.
Baune, Bernhard T; Brignone, Mélanie; Larsen, Klaus Groes
2018-02-01
Major depressive disorder is a common condition that often includes cognitive dysfunction. A systematic literature review of studies and a network meta-analysis were carried out to assess the relative effect of antidepressants on cognitive dysfunction in major depressive disorder. MEDLINE, Embase, Cochrane, CDSR, and PsychINFO databases; clinical trial registries; and relevant conference abstracts were searched for randomized controlled trials assessing the effects of antidepressants/placebo on cognition. A network meta-analysis comparing antidepressants was conducted using a random effects model. The database search retrieved 11337 citations, of which 72 randomized controlled trials from 103 publications met the inclusion criteria. The review identified 86 cognitive tests assessing the effect of antidepressants on cognitive functioning. However, the Digit Symbol Substitution Test, which targets multiple domains of cognition and is recognized as being sensitive to change, was the only test that was used across 12 of the included randomized controlled trials and that allowed the construction of a stable network suitable for the network meta-analysis. The interventions assessed included selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and other non-selective serotonin reuptake inhibitors/serotonin-norepinephrine reuptake inhibitors. The network meta-analysis using the Digit Symbol Substitution Test showed that vortioxetine was the only antidepressant that improved cognitive dysfunction on the Digit Symbol Substitution Test vs placebo {standardized mean difference: 0.325 (95% CI = 0.120; 0.529, P=.009}. Compared with other antidepressants, vortioxetine was statistically more efficacious on the Digit Symbol Substitution Test vs escitalopram, nortriptyline, and the selective serotonin reuptake inhibitor and tricyclic antidepressant classes. This study highlighted the large variability in measures used to assess cognitive functioning. The findings on the Digit Symbol Substitution Test indicate differential effects of various antidepressants on improving cognitive function in patients with major depressive disorder. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Modulation of network pacemaker neurons by oxygen at the anaerobic threshold.
Hill, Andrew A V; Simmers, John; Meyrand, Pierre; Massabuau, Jean-Charles
2012-07-01
Previous in vitro and in vivo studies showed that the frequency of rhythmic pyloric network activity in the lobster is modulated directly by oxygen partial pressure (PO(2)). We have extended these results by (1) increasing the period of exposure to low PO(2) and by (2) testing the sensitivity of the pyloric network to changes in PO(2) that are within the narrow range normally experienced by the lobster (1 to 6 kPa). We found that the pyloric network rhythm was indeed altered by changes in PO(2) within the range typically observed in vivo. Furthermore, a previous study showed that the lateral pyloric constrictor motor neuron (LP) contributes to the O(2) sensitivity of the pyloric network. Here, we expanded on this idea by testing the hypothesis that pyloric pacemaker neurons also contribute to pyloric O(2) sensitivity. A 2-h exposure to 1 kPa PO(2), which was twice the period used previously, decreased the frequency of an isolated group of pacemaker neurons, suggesting that changes in the rhythmogenic properties of these cells contribute to pyloric O(2) sensitivity during long-term near-anaerobic (anaerobic threshold, 0.7-1.2 kPa) conditions.
Automatic detection of anomalies in screening mammograms
2013-01-01
Background Diagnostic performance in breast screening programs may be influenced by the prior probability of disease. Since breast cancer incidence is roughly half a percent in the general population there is a large probability that the screening exam will be normal. That factor may contribute to false negatives. Screening programs typically exhibit about 83% sensitivity and 91% specificity. This investigation was undertaken to determine if a system could be developed to pre-sort screening-images into normal and suspicious bins based on their likelihood to contain disease. Wavelets were investigated as a method to parse the image data, potentially removing confounding information. The development of a classification system based on features extracted from wavelet transformed mammograms is reported. Methods In the multi-step procedure images were processed using 2D discrete wavelet transforms to create a set of maps at different size scales. Next, statistical features were computed from each map, and a subset of these features was the input for a concerted-effort set of naïve Bayesian classifiers. The classifier network was constructed to calculate the probability that the parent mammography image contained an abnormality. The abnormalities were not identified, nor were they regionalized. The algorithm was tested on two publicly available databases: the Digital Database for Screening Mammography (DDSM) and the Mammographic Images Analysis Society’s database (MIAS). These databases contain radiologist-verified images and feature common abnormalities including: spiculations, masses, geometric deformations and fibroid tissues. Results The classifier-network designs tested achieved sensitivities and specificities sufficient to be potentially useful in a clinical setting. This first series of tests identified networks with 100% sensitivity and up to 79% specificity for abnormalities. This performance significantly exceeds the mean sensitivity reported in literature for the unaided human expert. Conclusions Classifiers based on wavelet-derived features proved to be highly sensitive to a range of pathologies, as a result Type II errors were nearly eliminated. Pre-sorting the images changed the prior probability in the sorted database from 37% to 74%. PMID:24330643
Tagore, Somnath; De, Rajat K.
2013-01-01
Disease Systems Biology is an area of life sciences, which is not very well understood to date. Analyzing infections and their spread in healthy metabolite networks can be one of the focussed areas in this regard. We have proposed a theory based on the classical forest fire model for analyzing the path of infection spread in healthy metabolic pathways. The theory suggests that when fire erupts in a forest, it spreads, and the surrounding trees also catch fire. Similarly, when we consider a metabolic network, the infection caused in the metabolites of the network spreads like a fire. We have constructed a simulation model which is used to study the infection caused in the metabolic networks from the start of infection, to spread and ultimately combating it. For implementation, we have used two approaches, first, based on quantitative strategies using ordinary differential equations and second, using graph-theory based properties. Furthermore, we are using certain probabilistic scores to complete this task and for interpreting the harm caused in the network, given by a ‘critical value’ to check whether the infection can be cured or not. We have tested our simulation model on metabolic pathways involved in Type I Diabetes mellitus in Homo sapiens. For validating our results biologically, we have used sensitivity analysis, both local and global, as well as for identifying the role of feedbacks in spreading infection in metabolic pathways. Moreover, information in literature has also been used to validate the results. The metabolic network datasets have been collected from the Kyoto Encyclopedia of Genes and Genomes (KEGG). PMID:24039701
Zador, Zsolt; Sperrin, Matthew; King, Andrew T
2016-01-01
Traumatic brain injury remains a global health problem. Understanding the relative importance of outcome predictors helps optimize our treatment strategies by informing assessment protocols, clinical decisions and trial designs. In this study we establish importance ranking for outcome predictors based on receiver operating indices to identify key predictors of outcome and create simple predictive models. We then explore the associations between key outcome predictors using Bayesian networks to gain further insight into predictor importance. We analyzed the corticosteroid randomization after significant head injury (CRASH) trial database of 10008 patients and included patients for whom demographics, injury characteristics, computer tomography (CT) findings and Glasgow Outcome Scale (GCS) were recorded (total of 13 predictors, which would be available to clinicians within a few hours following the injury in 6945 patients). Predictions of clinical outcome (death or severe disability at 6 months) were performed using logistic regression models with 5-fold cross validation. Predictive performance was measured using standardized partial area (pAUC) under the receiver operating curve (ROC) and we used Delong test for comparisons. Variable importance ranking was based on pAUC targeted at specificity (pAUCSP) and sensitivity (pAUCSE) intervals of 90-100%. Probabilistic associations were depicted using Bayesian networks. Complete AUC analysis showed very good predictive power (AUC = 0.8237, 95% CI: 0.8138-0.8336) for the complete model. Specificity focused importance ranking highlighted age, pupillary, motor responses, obliteration of basal cisterns/3rd ventricle and midline shift. Interestingly when targeting model sensitivity, the highest-ranking variables were age, severe extracranial injury, verbal response, hematoma on CT and motor response. Simplified models, which included only these key predictors, had similar performance (pAUCSP = 0.6523, 95% CI: 0.6402-0.6641 and pAUCSE = 0.6332, 95% CI: 0.62-0.6477) compared to the complete models (pAUCSP = 0.6664, 95% CI: 0.6543-0.679, pAUCSE = 0.6436, 95% CI: 0.6289-0.6585, de Long p value 0.1165 and 0.3448 respectively). Bayesian networks showed the predictors that did not feature in the simplified models were associated with those that did. We demonstrate that importance based variable selection allows simplified predictive models to be created while maintaining prediction accuracy. Variable selection targeting specificity confirmed key components of clinical assessment in TBI whereas sensitivity based ranking suggested extracranial injury as one of the important predictors. These results help refine our approach to head injury assessment, decision-making and outcome prediction targeted at model sensitivity and specificity. Bayesian networks proved to be a comprehensive tool for depicting probabilistic associations for key predictors giving insight into why the simplified model has maintained accuracy.
NASA Astrophysics Data System (ADS)
Li, Fei; Zhao, Wei; Guo, Ying
2018-01-01
Continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is now heading towards solving the practical problem of implementing scalable quantum networks. In this paper, we show that a solution can come from deploying an optical amplifier in the CV-MDI system, aiming to establish a high-rate quantum network. We suggest an improved CV-MDI protocol using the EPR states coupled with optical amplifiers. It can implement a practical quantum network scheme, where the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Despite the possibility that the relay could be completely tampered with and imperfect links are subject to the powerful attacks, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Furthermore, we show that the use of optical amplifiers can compensate the inherent imperfections and improve the secret key rate of the CV-MDI system.
Do the rich get richer? An empirical analysis of the Bitcoin transaction network.
Kondor, Dániel; Pósfai, Márton; Csabai, István; Vattay, Gábor
2014-01-01
The possibility to analyze everyday monetary transactions is limited by the scarcity of available data, as this kind of information is usually considered highly sensitive. Present econophysics models are usually employed on presumed random networks of interacting agents, and only some macroscopic properties (e.g. the resulting wealth distribution) are compared to real-world data. In this paper, we analyze Bitcoin, which is a novel digital currency system, where the complete list of transactions is publicly available. Using this dataset, we reconstruct the network of transactions and extract the time and amount of each payment. We analyze the structure of the transaction network by measuring network characteristics over time, such as the degree distribution, degree correlations and clustering. We find that linear preferential attachment drives the growth of the network. We also study the dynamics taking place on the transaction network, i.e. the flow of money. We measure temporal patterns and the wealth accumulation. Investigating the microscopic statistics of money movement, we find that sublinear preferential attachment governs the evolution of the wealth distribution. We report a scaling law between the degree and wealth associated to individual nodes.
Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transaction Network
Kondor, Dániel; Pósfai, Márton; Csabai, István; Vattay, Gábor
2014-01-01
The possibility to analyze everyday monetary transactions is limited by the scarcity of available data, as this kind of information is usually considered highly sensitive. Present econophysics models are usually employed on presumed random networks of interacting agents, and only some macroscopic properties (e.g. the resulting wealth distribution) are compared to real-world data. In this paper, we analyze Bitcoin, which is a novel digital currency system, where the complete list of transactions is publicly available. Using this dataset, we reconstruct the network of transactions and extract the time and amount of each payment. We analyze the structure of the transaction network by measuring network characteristics over time, such as the degree distribution, degree correlations and clustering. We find that linear preferential attachment drives the growth of the network. We also study the dynamics taking place on the transaction network, i.e. the flow of money. We measure temporal patterns and the wealth accumulation. Investigating the microscopic statistics of money movement, we find that sublinear preferential attachment governs the evolution of the wealth distribution. We report a scaling law between the degree and wealth associated to individual nodes. PMID:24505257
Seismic Monitoring for the United Arab Emirates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, A; Nakanishi, K
2005-04-11
There is potential for earthquakes in the United Arab Emirates and in the Zagros mountains to cause structural damage and pose a threat to safety of people. Damaging effects from earthquakes can be mitigated by knowledge of the location and size of earthquakes, effects on construction, and monitoring these effects over time. Although a general idea of seismicity in the UAE may be determined with data from global seismic networks, these global networks do not have the sensitivity to record smaller seismic events and do not have the necessary accuracy to locate the events. A National Seismic Monitoring Observatory ismore » needed for the UAE that consists of a modern seismic network and a multidisciplinary staff that can analyze and interpret the data from the network. A seismic network is essential to locate earthquakes, determine event magnitudes, identify active faults and measure ground motions from earthquakes. Such a network can provide the data necessary for a reliable seismic hazard assessment in the UAE. The National Seismic Monitoring Observatory would ideally be situated at a university that would provide access to the wide range of disciplines needed in operating the network and providing expertise in analysis and interpretation.« less
NASA Astrophysics Data System (ADS)
Janaki Sathya, D.; Geetha, K.
2017-12-01
Automatic mass or lesion classification systems are developed to aid in distinguishing between malignant and benign lesions present in the breast DCE-MR images, the systems need to improve both the sensitivity and specificity of DCE-MR image interpretation in order to be successful for clinical use. A new classifier (a set of features together with a classification method) based on artificial neural networks trained using artificial fish swarm optimization (AFSO) algorithm is proposed in this paper. The basic idea behind the proposed classifier is to use AFSO algorithm for searching the best combination of synaptic weights for the neural network. An optimal set of features based on the statistical textural features is presented. The investigational outcomes of the proposed suspicious lesion classifier algorithm therefore confirm that the resulting classifier performs better than other such classifiers reported in the literature. Therefore this classifier demonstrates that the improvement in both the sensitivity and specificity are possible through automated image analysis.
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas
2014-05-01
Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.
King, Carly J.; Woodward, Josha; Schwartzman, Jacob; Coleman, Daniel J.; Lisac, Robert; Wang, Nicholas J.; Van Hook, Kathryn; Gao, Lina; Urrutia, Joshua; Dane, Mark A.; Heiser, Laura M.; Alumkal, Joshi J.
2017-01-01
Recent work demonstrates that castration-resistant prostate cancer (CRPC) tumors harbor countless genomic aberrations that control many hallmarks of cancer. While some specific mutations in CRPC may be actionable, many others are not. We hypothesized that genomic aberrations in cancer may operate in concert to promote drug resistance and tumor progression, and that organization of these genomic aberrations into therapeutically targetable pathways may improve our ability to treat CRPC. To identify the molecular underpinnings of enzalutamide-resistant CRPC, we performed transcriptional and copy number profiling studies using paired enzalutamide-sensitive and resistant LNCaP prostate cancer cell lines. Gene networks associated with enzalutamide resistance were revealed by performing an integrative genomic analysis with the PAthway Representation and Analysis by Direct Reference on Graphical Models (PARADIGM) tool. Amongst the pathways enriched in the enzalutamide-resistant cells were those associated with MEK, EGFR, RAS, and NFKB. Functional validation studies of 64 genes identified 10 candidate genes whose suppression led to greater effects on cell viability in enzalutamide-resistant cells as compared to sensitive parental cells. Examination of a patient cohort demonstrated that several of our functionally-validated gene hits are deregulated in metastatic CRPC tumor samples, suggesting that they may be clinically relevant therapeutic targets for patients with enzalutamide-resistant CRPC. Altogether, our approach demonstrates the potential of integrative genomic analyses to clarify determinants of drug resistance and rational co-targeting strategies to overcome resistance. PMID:29340039
ERIC Educational Resources Information Center
Sani-Bozkurt, Sunagul
2018-01-01
Down syndrome is a sensitive subject and one that requires efforts being made to improve conditions for individuals with Down syndrome across multiple dimensions. Social awareness is one of the important dimensions for the inclusion of individuals with Down syndrome. Online spaces, as well as offline spaces, are an important part of our daily…
Uncertainty in Damage Detection, Dynamic Propagation and Just-in-Time Networks
2015-08-03
estimated parameter uncertainty in dynamic data sets; high order compact finite difference schemes for Helmholtz equations with discontinuous wave numbers...delay differential equations with a Gamma distributed delay. We found that with the same population size the histogram plots for the solution to the...schemes for Helmholtz equations with discontinuous wave numbers across interfaces. • We carried out numerical sensitivity analysis with respect to
Evidence synthesis for decision making 7: a reviewer's checklist.
Ades, A E; Caldwell, Deborah M; Reken, Stefanie; Welton, Nicky J; Sutton, Alex J; Dias, Sofia
2013-07-01
This checklist is for the review of evidence syntheses for treatment efficacy used in decision making based on either efficacy or cost-effectiveness. It is intended to be used for pairwise meta-analysis, indirect comparisons, and network meta-analysis, without distinction. It does not generate a quality rating and is not prescriptive. Instead, it focuses on a series of questions aimed at revealing the assumptions that the authors of the synthesis are expecting readers to accept, the adequacy of the arguments authors advance in support of their position, and the need for further analyses or sensitivity analyses. The checklist is intended primarily for those who review evidence syntheses, including indirect comparisons and network meta-analyses, in the context of decision making but will also be of value to those submitting syntheses for review, whether to decision-making bodies or journals. The checklist has 4 main headings: A) definition of the decision problem, B) methods of analysis and presentation of results, C) issues specific to network synthesis, and D) embedding the synthesis in a probabilistic cost-effectiveness model. The headings and implicit advice follow directly from the other tutorials in this series. A simple table is provided that could serve as a pro forma checklist.
Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis.
Scholten, Lisa; Scheidegger, Andreas; Reichert, Peter; Maurer, Max; Mauer, Max; Lienert, Judit
2014-02-01
To overcome the difficulties of strategic asset management of water distribution networks, a pipe failure and a rehabilitation model are combined to predict the long-term performance of rehabilitation strategies. Bayesian parameter estimation is performed to calibrate the failure and replacement model based on a prior distribution inferred from three large water utilities in Switzerland. Multi-criteria decision analysis (MCDA) and scenario planning build the framework for evaluating 18 strategic rehabilitation alternatives under future uncertainty. Outcomes for three fundamental objectives (low costs, high reliability, and high intergenerational equity) are assessed. Exploitation of stochastic dominance concepts helps to identify twelve non-dominated alternatives and local sensitivity analysis of stakeholder preferences is used to rank them under four scenarios. Strategies with annual replacement of 1.5-2% of the network perform reasonably well under all scenarios. In contrast, the commonly used reactive replacement is not recommendable unless cost is the only relevant objective. Exemplified for a small Swiss water utility, this approach can readily be adapted to support strategic asset management for any utility size and based on objectives and preferences that matter to the respective decision makers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shannon, Ronald; Nelson, Andrea
2017-08-01
To compare data on time to healing from two separate cohorts: one treated with a new acellular synthetic matrix plus standard care (SC) and one matched from four large UK pragmatic, randomised controlled trials [venous leg ulcer (VLU) evidence network]. We introduce a new proof-of-concept strategy to a VLU clinical evidence network, propensity score matching and sensitivity analysis to predict the feasibility of the new acellular synthetic matrix plus SC for success in future randomised, controlled clinical trials. Prospective data on chronic VLUs from a safety and effectiveness study on an acellular synthetic matrix conducted in one wound centre in the UK (17 patients) and three wound centres in Australia (36 patients) were compared retrospectively to propensity score-matched data from patients with comparable leg ulcer disease aetiology, age, baseline ulcer area, ulcer duration, multi-layer compression bandaging and majority of care completed in specialist wound centres (average of 1 visit per week), with the outcome measures at comparable follow-up periods from patients enrolled in four prospective, multicentre, pragmatic, randomised studies of venous ulcers in the UK (the comparison group; VLU evidence network). Analysis using Kaplan-Meier survival curves showed a mean healing time of 73·1 days for ASM plus SC (ASM) treated ulcers in comparison with 83·5 days for comparison group ulcers treated with SC alone (Log rank test, χ 2 5·779, P = 0·016) within 12 weeks. Sensitivity analysis indicates that an unobserved covariate would have to change the odds of healing for SC by a factor of 1·1 to impact the baseline results. Results from this study predict a significant effect on healing time when using a new ASM as an adjunct to SC in the treatment of non-healing venous ulcers in the UK, but results are sensitive to unobserved covariates that may be important in healing time comparison. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Krumholz, Elias W.; Libourel, Igor G. L.
2015-01-01
Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773
A design automation framework for computational bioenergetics in biological networks.
Angione, Claudio; Costanza, Jole; Carapezza, Giovanni; Lió, Pietro; Nicosia, Giuseppe
2013-10-01
The bioenergetic activity of mitochondria can be thoroughly investigated by using computational methods. In particular, in our work we focus on ATP and NADH, namely the metabolites representing the production of energy in the cell. We develop a computational framework to perform an exhaustive investigation at the level of species, reactions, genes and metabolic pathways. The framework integrates several methods implementing the state-of-the-art algorithms for many-objective optimization, sensitivity, and identifiability analysis applied to biological systems. We use this computational framework to analyze three case studies related to the human mitochondria and the algal metabolism of Chlamydomonas reinhardtii, formally described with algebraic differential equations or flux balance analysis. Integrating the results of our framework applied to interacting organelles would provide a general-purpose method for assessing the production of energy in a biological network.
Spectral discrimination of serum from liver cancer and liver cirrhosis using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Tianyue; Li, Xiaozhou; Yu, Ting; Sun, Ruomin; Li, Siqi
2011-07-01
In this paper, Raman spectra of human serum were measured using Raman spectroscopy, then the spectra was analyzed by multivariate statistical methods of principal component analysis (PCA). Then linear discriminant analysis (LDA) was utilized to differentiate the loading score of different diseases as the diagnosing algorithm. Artificial neural network (ANN) was used for cross-validation. The diagnosis sensitivity and specificity by PCA-LDA are 88% and 79%, while that of the PCA-ANN are 89% and 95%. It can be seen that modern analyzing method is a useful tool for the analysis of serum spectra for diagnosing diseases.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2004-01-01
A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation table in the presence of various sources of laboratory noise is shown. The output of the neural network is called the degradable classification index. The curve was generated by a simultaneous comparison of means, and it shows a peak-to-peak sensitivity of about 100 nm. The following graph uses model generated data from a compressor blade to show that much higher sensitivities are possible when the environment can be controlled better. The peak-to-peak sensitivity here is about 20 nm. The training procedure was modified for the second graph, and the data were subjected to an intensity-dependent transformation called folding. All the measurements for this approach to calibration were optical. The peak-to-peak amplitudes of the vibration modes were measured using heterodyne interferometry, and the modes themselves were recorded using television (electronic) holography.
Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko
2012-01-01
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.
Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko
2012-01-01
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments. PMID:22496909
A large deformation viscoelastic model for double-network hydrogels
NASA Astrophysics Data System (ADS)
Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit
2017-03-01
We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.
Major technological innovations introduced in the large antennas of the Deep Space Network
NASA Technical Reports Server (NTRS)
Imbriale, W. A.
2002-01-01
The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.
Ghasemi, Fakhradin; Kalatpour, Omid; Moghimbeigi, Abbas; Mohammadfam, Iraj
2017-03-04
High-risk unsafe behaviors (HRUBs) have been known as the main cause of occupational accidents. Considering the financial and societal costs of accidents and the limitations of available resources, there is an urgent need for managing unsafe behaviors at workplaces. The aim of the present study was to find strategies for decreasing the rate of HRUBs using an integrated approach of safety behavior sampling technique and Bayesian networks analysis. A cross-sectional study. The Bayesian network was constructed using a focus group approach. The required data was collected using the safety behavior sampling, and the parameters of the network were estimated using Expectation-Maximization algorithm. Using sensitivity analysis and belief updating, it was determined that which factors had the highest influences on unsafe behavior. Based on BN analyses, safety training was the most important factor influencing employees' behavior at the workplace. High quality safety training courses can reduce the rate of HRUBs about 10%. Moreover, the rate of HRUBs increased by decreasing the age of employees. The rate of HRUBs was higher in the afternoon and last days of a week. Among the investigated variables, training was the most important factor affecting safety behavior of employees. By holding high quality safety training courses, companies would be able to reduce the rate of HRUBs significantly.
Advancing Clinical Proteomics via Analysis Based on Biological Complexes: A Tale of Five Paradigms.
Goh, Wilson Wen Bin; Wong, Limsoon
2016-09-02
Despite advances in proteomic technologies, idiosyncratic data issues, for example, incomplete coverage and inconsistency, resulting in large data holes, persist. Moreover, because of naïve reliance on statistical testing and its accompanying p values, differential protein signatures identified from such proteomics data have little diagnostic power. Thus, deploying conventional analytics on proteomics data is insufficient for identifying novel drug targets or precise yet sensitive biomarkers. Complex-based analysis is a new analytical approach that has potential to resolve these issues but requires formalization. We categorize complex-based analysis into five method classes or paradigms and propose an even-handed yet comprehensive evaluation rubric based on both simulated and real data. The first four paradigms are well represented in the literature. The fifth and newest paradigm, the network-paired (NP) paradigm, represented by a method called Extremely Small SubNET (ESSNET), dominates in precision-recall and reproducibility, maintains strong performance in small sample sizes, and sensitively detects low-abundance complexes. In contrast, the commonly used over-representation analysis (ORA) and direct-group (DG) test paradigms maintain good overall precision but have severe reproducibility issues. The other two paradigms considered here are the hit-rate and rank-based network analysis paradigms; both of these have good precision-recall and reproducibility, but they do not consider low-abundance complexes. Therefore, given its strong performance, NP/ESSNET may prove to be a useful approach for improving the analytical resolution of proteomics data. Additionally, given its stability, it may also be a powerful new approach toward functional enrichment tests, much like its ORA and DG counterparts.
Samarasinghe, S; Ling, H
In this paper, we show how to extend our previously proposed novel continuous time Recurrent Neural Networks (RNN) approach that retains the advantage of continuous dynamics offered by Ordinary Differential Equations (ODE) while enabling parameter estimation through adaptation, to larger signalling networks using a modular approach. Specifically, the signalling network is decomposed into several sub-models based on important temporal events in the network. Each sub-model is represented by the proposed RNN and trained using data generated from the corresponding ODE model. Trained sub-models are assembled into a whole system RNN which is then subjected to systems dynamics and sensitivity analyses. The concept is illustrated by application to G1/S transition in cell cycle using Iwamoto et al. (2008) ODE model. We decomposed the G1/S network into 3 sub-models: (i) E2F transcription factor release; (ii) E2F and CycE positive feedback loop for elevating cyclin levels; and (iii) E2F and CycA negative feedback to degrade E2F. The trained sub-models accurately represented system dynamics and parameters were in good agreement with the ODE model. The whole system RNN however revealed couple of parameters contributing to compounding errors due to feedback and required refinement to sub-model 2. These related to the reversible reaction between CycE/CDK2 and p27, its inhibitor. The revised whole system RNN model very accurately matched dynamics of the ODE system. Local sensitivity analysis of the whole system model further revealed the most dominant influence of the above two parameters in perturbing G1/S transition, giving support to a recent hypothesis that the release of inhibitor p27 from Cyc/CDK complex triggers cell cycle stage transition. To make the model useful in a practical setting, we modified each RNN sub-model with a time relay switch to facilitate larger interval input data (≈20min) (original model used data for 30s or less) and retrained them that produced parameters and protein concentrations similar to the original RNN system. Results thus demonstrated the reliability of the proposed RNN method for modelling relatively large networks by modularisation for practical settings. Advantages of the method are its ability to represent accurate continuous system dynamics and ease of: parameter estimation through training with data from a practical setting, model analysis (40% faster than ODE), fine tuning parameters when more data are available, sub-model extension when new elements and/or interactions come to light and model expansion with addition of sub-models. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of epoch length on estimated EEG functional connectivity and brain network organisation
NASA Astrophysics Data System (ADS)
Fraschini, Matteo; Demuru, Matteo; Crobe, Alessandra; Marrosu, Francesco; Stam, Cornelis J.; Hillebrand, Arjan
2016-06-01
Objective. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. Approach. The aim of this study was to provide a network approach insensitive to the effects that epoch length has on functional connectivity and network reconstruction. Two different measures, the phase lag index (PLI) and the amplitude envelope correlation (AEC) were applied to EEG resting-state recordings for a group of 18 healthy volunteers using non-overlapping epochs with variable length (1, 2, 4, 6, 8, 10, 12, 14 and 16 s). Weighted clustering coefficient (CCw), weighted characteristic path length (L w) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Main results. Results from scalp analysis show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 s for PLI and 6 s for AEC. Moreover, CCw and L w show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1-6 s versus 4-8 s for AEC). At the source-level the results were even more reliable, with stability already at 1 s duration for PLI-based MSTs. Significance. The present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of brain network topology between different studies.
Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy
NASA Astrophysics Data System (ADS)
Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris
2018-04-01
We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.
Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy.
Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris
2018-04-06
We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.
Isaac, Arnold Emerson; Sinha, Sitabhra
2015-10-01
The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core-periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers - having higher core order - with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core-periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/ ~sitabhra/proteinKcore/index.html.
Disaster Response on September 11, 2001 Through the Lens of Statistical Network Analysis.
Schweinberger, Michael; Petrescu-Prahova, Miruna; Vu, Duy Quang
2014-05-01
The rescue and relief operations triggered by the September 11, 2001 attacks on the World Trade Center in New York City demanded collaboration among hundreds of organisations. To shed light on the response to the September 11, 2001 attacks and help to plan and prepare the response to future disasters, we study the inter-organisational network that emerged in response to the attacks. Studying the inter-organisational network can help to shed light on (1) whether some organisations dominated the inter-organisational network and facilitated communication and coordination of the disaster response; (2) whether the dominating organisations were supposed to coordinate disaster response or emerged as coordinators in the wake of the disaster; and (3) the degree of network redundancy and sensitivity of the inter-organisational network to disturbances following the initial disaster. We introduce a Bayesian framework which can answer the substantive questions of interest while being as simple and parsimonious as possible. The framework allows organisations to have varying propensities to collaborate, while taking covariates into account, and allows to assess whether the inter-organisational network had network redundancy-in the form of transitivity-by using a test which may be regarded as a Bayesian score test. We discuss implications in terms of disaster management.
Dørum, Erlend S; Kaufmann, Tobias; Alnæs, Dag; Andreassen, Ole A; Richard, Geneviève; Kolskår, Knut K; Nordvik, Jan Egil; Westlye, Lars T
2017-03-01
Age-related differences in cognitive agility vary greatly between individuals and cognitive functions. This heterogeneity is partly mirrored in individual differences in brain network connectivity as revealed using resting-state functional magnetic resonance imaging (fMRI), suggesting potential imaging biomarkers for age-related cognitive decline. However, although convenient in its simplicity, the resting state is essentially an unconstrained paradigm with minimal experimental control. Here, based on the conception that the magnitude and characteristics of age-related differences in brain connectivity is dependent on cognitive context and effort, we tested the hypothesis that experimentally increasing cognitive load boosts the sensitivity to age and changes the discriminative network configurations. To this end, we obtained fMRI data from younger (n=25, mean age 24.16±5.11) and older (n=22, mean age 65.09±7.53) healthy adults during rest and two load levels of continuous multiple object tracking (MOT). Brain network nodes and their time-series were estimated using independent component analysis (ICA) and dual regression, and the edges in the brain networks were defined as the regularized partial temporal correlations between each of the node pairs at the individual level. Using machine learning based on a cross-validated regularized linear discriminant analysis (rLDA) we attempted to classify groups and cognitive load from the full set of edge-wise functional connectivity indices. While group classification using resting-state data was highly above chance (approx. 70% accuracy), functional connectivity (FC) obtained during MOT strongly increased classification performance, with 82% accuracy for the young and 95% accuracy for the old group at the highest load level. Further, machine learning revealed stronger differentiation between rest and task in young compared to older individuals, supporting the notion of network dedifferentiation in cognitive aging. Task-modulation in edgewise FC was primarily observed between attention- and sensorimotor networks; with decreased negative correlations between attention- and default mode networks in older adults. These results demonstrate that the magnitude and configuration of age-related differences in brain functional connectivity are partly dependent on cognitive context and load, which emphasizes the importance of assessing brain connectivity differences across a range of cognitive contexts beyond the resting-state. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pyo, Ju-Young; Cho, Won-Ju
2018-04-01
We fabricate high-sensitivity pH sensors using single-walled carbon-nanotube (SWCNT) network thin-film transistors (TFTs). The sensing and transducer parts of the pH sensor are composed of separative extended-sensing gates (ESGs) with SnO2 ion-sensitive membranes and double-gate structure TFTs with thin SWCNT network channels of ∼1 nm and AlO x top-gate insulators formed by the solution-deposition method. To prevent thermal process-induced damages on the SWCNT channel layer due to the post-deposition annealing process and improve the electrical characteristics of the SWCNT-TFTs, microwave irradiation is applied at low temperatures. As a result, a pH sensitivity of 7.6 V/pH, far beyond the Nernst limit, is obtained owing to the capacitive coupling effect between the top- and bottom-gate insulators of the SWCNT-TFTs. Therefore, double-gate structure SWCNT-TFTs with separated ESGs are expected to be highly beneficial for high-sensitivity disposable biosensor applications.
High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network
Yavari, Fazel; Chen, Zongping; Thomas, Abhay V.; Ren, Wencai; Cheng, Hui-Ming; Koratkar, Nikhil
2011-01-01
Nanostructures are known to be exquisitely sensitive to the chemical environment and offer ultra-high sensitivity for gas-sensing. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. By contrast, conventional solid-state and conducting-polymer sensors offer excellent reliability but suffer from reduced sensitivity at room-temperature. Here we report a macro graphene foam-like three-dimensional network which combines the best of both worlds. The walls of the foam are comprised of few-layer graphene sheets resulting in high sensitivity; we demonstrate parts-per-million level detection of NH3 and NO2 in air at room-temperature. Further, the foam is a mechanically robust and flexible macro-scale network that is easy to contact (without Lithography) and can rival the durability and affordability of traditional sensors. Moreover, Joule-heating expels chemisorbed molecules from the foam's surface leading to fully-reversible and low-power operation. PMID:22355681
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Liu, Youhua
2000-01-01
At the preliminary design stage of a wing structure, an efficient simulation, one needing little computation but yielding adequately accurate results for various response quantities, is essential in the search of optimal design in a vast design space. In the present paper, methods of using sensitivities up to 2nd order, and direct application of neural networks are explored. The example problem is how to decide the natural frequencies of a wing given the shape variables of the structure. It is shown that when sensitivities cannot be obtained analytically, the finite difference approach is usually more reliable than a semi-analytical approach provided an appropriate step size is used. The use of second order sensitivities is proved of being able to yield much better results than the case where only the first order sensitivities are used. When neural networks are trained to relate the wing natural frequencies to the shape variables, a negligible computation effort is needed to accurately determine the natural frequencies of a new design.
Guo, Hao; Cao, Xiaohua; Liu, Zhifen; Li, Haifang; Chen, Junjie; Zhang, Kerang
2012-12-05
Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major depressive disorder patients by thresholding partial correlation matrices of 90 regions. Three nodal metrics were calculated using graph theory-based approaches. Nonparametric permutation tests were then used for group comparisons of topological metrics, which were used as classified features in six different algorithms. We used statistical significance as the threshold for selecting features and measured the accuracies of six classifiers with different number of features. A sensitivity analysis method was used to evaluate the importance of different features. The result indicated that some of the regions exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia, medial temporal, and prefrontal regions. Support vector machine with radial basis kernel function algorithm and neural network algorithm exhibited the highest average accuracy (79.27 and 78.22%, respectively) with 28 features (P<0.05). Correlation analysis between feature importance and the statistical significance of metrics was investigated, and the results revealed a strong positive correlation between them. Overall, the current study demonstrated that major depressive disorder is associated with abnormal functional brain network topological metrics and statistically significant nodal metrics can be successfully used for feature selection in classification algorithms.
Deza Araujo, Yacila I; Nebe, Stephan; Neukam, Philipp T; Pooseh, Shakoor; Sebold, Miriam; Garbusow, Maria; Heinz, Andreas; Smolka, Michael N
2018-06-01
Value-based decision making (VBDM) is a principle that states that humans and other species adapt their behavior according to the dynamic subjective values of the chosen or unchosen options. The neural bases of this process have been extensively investigated using task-based fMRI and lesion studies. However, the growing field of resting-state functional connectivity (RSFC) may shed light on the organization and function of brain connections across different decision-making domains. With this aim, we used independent component analysis to study the brain network dynamics in a large cohort of young males (N = 145) and the relationship of these dynamics with VBDM. Participants completed a battery of behavioral tests that evaluated delay aversion, risk seeking for losses, risk aversion for gains, and loss aversion, followed by an RSFC scan session. We identified a set of large-scale brain networks and conducted our analysis only on the default mode network (DMN) and networks comprising cognitive control, appetitive-driven, and reward-processing regions. Higher risk seeking for losses was associated with increased connectivity between medial temporal regions, frontal regions, and the DMN. Higher risk seeking for losses was also associated with increased coupling between the left frontoparietal network and occipital cortices. These associations illustrate the participation of brain regions involved in prospective thinking, affective decision making, and visual processing in participants who are greater risk-seekers, and they demonstrate the sensitivity of RSFC to detect brain connectivity differences associated with distinct VBDM parameters.
NASA Astrophysics Data System (ADS)
Bai, Wei; Yang, Hui; Xiao, Hongyun; Yu, Ao; He, Linkuan; Zhang, Jie; Li, Zhen; Du, Yi
2017-11-01
With the increase in varieties of services in network, time-sensitive services (TSSs) appear and bring forward an impending need for delay performance. Ultralow-latency communication has become one of the important development goals for many scenarios in the coming 5G era (e.g., robotics and driverless cars). However, the conventional methods, which decrease delay by promoting the available resources and the network transmission speed, have limited effect; a new breakthrough for ultralow-latency communication is necessary. We propose a de-optical-line-terminal (De-OLT) hybrid access-aggregation optical network (DAON) for TSS based on software-defined networking (SDN) orchestration. In this network, low-latency all-optical communication based on optical burst switching can be achieved by removing OLT. For supporting this network and guaranteeing the quality of service for TSSs, we design SDN-driven control method and service provision method. Numerical results demonstrate the proposed DAON promotes network service efficiency and avoids traffic congestion.
Scalable Online Network Modeling and Simulation
2005-08-01
ONLINE NETWORK MODELING AND SIMULATION 6. AUTHOR(S) Boleslaw Szymanski , Shivkumar Kalyanaraman, Biplab Sikdar and Christopher Carothers 5...performance for a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics, and studying feature ...a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics, and studying feature interactions
The co-evolution of networks and prisoner’s dilemma game by considering sensitivity and visibility
NASA Astrophysics Data System (ADS)
Li, Dandan; Ma, Jing; Han, Dun; Sun, Mei; Tian, Lixin; Stanley, H. Eugene
2017-03-01
Strategies adopted by individuals in a social network significantly impact the network, and they strongly affect relationships between individuals in the network. Links between individuals also heavily influence their levels of cooperation. Taking into account the evolution of each individual’s connection, we explore how sensitivity and visibility affect the prisoner’s dilemma game. The so-called ‘sensitivity’ and ‘visibility’ respectively present one’s self-protection consciousness and the ability of gaining information. We find that at moderate levels of player sensitivity cooperative behavior increases, but that at high levels it is inhibited. We also find that the heterogeneity of the weight of individuals at the end of the game is higher when sensitivity and visibility are increased, but that the successful-defection-payoff has less impact on the weight of individuals and on the relationship between the heterogeneity of the weight of individuals and the density of cooperators. This framework can be used to clarify the interaction mechanism between the micro-level of individual behavior and the macro-level of individual co-evolutionary processes.
The co-evolution of networks and prisoner’s dilemma game by considering sensitivity and visibility
Li, Dandan; Ma, Jing; Han, Dun; Sun, Mei; Tian, Lixin; Stanley, H. Eugene
2017-01-01
Strategies adopted by individuals in a social network significantly impact the network, and they strongly affect relationships between individuals in the network. Links between individuals also heavily influence their levels of cooperation. Taking into account the evolution of each individual’s connection, we explore how sensitivity and visibility affect the prisoner’s dilemma game. The so-called ‘sensitivity’ and ‘visibility’ respectively present one’s self-protection consciousness and the ability of gaining information. We find that at moderate levels of player sensitivity cooperative behavior increases, but that at high levels it is inhibited. We also find that the heterogeneity of the weight of individuals at the end of the game is higher when sensitivity and visibility are increased, but that the successful-defection-payoff has less impact on the weight of individuals and on the relationship between the heterogeneity of the weight of individuals and the density of cooperators. This framework can be used to clarify the interaction mechanism between the micro-level of individual behavior and the macro-level of individual co-evolutionary processes. PMID:28338070
Weng, Ling; Xie, Qiuyou; Zhao, Ling; Zhang, Ruibin; Ma, Qing; Wang, Junjing; Jiang, Wenjie; He, Yanbin; Chen, Yan; Li, Changhong; Ni, Xiaoxiao; Xu, Qin; Yu, Ronghao; Huang, Ruiwang
2017-05-01
Consciousness loss in patients with severe brain injuries is associated with reduced functional connectivity of the default mode network (DMN), fronto-parietal network, and thalamo-cortical network. However, it is still unclear if the brain white matter connectivity between the above mentioned networks is changed in patients with disorders of consciousness (DOC). In this study, we collected diffusion tensor imaging (DTI) data from 13 patients and 17 healthy controls, constructed whole-brain white matter (WM) structural networks with probabilistic tractography. Afterward, we estimated and compared topological properties, and revealed an altered structural organization in the patients. We found a disturbance in the normal balance between segregation and integration in brain structural networks and detected significantly decreased nodal centralities primarily in the basal ganglia and thalamus in the patients. A network-based statistical analysis detected a subnetwork with uniformly significantly decreased structural connections between the basal ganglia, thalamus, and frontal cortex in the patients. Further analysis indicated that along the WM fiber tracts linking the basal ganglia, thalamus, and frontal cortex, the fractional anisotropy was decreased and the radial diffusivity was increased in the patients compared to the controls. Finally, using the receiver operating characteristic method, we found that the structural connections within the NBS-derived component that showed differences between the groups demonstrated high sensitivity and specificity (>90%). Our results suggested that major consciousness deficits in DOC patients may be related to the altered WM connections between the basal ganglia, thalamus, and frontal cortex. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimal sensor placement for leak location in water distribution networks using genetic algorithms.
Casillas, Myrna V; Puig, Vicenç; Garza-Castañón, Luis E; Rosich, Albert
2013-11-04
This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach.
Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms
Casillas, Myrna V.; Puig, Vicenç; Garza-Castañón, Luis E.; Rosich, Albert
2013-01-01
This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach. PMID:24193099
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy
2016-05-01
The cyber spaces are increasingly becoming the battlefields between friendly and adversary forces, with normal users caught in the middle. Accordingly, planners of enterprise defensive policies and offensive cyber missions alike have an essential goal to minimize the impact of their own actions and adversaries' attacks on normal operations of the commercial and government networks. To do this, the cyber analysis need accurate "cyber battle maps", where the functions, roles, and activities of individual and groups of devices and users are accurately identified. Most of the research in cyber exploitation has focused on the identification of attacks, attackers, and their devices. Many tools exist for device profiling, malware identification, user attribution, and attack analysis. However, most of the tools are intrusive, sensitive to data obfuscation, or provide anomaly flagging and not able to correctly classify the semantics and causes of network activities. In this paper, we review existing solutions that can identify functional and social roles of entities in cyberspace, discuss their weaknesses, and propose an approach for developing functional and social layers of cyber battle maps.
The novel approach to the biomonitor survey using one- and two-dimensional Kohonen networks.
Deljanin, Isidora; Antanasijević, Davor; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana
2015-10-01
To compare the applicability of the leaves of horse chestnut (Aesculus hippocastanum) and linden (Tilia spp.) as biomonitors of trace element concentrations, a coupled approach of one- and two-dimensional Kohonen networks was applied for the first time. The self-organizing networks (SONs) and the self-organizing maps (SOMs) were applied on the database obtained for the element accumulation (Cr, Fe, Ni, Cu, Zn, Pb, V, As, Cd) and the SOM for the Pb isotopes in the leaves for a multiyear period (2002-2006). A. hippocastanum seems to be a more appropriate biomonitor since it showed more consistent results in the analysis of trace elements and Pb isotopes. The SOM proved to be a suitable and sensitive tool for assessing differences in trace element concentrations and for the Pb isotopic composition in leaves of different species. In addition, the SON provided more clear data on seasonal and temporal accumulation of trace elements in the leaves and could be recommended complementary to the SOM analysis of trace elements in biomonitoring studies.
Optimization of an electromagnetic linear actuator using a network and a finite element model
NASA Astrophysics Data System (ADS)
Neubert, Holger; Kamusella, Alfred; Lienig, Jens
2011-03-01
Model based design optimization leads to robust solutions only if the statistical deviations of design, load and ambient parameters from nominal values are considered. We describe an optimization methodology that involves these deviations as stochastic variables for an exemplary electromagnetic actuator used to drive a Braille printer. A combined model simulates the dynamic behavior of the actuator and its non-linear load. It consists of a dynamic network model and a stationary magnetic finite element (FE) model. The network model utilizes lookup tables of the magnetic force and the flux linkage computed by the FE model. After a sensitivity analysis using design of experiment (DoE) methods and a nominal optimization based on gradient methods, a robust design optimization is performed. Selected design variables are involved in form of their density functions. In order to reduce the computational effort we use response surfaces instead of the combined system model obtained in all stochastic analysis steps. Thus, Monte-Carlo simulations can be applied. As a result we found an optimum system design meeting our requirements with regard to function and reliability.
Chen, Chengjie; Zhang, Yafeng; Xu, Zhiqiang; Luan, Aiping; Mao, Qi; Feng, Junting; Xie, Tao; Gong, Xue; Wang, Xiaoshuang; Chen, Hao; He, Yehua
2016-01-01
The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance. PMID:27656892
A Network Approach to Environmental Impact in Psychotic Disorder: Brief Theoretical Framework.
Isvoranu, Adela-Maria; Borsboom, Denny; van Os, Jim; Guloksuz, Sinan
2016-07-01
The spectrum of psychotic disorder represents a multifactorial and heterogeneous condition and is thought to result from a complex interplay between genetic and environmental factors. In the current paper, we analyze this interplay using network analysis, which has been recently proposed as a novel psychometric framework for the study of mental disorders. Using general population data, we construct network models for the relation between 3 environmental risk factors (cannabis use, developmental trauma, and urban environment), dimensional measures of psychopathology (anxiety, depression, interpersonal sensitivity, obsessive-compulsive disorder, phobic anxiety, somatizations, and hostility), and a composite measure of psychosis expression. Results indicate the existence of specific paths between environmental factors and symptoms. These paths most often involve cannabis use. In addition, the analyses suggest that symptom networks are more strongly connected for people exposed to environmental risk factors, implying that environmental exposure may lead to less resilient symptom networks. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Digital photocontrol of the network of live excitable cells
NASA Astrophysics Data System (ADS)
Erofeev, I. S.; Magome, N.; Agladze, K. I.
2011-11-01
Recent development of tissue engineering techniques allows creating and maintaining almost indefinitely networks of excitable cells with desired architecture. We coupled the network of live excitable cardiac cells with a common computer by sensitizing them to light, projecting a light pattern on the layer of cells, and monitoring excitation with the aid of fluorescent probes (optical mapping). As a sensitizing substance we used azobenzene trimethylammonium bromide (AzoTAB). This substance undergoes cis-trans-photoisomerization and trans-isomer of AzoTAB inhibits excitation in the cardiac cells, while cis-isomer does not. AzoTAB-mediated sensitization allows, thus, reversible and dynamic control of the excitation waves through the entire cardiomyocyte network either uniformly, or in a preferred spatial pattern. Technically, it was achieved by coupling a common digital projector with a macroview microscope and using computer graphic software for creating the projected pattern of conducting pathways. This approach allows real time interactive photocontrol of the heart tissue.
A pathway-based network analysis of hypertension-related genes
NASA Astrophysics Data System (ADS)
Wang, Huan; Hu, Jing-Bo; Xu, Chuan-Yun; Zhang, De-Hai; Yan, Qian; Xu, Ming; Cao, Ke-Fei; Zhang, Xu-Sheng
2016-02-01
Complex network approach has become an effective way to describe interrelationships among large amounts of biological data, which is especially useful in finding core functions and global behavior of biological systems. Hypertension is a complex disease caused by many reasons including genetic, physiological, psychological and even social factors. In this paper, based on the information of biological pathways, we construct a network model of hypertension-related genes of the salt-sensitive rat to explore the interrelationship between genes. Statistical and topological characteristics show that the network has the small-world but not scale-free property, and exhibits a modular structure, revealing compact and complex connections among these genes. By the threshold of integrated centrality larger than 0.71, seven key hub genes are found: Jun, Rps6kb1, Cycs, Creb312, Cdk4, Actg1 and RT1-Da. These genes should play an important role in hypertension, suggesting that the treatment of hypertension should focus on the combination of drugs on multiple genes.
NASA Astrophysics Data System (ADS)
de Lautour, Oliver R.; Omenzetter, Piotr
2010-07-01
Developed for studying long sequences of regularly sampled data, time series analysis methods are being increasingly investigated for the use of Structural Health Monitoring (SHM). In this research, Autoregressive (AR) models were used to fit the acceleration time histories obtained from two experimental structures: a 3-storey bookshelf structure and the ASCE Phase II Experimental SHM Benchmark Structure, in undamaged and limited number of damaged states. The coefficients of the AR models were considered to be damage-sensitive features and used as input into an Artificial Neural Network (ANN). The ANN was trained to classify damage cases or estimate remaining structural stiffness. The results showed that the combination of AR models and ANNs are efficient tools for damage classification and estimation, and perform well using small number of damage-sensitive features and limited sensors.
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas
2011-07-01
A novel technique for the label-free analysis of micro and nanoparticles including biomolecules using optical micro cavity resonance of whispering-gallery-type modes is being developed. Various schemes of the method using both standard and specially produced microspheres have been investigated to make further development for microbial application. It was demonstrated that optical resonance under optimal geometry could be detected under the laser power of less 1 microwatt. The sensitivity of developed schemes has been tested by monitoring the spectral shift of the whispering gallery modes. Water solutions of ethanol, ascorbic acid, blood phantoms including albumin and HCl, glucose, biotin, biomarker like C reactive protein so as bacteria and virus phantoms (gels of silica micro and nanoparticles) have been used. Structure of resonance spectra of the solutions was a specific subject of investigation. Probabilistic neural network classifier for biological agents and micro/nano particles classification has been developed. Several parameters of resonance spectra as spectral shift, broadening, diffuseness and others have been used as input parameters to develop a network classifier for micro and nanoparticles and biological agents in solution. Classification probability of approximately 98% for probes under investigation have been achieved. Developed approach have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor which can be used for development of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.
Spectral properties of the temporal evolution of brain network structure.
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Spectral properties of the temporal evolution of brain network structure
NASA Astrophysics Data System (ADS)
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Liu, Yan-Jun; Cao, Wen-Tao; Ma, Ming-Guo; Wan, Pengbo
2017-08-02
Robust, stretchable, and strain-sensitive hydrogels have recently attracted immense research interest because of their potential application in wearable strain sensors. The integration of the synergistic characteristics of decent mechanical properties, reliable self-healing capability, and high sensing sensitivity for fabricating conductive, elastic, self-healing, and strain-sensitive hydrogels is still a great challenge. Inspired by the mechanically excellent and self-healing biological soft tissues with hierarchical network structures, herein, functional network hydrogels are fabricated by the interconnection between a "soft" homogeneous polymer network and a "hard" dynamic ferric (Fe 3+ ) cross-linked cellulose nanocrystals (CNCs-Fe 3+ ) network. Under stress, the dynamic CNCs-Fe 3+ coordination bonds act as sacrificial bonds to efficiently dissipate energy, while the homogeneous polymer network leads to a smooth stress-transfer, which enables the hydrogels to achieve unusual mechanical properties, such as excellent mechanical strength, robust toughness, and stretchability, as well as good self-recovery property. The hydrogels demonstrate autonomously self-healing capability in only 5 min without the need of any stimuli or healing agents, ascribing to the reorganization of CNCs and Fe 3+ via ionic coordination. Furthermore, the resulted hydrogels display tunable electromechanical behavior with sensitive, stable, and repeatable variations in resistance upon mechanical deformations. Based on the tunable electromechanical behavior, the hydrogels can act as a wearable strain sensor to monitor finger joint motions, breathing, and even the slight blood pulse. This strategy of building synergistic "soft and hard" structures is successful to integrate the decent mechanical properties, reliable self-healing capability, and high sensing sensitivity together for assembling a high-performance, flexible, and wearable strain sensor.
Sensitivity Analysis of Algan/GAN High Electron Mobility Transistors to Process Variation
2008-02-01
delivery system gas panel including both hydride and alkyl delivery modules and the vent/valve configurations [14...Reactor Gas Delivery Systems A basic schematic diagram of an MOCVD reactor delivery gas panel is shown in Figure 13. The reactor gas delivery...system, or gas panel , consists of a network of stainless steel tubing, automatic valves and electronic mass flow controllers (MFC). There are separate
Optimal Interpolation scheme to generate reference crop evapotranspiration
NASA Astrophysics Data System (ADS)
Tomas-Burguera, Miquel; Beguería, Santiago; Vicente-Serrano, Sergio; Maneta, Marco
2018-05-01
We used an Optimal Interpolation (OI) scheme to generate a reference crop evapotranspiration (ETo) grid, forcing meteorological variables, and their respective error variance in the Iberian Peninsula for the period 1989-2011. To perform the OI we used observational data from the Spanish Meteorological Agency (AEMET) and outputs from a physically-based climate model. To compute ETo we used five OI schemes to generate grids for the five observed climate variables necessary to compute ETo using the FAO-recommended form of the Penman-Monteith equation (FAO-PM). The granularity of the resulting grids are less sensitive to variations in the density and distribution of the observational network than those generated by other interpolation methods. This is because our implementation of the OI method uses a physically-based climate model as prior background information about the spatial distribution of the climatic variables, which is critical for under-observed regions. This provides temporal consistency in the spatial variability of the climatic fields. We also show that increases in the density and improvements in the distribution of the observational network reduces substantially the uncertainty of the climatic and ETo estimates. Finally, a sensitivity analysis of observational uncertainties and network densification suggests the existence of a trade-off between quantity and quality of observations.
Optimal Output of Distributed Generation Based On Complex Power Increment
NASA Astrophysics Data System (ADS)
Wu, D.; Bao, H.
2017-12-01
In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.
A Tuned-RF Duty-Cycled Wake-Up Receiver with -90 dBm Sensitivity.
Bdiri, Sadok; Derbel, Faouzi; Kanoun, Olfa
2017-12-29
A novel wake-up receiver for wireless sensor networks is introduced. It operates with a modified medium access protocol (MAC), allowing low-energy consumption and practical latency. The ultra-low-power wake-up receiver operates with enhanced duty-cycled listening. The analysis of energy models of the duty-cycle-based communication is presented. All the WuRx blocks are studied to obey the duty-cycle operation. For a mean interval time for the data exchange cycle between a transmitter and a receiver over 1.7 s and a 64-bit wake-up packet detection latency of 32 ms, the average power consumption of the wake-up receiver (WuRx) reaches down to 3 μ W . It also features scalable addressing of more than 512 bit at a data rate of 128 k bit / s -1 . At a wake-up packet error rate of 10 - 2 , the detection sensitivity reaches a minimum of - 90 dBm . The combination of the MAC protocol and the WuRx eases the adoption of different kinds of wireless sensor networks. In low traffic communication, the WuRx dramatically saves more energy than that of a network that is implementing conventional duty-cycling. In this work, a prototype was realized to evaluate the intended performance.
A Tuned-RF Duty-Cycled Wake-Up Receiver with −90 dBm Sensitivity
Derbel, Faouzi; Kanoun, Olfa
2017-01-01
A novel wake-up receiver for wireless sensor networks is introduced. It operates with a modified medium access protocol (MAC), allowing low-energy consumption and practical latency. The ultra-low-power wake-up receiver operates with enhanced duty-cycled listening. The analysis of energy models of the duty-cycle-based communication is presented. All the WuRx blocks are studied to obey the duty-cycle operation. For a mean interval time for the data exchange cycle between a transmitter and a receiver over 1.7 s and a 64-bit wake-up packet detection latency of 32 ms, the average power consumption of the wake-up receiver (WuRx) reaches down to 3 μW. It also features scalable addressing of more than 512 bit at a data rate of 128kbit/s−1. At a wake-up packet error rate of 10−2, the detection sensitivity reaches a minimum of −90 dBm. The combination of the MAC protocol and the WuRx eases the adoption of different kinds of wireless sensor networks. In low traffic communication, the WuRx dramatically saves more energy than that of a network that is implementing conventional duty-cycling. In this work, a prototype was realized to evaluate the intended performance. PMID:29286345
Multisensor system for toxic gases detection generated on indoor environments
NASA Astrophysics Data System (ADS)
Durán, C. M.; Monsalve, P. A. G.; Mosquera, C. J.
2016-11-01
This work describes a wireless multisensory system for different toxic gases detection generated on indoor environments (i.e., Underground coal mines, etc.). The artificial multisensory system proposed in this study was developed through a set of six chemical gas sensors (MQ) of low cost with overlapping sensitivities to detect hazardous gases in the air. A statistical parameter was implemented to the data set and two pattern recognition methods such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) were used for feature selection. The toxic gases categories were classified with a Probabilistic Neural Network (PNN) in order to validate the results previously obtained. The tests were carried out to verify feasibility of the application through a wireless communication model which allowed to monitor and store the information of the sensor signals for the appropriate analysis. The success rate in the measures discrimination was 100%, using an artificial neural network where leave-one-out was used as cross validation method.
Liu, Ming; Zhao, Jing; Lu, XiaoZuo; Li, Gang; Wu, Taixia; Zhang, LiFu
2018-05-10
With spectral methods, noninvasive determination of blood hyperviscosity in vivo is very potential and meaningful in clinical diagnosis. In this study, 67 male subjects (41 health, and 26 hyperviscosity according to blood sample analysis results) participate. Reflectance spectra of subjects' tongue tips is measured, and a classification method bases on principal component analysis combined with artificial neural network model is built to identify hyperviscosity. Hold-out and Leave-one-out methods are used to avoid significant bias and lessen overfitting problem, which are widely accepted in the model validation. To measure the performance of the classification, sensitivity, specificity, accuracy and F-measure are calculated, respectively. The accuracies with 100 times Hold-out method and 67 times Leave-one-out method are 88.05% and 97.01%, respectively. Experimental results indicate that the built classification model has certain practical value and proves the feasibility of using spectroscopy to identify hyperviscosity by noninvasive determination.
McCabe, Ciara; Rocha-Rego, Vanessa
2016-01-01
Dysfunctional neural responses to appetitive and aversive stimuli have been investigated as possible biomarkers for psychiatric disorders. However it is not clear to what degree these are separate processes across the brain or in fact overlapping systems. To help clarify this issue we used Gaussian process classifier (GPC) analysis to examine appetitive and aversive processing in the brain. 25 healthy controls underwent functional MRI whilst seeing pictures and receiving tastes of pleasant and unpleasant food. We applied GPCs to discriminate between the appetitive and aversive sights and tastes using functional activity patterns. The diagnostic accuracy of the GPC for the accuracy to discriminate appetitive taste from neutral condition was 86.5% (specificity = 81%, sensitivity = 92%, p = 0.001). If a participant experienced neutral taste stimuli the probability of correct classification was 92. The accuracy to discriminate aversive from neutral taste stimuli was 82.5% (specificity = 73%, sensitivity = 92%, p = 0.001) and appetitive from aversive taste stimuli was 73% (specificity = 77%, sensitivity = 69%, p = 0.001). In the sight modality, the accuracy to discriminate appetitive from neutral condition was 88.5% (specificity = 85%, sensitivity = 92%, p = 0.001), to discriminate aversive from neutral sight stimuli was 92% (specificity = 92%, sensitivity = 92%, p = 0.001), and to discriminate aversive from appetitive sight stimuli was 63.5% (specificity = 73%, sensitivity = 54%, p = 0.009). Our results demonstrate the predictive value of neurofunctional data in discriminating emotional and neutral networks of activity in the healthy human brain. It would be of interest to use pattern recognition techniques and fMRI to examine network dysfunction in the processing of appetitive, aversive and neutral stimuli in psychiatric disorders. Especially where problems with reward and punishment processing have been implicated in the pathophysiology of the disorder.
Weight-elimination neural networks applied to coronary surgery mortality prediction.
Ennett, Colleen M; Frize, Monique
2003-06-01
The objective was to assess the effectiveness of the weight-elimination cost function in improving classification performance of artificial neural networks (ANNs) and to observe how changing the a priori distribution of the training set affects network performance. Backpropagation feedforward ANNs with and without weight-elimination estimated mortality for coronary artery surgery patients. The ANNs were trained and tested on cases with 32 input variables describing the patient's medical history; the output variable was in-hospital mortality (mortality rates: training 3.7%, test 3.8%). Artificial training sets with mortality rates of 20%, 50%, and 80% were created to observe the impact of training with a higher-than-normal prevalence. When the results were averaged, weight-elimination networks achieved higher sensitivity rates than those without weight-elimination. Networks trained on higher-than-normal prevalence achieved higher sensitivity rates at the cost of lower specificity and correct classification. The weight-elimination cost function can improve the classification performance when the network is trained with a higher-than-normal prevalence. A network trained with a moderately high artificial mortality rate (artificial mortality rate of 20%) can improve the sensitivity of the model without significantly affecting other aspects of the model's performance. The ANN mortality model achieved comparable performance as additive and statistical models for coronary surgery mortality estimation in the literature.
pH induced contrast in viscoelasticity imaging of biopolymers
Yapp, R D; Insana, M F
2009-01-01
Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This report focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced, however the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability. PMID:19174599
Obrzut, Bogdan; Kusy, Maciej; Semczuk, Andrzej; Obrzut, Marzanna; Kluska, Jacek
2017-12-12
Computational intelligence methods, including non-linear classification algorithms, can be used in medical research and practice as a decision making tool. This study aimed to evaluate the usefulness of artificial intelligence models for 5-year overall survival prediction in patients with cervical cancer treated by radical hysterectomy. The data set was collected from 102 patients with cervical cancer FIGO stage IA2-IIB, that underwent primary surgical treatment. Twenty-three demographic, tumor-related parameters and selected perioperative data of each patient were collected. The simulations involved six computational intelligence methods: the probabilistic neural network (PNN), multilayer perceptron network, gene expression programming classifier, support vector machines algorithm, radial basis function neural network and k-Means algorithm. The prediction ability of the models was determined based on the accuracy, sensitivity, specificity, as well as the area under the receiver operating characteristic curve. The results of the computational intelligence methods were compared with the results of linear regression analysis as a reference model. The best results were obtained by the PNN model. This neural network provided very high prediction ability with an accuracy of 0.892 and sensitivity of 0.975. The area under the receiver operating characteristics curve of PNN was also high, 0.818. The outcomes obtained by other classifiers were markedly worse. The PNN model is an effective tool for predicting 5-year overall survival in cervical cancer patients treated with radical hysterectomy.
Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.
Xu, Kesheng; Maidana, Jean Paul; Castro, Samy; Orio, Patricio
2018-05-30
Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that - when isolated - can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.
Towards a Low-Cost Remote Memory Attestation for the Smart Grid
Yang, Xinyu; He, Xiaofei; Yu, Wei; Lin, Jie; Li, Rui; Yang, Qingyu; Song, Houbing
2015-01-01
In the smart grid, measurement devices may be compromised by adversaries, and their operations could be disrupted by attacks. A number of schemes to efficiently and accurately detect these compromised devices remotely have been proposed. Nonetheless, most of the existing schemes detecting compromised devices depend on the incremental response time in the attestation process, which are sensitive to data transmission delay and lead to high computation and network overhead. To address the issue, in this paper, we propose a low-cost remote memory attestation scheme (LRMA), which can efficiently and accurately detect compromised smart meters considering real-time network delay and achieve low computation and network overhead. In LRMA, the impact of real-time network delay on detecting compromised nodes can be eliminated via investigating the time differences reported from relay nodes. Furthermore, the attestation frequency in LRMA is dynamically adjusted with the compromised probability of each node, and then, the total number of attestations could be reduced while low computation and network overhead can be achieved. Through a combination of extensive theoretical analysis and evaluations, our data demonstrate that our proposed scheme can achieve better detection capacity and lower computation and network overhead in comparison to existing schemes. PMID:26307998
Towards a Low-Cost Remote Memory Attestation for the Smart Grid.
Yang, Xinyu; He, Xiaofei; Yu, Wei; Lin, Jie; Li, Rui; Yang, Qingyu; Song, Houbing
2015-08-21
In the smart grid, measurement devices may be compromised by adversaries, and their operations could be disrupted by attacks. A number of schemes to efficiently and accurately detect these compromised devices remotely have been proposed. Nonetheless, most of the existing schemes detecting compromised devices depend on the incremental response time in the attestation process, which are sensitive to data transmission delay and lead to high computation and network overhead. To address the issue, in this paper, we propose a low-cost remote memory attestation scheme (LRMA), which can efficiently and accurately detect compromised smart meters considering real-time network delay and achieve low computation and network overhead. In LRMA, the impact of real-time network delay on detecting compromised nodes can be eliminated via investigating the time differences reported from relay nodes. Furthermore, the attestation frequency in LRMA is dynamically adjusted with the compromised probability of each node, and then, the total number of attestations could be reduced while low computation and network overhead can be achieved. Through a combination of extensive theoretical analysis and evaluations, our data demonstrate that our proposed scheme can achieve better detection capacity and lower computation and network overhead in comparison to existing schemes.
Global Alignment of Pairwise Protein Interaction Networks for Maximal Common Conserved Patterns
Tian, Wenhong; Samatova, Nagiza F.
2013-01-01
A number of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis. Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach based onmore » a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) and D. melanogaster (fly), E. coli K12 and S. typhimurium , E. coli K12 and C. crescenttus , we analyze all clusters identified in the alignment. The results are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and sensitivity, and can be extended to multiple alignments easily.« less
Gong, Yin-Xi; He, Cheng; Yan, Fei; Feng, Zhong-Ke; Cao, Meng-Lei; Gao, Yuan; Miao, Jie; Zhao, Jin-Long
2013-10-01
Multispectral remote sensing data containing rich site information are not fully used by the classic site quality evaluation system, as it merely adopts artificial ground survey data. In order to establish a more effective site quality evaluation system, a neural network model which combined remote sensing spectra factors with site factors and site index relations was established and used to study the sublot site quality evaluation in the Wangyedian Forest Farm in Inner Mongolia Province, Chifeng City. Based on the improved back propagation artificial neural network (BPANN), this model combined multispectral remote sensing data with sublot survey data, and took larch as example, Through training data set sensitivity analysis weak or irrelevant factor was excluded, the size of neural network was simplified, and the efficiency of network training was improved. This optimal site index prediction model had an accuracy up to 95.36%, which was 9.83% higher than that of the neural network model based on classic sublot survey data, and this shows that using multi-spectral remote sensing and small class survey data to determine the status of larch index prediction model has the highest predictive accuracy. The results fully indicate the effectiveness and superiority of this method.
Xu, Libin; Li, Yang; Xu, Ning; Hu, Yong; Wang, Chao; He, Jianjun; Cao, Yueze; Chen, Shigui; Li, Dongsheng
2014-12-24
This work demonstrated the possibility of using artificial neural networks to classify soy sauce from China. The aroma profiles of different soy sauce samples were differentiated using headspace solid-phase microextraction. The soy sauce samples were analyzed by gas chromatography-mass spectrometry, and 22 and 15 volatile aroma compounds were selected for sensitivity analysis to classify the samples by fermentation and geographic region, respectively. The 15 selected samples can be classified by fermentation and geographic region with a prediction success rate of 100%. Furans and phenols represented the variables with the greatest contribution in classifying soy sauce samples by fermentation and geographic region, respectively.
NASA Astrophysics Data System (ADS)
Ushenko, V. A.; Sidor, M. I.; Marchuk, Yu F.; Pashkovskaya, N. V.; Andreichuk, D. R.
2015-03-01
We report a model of Mueller-matrix description of optical anisotropy of protein networks in biological tissues with allowance for the linear birefringence and dichroism. The model is used to construct the reconstruction algorithms of coordinate distributions of phase shifts and the linear dichroism coefficient. In the statistical analysis of such distributions, we have found the objective criteria of differentiation between benign and malignant tissues of the female reproductive system. From the standpoint of evidence-based medicine, we have determined the operating characteristics (sensitivity, specificity and accuracy) of the Mueller-matrix reconstruction method of optical anisotropy parameters and demonstrated its effectiveness in the differentiation of benign and malignant tumours.
Technology requirements for communication satellites in the 1980's
NASA Technical Reports Server (NTRS)
Burtt, J. E.; Moe, C. R.; Elms, R. V.; Delateur, L. A.; Sedlacek, W. C.; Younger, G. G.
1973-01-01
The key technology requirements are defined for meeting the forecasted demands for communication satellite services in the 1985 to 1995 time frame. Evaluation is made of needs for services and technical and functional requirements for providing services. The future growth capabilities of the terrestrial telephone network, cable television, and satellite networks are forecasted. The impact of spacecraft technology and booster performance and costs upon communication satellite costs are analyzed. Systems analysis techniques are used to determine functional requirements and the sensitivities of technology improvements for reducing the costs of meeting requirements. Recommended development plans and funding levels are presented, as well as the possible cost saving for communications satellites in the post 1985 era.
Photocurrent polarization anisotropy of randomly oriented nanowire networks.
Yu, Yanghai; Protasenko, Vladimir; Jena, Debdeep; Xing, Huili Grace; Kuno, Masaru
2008-05-01
While the polarization sensitivity of single or aligned NW ensembles is well-known, this article reports on the existence of residual photocurrent polarization sensitivities in random NW networks. In these studies, CdSe and CdTe NWs were deposited onto glass substrates and contacted with Au electrodes separated by 30-110 microm gaps. SEM and AFM images of resulting devices show isotropically distributed NWs between the electrodes. Complementary high resolution TEM micrographs reveal component NWs to be highly crystalline with diameters between 10 and 20 nm and with lengths ranging from 1 to 10 microm. When illuminated with visible (linearly polarized) light, such random NW networks exhibit significant photocurrent anisotropies rho = 0.25 (sigma = 0.04) [rho = 0.22 (sigma = 0.04)] for CdSe (CdTe) NWs. Corresponding bandwidth measurements yield device polarization sensitivities up to 100 Hz. Additional studies have investigated the effects of varying the electrode potential, gap width, and spatial excitation profile. These experiments suggest electrode orientation as the determining factor behind the polarization sensitivity of NW devices. A simple geometric model has been developed to qualitatively explain the phenomenon. The main conclusion from these studies, however, is that polarization sensitive devices can be made from random NW networks without the need to align component wires.
Sensitivity analysis of machine-learning models of hydrologic time series
NASA Astrophysics Data System (ADS)
O'Reilly, A. M.
2017-12-01
Sensitivity analysis traditionally has been applied to assessing model response to perturbations in model parameters, where the parameters are those model input variables adjusted during calibration. Unlike physics-based models where parameters represent real phenomena, the equivalent of parameters for machine-learning models are simply mathematical "knobs" that are automatically adjusted during training/testing/verification procedures. Thus the challenge of extracting knowledge of hydrologic system functionality from machine-learning models lies in their very nature, leading to the label "black box." Sensitivity analysis of the forcing-response behavior of machine-learning models, however, can provide understanding of how the physical phenomena represented by model inputs affect the physical phenomena represented by model outputs.As part of a previous study, hybrid spectral-decomposition artificial neural network (ANN) models were developed to simulate the observed behavior of hydrologic response contained in multidecadal datasets of lake water level, groundwater level, and spring flow. Model inputs used moving window averages (MWA) to represent various frequencies and frequency-band components of time series of rainfall and groundwater use. Using these forcing time series, the MWA-ANN models were trained to predict time series of lake water level, groundwater level, and spring flow at 51 sites in central Florida, USA. A time series of sensitivities for each MWA-ANN model was produced by perturbing forcing time-series and computing the change in response time-series per unit change in perturbation. Variations in forcing-response sensitivities are evident between types (lake, groundwater level, or spring), spatially (among sites of the same type), and temporally. Two generally common characteristics among sites are more uniform sensitivities to rainfall over time and notable increases in sensitivities to groundwater usage during significant drought periods.
Information Leakage Analysis by Abstract Interpretation
NASA Astrophysics Data System (ADS)
Zanioli, Matteo; Cortesi, Agostino
Protecting the confidentiality of information stored in a computer system or transmitted over a public network is a relevant problem in computer security. The approach of information flow analysis involves performing a static analysis of the program with the aim of proving that there will not be leaks of sensitive information. In this paper we propose a new domain that combines variable dependency analysis, based on propositional formulas, and variables' value analysis, based on polyhedra. The resulting analysis is strictly more accurate than the state of the art abstract interpretation based analyses for information leakage detection. Its modular construction allows to deal with the tradeoff between efficiency and accuracy by tuning the granularity of the abstraction and the complexity of the abstract operators.
Functional network alterations and their structural substrate in drug-resistant epilepsy
Caciagli, Lorenzo; Bernhardt, Boris C.; Hong, Seok-Jun; Bernasconi, Andrea; Bernasconi, Neda
2014-01-01
The advent of MRI has revolutionized the evaluation and management of drug-resistant epilepsy by allowing the detection of the lesion associated with the region that gives rise to seizures. Recent evidence indicates marked chronic alterations in the functional organization of lesional tissue and large-scale cortico-subcortical networks. In this review, we focus on recent methodological developments in functional MRI (fMRI) analysis techniques and their application to the two most common drug-resistant focal epilepsies, i.e., temporal lobe epilepsy related to mesial temporal sclerosis and extra-temporal lobe epilepsy related to focal cortical dysplasia. We put particular emphasis on methodological developments in the analysis of task-free or “resting-state” fMRI to probe the integrity of intrinsic networks on a regional, inter-regional, and connectome-wide level. In temporal lobe epilepsy, these techniques have revealed disrupted connectivity of the ipsilateral mesiotemporal lobe, together with contralateral compensatory reorganization and striking reconfigurations of large-scale networks. In cortical dysplasia, initial observations indicate functional alterations in lesional, peri-lesional, and remote neocortical regions. While future research is needed to critically evaluate the reliability, sensitivity, and specificity, fMRI mapping promises to lend distinct biomarkers for diagnosis, presurgical planning, and outcome prediction. PMID:25565942
Network hydraulics inclusion in water quality event detection using multiple sensor stations data.
Oliker, Nurit; Ostfeld, Avi
2015-09-01
Event detection is one of the current most challenging topics in water distribution systems analysis: how regular on-line hydraulic (e.g., pressure, flow) and water quality (e.g., pH, residual chlorine, turbidity) measurements at different network locations can be efficiently utilized to detect water quality contamination events. This study describes an integrated event detection model which combines multiple sensor stations data with network hydraulics. To date event detection modelling is likely limited to single sensor station location and dataset. Single sensor station models are detached from network hydraulics insights and as a result might be significantly exposed to false positive alarms. This work is aimed at decreasing this limitation through integrating local and spatial hydraulic data understanding into an event detection model. The spatial analysis complements the local event detection effort through discovering events with lower signatures by exploring the sensors mutual hydraulic influences. The unique contribution of this study is in incorporating hydraulic simulation information into the overall event detection process of spatially distributed sensors. The methodology is demonstrated on two example applications using base runs and sensitivity analyses. Results show a clear advantage of the suggested model over single-sensor event detection schemes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Krumholz, Elias W; Libourel, Igor G L
2015-07-31
Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Pesavento, Michael J; Pinto, David J
2012-11-01
Rapidly changing environments require rapid processing from sensory inputs. Varying deflection velocities of a rodent's primary facial vibrissa cause varying temporal neuronal activity profiles within the ventral posteromedial thalamic nucleus. Local neuron populations in a single somatosensory layer 4 barrel transform sparsely coded input into a spike count based on the input's temporal profile. We investigate this transformation by creating a barrel-like hybrid network with whole cell recordings of in vitro neurons from a cortical slice preparation, embedding the biological neuron in the simulated network by presenting virtual synaptic conductances via a conductance clamp. Utilizing the hybrid network, we examine the reciprocal network properties (local excitatory and inhibitory synaptic convergence) and neuronal membrane properties (input resistance) by altering the barrel population response to diverse thalamic input. In the presence of local network input, neurons are more selective to thalamic input timing; this arises from strong feedforward inhibition. Strongly inhibitory (damping) network regimes are more selective to timing and less selective to the magnitude of input but require stronger initial input. Input selectivity relies heavily on the different membrane properties of excitatory and inhibitory neurons. When inhibitory and excitatory neurons had identical membrane properties, the sensitivity of in vitro neurons to temporal vs. magnitude features of input was substantially reduced. Increasing the mean leak conductance of the inhibitory cells decreased the network's temporal sensitivity, whereas increasing excitatory leak conductance enhanced magnitude sensitivity. Local network synapses are essential in shaping thalamic input, and differing membrane properties of functional classes reciprocally modulate this effect.
Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Dorafshar, A; Reil, T; Baker, D; Freischlag, J; Marcu, L
2004-01-01
This study investigates the ability of new analytical methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data to characterize tissue in-vivo, such as the composition of atherosclerotic vulnerable plaques. A total of 73 TR-LIFS measurements were taken in-vivo from the aorta of 8 rabbits, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as normal aorta, thin or thick lesions, and lesions rich in either collagen or macrophages/foam-cells. Different linear and nonlinear classification algorithms (linear discriminant analysis, stepwise linear discriminant analysis, principal component analysis, and feedforward neural networks) were developed using spectral and TR features (ratios of intensity values and Laguerre expansion coefficients, respectively). Normal intima and thin lesions were discriminated from thick lesions (sensitivity >90%, specificity 100%) using only spectral features. However, both spectral and time-resolved features were necessary to discriminate thick lesions rich in collagen from thick lesions rich in foam cells (sensitivity >85%, specificity >93%), and thin lesions rich in foam cells from normal aorta and thin lesions rich in collagen (sensitivity >85%, specificity >94%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for in-vivo tissue characterization.
Cáceda, Ricardo; James, G. Andrew; Ely, Timothy D.; Snarey, John; Kilts, Clinton D.
2011-01-01
Background Moral sensitivity refers to the interpretive awareness of moral conflict and can be justice or care oriented. Justice ethics is associated primarily with human rights and the application of moral rules, whereas care ethics is related to human needs and a situational approach involving social emotions. Among the core brain regions involved in moral issue processing are: medial prefrontal cortex, anterior (ACC) and posterior (PCC) cingulate cortex, posterior superior temporal sulcus (pSTS), insula and amygdala. This study sought to inform the long standing debate of whether care and justice moral ethics represent one or two different forms of cognition. Methodology/Principal Findings Model-free and model-based connectivity analysis were used to identify functional neural networks underlying care and justice ethics for a moral sensitivity task. In addition to modest differences in patterns of associated neural activity, distinct modes of functional and effective connectivity were observed for moral sensitivity for care and justice issues that were modulated by individual variation in moral ability. Conclusions/Significance These results support a neurobiological differentiation between care and justice ethics and suggest that human moral behavior reflects the outcome of integrating opposing rule-based, self-other perspectives, and emotional responses. PMID:21364916
Saxena, Pratik; Heng, Boon Chin; Bai, Peng; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin
2016-01-01
Synthetic biology has advanced the design of standardized transcription control devices that programme cellular behaviour. By coupling synthetic signalling cascade- and transcription factor-based gene switches with reverse and differential sensitivity to the licensed food additive vanillic acid, we designed a synthetic lineage-control network combining vanillic acid-triggered mutually exclusive expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF) and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A; OFF-ON). This designer network consisting of different network topologies orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells, whose glucose-stimulated insulin-release dynamics are comparable to human pancreatic islets. Synthetic lineage-control networks may provide the missing link to genetically programme somatic cells into autologous cell phenotypes for regenerative medicine. PMID:27063289
Na, Hyuntae; Lee, Seung-Yub; Üstündag, Ersan; ...
2013-01-01
This paper introduces a recent development and application of a noncommercial artificial neural network (ANN) simulator with graphical user interface (GUI) to assist in rapid data modeling and analysis in the engineering diffraction field. The real-time network training/simulation monitoring tool has been customized for the study of constitutive behavior of engineering materials, and it has improved data mining and forecasting capabilities of neural networks. This software has been used to train and simulate the finite element modeling (FEM) data for a fiber composite system, both forward and inverse. The forward neural network simulation precisely reduplicates FEM results several orders ofmore » magnitude faster than the slow original FEM. The inverse simulation is more challenging; yet, material parameters can be meaningfully determined with the aid of parameter sensitivity information. The simulator GUI also reveals that output node size for materials parameter and input normalization method for strain data are critical train conditions in inverse network. The successful use of ANN modeling and simulator GUI has been validated through engineering neutron diffraction experimental data by determining constitutive laws of the real fiber composite materials via a mathematically rigorous and physically meaningful parameter search process, once the networks are successfully trained from the FEM database.« less
Random and Directed Walk-Based Top-k Queries in Wireless Sensor Networks
Fu, Jun-Song; Liu, Yun
2015-01-01
In wireless sensor networks, filter-based top-k query approaches are the state-of-the-art solutions and have been extensively researched in the literature, however, they are very sensitive to the network parameters, including the size of the network, dynamics of the sensors’ readings and declines in the overall range of all the readings. In this work, a random walk-based top-k query approach called RWTQ and a directed walk-based top-k query approach called DWTQ are proposed. At the beginning of a top-k query, one or several tokens are sent to the specific node(s) in the network by the base station. Then, each token walks in the network independently to record and process the readings in a random or directed way. A strategy of choosing the “right” way in DWTQ is carefully designed for the token(s) to arrive at the high-value regions as soon as possible. When designing the walking strategy for DWTQ, the spatial correlations of the readings are also considered. Theoretical analysis and simulation results indicate that RWTQ and DWTQ both are very robust against these parameters discussed previously. In addition, DWTQ outperforms TAG, FILA and EXTOK in transmission cost, energy consumption and network lifetime. PMID:26016914
Availability: A Metric for Nucleic Acid Strand Displacement Systems.
Olson, Xiaoping; Kotani, Shohei; Padilla, Jennifer E; Hallstrom, Natalya; Goltry, Sara; Lee, Jeunghoon; Yurke, Bernard; Hughes, William L; Graugnard, Elton
2017-01-20
DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks.
Artificial neural network modeling of the water quality index using land use areas as predictors.
Gazzaz, Nabeel M; Yusoff, Mohd Kamil; Ramli, Mohammad Firuz; Juahir, Hafizan; Aris, Ahmad Zaharin
2015-02-01
This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.
Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adeli, Hojjat
2017-09-27
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schubert, M; Fey, A; Ihssen, J; Civardi, C; Schwarze, F W M R; Mourad, S
2015-01-10
An artificial neural network (ANN) and genetic algorithm (GA) were applied to improve the laccase-mediated oxidation of iodide (I(-)) to elemental iodine (I2). Biosynthesis of iodine (I2) was studied with a 5-level-4-factor central composite design (CCD). The generated ANN network was mathematically evaluated by several statistical indices and revealed better results than a classical quadratic response surface (RS) model. Determination of the relative significance of model input parameters, ranking the process parameters in order of importance (pH>laccase>mediator>iodide), was performed by sensitivity analysis. ANN-GA methodology was used to optimize the input space of the neural network model to find optimal settings for the laccase-mediated synthesis of iodine. ANN-GA optimized parameters resulted in a 9.9% increase in the conversion rate. Copyright © 2014 Elsevier B.V. All rights reserved.
Earley, Amy; Voors, Adriaan A.; Senni, Michele; McMurray, John J.V.; Deschaseaux, Celine; Cope, Shannon
2017-01-01
Background— Treatments that reduce mortality and morbidity in patients with heart failure with reduced ejection fraction, including angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), β-blockers (BB), mineralocorticoid receptor antagonists (MRA), and angiotensin receptor–neprilysin inhibitors (ARNI), have not been studied in a head-to-head fashion. This network meta-analysis aimed to compare the efficacy of these drugs and their combinations regarding all-cause mortality in patients with heart failure with reduced ejection fraction. Methods and Results— A systematic literature review identified 57 randomized controlled trials published between 1987 and 2015, which were compared in terms of study and patient characteristics, baseline risk, outcome definitions, and the observed treatment effects. Despite differences identified in terms of study duration, New York Heart Association class, ejection fraction, and use of background digoxin, a network meta-analysis was considered feasible and all trials were analyzed simultaneously. The random-effects network meta-analysis suggested that the combination of ACEI+BB+MRA was associated with a 56% reduction in mortality versus placebo (hazard ratio 0.44, 95% credible interval 0.26–0.66); ARNI+BB+MRA was associated with the greatest reduction in all-cause mortality versus placebo (hazard ratio 0.37, 95% credible interval 0.19–0.65). A sensitivity analysis that did not account for background therapy suggested that ARNI monotherapy is more efficacious than ACEI or ARB monotherapy. Conclusions— The network meta-analysis showed that treatment with ACEI, ARB, BB, MRA, and ARNI and their combinations were better than the treatment with placebo in reducing all-cause mortality, with the exception of ARB monotherapy and ARB plus ACEI. The combination of ARNI+BB+MRA resulted in the greatest mortality reduction. PMID:28087688
Garcillán-Barcia, M. Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M.; de la Cruz, Fernando
2014-01-01
Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143
Lanza, Val F; de Toro, María; Garcillán-Barcia, M Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M; de la Cruz, Fernando
2014-12-01
Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.
Săftoiu, Adrian; Vilmann, Peter; Gorunescu, Florin; Janssen, Jan; Hocke, Michael; Larsen, Michael; Iglesias-Garcia, Julio; Arcidiacono, Paolo; Will, Uwe; Giovannini, Marc; Dietrich, Cristoph F; Havre, Roald; Gheorghe, Cristian; McKay, Colin; Gheonea, Dan Ionuţ; Ciurea, Tudorel
2012-01-01
By using strain assessment, real-time endoscopic ultrasound (EUS) elastography provides additional information about a lesion's characteristics in the pancreas. We assessed the accuracy of real-time EUS elastography in focal pancreatic lesions using computer-aided diagnosis by artificial neural network analysis. We performed a prospective, blinded, multicentric study at of 258 patients (774 recordings from EUS elastography) who were diagnosed with chronic pancreatitis (n = 47) or pancreatic adenocarcinoma (n = 211) from 13 tertiary academic medical centers in Europe (the European EUS Elastography Multicentric Study Group). We used postprocessing software analysis to compute individual frames of elastography movies recorded by retrieving hue histogram data from a dynamic sequence of EUS elastography into a numeric matrix. The data then were analyzed in an extended neural network analysis, to automatically differentiate benign from malignant patterns. The neural computing approach had 91.14% training accuracy (95% confidence interval [CI], 89.87%-92.42%) and 84.27% testing accuracy (95% CI, 83.09%-85.44%). These results were obtained using the 10-fold cross-validation technique. The statistical analysis of the classification process showed a sensitivity of 87.59%, a specificity of 82.94%, a positive predictive value of 96.25%, and a negative predictive value of 57.22%. Moreover, the corresponding area under the receiver operating characteristic curve was 0.94 (95% CI, 0.91%-0.97%), which was significantly higher than the values obtained by simple mean hue histogram analysis, for which the area under the receiver operating characteristic was 0.85. Use of the artificial intelligence methodology via artificial neural networks supports the medical decision process, providing fast and accurate diagnoses. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Simonson, Donald C.; Nickerson, Lisa D.; Flores, Veronica L.; Siracusa, Tamar; Hager, Brandon; Lyoo, In Kyoon; Renshaw, Perry F.; Jacobson, Alan M.
2015-01-01
Human brain networks mediating interoceptive, behavioral, and cognitive aspects of glycemic control are not well studied. Using group independent component analysis with dual-regression approach of functional magnetic resonance imaging data, we examined the functional connectivity changes of large-scale resting state networks during sequential euglycemic–hypoglycemic clamp studies in patients with type 1 diabetes and nondiabetic controls and how these changes during hypoglycemia were related to symptoms of hypoglycemia awareness and to concurrent glycosylated hemoglobin (HbA1c) levels. During hypoglycemia, diabetic patients showed increased functional connectivity of the right anterior insula and the prefrontal cortex within the executive control network, which was associated with higher HbA1c. Controls showed decreased functional connectivity of the right anterior insula with the cerebellum/basal ganglia network and of temporal regions within the temporal pole network and increased functional connectivity in the default mode and sensorimotor networks. Functional connectivity reductions in the right basal ganglia were correlated with increases of self-reported hypoglycemic symptoms in controls but not in patients. Resting state networks that showed different group functional connectivity during hypoglycemia may be most sensitive to glycemic environment, and their connectivity patterns may have adapted to repeated glycemic excursions present in type 1 diabetes. Our results suggest that basal ganglia and insula mediation of interoceptive awareness during hypoglycemia is altered in type 1 diabetes. These changes could be neuroplastic adaptations to frequent hypoglycemic experiences. Functional connectivity changes in the insula and prefrontal cognitive networks could also reflect an adaptation to changes in brain metabolic pathways associated with chronic hyperglycemia. SIGNIFICANCE STATEMENT The major factor limiting improved glucose control in type 1 diabetes is the significant increase in hypoglycemia associated with insulin treatment. Repeated exposure to hypoglycemia alters patients' ability to recognize the autonomic and neuroglycopenic symptoms associated with low plasma glucose levels. We examined brain resting state networks during the induction of hypoglycemia in diabetic and control subjects and found differences in networks involved in sensorimotor function, cognition, and interoceptive awareness that were related to chronic levels of glycemic control. These findings identify brain regions that are sensitive to variations in plasma glucose levels and may also provide a basis for understanding the mechanisms underlying the increased incidence of cognitive impairment and affective disorders seen in patients with diabetes. PMID:26245963
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics.
Arampatzis, Georgios; Katsoulakis, Markos A; Rey-Bellet, Luc
2016-03-14
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics
NASA Astrophysics Data System (ADS)
Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc
2016-03-01
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc
2016-03-14
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systemsmore » with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.« less
NASA Astrophysics Data System (ADS)
Araki, E.; Kawaguchi, K.; Kaneda, Y.
2011-12-01
We developed and deployed seafloor cabled observatory called "Dense Ocean-floor Network for Earthquake and Tsunamis (DONET)" in the Nankai Trough, south of Japan. The main purpose of the DONET network is to observe large earthquake such as Tonankai earthquake in the deployed seafloor and associate Tsunamis in real-time to help disaster mitigation, and as well to monitor inter-seismic crustal activities such as micro earthquakes, very low frequency earthquakes, and slower crustal deformation. In each DONET seafloor observatory, high-sensitive broadband set of instruments for seismic and seafloor pressure monitoring, consisted from Guralp CMG3T broadband seismometer, Metrozet TSA100S accelerometer, Paroscientific 8B7000-2 pressure gauge, a deep-sea differential pressure gauge, a hydrophone, and a seawater thermometer, are installed. The density of seafloor observatories are 20 observatories distributed in 15-30 km interval which is optimized for monitoring of events in the plate boundary beneath the network. DONET may be regarded as a large-scale, high sensitive high density seismic array for monitoring teleseismic events in the Philippine Sea and the Pacific Ocean. The DONET seafloor observatories are situated in wide range of seafloor depth between 1800m and 4500m, from the seafloor basin about 50 km off Japanese Island through the slope of accerecionary prism to the deep trench axis 150 km off the coast, that may also regarded as a vertical array in the 4.5km thick ocean. This variation of depths helps identify T-phases from the array record. In data analysis, it is necessary to identify propagation mode of each observed wave which may often be mixed together. In our design of DONET observation system, we took care to help identification of seismic phase by obtaining both ground motion and seafloor pressure in the same location. This is simply achieved by combining seafloor pressure gauges and seismometer in a single observatory package, but care was taken to observe both in the similar level of sensitivity and dynamic range in wide frequencies from near DC to over 100 Hz. In the case of DONET, the broadband seismometer and the differential pressure gauge have similar level of sensitivity in 0.005 - 10 Hz, and similarly the accelerometer and the hydrophone cover between 1-100Hz, in total covering most frequencies of our interest, 0.005 Hz to 100 Hz. With both ground motion and seafloor pressure measurement, we may distinguish types of waves relatively easily, and it is also possible to filter particular types of waves from the array dataset to help our data analysis. For example, it has been commonly practiced to distinguish up-going and down-going seismic phases from pressure and ground motion, but this is relatively difficult only with sparse seismometer array. This technique may also be applied to correct teleseismic record with sea surface reflection in receiver function analysis for exploring deep crustal structure.
On the design of wave digital filters with low sensitivity properties.
NASA Technical Reports Server (NTRS)
Renner, K.; Gupta, S. C.
1973-01-01
The wave digital filter patterned after doubly terminated maximum available power (MAP) networks by means of the Richard's transformation has been shown to have low-coefficient-sensitivity properties. This paper examines the exact nature of the relationship between the wave-digital-filter structure and the MAP networks and how the sensitivity property arises, which permits implementation of the digital structure with a lower coefficient word length than that possible with the conventional structures. The proper design procedure is specified and the nature of the unique complementary outputs is discussed. Finally, an example is considered which illustrates the design, the conversion techniques, and the low sensitivity properties.
Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C
2016-01-01
Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering evidence for the chaotic behavior of the system, and by suggesting candidate molecules driving chaos in the system. The results of our chaos analysis can increase our understanding of the intricacies of the regulatory network under analysis, and suggest experimental work to refine our behavior of the mechanisms underlying B. subtilis sporulation initiation control.
Borchers, M R; Chang, Y M; Proudfoot, K L; Wadsworth, B A; Stone, A E; Bewley, J M
2017-07-01
The objective of this study was to use automated activity, lying, and rumination monitors to characterize prepartum behavior and predict calving in dairy cattle. Data were collected from 20 primiparous and 33 multiparous Holstein dairy cattle from September 2011 to May 2013 at the University of Kentucky Coldstream Dairy. The HR Tag (SCR Engineers Ltd., Netanya, Israel) automatically collected neck activity and rumination data in 2-h increments. The IceQube (IceRobotics Ltd., South Queensferry, United Kingdom) automatically collected number of steps, lying time, standing time, number of transitions from standing to lying (lying bouts), and total motion, summed in 15-min increments. IceQube data were summed in 2-h increments to match HR Tag data. All behavioral data were collected for 14 d before the predicted calving date. Retrospective data analysis was performed using mixed linear models to examine behavioral changes by day in the 14 d before calving. Bihourly behavioral differences from baseline values over the 14 d before calving were also evaluated using mixed linear models. Changes in daily rumination time, total motion, lying time, and lying bouts occurred in the 14 d before calving. In the bihourly analysis, extreme values for all behaviors occurred in the final 24 h, indicating that the monitored behaviors may be useful in calving prediction. To determine whether technologies were useful at predicting calving, random forest, linear discriminant analysis, and neural network machine-learning techniques were constructed and implemented using R version 3.1.0 (R Foundation for Statistical Computing, Vienna, Austria). These methods were used on variables from each technology and all combined variables from both technologies. A neural network analysis that combined variables from both technologies at the daily level yielded 100.0% sensitivity and 86.8% specificity. A neural network analysis that combined variables from both technologies in bihourly increments was used to identify 2-h periods in the 8 h before calving with 82.8% sensitivity and 80.4% specificity. Changes in behavior and machine-learning alerts indicate that commercially marketed behavioral monitors may have calving prediction potential. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bussières, André E; Sales, Anne E; Ramsay, Timothy; Hilles, Steven M; Grimshaw, Jeremy M
2014-08-01
Overuse and misuse of spine X-ray imaging for nonspecific back and neck pain persists among chiropractors. Distribution of educational materials among physicians results in small-to-modest improvements in appropriate care, such as ordering spine X-ray studies, but little is known about its impact among North American chiropractors. To evaluate the impact of web-based dissemination of a diagnostic imaging guideline on the use of spine X-ray images among chiropractors. Quasi-experimental design that used interrupted time series to evaluate the effect of guidelines dissemination on spine X-ray imaging claims by chiropractors enlisted in managed care network in the United States. Consecutive adult patients consulting for complaints of spine disorders. A change in level (the mean number of spine X-ray imaging claims per month immediately after the introduction of the guidelines), change in trend (any differences between preintervention and postintervention slopes), estimation of monthly average intervention effect after the intervention. The imaging guideline was disseminated online in April 2008. Administrative claims data were extracted between January 2006 and December 2010. Segmented regression analysis with autoregressive error was used to estimate the impact of guideline recommendations on the rate of spine X-ray studies. Sensitivity analysis considered the effect of two additional quality improvement strategies, a policy change and an education intervention. Time series analysis revealed a significant change in the level of spine X-ray study ordering weeks after introduction of the guidelines (-0.01; 95% confidence interval=-0.01, -0.002; p=.01), but no change in trend of the regression lines. The monthly mean rate of spine X-ray studies within 5 days of initial visit per new patient exams decreased by 10 per 1000, a 5.26% relative decrease after guideline dissemination. Controlling for two quality improvement strategies did not change the results. Web-based guideline dissemination was associated with an immediate reduction in spine X-ray imaging claims. Sensitivity analysis suggests our results are robust. This passive strategy is likely cost-effective in a chiropractic network setting. Copyright © 2014 Elsevier Inc. All rights reserved.
Ultraviolet and Visible Photochemistry of Methanol at 3D Mesoporous Networks: TiO2 and Au-TiO2
2013-05-23
methanol photochemistry at three-dimensionally (3D) networked aerogels of TiO2 or Au–TiO2 reveals that incorporated Au nanoparticles strongly sensitize...the oxide nanoarchitecture to visible light. Methanol dissociatively adsorbs at the surfaces of TiO2 and Au–TiO2 aerogels under dark, high-vacuum...photochemistry at three-dimensionally (3D) networked aerogels of TiO2 or Au–TiO2 reveals that incorporated Au nanoparticles strongly sensitize the oxide
GERENCSER, Akos A.; MOOKERJEE, Shona A.; JASTROCH, Martin; BRAND, Martin D.
2016-01-01
Analysis of the cellular mechanisms of metabolic disorders, including type 2 diabetes mellitus, is complicated by the large number of reactions and interactions in metabolic networks. Metabolic control analysis with appropriate modularization is a powerful method for simplifying and analyzing these networks. To analyze control of cellular energy metabolism in adherent cell cultures of the INS-1 832/13 pancreatic β-cell model we adapted our microscopy assay of absolute mitochondrial membrane potential (ΔψM) to a fluorescence microplate reader format, and applied it in conjunction with cell respirometry. In these cells the sensitive response of ΔψM to extracellular glucose concentration drives glucose-stimulated insulin secretion. Using metabolic control analysis we identified the control properties that generate this sensitive response. Force-flux relationships between ΔψM and respiration were used to calculate kinetic responses to ΔψM of processes both upstream (glucose oxidation) and downstream (proton leak and ATP turnover) of ΔψM. The analysis revealed that glucose-evoked ΔψM hyperpolarization is amplified by increased glucose oxidation activity caused by factors downstream of ΔψM. At high glucose, the hyperpolarized ΔψM is stabilized almost completely by the action of glucose oxidation, whereas proton leak also contribute to the homeostatic control of ΔψM at low glucose. These findings suggest a strong positive feedback loop in the regulation of β-cell energetics, and a possible regulatory role of proton leak in the fasting state. Analysis of islet bioenergetics from published cases of type 2 diabetes suggests that disruption of this feedback can explain the damaged bioenergetic response of β-cells to glucose. PMID:27771512
Treudler, R; Richter, G; Geier, J; Schnuch, A; Orfanos, C E; Tebbe, B
2000-02-01
Contact allergy to oil of turpentine was reported to have become rare. However, the evaluation of standardized data of 45,005 patients tested 1992-1997 in 30 Dermatological Centers associated with the German-Austrian Information Network of Departments of Dermatology (IVDK) showed an increase in positive patch test reactions to turpentine from 0.5% during the years 1992-1995, up to 1.7% in 1996 and 3.1% in 1997. In particular, 17,347 patients tested in 1996-1997 were evaluated in detail by comparing 431 individuals with positive patch test reactions with the rest of the group found negative to turpentine. Using the so-called MOAHLFA index, the following characteristics were shown. Turpentine allergy (a) was found to be significantly less frequent in men and in patients with occupational dermatitis, (b) showed no difference in its association with atopic dermatitis, (c) patients with turpentine allergy had significantly less symptoms of the hands, more symptoms of the legs or in the face and (d) were significantly more often aged over 60 years. Also, patients sensitized to turpentine had increased rates of additional sensitizations. The definite reason for the increase in turpentine sensitization in the population tested here is not clear. Therefore, a detailed exposure analysis is necessary; the new increase in turpentine allergies may be due to popular topical remedies or household chemicals.
Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong
2016-01-01
Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher’s exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO’s usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher. PMID:26750448
Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong
2016-01-11
Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher's exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO's usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher.
Twenty-Five Years of Applications of the Modified Allan Variance in Telecommunications.
Bregni, Stefano
2016-04-01
The Modified Allan Variance (MAVAR) was originally defined in 1981 for measuring frequency stability in precision oscillators. Due to its outstanding accuracy in discriminating power-law noise, it attracted significant interest among telecommunications engineers since the early 1990s, when it was approved as a standard measure in international standards, redressed as Time Variance (TVAR), for specifying the time stability of network synchronization signals and of equipment clocks. A dozen years later, the usage of MAVAR was also introduced for Internet traffic analysis to estimate self-similarity and long-range dependence. Further, in this field, it demonstrated superior accuracy and sensitivity, better than most popular tools already in use. This paper surveys the last 25 years of progress in extending the field of application of the MAVAR in telecommunications. First, the rationale and principles of the MAVAR are briefly summarized. Its adaptation as TVAR for specification of timing stability is presented. The usage of MAVAR/TVAR in telecommunications standards is reviewed. Examples of measurements on real telecommunications equipment clocks are presented, providing an overview on their actual performance in terms of MAVAR. Moreover, applications of MAVAR to network traffic analysis are surveyed. The superior accuracy of MAVAR in estimating long-range dependence is emphasized by highlighting some remarkable practical examples of real network traffic analysis.
Physician Networks and Ambulatory Care-sensitive Admissions.
Casalino, Lawrence P; Pesko, Michael F; Ryan, Andrew M; Nyweide, David J; Iwashyna, Theodore J; Sun, Xuming; Mendelsohn, Jayme; Moody, James
2015-06-01
Research on the quality and cost of care traditionally focuses on individual physicians or medical groups. Social network theory suggests that the care a patient receives also depends on the network of physicians with whom a patient's physician is connected. The objectives of the study are: (1) identify physician networks; (2) determine whether the rate of ambulatory care-sensitive hospital admissions (ACSAs) varies across networks--even different networks at the same hospital; and (3) determine the relationship between ACSA rates and network characteristics. We identified networks by applying network detection algorithms to Medicare 2008 claims for 987,000 beneficiaries in 5 states. We estimated a fixed-effects model to determine the relationship between networks and ACSAs and a multivariable model to determine the relationship between network characteristics and ACSAs. We identified 417 networks. Mean size: 129 physicians; range, 26-963. In the fixed-effects model, ACSA rates varied significantly across networks: there was a 46% difference in rates between networks at the 25th and 75th performance percentiles. At 95% of hospitals with admissions from 2 networks, the networks had significantly different ACSA rates; the mean difference was 36% of the mean ACSA rate. Networks with a higher percentage of primary-care physicians and networks in which patients received care from a larger number of physicians had higher ACSA rates. Physician networks have a relationship with ACSAs that is independent of the physicians in the network. Physician networks could be an important focus for understanding variations in medical care and for intervening to improve care.
Automated Age-related Macular Degeneration screening system using fundus images.
Kunumpol, P; Umpaipant, W; Kanchanaranya, N; Charoenpong, T; Vongkittirux, S; Kupakanjana, T; Tantibundhit, C
2017-07-01
This work proposed an automated screening system for Age-related Macular Degeneration (AMD), and distinguishing between wet or dry types of AMD using fundus images to assist ophthalmologists in eye disease screening and management. The algorithm employs contrast-limited adaptive histogram equalization (CLAHE) in image enhancement. Subsequently, discrete wavelet transform (DWT) and locality sensitivity discrimination analysis (LSDA) were used to extract features for a neural network model to classify the results. The results showed that the proposed algorithm was able to distinguish between normal eyes, dry AMD, or wet AMD with 98.63% sensitivity, 99.15% specificity, and 98.94% accuracy, suggesting promising potential as a medical support system for faster eye disease screening at lower costs.
On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mather, Barry
This paper first studies the estimated distributed PV hosting capacities of seventeen utility distribution feeders using the Monte Carlo simulation based stochastic analysis, and then analyzes the sensitivity of PV hosting capacity to both feeder and photovoltaic system characteristics. Furthermore, an active distribution network management approach is proposed to maximize PV hosting capacity by optimally switching capacitors, adjusting voltage regulator taps, managing controllable branch switches and controlling smart PV inverters. The approach is formulated as a mixed-integer nonlinear optimization problem and a genetic algorithm is developed to obtain the solution. Multiple simulation cases are studied and the effectiveness of themore » proposed approach on increasing PV hosting capacity is demonstrated.« less
Automated detection of videotaped neonatal seizures of epileptic origin.
Karayiannis, Nicolaos B; Xiong, Yaohua; Tao, Guozhi; Frost, James D; Wise, Merrill S; Hrachovy, Richard A; Mizrahi, Eli M
2006-06-01
This study aimed at the development of a seizure-detection system by training neural networks with quantitative motion information extracted from short video segments of neonatal seizures of the myoclonic and focal clonic types and random infant movements. The motion of the infants' body parts was quantified by temporal motion-strength signals extracted from video segments by motion-segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by clustering the motion parameters obtained by fitting an affine model to the pixel velocities. The motion of the infants' body parts also was quantified by temporal motion-trajectory signals extracted from video recordings by robust motion trackers based on block-motion models. These motion trackers were developed to adjust autonomously to illumination and contrast changes that may occur during the video-frame sequence. Video segments were represented by quantitative features obtained by analyzing motion-strength and motion-trajectory signals in both the time and frequency domains. Seizure recognition was performed by conventional feed-forward neural networks, quantum neural networks, and cosine radial basis function neural networks, which were trained to detect neonatal seizures of the myoclonic and focal clonic types and to distinguish them from random infant movements. The computational tools and procedures developed for automated seizure detection were evaluated on a set of 240 video segments of 54 patients exhibiting myoclonic seizures (80 segments), focal clonic seizures (80 segments), and random infant movements (80 segments). Regardless of the decision scheme used for interpreting the responses of the trained neural networks, all the neural network models exhibited sensitivity and specificity>90%. For one of the decision schemes proposed for interpreting the responses of the trained neural networks, the majority of the trained neural-network models exhibited sensitivity>90% and specificity>95%. In particular, cosine radial basis function neural networks achieved the performance targets of this phase of the project (i.e., sensitivity>95% and specificity>95%). The best among the motion segmentation and tracking methods developed in this study produced quantitative features that constitute a reliable basis for detecting neonatal seizures. The performance targets of this phase of the project were achieved by combining the quantitative features obtained by analyzing motion-strength signals with those produced by analyzing motion-trajectory signals. The computational procedures and tools developed in this study to perform off-line analysis of short video segments will be used in the next phase of this project, which involves the integration of these procedures and tools into a system that can process and analyze long video recordings of infants monitored for seizures in real time.
Zhang, Guolin; Scarborough, Hannah; Kim, Jihye; Rozhok, Andrii I.; Chen, Y. Ann; Zhang, Xiaohui; Song, Lanxi; Bai, Yun; Fang, Bin; Liu, Richard Z.; Koomen, John; Tan, Aik Choon; Degregori, James; Haura, Eric B.
2017-01-01
Patients with lung cancers harboring anaplastic lymphoma kinase (ALK) gene fusions benefit from treatment with ALK kinase inhibitors but acquired resistance inevitably arises. A better understanding of proximal ALK signaling mechanisms may identify sensitizers to ALK inhibitors that disrupt the balance between pro-survival and pro-apoptotic effector signals. Using affinity purification coupled with mass spectrometry in an ALK fusion lung cancer cell line (H3122), we generated an ALK signaling network and investigated signaling activity using tyrosine phosphoproteomics. We identified a network of 464 proteins composed of subnetworks with differential response to ALK inhibitors. A small hairpin RNA screen targeting 407 proteins in this network revealed 64 and 9 proteins whose loss sensitized cells to crizotinib and alectinib, respectively. Among these, knocking down fibroblast growth factor receptor substrate 2 (FRS2) or coiled-coil and C2 domain-containing protein 1A (CC2D1A, both scaffolding proteins, sensitized multiple ALK fusion cell lines to the ALK inhibitors crizotinib and alectinib. Collectively, our data provides a resource that enhances our understanding of signaling and drug resistance networks consequent to ALK fusions, and identifies potential targets to improve the efficacy of ALK inhibitors in patients. PMID:27811184
Jeong, Hyundoo; Yoon, Byung-Jun
2017-03-14
Network querying algorithms provide computational means to identify conserved network modules in large-scale biological networks that are similar to known functional modules, such as pathways or molecular complexes. Two main challenges for network querying algorithms are the high computational complexity of detecting potential isomorphism between the query and the target graphs and ensuring the biological significance of the query results. In this paper, we propose SEQUOIA, a novel network querying algorithm that effectively addresses these issues by utilizing a context-sensitive random walk (CSRW) model for network comparison and minimizing the network conductance of potential matches in the target network. The CSRW model, inspired by the pair hidden Markov model (pair-HMM) that has been widely used for sequence comparison and alignment, can accurately assess the node-to-node correspondence between different graphs by accounting for node insertions and deletions. The proposed algorithm identifies high-scoring network regions based on the CSRW scores, which are subsequently extended by maximally reducing the network conductance of the identified subnetworks. Performance assessment based on real PPI networks and known molecular complexes show that SEQUOIA outperforms existing methods and clearly enhances the biological significance of the query results. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/SEQUOIA .
Rifai Chai; Naik, Ganesh R; Tran, Yvonne; Sai Ho Ling; Craig, Ashley; Nguyen, Hung T
2015-08-01
An electroencephalography (EEG)-based counter measure device could be used for fatigue detection during driving. This paper explores the classification of fatigue and alert states using power spectral density (PSD) as a feature extractor and fuzzy swarm based-artificial neural network (ANN) as a classifier. An independent component analysis of entropy rate bound minimization (ICA-ERBM) is investigated as a novel source separation technique for fatigue classification using EEG analysis. A comparison of the classification accuracy of source separator versus no source separator is presented. Classification performance based on 43 participants without the inclusion of the source separator resulted in an overall sensitivity of 71.67%, a specificity of 75.63% and an accuracy of 73.65%. However, these results were improved after the inclusion of a source separator module, resulting in an overall sensitivity of 78.16%, a specificity of 79.60% and an accuracy of 78.88% (p <; 0.05).
NO2 sensing at room temperature using vertically aligned MoS2 flakes network
NASA Astrophysics Data System (ADS)
Kumar, Rahul; Goel, Neeraj; Kumar, Mahesh
2018-04-01
To exploit the role of alignment of MoS2 flake in chemical sensing, here, we have synthesized the horizontally and vertically aligned MoS2 flake network using conventional chemical vapor deposition technique. The morphology and number of layers were confirmed by SEM and Raman spectroscopy, respectively. The sensing performance of horizontally aligned and vertically aligned flake network was investigated to NO2 at room temperature. Vertically aligned MoS2 based sensor showed higher sensitivity 51.54 % and 63.2 % compared to horizontally aligned MoS2 sensor' sensitivity of 35.32 % and 45.2 % to 50 ppm and 100 ppm NO2, respectively. This high sensitivity attributed to the high aspect ratio and high adsorption energy on the edge site of vertically aligned MoS2.
Guo, Hao; Zhang, Fan; Chen, Junjie; Xu, Yong; Xiang, Jie
2017-01-01
Exploring functional interactions among various brain regions is helpful for understanding the pathological underpinnings of neurological disorders. Brain networks provide an important representation of those functional interactions, and thus are widely applied in the diagnosis and classification of neurodegenerative diseases. Many mental disorders involve a sharp decline in cognitive ability as a major symptom, which can be caused by abnormal connectivity patterns among several brain regions. However, conventional functional connectivity networks are usually constructed based on pairwise correlations among different brain regions. This approach ignores higher-order relationships, and cannot effectively characterize the high-order interactions of many brain regions working together. Recent neuroscience research suggests that higher-order relationships between brain regions are important for brain network analysis. Hyper-networks have been proposed that can effectively represent the interactions among brain regions. However, this method extracts the local properties of brain regions as features, but ignores the global topology information, which affects the evaluation of network topology and reduces the performance of the classifier. This problem can be compensated by a subgraph feature-based method, but it is not sensitive to change in a single brain region. Considering that both of these feature extraction methods result in the loss of information, we propose a novel machine learning classification method that combines multiple features of a hyper-network based on functional magnetic resonance imaging in Alzheimer's disease. The method combines the brain region features and subgraph features, and then uses a multi-kernel SVM for classification. This retains not only the global topological information, but also the sensitivity to change in a single brain region. To certify the proposed method, 28 normal control subjects and 38 Alzheimer's disease patients were selected to participate in an experiment. The proposed method achieved satisfactory classification accuracy, with an average of 91.60%. The abnormal brain regions included the bilateral precuneus, right parahippocampal gyrus\\hippocampus, right posterior cingulate gyrus, and other regions that are known to be important in Alzheimer's disease. Machine learning classification combining multiple features of a hyper-network of functional magnetic resonance imaging data in Alzheimer's disease obtains better classification performance. PMID:29209156
Artificial neural networks for processing fluorescence spectroscopy data in skin cancer diagnostics
NASA Astrophysics Data System (ADS)
Lenhardt, L.; Zeković, I.; Dramićanin, T.; Dramićanin, M. D.
2013-11-01
Over the years various optical spectroscopic techniques have been widely used as diagnostic tools in the discrimination of many types of malignant diseases. Recently, synchronous fluorescent spectroscopy (SFS) coupled with chemometrics has been applied in cancer diagnostics. The SFS method involves simultaneous scanning of both emission and excitation wavelengths while keeping the interval of wavelengths (constant-wavelength mode) or frequencies (constant-energy mode) between them constant. This method is fast, relatively inexpensive, sensitive and non-invasive. Total synchronous fluorescence spectra of normal skin, nevus and melanoma samples were used as input for training of artificial neural networks. Two different types of artificial neural networks were trained, the self-organizing map and the feed-forward neural network. Histopathology results of investigated skin samples were used as the gold standard for network output. Based on the obtained classification success rate of neural networks, we concluded that both networks provided high sensitivity with classification errors between 2 and 4%.
Minimising Backbreak at the Dewan Cement Limestone Quarry Using an Artificial Neural Network
NASA Astrophysics Data System (ADS)
Muhammad, Khan; Shah, Akram
2017-12-01
Backbreak, defined as excessive breakage behind the last row of blastholes in blasting operations at a quarry, causes destabilisation of rock slopes, improper fragmentation, minimises drilling efficiency. In this paper an artificial neural network (ANN) is applied to predict backbreak, using 12 input parameters representing various controllable factors, such as the characteristics of explosives and geometrical blast design, at the Dewan Cement limestone quarry in Hattar, Pakistan. This ANN was trained with several model architectures. The 12-2-1 ANN model was selected as the simplest model yielding the best result, with a reported correlation coefficient of 0.98 and 0.97 in the training and validation phases, respectively. Sensitivity analysis of the model suggested that backbreak can be reduced most effectively by reducing powder factor, blasthole inclination, and burden. Field tests were subsequently carried out in which these sensitive parameters were varied accordingly; as a result, backbreak was controlled and reduced from 8 m to less than a metre. The resulting reduction in powder factor (kg of explosives used per m3 of blasted material) also reduced blasting costs.
New machine-learning algorithms for prediction of Parkinson's disease
NASA Astrophysics Data System (ADS)
Mandal, Indrajit; Sairam, N.
2014-03-01
This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.
Alexakis, Dimitrios D.; Mexis, Filippos-Dimitrios K.; Vozinaki, Anthi-Eirini K.; Daliakopoulos, Ioannis N.; Tsanis, Ioannis K.
2017-01-01
A methodology for elaborating multi-temporal Sentinel-1 and Landsat 8 satellite images for estimating topsoil Soil Moisture Content (SMC) to support hydrological simulation studies is proposed. After pre-processing the remote sensing data, backscattering coefficient, Normalized Difference Vegetation Index (NDVI), thermal infrared temperature and incidence angle parameters are assessed for their potential to infer ground measurements of SMC, collected at the top 5 cm. A non-linear approach using Artificial Neural Networks (ANNs) is tested. The methodology is applied in Western Crete, Greece, where a SMC gauge network was deployed during 2015. The performance of the proposed algorithm is evaluated using leave-one-out cross validation and sensitivity analysis. ANNs prove to be the most efficient in SMC estimation yielding R2 values between 0.7 and 0.9. The proposed methodology is used to support a hydrological simulation with the HEC-HMS model, applied at the Keramianos basin which is ungauged for SMC. Results and model sensitivity highlight the contribution of combining Sentinel-1 SAR and Landsat 8 images for improving SMC estimates and supporting hydrological studies. PMID:28635625
Alexakis, Dimitrios D; Mexis, Filippos-Dimitrios K; Vozinaki, Anthi-Eirini K; Daliakopoulos, Ioannis N; Tsanis, Ioannis K
2017-06-21
A methodology for elaborating multi-temporal Sentinel-1 and Landsat 8 satellite images for estimating topsoil Soil Moisture Content (SMC) to support hydrological simulation studies is proposed. After pre-processing the remote sensing data, backscattering coefficient, Normalized Difference Vegetation Index (NDVI), thermal infrared temperature and incidence angle parameters are assessed for their potential to infer ground measurements of SMC, collected at the top 5 cm. A non-linear approach using Artificial Neural Networks (ANNs) is tested. The methodology is applied in Western Crete, Greece, where a SMC gauge network was deployed during 2015. The performance of the proposed algorithm is evaluated using leave-one-out cross validation and sensitivity analysis. ANNs prove to be the most efficient in SMC estimation yielding R² values between 0.7 and 0.9. The proposed methodology is used to support a hydrological simulation with the HEC-HMS model, applied at the Keramianos basin which is ungauged for SMC. Results and model sensitivity highlight the contribution of combining Sentinel-1 SAR and Landsat 8 images for improving SMC estimates and supporting hydrological studies.
Nackaerts, Evelien; Nieuwboer, Alice; Broeder, Sanne; Swinnen, Stephan; Vandenberghe, Wim; Heremans, Elke
2018-02-01
Recently, it was shown that patients with Parkinson's disease (PD) and freezing of gait (FOG) can also experience freezing episodes during handwriting and present writing problems outside these episodes. So far, the neural networks underlying increased handwriting problems in subjects with FOG are unclear. This study used dynamic causal modeling of fMRI data to investigate neural network dynamics underlying freezing-related handwriting problems and how these networks changed in response to visual cues. Twenty-seven non-freezers and ten freezers performed a pre-writing task with and without visual cues in the scanner with their right hand. The results showed that freezers and non-freezers were able to recruit networks involved in cued and uncued writing in a similar fashion. Whole group analysis also revealed a trend towards altered visuomotor integration in patients with FOG. Next, we controlled for differences in disease severity between both patient groups using a sensitivity analysis. For this, a subgroup of ten non-freezers matched for disease severity was selected by an independent researcher. This analysis further exposed significantly weaker coupling in mostly left hemispheric visuo-parietal, parietal - supplementary motor area, parietal - premotor, and premotor-M1 pathways in freezers compared to non-freezers, irrespective of cues. Correlation analyses revealed that these impairments in connectivity were related to writing amplitude and quality. Taken together, these findings show that freezers have reduced involvement of the supplementary motor area in the motor network, which explains the impaired writing amplitude regulation in this group. In addition, weaker supportive premotor connectivity may have contributed to micrographia in freezers, a pattern that was independent of cueing.
Ghafoorian, Mohsen; Karssemeijer, Nico; Heskes, Tom; Bergkamp, Mayra; Wissink, Joost; Obels, Jiri; Keizer, Karlijn; de Leeuw, Frank-Erik; Ginneken, Bram van; Marchiori, Elena; Platel, Bram
2017-01-01
Lacunes of presumed vascular origin (lacunes) are associated with an increased risk of stroke, gait impairment, and dementia and are a primary imaging feature of the small vessel disease. Quantification of lacunes may be of great importance to elucidate the mechanisms behind neuro-degenerative disorders and is recommended as part of study standards for small vessel disease research. However, due to the different appearance of lacunes in various brain regions and the existence of other similar-looking structures, such as perivascular spaces, manual annotation is a difficult, elaborative and subjective task, which can potentially be greatly improved by reliable and consistent computer-aided detection (CAD) routines. In this paper, we propose an automated two-stage method using deep convolutional neural networks (CNN). We show that this method has good performance and can considerably benefit readers. We first use a fully convolutional neural network to detect initial candidates. In the second step, we employ a 3D CNN as a false positive reduction tool. As the location information is important to the analysis of candidate structures, we further equip the network with contextual information using multi-scale analysis and integration of explicit location features. We trained, validated and tested our networks on a large dataset of 1075 cases obtained from two different studies. Subsequently, we conducted an observer study with four trained observers and compared our method with them using a free-response operating characteristic analysis. Shown on a test set of 111 cases, the resulting CAD system exhibits performance similar to the trained human observers and achieves a sensitivity of 0.974 with 0.13 false positives per slice. A feasibility study also showed that a trained human observer would considerably benefit once aided by the CAD system.
Sui, Jing; Adali, Tülay; Pearlson, Godfrey D.; Calhoun, Vince D.
2013-01-01
Extraction of relevant features from multitask functional MRI (fMRI) data in order to identify potential biomarkers for disease, is an attractive goal. In this paper, we introduce a novel feature-based framework, which is sensitive and accurate in detecting group differences (e.g. controls vs. patients) by proposing three key ideas. First, we integrate two goal-directed techniques: coefficient-constrained independent component analysis (CC-ICA) and principal component analysis with reference (PCA-R), both of which improve sensitivity to group differences. Secondly, an automated artifact-removal method is developed for selecting components of interest derived from CC-ICA, with an average accuracy of 91%. Finally, we propose a strategy for optimal feature/component selection, aiming to identify optimal group-discriminative brain networks as well as the tasks within which these circuits are engaged. The group-discriminating performance is evaluated on 15 fMRI feature combinations (5 single features and 10 joint features) collected from 28 healthy control subjects and 25 schizophrenia patients. Results show that a feature from a sensorimotor task and a joint feature from a Sternberg working memory (probe) task and an auditory oddball (target) task are the top two feature combinations distinguishing groups. We identified three optimal features that best separate patients from controls, including brain networks consisting of temporal lobe, default mode and occipital lobe circuits, which when grouped together provide improved capability in classifying group membership. The proposed framework provides a general approach for selecting optimal brain networks which may serve as potential biomarkers of several brain diseases and thus has wide applicability in the neuroimaging research community. PMID:19457398
Zorina-Tikhonova, Ekaterina N; Chistyakov, Aleksandr S; Kiskin, Mikhail A; Sidorov, Aleksei A; Dorovatovskii, Pavel V; Zubavichus, Yan V; Voronova, Eugenia D; Godovikov, Ivan A; Korlyukov, Alexander A; Eremenko, Igor L; Vologzhanina, Anna V
2018-05-01
Photoinitiated solid-state reactions are known to affect the physical properties of coordination polymers, such as fluorescence and sorption behaviour, and also afford extraordinary architectures ( e.g. three-periodic structures with polyorganic ligands). However, the construction of novel photo-sensitive coordination polymers requires an understanding of the factors which govern the mutual disposition of reactive fragments. A series of zinc(II) malonate complexes with 1,2-bis(pyridin-4-yl)ethylene and its photo-insensitive analogues has been synthesized for the purpose of systematic analysis of their underlying nets and mutual disposition of N -donor ligands. The application of a big data-set analysis for the prediction of a variety of possible complex compositions, coordination environments and networks for a four-component system has been demonstrated for the first time. Seven of the nine compounds possess one of the highly probable topologies for their underlying nets; in addition, two novel closely related four-coordinated networks were obtained. Complexes containing 1,2-bis(pyridin-4-yl)ethylene and 1,2-bis(pyridin-4-yl)ethane form isoreticular compounds more readily than those with 4,4'-bipyridine and 1,2-bis(pyridin-4-yl)ethylene. The effects of the precursor, either zinc(II) nitrate or zinc(II) acetate, on the composition and dimensionality of the resulting architecture are discussed. For three of the four novel complexes containing 1,2-bis(pyridin-4-yl)ethylene, the single-crystal-to-single-crystal [2 + 2] cycloaddition reactions were carried out. UV irradiation of these crystals afforded either the 0D→1D or the 3D→3D transformations, with and without network changes. One of the two 3D→3D transformations was accompanied by solvent (H 2 O) cleavage.
Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan
2017-05-31
Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)- Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current understanding of the disorder.
Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan
2017-01-01
Objective Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Methods Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)-Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Results Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. Conclusion The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current understanding of the disorder. PMID:28449558
Gene network interconnectedness and the generalized topological overlap measure
Yip, Andy M; Horvath, Steve
2007-01-01
Background Network methods are increasingly used to represent the interactions of genes and/or proteins. Genes or proteins that are directly linked may have a similar biological function or may be part of the same biological pathway. Since the information on the connection (adjacency) between 2 nodes may be noisy or incomplete, it can be desirable to consider alternative measures of pairwise interconnectedness. Here we study a class of measures that are proportional to the number of neighbors that a pair of nodes share in common. For example, the topological overlap measure by Ravasz et al. [1] can be interpreted as a measure of agreement between the m = 1 step neighborhoods of 2 nodes. Several studies have shown that two proteins having a higher topological overlap are more likely to belong to the same functional class than proteins having a lower topological overlap. Here we address the question whether a measure of topological overlap based on higher-order neighborhoods could give rise to a more robust and sensitive measure of interconnectedness. Results We generalize the topological overlap measure from m = 1 step neighborhoods to m ≥ 2 step neighborhoods. This allows us to define the m-th order generalized topological overlap measure (GTOM) by (i) counting the number of m-step neighbors that a pair of nodes share and (ii) normalizing it to take a value between 0 and 1. Using theoretical arguments, a yeast co-expression network application, and a fly protein network application, we illustrate the usefulness of the proposed measure for module detection and gene neighborhood analysis. Conclusion Topological overlap can serve as an important filter to counter the effects of spurious or missing connections between network nodes. The m-th order topological overlap measure allows one to trade-off sensitivity versus specificity when it comes to defining pairwise interconnectedness and network modules. PMID:17250769
MRI correlates of general intelligence in neurotypical adults.
Malpas, Charles B; Genc, Sila; Saling, Michael M; Velakoulis, Dennis; Desmond, Patricia M; O'Brien, Terence J
2016-02-01
There is growing interest in the neurobiological substrate of general intelligence. Psychometric estimates of general intelligence are reduced in a range of neurological disorders, leading to practical application as sensitive, but non-specific, markers of cerebral disorder. This study examined estimates of general intelligence in neurotypical adults using diffusion tensor imaging and resting-state functional connectivity analysis. General intelligence was related to white matter organisation across multiple brain regions, confirming previous work in older healthy adults. We also found that variation in general intelligence was related to a large functional sub-network involving all cortical lobes of the brain. These findings confirm that individual variance in general intelligence is related to diffusely represented brain networks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method for network analyzation and apparatus
Bracht, Roger B.; Pasquale, Regina V.
2001-01-01
A portable network analyzer and method having multiple channel transmit and receive capability for real-time monitoring of processes which maintains phase integrity, requires low power, is adapted to provide full vector analysis, provides output frequencies of up to 62.5 MHz and provides fine sensitivity frequency resolution. The present invention includes a multi-channel means for transmitting and a multi-channel means for receiving, both in electrical communication with a software means for controlling. The means for controlling is programmed to provide a signal to a system under investigation which steps consecutively over a range of predetermined frequencies. The resulting received signal from the system provides complete time domain response information by executing a frequency transform of the magnitude and phase information acquired at each frequency step.
The topology of card transaction money flows
NASA Astrophysics Data System (ADS)
Zanin, Massimiliano; Papo, David; Romance, Miguel; Criado, Regino; Moral, Santiago
2016-11-01
Money flow models are essential tools to understand different economical phenomena, like saving propensities and wealth distributions. In spite of their importance, most of them are based on synthetic transaction networks with simple topologies, e.g. random or scale-free ones, as the characterisation of real networks is made difficult by the confidentiality and sensitivity of money transaction data. Here, we present an analysis of the topology created by real credit card transactions from one of the biggest world banks, and show how different distributions, e.g. number of transactions per card or amount, have nontrivial characteristics. We further describe a stochastic model to create transactions data sets, feeding from the obtained distributions, which will allow researchers to create more realistic money flow models.
NASA Astrophysics Data System (ADS)
Schmidt, Barnet Michael
An optimal performance monitoring metric for a hybrid free space optical and radio-frequency (RF) wireless network, the Outage Capacity Objective Function, is analytically developed and studied. Current and traditional methods of performance monitoring of both optical and RF wireless networks are centered on measurement of physical layer parameters, the most common being signal-to-noise ratio, error rate, Q factor, and eye diagrams, occasionally combined with link-layer measurements such as data throughput, retransmission rate, and/or lost packet rate. Network management systems frequently attempt to predict or forestall network failures by observing degradations of these parameters and to attempt mitigation (such as offloading traffic, increasing transmitter power, reducing the data rate, or combinations thereof) prior to the failure. These methods are limited by the frequent low sensitivity of the physical layer parameters to the atmospheric optical conditions (measured by optical signal-to-noise ratio) and the radio frequency fading channel conditions (measured by signal-to-interference ratio). As a result of low sensitivity, measurements of this type frequently are unable to predict impending failures sufficiently in advance for the network management system to take corrective action prior to the failure. We derive and apply an optimal measure of hybrid network performance based on the outage capacity of the hybrid optical and RF channel, the outage capacity objective function. The objective function provides high sensitivity and reliable failure prediction, and considers both the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The radio frequency segment analysis considers the three most common RF channel fading statistics: Rayleigh, Ricean, and Nakagami-m. The novel application of information theory to the underlying physics of the gamma-gamma optical channel and radio fading channels in determining the joint hybrid channel outage capacity provides the best performance estimate under any given set of operating conditions. It is shown that, unlike traditional physical layer performance monitoring techniques, the objective function based upon the outage capacity of the hybrid channel at any combination of OSNR and SIR, is able to predict channel degradation and failure well in advance of the actual outage. An outage in the information-theoretic definition occurs when the offered load exceeds the outage capacity under the current conditions of OSNR and SIR. The optical channel is operated at the "long" mid-infrared wavelength of 10000 nm. which provides improved resistance to scattering compared to shorter wavelengths such as 1550 nm.
Neural networks supporting switching, hypothesis testing, and rule application
Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S.; Seger, Carol A.
2015-01-01
We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example “choose the blue letter.” Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. PMID:26197092
Stetz, Gabrielle; Verkhivker, Gennady M
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones.
Neural networks supporting switching, hypothesis testing, and rule application.
Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S; Seger, Carol A
2015-10-01
We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example "choose the blue letter". Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stetz, Gabrielle; Verkhivker, Gennady M.
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones. PMID:26619280
Hu, Weiming; Fan, Yabo; Xing, Junliang; Sun, Liang; Cai, Zhaoquan; Maybank, Stephen
2018-09-01
We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural network and load-balanced locality-sensitive hashing (LSH) indexing. We propose a deep constrained siamese hash coding neural network combined with deep feature learning. Our neural network is able to extract effective features for near duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image detection. Extensive experiments on three benchmark data sets demonstrate the effectiveness of our deep siamese hash encoding network and load-balanced LSH.
Low-sensitivity, frequency-selective amplifier circuits for hybrid and bipolar fabrication.
NASA Technical Reports Server (NTRS)
Pi, C.; Dunn, W. R., Jr.
1972-01-01
A network is described which is suitable for realizing a low-sensitivity high-Q second-order frequency-selective amplifier for high-frequency operation. Circuits are obtained from this network which are well suited for realizing monolithic integrated circuits and which do not require any process steps more critical than those used for conventional monolithic operational and video amplifiers. A single chip version using compatible thin-film techniques for the frequency determination elements is then feasible. Center frequency and bandwidth can be set independently by trimming two resistors. The frequency selective circuits have a low sensitivity to the process variables, and the sensitivity of the center frequency and bandwidth to changes in temperature is very low.
In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems
NASA Astrophysics Data System (ADS)
Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Klem, John F.; Peake, Gregory M.
2006-02-01
Optical time-domain reflectometry (OTDR) is an effective technique for locating faults in fiber communication links. The fact that most OTDR measurements are performed manually is a significant drawback, because it makes them too costly for use in many short-distance networks and too slow for use in military avionic platforms. Here we describe and demonstrate an automated, low-cost, real-time approach to fault monitoring that can be achieved by integrating OTDR functionality directly into VCSEL-based transceivers. This built-in test capability is straightforward to implement and relevant to both multimode and single mode networks. In-situ OTDR uses the transmitter VCSEL already present in data transceivers. Fault monitoring is performed by emitting a brief optical pulse into the fiber and then turning the VCSEL off. If a fault exists, a portion of the optical pulse returns to the transceiver after a time equal to the round-trip delay through the fiber. In multimode OTDR, the signal is detected by an integrated photodetector, while in single mode OTDR the VCSEL itself can be used as a detector. Modified driver electronics perform the measurement and analysis. We demonstrate that VCSEL-based OTDR has sufficient sensitivity to determine the location of most faults commonly seen in short-haul networks (i.e., the Fresnel reflections from improperly terminated fibers and scattering from raggedly-broken fibers). Results are described for single mode and multimode experiments, at both 850 nm and 1.3 μm. We discuss the resolution and sensitivity that have been achieved, as well as expected limitations for this novel approach to network monitoring.
A multi-period distribution network design model under demand uncertainty
NASA Astrophysics Data System (ADS)
Tabrizi, Babak H.; Razmi, Jafar
2013-05-01
Supply chain management is taken into account as an inseparable component in satisfying customers' requirements. This paper deals with the distribution network design (DND) problem which is a critical issue in achieving supply chain accomplishments. A capable DND can guarantee the success of the entire network performance. However, there are many factors that can cause fluctuations in input data determining market treatment, with respect to short-term planning, on the one hand. On the other hand, network performance may be threatened by the changes that take place within practicing periods, with respect to long-term planning. Thus, in order to bring both kinds of changes under control, we considered a new multi-period, multi-commodity, multi-source DND problem in circumstances where the network encounters uncertain demands. The fuzzy logic is applied here as an efficient tool for controlling the potential customers' demand risk. The defuzzifying framework leads the practitioners and decision-makers to interact with the solution procedure continuously. The fuzzy model is then validated by a sensitivity analysis test, and a typical problem is solved in order to illustrate the implementation steps. Finally, the formulation is tested by some different-sized problems to show its total performance.
Sensitive Topics, Missing Data, and Refusal in Social Network Studies: An Ethical Examination.
Ellison, Erin Rose; Langhout, Regina Day
2017-12-01
We describe our ethics-driven process of addressing missing data within a social network study about accountability for racism, classism, sexism, heterosexism, cis-sexism, ableism, and other forms of oppression among social justice union organizers. During data collection, some would-be participants did not return emails and others explicitly refused to engage in the research. All refusals came from women of color. We faced an ethical dilemma: Should we continue to seek participation from those who had not yet responded, with the hopes of recruiting more women of color from within the network so their perspectives would not be tokenized? Or, should we stop asking those who had been contacted multiple times, which would compromise the social network data and analysis? We delineate ways in which current discussions of the ethics of social network studies fell short, given our framework and our community psychology (CP) values. We outline literature that was helpful in thinking through this challenge; we looked outside of CP to the decolonization literature on refusal. Lessons learned include listening for the possible meanings of refusals and considering the level of engagement and the labor required of participants when designing research studies. © Society for Community Research and Action 2017.
Li, Yao; Dwivedi, Gaurav; Huang, Wen; Yi, Yingfei
2012-01-01
There is an evolutionary advantage in having multiple components with overlapping functionality (i.e degeneracy) in organisms. While theoretical considerations of degeneracy have been well established in neural networks using information theory, the same concepts have not been developed for differential systems, which form the basis of many biochemical reaction network descriptions in systems biology. Here we establish mathematical definitions of degeneracy, complexity and robustness that allow for the quantification of these properties in a system. By exciting a dynamical system with noise, the mutual information associated with a selected observable output and the interacting subspaces of input components can be used to define both complexity and degeneracy. The calculation of degeneracy in a biological network is a useful metric for evaluating features such as the sensitivity of a biological network to environmental evolutionary pressure. Using a two-receptor signal transduction network, we find that redundant components will not yield high degeneracy whereas compensatory mechanisms established by pathway crosstalk will. This form of analysis permits interrogation of large-scale differential systems for non-identical, functionally equivalent features that have evolved to maintain homeostasis during disruption of individual components. PMID:22619750
Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.
Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim
2014-10-01
To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network
Qin, Tingting; Matmati, Nabil; Tsoi, Lam C.; Mohanty, Bidyut K.; Gao, Nan; Tang, Jijun; Lawson, Andrew B.; Hannun, Yusuf A.; Zheng, W. Jim
2014-01-01
To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes’ Ontology Fingerprints—a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms’ corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. PMID:25063300
Spector, Logan G; Menk, Jeremiah S; Vinocur, Jeffrey M; Oster, Matthew E; Harvey, Brian A; St Louis, James D; Moller, James; Kochilas, Lazaros K
2016-08-09
The long-term outcomes of patients undergoing interventions for congenital heart disease (CHD) remain largely unknown. We linked the Pediatric Cardiac Care Consortium (PCCC) with the National Death Index (NDI) and the United Network for Organ Sharing Dataset (UNOS) registries to study mortality and transplant occurring up to 32 years postintervention. The objective of the current analysis was to determine the sensitivity of this linkage in identifying patients who are known to have died or undergone heart transplant. We used direct identifiers from 59 324 subjects registered in the PCCC between 1982 and 2003 to test for completeness of case ascertainment of subjects with known vital and heart transplant status by linkage with the NDI and UNOS registries. Of the 4612 in-hospital deaths, 3873 were identified by the NDI as "true" matches for a sensitivity of 84.0% (95% CI, 82.9-85.0). There was no difference in sensitivity across 25 congenital cardiovascular conditions after adjustment for age, sex, race, presence of first name, death year, and residence at death. Of 455 known heart transplants in the PCCC, there were 408 matches in the UNOS registry, for a sensitivity of 89.7% (95% CI, 86.9-92.3). An additional 4851 deaths and 363 transplants that occurred outside the PCCC were identified through 2014. The linkage of the PCCC with the NDI and UNOS national registries is feasible with a satisfactory sensitivity. This linkage provides a conservative estimate of the long-term death and heart transplant events in this cohort. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Hirota, Morihiko; Ashikaga, Takao; Kouzuki, Hirokazu
2018-04-01
It is important to predict the potential of cosmetic ingredients to cause skin sensitization, and in accordance with the European Union cosmetic directive for the replacement of animal tests, several in vitro tests based on the adverse outcome pathway have been developed for hazard identification, such as the direct peptide reactivity assay, KeratinoSens™ and the human cell line activation test. Here, we describe the development of an artificial neural network (ANN) prediction model for skin sensitization risk assessment based on the integrated testing strategy concept, using direct peptide reactivity assay, KeratinoSens™, human cell line activation test and an in silico or structure alert parameter. We first investigated the relationship between published murine local lymph node assay EC3 values, which represent skin sensitization potency, and in vitro test results using a panel of about 134 chemicals for which all the required data were available. Predictions based on ANN analysis using combinations of parameters from all three in vitro tests showed a good correlation with local lymph node assay EC3 values. However, when the ANN model was applied to a testing set of 28 chemicals that had not been included in the training set, predicted EC3s were overestimated for some chemicals. Incorporation of an additional in silico or structure alert descriptor (obtained with TIMES-M or Toxtree software) in the ANN model improved the results. Our findings suggest that the ANN model based on the integrated testing strategy concept could be useful for evaluating the skin sensitization potential. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sturtevant, C. S.; Ruddell, B. L.; Knox, S. H.; Verfaillie, J. G.; Matthes, J. H.; Oikawa, P. Y.; Baldocchi, D. D.
2014-12-01
Restoring agricultural areas to wetlands in the Sacramento-San Joaquin River Delta of California can help reverse subsidence and reduce greenhouse gas (GHG) emissions. Predicting outcomes and developing best practices of wetland management therefore requires a robust understanding of the sensitivity of GHG exchange in these ecosystems to factors such as management and meteorology. However, wetlands can exhibit complex, overlapping, and asynchronous couplings between site characteristics, environmental drivers and GHG exchange. In this research we demonstrate the use of wavelets and information theory (process networks) as sophisticated tools to disentangle and characterize ecosystem couplings to CO2 and CH4 exchange (measured by eddy covariance) in two restored Delta wetlands. Using wavelets we isolated processes acting at different time scales, then used process networks to determine the direction, strength, and lag properties of ecosystem couplings. We found that despite differences in age, architecture and management, CO2 exchange at both wetlands was most sensitive to similar meteorological factors such as radiation and temperature up to a time scale of several days. At the monthly timescale, however, the effect of a more variable water table management in one wetland became dominant, revealing a reduction in net CO2 uptake during long term water table drawdowns. The analysis of CH4 exchange in this wetland revealed a more sensitive and complex coupling with water table. CH4 exchange was sensitive to relatively small, multi-day shifts in water table and displayed a lagged response to larger, longer shifts. With these methods we were able to disentangle the effects of management from meteorology and better understand the sensitivities of GHG exchange. Our results provide important insights for modeling efforts and management practices.
Feature-based alert correlation in security systems using self organizing maps
NASA Astrophysics Data System (ADS)
Kumar, Munesh; Siddique, Shoaib; Noor, Humera
2009-04-01
The security of the networks has been an important concern for any organization. This is especially important for the defense sector as to get unauthorized access to the sensitive information of an organization has been the prime desire for cyber criminals. Many network security techniques like Firewall, VPN Concentrator etc. are deployed at the perimeter of network to deal with attack(s) that occur(s) from exterior of network. But any vulnerability that causes to penetrate the network's perimeter of defense, can exploit the entire network. To deal with such vulnerabilities a system has been evolved with the purpose of generating an alert for any malicious activity triggered against the network and its resources, termed as Intrusion Detection System (IDS). The traditional IDS have still some deficiencies like generating large number of alerts, containing both true and false one etc. By automatically classifying (correlating) various alerts, the high-level analysis of the security status of network can be identified and the job of network security administrator becomes much easier. In this paper we propose to utilize Self Organizing Maps (SOM); an Artificial Neural Network for correlating large amount of logged intrusion alerts based on generic features such as Source/Destination IP Addresses, Port No, Signature ID etc. The different ways in which alerts can be correlated by Artificial Intelligence techniques are also discussed. . We've shown that the strategy described in the paper improves the efficiency of IDS by better correlating the alerts, leading to reduced false positives and increased competence of network administrator.
Saxena, Pratik; Bojar, Daniel; Zulewski, Henryk; Fussenegger, Martin
2017-10-10
We previously reported novel technology to differentiate induced pluripotent stem cells (IPSCs) into glucose-sensitive insulin-secreting beta-like cells by engineering a synthetic lineage-control network regulated by the licensed food additive vanillic acid. This genetic network was able to program intricate expression dynamics of the key transcription factors Ngn3 (neurogenin 3, OFF-ON-OFF), Pdx1 (pancreatic and duodenal homeobox 1, ON-OFF-ON) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A, OFF-ON) to guide the differentiation of IPSC-derived pancreatic progenitor cells to beta-like cells. In the present study, we show for the first time that this network can also program the expression dynamics of Ngn3, Pdx1 and MafA in human embryonic stem cell (hESC)-derived pancreatic progenitor cells and drive differentiation of these cells into glucose-sensitive insulin-secreting beta-like cells. Therefore, synthetic lineage-control networks appear to be a robust methodology for differentiating pluripotent stem cells into somatic cell types for basic research and regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.
Teare, Philip; Fishman, Michael; Benzaquen, Oshra; Toledano, Eyal; Elnekave, Eldad
2017-08-01
Breast cancer is the most prevalent malignancy in the US and the third highest cause of cancer-related mortality worldwide. Regular mammography screening has been attributed with doubling the rate of early cancer detection over the past three decades, yet estimates of mammographic accuracy in the hands of experienced radiologists remain suboptimal with sensitivity ranging from 62 to 87% and specificity from 75 to 91%. Advances in machine learning (ML) in recent years have demonstrated capabilities of image analysis which often surpass those of human observers. Here we present two novel techniques to address inherent challenges in the application of ML to the domain of mammography. We describe the use of genetic search of image enhancement methods, leading us to the use of a novel form of false color enhancement through contrast limited adaptive histogram equalization (CLAHE), as a method to optimize mammographic feature representation. We also utilize dual deep convolutional neural networks at different scales, for classification of full mammogram images and derivative patches combined with a random forest gating network as a novel architectural solution capable of discerning malignancy with a specificity of 0.91 and a specificity of 0.80. To our knowledge, this represents the first automatic stand-alone mammography malignancy detection algorithm with sensitivity and specificity performance similar to that of expert radiologists.
Quantitative evaluation of simulated functional brain networks in graph theoretical analysis.
Lee, Won Hee; Bullmore, Ed; Frangou, Sophia
2017-02-01
There is increasing interest in the potential of whole-brain computational models to provide mechanistic insights into resting-state brain networks. It is therefore important to determine the degree to which computational models reproduce the topological features of empirical functional brain networks. We used empirical connectivity data derived from diffusion spectrum and resting-state functional magnetic resonance imaging data from healthy individuals. Empirical and simulated functional networks, constrained by structural connectivity, were defined based on 66 brain anatomical regions (nodes). Simulated functional data were generated using the Kuramoto model in which each anatomical region acts as a phase oscillator. Network topology was studied using graph theory in the empirical and simulated data. The difference (relative error) between graph theory measures derived from empirical and simulated data was then estimated. We found that simulated data can be used with confidence to model graph measures of global network organization at different dynamic states and highlight the sensitive dependence of the solutions obtained in simulated data on the specified connection densities. This study provides a method for the quantitative evaluation and external validation of graph theory metrics derived from simulated data that can be used to inform future study designs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Structural Efficiency of Percolated Landscapes in Flow Networks
Serrano, M. Ángeles; De Los Rios, Paolo
2008-01-01
The large-scale structure of complex systems is intimately related to their functionality and evolution. In particular, global transport processes in flow networks rely on the presence of directed pathways from input to output nodes and edges, which organize in macroscopic connected components. However, the precise relation between such structures and functional or evolutionary aspects remains to be understood. Here, we investigate which are the constraints that the global structure of directed networks imposes on transport phenomena. We define quantitatively under minimal assumptions the structural efficiency of networks to determine how robust communication between the core and the peripheral components through interface edges could be. Furthermore, we assess that optimal topologies in terms of access to the core should look like “hairy balls” so to minimize bottleneck effects and the sensitivity to failures. We illustrate our investigation with the analysis of three real networks with very different purposes and shaped by very different dynamics and time-scales–the Internet customer-provider set of relationships, the nervous system of the worm Caenorhabditis elegans, and the metabolism of the bacterium Escherichia coli. Our findings prove that different global connectivity structures result in different levels of structural efficiency. In particular, biological networks seem to be close to the optimal layout. PMID:18985157
Intelligent route surveillance
NASA Astrophysics Data System (ADS)
Schoemaker, Robin; Sandbrink, Rody; van Voorthuijsen, Graeme
2009-05-01
Intelligence on abnormal and suspicious behaviour along roads in operational domains is extremely valuable for countering the IED (Improvised Explosive Device) threat. Local sensor networks at strategic spots can gather data for continuous monitoring of daily vehicle activity. Unattended intelligent ground sensor networks use simple sensing nodes, e.g. seismic, magnetic, radar, or acoustic, or combinations of these in one housing. The nodes deliver rudimentary data at any time to be processed with software that filters out the required information. At TNO (Netherlands Organisation for Applied Scientific Research) research has started on how to equip a sensor network with data analysis software to determine whether behaviour is suspicious or not. Furthermore, the nodes should be expendable, if necessary, and be small in size such that they are hard to detect by adversaries. The network should be self-configuring and self-sustaining and should be reliable, efficient, and effective during operational tasks - especially route surveillance - as well as robust in time and space. If data from these networks are combined with data from other remote sensing devices (e.g. UAVs (Unmanned Aerial Vehicles)/aerostats), an even more accurate assessment of the tactical situation is possible. This paper shall focus on the concepts of operation towards a working intelligent route surveillance (IRS) research demonstrator network for monitoring suspicious behaviour in IED sensitive domains.
Analysis and classification of normal and pathological skin tissue spectra using neural networks
NASA Astrophysics Data System (ADS)
Bruch, Reinhard F.; Afanasyeva, Natalia I.; Gummuluri, Satyashree
2000-07-01
An innovative spectroscopic diagnostic method has been developed for investigation of different regions of normal human skin tissue, as well as cancerous and precancerous conditions in vivo, ex vivo and in vitro. This new method is a combination of fiber-optical evanescent wave Fourier Transform infrared (FEW-FTIR) spectroscopy and fiber optic techniques using low-loss, highly flexible and nontoxic fiber optical sensors. The FEW-FTIR technique is nondestructive and very sensitive to changes of vibrational spectra in the IR region without heating and staining and thus altering the skin tissue. A special software package was developed for the treatment of the spectra. This package includes a database, programs for data preparation and presentation, and neural networks for classification of disease states. An unsupervised neural competitive learning neural network is implemented for skin cancer diagnosis. In this study, we have investigated and classified skin tissue in the range of 1400 to 1800 cm-1 using these programs. The results of our surface analysis of skin tissue are discussed in terms of molecular structural similarities and differences as well as in terms of different skin states represented by eleven different skin spectra classes.
Scott-Boyer, Marie Pier; Lacroix, Sébastien; Scotti, Marco; Morine, Melissa J.; Kaput, Jim; Priami, Corrado
2016-01-01
The involvement of vitamins and other micronutrients in intermediary metabolism was elucidated in the mid 1900’s at the level of individual biochemical reactions. Biochemical pathways remain the foundational knowledgebase for understanding how micronutrient adequacy modulates health in all life stages. Current daily recommended intakes were usually established on the basis of the association of a single nutrient to a single, most sensitive adverse effect and thus neglect interdependent and pleiotropic effects of micronutrients on biological systems. Hence, the understanding of the impact of overt or sub-clinical nutrient deficiencies on biological processes remains incomplete. Developing a more complete view of the role of micronutrients and their metabolic products in protein-mediated reactions is of importance. We thus integrated and represented cofactor-protein interaction data from multiple and diverse sources into a multi-layer network representation that links cofactors, cofactor-interacting proteins, biological processes, and diseases. Network representation of this information is a key feature of the present analysis and enables the integration of data from individual biochemical reactions and protein-protein interactions into a systems view, which may guide strategies for targeted nutritional interventions aimed at improving health and preventing diseases. PMID:26777674
Seat Capacity Selection for an Advanced Short-Haul Aircraft Design
NASA Technical Reports Server (NTRS)
Marien, Ty V.
2016-01-01
A study was performed to determine the target seat capacity for a proposed advanced short-haul aircraft concept projected to enter the fleet by 2030. This analysis projected the potential demand in the U.S. for a short-haul aircraft using a transportation theory approach, rather than selecting a target seat capacity based on recent industry trends or current market demand. A transportation systems model was used to create a point-to-point network of short-haul trips and then predict the number of annual origin-destination trips on this network. Aircraft of varying seat capacities were used to meet the demand on this network, assuming a single aircraft type for the entire short-haul fleet. For each aircraft size, the ticket revenue and operational costs were used to calculate a total market profitability metric for all feasible flights. The different aircraft sizes were compared, based on this market profitability metric and also the total number of annual round trips and markets served. Sensitivity studies were also performed to determine the effect of changing the aircraft cruise speed and maximum trip length. Using this analysis, the advanced short-haul aircraft design team was able to select a target seat capacity for their design.
Tunable thermo-responsive hydrogels: synthesis, structural analysis and drug release studies.
Cirillo, Giuseppe; Spataro, Tania; Curcio, Manuela; Spizzirri, U Gianfranco; Nicoletta, Fiore Pasquale; Picci, Nevio; Iemma, Francesca
2015-03-01
Thermo-responsive hydrogel films, synthesized by UV-initiated radical polymerization, are proposed as delivery devices for non-steroidal anti-inflammatory drugs (Diclofenac sodium and Naproxen). N-isopropylacrylamide and N,N'-ethylenebisacrylamide were chosen as thermo-sensitive monomer and crosslinker, respectively. Infrared spectroscopy was used to assess the incorporation of monomers into the network, and the network density of hydrogel films was found to strictly depend on both feed composition and film thickness. Calorimetric analyses showed negative thermo-responsive behaviour with shrinking/swelling transition values in the range 32.8-36.1°C. Equilibrium swelling studies around the LCST allowed the correlation between the structural changes and the temperature variations. The mesh size, indeed, rapidly changed from a collapsed to a swollen state, with beneficial effects in applications such as size-selective permeation or controlled drug delivery, while the crosslinking degree, the film thickness, and the loading method deeply influenced the drug release profiles at 25 and 40°C. The analysis of both 3D-network structure, release kinetics and diffusional constraints at different temperatures was evaluated by mathematical modelling. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen
2018-05-01
To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.
Early driver fatigue detection from electroencephalography signals using artificial neural networks.
King, L M; Nguyen, H T; Lal, S K L
2006-01-01
This paper describes a driver fatigue detection system using an artificial neural network (ANN). Using electroencephalogram (EEG) data sampled from 20 professional truck drivers and 35 non professional drivers, the time domain data are processed into alpha, beta, delta and theta bands and then presented to the neural network to detect the onset of driver fatigue. The neural network uses a training optimization technique called the magnified gradient function (MGF). This technique reduces the time required for training by modifying the standard back propagation (SBP) algorithm. The MGF is shown to classify professional driver fatigue with 81.49% accuracy (80.53% sensitivity, 82.44% specificity) and non-professional driver fatigue with 83.06% accuracy (84.04% sensitivity and 82.08% specificity).
1994-09-01
as Copernicus brought about a revolutionary paradigm shift in astronomy , the Copernicus Architecture was so named because it represents a...34 ........................................ 7 3. The Navy’s Copernicus Architecture .......................................... 8 B . SY ST E M S...evolution of JMCIS are DoD’s Corporate Information Management (CIM), The Joint Staffs "C41 for the Warrior", and the Navy’s Copernicus architecture programs
Darda, Kohinoor M; Butler, Emily E; Ramsey, Richard
2018-06-01
Humans show an involuntary tendency to copy other people's actions. Although automatic imitation builds rapport and affiliation between individuals, we do not copy actions indiscriminately. Instead, copying behaviors are guided by a selection mechanism, which inhibits some actions and prioritizes others. To date, the neural underpinnings of the inhibition of automatic imitation and differences between the sexes in imitation control are not well understood. Previous studies involved small sample sizes and low statistical power, which produced mixed findings regarding the involvement of domain-general and domain-specific neural architectures. Here, we used data from Experiment 1 ( N = 28) to perform a power analysis to determine the sample size required for Experiment 2 ( N = 50; 80% power). Using independent functional localizers and an analysis pipeline that bolsters sensitivity, during imitation control we show clear engagement of the multiple-demand network (domain-general), but no sensitivity in the theory-of-mind network (domain-specific). Weaker effects were observed with regard to sex differences, suggesting that there are more similarities than differences between the sexes in terms of the neural systems engaged during imitation control. In summary, neurocognitive models of imitation require revision to reflect that the inhibition of imitation relies to a greater extent on a domain-general selection system rather than a domain-specific system that supports social cognition.
Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix
Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.
2017-01-01
Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix. PMID:28772465
Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.
Zhang, Pengwei; Hu, Liming; Meegoda, Jay N
2017-01-25
Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.
ERIC Educational Resources Information Center
Grier-Reed, Tabitha
2013-01-01
Informal support networks as opposed to formal mental health counseling may represent a culture-specific, indigenous style of coping for Black college students. Using the African American Student Network (or as students refer to it AFAM), this article comments on the potential of an informal networking group as a culturally sensitive therapeutic…
Coverage dependent molecular assembly of anthraquinone on Au(111)
NASA Astrophysics Data System (ADS)
DeLoach, Andrew S.; Conrad, Brad R.; Einstein, T. L.; Dougherty, Daniel B.
2017-11-01
A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.
Coverage dependent molecular assembly of anthraquinone on Au(111).
DeLoach, Andrew S; Conrad, Brad R; Einstein, T L; Dougherty, Daniel B
2017-11-14
A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.
Ghafoorian, Mohsen; Karssemeijer, Nico; Heskes, Tom; van Uden, Inge W M; Sanchez, Clara I; Litjens, Geert; de Leeuw, Frank-Erik; van Ginneken, Bram; Marchiori, Elena; Platel, Bram
2017-07-11
The anatomical location of imaging features is of crucial importance for accurate diagnosis in many medical tasks. Convolutional neural networks (CNN) have had huge successes in computer vision, but they lack the natural ability to incorporate the anatomical location in their decision making process, hindering success in some medical image analysis tasks. In this paper, to integrate the anatomical location information into the network, we propose several deep CNN architectures that consider multi-scale patches or take explicit location features while training. We apply and compare the proposed architectures for segmentation of white matter hyperintensities in brain MR images on a large dataset. As a result, we observe that the CNNs that incorporate location information substantially outperform a conventional segmentation method with handcrafted features as well as CNNs that do not integrate location information. On a test set of 50 scans, the best configuration of our networks obtained a Dice score of 0.792, compared to 0.805 for an independent human observer. Performance levels of the machine and the independent human observer were not statistically significantly different (p-value = 0.06).
NASA Astrophysics Data System (ADS)
Standvoss, K.; Crijns, T.; Goerke, L.; Janssen, D.; Kern, S.; van Niedek, T.; van Vugt, J.; Alfonso Burgos, N.; Gerritse, E. J.; Mol, J.; van de Vooren, D.; Ghafoorian, M.; van den Heuvel, T. L. A.; Manniesing, R.
2018-02-01
The number and location of cerebral microbleeds (CMBs) in patients with traumatic brain injury (TBI) is important to determine the severity of trauma and may hold prognostic value for patient outcome. However, manual assessment is subjective and time-consuming due to the resemblance of CMBs to blood vessels, the possible presence of imaging artifacts, and the typical heterogeneity of trauma imaging data. In this work, we present a computer aided detection system based on 3D convolutional neural networks for detecting CMBs in 3D susceptibility weighted images. Network architectures with varying depth were evaluated. Data augmentation techniques were employed to improve the networks' generalization ability and selective sampling was implemented to handle class imbalance. The predictions of the models were clustered using a connected component analysis. The system was trained on ten annotated scans and evaluated on an independent test set of eight scans. Despite this limited data set, the system reached a sensitivity of 0.87 at 16.75 false positives per scan (2.5 false positives per CMB), outperforming related work on CMB detection in TBI patients.
An investigation of fMRI time series stationarity during motor sequence learning foot tapping tasks.
Muhei-aldin, Othman; VanSwearingen, Jessie; Karim, Helmet; Huppert, Theodore; Sparto, Patrick J; Erickson, Kirk I; Sejdić, Ervin
2014-04-30
Understanding complex brain networks using functional magnetic resonance imaging (fMRI) is of great interest to clinical and scientific communities. To utilize advanced analysis methods such as graph theory for these investigations, the stationarity of fMRI time series needs to be understood as it has important implications on the choice of appropriate approaches for the analysis of complex brain networks. In this paper, we investigated the stationarity of fMRI time series acquired from twelve healthy participants while they performed a motor (foot tapping sequence) learning task. Since prior studies have documented that learning is associated with systematic changes in brain activation, a sequence learning task is an optimal paradigm to assess the degree of non-stationarity in fMRI time-series in clinically relevant brain areas. We predicted that brain regions involved in a "learning network" would demonstrate non-stationarity and may violate assumptions associated with some advanced analysis approaches. Six blocks of learning, and six control blocks of a foot tapping sequence were performed in a fixed order. The reverse arrangement test was utilized to investigate the time series stationarity. Our analysis showed some non-stationary signals with a time varying first moment as a major source of non-stationarity. We also demonstrated a decreased number of non-stationarities in the third block as a result of priming and repetition. Most of the current literature does not examine stationarity prior to processing. The implication of our findings is that future investigations analyzing complex brain networks should utilize approaches robust to non-stationarities, as graph-theoretical approaches can be sensitive to non-stationarities present in data. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shamkhali Chenar, S.; Deng, Z.
2017-12-01
Pathogenic viruses pose a significant public health threat and economic losses to shellfish industry in the coastal environment. Norovirus is a contagious virus and the leading cause of epidemic gastroenteritis following consumption of oysters harvested from sewage-contaminated waters. While it is challenging to detect noroviruses in coastal waters due to the lack of sensitive and routine diagnostic methods, machine learning techniques are allowing us to prevent or at least reduce the risks by developing effective predictive models. This study attempts to develop an algorithm between historical norovirus outbreak reports and environmental parameters including water temperature, solar radiation, water level, salinity, precipitation, and wind. For this purpose, the Random Forests statistical technique was utilized to select relevant environmental parameters and their various combinations with different time lags controlling the virus distribution in oyster harvesting areas along the Louisiana Coast. An Artificial Neural Networks (ANN) approach was then presented to predict the outbreaks using a final set of input variables. Finally, a sensitivity analysis was conducted to evaluate relative importance and contribution of the input variables to the model output. Findings demonstrated that the developed model was capable of reproducing historical oyster norovirus outbreaks along the Louisiana Coast with the overall accuracy of than 99.83%, demonstrating the efficacy of the model. Moreover, the increase in water temperature, solar radiation, water level, and salinity, and the decrease in wind and rainfall are associated with the reduction in the model-predicted risk of norovirus outbreak according to sensitivity analysis results. In conclusion, the presented machine learning approach provided reliable tools for predicting potential norovirus outbreaks and could be used for early detection of possible outbreaks and reduce the risk of norovirus to public health and the seafood industry.
Real-time Geomagnetic Data from a Raspberry Pi Magnetometer Network in the United Kingdom
NASA Astrophysics Data System (ADS)
Case, N.; Beggan, C.; Marple, S. R.
2017-12-01
In 2014, BGS and the University of Lancaster won an STFC Public Engagement grant to build and deploy 10 Raspberry Pi magnetometers to secondary schools across the UK to enable citizen science. The system uses a Raspberry Pi computer as a logging and data transfer device, connected to a set of three orthogonal miniature fluxgate magnetometers. The system has a nominal sensitivity of around 1 nanoTesla (nT), in each component direction (North, East and Down). This is around twenty times less sensitive than a current scientific-level instrument, but given its relatively low-cost, at about £250 ($325) per unit, this is an excellent price-to-performance ratio given we could not improve the sensitivity unless we spent a lot more money. The magnetic data are sampled at a 5 second cadence and sent to the AuroraWatch website at Lancaster University every 2 minutes. The data are freely available to view and download. The primary aim of the project is to encourage students from 14-18 years old to look at how sensors can be used to collect geophysical data and integrate it together to give a wider understanding of physical phenomena. A second aim is to provide useful data on the spatial variation of the magnetic field for analysis of geomagnetic storms, alongside data from the BGS observatory and University of Lancaster's SAMNET variometer network. We show results from the build, testing and running of the sensors including some recent storms and we reflect on our experiences in engaging schools and the general public with information about the magnetic field. The information to build the system and logging and analysis software for the Raspberry Pi is all freely available, allowing those interested to participate in the project as citizen scientists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Anthony J.; Ivanov, Ilia N.; Muckley, Eric S.
In this study, carbon nanotube (CNT) networks composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O 2 and H 2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O 2 and H 2O, whereas resistance of s-SWNT networks decreases. We find that UV irradiation increases the sensitivity of CNT networks to O 2 and H 2O by more than an order of magnitude. Under UV irradiation,more » the resistance of metallic nanotube networks decreases in the presence of O 2 and H 2O likely through the generation of free charge carriers. UV irradiation increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. Networks of s-SWNTs show evidence of delamination from the gold-plated QCM crystal, possibly due to preferential adsorption of O 2 and H 2O on gold.« less
Nelson, Anthony J.; Ivanov, Ilia N.; Muckley, Eric S.; ...
2016-06-01
In this study, carbon nanotube (CNT) networks composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O 2 and H 2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O 2 and H 2O, whereas resistance of s-SWNT networks decreases. We find that UV irradiation increases the sensitivity of CNT networks to O 2 and H 2O by more than an order of magnitude. Under UV irradiation,more » the resistance of metallic nanotube networks decreases in the presence of O 2 and H 2O likely through the generation of free charge carriers. UV irradiation increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. Networks of s-SWNTs show evidence of delamination from the gold-plated QCM crystal, possibly due to preferential adsorption of O 2 and H 2O on gold.« less
Dinkloh, A; Worm, M; Geier, J; Schnuch, A; Wollenberg, A
2015-06-01
Ingredients of leave-on cosmetics and body care products may sensitize. However, not every case of cosmetic intolerance is due to contact sensitization. To describe the frequency of contact sensitization due to cosmetics in a large clinic population, and a possible particular allergen pattern. Retrospective analysis of data from the Information Network of Departments of Dermatology, 2006-2011. Of 69 487 patients tested, 'cosmetics, creams, sunscreens' was the only suspected allergen source category in 10 124 patients (14.6%). A final diagnosis 'allergic contact dermatitis' was stated in 2658 of these patients (26.3%).Compared to a control group, there were significantly more reactions to fragrance mixes I and II, balsam of Peru, methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) and lanolin alcohols. No special pattern of fragrance sensitization could be identified. Among the preservatives, MI was by far the leading allergen, while sensitization to other widely used compounds like parabens or phenoxyethanol was rare. True allergic reactions to cosmetic ingredients are rarer than generally assumed. Limitation of exposure to MI in leave-on cosmetics and body care products is urgently needed. © 2014 European Academy of Dermatology and Venereology.
Hydrologic sensitivity of headwater catchments to climate and landscape variability
NASA Astrophysics Data System (ADS)
Kelleher, Christa; Wagener, Thorsten; McGlynn, Brian; Nippgen, Fabian; Jencso, Kelsey
2013-04-01
Headwater streams cumulatively represent an extensive portion of the United States stream network, yet remain largely unmonitored and unmapped. As such, we have limited understanding of how these systems will respond to change, knowledge that is important for preserving these unique ecosystems, the services they provide, and the biodiversity they support. We compare responses across five adjacent headwater catchments located in Tenderfoot Creek Experimental Forest in Montana, USA, to understand how local differences may affect the sensitivity of headwaters to change. We utilize global, variance-based sensitivity analysis to understand which aspects of the physical system (e.g., vegetation, topography, geology) control the variability in hydrologic behavior across these basins, and how this varies as a function of time (and therefore climate). Basin fluxes and storages, including evapotranspiration, snow water equivalent and melt, soil moisture and streamflow, are simulated using the Distributed Hydrology-Vegetation-Soil Model (DHSVM). Sensitivity analysis is applied to quantify the importance of different physical parameters to the spatial and temporal variability of different water balance components, allowing us to map similarities and differences in these controls through space and time. Our results show how catchment influences on fluxes vary across seasons (thus providing insight into transferability of knowledge in time), and how they vary across catchments with different physical characteristics (providing insight into transferability in space).
Rajaei, Mehri; Haghjoo, Mostafa S; Miyaneh, Eynollah Khanjari
2015-01-01
Maintaining privacy in network data publishing is a major challenge. This is because known characteristics of individuals can be used to extract new information about them. Recently, researchers have developed privacy methods based on k-anonymity and l-diversity to prevent re-identification or sensitive label disclosure through certain structural information. However, most of these studies have considered only structural information and have been developed for undirected networks. Furthermore, most existing approaches rely on generalization and node clustering so may entail significant information loss as all properties of all members of each group are generalized to the same value. In this paper, we introduce a framework for protecting sensitive attribute, degree (the number of connected entities), and relationships, as well as the presence of individuals in directed social network data whose nodes contain attributes. First, we define a privacy model that specifies privacy requirements for the above private information. Then, we introduce the technique of Ambiguity in Social Network data (ASN) based on anatomy, which specifies how to publish social network data. To employ ASN, individuals are partitioned into groups. Then, ASN publishes exact values of properties of individuals of each group with common group ID in several tables. The lossy join of those tables based on group ID injects uncertainty to reconstruct the original network. We also show how to measure different privacy requirements in ASN. Simulation results on real and synthetic datasets demonstrate that our framework, which protects from four types of private information disclosure, preserves data utility in tabular, topological and spectrum aspects of networks at a satisfactory level.
Rajaei, Mehri; Haghjoo, Mostafa S.; Miyaneh, Eynollah Khanjari
2015-01-01
Maintaining privacy in network data publishing is a major challenge. This is because known characteristics of individuals can be used to extract new information about them. Recently, researchers have developed privacy methods based on k-anonymity and l-diversity to prevent re-identification or sensitive label disclosure through certain structural information. However, most of these studies have considered only structural information and have been developed for undirected networks. Furthermore, most existing approaches rely on generalization and node clustering so may entail significant information loss as all properties of all members of each group are generalized to the same value. In this paper, we introduce a framework for protecting sensitive attribute, degree (the number of connected entities), and relationships, as well as the presence of individuals in directed social network data whose nodes contain attributes. First, we define a privacy model that specifies privacy requirements for the above private information. Then, we introduce the technique of Ambiguity in Social Network data (ASN) based on anatomy, which specifies how to publish social network data. To employ ASN, individuals are partitioned into groups. Then, ASN publishes exact values of properties of individuals of each group with common group ID in several tables. The lossy join of those tables based on group ID injects uncertainty to reconstruct the original network. We also show how to measure different privacy requirements in ASN. Simulation results on real and synthetic datasets demonstrate that our framework, which protects from four types of private information disclosure, preserves data utility in tabular, topological and spectrum aspects of networks at a satisfactory level. PMID:26110762
Redfield, Robert R; Scalea, Joseph R; Zens, Tiffany J; Mandelbrot, Didier A; Leverson, Glen; Kaufman, Dixon B; Djamali, Arjang
2016-10-01
We sought to determine whether the mode of sensitization in highly sensitized patients contributed to kidney allograft survival. An analysis of the United Network for Organ Sharing dataset involving all kidney transplants between 1997 and 2014 was undertaken. Highly sensitized adult kidney transplant recipients [panel reactive antibody (PRA) ≥98%] were compared with adult, primary non-sensitized and re-transplant recipients. Kaplan-Meier survival analyses were used to determine allograft survival rates. Cox proportional hazards regression analyses were conducted to determine the association of graft loss with key predictors. Fifty-three percent of highly sensitized patients transplanted were re-transplants. Pregnancy and transfusion were the only sensitizing event in 20 and 5%, respectively. The 10-year actuarial graft survival for highly sensitized recipients was 43.9% compared with 52.4% for non-sensitized patients, P < 0.001. The combination of being highly sensitized by either pregnancy or blood transfusion increased the risk of graft loss by 23% [hazard ratio (HR) 1.230, confidence interval (CI) 1.150-1.315, P < 0.001], and the combination of being highly sensitized from a prior transplant increased the risk of graft loss by 58.1% (HR 1.581, CI 1.473-1.698, P < 0.001). The mode of sensitization predicts graft survival in highly sensitized kidney transplant recipients (PRA ≥98%). Patients who are highly sensitized from re-transplants have inferior graft survival compared with patients who are highly sensitized from other modes of sensitization. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses
Nickerson, Lisa D.; Smith, Stephen M.; Öngür, Döst; Beckmann, Christian F.
2017-01-01
Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or “shape”) as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude effects, respectively, in resting state connectivity analyses. We illustrate these concepts using realistic simulated resting state FMRI data and in vivo data acquired in healthy subjects and patients with bipolar disorder and schizophrenia. PMID:28348512
The Role of Vitamin D in the Transcriptional Program of Human Pregnancy
Al-Garawi, Amal; Carey, Vincent J.; Chhabra, Divya; Morrow, Jarrett; Lasky-Su, Jessica; Qiu, Weiliang; Laranjo, Nancy; Litonjua, Augusto A.; Weiss, Scott T.
2016-01-01
Background Patterns of gene expression of human pregnancy are poorly understood. In a trial of vitamin D supplementation in pregnant women, peripheral blood transcriptomes were measured longitudinally on 30 women and used to characterize gene co-expression networks. Objective Studies suggest that increased maternal Vitamin D levels may reduce the risk of asthma in early life, yet the underlying mechanisms have not been examined. In this study, we used a network-based approach to examine changes in gene expression profiles during the course of normal pregnancy and evaluated their association with maternal Vitamin D levels. Design The VDAART study is a randomized clinical trial of vitamin D supplementation in pregnancy for reduction of pediatric asthma risk. The trial enrolled 881 women at 10–18 weeks of gestation. Longitudinal gene expression measures were obtained on thirty pregnant women, using RNA isolated from peripheral blood samples obtained in the first and third trimesters. Differentially expressed genes were identified using significance of analysis of microarrays (SAM), and clustered using a weighted gene co-expression network analysis (WGCNA). Gene-set enrichment was performed to identify major biological pathways. Results Comparison of transcriptional profiles between first and third trimesters of pregnancy identified 5839 significantly differentially expressed genes (FDR<0.05). Weighted gene co-expression network analysis clustered these transcripts into 14 co-expression modules of which two showed significant correlation with maternal vitamin D levels. Pathway analysis of these two modules revealed genes enriched in immune defense pathways and extracellular matrix reorganization as well as genes enriched in notch signaling and transcription factor networks. Conclusion Our data show that gene expression profiles of healthy pregnant women change during the course of pregnancy and suggest that maternal Vitamin D levels influence transcriptional profiles. These alterations of the maternal transcriptome may contribute to fetal immune imprinting and reduce allergic sensitization in early life. Trial Registration clinicaltrials.gov NCT00920621 PMID:27711190
Kniss-James, Ariel S; Rivet, Catherine A; Chingozha, Loice; Lu, Hang; Kemp, Melissa L
2017-03-01
Adaptive immune cells, such as T cells, integrate information from their extracellular environment through complex signaling networks with exquisite sensitivity in order to direct decisions on proliferation, apoptosis, and cytokine production. These signaling networks are reliant on the interplay between finely tuned secondary messengers, such as Ca 2+ and H 2 O 2 . Frequency response analysis, originally developed in control engineering, is a tool used for discerning complex networks. This analytical technique has been shown to be useful for understanding biological systems and facilitates identification of the dominant behaviour of the system. We probed intracellular Ca 2+ dynamics in the frequency domain to investigate the complex relationship between two second messenger signaling molecules, H 2 O 2 and Ca 2+ , during T cell activation with single cell resolution. Single-cell analysis provides a unique platform for interrogating and monitoring cellular processes of interest. We utilized a previously developed microfluidic device to monitor individual T cells through time while applying a dynamic input to reveal a natural frequency of the system at approximately 2.78 mHz stimulation. Although our network was much larger with more unknown connections than previous applications, we are able to derive features from our data, observe forced oscillations associated with specific amplitudes and frequencies of stimuli, and arrive at conclusions about potential transfer function fits as well as the underlying population dynamics.
The Core Symptoms of Bulimia Nervosa, Anxiety, and Depression: A Network Analysis
Levinson, Cheri A.; Zerwas, Stephanie; Calebs, Benjamin; Forbush, Kelsie; Kordy, Hans; Watson, Hunna; Hofmeier, Sara; Levine, Michele; Crosby, Ross D.; Peat, Christine; Runfola, Cristin D.; Zimmer, Benjamin; Moesner, Markus; Marcus, Marsha D.; Bulik, Cynthia M.
2017-01-01
Bulimia nervosa (BN) is characterized by symptoms of binge eating and compensatory behavior, and overevaluation of weight and shape, which often co-occur with symptoms of anxiety and depression. However, there is little research identifying which specific BN symptoms maintain BN psychopathology and how they are associated with symptoms of depression and anxiety. Network analyses represent an emerging method in psychopathology research to examine how symptoms interact and may become self-reinforcing. In the current study of adults with a DSM-IV diagnosis of BN (N = 196), we used network analysis to identify the central symptoms of BN, as well as symptoms that may bridge the association between BN symptoms and anxiety and depression symptoms. Results showed that fear of weight gain was central to BN psychopathology, whereas binge eating, purging, and restriction were less central in the symptom network. Symptoms related to sensitivity to physical sensations (e.g., changes in appetite, feeling dizzy, wobbly) were identified as bridge symptoms between BN, and anxiety and depressive symptoms. We discuss our findings with respect to cognitive-behavioral treatment approaches for BN. These findings suggest that treatments for BN should focus on fear of weight gain, perhaps through exposure therapies. Further, interventions focusing on exposure to physical sensations may also address BN psychopathology, as well as co-occurring anxiety and depressive symptoms. PMID:28277735
Shah, Peer Azmat; Hasbullah, Halabi B; Lawal, Ibrahim A; Aminu Mu'azu, Abubakar; Tang Jung, Low
2014-01-01
Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node's reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node's compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6's Return-Routability-based Route Optimization (RR-RO).
2013-01-01
Background The present study aimed to develop an artificial neural network (ANN) based prediction model for cardiovascular autonomic (CA) dysfunction in the general population. Methods We analyzed a previous dataset based on a population sample consisted of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN analysis. Performances of these prediction models were evaluated in the validation set. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with CA dysfunction (P < 0.05). The mean area under the receiver-operating curve was 0.762 (95% CI 0.732–0.793) for prediction model developed using ANN analysis. The mean sensitivity, specificity, positive and negative predictive values were similar in the prediction models was 0.751, 0.665, 0.330 and 0.924, respectively. All HL statistics were less than 15.0. Conclusion ANN is an effective tool for developing prediction models with high value for predicting CA dysfunction among the general population. PMID:23902963
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks.
Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R; Nguyen, Tuan N; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T
2017-01-01
This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively.
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks
Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R.; Nguyen, Tuan N.; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T.
2017-01-01
This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively. PMID:28326009
NASA Technical Reports Server (NTRS)
Chen, Yonghua; Naud, Catherine M.; Rangwala, Imtiaz; Landry, Christopher C.; Miller, James R.
2014-01-01
Among the potential reasons for enhanced warming rates in many high elevation regions is the nonlinear relationship between surface downward longwave radiation (DLR) and specific humidity (q). In this study we use ground-based observations at two neighboring high elevation sites in Southwestern Colorado that have different local topography and are 1.3 kilometers apart horizontally and 348 meters vertically. We examine the spatial consistency of the sensitivities (partial derivatives) of DLR with respect to changes in q, and the sensitivities are obtained from the Jacobian matrix of a neural network analysis. Although the relationship between DLR and q is the same at both sites, the sensitivities are higher when q is smaller, which occurs more frequently at the higher elevation site. There is a distinct hourly distribution in the sensitivities at both sites especially for high sensitivity cases, although the range is greater at the lower elevation site. The hourly distribution of the sensitivities relates to that of q. Under clear skies during daytime, q is similar between the two sites, however under cloudy skies or at night, it is not. This means that the DLR-q sensitivities are similar at the two sites during daytime but not at night, and care must be exercised when using data from one site to infer the impact of water vapor feedbacks at another site, particularly at night. Our analysis suggests that care should be exercised when using the lapse rate adjustment to infill high frequency data in a complex topographical region, particularly when one of the stations is subject to cold air pooling as found here.
2012-01-01
Background Artificial neural networks (ANNs) are widely studied for evaluating diseases. This paper discusses the intelligence mode of an ANN in grading the diagnosis of liver fibrosis by duplex ultrasonogaphy. Methods 239 patients who were confirmed as having liver fibrosis or cirrhosis by ultrasound guided liver biopsy were investigated in this study. We quantified ultrasonographic parameters as significant parameters using a data optimization procedure applied to an ANN. 179 patients were typed at random as the training group; 60 additional patients were consequently enrolled as the validating group. Performance of the ANN was evaluated according to accuracy, sensitivity, specificity, Youden’s index and receiver operating characteristic (ROC) analysis. Results 5 ultrasonographic parameters; i.e., the liver parenchyma, thickness of spleen, hepatic vein (HV) waveform, hepatic artery pulsatile index (HAPI) and HV damping index (HVDI), were enrolled as the input neurons in the ANN model. The sensitivity, specificity and accuracy of the ANN model for quantitative diagnosis of liver fibrosis were 95.0%, 85.0% and 88.3%, respectively. The Youden’s index (YI) was 0.80. Conclusions The established ANN model had good sensitivity and specificity in quantitative diagnosis of hepatic fibrosis or liver cirrhosis. Our study suggests that the ANN model based on duplex ultrasound may help non-invasive grading diagnosis of liver fibrosis in clinical practice. PMID:22716936
Lötsch, Jörn; Geisslinger, Gerd; Heinemann, Sarah; Lerch, Florian; Oertel, Bruno G.; Ultsch, Alfred
2018-01-01
Abstract The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models. PMID:28700537
Testing moderation in network meta-analysis with individual participant data
Dagne, Getachew A.; Brown, C. Hendricks; Howe, George; Kellam, Sheppard G.; Liu, Lei
2016-01-01
Summary Meta-analytic methods for combining data from multiple intervention trials are commonly used to estimate the effectiveness of an intervention. They can also be extended to study comparative effectiveness, testing which of several alternative interventions is expected to have the strongest effect. This often requires network meta-analysis (NMA), which combines trials involving direct comparison of two interventions within the same trial and indirect comparisons across trials. In this paper, we extend existing network methods for main effects to examining moderator effects, allowing for tests of whether intervention effects vary for different populations or when employed in different contexts. In addition, we study how the use of individual participant data (IPD) may increase the sensitivity of NMA for detecting moderator effects, as compared to aggregate data NMA that employs study-level effect sizes in a meta-regression framework. A new network meta-analysis diagram is proposed. We also develop a generalized multilevel model for NMA that takes into account within- and between-trial heterogeneity, and can include participant-level covariates. Within this framework we present definitions of homogeneity and consistency across trials. A simulation study based on this model is used to assess effects on power to detect both main and moderator effects. Results show that power to detect moderation is substantially greater when applied to IPD as compared to study-level effects. We illustrate the use of this method by applying it to data from a classroom-based randomized study that involved two sub-trials, each comparing interventions that were contrasted with separate control groups. PMID:26841367
The regulatory network of ThbZIP1 in response to abscisic acid treatment
Ji, Xiaoyu; Liu, Guifeng; Liu, Yujia; Nie, Xianguang; Zheng, Lei; Wang, Yucheng
2015-01-01
Previously, a bZIP transcription factor from Tamarix hispida, ThbZIP1, was characterized: plants overexpressing ThbZIP1 displayed improved salt stress tolerance but were sensitive to abscisic acid (ABA). In the current study, we further characterized the regulatory network of ThbZIP1 and the mechanism of ABA sensitivity mediated by ThbZIP1. An ABF transcription factor from T. hispida, ThABF1, directly regulates the expression of ThbZIP1. Microarray analysis identified 1662 and 1609 genes that were respectively significantly upregulated or downregulated by ThbZIP1 when exposed to ABA. Gene ontology (GO) analysis showed that the processes including “response to stimulus,” “catalytic activity,” “binding function,” and “metabolic process” were highly altered in ThbZIP1 expressing plants exposed to ABA. The gene expression in ThbZIP1 transformed plants were compared between exposed to ABA and salt on the genome scale. Genes differentially regulated by both salt and ABA treatment only accounted for 9.75% of total differentially regulated genes. GO analysis showed that structural molecule activity, organelle part, membrane-enclosed lumen, reproduction, and reproductive process are enhanced by ABA but inhibited by salt stress. Conversely, immune system and multi-organism process were improved by salt but inhibited by ABA. Transcription regulator activity, enzyme regulator activity, and developmental process were significantly altered by ABA but were not affected by salt stress. Our study provides insights into how ThbZIP1 mediates ABA and salt stress response at the molecular level. PMID:25713576
NASA Astrophysics Data System (ADS)
Urban, F. E.; Clow, G. D.; Meares, D. C.
2004-12-01
Observations of long-term climate and surficial geological processes are sparse in most of the Arctic, despite the fact that this region is highly sensitive to climate change. Instrumental networks that monitor the interplay of climatic variability and geological/cryospheric processes are a necessity for documenting and understanding climate change. Improvements to the spatial coverage and temporal scale of Arctic climate data are in progress. The USGS, in collaboration with The Bureau of Land Management (BLM) and The Fish and Wildlife Service (FWS) currently maintains two types of monitoring networks in northern Alaska: (1) A 15 site network of continuously operating active-layer and climate monitoring stations, and (2) a 21 element array of deep bore-holes in which the thermal state of deep permafrost is monitored. Here, we focus on the USGS Alaska Active Layer and Climate Monitoring Network (AK-CLIM). These 15 stations are deployed in longitudinal transects that span Alaska north of the Brooks Range, (11 in The National Petroleum Reserve Alaska, (NPRA), and 4 in The Arctic National Wildlife Refuge (ANWR)). An informative overview and update of the USGS AK-CLIM network is presented, including insight to current data, processing and analysis software, and plans for data telemetry. Data collection began in 1998 and parameters currently measured include air temperature, soil temperatures (5-120 cm), snow depth, incoming and reflected short-wave radiation, soil moisture (15 cm), wind speed and direction. Custom processing and analysis software has been written that calculates additional parameters such as active layer thaw depth, thawing-degree-days, albedo, cloudiness, and duration of seasonal snow cover. Data from selected AK-CLIM stations are now temporally sufficient to begin identifying trends, anomalies, and inter-annual variability in the climate of northern Alaska.
Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion
Žitnik, Marinka; Zupan, Blaž
2015-01-01
Abstract Epistatic miniarray profile (E-MAP) is a popular large-scale genetic interaction discovery platform. E-MAPs benefit from quantitative output, which makes it possible to detect subtle interactions with greater precision. However, due to the limits of biotechnology, E-MAP studies fail to measure genetic interactions for up to 40% of gene pairs in an assay. Missing measurements can be recovered by computational techniques for data imputation, in this way completing the interaction profiles and enabling downstream analysis algorithms that could otherwise be sensitive to missing data values. We introduce a new interaction data imputation method called network-guided matrix completion (NG-MC). The core part of NG-MC is low-rank probabilistic matrix completion that incorporates prior knowledge presented as a collection of gene networks. NG-MC assumes that interactions are transitive, such that latent gene interaction profiles inferred by NG-MC depend on the profiles of their direct neighbors in gene networks. As the NG-MC inference algorithm progresses, it propagates latent interaction profiles through each of the networks and updates gene network weights toward improved prediction. In a study with four different E-MAP data assays and considered protein–protein interaction and gene ontology similarity networks, NG-MC significantly surpassed existing alternative techniques. Inclusion of information from gene networks also allowed NG-MC to predict interactions for genes that were not included in original E-MAP assays, a task that could not be considered by current imputation approaches. PMID:25658751
Contestabile, Andrea; Moroni, Monica; Hallinan, Grace I.; Palazzolo, Gemma; Chad, John; Deinhardt, Katrin; Carugo, Dario
2018-01-01
ABSTRACT Development of remote stimulation techniques for neuronal tissues represents a challenging goal. Among the potential methods, mechanical stimuli are the most promising vectors to convey information non-invasively into intact brain tissue. In this context, selective mechano-sensitization of neuronal circuits would pave the way to develop a new cell-type-specific stimulation approach. We report here, for the first time, the development and characterization of mechano-sensitized neuronal networks through the heterologous expression of an engineered bacterial large-conductance mechanosensitive ion channel (MscL). The neuronal functional expression of the MscL was validated through patch-clamp recordings upon application of calibrated suction pressures. Moreover, we verified the effective development of in-vitro neuronal networks expressing the engineered MscL in terms of cell survival, number of synaptic puncta and spontaneous network activity. The pure mechanosensitivity of the engineered MscL, with its wide genetic modification library, may represent a versatile tool to further develop a mechano-genetic approach. This article has an associated First Person interview with the first author of the paper. PMID:29361543
Actors and networks in resource conflict resolution under climate change in rural Kenya
NASA Astrophysics Data System (ADS)
Ngaruiya, Grace W.; Scheffran, Jürgen
2016-05-01
The change from consensual decision-making arrangements into centralized hierarchical chieftaincy schemes through colonization disrupted many rural conflict resolution mechanisms in Africa. In addition, climate change impacts on land use have introduced additional socio-ecological factors that complicate rural conflict dynamics. Despite the current urgent need for conflict-sensitive adaptation, resolution efficiency of these fused rural institutions has hardly been documented. In this context, we analyse the Loitoktok network for implemented resource conflict resolution structures and identify potential actors to guide conflict-sensitive adaptation. This is based on social network data and processes that are collected using the saturation sampling technique to analyse mechanisms of brokerage. We find that there are three different forms of fused conflict resolution arrangements that integrate traditional institutions and private investors in the community. To effectively implement conflict-sensitive adaptation, we recommend the extension officers, the council of elders, local chiefs and private investors as potential conduits of knowledge in rural areas. In conclusion, efficiency of these fused conflict resolution institutions is aided by the presence of holistic resource management policies and diversification in conflict resolution actors and networks.
Pain Sensitivity is Inversely Related to Regional Grey Matter Density in the Brain
Emerson, Nichole M.; Zeidan, Fadel; Lobanov, Oleg V.; Hadsel, Morten S.; Martucci, Katherine T.; Quevedo, Alexandre S.; Starr, Christopher J.; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C.
2014-01-01
Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity we used voxel-based morphometry (VBM) to investigate the relationship between grey matter density across the whole brain and inter-individual differences in pain sensitivity in 116 healthy volunteers (62 females, 54 males). Structural MRI and psychophysical data from 10 previous fMRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions exhibited a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. PMID:24333778
75 FR 9900 - Agency Forms Undergoing Paperwork Reduction Act Review
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... ability of the Network to respond to a biological or chemical terrorism event. The sensitivity of all... Project Laboratory Response Network (LRN)--Existing Data Collection in use without an OMB Control Number... Disease Control and Prevention (CDC). Background and Brief Description The Laboratory Response Network...
NASA Astrophysics Data System (ADS)
Bashiri, Mahdi; Farshbaf-Geranmayeh, Amir; Mogouie, Hamed
2013-11-01
In this paper, a new method is proposed to optimize a multi-response optimization problem based on the Taguchi method for the processes where controllable factors are the smaller-the-better (STB)-type variables and the analyzer desires to find an optimal solution with smaller amount of controllable factors. In such processes, the overall output quality of the product should be maximized while the usage of the process inputs, the controllable factors, should be minimized. Since all possible combinations of factors' levels, are not considered in the Taguchi method, the response values of the possible unpracticed treatments are estimated using the artificial neural network (ANN). The neural network is tuned by the central composite design (CCD) and the genetic algorithm (GA). Then data envelopment analysis (DEA) is applied for determining the efficiency of each treatment. Although the important issue for implementation of DEA is its philosophy, which is maximization of outputs versus minimization of inputs, this important issue has been neglected in previous similar studies in multi-response problems. Finally, the most efficient treatment is determined using the maximin weight model approach. The performance of the proposed method is verified in a plastic molding process. Moreover a sensitivity analysis has been done by an efficiency estimator neural network. The results show efficiency of the proposed approach.
Zou, Chenhui; La Bonte, Laura R.; Pavlov, Vasile I.; Stahl, Gregory L.
2012-01-01
Hyperglycemia, in the absence of type 1 or 2 diabetes, is an independent risk factor for cardiovascular disease. We have previously demonstrated a central role for mannose binding lectin (MBL)-mediated cardiac dysfunction in acute hyperglycemic mice. In this study, we applied whole-genome microarray data analysis to investigate MBL’s role in systematic gene expression changes. The data predict possible intracellular events taking place in multiple cellular compartments such as enhanced insulin signaling pathway sensitivity, promoted mitochondrial respiratory function, improved cellular energy expenditure and protein quality control, improved cytoskeleton structure, and facilitated intracellular trafficking, all of which may contribute to the organismal health of MBL null mice against acute hyperglycemia. Our data show a tight association between gene expression profile and tissue function which might be a very useful tool in predicting cellular targets and regulatory networks connected with in vivo observations, providing clues for further mechanistic studies. PMID:22375142
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reznik, Ed; Christodoulou, Dimitris; Goldford, Joshua E.
Metabolic flux is in part regulated by endogenous small molecules that modulate the catalytic activity of an enzyme, e.g., allosteric inhibition. In contrast to transcriptional regulation of enzymes, technical limitations have hindered the production of a genome-scale atlas of small molecule-enzyme regulatory interactions. Here, we develop a framework leveraging the vast, but fragmented, biochemical literature to reconstruct and analyze the small molecule regulatory network (SMRN) of the model organism Escherichia coli, including the primary metabolite regulators and enzyme targets. Using metabolic control analysis, we prove a fundamental trade-off between regulation and enzymatic activity, and we combine it with metabolomic measurementsmore » and the SMRN to make inferences on the sensitivity of enzymes to their regulators. By generalizing the analysis to other organisms, we identify highly conserved regulatory interactions across evolutionarily divergent species, further emphasizing a critical role for small molecule interactions in the maintenance of metabolic homeostasis.« less
Molinos-Senante, María; Gómez, Trinidad; Caballero, Rafael; Hernández-Sancho, Francesc; Sala-Garrido, Ramón
2015-11-01
The selection of the most appropriate wastewater treatment (WWT) technology is a complex problem since many alternatives are available and many criteria are involved in the decision-making process. To deal with this challenge, the analytic network process (ANP) is applied for the first time to rank a set of seven WWT technology set-ups for secondary treatment in small communities. A major advantage of ANP is that it incorporates interdependent relationships between elements. Results illustrated that extensive technologies, constructed wetlands and pond systems are the most preferred alternatives by WWT experts. The sensitivity analysis performed verified that the ranking of WWT alternatives is very stable since constructed wetlands are almost always placed in the first position. This paper showed that ANP analysis is suitable to deal with complex decision-making problems, such as the selection of the most appropriate WWT system contributing to better understand the multiple interdependences among elements involved in the assessment. Copyright © 2015 Elsevier B.V. All rights reserved.
[Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network].
Wang, Yuanyuan; Zhou, Tao; Lu, Huiling; Wu, Cuiying; Yang, Pengfei
2017-08-01
The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.
Chai, Rifai; Naik, Ganesh R; Nguyen, Tuan Nghia; Ling, Sai Ho; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T
2017-05-01
This paper presents a two-class electroencephal-ography-based classification for classifying of driver fatigue (fatigue state versus alert state) from 43 healthy participants. The system uses independent component by entropy rate bound minimization analysis (ERBM-ICA) for the source separation, autoregressive (AR) modeling for the features extraction, and Bayesian neural network for the classification algorithm. The classification results demonstrate a sensitivity of 89.7%, a specificity of 86.8%, and an accuracy of 88.2%. The combination of ERBM-ICA (source separator), AR (feature extractor), and Bayesian neural network (classifier) provides the best outcome with a p-value < 0.05 with the highest value of area under the receiver operating curve (AUC-ROC = 0.93) against other methods such as power spectral density as feature extractor (AUC-ROC = 0.81). The results of this study suggest the method could be utilized effectively for a countermeasure device for driver fatigue identification and other adverse event applications.
Reznik, Ed; Christodoulou, Dimitris; Goldford, Joshua E.; ...
2017-09-12
Metabolic flux is in part regulated by endogenous small molecules that modulate the catalytic activity of an enzyme, e.g., allosteric inhibition. In contrast to transcriptional regulation of enzymes, technical limitations have hindered the production of a genome-scale atlas of small molecule-enzyme regulatory interactions. Here, we develop a framework leveraging the vast, but fragmented, biochemical literature to reconstruct and analyze the small molecule regulatory network (SMRN) of the model organism Escherichia coli, including the primary metabolite regulators and enzyme targets. Using metabolic control analysis, we prove a fundamental trade-off between regulation and enzymatic activity, and we combine it with metabolomic measurementsmore » and the SMRN to make inferences on the sensitivity of enzymes to their regulators. By generalizing the analysis to other organisms, we identify highly conserved regulatory interactions across evolutionarily divergent species, further emphasizing a critical role for small molecule interactions in the maintenance of metabolic homeostasis.« less
NASA Technical Reports Server (NTRS)
Dermanis, A.
1977-01-01
The possibility of recovering earth rotation and network geometry (baseline) parameters are emphasized. The numerical simulated experiments performed are set up in an environment where station coordinates vary with respect to inertial space according to a simulated earth rotation model similar to the actual but unknown rotation of the earth. The basic technique of VLBI and its mathematical model are presented. The parametrization of earth rotation chosen is described and the resulting model is linearized. A simple analysis of the geometry of the observations leads to some useful hints on achieving maximum sensitivity of the observations with respect to the parameters considered. The basic philosophy for the simulation of data and their analysis through standard least squares adjustment techniques is presented. A number of characteristic network designs based on present and candidate station locations are chosen. The results of the simulations for each design are presented together with a summary of the conclusions.
McCabe, Ciara; Rocha-Rego, Vanessa
2016-01-01
Background Dysfunctional neural responses to appetitive and aversive stimuli have been investigated as possible biomarkers for psychiatric disorders. However it is not clear to what degree these are separate processes across the brain or in fact overlapping systems. To help clarify this issue we used Gaussian process classifier (GPC) analysis to examine appetitive and aversive processing in the brain. Method 25 healthy controls underwent functional MRI whilst seeing pictures and receiving tastes of pleasant and unpleasant food. We applied GPCs to discriminate between the appetitive and aversive sights and tastes using functional activity patterns. Results The diagnostic accuracy of the GPC for the accuracy to discriminate appetitive taste from neutral condition was 86.5% (specificity = 81%, sensitivity = 92%, p = 0.001). If a participant experienced neutral taste stimuli the probability of correct classification was 92. The accuracy to discriminate aversive from neutral taste stimuli was 82.5% (specificity = 73%, sensitivity = 92%, p = 0.001) and appetitive from aversive taste stimuli was 73% (specificity = 77%, sensitivity = 69%, p = 0.001). In the sight modality, the accuracy to discriminate appetitive from neutral condition was 88.5% (specificity = 85%, sensitivity = 92%, p = 0.001), to discriminate aversive from neutral sight stimuli was 92% (specificity = 92%, sensitivity = 92%, p = 0.001), and to discriminate aversive from appetitive sight stimuli was 63.5% (specificity = 73%, sensitivity = 54%, p = 0.009). Conclusions Our results demonstrate the predictive value of neurofunctional data in discriminating emotional and neutral networks of activity in the healthy human brain. It would be of interest to use pattern recognition techniques and fMRI to examine network dysfunction in the processing of appetitive, aversive and neutral stimuli in psychiatric disorders. Especially where problems with reward and punishment processing have been implicated in the pathophysiology of the disorder. PMID:27870866
Suzuki, Kenji
2009-09-21
Computer-aided diagnosis (CAD) has been an active area of study in medical image analysis. A filter for the enhancement of lesions plays an important role for improving the sensitivity and specificity in CAD schemes. The filter enhances objects similar to a model employed in the filter; e.g. a blob-enhancement filter based on the Hessian matrix enhances sphere-like objects. Actual lesions, however, often differ from a simple model; e.g. a lung nodule is generally modeled as a solid sphere, but there are nodules of various shapes and with internal inhomogeneities such as a nodule with spiculations and ground-glass opacity. Thus, conventional filters often fail to enhance actual lesions. Our purpose in this study was to develop a supervised filter for the enhancement of actual lesions (as opposed to a lesion model) by use of a massive-training artificial neural network (MTANN) in a CAD scheme for detection of lung nodules in CT. The MTANN filter was trained with actual nodules in CT images to enhance actual patterns of nodules. By use of the MTANN filter, the sensitivity and specificity of our CAD scheme were improved substantially. With a database of 69 lung cancers, nodule candidate detection by the MTANN filter achieved a 97% sensitivity with 6.7 false positives (FPs) per section, whereas nodule candidate detection by a difference-image technique achieved a 96% sensitivity with 19.3 FPs per section. Classification-MTANNs were applied for further reduction of the FPs. The classification-MTANNs removed 60% of the FPs with a loss of one true positive; thus, it achieved a 96% sensitivity with 2.7 FPs per section. Overall, with our CAD scheme based on the MTANN filter and classification-MTANNs, an 84% sensitivity with 0.5 FPs per section was achieved.
Zhao, Hang; Bai, Jinbo
2015-05-13
The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.
Fuller, Jeffrey; Oster, Candice; Muir Cochrane, Eimear; Dawson, Suzanne; Lawn, Sharon; Henderson, Julie; O'Kane, Deb; Gerace, Adam; McPhail, Ruth; Sparkes, Deb; Fuller, Michelle; Reed, Richard L
2015-11-11
To test a management model of facilitated reflection on network feedback as a means to engage services in problem solving the delivery of integrated primary mental healthcare to older people. Participatory mixed methods case study evaluating the impact of a network management model using organisational network feedback (through social network analysis, key informant interviews and policy review). A model of facilitated network reflection using network theory and methods. A rural community in South Australia. 32 staff from 24 services and 12 senior service managers from mental health, primary care and social care services. Health and social care organisations identified that they operated in clustered self-managed networks within sectors, with no overarching purposive older people's mental healthcare network. The model of facilitated reflection revealed service goal and role conflicts. These discussions helped local services to identify as a network, and begin the problem-solving communication and referral links. A Governance Group assisted this process. Barriers to integrated servicing through a network included service funding tied to performance of direct care tasks and the lack of a clear lead network administration organisation. A model of facilitated reflection helped organisations to identify as a network, but revealed sensitivity about organisational roles and goals, which demonstrated that conflict should be expected. Networked servicing needed a neutral network administration organisation with cross-sectoral credibility, a mandate and the resources to monitor the network, to deal with conflict, negotiate commitment among the service managers, and provide opportunities for different sectors to meet and problem solve. This requires consistency and sustained intersectoral policies that include strategies and funding to facilitate and maintain health and social care networks in rural communities. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Gursoy, Gamze; Terebus, Anna; Youfang Cao; Jie Liang
2016-08-01
Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF. Here we use the ACME method to solve the exact solution of the discrete Chemical Master Equations and to study a network where SF was reported. We showed that the level of SF depends on the degree of the fluctuations of signal molecule. We discovered that signaling noise under certain conditions in the same reaction network can lead to a decrease in the system sensitivities, thus the network can experience stochastic defocusing. These results highlight the fundamental role of stochasticity in biological reaction networks and the need for exact computation of probability landscape of the molecules in the system.
PEGylated substrates of NSP4 protease: A tool to study protease specificity
NASA Astrophysics Data System (ADS)
Wysocka, Magdalena; Gruba, Natalia; Grzywa, Renata; Giełdoń, Artur; Bąchor, Remigiusz; Brzozowski, Krzysztof; Sieńczyk, Marcin; Dieter, Jenne; Szewczuk, Zbigniew; Rolka, Krzysztof; Lesner, Adam
2016-03-01
Herein we present the synthesis of a novel type of peptidomimetics composed of repeating diaminopropionic acid residues modified with structurally diverse heterobifunctional polyethylene glycol chains (abbreviated as DAPEG). Based on the developed compounds, a library of fluorogenic substrates was synthesized. Further library deconvolution towards human neutrophil serine protease 4 (NSP4) yielded highly sensitive and selective internally quenched peptidomimetic substrates. In silico analysis of the obtained peptidomimetics revealed the presence of an interaction network with distant subsites located on the enzyme surface.
Geier, Johannes; Lessmann, Holger; Hillen, Uwe; Skudlik, Christoph; Jappe, Uta
2016-02-01
Epoxy resin systems (ERSs), consisting of resins, reactive diluents, and hardeners, are indispensable in many branches of industry. In order to develop less sensitizing ERS formulations, knowledge of the sensitizing properties of single components is mandatory. To analyse the frequency of sensitization in the patients concerned, as one integral part of a research project on the sensitizing potency of epoxy resin compounds (FP-0324). A retrospective analysis of data from the Information Network of Departments of Dermatology (IVDK), 2002-2011, and a comparison of reaction frequencies with (surrogate) exposure data, were performed. Almost half of the patients sensitized to epoxy resin were additionally sensitized to reactive diluents or hardeners. Among the reactive diluents, 1,6-hexanediol diglycidyl ether was the most frequent allergen, followed by 1,4-butanediol diglycidyl ether, phenyl glycidyl ether, and p-tert-butylphenyl glycidyl ether. Among the hardeners, m-xylylene diamine (MXDA) and isophorone diamine (IPDA) were the most frequent allergens. According to the calculated exposure-related frequency of sensitization, MXDA seems to be a far more important sensitizer than IPDA. Up to 60% of the patients sensitized to hardeners and 15-20% of those sensitized to reactive diluents do not react to epoxy resin. In cases of suspected contact allergy to an ERS, a complete epoxy resin series must be patch tested from the start. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Moore, Spencer; Shiell, Alan; Hawe, Penelope; Haines, Valerie A.
2005-01-01
The growing use of social science constructs in public health invites reflection on how public health researchers translate, that is, appropriate and reshape, constructs from the social sciences. To assess how 1 recently popular construct has been translated into public health research, we conducted a citation network and content analysis of public health articles on the topic of social capital. The analyses document empirically how public health researchers have privileged communitarian definitions of social capital and marginalized network definitions in their citation practices. Such practices limit the way public health researchers measure social capital’s effects on health. The application of social science constructs requires that public health scholars be sensitive to how their own citation habits shape research and knowledge. PMID:16006421
Mono-isotope Prediction for Mass Spectra Using Bayes Network.
Li, Hui; Liu, Chunmei; Rwebangira, Mugizi Robert; Burge, Legand
2014-12-01
Mass spectrometry is one of the widely utilized important methods to study protein functions and components. The challenge of mono-isotope pattern recognition from large scale protein mass spectral data needs computational algorithms and tools to speed up the analysis and improve the analytic results. We utilized naïve Bayes network as the classifier with the assumption that the selected features are independent to predict mono-isotope pattern from mass spectrometry. Mono-isotopes detected from validated theoretical spectra were used as prior information in the Bayes method. Three main features extracted from the dataset were employed as independent variables in our model. The application of the proposed algorithm to publicMo dataset demonstrates that our naïve Bayes classifier is advantageous over existing methods in both accuracy and sensitivity.
An E-Hospital Security Architecture
NASA Astrophysics Data System (ADS)
Tian, Fang; Adams, Carlisle
In this paper, we introduce how to use cryptography in network security and access control of an e-hospital. We first define the security goal of the e-hospital system, and then we analyze the current application system. Our idea is proposed on the system analysis and the related regulations of patients' privacy protection. The security of the whole application system is strengthened through layered security protection. Three security domains in the e-hospital system are defined according to their sensitivity level, and for each domain, we propose different security protections. We use identity based cryptography to establish secure communication channel in the backbone network and policy based cryptography to establish secure communication channel between end users and the backbone network. We also use policy based cryptography in the access control of the application system. We use a symmetric key cryptography to protect the real data in the database. The identity based and policy based cryptography are all based on elliptic curve cryptography—a public key cryptography.
Availability: A Metric for Nucleic Acid Strand Displacement Systems
2016-01-01
DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks. PMID:26875531
Brigham, Mark E.; Payne, Gregory A.; Andrews, William J.; Abbott, Marvin M.
2002-01-01
The sampling network was evaluated with respect to areal coverage, sampling frequency, and analytical schedules. Areal coverage could be expanded to include one additional watershed that is not part of the current network. A new sampling site on the North Canadian River might be useful because of expanding urbanization west of the city, but sampling at some other sites could be discontinued or reduced based on comparisons of data between the sites. Additional real-time or periodic monitoring for dissolved oxygen may be useful to prevent anoxic conditions in pools behind new low-water dams. The sampling schedules, both monthly and quarterly, are adequate to evaluate trends, but additional sampling during flow extremes may be needed to quantify loads and evaluate water-quality during flow extremes. Emerging water-quality issues may require sampling for volatile organic compounds, sulfide, total phosphorus, chlorophyll-a, Esherichia coli, and enterococci, as well as use of more sensitive laboratory analytical methods for determination of cadmium, mercury, lead, and silver.
A more secure parallel keyed hash function based on chaotic neural network
NASA Astrophysics Data System (ADS)
Huang, Zhongquan
2011-08-01
Although various hash functions based on chaos or chaotic neural network were proposed, most of them can not work efficiently in parallel computing environment. Recently, an algorithm for parallel keyed hash function construction based on chaotic neural network was proposed [13]. However, there is a strict limitation in this scheme that its secret keys must be nonce numbers. In other words, if the keys are used more than once in this scheme, there will be some potential security flaw. In this paper, we analyze the cause of vulnerability of the original one in detail, and then propose the corresponding enhancement measures, which can remove the limitation on the secret keys. Theoretical analysis and computer simulation indicate that the modified hash function is more secure and practical than the original one. At the same time, it can keep the parallel merit and satisfy the other performance requirements of hash function, such as good statistical properties, high message and key sensitivity, and strong collision resistance, etc.